
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Jeanette Bonden Isachsen
D

L im
age segm

entation and autom
atic treatm

ent planning in breast cancer radiotherapy

Jeanette Bonden Isachsen

Deep learning image segmentation
and automatic treatment planning
in breast cancer radiotherapy

Master’s thesis in Applied Physics and Mathematics
Supervisor: Sigrun Saur Almberg
Co-supervisor: Kathrine Røe Redalen

June 2021

M
as

te
r’s

 th
es

is





Jeanette Bonden Isachsen

Deep learning image segmentation
and automatic treatment planning
in breast cancer radiotherapy

Master’s thesis in Applied Physics and Mathematics
Supervisor: Sigrun Saur Almberg
Co-supervisor: Kathrine Røe Redalen
June 2021

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics





Abstract

Background and purpose: For radiotherapy, organ at risk (OAR) and target vol-

ume segmentation and the following treatment planning are today, more or less, done

manually and therefore very time-consuming and prone to inter-observer variability.

The use of deep learning (DL) models for automatic segmentation has the potential

to both save time and lead to a more standardized process. The performance of a DL

segmentation model trained on local patient data and a pre-trained DL segmentation

model available from Siemens Healthineers has been evaluated for use at St. Olavs

hospital. Additionally, a protocol-based script for automatic plan optimization was

evaluated.

Materials and methods: The local model was trained by RaySearch Laboratories

AB (Stockholm, Sweden) on CT images of 168 left-sided breast cancer patients treated

with radiotherapy. Geometric and dosimetric evaluations were done for 15 patients

where manual delineations were used as ground truth. Additionally, clinical evaluations

were done for the pre-trained Siemens model. The protocol-based script for automatic

plan optimization was evaluated dosimetrically by comparing automatic volumetric-

modulated arc therapy (VMAT) plans to clinical hybrid and clinical VMAT plans for

16 patients in total.

Results: The heart, left lung, right lung, spinal canal, esophagus, sternum, right

breast, and left breast (primary target volume) were evaluated for both segmentation

models. Additionally, locoregional lymph node areas (nodal target volume) were eval-

uated for the local model. The local model was significantly better than the Siemens

model based on the geometric evaluation. The dosimetric di↵erences were statistically

significant for 9 of the 12 main metrics for the Siemens model and for 4 of the same

metrics for the local model. Larger dosimetric di↵erences were found for the lymph

node areas. Clinical scoring of five structures segmented by the Siemens model was

promising for breast radiotherapy. The evaluation of the automatic plan optimization

indicates that the target volume coverage and treatment quality are preserved when us-

ing automatic planning. OAR doses were generally reduced with the automatic plans.

Compared to the hybrid plans, large dose reductions were found for the heart and left

lung.

Conclusion: The evaluation of the DL models indicates that the quality of both

models is adequate to segment OARs for breast radiotherapy. However, in some cases,

manual adjustments might be required, especially when using the Siemens model. The

local model is preferable for target volumes and will likely be good enough for clinical

use when some adjustments have been done to the lymph node areas. The final version

is now being trained. The script for automatic plan optimization has been validated

and is now being implemented in the clinic.
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Sammendrag

Bakgrunn og form̊al: Behandlingsplanlegging og tilhørende segmentering av risikoor-

gan og målvolum for str̊aleterapi blir i dag mer eller mindre gjort manuelt. Prosessene

er derfor tidkrevende og utsatt for variasjon mellom observatørene. Bruken av modeller

basert p̊a dyp læring (DL) til segmentering har potensialet til å b̊ade spare tid og føre

til en mer standardisert prosess. En modell trent opp p̊a lokal pasientdata og en ferdig

trent modell fra Siemens Healthineers har blitt evaluert til bruk p̊a St. Olavs Hospital.

I tillegg har et protokoll-basert skript for automatisk optimalisering av behandlingsplan

blitt evaluert.

Materiale og metode: Den lokale modellen ble trent opp av RaySearch Laborato-

ries AB (Stockholm, Sverige) p̊a CT bilder av 168 pasienter som ble behandlet for

venstresidig brystkreft med str̊aleterapi. Begge modellene ble testet p̊a 15 pasienter og

sammenlignet med manuelle inntegninger med geometriske og dosimetriske parametere.

Klinisk evaluering ble ogs̊a gjort for Siemens modellen. Skriptet for automatisk plan-

legging ble evaluert dosimetrisk ved å sammenligne automatiske VMAT-planer med

kliniske hybridplaner og kliniske VMAT-planer.

Resultater: Hjertet, venstre lunge, høyre lunge, spinal kanalen, øsofagus, sternum,

høyre bryst og venstre bryst (primært målvolum) ble evaluert for begge segmenter-

ingsmodellene. I tillegg ble regionale lymfeknuteomr̊ader (nodalt målvolum) evaluert

for den lokale modellen. Den lokale modellen var betydelig bedre enn Siemens mod-

ellen, basert p̊a den geometriske evaluering. De dosimetriske forskjellene var statistisk

signifikante for 9 av 12 hovedparametere for Siemens modellen, og for fire av de samme

parameterne for den lokale modellen. Større dosimetriske forskjeller ble funnet for lym-

feknuteomr̊adene. Klinisk scoring for fem strukturer segmentert av Siemens modellen

ga lovende resultater til bruk for brystbestr̊aling. Evalueringen av automatisk planop-

timalisering indikerer at dekning til målvolumene og behandlingskvaliteten er bevart

ved automatisk planlegging. Dosene til risikoorganene var generelt redusert for de au-

tomatiske planene og sammenlignet med hybridplanene var det større reduksjoner for

hjertet og venstre lunge.

Konklusjon: Evalueringen av DL modellene indikerer at kvaliteten p̊a begge mod-

ellene er tilstrekkelig ved segmentering av risikoorganer for brystbestr̊aling. Det vil

imidlertid være nødvendig å gjøre manuelle justeringer i noen tilfeller, spesielt ved

bruk av Siemens modellen. Den lokale modellen er foretrukken for segmentering av

målvolum og modellen vil trolig være tilstrekkelig til klinisk bruk n̊ar noen justeringer

har blitt gjort ved lymfeknuteomr̊adene. Den endelige modellen blir n̊a trent opp.

Skriptet for automatisk planoptimalisering har blitt validert og blir n̊a implementert i

klinikken.
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1 Introduction

The field of radiotherapy has come a long way since the first breast cancer patient was treated
with radiation in 1896 [1]. This was only a year after Wilhelm Conrad Röntgen first discovered
x-rays (photon radiation) and they were not familiar with the physical properties of radiation at
the time [1]. Today, we know much more about the properties of radiation and how to use it with
care to achieve the best possible result for the patient.

Modern radiotherapy techniques allow precise treatment delivery. However, the accuracy of the
whole process is limited by the weakest link, which in radiotherapy is considered to be segmen-
tation [2]. This is the procedure of delineating target volumes and organs at risk, which is then
used to make a personalized treatment plan for each patient. Segmentation is today mostly done
manually, which is time-consuming, highly a↵ected by the competence of the observer, and gen-
erally a↵ected by inter-observer variability [3]. Following segmentation is plan optimization, also
a time-consuming procedure that is associated with large inter-observer variability and dependent
on the competence of the observer [3].

Increased automation is expected to have a major impact on further development within radio-
therapy. Like in many other technological fields, artificial intelligence will likely have a major role
in this development. The use of artificial intelligence, and more specifically deep learning (DL)
and knowledge-based algorithms, should lead to increased e�ciency, standardization, and quality.
Introducing these methods to automatic segmentation and automatic plan optimization is looking
promising in terms of e�ciency and consistency [4–6].

Before automatic models can be implemented clinically they need to be properly tested and eval-
uated [3]. The goal of this project was to test and evaluate two DL segmentation models and a
plan optimization script, all related to left-sided breast cancer.

Di↵erent hospitals use di↵erent guidelines, both for segmentation and plan optimization. To ensure
that the automatic method follows the applicable guidelines, it might be necessary for each hospital
to develop automatic methods locally [3]. One locally trained and one pre-trained segmentation
model was evaluated for use at St. Olavs hospital.

Specifically, the three main aims of this project were to:

1. Evaluate a locally trained DL segmentation model for left-sided breast cancer patients.

2. Evaluate a pre-trained DL segmentation model for organs in the thorax-area made by Siemens
Healthineers.

3. Evaluate a locally made protocol-based script for an optimization of left-sided breast cancer.

Both segmentation models and the plan optimization script were evaluated on left-sided breast
cancer patients treated with locoregional radiotherapy, including both target volumes and organs at
risk (OARs). The treatment planning system RayStation 9B was used to test and evaluate all three
automatic methods. Both segmentation models were evaluated geometrically and dosimetrically.
Additionally, the pre-trained Siemens model was evaluated qualitatively. The plan optimization
script was dosimetrically evaluated.

The locally trained model is a preliminary version, and the final model is intended to be used
clinically at St. Olavs Hospital. Only minor changes are expected to be done for the final model
compared to this preliminary model.
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2 Theory

This section of theory is highly inspired by the theory written for the project thesis written prior
to this master thesis [7]. Specifically, the introduction to section 2.1 about radiotherapy process,
subsection 2.1.2 about the linear accelerator, subsection 2.1.3 about target volume and organ delin-
eation, subsection 2.1.4 about treatment planning and treatment techniques for photon radiation
and section 2.4 about breast cancer are copied from Isachsen [7], with some changes and additions.
Section 2.2 about automatic segmentation and section 2.3 about artificial intelligence have been
partially copied from Isachsen [7], but larger changes and additions have been made.

2.1 The radiotherapy process

In radiotherapy, ionizing radiation is used to kill cancer cells by damaging their DNA. The aim
is tumor control and minimization of normal tissue damage. The treatment can be for a curative
or palliative purpose. Radiotherapy is generally a non-invasive treatment of cancer using a linear
accelerator and delivering radiation through fractions, over the course of several weeks.

The typical workflow for radiotherapy is shown in figure 1. The process begins with a consultation
where the physician and patient decide to proceed with radiotherapy and ends with follow-up after
the treatment delivery [8].

Patient 
assessment

Patient fixation

CT scan

Volume 
segmentation

Treatment 
planning

Plan 
verification 

(QA)

Treatment 
delivery Follow-up

Figure 1: Typical workflow of radiotherapy.

Not only cancer cells are killed during radiotherapy. Killing too many normal tissue cells in an
organ can lead to loss of vital functions and it is thus imperative to limit radiation dose to OARs and
thereby minimize the normal tissue complication probability. OARs are organs that are especially
close to the target volume and should be taken into consideration when planning the treatment. A
computed tomography (CT) scan is taken of the patient and used as a 3D model of the patient for
treatment planning. The CT-scan should be representative of every treatment fraction and should
therefore be taken with the necessary preparations (i.e., fixation, bladder filling, breath-hold, etc.).
The OARs and target volume(s) are delineated in the CT-images by a physician, so-called image
segmentation. The segmented images are then used for treatment planning [8].

A treatment plan results in a radiation dose distribution that aims to maximize the therapeutic
ratio. The therapeutic ratio is the relationship between the probability of tumor control and the
probability of normal tissue damage. A verified plan can be delivered to the patient, while carefully
monitoring the process.

2.1.1 Computed tomography

Today, CT is a necessary part of the process for anatomic imaging and for mapping the electron
density which is used for radiation dose calculations [9]. This modality is therefore used as the
basis of the treatment planning [9]. CT is one of the oldest medical imaging techniques, according
to Kalender [10]. CT uses x-rays and sends these into the patient/object, from di↵erent directions,
and measure the intensity, I, of the radiation that leaves the patient/object. Knowing the initial
intensity, I0, one can then reconstruct an image based on the attenuated value from each ray [10].
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The linear attenuation coe�cient, µ, is tissue-dependent and can in a simplified case be found from
I = I0 exp (µd), where d is the absorber thickness [10]. If the absorber thickness is known, one
can simply solve for µ. In this simplified case the distribution of µ along the beam path would be
unknown, making this a 2D projection of the patient instead of a 3D model, but this is the general
idea behind x-ray imaging techniques. For a CT-scan the beam and detector is rotated around
the patient, in a spiral, from head to toe, while the patient is lying still. This is shown in figure 2.
After this, the slices are reconstructed from the scan by an algorithm and can be viewed either as
slice by slice in 2D or as a 3D model. The linear attenuation coe�cient is related to the electron
density [11]. Therefore, a CT-scan is ideal to use for dose calculations in treatment planning for
radiotherapy [9].
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Figure 2: During a CT-scan the x-ray source and detector rotates around the patient while
the patient table moves in the horizontal direction through the scanner.

2.1.2 Linear accelerator

This subsection about the linear accelerator is based on [12], unless otherwise stated.

The linear accelerator or linac is the workhorse of radiotherapy worldwide [13]. It is a particle
accelerator that accelerates electrons to almost the speed of light. These electrons are then used
directly or converted into photons and directed towards the patient. An overview of the main
components in a typical linac is given in figure 3 and a photo is shown in figure 4.
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Figure 3: A schematic overview of a typical linear accelerator with the main components.

4



Figure 4: An Elekta Versa HD linear accelerator from St. Olavs Hospital.

The linac can be divided into the stand and the gantry. The stand is the stationary part. The
gantry is the rotating part and rotates 360° around the patient delivering radiation at di↵erent
gantry angles. The rotation is around the gantry axis, which goes through the isocenter. The
isocenter is the crossing point between the gantry axis and the center of the beam that exits
the treatment head. The gantry includes the electron gun, the accelerating waveguide, and the
treatment head.

The magnetron produces radio frequency oscillations that are sent through the waveguide. The
electron gun sends electrons into the waveguide synchronized with the radio frequency pulses. In
the accelerating waveguide, the radio frequency field accelerates the electrons. For clinical use,
the linear accelerator often has a horizontal accelerating waveguide because otherwise, the height
needed for the linac would not be practical. Therefore, the electron beam needs to be bent 90° or
270°. This happens in the bending magnet.

At this point, the electron beam is narrow, focused, and directed towards the target area, but
before the beam is ready to reach the patient it needs to be converted into photons. This happens
in the treatment head. The electron beam is directed towards a tungsten target where the electrons
are converted into photon radiation (Bremsstrahlung). Electrons are sometimes used directly for
treatment, and then the narrow beam needs to be appropriately scattered.

One can see a simplified diagram of a treatment head in figure 5. First, the beam hits the tungsten
target and then goes through the primary collimator, which limits the beam to the appropriate
size. The photon beam is more intense in the center, so to achieve a more homogeneous field a
flattening filter is inserted. The beam then passes through an ion chamber, where the dose and
uniformity are monitored.

A multi leaf collimator (MLC) shapes the beam so that it fits the target volume shape according to
the treatment plan. The MLC typically consists of 80 tungsten “leaves” that move independently
of each other and allow a flexible beam shape. The leaves of the MLC usually have a width of
1 cm. Since this type of field shaping is dynamic and the leaves need to move swiftly, some spacing
between the leaves is necessary. This spacing leads to leakage of radiation between the leaves and
the leakage needs to be reduced before the beam reaches the patient. Partially, this problem is
solved by having stepped or overlapping leaves, but a backup collimator is used to get the leakage
level down to an acceptable level.

Until MLCs started to appear in the 1980s, the beam was shaped into a rectangular field. MLC
was introduced to reduce the amount of radiation given to healthy tissue and thereby also allowing
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Figure 5: Diagram of a linear accelerator treatment head with MLC as beam shaping collima-
tor.

an increased dose to the target volume, leading to a more conform treatment. When the beam has
been shaped to fit the target, it is ready to reach the patient. The planned dose is then delivered
as the gantry rotates and the beam is shaped for each new angle.

2.1.3 Target volume and organ delineation

Segmentation of medical images is the process of delineating structures in the images. In radio-
therapy, these structures can be OARs, clinical target volumes, or other regions of interest. The
delineated images are then used for treatment planning. The dose distribution aims to spare OARs
and secure coverage of the target volume.

The most common method used for segmentation today is manual delineation. This method
consists of using di↵erent tools to draw the contours around the organs and target volume(s) in
the CT-slices. The slices are usually 3mm thick and there are around 200 slices from one scan [14].
Manual segmentation is a time-consuming process. This method is also highly dependent on the
anatomical knowledge and therefore experience of the physician [15]. Typically, the physician uses
more than one imaging modality to examine the extent of the disease for target volume delineation
[9, 16].

Target volumes

Gross target volume (GTV) is an anatomical volume and is the visible part of the tumor that the
physician can see from the images. The clinical target volume (CTV) includes GTV, but also areas
around the GTV where microscopic disease is suspected. The CTV may include lymph nodes that
are suspected cancerous [14].

Movements and di↵erences in patient set-up can a↵ect the position of the target volume during
treatment [14]. Planning target volume (PTV) is a geometric volume defined to take these e↵ects
into account. The PTV is in the end the area that is treated during radiotherapy. An overview of
the relationship between GTV, CTV and PTV can be seen in figure 6. To secure dose coverage of
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the CTV in practice, the treatment plan is made based on the PTV [14].

GTV

CTV

PTV

Figure 6: Overview of the volume definitions in radiotherapy planning and the relationship
between them.

2.1.4 Treatment planning and treatment techniques for photon radiation

This subsection about treatment planning and treatment techniques is based on Khan et al. [14],
unless otherwise stated.

When the 3D model of the patient has been acquired through CT, as well as any additional imaging
modalities, and the OARs and target volumes have been delineated, the treatment planning can
begin. The treatment planning consists of setting up beams from di↵erent angles around the
patient and then calculating the predicted dose to each voxel in the CT-scan. The plan must be
evaluated to see if it meets all the clinical goals, and is adjusted until it does. Once it meets all the
clinical goals and is optimized to spare as much normal tissue as possible the plan can be approved,
and used for treatment.

Dose calculations are done by algorithms. Dose is measured in Gy, which is J/kg and is hence
defined as absorption of one joule of radiation energy per kilogram of matter [17]. Dose calculations
are the planned amount of dose, in Gy, given to each voxel in the CT-scan. The dose calculations
require a description of the anatomy of the patient, i.e. CT-scan, and a description of the radiation
source. Description of the radiation source includes beam energy, source size, and the behavior of
the photons through the head of the linear accelerator [12].

There is a wide variety of di↵erent computer algorithms for photon dose calculation. Generally,
choosing the best method is a compromise between speed and accuracy [12]. The most used method,
according to Mayles et al. [12], is three-dimensional convolution of the point-spread function. The
point-spread functions are derived from Monte Carlo simulations in water [12]. Although full
Monte Carlo dose calculations have been implemented in commercial treatment planning systems
recently, it is not yet widely used.

Three main treatment techniques for photon radiotherapy are three-dimensional conformal radia-
tion therapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc
therapy (VMAT). All three are CT-based and the OARs and PTV are drawn into the images by a
physician. A treatment plan is then made using a MLC to avoid and spare the OARs and hit the
PTV more conformly from di↵erent directions, compared to using simpler box-techniques.

When using 3D-CRT, each field is added manually to the plan by choosing the direction and
intensity. While 3D-CRT uses a so-called, forward planning technique, the other techniques use
inverse planning. Forward planning is more time-consuming and it is not possible to explore all
options. Inverse treatment planning, on the other hand, lets the computer find the optimized
treatment plan automatically given objectives for OARs and target volume(s).
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The optimization aims to minimize the di↵erence between the calculated dose distribution and the
prescription dose distribution. It can be practically implemented by minimizing the quadratic cost
function

C =
NX

i

Ii(Di �D
P
i )

2
,

where Di is the dose delivered to the ith voxel, DP
i is the prescription dose to the ith voxel, Ii

is the importance factor to the ith voxel and N is the total number of voxels. The prescription
dose is made based on getting full coverage of the target volume and meeting clinical goals for the
OARs. The importance factor is a weight that allows the user to determine which objectives are
most important during the optimization [12].

IMRT can reduce the fluence in some areas and increase it in other areas, hence it is intensity-
modulated. Fluence is the energy delivered per unit area. In IMRT, 5-9 gantry angles are usually
used where around 10 segments are delivered at each angle.

VMAT is a more advanced version of IMRT. VMAT also uses inverse treatment planning but gives
the radiation continuously through the whole gantry rotation. The MLC positions also change
continuously during the rotation. The entire treatment is then delivered in the one gantry rotation
while the MLC changes, the dose rate changes, and the speed of the rotation changes. This
technique is faster than IMRT.

Both IMRT and VMAT have become routine for most modern treatment planning. They are
superior to the standard treatment using 3D-CRT because these methods allow shaping the dose
distribution so that one achieves conform delivery of the dose to the PTV while sparing the OARs.
However, these techniques may irradiate larger volumes with small doses, which can be a concern
in some situations.

2.2 Automatic segmentation

Manual delineation of target volume(s) and OARs is a time-consuming process [14]. Target volume
delineation is also known to represent the largest uncertainty in the radiotherapy process [2, 18].
Errors at this stage of the treatment generate systematic errors during the treatment [18]. With
conformal techniques, accurate delivery becomes very important. If the target volume delineation
is slightly wrong, it could lead to insu�cient tumor control and unnecessary damage to the critical
organs. These uncertainties can also make it harder to find correlations in clinical studies and cause
confusion when comparing di↵erent techniques [2]. In figures 7 and 8, examples of inter-observer
variability between manual delineations is shown.

Figure 7: Example of inter-observer variability between manual delineations from six di↵erent
observers at St. Olavs Hospital of organs at risk, transversal plane.
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(a) Coronal plane (b) Transversal plane

Figure 8: Example of inter-observer variability between manual delineations from five di↵erent
observers at St. Olavs Hospital for target volumes for left-sided breast cancer.

The uncertainties in target volume delineation originate from a lack of ground truth and inter-
observer variability among the physicians. Although these uncertainties are the largest for target
volume delineation, this also applies to OAR delineation. Especially, the inter-observer variability
is said to a↵ect the accuracy of OAR delineation [15, 19]. Nelms et al. [20] studied the variations
between di↵erent clinics in the delineation of OARs. They found that there was significant inter-
clinician variability and stresses the importance of accuracy not only in target volume delineation
but in OAR delineation as well [20].

It has become of great interest to reduce these uncertainties and also find a less time-consuming
method. Through automatic segmentation, the element of the eye of the beholder can be partially
or completely removed and there is potential to save time and valuable resources. The standard-
ization will also be increased, making it easier to perform clinical studies to improve radiotherapy
further. Overall, automatic segmentation may lead to increased quality of treatment.

There are several approaches to the automation of image segmentation in radiotherapy. Below,
the three most commons methods are presented, i.e, atlas-based, model-based, and DL based.
Automatic segmentation methods can also be a hybrid of two or more methods to compensate
for their weaknesses. Delineation guidelines and practices vary from clinic to clinic as this is not
standardized. Therefore, a model may be suitable for one clinic and not for another. According to
Liesbeth et al. [3], each clinic needs to perform an evaluation of the model, used on data similar
to which the model will be used clinically [3].

2.2.1 Atlas-based segmentation

Atlas-based image segmentation uses a reference image, an atlas, to segment the new image. In
the atlas, the structures of interest are already segmented. The image that is to be segmented is
mapped or paired with a suitable atlas from the library. A transformation is done between the
atlas and the new image to transfer and fit the segmentations in the atlas to the new image [21].

The similarity of the atlas to the image is important for the quality of the segmentations. Using
an average of several suitable atlases can therefore reduce errors due to lack of correspondence
between the atlas and the images. This is called multi-atlas-based segmentation and improves the
robustness of the segmentation. Voxels are decided as part of a structure or not by a voting system
from all the suitable atlases. A downside of this method is that it can lead to topological errors
where the structures are not closed, and this demands manual editing which is time-consuming
[21].
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2.2.2 Model-based segmentation

Model-based image segmentation generates closed and anatomically correct surfaces by using sta-
tistical shape models or statistical appearance models. These models can restrict the final segmen-
tation to something that is an anatomically correct shape. The shapes are attained in compact
form, together with voxel intensities, based on the training data. The best-fitted model is chosen
and used for each structure of interest and the segmentations are made. The models are trained
on delineated structures in a training set, delineated by experts and the flexibility of the models
are highly dependent on the training data size and content [21].

2.2.3 Deep learning segmentation

Image segmentation methods using artificial intelligence (AI), specifically DL methods, have shown
promising results in the last years and have the potential to outperform other automatic segmen-
tation methods [22, 23]. DL methods can be explained as algorithms that mimic the way the
human brain works to segment regions of interest in medical images. U-net is the most promising
algorithm for medical image segmentation. See section 2.3 for more details about AI, DL and
U-net.

Just as for physicians, the more images the model is trained on, the better it will perform [24]. So,
with big enough and good enough training data, one should be able to train a model that performs
satisfactorily, i.e. follows guidelines, and is more consistent than today’s clinical practice. DL
segmentation is documented to be both faster and better than atlas-based segmentation [25, 26].

2.3 Artificial intelligence

AI is defined as the simulation of intelligent human thinking and acting [27]. This is not a new
concept, the term was introduced already in 1956, but it has become more popular in the last
20 years due to the availability of massive amounts of data power [28]. The concept is to train a
model to make decisions based on inductive reasoning. A large training set for the model makes
it possible to improve the model significantly more than trying to improve the algorithm that the
model uses [28].

AI can be divided into subdomains that focus on di↵erent fields. These are, among others, natural
language processing, vision, robotic processes, and machine learning (ML). ML will be covered in
more detail below, as well as DL, which is the subdomain of ML of interest in this thesis. Their
relationship to AI can be seen illustrated in figure 9. Some examples of practical use of AI today
are Apple’s Siri or Amazon’s Alexa, spam filters, Google Translate, and self-driving cars.

2.3.1 Machine learning

Subsection 2.3.1 about ML is based on Theodoridis [29], unless otherwise stated.

Arthur Samuel defined the term ML in 1959 as “the ability to learn without being explicitly
programmed.”[30]. ML is a science that uses AI and algorithms borrowed from statistics to make
computers learn from data, find hidden structures in data, and then make rational decisions.
Traditionally, computers need explicit instructions and rules for their data processing and decision
making, but with ML, computers can learn more advanced decision making from examples instead
[31]. This allows computers to solve more complex problems [31].

Models are built through a process called training. This is the process of letting the model look at
the observations/examples that it should learn from. The model performance increases with the
amount of training data. This is comparable to humans, but computers lack common sense and
therefore need to see a lot more examples than humans [31]. Good quality training data is crucial
for the performance of the model and obtaining good enough training data is often the challenge
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Figure 9: Relation between AI, ML and DL

when making a ML model [31]. Once the model has been trained it should be able to take in a
new case and give a prediction as output.

Before the model can be used it needs to be tested. A part of the dataset should be set aside for
this. A compromise needs to be made so that the training dataset is large enough to make a good
model, as well as that the test dataset should be large enough to represent the relevant variations.
A larger dataset allows a larger fraction to be used for training because the size of the test dataset
only needs to be big enough and increasing above this level is probably unnecessary.

The dataset is actually split into three parts, training, validation, and test datasets. The validation
dataset is used during the training of the model to fine-tune parameters or decide when the model
is good enough and the training can stop. Training error is the error found using the validation
dataset while training the model, and the test error is the error found using the test dataset on the
final model and is the same as a generalization error. It is important that the test dataset does
not include data that is used for the training. Otherwise, the model will likely be too well fitted to
the training data and the training error could go towards zero, while the generalized performance
will be poor, leading to a high test error. This model would be overfitted to the training data and
therefore perform badly on new data. This can also happen if there are too many parameters in
the model, compared to how much training data is available. On the other hand, a model can also
become underfitted if the number of parameters does not fit the actual complexity of the situation.
Examples of overfitted and underfitted models can be seen in figure 10.

Figure 10: A curve fitted to data in three di↵erent manners, underfitted, balanced and over-
fitted.

11



Di↵erent algorithms

The complexity of the algorithm used for the model should reflect the complexity of the data and
the problem to be solved. For simple data, as for example text and numbers, the classical ML
approaches will give a simple model that works fast. For images and videos, it is recommended to
approach the problem with a neural network algorithm. Actually, neural networks can be used for
most problems and are being used increasingly, but they have the drawback of being less intuitive.
Neural networks will be explained in more detail in subsection 2.3.2.

ML can be used for regression or classification problems. Regression problems aim to predict
continuous values, while classification aims to predict discrete values, for example, true or false.
The problems can be trained by supervised learning or unsupervised learning. Figure 11 illustrates
the di↵erence between these two learning methods. Supervised learning refers to when the machine
has labeled data or the ground truth during the training of the model. Unsupervised learning uses
unlabeled data, that is data with no ground truth, and the goal is not necessary to predict anything
specific but let the machine try to find patterns and similarities in the data [32].

Supervised learning Unsupervised learning

Figure 11: Supervised and unsupervised training for a classification problem.

The algorithms referred to here as classical ML approaches are the ones that have descended,
more or less, directly from statistics. On the supervised part, we have regression and classification
algorithms. Regression can be, for example, linear or polynomial, which can be used for predicting
any kind of continuous values that vary over time. Figure 10 is an example of a regression problem,
while figure 11 shows a classification problems. Clustering is an example of an unsupervised learning
algorithm, where the goal is to separate the data into di↵erent clusters that have more in common
with each other than the data from other clusters [32]. Practical applications of classical ML can
be housing market predictions for regression and spam filters for classification. Clustering is used
as an analysis tool to find patterns make data more easily understandable.

Examples of classification algorithms are decision trees, k-nearest neighbor, and support vector
machines. Decision trees or classification trees are based on the computer choosing suitable yes/no
questions to separate the data into the correct classes. These are easy to explain and are popular
for this reason. One can increase the performance of decision trees by making an ensemble of trees
called a random forest and then use the average of several decision trees as a result [32]. K-nearest
neighbor uses the k number of nearest neighboring samples to predict the classification of a new
sample. K-nearest neighbor is also easy to understand and simple, but one major drawback is that
the distance to the other samples needs to be calculated for each new sample to decide which are
the k closest and is therefore dependent on a good searching technique. Support vector machines is
one of the most popular ML algorithms. It is also called optimal margin classifier and, simplified,
it tries to find the optimal separation line or plane to di↵erentiate two or more di↵erent classes.
This is a robust algorithm that also performs well when modeling non-linear relations. It is used
in many di↵erent areas including image analysis [33].

According to Seo et al. [34], the use of random forests, k-nearest neighbor, and support vector
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machines for image segmentation have been studied a lot in the last decade, but the success is
limited. Support vector machines can be trained on small amounts of training data and are easy
to train because they are less complex than neural networks, but this also makes them less flexible
for more complex features [34]. Random forests are also simple to train and have high accuracy,
but because this is an ensemble of many trees, the internal process becomes di�cult to follow [34].

2.3.2 Deep learning and neural networks

This subsection about DL and neural networks is based on LeCun et al. [35], unless otherwise
stated.

DL is a method that mimics the human brain, using artificial neural networks. Training can
be supervised or unsupervised. Neural networks consist of nodes that represent neurons and are
connected to each other and organized into di↵erent layers. The typical layers are the input layer,
the output layer, and hidden layers. In figure 12 a simplified neural network is illustrated. DL is
all neural networks with more than three hidden layers between the input and output layer.

Input layer

Hidden layers

Output layer

Figure 12: A simplified illustration of how a neural network is connected.

The input layer could be an image that is to be classified by the neural network model and could
include the same number of nodes as pixels in the image. The output layer is the output of the
model and can include several nodes depending on the model. The model chooses the output that
is most probable to be correct. The hidden layers are where the computations take place. The
number of hidden layers varies from model to model, and the number of neuron nodes in each
layer can vary from layer to layer depending on the specific task of the layer. Each neuron has a
set of weights, inputs, and an activation function that determines the output value of the neuron.
The output value determines whether or not the specific feature is important or not. The weights
of the nodes are the learnable characteristics of the neural network and are optimized during the
training of the model.

The loss function is used to optimize the model during training and is calculated once the model
has made a prediction for a single training case. The prediction can then be compared to the labels
of the data. The training aims to minimize the loss function and thereby get a model that has
outputs as close to the correct labels as possible. A loss function can be many di↵erent things, but
one simple example is the mean squared error (MSE) [36].

MSE =
1

N

NX

i=1

(yi � yp(xi))
2
,

where N is the number of inputs, yi is the actual output, yp is the predicted output based on the
input xi. Minimizing this function will lead to the smallest possible di↵erences between actual
output and predicted output.
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Backpropagation is a procedure used for supervised training of neural networks to calculate the
gradient descent of the loss function. The gradient descent can be used to adjust the learnable
parameters of the model in order to minimize the loss function. After a single training case moves
forward through the network, the backpropagation moves from the output layer to the input layer
of the same case and calculates the gradient of the loss function. This gradient is then used to adjust
the parameters of the model in the direction that minimizes the loss function. For multilayer neural
networks, having local minima does not seem to be an issue for achieving good results, neither
does saddle points. Backpropagation allows adjusting all the model parameters e�ciently and is
therefore widely used for training neural networks [36].

Overfitting of the model is generally a problem for neural networks, and as the models are already
large, i.e. many layers and nodes, it is not e�cient to make an ensemble of several networks to
deal with this [37]. Dropout is a technique that significantly reduces overfitting. The way dropout
works is by giving each node in the hidden layers a probability of being removed, often set to
0.5, and then removing the node with its connections to other nodes [37]. This thins out the
network and is done for each training case that is presented [37]. The final network is then made
by combining the thinned networks from the training but scaling down the weights of the nodes
with the probability that the node was removed during training [37]. The purpose of this process
is to not let the network become overfitted to the training data by combining networks that are
built slightly di↵erently.

Neural networks have shown segmentation results similar to the performance of manual segmenta-
tion and have become more popular these recent years due to significant improvements in compu-
tational power and the ability of the network to automatically choose the best features to learn,
from large amounts of training data [34]. Insu�cient training data is the largest issue for neural
networks, although it is also a problem that these models are less intuitive and can feel like a black
box [34]. According to Litjens et al. [38] the black box problem is especially important in the field
of medicine, and several approaches have been made to make the models understandable for the
user. Another way to improve the trust in the model is to access uncertainty estimates from the
network [38].

Two common types of neural networks and DL are recurrent neural network (RNN) and convo-
lutional neural network (CNN). RNN are often used for speech and language tasks because the
network has access to a vector with information about the history of the past elements in the
sequence. This makes RNN good at predicting the next letter in a sentence, for example, but
they are used for much more complex tasks than that, as well. Generally, these networks are used
for tasks that include time steps. CNNs are designed for processing multiple arrays, for example,
tasks involving images or videos. CNNs are good at this because convolutional layers are good at
extracting features in images, while the computational cost is kept low [15]. As the input moves
further into the layers, the features that are detected become increasingly complex, from edges to
shapes.

U-Net

U-net was introduced by Ronneberger et al. [39] in 2015 and these next paragraphs about U-net
are based on his paper, unless otherwise stated. A U-Net is a learning algorithm within DL, a type
of CNN that uses supervised learning and is specialized for biomedical image segmentation. U-Net
is a fully CNN, as this network only has convolutional layers in the hidden layers. What separates
this network from a regular CNN is that U-Net needs fewer training images and gives more precise
segmentations. These improvements are due to data augmentation with elastic deformations and
a supplementary path with up-sampling, respectively. Regular CNNs are usually used just for
classification, while the U-Net can make a classification for each pixel and thereby achieve both
classification and localization. A 3D version of the U-net was presented in 2016 by Çiçek et al. [40],
where all the 2D operations are replaced with their 3D counterparts and the output is volumetric
segmentations.

When U-net is used to train a model for organ segmentation, it is presented with patient cases,
already segmented, and learns features from these cases. The number of features a model should
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learn is specified by the input type before the training begins. This means that a model could be
trained on any number of cases and the run-time for the model would be the same because the
number of features is the same. A trained model classifies each voxel in the images to either be
part of a specific organ or unspecified tissue.

Figure 13: The U-Net architecture (Ronneberger et al. [39]). The left part corresponds to
the contracting path, and the right part corresponds to the expansive path. The number above
the box is the number of feature channels and the number to the left of the box is the image
dimension.

The architecture of the U-Net model is presented in figure 13. The U-shape of the model is made
by the contracting path to the left and the expansive path to the right. The contracting path
captures context, and the expansive path enables precise localization. The resolution of the input
is decreased during the contracting path and without the expansive path, the network could not
localize the classification because of low resolution in the output. The contracting path is typical for
CNNs and consists of two repeated convolutional layers, both using a rectified linear unit (ReLU)
as activation function, and a max-pooling unit for downsampling. The expansive path up-samples
by convolution and then combines this with the corresponding part of the contracting path and
performs two convolutions with ReLU activation functions, assembling a more precise output than
would be possible at the bottom of the “U”-shape. Dropout layers are added to the end of the
contracting path to avoid overfitting. In the end, the output is a segmentation map.

2.3.3 Artificial intelligence in radiation oncology

AI can be used for most of the processes in radiation oncology. The use of AI should lead to
increased quality, standardization, and acceleration of many of the processes involved [3]. The
most popular AI applications in radiotherapy are automatic segmentation, treatment planning,
and synthetic CT generation [3]. AI can also be used for quality assurance in radiotherapy [3]. In
figure 14 an overview of AI in the radiotherapy workflow is shown. Before clinical use, an automatic
method needs to be properly tested and validated.

According to Lin et al. [41] the use of DL models for medical image segmentation is promising.
The use of multi-atlas registration combined with more traditional ML has been tested out, but
registration-based methods are not stable enough for non-rigid organs, like abdominal organs for
example [41]. Today, pure DL models are being implemented for image segmentation in radio-
therapy [41], and according to Liesbeth et al. [3] these DL models are already outperforming
the traditional automatic segmentation methods and are reaching the same accuracy as manual
segmentation. The performance of these DL models depends on the quality and quantity of the
training data. As patients have di↵erent builds, it is important that the model has been trained
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on cases that represent the variability in the clinical data. Having high-quality training data can
decrease the amount of data needed for good performance.

Figure 14: Overview of the radiotherapy workflow and where AI is being introduced (Liesbeth
et al. [3]).

The time-saving aspects of using AI for automatic segmentation are highly dependent on the quality
of the model and how much editing must be done to achieve acceptable delineations. However,
several studies already show results indicating an increase in e�ciency. The time-saving ranges
from 12 % to 77 %, with a median of about 30 % [4, 42, 43]. Van der Veen et al. [4] also found
that the inter-observer variability was reduced with the use of DL.

Treatment planning is, like image segmentation, a time-consuming process, requires a high skill
level, and is associated with large inter-observer variability [3]. The use of AI has the potential
to increase e�ciency and lead to a more standardized process [3]. A patient dataset must be ac-
quired with treatment plans that follow the applicable guidelines and have consistency in treatment
technique and setup [3]. Some ways to automate treatment planning are knowledge-based algo-
rithms, scripting, and protocol-based iterative planning [3]. Although scripting and protocol-based
iterative planning do not necessarily use AI, they have the same intention as treatment planning
based on AI. Chang et al. [44] compared manual treatment planning with knowledge-based al-
gorithms. They concluded that this method could significantly improve planning e�ciency and
produce quality plans [44]. The total time saved was 78 % with the automatic method compared
to the conventional method [44].

2.4 Breast cancer

Section 2.4 about breast cancer is based on Norwegian Breast Cancer Group [45], unless otherwise
stated.

The most common type of cancer for women is breast cancer. In 2018, 3568 women were diagnosed
with breast cancer in Norway. Breast cancer for men is rare but possible. Like any type of cancer,
it starts as a mutation of a healthy cell and this mutation can either lead to increased cell division
or reduced cell death. This mutated cell can over time become a tumor if the immune system does
not detect it and take care of it. The tumor can either be benign (non-cancerous) or malignant
(cancerous).

According to Norwegian Breast Cancer Group, the cumulative probability of females getting breast
cancer before the age of 75 is 8.9 %. Survival is very highly dependent on the stage of cancer;
therefore, early detection can increase the chances of successful curative treatment. For this reason,
the Norwegian government o↵ers mammography screening for women over the age of 50, with a
new screening every 2 years.
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2.4.1 Breast anatomy

In figure 15, the anatomy of the female breast is shown. The breast consists of 15-20 lobes that
are made up of several lobules [46]. The lobe and lobules are where milk is produced, and they are
connected by ducts that transport the milk to the nipple [46]. From the figure, one can see that
there is fatty tissue surrounding the lobes and ducts, and lymph nodes outside the breast. The
chest/thoracic wall is also visible in this figure.

Figure 15: Anatomy of the female breast (National Breast Cancer Foundation [47]).

2.4.2 Treatment modalities

Breast cancer can either be invasive or non-invasive (in situ). Invasive cancer has spread from the
lobe or duct where it originated, while non-invasive has not [48]. Invasive cancer can then spread
through the bloodstream or lymph nodes to other parts of the body [48].

Treatment modalities for breast cancer usually include surgery followed by radiotherapy and
chemotherapy. The surgery can be either mastectomy or lumpectomy, i.e., removal of all breast
tissue or breast-conserving surgery. Of the Norwegian breast cancer patients in 2019, 81.2 % re-
ceived breast-conserving surgery and the goal is to increase this to 85 % [49]. In breast-conserving
surgery, only the tumor and some of the surrounding healthy tissue are removed and most of the
breast is conserved. Depending on how much cancer has spread, removal of lymph nodes is also
considered during surgery. After surgery follows radiotherapy to reduce the risk of relapse and to
increase the chance of survival by removing any microscopic residues in the breast or areas around
the breast. Chemotherapy can be given before or after operation or radiotherapy to decrease the
size of the tumor or remove any leftover cancer cells. The chosen treatment combination of surgery,
radiotherapy, and chemotherapy depends on the size, spread, and location of the tumor and how
aggressive it is.

According to Norwegian Breast Cancer Group, five-year survival from 2014-2018 was 100 % for
patients diagnosed with breast cancer without spread to lymph nodes and a tumor smaller than
2 cm (stage 1). On the other hand, patients with distant metastases had a five-year survival of
29.2 % in the same period. The prognosis is therefore highly dependent on the stage at diagnosis
and can be increased with early diagnosis.

2.4.3 Radiotherapy target volumes and organs at risk

For breast cancer, the tumor has usually already been removed when the radiotherapy planning
begins and therefore there will only be a CTV and no GTV. Typically, the whole breast is a CTV
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together with cancerous lymph nodes. If a mastectomy has been performed, the primary CTV will
be the thoracic wall instead of the breast. The primary CTV is generally limited 5mm below the
skin surface and by the major breast muscle.

The regional lymph nodes that may be treated together with the primary CTV are the axillary
lymph nodes levels 1, 2, and 3, supraclavicular lymph nodes (level 4), pectoral axillary lymph
nodes, and internal mammary lymph nodes. The lymph nodes included as target volumes are
a part of the nodal CTV. These can be seen delineated in figure 16, together with the breast
delineated as primary CTV.

Figure 16: Left breast delineated together with axillary lymph nodes levels 1-4, pectoral
axillary lymph nodes and internal mammary lymph nodes (IMN), coronal view.

It is desirable to achieve 95-107 % of the prescribed dose to the CTV. The PTV is delineated as
CTV plus a 5-7 mm margin. According to Norwegian Breast Cancer Group, the PTV should be
covered by at least 90 % of the prescribed dose, but St. Olavs Hospital uses 95 % coverage to the
PTV.

When it comes to radiotherapy techniques, 3D-CRT is still considered the standard technique.
However, there is an increased interest in using more advanced techniques, such as IMRT or
VMAT, also for treating breast cancer. These techniques may give a higher amount of low-dose
radiation to the contralateral breast and lungs. There is also a lack of research on late e↵ects when
using these techniques.

Di↵erent OAR have di↵erent structures and tolerances and may react di↵erently to the same dose.
The subunits of an organ can be structured more parallel or more serial. Parallel structured organs
can withstand a higher maximum dose and it is the average dose that needs to be limited. These
organs can keep functioning even though some subunits are damaged, but with increasing average
dose the probability of normal tissue complication increases, as more subunits will be damaged.
For serial organs, one needs to monitor the maximum dose given to the organ as the probability
of normal tissue complication increases as a function of this. One subunit failing will a↵ect several
other subunits. The spinal canal is an example of a serial organ, while lungs have more of a parallel
structure [12].

The most important OARs for breast radiotherapy are the heart and lungs. The chance of getting
heart diseases and lung cancer increase with increased dose given to these organs, it is therefore
the intention to radiate these organs as little as possible. For left-sided breast radiotherapy, the
treatment should be done by using deep inspiration breath-hold, to increase the distance between
the heart and breast and thereby minimize the radiation to the heart. According to Norwegian
Breast Cancer Group [45], there is a relative heart disease risk increase of 7.4 % for each Gy the
average heart dose increases with and the dose should therefore be kept below 2Gy. For the lungs,
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with a fractionation scheme of 15 x 2.67Gy and radiation of breast and regional lymph nodes, the
volume receiving 18Gy or above should be less than 35 %. However, the dose should always be
kept as low as reasonably achievable (ALARA), even below these limits [50].
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3 Materials and methods

In this section, the overall procedure, patient data, segmentation models, plan optimization script,
and di↵erent evaluation methods are presented. Statistical analyses used are also presented. Some
parts are borrowed from the project thesis written prior to this master thesis [7]. Specifically,
subsections 3.4.1 and 3.5.1 about geometric evaluation and boxplots, respectively, is copied from
Isachsen [7] with minor changes.

3.1 Patient data

Two di↵erent patient datasets, both anonymized, were used for this study.

• COBRA. These patients are taken from the “Acute and Long-term Cardiovascular Toxicity
After Modern Radiotherapy for Breast Cancer” (COBRA) study ongoing at St. Olavs Hos-
pital in Trondheim and Ålesund Hospital [51]. The manual segmentations have been redone
for the training of the breast model and are therefore regarded as high-quality segmentations.
The patients included in this study were CT-scanned during deep inspiration breath-hold, a
technique used to minimize radiation to the heart and lungs during treatment for left-sided
breast cancer. This dataset was split into a training dataset and a test dataset. The training
dataset includes 168 patients, and the test dataset includes 15 patients.

• CLINICAL. These are patients that were treated for left-sided breast cancer in 2020 at St.
Olavs Hospital. This dataset includes 16 patients, 15 who were CT-scanned during deep
inspiration breath-hold and one that was not. All the patients have a clinical plan, either
VMAT or hybrid plan. A hybrid plan is a combination of conventional tangential arcs (3D-
CRT) and VMAT.

Table 1 gives an overview of how the patient data was used in this thesis. Both patient datasets
have separate lymph node-areas delineated. These are the left pectoral axillary lymph nodes, left
axillary lymph nodes levels 1-4, and left internal mammary lymph nodes. The internal mammary
lymph nodes were not used as target volume for any of the patients in this thesis. Also, one patient
in the CLINICAL dataset does not have axillary lymph nodes level 1.

Table 1: Overview of the patient data involved in this thesis, and how the data was used. Two
di↵erent clinical evaluations are included, distinguished here by S (standard) and T (modified
Turing test). ”-” indicates not applicable.

Local segmentation Siemens segmentation Automatic plan
model model optimization

Training data COBRA (n = 168) unknown external data -
Geometric eval. COBRA (n = 15) COBRA (n = 15) -
Dosimetric eval. COBRA (n = 15) COBRA (n = 15) CLINICAL (n = 16)
Clinical eval., S - COBRA (n = 15) -
Clinical eval., T - CLINICAL (n = 16) -

3.2 Automatic segmentation

In this subsection, the locally trained segmentation model and the pre-trained Siemens model are
presented.

3.2.1 Local model

This segmentation model was trained with local data from St. Olavs Hospital and trained together
with RaySearch Laboratories AB (Stockholm, Sweden). This model is the second last version and
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not the final model that is planned to be used clinically at St. Olavs Hospital. This version was
made available in the treatment planning system RayStation 9B at the hospital in March 2021.
This model is a collaboration with Ålesund Hospital, as well.

The local model is a DL segmentation model for OARs and breast/lymph node segmentation. It
was trained by supervised learning using the COBRA training dataset with manual segmentations
as a DL network of type U-net. The model can segment 24 organs/regions of interest in the
breast/thorax area. These segmentations take less than 2 minutes to generate for one patient. In
figure 17, an example of the segmented structures for one patient can be seen.

All target volumes and a subset of the OARs, as shown in figure 18, were evaluated in this thesis.
They were evaluated with geometric and dosimetric metrics using the manual delineations as
“ground truth”. For the dosimetric evaluation, a treatment plan was made using the automatic
segmentations and the plan optimization script described in section 3.3.

Figure 17: The local model segments 24 organs/regions of interest, as shown in this example.

Figure 18: The structures evaluated in this thesis segmented by the local model.
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For all evaluations of the model, the spinal canal and esophagus have been cut in the craniocaudal
direction, so that these organs have the same length for the manual delineation and automatic
segmentation. This has been done because the length is not as important for these organs, as long
as they are segmented in the length corresponding to the PTV. The di↵erences in length for the
local model were minimal, about 2 slices di↵erent.

3.2.2 Siemens model

AI-Rad Companion Organs RT is a DL segmentation model trained by Siemens Healthineers.
It is here referred to as the Siemens model which is available in Siemens’ cloud-based solution
Teamplay. An example of a patient where the organs/regions of interest in the thorax-area have
been segmented is shown in figure 19. Details about the model, i.e., training data and algorithm
details, are unknown.

Figure 19: Shows a patient where the pre-trained Siemens model has been used and the
organs/regions of interest have been segmented.

The pre-trained Siemens model is not available directly in RayStation, so the CT-scans need to be
exported Teamplay, and after about 5 minutes the automatic segmentations can be imported. A
geometric and dosimetric evaluation was done for this model, as well as clinical evaluations. Due
to the limited amount of OARs and target volumes this model can segment, it was not possible
to make treatment plans based on automatic segmentations. Instead, plans were made using the
manual delineations and the plan optimization script described in section 3.3.

For the breasts, there were some obvious di↵erences in guidelines used at St. Olavs Hospital and
used to make the Siemens model. Therefore, some editing was also done manually to the breasts
segmented by the Siemens model. The segmentations were cropped 5mm below the body surface.
The spinal canal and esophagus were also cut in the craniocaudal direction for the Siemens model
and the di↵erence in length were generally larger for this model than the local model. The editing
of length was done separately for the two models and the manual volume of the spinal canal and
esophagus, therefore, di↵er for the models. Examples of the manual editing can be seen in appendix
D.
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3.3 Automatic plan optimization

VMAT plans were automatically generated in RayStation based on python scripts developed by
Jomar Frengen and Marit Funderud at St. Olavs Hospital. This script uses a protocol-based
iterative method for planning. It is made for breast cancer patients and makes a plan with 15
fractions of 2.67Gy to the breast as PTV. This equals a prescribed dose of 40.05Gy.

The script requires the target volumes to be segmented, as well as certain OARs, i.e., the heart,
lungs, and contralateral breast. The target volumes include the breast, pectoral axillary lymph
nodes, and axillary lymph nodes levels 1, 2, 3, and 4, and internal mammary lymph nodes. Other
OARs are also taken into account by the script if they are segmented, i.e., esophagus, humeral head,
spinal canal, sternum, thyroid, and trachea. The script is made for di↵erent combinations of target
volumes for either left-sided or right-sided breast radiotherapy. These specifics are chosen when
running the script. For this thesis, the left breast was the primary target volume, with pectoral
axillary lymph nodes and axillary lymph nodes levels 1, 2, 3, and 4 as nodal target volume.

The minimum dose objective for the nodal and primary PTV are 36.2Gy and 38.2Gy, respectively.
The corresponding CTVs have objectives 0.3Gy higher. The absolute goal for 98 % of the nodal
and primary PTV was 90 % and 95 % of the prescribed dose, respectively. The script uses about
30 minutes for the whole process and ends up with a finished treatment plan that is ready to be
evaluated by a physicist. To validate the script, plans were made and compared to manually made
clinical plans with dosimetric evaluation. An example slice from a patient where the script has
been used is shown in figure 20.

Figure 20: Transversal plane with dose distribution for a patient where the plan optimization
script has been used. Pink segmentation is the CTV, and the red segmentation is the PTV,
both delineated manually.

A hybrid plan has been the standard technique at St. Olavs Hospital for breast cancer patients for
several years, but it can be favorable to make a VMAT plan instead, depending on the anatomy
of the patient. If the heart dose or left lung dose is too high, a VMAT plan can often be better.
For the patients used to evaluate the script, some had hybrid plans and some had VMAT plans.
Since the patient population with a hybrid plan varies in anatomy from those with a VMAT plan,
it was natural to divide the patients into two groups depending on which type of clinical plan
was available. The script was therefore evaluated against the manually made VMAT plans and
manually made hybrid plans separately.
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3.4 Evaluation

In this thesis, geometric evaluation, dosimetric evaluation, and clinical evaluations were done.

3.4.1 Geometric evaluation

Three geometric metrics were used to evaluate the DL segmentations. The Dice similarity coe�-
cient (DSC) was used as an overlap metric, Hausdor↵ distance (HD) was used as a distance metric
and absolute volumes were compared to detect systematic di↵erences. The HD mainly used was
the 95th percentile. For extracting these metrics, the scripting possibilities in RayStation were
used. The script for extracting the geometric metrics for evaluation of segmentation models can
be found in appendix A. The scripts for extracting dosimetric metrics can be found in appendices
B and C for evaluation of segmentation models and automatic plan optimization, respectively.

Dice similarity coe�cient

DSC is an overlap measure between two regions or volumes. This coe�cient was developed by Lee
R. Dice and published in 1945 [52]. It is defined as

DSC =
2 · |A \B|
|A|+ |B| ,

where A and B are the regions of interest and A \B is the intersecting area of A and B [52]. The
terms involved in the DSC are illustrated in figure 21.

A BA ∩ B

Figure 21: Illustrates the terms relevant for calculating the DSC of two regions or volumes A
and B. DSC is the overlap, normalized by the area of the regions.

DSC describes the fraction of the overlapping region between two regions and is independent of
which region is the reference. If the overlap is complete the coe�cient will be 1 and if there is no
overlap it will be 0.

Hausdor↵ distance

HD is a measure of the maximum distance between two sets of points in a metric space. A
smaller value means a smaller geometric di↵erence between the objects. Given two point sets
A = {a1, a2, ..., ap} and B = {b1, b2, ..., bq} the HD is defined by Huttenlocher et al. [53] as

H(A,B) = max(h(A,B), h(B,A)),

where
h(A,B) = max

a2A
min
b2B

||a� b||.

h(A,B) is called the directed HD distance using A as reference figure [53]. The directed HD can
be seen as the maximum distance from a point on the reference figure directly to the other figure.
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Figure 22: Illustrates the directed HD between two figures A and B. The HD would be h(A,B),
since this is the largest of the two distances illustrated.

The HD is then the maximum of the directed HDs using both figures as a reference figure in turn.
In figure 22 the directed HD has been drawn in for two shapes overlapping.

In practice, HD is sensitive to outliers [54]. Therefore, it is often useful to calculate di↵erent HD
percentiles. For example, one can calculate the 95th percentile and 99th percentile HD. Calculating
a HD percentile is selecting the distance that is in the quantile equivalent to the percentile one
wishes to obtain. The 100th percentile HD is what is calculated if no percentile is specified.

3.4.2 Dosimetric evaluation

Dosimetric metrics were used to evaluate both automatic segmentation and automatic plans.

Ideally, the target volume receives uniform coverage, while the OARs receive a dose as low as
possible. Isodose curves are helpful to look at when evaluating whether the plan is reaching its
goals. These curves connect the points that receive the same dose. The area enclosed by an isodose
curve, therefore, receives the same or higher dose as the applicable dose. For target volumes, the
isodoses are defined in percentage of the prescribed dose, while for the OARs it is more relevant
to look at the absolute dose.

Di↵erent dose metrics can be used to evaluate how much dose is given to a specific volume or to
quantify the relative volume covered by an isodose curve for a specific region of interest. It is also
useful to use conformity index (CI) and homogeneity index (HI) to evaluate a plan. CI is the ratio
between the PTV covered by the reference isodose and the total reference isodose volume. The
reference isodose is 95 %, i.e., 95 % of the prescribed dose. CI is then defined as

CI =
PTV \ V 95

V 95
,

where V95 is the relative volume covered by 95 % of the prescribed dose. HI is the ratio between
the maximum dose in the target volume and the reference isodose. HI is defined as

HI =
D2

D98
,

where D2 and D98 are doses at 2 and 98 % volume, respectively. An overview of the di↵erent dose
metrics used can be found in table 2. These dose metrics can also be used as clinical goals during
the optimization of the treatment plan. For example, the 95 % isodose should be covered by 98 %
of the PTV.

Dose-volume histogram (DVH) is a common analysis tool for evaluating treatment plans. They
can be cumulative or di↵erential. Cumulative graphs will be used in this thesis. This type of graph
relates the relative volume of a region with the absolute dose and is therefore useful to evaluate
coverage to the target volume and sparing of OARs. The target volume curve should be as far to
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Table 2: Overview of the di↵erent dose metrics used. Relative sizes are given in percentage.

Metric Unit Explanation

Dx [Gy] Dose given to relative volume, x, given in %
Dxcm3 [Gy] Dose given to absolute volume in cm3, x
Dmax [Gy] Maximum dose given to the region of interest,

here defined as D0.03cm3, i.e., the dose given to a volume of 0.03 cm3

Dmean [Gy] Average dose given to the region of interest
Vx [1] Relative volume covered by the relative dose, x, given in %
VxGy [1] Relative volume covered by the absolute dose in Gy, x
CI [1] Conformity index
HI [1] Homogeneity index

the upper-right corner as possible and go straight down at the prescribed dose. For the OARs, the
curve should be as far to the lower-left corner as possible, thereby following the ALARA-principle.
Example curves for PTV and OAR is shown in figure 23.
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Figure 23: Cumulative DVH curves for PTV and OAR with an ideal case and a more clinically
realistic case. PD is the prescribed dose.

3.4.3 Clinical evaluations

The Siemens model was evaluated clinically in two di↵erent ways, clinical scoring and modified
Turing test.

Clinical scoring

Results from a clinical evaluation using a scoring system were included in this thesis. One experi-
enced radiation therapist scored the segmentations using a scale as follows:

0 - Rejected

1 - Major corrections needed, but I would still use the model; small time gain

2 - Minor corrections needed; significant time gain

3 - Accepted without corrections

The score was made based on usage for adjuvant breast cancer radiotherapy. The radiation ther-
apist had access to the manual segmentations while rating the automatic segmentations, as well
as the whole CT-scan. This was done for both lungs, spinal canal, esophagus, and sternum using
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the test dataset COBRA patients. The original segmentations were used for the spinal canal and
esophagus and not the ones that had been edited to be the same length as the manual delineations.

Modified Turing test

A modified Turing test, very similar to that of Gooding [55], was executed as described below.

The clinical evaluation was done for the heart and left breast (CTVp). Two oncologists were
presented with a set of questions put together in a free questionnaire website, nettskjema.no. The
questionnaire was made together with a fellow student, Mari Rossvoll. The three main questions
were:

1. For a single segmentation: “How was this segmentation drawn?”, answer options:

(a) By a human

(b) By an AI model

2. For two segmentations (one AI model and one manual delineation): “Which segmentation
do you prefer?”, answer options are the colors of the two segmentations shown.

3. For a single segmentation: “You have been asked to quality assure this segmentation, would
you...”, answer options:

(a) Require it to be corrected; there are large obvious errors

(b) Require it to be corrected; there are minor errors

(c) Accept it as it is; there are minor errors but correction is not necessary

(d) Accept it as it is; this segmentation is very precise

.

For each of the three main questions, 8 CT-slices were shown, in turn, for each of the organs. This
made a total of 48 questions. For the first and third main question, manual delineations and AI
model segmentations were shown equally many times but in random order. For the second main
question, the color of the two segmentations was randomly set. The questions alternated between
the organs so that the oncologists were less a↵ected by what they have seen earlier for that organ.
They were also asked not to go back to edit previous answers.

For each question, the slice was chosen by randomly choosing a patient and thereafter randomly
choosing a slice according to the relevant range of slices. The relevant range of slices was chosen
depending on what was to be shown in that specific question, i.e range of manual delineation slices,
range of AI model slices, or range of slices that included both segmentations. The range did not
include the most caudal or cranial slices as these are di�cult for the oncologists to evaluate without
more context presented.

The 16 patients from the CLINICAL dataset were used, but two patients with breast implants
were excluded. The segmentation model is most likely not made for patients with implants.

3.5 Statistical analysis

In this subsection, boxplots, Wilcoxon signed-rank test, and Spearman’s rank correlation are pre-
sented. Boxplots were used to visualize some of the results, Wilcoxon signed-rank test was used
to find statistical significance, and Spearman’s rank correlation was used to find the correlation
coe�cient between some metrics for the segmentation models.

28

nettskjema.no


3.5.1 Boxplot

In figure 24 an overview of how to interpret a boxplot is shown. The range between 25th and 75th

percentile is called the interquartile range. Values that are more than 1.5 times the interquartile
range larger than the upper quartile or less than 1.5 times the interquartile range smaller than the
lower quartile are drawn in as an outlier point. The outliers are excluded from the minimum and
maximum values. The lines from the interquartile range to the minimum and maximum values are
called lower and upper whiskers, respectively.

x

Median
Mean

25th percentile 
(lower quartile)

75th percentile 
(upper quartile)

Minimum 
value

Maximum 
value

Outliers Outliers

Figure 24: Shows how to read a boxplot. The box covers the mid 50 % of the samples, with the
median indicated by the line. Mean value is the ”x” and the whiskers illustrates the minimum
and maximum values of the results, excluding the outliers.

3.5.2 Wilcoxon signed-rank test

Wilcoxon signed-rank test was presented by Frank Wilcoxon in 1945 as a method to test the
statistical significance of paired di↵erences [56]. This test is an alternative to the paired Student’s
t-test and can be used when the di↵erences cannot be assumed normally distributed. This is
because it is a non-parametric test and is therefore especially useful when the sample size is small.

There are small variations in how this test is implemented, especially when it comes to which test
statistic is used. In this thesis, Wilcoxon signed-rank test was used as described below.

The null hypothesis, H0, is that the di↵erences follow a symmetric distribution around 0.

1. Pairwise di↵erences between the two related samples, of size N , are calculated, as well as the
absolute di↵erences.

2. Di↵erences that are equal to 0 are removed, also from total number of di↵erences, N .

3. The absolute di↵erences are ranked from closest to 0 (rank 1) and furthest away from 0 (rank
N).

4. Sum the positive ranks and the negative ranks, separately. The smallest of these sums are
set as test statistic, T .

5. Tcrit(↵, N , two-sided) are found as table values (Wilcoxon signed-ranks table) but can also
be calculated from a normal distribution if N is su�ciently large. ↵ is the chosen significance
level.

6. If T > Tcrit the null hypothesis cannot be rejected.

7. Calculate p-value = 2(1 � N (z)), where N is the normal distribution and z is the z-score
calculated as (T � µ)/�, where µ = N(N + 1)/4 and �

2 = µ(2N + 1)/6.
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3.5.3 Spearman’s rank correlation

Spearman’s rank correlation coe�cient is a nonparametric version of the more known Pearson
correlation coe�cient. The correlation between the data in this thesis is not necessarily linear and
the distribution is unknown, therefore, Spearman’s rank correlation coe�cient is used. It can be
used for data where at least one of the variables is ordinal, i.e., one can rank the data. Additionally,
Spearman’s rank correlation coe�cient is not sensitive to outliers because the calculations are done
on the rank of the values and not the values in themselves.

The coe�cient is found by ranking the samples from highest to lowest, individually for both sets of
data. Then the Pearson correlation coe�cient is calculated on the ranks of the data. The formula
for the coe�cient is

r =

Pn
i=1(xi � x̄)(yi � ȳ)pPn

i=1(xi � x̄)2
pPn

i=1(yi � ȳ)2
,

where n is the sample size, xi and yi are the individual samples, i.e., the rankings of the two
datasets, and x̄ and ȳ are the mean values of the rankings. When calculating Spearman’s coe�cient
the mean values will be the same for both datasets, unless there are tied ranks.

The direction of the coe�cient is known according to the sign, and the size determines the strength.
In this thesis, a coe�cient lower than 0.4 indicates no correlation or weak correlation, from 0.4 to 0.7
indicates a moderate correlation, and a coe�cient higher than 0.7 indicates a strong correlation.
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4 Results

The results for both automatic segmentation models are presented, followed by the results from
the evaluation of the automatic plan optimization. All statistics are calculated by the Wilcoxon
signed-rank test using a p-value less than 0.05 as significant.

Primary and nodal CTV are denoted as CTVp and CTVn, respectively. Primary CTV is the left
breast, while the nodal CTV is the union of the left pectoral axillary lymph nodes and left axillary
lymph nodes levels 1-4. The corresponding PTVs are PTVpc and PTVnc, where “c” indicates
“cropped”.

4.1 Automatic segmentation

In this subsection, the results from the geometric, dosimetric, and clinical evaluations are presented
for both segmentation models. Additional metrics, i.e. 99th percentile HD (HD99), 100th percentile
HD (HD100), average distance (AVD) and some dosimetric metrics, can be found in appendix D.
The geometric evaluation for the individual lymph node areas segmented by the local model can
also be found in this appendix.

4.1.1 Geometric evaluation

Mean DSC and 95th percentile HD (HD95) are presented in table 3. DSC and HD95 is also
presented as boxplots in figures 25 and 26 for OAR and target volumes, respectively. Statistically
significant di↵erences in DSC and HD95 between the models was found for all structures except
the lungs. The di↵erences are all in favor of the local model, except for HD95 for the sternum,
where the Siemens model has a lower distance than the local model.

Table 3: Mean DSC and HD95 for both models. Standard deviation (SD) is denoted as the ±
value.

DSC HD95 [cm]
Local model Siemens model Local model Siemens model

Heart 0.96 ± 0.01 0.91 ± 0.03 0.5 ± 0.1 0.9 ± 0.4
Left lung 0.973 ± 0.008 0.968 ± 0.005 0.35 ± 0.03 0.34 ± 0.02
Right lung 0.979 ± 0.005 0.975 ± 0.004 0.33 ± 0.03 0.32 ± 0.03
Spinal canal 0.94 ± 0.02 0.83 ± 0.03 0.17 ± 0.03 0.22 ± 0.03
Esophagus 0.87 ± 0.02 0.81 ± 0.04 0.25 ± 0.03 0.29 ± 0.07
Sternum 0.92 ± 0.02 0.87 ± 0.01 0.7 ± 0.5 0.4 ± 0.2
Right breast 0.94 ± 0.01 0.90 ± 0.03 0.6 ± 0.1 1.4 ± 0.6
CTVp 0.94 ± 0.02 0.89 ± 0.03 0.6 ± 0.2 1.4 ± 0.6
CTVn 0.76 ± 0.07 1.3 ± 0.7

The absolute volumes are plotted in figure 27. Statistically significant di↵erences were found for
all structures except the spinal canal and esophagus for the local model and for all except the
esophagus for the Siemens model. Points lying above the dotted line indicate that the model has
segmented a larger volume than manual delineation, and points lying below the dotted line indicate
that the model has segmented a smaller volume than the manual delineation.
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Figure 25: DSC and HD95 obtained by both segmentation models for the organs at risk.

Figure 26: DSC and HD95 obtained by both segmentation models for the target volumes.
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Figure 27: Volume of automatic segmentation plotted against the volume of the manual
delineation for all patients. Dotted line represents equality.

4.1.2 Dosimetric evaluation

The mean values for the dosimetric metrics for the local model and Siemens model can be found
in table 4 and 5, respectively. The mean pairwise di↵erence is also presented together with a p-
value indicating the level of statistical significance of the di↵erences. The treatment plans used to
evaluate the local model are made from segmentations based on local model, while the treatment
plans used to evaluate the Siemens model are made based on manual delineations, i.e., clinical
plans.

The dosimetric metrics are plotted for each individual patient in figure 28. The dosimetric e↵ect
of using automatic structures is evaluated based on the e↵ect to the manual delineations, thought
of as ground truth. Points below the dotted line, indicate that the model has underestimated
the dose given to the structure, while points above the dotted line indicate that the model has
overestimated the dose.
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Table 4: Mean dosimetric metrics for the local model. The treatment plans are based on
automatic segmentations by the local model. SD is denoted as the ± value. P-values in bold
font are considered statistically significant.

Region Metric Manual del. Local model
Pairwise di↵erence

P-value
(Manual - model)

Heart Dmean [Gy] 1.4 ± 0.2 1.4 ± 0.2 -0.02 ± ± 0.02 0.002

Left lung Dmean [Gy] 8.3 ± 0.8 8.3 ± 0.8 0.0± ± 0.1 0.363
V18Gy [%] 17 ± 2 17 ± 2 0.1± ± 0.3 0.211
V5Gy [%] 38 ± 4 38 ± 4 -0.2± ± 0.4 0.041

Right lung Dmean [Gy] 0.82 ± 0.06 0.82 ± 0.06 0.001± ± 0.004 0.460
V5Gy [%] 0.03 ± 0.04 0.02 ± 0.03 0.01± ± 0.01 0.001

Spinal canal Dmax [Gy] 12 ± 3 12 ± 3 0.0± ± 0.4 0.570
Esophagus D1cm3 [Gy] 8 ± 2 9 ± 2 -0.2± ± 0.5 0.088
Sternum D1cm3 [Gy] 35 ± 4 34 ± 4 0.7± ± 0.7 0.001

Right breast Dmean [Gy] 1.0 ± 0.2 1.0 ± 0.2 -0.03± ± 0.09 0.112
CTVp D98 [Gy] 38.8 ± 0.1 38.8 ± 0.1 0.0± ± 0.1 0.460

V95 [%] 99.8 ± 0.2 99.8 ± 0.1 0.0± ± 0.2 0.460
CTVn D98 [Gy] 38 ± 1 39.08 ± 0.09 -1± ± 1 0.001

V95 [%] 98 ± 2 99.998 ± 0.005 -2± ± 2 0.001

PTVpc D98 [Gy] 37 ± 1 38.08 ± 0.04 -1± ± 1 0.001

V95 [%] 97 ± 1 98.1 ± 0.2 -2± ± 1 0.001

PTVnc D98 [Gy] 34 ± 2 38.09 ± 0.04 -4± ± 2 0.001

V95 [%] 91 ± 3 98.2 ± 0.2 -7± ± 3 0.001

Table 5: Mean dosimetric metrics for the Siemens model. The treatment plans are based
on manual delineations. SD is denoted as the ± value. P-values in bold font are considered
statistically significant.

Region Metric Manual del. Siemens model
Pairwise di↵erence

P-value
(Manual - model)

Heart Dmean [Gy] 1.4 ± 0.2 1.5 ± 0.3 -0.1 ± 0.2 0.001

Left lung Dmean [Gy] 8.6 ± 0.8 8.5 ± 0.8 0.01 ± 0.09 0.865
V18Gy [%] 18 ± 2 18 ± 2 0.1 ± 0.3 0.496
V5Gy [%] 38 ± 4 39 ± 4 -0.2 ± 0.3 0.017

Right lung Dmean [Gy] 0.81 ± 0.06 0.81 ± 0.06 -0.001 ± 0.003 0.427
V5Gy [%] 0.02 ± 0.04 0.01 ± 0.03 0.01 ± 0.01 0.002

Spinal canal Dmax [Gy] 13 ± 3 12 ± 3 0.8 ± 0.4 0.001

Esophagus D1cm3 [Gy] 10 ± 4 10 ± 4 -0.6 ± 0.8 0.009

Sternum D1cm3 [Gy] 34 ± 4 35 ± 3 -2 ± 1 0.001

Right breast Dmean [Gy] 1.0 ± 0.2 1.1 ± 0.3 -0.1 ± 0.2 0.020

CTVp D98 [Gy] 38.8 ± 0.1 35 ± 5 4 ± 5 0.001

V95 [%] 99.88 ± 0.07 96 ± 3 4 ± 3 0.0007
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Figure 28: Dosimetric metrics plotted for all OARs. Dose metrics are plotted as dose to
automatic segmentations against dose to manual delineations. Volume metrics are plotted as
volume covered by the relevant isodose curve for the automatic segmentations against volume
for the manual delineations. Dotted line represents equality.

The primary target volume coverage (V95) and near-minimum dose (D98) is plotted for the local
model and Siemens model in figures 29 and 30, respectively. PTVpc was not made for the Siemens
model, as no plans were made based on this model. Therefore the dose coverage to the PTVpc
is not plotted for the Siemens model, as it is for the local model. Furthermore, the nodal target
volume coverage and near-minimum dose is plotted for the local model in figure 31.
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Figure 29: Primary target volume coverage (V95) and near-minimum dose (D98) to the manual
delineations for plans based on automatic segmentations by the local model.

Figure 30: Primary CTV coverage (V95) and near-minimum dose (D98) to the automatic
segmentations by the Siemens model for plans based on manual delineations.

Figure 31: Nodal target volume coverage (V95) and near-minimum dose (D98) to the manual
delineations for plans based on automatic segmentations by the local model.

36



4.1.3 Clinical evaluations

The clinical scoring of the Siemens model was done for the lungs, spinal canal, esophagus, and
sternum, and the modified Turing test was done for the heart and left breast. The results are
presented separately.

Clinical scoring

The results from the clinical scoring can be seen in figure 32. The scores are based on that the
segmentations are to be used for radiation of breast cancer.

Figure 32: Results from the clinical scoring by the radiation therapist.

The evaluation came with some comments. These can be summarized as:

• Left lung - for six patients: “would do some minor editing around the bronchi, but not
necessary for breast irradiation”

• Right lung: for all but one patient: “would do some minor editing around the bronchi, but
not necessary for breast irradiation”

• Spinal canal - for two patients: “somewhat small in some areas” and for one patient: “a little
strange caudal, but also strange anatomy of the patient”

• Esophagus - for 11 patients: “a little small in circumference”, for 13 patients: “some lung
and/or bone included”, for five patients; “somewhat strange caudal or cranial”, but still:
“good enough for breast irradiation” for all patients

• Sternum - for all patients: “could have been segmented better, but good enough for breast
irradiation.”

Modified Turing test

The results for the three main questions of the modified Turing test can be seen in figures 33, 34
and 35. The misclassification rate for the classical Turing question was 56 % for the heart and 69
% for the left breast. In 75 % of the slices shown, the manually delineated structure was preferable
for both the heart and the left breast.
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(a) Heart (b) Left breast

Figure 33: Results from the modified Turing test and the question ”How was this segmentation
drawn?”.

(a) Heart (b) Left breast

Figure 34: Results from the modified Turing test and the question ”Which segmentation do
you prefer?”.

(a) Heart (b) Left breast

Figure 35: Results from the modified Turing test and the question ”You have been asked to
quality assure this segmentation, would you...”.

4.2 Automatic plan optimization

All mean dosimetric metrics, together with the mean pairwise di↵erence and statistical significance
can be found in tables 6 and 7, for comparison of automatic VMAT plans to clinical hybrid plans
and clinical VMAT plans, respectively. For some of the pairwise di↵erences and corresponding
p-values, the di↵erence was 0. These were left out of the Wilcoxon signed-rank test. This lead
to some of the metrics having too few data points to calculate significance and p-value. This is
indicated in the tables with a “-”. Results for additional dosimetric parameters can be found in
appendix E.
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Table 6: Mean dosimetric metrics for the automatic VMAT plans and the clinical hybrid plans.
SD is denoted as the ± value. P-values in bold font are considered statistically significant and
”-” indicates not enough data points to calculate p-value.

Region Metric Automatic VMAT Clinical hybrid
Pairwise di↵erence

P-value
(Clinical - Automatic)

CTVp D98 [Gy] 38.8 ± 0.1 38.7 ± 0.2 -0.1 ± 0.2 0.237
V95 [%] 99.7 ± 0.1 99.5 ± 0.4 -0.2 ± 0.3 0.091
V105 [%] 0.02 ± 0.04 0.1 ± 0.2 0.1 ± 0.2 -

CTVn D98 [Gy] 39.1 ± 0.1 39.0 ± 0.3 -0.1 ± 0.3 0.499
V95 [%] 99.998 ± 0.005 99.95 ± 0.09 -0.05 ± 0.08 -
V105 [%] 0.1 ± 0.1 0.1 ± 0.3 0.0 ± 0.2 0.612

PTVpc D98 [Gy] 38.10 ± 0.01 38.5 ± 0.3 0.4 ± 0.3 0.028

V95 [%] 98.16 ± 0.06 99.1 ± 0.7 0.9 ± 0.7 0.028

V105 [%] 0.1 ± 0.3 0.1 ± 0.1 -0.1 ± 0.4 1.000
PTVnc D98 [Gy] 38.09 ± 0.01 38.7 ± 0.2 0.6 ± 0.2 0.018

V95 [%] 98.17 ± 0.04 99.8 ± 0.2 1.6 ± 0.2 0.018

V105 [%] 0.3 ± 0.2 0.1 ± 0.2 -0.1 ± 0.3 0.398
Body Dmean [Gy] 5.1 ± 0.7 5.5 ± 0.8 0.3 ± 0.2 0.018

V32Gy [%] 7 ± 1 9 ± 2 2.0 ± 0.7 0.018

D2cm3 [Gy] 42.0 ± 0.2 42.0 ± 0.1 0.0 ± 0.2 0.499
Heart Dmean [Gy] 1.4 ± 0.3 1.8 ± 0.4 0.3 ± 0.3 0.018

Right Breast Dmean [Gy] 1.0 ± 0.3 0.9 ± 0.4 -0.1 ± 0.2 0.128
Left Lung Dmean [Gy] 8 ± 1 11 ± 1 2.7 ± 0.9 0.018

V18Gy [%] 18 ± 5 26 ± 4 8 ± 3 0.018

V5Gy [%] 37 ± 4 43 ± 5 6 ± 3 0.018

Right Lung Dmean [Gy] 0.74 ± 0.06 0.7 ± 0.1 -0.01 ± 0.06 0.735
V5Gy [%] 0.02 ± 0.05 0.7 ± 0.5 0.7 ± 0.5 0.018

Esophagus D1cm3 [Gy] 6 ± 2 25 ± 6 19 ± 6 0.018

Thyroid D1cm3 [Gy] 27 ± 15 37 ± 4 10 ± 12 0.018

Trachea D1cm3 [Gy] 19 ± 6 33 ± 4 14 ± 5 0.018

L. humeral head D1cm3 [Gy] 33 ± 6 39 ± 2 6 ± 5 0.018

Spinal canal Dmax [Gy] 14 ± 4 17 ± 5 3 ± 5 0.176
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Table 7: Mean dosimetric metrics for the automatic VMAT plans and the clinical VMAT plans.
SD is denoted as the ± value. P-values in bold font are considered statistically significant and
”-” indicates not enough data points to calculate p-value.

Region Metric Automatic VMAT Clinical VMAT
Pairwise di↵erence

P-value
(Clinical - Automatic)

CTVp D98 [Gy] 38.7 ± 0.2 38.8 ± 0.2 0.1 ± 0.2 0.173
V95 [%] 99.78 ± 0.08 99.7 ± 0.3 0.0 ± 0.3 0.953
V105 [%] 0.03 ± 0.02 0.1 ± 0.1 0.1 ± 0.1 0.594

CTVn D98 [Gy] 39.1 ± 0.2 39.2 ± 0.3 0.1 ± 0.3 0.314
V95 [%] 100.0 ± 0.1 100.0 ± 0.1 -0.01 ± 0.02 -
V105 [%] 0.08 ± 0.07 0.01 ± 0.02 -0.07 ± 0.06 0.011

PTVpc D98 [Gy] 38.110 ± 0.009 38.1 ± 0.5 0.0 ± 0.5 0.678
V95 [%] 98.19 ± 0.06 98 ± 1 0 ± 1 0.515
V105 [%] 0.09 ± 0.08 0.1 ± 0.2 0.0 ± 0.1 0.767

PTVnc D98 [Gy] 38.09 ± 0.01 38.5 ± 0.2 0.4 ± 0.2 0.008

V95 [%] 98.17 ± 0.04 99 ± 1 1 ± 1 0.008

V105 [%] 0.26 ± 0.17 0.1 ± 0.1 -0.2 ± 0.2 0.028

Body Dmean [Gy] 6.0 ± 0.5 6.2 ± 0.5 0.3 ± 0.2 0.015

V32Gy [%] 9 ± 1 9.5 ± 0.9 0.5 ± 0.3 0.008

D2cm3 [Gy] 42.1 ± 0.1 42.0 ± 0.1 0.0 ± 0.1 0.515
Heart Dmean [Gy] 1.8 ± 0.5 1.8 ± 0.6 0.0 ± 0.2 0.594
Right Breast Dmean [Gy] 1.2 ± 0.4 1.5 ± 0.9 0.3 ± 0.5 0.086
Left Lung Dmean [Gy] 8 ± 1 9 ± 1 0.5 ± 0.9 0.139

V18Gy [%] 17 ± 4 19 ± 4 2 ± 3 0.086
V5Gy [%] 38 ± 4 39 ± 4 2 ± 4 0.214

Right Lung Dmean [Gy] 0.74 ± 0.09 0.9 ± 0.2 0.1 ± 0.1 0.028

V5Gy [%] 0.001 ± 0.002 0.4 ± 0.4 0.4 ± 0.4 0.018

Esophagus D1cm3 [Gy] 8 ± 6 19 ± 9 11 ± 4 0.008

Thyroid D1cm3 [Gy] 28 ± 12 33 ± 10 6 ± 6 0.008

Trachea D1cm3 [Gy] 19 ± 6 26 ± 5 7 ± 3 0.008

L. humeral head D1cm3 [Gy] 32 ± 10 34 ± 8 2 ± 2 0.011

Spinal canal Dmax [Gy] 13 ± 3 12 ± 3 0 ± 3 0.441

There were 15 statistically significant di↵erent metrics for the hybrid plan patients, where four
of these were for the target volumes. For the VMAT plan patients, there were 12 statistically
significant di↵erent metrics, where also four of them were for the target volumes. The statistically
significant di↵erences do not indicate the size and importance of the di↵erences. The most impor-
tant significant di↵erences were found for the hybrid plan patients, specifically, for the heart and
left lung.

DVH graphs for target volumes and the most critical OAR can be seen in figure 36. The less critical
OAR can be seen in figure 37 and in appendix E. The target volumes can also be seen in figures
38 and 39 for primary and nodal structures, respectively. A solid line more towards the lower left
corner for the OARs means that they are spared more using the automatic VMAT planning. A
sharper descending from 100 % volume directly down to the prescribed dose of 40.05Gy indicates
better coverage and more homogeneous coverage of the target volume.
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(a) Compared to hybrid plans (b) Compared to VMAT plans

Figure 36: Cumulative DVH for the target volumes and the most critical OAR.

(a) Compared to hybrid plans (b) Compared to VMAT plans

Figure 37: Cumulative DVH for the less critical OAR

(a) Compared to hybrid plans (b) Compared to VMAT plans

Figure 38: Cumulative DVH for the primary target volumes.
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(a) Compared to hybrid plans (b) Compared to VMAT plans

Figure 39: Cumulative DVH for the nodal target volumes.
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5 Discussion

In this section, the evaluations of the automatic segmentation models are discussed for each struc-
ture. This is followed by a discussion of the evaluation of the automatic plan optimization script.
Methods used for quantitative evaluations are discussed, as well as methods used for qualitative
evaluations. Finally, further work is discussed.

5.1 Automatic segmentation

To evaluate the performance of an automatic segmentation model, both quantitative and qualitative
methods are recommended. However, there is no standard procedure recommended. For the
quantitative analysis, di↵erent similarity metrics are usually used and may be combined with
dosimetric metrics. The qualitative analysis is typically a clinical evaluation where one or more
radiation oncologists compare the segmentations, and rate them as “pass” or “fail” or give them a
score [3].

Manual delineation is subject to inter-observer variability, and therefore, there is no existing gold
standard. Inter-observer variability was evaluated for the same patient group in the project thesis
written prior to this master thesis [7]. The main results from the project thesis is included in
appendix F. The calculated DSC and HD95 for the inter-observer variability of the heart, spinal
canal, and esophagus can additionally be found in table 8. One should require a segmentation
model to perform equal to or better than the inter-observer variability. Otherwise, the use of the
automatic method will lead to reduced accuracy.

It is also of interest to compare with other similar studies. Dong et al. [57] compared their proposed
method for automatic segmentation, using a type of U-Net, to the seven other methods that
participated in the 2017 AAPM thoracic auto-segmentation challenges [58]. In comparison, they
found that their model performed well based on three di↵erent geometric metrics. The DSCs from
their model are presented in table 8. Zhu et al. [59] also evaluated a CNN model for the thorax-
area and will be used for comparison for some OARs. Additionally, Simões et al. [60] evaluated an
atlas-based automatic segmentation for the breast as a target volume with both DSC and HD95.

Table 8: Mean DSC and HD95 for the inter-observer variability (IOV) found in
the project thesis [7] and the results presented by Dong et al. [57], together with the
results from the local model and Siemens model. SD is denoted as the ± value. The
best result for each organ is denoted by bold font.

Organ Method DSC HD95 [cm]

Heart IOV 0.96 ± 0.01 0.39 ± 0.06

Dong et al. 0.87 ± 0.05
Local model 0.96 ± 0.01 0.5 ± 0.1
Siemens model 0.91 ± 0.03 0.9 ± 0.4

Left lung Dong et al. 0.97 ± 0.01
Local model 0.973 ± 0.008 0.35 ± 0.03
Siemens model 0.968 ± 0.005 0.34 ± 0.02

Right lung Dong et al. 0.97 ± 0.01
Local model 0.979 ± 0.005 0.33 ± 0.03
Siemens model 0.975 ± 0.004 0.32 ± 0.03

Spinal canal IOV 0.90 ± 0.02 0.21 ± 0.03
Dong et al. 0.90 ± 0.04
Local model 0.94 ± 0.02 0.17 ± 0.03

Siemens model 0.83 ± 0.03 0.22 ± 0.03
Esophagus IOV 0.85 ± 0.03 0.25 ± 0.05

Dong et al. 0.75 ± 0.08
Local model 0.87 ± 0.02 0.25 ± 0.03

Siemens model 0.81 ± 0.04 0.29 ± 0.07
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Dosimetric metrics are used to study the e↵ect of geometric di↵erences on the calculated dose and
might therefore be considered as more clinically meaningful. Ideally, the dosimetric evaluation of
the model should be done on plans based on the automatic segmentations. This was done for the
local model. However, not all structures were available in the Siemens model, and making plans
was not possible without the nodal CTV. Nevertheless, the goal for the dosimetric evaluation is
still the same.

Dosimetric evaluations were done by Dong et al. [57] and Zhu et al. [25], but for lung cancer and
esophageal cancer, respectively. As a dosimetric evaluation is highly a↵ected by the diagnosis,
these results are not used for comparison. Simões et al. [60] also did a dosimetric evaluation for
breast cancer radiotherapy. However, the method was somewhat di↵erent, and this dosimetric
evaluation is also not relevant.

5.1.1 Heart

The local model was significantly better than the Siemens model based on geometric metrics for
the heart. The performance of the local model was similar to the inter-observer variability; same
DSC, slightly worse HD95. Compared to the proposed model by Dong et al. [57], both the local
model and the Siemens model perform better, when looking at DSC. However, for the heart, some
of the models that competed in the auto-segmentation challenge in 2017 have a higher DSC than
the model proposed by Dong et al.. The highest DSC in the challenge for the heart was 0.93. Zhu
et al. [59] also found DSC for the heart to be 0.93 ± 0.04. The local model has a higher DSC than
all models used for comparison.

The Siemens model has one outlier for the geometric metrics. For this patient, the Siemens model
has segmented further in the anterior direction than both the manual delineation and the local
model. This can be seen in figure 40. However, this patient has somewhat irregular anatomy, in
that there is soft tissue between the heart and the thoracic wall. This patient was also used in the
test dataset for the previous version of the local model [7] and then amounted to an outlier for
the local model. It can be noticed that the present version of the local model did not have much
trouble segmenting this patient. Generally, for the heart, the Siemens model over-segmented and
the local model under-segmented based on absolute volume, both with statistical significance.

Figure 40: For the heart, the Siemens model has segmented too far in the anterior direction
for one patient. Siemens model segmentation in red, local model segmentations in yellow, and
manual delineation in green. Transversal plane.

Both models estimated statistically significant di↵erent mean heart dose than the manual delin-
eations. Nevertheless, the di↵erences are small as shown in figure 28. Only two of the di↵erences
might be considered clinically significant. Both these di↵erences are found for the Siemens model.
One of these patients is the same as for the geometric outlier. While the other is for a segmentation
with average geometric metrics, but slightly over-segmented in the direction of the target volumes
leading to an over-estimated dose. Even though these doses are not very high, one of them is
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estimated above 2Gy for the automatic segmentation. If the plan was based on the Siemens model
segmentation of the heart, there might be trouble getting the dose below 2Gy and one might have
to compromise with target volume coverage.

In 2011, Feng et al. [61] developed a new delineation standard for the heart and reported the
dosimetric di↵erences to the heart before and after implementing the new standard. This can be
seen as the inter-observer variability for dosimetric di↵erences to the heart, as St. Olavs Hospital
uses this standard to delineate the heart. They found that the mean di↵erence in mean dose to
the heart was (0.14 ± 0.14) Gy. Both models evaluated in this thesis have a lower mean dose
di↵erence than this.

Despite promising quantitative results, it should be mentioned that for some of the structures the
manual delineations will be adjusted before the final local model is trained. This is because of
some di↵erences in guidelines between St. Olavs Hospital and Ålesund Hospital, which has also
provided data for training the model. The heart is one of these structures and this is therefore not
the final version for this organ.

The modified Turing test was performed for the Siemens model. The results have large uncer-
tainties, due to few questions and few participants. Nevertheless, the results indicate that the
oncologists found it di�cult to determine which segmentation was made by model and which was
made manually. These questions were di↵erently answered by the two oncologists and therefore
appear randomly answered. The misclassification rate larger than 50 % indicates that the model
had succeeded in not being detected as a machine. However, there was agreement in that the
oncologists preferred the manual delineation, but in 25 % of the cases, they preferred the model
segmentations. There was generally large agreement on the quality assurance questions, but with
some di↵erences. For three of the four slices with an automatic segmentation presented, both on-
cologists agreed that it could be accepted. They also agreed that three of the manual delineations
presented were acceptable, but disagreed on the fourth slice. Overall, these results are promising
for the Siemens model.

5.1.2 Lungs

The models performed similarly on the geometric and dosimetric evaluation of the lungs. The local
inter-observer variability is not available/quantified for the lungs. Compared to other studies, the
local model and Siemens model performed similarly to the models proposed by Dong et al. [57]
and Zhu et al. [59], based on similar DSC. The lungs are relatively large organs and will therefore
generally get high DSC.

Despite statistically significant di↵erences in V5Gy, the di↵erences in all dosimetric parameters
are small. According to Norwegian Breast Cancer Group [45], the volume receiving 18Gy or more
should be less than 35 % of the lung. None of the models are close to this threshold, as the largest
V18Gy value is 22 % for the Siemens model. Therefore, these small di↵erences in dose, will likely
not a↵ect treatment planning.

Clinical scoring was done for the lungs segmented by the Siemens model. The radiation therapist
gave both lungs a top score of “3 - Accepted without corrections” for all 15 patients. There were,
however, comments included that she would have done some minor editing around the bronchi, but
that this is not necessary for breast irradiation. Overall, the dosimetric impact of replacing the
current method for delineating the lungs with any of these two models is small. Also, considering
the good score of the lungs segmented by the Siemens model, one can likely assume the lungs
segmented by the local model are also clinically acceptable.

5.1.3 Spinal canal

The local model was statistically significantly better than the Siemens model on DSC and HD95
for the spinal canal. As seen from table 8, the local model was also better than the inter-observer
variability and the model proposed by Dong et al. [57]. The Siemens model received a similar DSC

45



to the one found by Zhu et al. [59], which was 0.84 ± 0.04.

There was no statistically significant di↵erence in volume for the local model, while the Siemens
model systematically under-segmented compared to manual delineation. As both models were
adjusted to the length of the manually delineated spinal canal in the cranial to caudal direction,
these di↵erences were in the transversal plane. This was also commented on by the radiation
therapist doing the clinical scoring of the Siemens model.

Generally, for the Siemens model, lower doses are estimated to the automatic segmentations than to
the manual delineations. This is probably because of under-segmentation. Even though the doses
given to the spinal canal during breast irradiation are relatively low, using the Siemens model would
probably compromise the accuracy of the manual method used today, at least compared to using
the local model. The clinical scoring indicates that the Siemens model segmentations are good
enough for clinical use for radiotherapy of breast cancer, despite somewhat small segmentation
in some areas leading to a di↵erence in maximum dose. However, the local model is probably
preferable as these segmentations seem to be of the same quality as the manual delineations.

5.1.4 Esophagus

Similar to the results for the spinal canal, the geometric metrics were statistically significantly
better for the local model than the Siemens model for the esophagus. The local model was also
better than the inter-observer variability and the model proposed by Dong et al. [57]. Unlike for
the spinal canal, the Siemens model also had a better DSC than the model proposed by Dong et al.
and is more similar to the inter-observer variability.

For both models, the dose to the automatic segmentations was larger than to the manual de-
lineations. No statistical significance was found for the local model, but the di↵erences for the
Siemens model segmentations, were larger and statistically significant. However, looking at figure
28, one can see that the di↵erences are still small. Additionally, when making a treatment plan
for breast cancer, the dose given to the esophagus is well below the dose limits of the esophagus.
Therefore, these di↵erences will likely not lead to compromise with target volume coverage.

Among the structures evaluated qualitatively, the esophagus received the lowest clinical score, but
still got a top score for 12 of the patients. Three patients received a score of “2 - Minor corrections
needed; significant time gain”. Almost all the segmentations were with the comment “good enough
for breast irradiation, but slightly small circumference and includes some bone and/or lung”. Due
to higher DSC and smaller HD95 for the breast model, there is reason to believe that the problems
observed by the radiation therapist for the Siemens model are smaller for the local model.

5.1.5 Sternum

For the sternum, the local model was significantly better on DSC, while the Siemens model had
a significantly lower HD95. It is therefore unclear which model performs better for this structure.
They both perform similarly to an atlas-based automatic segmentation model for bone structures,
evaluated by Fu et al. [62]. They found the mean DSC to be 0.89 ± 0.02 for the sternum. The
sternum is one of the organs that will be retrained after adjustments are made for the final version
of the local model. Hence, there is reason to believe that the local model will outperform the
Siemens model.

Three outliers can be seen for the geometric metrics found for the local model, and one can be
seen for the Siemens model. For all these outliers the model has not segmented far enough in the
caudal direction, as seen in figure 41.

Both models have statistically significant di↵erences for D1 cm3, but the di↵erences are relatively
small compared to the dose estimated to the sternum. Additionally, this structure is mostly used
as a matching structure during treatment, and according to the clinical scoring, the Siemens model
has segmented good enough to use for breast cancer radiotherapy, even though it could have been
done better. 14 of 15 segmentations received a top score, despite some errors in the caudal part, as
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Figure 41: The local model has not segmented far enough in the caudal direction for this
patients sternum. Local model segmentation in blue and manual delineation in green. Saggital
plane.

seen for the geometric outlier. One segmentation received a score of “2 - Minor corrections needed;
significant time gain” because the segmentation was not connected in the caudal part.

5.1.6 Right breast

The local model was significantly better than the Siemens model for the right breast. Both models
over-segmented, but as one can see from figure 27, the Siemens model generally segmented larger
volumes than the local model. The HD95 for the Siemens model is also the largest mean value
found for any of the organs. This despite the segmentations from the Siemens model has been
cropped 5mm below the body surface.

Over-segmentation is probably the reason for the slightly higher mean dose estimated to the auto-
matically segmented structures. For the local model, the mean dose di↵erence is not statistically
significant, while the di↵erences are slightly larger and statistically significant for the Siemens
model. The patient case with the largest relative di↵erences can be seen in figure 42.

Figure 42: Both models over-segmented the right breast for this patient. Shown here together
with the dose plan for the manual delineations. Manual delineation in yellow, local model
segmentation in blue and Siemens model segmentation in pink. Transversal plane.

For the local model, the delineations used for the training were done for the right breast as an
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OAR and the left breast as a target volume. Generally, target volumes require a delineation with
higher precision than OARs. This is because the radiation beam is shaped conformally around the
target volume. A small error will have a large e↵ect on the actual coverage to the target.

5.1.7 Left breast (CTVp)

The local model was significantly better than the Siemens model for the left breast, as well. Local
inter-observer variability is not available for the left breast. However, in 2013, the Danish Breast
Cancer Cooperative Group developed national guidelines for delineation of target volumes for
adjuvant radiotherapy of early breast cancer, including both primary target volume and nodal
target volumes [63]. After the consensus, the DSC was found to be 0.95, ranging from 0.93 to
0.96, for the breast. Simões et al. [60] also found the median DSC to be 0.95. The local model has
a similar DSC to these, while the Siemens model has a lower DSC. Simões et al. calculated the
HD95, as well, and found the median value to be 0.97 cm. A larger HD95 than for the local model
but smaller than for the Siemens model.

The dosimetric e↵ect of the geometric di↵erences for the left breast is seen by looking at the
coverage to the CTVp and PTVpc. It should be mentioned that breast radiotherapy is in these
cases adjuvant treatment. When irradiating the breast the GTV has already been removed and it
might not always be necessary that the entire breast is irradiated.

For the local model, the coverage and near-minimum dose to the CTVp is approximately the same
for the automatic segmentations and the manual delineations, as seen in figure 29. To the PTVpc,
however, the di↵erences are enhanced and also statistically significant. The di↵erences might be
significant for those patients that receive less than 96 % coverage to the manual delineations.
For the local model, this is four of 15 patients. Probably due to larger di↵erences in volume,
the dosimetric metrics for the Siemens model are not as good as for the local model. For the
Siemens model, the di↵erences in the dosimetric metrics are statistically significant. Compared to
no patients receiving lower CTVp coverage than 99 % for the local model, all but one patient receive
lower coverage than 99 % for the Siemens model. If the plans were based on the segmentations by
the Siemens model instead of manual delineations, these dosimetric di↵erences would likely lead
to over-treatment of the manual delineations, i.e., ground truth primary target volumes.

The results from the modified Turing test for the Siemens model indicate that the oncologists found
it di�cult to determine which segmentation was made by model and which was made manually.
The misclassification rate was 69% and the oncologists did not generally answer the same. The
preference was manual delineations in 75 % of the slices shown, but the oncologists did not agree for
all slices. For the quality assurance question, manual and automatic segmentations were accepted
equally. One of the manual delineations of the breast received the lowest score by both oncologists.
The manual segmentations in this test were used clinically and do not have the same high quality
as the COBRA dataset. Therefore, this shows that errors also occur in the “gold standard”
manual delineation and sheds light on the issue of not having actual ground truth delineations
when evaluating automatic segmentations.

Based on larger dosimetric di↵erences and lower DSC than the one found after consensus by Nielsen
et al. [63], the Siemens model does not segment the breast accurately enough to be used as a target
volume. The local model seems more promising for left breast segmentation.

5.1.8 Lymph nodes (CTVn)

Lymph node segmentation is not available in the Siemens model, so the discussed results in this
subsection are all for the local model. The geometric results for the union of the lymph node
areas are the worst of all the structures evaluated. However, the manual delineations will also be
adjusted and retrained for the final version of the model. Therefore, improvement is expected for
the final version.

The inter-observer variability found by the Danish Breast Cancer Cooperative Group were a DSC
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of 0.70 (0.60–0.77), 0.76 (0.67–0.84), 0.74 (0.66–0.82), 0.56 (0.43–0.73) and 0.66 (0.55–0.78) for
axillary lymph nodes levels 1-4, and pectoral axillary lymph nodes, respectively [63]. The geometric
metrics for the individual lymph node areas for the breast model can be found in appendix D. For
the axillary lymph nodes levels 1, 3, and 4 the local model has higher or about the same DSC,
while level 2 and pectoral axillary lymph nodes have lower DSC.

The dosimetric di↵erences were statistically significant and might also be clinically significant.
Due to under-segmentation by the model, the coverage to the manual delineations is most likely
not good enough. None of the patients received a higher coverage to the PTVnc than 96 %,
but hopefully, the adjustments to the model will give better results. A clinical evaluation of the
segmentations would also be interesting and is required before approving the model.

5.2 Automatic plan optimization

The purpose of evaluating the script for automatic plan optimization was twofold: 1) it is used
to make standardized plans for the dosimetric evaluation of the segmentation models and 2) to
validate the script for clinical use.

For the hybrid plan patients, the coverage and near-minimum dose to the PTVs are somewhat
better for the clinical plans than the automatic VMAT plans with a statistical significance. For
the VMAT plan patients, there were statistically significant di↵erences for the nodal PTV and
in V105 for the nodal CTV and otherwise minor di↵erences to the target volumes. Whether the
statistically significant di↵erences in target volume coverage are clinically significant has not been
evaluated. However, a PTV coverage of 98 % is generally considered good enough and the script
managed this for all the patients. The coverage can also be adjusted in the script but was chosen
to 98 %. A larger coverage might lead to a larger dose to the heart and left lung than necessary. It
should also be mentioned that the clinical plans were made with somewhat varying PTV margins
and in some of the cases, the clinical plans had a 2mm extra margin. The plans are evaluated on
the PTVs made by the script and this is probably why the clinical plans seem to have a higher
coverage in this evaluation. The maximum dose volume, i.e., V105, was slightly high for the
automatic VMAT plans. Subsequently to this evaluation, the script has been adjusted so that the
maximum dose has been reduced. It is also important to notice that the SD is generally lower for
the automatic plans than the clinical plans. This indicates that the plans are more standardized
and one gets the same quality plan for each patient.

A general concern for VMAT planning is that there is a larger amount of low-dose spill than for
conventional planning. Looking at the dose e↵ects on the body, however, one can see that the
dose to the body is slightly lower for the automatic VMAT plans than for both the clinical hybrid
and clinical VMAT plans. This shows that a carefully made VMAT plan does not need to have a
higher mean dose to the whole body than a hybrid (more conventional) plan.

For the hybrid plan patients, larger dose di↵erences were found for the heart and left lung. They
are likely to be clinically significant as well as statistically significant. An average reduction of
0.3Gy was found for the mean dose to the heart when using the script. For the left lung, this
reduction was 2.7Gy. Compared to the clinical VMAT plans, the dose di↵erence to the heart and
left lung did not reach statistical significance. There is more to gain when using the script for the
hybrid plan patients. This is probably because VMAT planning is chosen for the patients where
there is trouble with getting low enough heart dose and in some cases low enough left lung dose.
If the heart and lung doses are considered low enough with the hybrid plan, this is chosen.

There was some dose reduction to the right lung, esophagus, thyroid, trachea, and left humeral
head using the script compared to both the clinical plan types. Although these reductions are
smaller, the ALARA principle is important to have in mind, and in that case, any reduction of
dose to OARs is good. The remaining OARs, the right breast and spinal canal, did not have large
di↵erences and the di↵erences were not statistically significant.

Automatic planning is a hot topic in radiotherapy, but there is still minimal relevant literature
to compare with for script-based planning. RapidPlan, Varian’s knowledge-based solution for
automatic planning, was evaluated by Dumane et al. [64] for lung cancer, and Ling et al. [65]
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evaluated a hybrid of RapidPlan and a script-based solution for esophageal cancer. Both found a
reduction in treatment planning time, reduction of dose to critical OARs, and the same or increased
treatment quality for target volumes, similar to what was found for the plan optimization script
in this thesis. The script uses about 30 minutes to plan, half the time compared to the solution
presented by Ling et al. [65].

Overall, the script performs well in making VMAT plans for left-sided breast cancer patients who
are to be treated with locoregional radiotherapy. The target volume coverage is about the same
as for hybrid plans and manually made VMAT plans. The dose to the OARs is reduced compared
to both the hybrid plans and the VMAT plans, although a larger reduction is found compared
to the hybrid plans. The script was good enough to make plans for dosimetric evaluation of
the segmentation models, without any manual editing, and should also be good enough to be
implemented in the clinic. In fact, it was implemented for clinical use at the end of May 2021,
although this was a slightly modified version.

5.3 Metrics used for quantitative evaluation

DSC is one of the most used metrics for comparing segmentations, but it does have one well-known
drawback. Larger volumes generally get higher DSC than smaller volumes. For this reason, HD
is also included in the geometric analysis. Reinke et al. [66] illustrated important limitations of
common image analysis metrics, with a focus on DSC and HD (HD100). The main limitations of
DSC relevant to image segmentation are that DSC is sensitive to size, favors over-segmentation,
and is unaware of shape. While, on the other hand, HD100 is sensitive to noise. Because of
these limitations, one should include more than one metric when doing image analysis, but the
metrics should complement each other [66]. For this thesis, DSC was chosen because it is widely
used and the results can therefore more easily be compared to other research. HD95 was also
calculated as a supplement to DSC, and chosen because it is more robust and therefore probably
more clinically relevant than HD100. Additionally, the comparison of the basic metric volume
allows knowledge about over- and under-segmentation. However, the volume says nothing about
the spatial correlation between the segmentations and can not be used by itself either.

DSC and HD are good for geometric similarity but are not always correlated with clinical accept-
ability or time needed to adjust them [67]. Vaassen et al. [67] did an evaluation of measures for
assessing time-saving of automatic OAR segmentation. They found that two new measures, surface
DSC and added path length, are better at indicating time-saving and adjustments needed than
the classical geometric measures. Surface DSC was introduced by Nikolov et al. [68] in 2018, and
is a measure of overlap between the segmentation surfaces rather than the segmentation volumes,
as in the classical volumetric DSC. As these metrics are new and not common yet, there is little to
compare with, but it could still be interesting to test these metrics in combination with a clinical
evaluation.

A dosimetric evaluation is more clinically relevant than using just geometric metrics for evaluating
segmentations for radiotherapy. Simões et al. [60] writes that “any clinically meaningful evaluation
of auto-contouring performance should include a dosimetric assessment of geometrical di↵erences”.
Dosimetric evaluation has become more common the recent years, but only a geometric evaluation
is still mostly used. This is probably due to the geometric metrics being easier to extract. It would
be interesting to find a relationship between the geometric and dosimetric metrics, to know which
is more clinically relevant. The relationship between the dosimetric metric V95 and the geometric
metrics DSC and HD95 can be seen plotted based on data from this thesis in figures 43 and 44 for
the CTVs and PTVs, respectively. For the local model, V95 to the manual delineations is used as
the plans were based on the automatic segmentations. While for the Siemens model, V95 to the
automatic segmentations were used as the plans were based on the manual delineations.

Spearman’s rank correlation coe�cient was calculated to find relationships between V95 and these
geometric metrics. The coe�cient should be found for CTV and PTV separately, as these should
have di↵erent coverage. Knowing DSC’s strong correlation with volume, the correlation for primary
and nodal target volumes should be found separately. The correlation coe�cients for the CTVps
are calculated together for both models. The correlation coe�cient for DSC with V95 was 0.82 and
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(a) V95 plotted against DSC (b) V95 plotted against HD95

Figure 43: V95 for the manual delineations plotted against DSC and HD95 for CTVp and
CTVn segmented by the local model, and V95 for the automatic segmentations plotted against
DSC and HD95 for the CTVp segmented by the Siemens model.

(a) V95 plotted against DSC (b) V95 plotted against HD95

Figure 44: V95 for the manual delineations plotted against DSC and HD95 for PTVpc and
PTVnc for the local model.

0.81 for the CTVp and CTVn, respectively, indicating a strong correlation. While the correlation
coe�cient for HD95 with V95 was -0.84 and -0.55 for CTVp and CTVn, respectively, indicating
strong and moderate correlation. For the PTVs (only local model), on the other hand, it is more
di�cult to see a relationship. This is probably because the clearest relationship for the CTVs
comes from the Siemens model, as seen in figure 43. The correlation between DSC and V95 was
0.59 and 0.70 for PTVPc and PTVnc, respectively. There was no correlation between HD95 and
V95 for the PTVpc, but for the PTVnc this coe�cient was -0.56.

An HD95 value lower than 1 cm, seems to be a good indication for a coverage higher than 98 %
for the primary CTVs. HD95 might have a more robust correlation with V95, but both geometric
metrics correlate with coverage and can therefore be seen as useful for evaluating the coverage of
the target volumes.
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5.4 Methods used for qualitative evaluation

An automatic method cannot be implemented clinically without a proper qualitative evaluation,
since quantitative methods are not necessarily connected directly to clinical acceptability.

Huyskens et al. [69] conducted a clinical evaluation similar to the clinical scoring in this project.
This same scoring system was also used by Schreier et al. [70], but in a blinded manner where
the observers did not know if it was a manual delineation or automatic segmentation. As seen in
the modified Turing test done for the Siemens model, the manual delineations do not necessarily
receive a top score. It might therefore be a good idea to blindly score the segmentations, to get a
reference score for the manual delineations. This is, however, a more time-consuming process and
was not done for the clinical scoring of the Siemens model.

For the clinical scoring, the radiation therapist should, ideally, not have access to the manual
delineations, as done by Huyskens et al. [69] and Schreier et al. [70]. This could perhaps lessen
the need for a manual delineation reference score, as the observer is less biased by not having the
“ground truth” delineation in view. Especially given that the manual delineations were the ones of
high quality in the COBRA dataset. However, having received an average score of the top score,
this did not seem to be a problem when evaluating the OARs to use for breast irradiation only.

Due to clinical evaluations being time-consuming and requiring experienced resources, the time-
saving aspect was not evaluated directly. Instead, the time-saving aspect was integrated into the
grading scheme for the scores and might therefore be more subjective than actually measuring the
time used to edit the automatic segmentations. Nevertheless, this was a very time-e↵ective method
to evaluate the time-saving aspect of automatic segmentation.

Ideally, more than one radiation therapist or physician should do the evaluation, to avoid personal
bias, and this could be considered for the next evaluation. Perhaps it would be better to divide
the test patients between di↵erent observers or reduce the number of patients, rather than reduce
the number of observers. Huyskens et al. [69] used six di↵erent physicians, and Schreier et al. [70]
used 10 observers from three di↵erent clinics.

The modified Turing test is a less comprehensive clinical evaluation and was performed as method-
testing for St. Olavs Hospital. The time used to answer this test was 10 minutes and 17 minutes
by the two oncologists for three organs, i.e., heart, left breast, and prostate, while for the clinical
scoring the time was 2-3 hours for 5 organs. Seeing how little time the modified Turing test took,
perhaps one could include more observers and more images for each organ, thereby including a
larger variety of patients and organ slices. With more observers, it would also be interesting to use
Cohen’s kappa to evaluate the inter-rater reliability [71].

An observation made when making the modified Turing test was that the automatic segmentations
in general were a bit more pixeled than the manual delineations. However, this was not commented
by the oncologists but could have been a problem for the Turing question and general bias for the
other two questions.

Comments from the oncologists on the modified Turing test were that “there should be an alterna-
tive for uncertain” and that “it is di�cult to evaluate a single slice for whether the segmentation is
correct or not - especially for the prostate”. If the observer is uncertain about which segmentation
they prefer or which is made by model or human, this will show in the results whether there is
an alternative for uncertain or not. Not having this “uncertain” alternative makes the observer
choose anyway, and they might have an opinion on more of the segmentations than if there was an
alternative option. When it comes to the di�culty of evaluating an organ in single slices, this was
not as big a problem for the organs included in this thesis, but it could be considered to include
all three directional views to make this easier.

The modified Turing test is more e�cient and also includes di↵erent types of information than
clinical scoring. The two first questions are interesting for comparison of the manual delineations
and the automatic segmentations. While the quality assurance question is approximately the same
as the clinical scoring and is a necessary question to know if the segmentations are good enough.
The modified Turing test also gives a reference score for the manual delineations, like the blinded
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scoring done by Schreier et al. [70]. A classical clinical scoring is perhaps the safest choice for a
qualitative evaluation, but there are also benefits of using the modified Turing test instead. It may
for example make the physicians more aware of the uncertainties that exist in manual delineation
as well.

5.5 Further work

The work with automatic segmentation will continue at St. Olavs. The main focus will be on
the local model, which is the most promising model. The final version of the local model is now
being trained after adjustments, and when it is done it will be evaluated for all structures. The
inter-observer variability will also be quantified for all structures and based on more physicians
than included in the project thesis [7]. This will be used to evaluate the e↵ect in standardization
by also quantifying the inter-observer variability after implementing the model for clinical use.

The evaluation of resource usage would also be interesting. This could be done by measuring
the time it takes to manually delineate versus to segment with the model and any manual editing
necessary, This would give a specific result for the time-saving aspect of using segmentation models.
The models might also need retraining with updated guidelines, and this should also be taken into
consideration.

Further evaluations of the local model that could be interesting include whether the model can be
used for other diagnoses than breast cancer and if the model can be validated at another clinic with
their guidelines. For example, the model could be tested on OARs for lung cancer or esophageal
cancer. Validating a segmentation model at another clinic can be seen as the ultimate seal of
approval, and therefore cooperation with another clinic could be interesting.

The script for automatic plan optimization has, as mentioned, already been implemented in the
clinic. However, it will be used parallel to manual planning for a period of time. This is to improve
both the manual planning and the script. Eventually, one believes that mainly the script will
be used. Cooperation with RaySearch to make AI-based automatic treatment planning based on
the script is also under consideration. It would then be interesting to compare the script-based
treatment planning with the AI model and see which performs best and which is fastest. Through
cooperation with RaySearch, other centers will also have access to automatic VMAT-planning for
breast cancer, without the need for implementing and maintaining advanced scripting.
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6 Conclusion

One locally trained and one pre-trained DL segmentation model for OARs and target volume(s)
have been evaluated. The quantitative evaluations for breast cancer radiotherapy are promising,
especially for the local model. The local model segmentations of the heart, spinal canal, esophagus,
and both breasts have significantly better correspondence with the manual delineations than the
pre-trained Siemens model. These organs are also on the level of local or external inter-observer
variability for the local model. For the Siemens model, larger di↵erences were seen for the breasts.
Furthermore, the lymph node areas are not available in the Siemens model. The local model is,
therefore, the preferred model for the target volumes and will likely be good enough for clinical
use when the final version is trained. The lungs and sternum had similar results for both models.
The dosimetric di↵erences and clinical scoring of most OARs indicate that the quality of both
models is adequate for breast radiotherapy. However, in some cases, manual adjustments might be
required, especially when using the Siemens model. This emphasizes the importance of automatic
segmentations being quality assured by competent personnel before use.

A script for automatic VMAT planning has been dosimetrically evaluated and compared to clinical
hybrid and clinical VMAT plans. The evaluation indicates that the target volume coverage and
treatment quality are preserved when using automatic planning. OAR doses were generally reduced
with the automatic VMAT plans. Compared to the hybrid plans, large dose reductions were found
for the heart and left lung, which are assumed to be clinically significant. Automatic planning is
now being implemented in the clinic and will probably improve the standardization, e�ciency, and
quality of treatment planning.
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[40] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3d u-net: learning dense volumetric segmentation from sparse annotation. In International
conference on medical image computing and computer-assisted intervention, pages 424–432.
Springer, 2016.

[41] Kang-Ping Lin, Ratko Magjarevic, and Paulo De Carvalho. Future Trends in Biomedical and
Health Informatics and Cybersecurity in Medical Devices: Proceedings of the International
Conference on Biomedical and Health Informatics, ICBHI 2019, 17-20 April 2019, Taipei,
Taiwan, volume 74. Springer Nature, 2019.

[42] Tim Lustberg, Johan van Soest, Mark Gooding, Devis Peressutti, Paul Aljabar, Judith van der
Stoep, Wouter van Elmpt, and Andre Dekker. Clinical evaluation of atlas and deep learning
based automatic contouring for lung cancer. Radiotherapy and Oncology, 126(2):312–317,
2018.

[43] Mark J Gooding, Annamarie J Smith, Maira Tariq, Paul Aljabar, Devis Peressutti, Judith
van der Stoep, Bart Reymen, Daisy Emans, Djoya Hattu, Judith van Loon, et al. Comparative
evaluation of autocontouring in clinical practice: a practical method using the turing test.
Medical physics, 45(11):5105–5115, 2018.

[44] Amy TY Chang, Albert WM Hung, Fion WK Cheung, Michael CH Lee, Oscar SH Chan,
Helen Philips, Yung-Tang Cheng, and Wai-Tong Ng. Comparison of planning quality and
e�ciency between conventional and knowledge-based algorithms in nasopharyngeal cancer
patients using intensity modulated radiation therapy. International Journal of Radiation
Oncology* Biology* Physics, 95(3):981–990, 2016.

[45] Norwegian Breast Cancer Group. Nasjonalt handlingsprogram med retningslinjer for diagnos-
tikk, behandling og oppfølging av pasienter med brystkreft, 2020.

[46] Sonali Pandya and Richard G Moore. Breast development and anatomy. Clinical obstetrics
and gynecology, 54(1):91–95, 2011.

[47] National Breast Cancer Foundation. Breast cancer anatomy and how cancer starts. URL
https://nbcf.org.au/about-breast-cancer/diagnosis/breast-cancer-anatomy/.
Accessed 14.05.2021.

[48] Breastcancer.org. Non-invasive or invasive breast cancer. URL https://www.breastcancer.
org/symptoms/diagnosis/invasive. Accessed 14.05.2021.

[49] Helsedirektoratet. Brystkreftdiagnostiserte kvinner som fikk brystbevarende operasjon,
2018. URL https://www.helsedirektoratet.no/statistikk/kvalitetsindikatorer/
kreft-behandling-og-overlevelse/brystbevarende-operasjon-for-kvinner-
diagnostisert-med-brystkreft. Last updated 03.12.2020, accessed 14.04.2021.

59

https://nbcf.org.au/about-breast-cancer/diagnosis/breast-cancer-anatomy/
https://www.breastcancer.org/symptoms/diagnosis/invasive
https://www.breastcancer.org/symptoms/diagnosis/invasive
https://www.helsedirektoratet.no/statistikk/kvalitetsindikatorer/kreft-behandling-og-overlevelse/brystbevarende-operasjon-for-kvinner-diagnostisert-med-brystkreft
https://www.helsedirektoratet.no/statistikk/kvalitetsindikatorer/kreft-behandling-og-overlevelse/brystbevarende-operasjon-for-kvinner-diagnostisert-med-brystkreft
https://www.helsedirektoratet.no/statistikk/kvalitetsindikatorer/kreft-behandling-og-overlevelse/brystbevarende-operasjon-for-kvinner-diagnostisert-med-brystkreft


[50] Michael Jones-Lee and Terje Aven. Alarp—what does it really mean? Reliability Engineering
& System Safety, 96(8):877–882, 2011.

[51] Acute and long-term cardiovascular toxicity after modern radiotherapy for breast
cancer. URL https://www.clinicaltrials.gov/ct2/show/NCT02541435?cond=breast&
cntry=NO&draw=4&rank=25. Accessed 19.05.2021.

[52] Lee R Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):
297–302, 1945.

[53] Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. Comparing images
using the hausdor↵ distance. IEEE Transactions on pattern analysis and machine intelligence,
15(9):850–863, 1993.

[54] Jun Wang and Ying Tan. Hausdor↵ distance with k-nearest neighbors. In International
Conference in Swarm Intelligence, pages 272–281. Springer, 2012.

[55] MJ Gooding. Assessment of thoracic auto-contouring using a modified turing test.

[56] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics,
pages 196–202. Springer, 1992.

[57] Xue Dong, Yang Lei, Tonghe Wang, Matthew Thomas, Leonardo Tang, Walter J Curran,
Tian Liu, and Xiaofeng Yang. Automatic multiorgan segmentation in thorax ct images using
u-net-gan. Medical physics, 46(5):2157–2168, 2019.

[58] Jinzhong Yang, Samuel G Armato Iii, Justin S Kirby, and Bruno Oliveira. Autosegmentation
for thoracic radiation treatment planning: A grand challenge at aapm 2017. .

[59] Ji Zhu, Xinyuan Chen, Bining Yang, Nan Bi, Tao Zhang, Kuo Men, and Jianrong Dai. Evalu-
ation of automatic segmentation model with dosimetric metrics for radiotherapy of esophageal
cancer. Frontiers in Oncology, 10:1843, 2020.

[60] Rita Simões, Geert Wortel, Terry G Wiersma, Tomas M Janssen, Uulke A van der Heide,
and Peter Remeijer. Geometrical and dosimetric evaluation of breast target volume auto-
contouring. Physics and Imaging in Radiation Oncology, 12:38–43, 2019.

[61] Mary Feng, Jean M Moran, Todd Koelling, Aamer Chughtai, June L Chan, Laura Freedman,
James A Hayman, Reshma Jagsi, Shruti Jolly, Janice Larouere, et al. Development and
validation of a heart atlas to study cardiac exposure to radiation following treatment for
breast cancer. International Journal of Radiation Oncology* Biology* Physics, 79(1):10–18,
2011.

[62] Yabo Fu, Shi Liu, H Harold Li, and Deshan Yang. Automatic and hierarchical segmentation
of the human skeleton in ct images. Physics in Medicine & Biology, 62(7):2812, 2017.

[63] Mette H Nielsen, Martin Berg, Anders N Pedersen, Karen Andersen, Vladimir Glavicic, Erik H
Jakobsen, Ingelise Jensen, Mirjana Josipovic, Ebbe L Lorenzen, Hanne M Nielsen, et al.
Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast
cancer: national guidelines and contouring atlas by the danish breast cancer cooperative
group. Acta oncologica, 52(4):703–710, 2013.

[64] Vishruta A Dumane, James Tam, Yeh-Chi Lo, and Kenneth E Rosenzweig. Rapidplan for
knowledge-based planning of malignant pleural mesothelioma. Practical radiation oncology,
11(2):e219–e228, 2021.

[65] Chifang Ling, Xu Han, Peng Zhai, Hao Xu, Jiayan Chen, Jiazhou Wang, and Weigang Hu. A
hybrid automated treatment planning solution for esophageal cancer. Radiation Oncology, 14
(1):1–7, 2019.

[66] Annika Reinke, Matthias Eisenmann, Minu D Tizabi, Carole H Sudre, Tim Rädsch, Michela
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A Script for extracting geometric metrics for model evaluation

The script written for the project thesis [7] to calculate and extract the chosen geometric metrics.
It has not been edited for the master thesis. It is written for Ironpython and to use in RayStation
9B. The script is used for both segmentation models, but the details specific for the local model
are inserted in the script attached, i.e, patient info and region of interests specified.

The code will make a spreadsheet in Microsoft Excel that contains the results for each patient. The
code uses roughly 30 minutes for each patient. The function for calculating Hausdor↵ distances
goes through point by point in each organ, therefore the lungs especially increase the run-time
because they have relatively large volumes.

The script from Øvrelid [72] was used as basis for the code written.

1 from connect import *
2 import clr, sys, math
3

4

5 clr.AddReference('Office')
6 clr.AddReference('Microsoft.Office.Interop.Excel')
7 import Microsoft.Office.Interop.Excel as interop_excel
8 import System.Array
9

10

11 def create_array(m, n):
12 """Create two-dimensional array."""
13 dims = System.Array.CreateInstance(System.Int32, 2)
14 dims[0] = m
15 dims[1] = n
16 return System.Array.CreateInstance(System.Object, dims)
17

18

19 def set_up_header_rows(first_row, second_row):
20 """Set up header rows"""
21 rows = create_array(2, len(second_row) * len(first_row) + 1)
22 rows[0, 0] = 'Patient'
23 for i in range(len(first_row)):
24 rows[0, i * len(second_row) + 1] = first_row[i]
25

26 for j in range(1, len(second_row) + 1):
27 rows[1, j + i * len(second_row)] = second_row[j - 1]
28 return rows
29

30

31 def directed_hausdorff_distances(contour_1, contour_2):
32 """Return list of directed hausdorff distances for two different contours
33 (not sorted)
34 Iterates through all the contours in point_list_1, then all the points in
35 the contours and finally x,y,z in each of the points.
36 Reach a point by using print(contour_1[i][j].z).
37 """
38 min_distances = []
39 for level_nr_in_contour_1 in contour_1:
40 for p1 in level_nr_in_contour_1:
41 distance_p1_to_points_in_2 = []
42 for level_nr_in_contour_2 in contour_2:
43 for p2 in level_nr_in_contour_2:
44 distance = math.sqrt(math.pow(p1.x - p2.x, 2)
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45 + math.pow(p1.y - p2.y, 2)
46 + math.pow(p1.z - p2.z, 2))
47 distance_p1_to_points_in_2.append(distance)
48 min_distances.append(min(distance_p1_to_points_in_2))
49 return min_distances
50

51

52 def hausdorff_distances(contour_1, contour_2):
53 """Return list of hausdorff distances for two different contours
54 (sorted from min to max)
55 """
56 hd = (directed_hausdorff_distances(contour_1, contour_2)
57 + directed_hausdorff_distances(contour_2, contour_1))
58 hd.sort()
59 return hd
60

61

62 def get_percentile(dist, percentile):
63 """Return specific percentile from a list of hausdorff distances"""
64 index = int(float(percentile) / 100 * len(dist)) - 1
65 return dist[index]
66

67

68 patient_db = get_current('PatientDB') # Load patient database
69

70 try:
71 info = patient_db.QueryPatientInfo(Filter={'FirstName': 'Breast model final',
72 'LastName': 'BM patient_*',
73 'PatientID': '181096_*'})
74 except:
75 print("Could not find patient info")
76

77 data_array = create_array(500, 500)
78

79 roiA = ['Heart_manual', 'Lung_L_manual', 'Lung_R_manual', 'SpinalCanal_manual',
80 'Esophagus_manual', 'Sternum_manual', 'Breast_R_manual', 'Breast_L_manual',
81 'LN_Ax_L1_L_manual', 'LN_Ax_L2_L_manual', 'LN_Ax_L3_L_manual',
82 'LN_Ax_L4_L_manual', 'LN_Ax_Pectoral_L_manual']
83 roiB = ['Heart_Modell', 'Lung_L_Modell', 'Lung_R_Modell', 'SpinalCanal_Modell',
84 'Esophagus_Modell', 'Sternum_Modell', 'Breast_R_Modell', 'Breast_L_Modell',
85 'LN_Ax_L1_L_Modell', 'LN_Ax_L2_L_Modell', 'LN_Ax_L3_L_Modell',
86 'LN_Ax_L4_L_Modell', 'LN_Ax_Pectoral_L_Modell']
87

88 metrics = ['Volume', 'Volume_AI', 'HD95', 'HD99', 'HD100', 'DSC', 'AVD']
89 number_of_metrics = len(metrics)
90

91 for p in range(len(info)):
92 # iterates through the patients
93

94 patient = patient_db.LoadPatient(PatientInfo=info[p])
95 structure_set = (patient.Cases['For Organs RT and Breast model'].PatientModel
96 .StructureSets[0])
97

98 data_array[p, 0] = patient.Name
99

100 # Extract evaluation metrics for the organs
101 for r in range(len(roiA)):
102 # iterates through the organs and extracts the metrics for each organ
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103

104 structure_set.RoiGeometries[roiA[r]].SetRepresentation(Representation = "Contours")
105 structure_set.RoiGeometries[roiB[r]].SetRepresentation(Representation = "Contours")
106 contour_a = structure_set.RoiGeometries[roiA[r]].PrimaryShape.Contours
107 contour_b = structure_set.RoiGeometries[roiB[r]].PrimaryShape.Contours
108

109 hausdorff_dist = hausdorff_distances(contour_a, contour_b)
110

111 # volume of contoured organ is in cm^3
112 data_array[p, 1 + r * number_of_metrics] = (structure_set.RoiGeometries[roiA[r]]
113 .GetRoiVolume())
114 data_array[p, 2 + r * number_of_metrics] = (structure_set.RoiGeometries[roiB[r]]
115 .GetRoiVolume())
116 # H95
117 data_array[p, 3 + r * number_of_metrics] = get_percentile(hausdorff_dist, 95)
118 # HD99
119 data_array[p, 4 + r * number_of_metrics] = get_percentile(hausdorff_dist, 99)
120 # HD100
121 data_array[p, 5 + r * number_of_metrics] = get_percentile(hausdorff_dist, 100)
122 # DSC
123 data_array[p, 6 + r * number_of_metrics] = structure_set.ComparisonOfRoiGeometries(
124 RoiA=roiA[r],
125 RoiB=roiB[r],
126 ComputeDistanceToAgreementMeasures=False)['DiceSimilarityCoefficient']
127 # AVD
128 data_array[p, 7 + r * number_of_metrics] = sum(hausdorff_dist) / (len(hausdorff_dist))
129 patient.Save()
130

131 file_path = None
132 close_excel = True
133

134 try:
135 # Open Excel with new worksheet
136 excel = interop_excel.ApplicationClass(Visible=True)
137 workbook = excel.Workbooks.Add(interop_excel.XlWBATemplate.xlWBATWorksheet)
138 worksheet = workbook.Worksheets[1]
139

140 header_row = set_up_header_rows(roiA, metrics)
141

142 # Add header row to work sheet
143 startcell = worksheet.Cells(1, 1)
144 header_range = worksheet.Range(startcell, startcell.Cells(header_row.GetLength(0),
145 header_row.GetLength(1)))
146 header_range.Value = header_row
147

148 # Add ROI data array to work sheet
149 startcell = worksheet.Cells(3, 1)
150 data_range = worksheet.Range(startcell, startcell.Cells(data_array.GetLength(0),
151 data_array.GetLength(1)))
152 data_range.Value = data_array
153

154 # Auto-fit the width of all columns
155 worksheet.Columns.AutoFit()
156

157 finally:
158 # The following is needed for the excel process to die when user closes worksheet
159 if file_path != None and close_excel:
160 excel.Quit()
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161 System.Runtime.InteropServices.Marshal.FinalReleaseComObject(worksheet)
162 System.Runtime.InteropServices.Marshal.FinalReleaseComObject(workbook)
163 System.Runtime.InteropServices.Marshal.FinalReleaseComObject(excel)
164 seriesCollection = None
165 chart = None
166 worksheet = None
167 workbook = None
168 excel = None
169 System.GC.WaitForPendingFinalizers()
170 System.GC.Collect()
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B Script for extracting dosimetric metrics for model evaluation

The script used to extract clinical goals from RayStation 9B for the dosimetric evaluation of the
models. It is written for Ironpython. The script is used for both segmentation models, but the
details specific for the local model are inserted in the script attached, i.e. patient info.

All clinical goals to be extracted need to be added for each patient in RayStation. The clinical
goals need to be the same for all patients. The script will make a spreadsheet in Microsoft Excel
that contains the results for each patient.

It is based on the script “get plan current clinical goals” by Marit Funderud. It has been modified
so it can be run for several patients at the same time.

1 from connect import *
2 import clr, sys, math
3

4 clr.AddReference('Office')
5 clr.AddReference('Microsoft.Office.Interop.Excel')
6 import Microsoft.Office.Interop.Excel as interop_excel
7 import System.Array
8

9

10 def create_array(m, n):
11 """Create two-dimensional array."""
12 dims = System.Array.CreateInstance(System.Int32, 2)
13 dims[0] = m
14 dims[1] = n
15 return System.Array.CreateInstance(System.Object, dims)
16

17

18 def clinical_goals(da, ef, row, start_col, patient_number):
19 for i, v in enumerate(ef):
20 try:
21 if ef[i].PlanningGoal.Type == 'DoseAtVolume':
22 goal = ef[i].ForRegionOfInterest.Name + " : D" + str(round(
23 ef[i].PlanningGoal.ParameterValue * 100))
24 if patient_number == 1:
25 da[row - 1, i + start_col] = goal
26 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
27 elif goal == da[0, i + 1]:
28 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
29 except:
30 print("Hei")
31 try:
32 if ef[i].PlanningGoal.Type == 'DoseAtAbsoluteVolume':
33 goal = ef[i].ForRegionOfInterest.Name + " : D" + str(
34 ef[i].PlanningGoal.ParameterValue) + "cm3"
35 if patient_number == 1:
36 da[row - 1, i + start_col] = goal
37 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
38 elif goal == da[0, i + 1]:
39 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
40 except:
41 print("Hei")
42 try:
43 if ef[i].PlanningGoal.Type == 'VolumeAtDose':
44 goal = ef[i].ForRegionOfInterest.Name + " : V" + str(
45 round(ef[i].PlanningGoal.ParameterValue / 100)) + "Gy"
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46 if patient_number == 1:
47 da[row - 1, i + start_col] = goal
48 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) * 100
49 elif goal == da[0, i + 1]:
50 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) * 100
51 except:
52 print("Hei")
53 try:
54 if ef[i].PlanningGoal.Type == 'AverageDose':
55 goal = ef[i].ForRegionOfInterest.Name + " : Dmean"
56 if patient_number == 1:
57 da[row - 1, i + start_col] = goal
58 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
59 elif goal == da[0, i + 1]:
60 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
61 except:
62 print("Hei")
63 try:
64 if ef[i].PlanningGoal.Type == 'HomogeneityIndex':
65 goal = ef[i].ForRegionOfInterest.Name + " : HI"
66 if patient_number == 1:
67 da[row - 1, i + start_col] = goal
68 da[row, i + start_col] = ef[i].GetClinicalGoalValue()
69 elif goal == da[0, i + 1]:
70 da[row, i + start_col] = ef[i].GetClinicalGoalValue()
71 except:
72 print("Hei")
73 try:
74 if ef[i].PlanningGoal.Type == 'ConformityIndex':
75 goal = ef[i].ForRegionOfInterest.Name + " : CI"
76 if patient_number == 1:
77 da[row - 1, i + start_col] = goal
78 da[row, i + start_col] = ef[i].GetClinicalGoalValue()
79 elif goal == da[0, i + 1]:
80 da[row, i + start_col] = ef[i].GetClinicalGoalValue()
81 except:
82 print("Hei")
83 return da
84

85

86 patient_db = get_current('PatientDB') # Load patient database
87

88 try:
89 info = patient_db.QueryPatientInfo(Filter={'LastName': 'BM patient_',
90 'FirstName': 'Breast model final',
91 'PatientID': '181096*'})
92 except:
93 print("Could not find patient info")
94

95 case0 = 'For Organs RT and Breast model'
96 treatmentplan0 = 'Based on automatic segmentations'
97

98 data_array = create_array(500, 500)
99

100 data_array[0, 0] = 'PatientID'
101

102 for p in range(len(info)):
103 # iterates through the patients

70



104 patient = patient_db.LoadPatient(PatientInfo=info[p])
105

106 eval_funcs = patient.Cases[case0].TreatmentPlans[
107 treatmentplan0].TreatmentCourse.EvaluationSetup.EvaluationFunctions
108

109 data_array[p + 1, 0] = patient.PatientID
110 clinical_goals(data_array, eval_funcs, p + 1, 1, p + 1)
111

112 print('Patient number: ' + str(p + 1))
113

114 # Select path where the Excel file should be saved
115 # Set file_path = None if the file should not be automatically saved
116 file_path = None
117

118 # Should the Excel file be closed after it is created?
119 # If no file path is selected, the Excel application will not be closed
120 close_excel = True
121 # Create an Excel file
122

123 try:
124 # Open Excel with new worksheet
125 excel = interop_excel.ApplicationClass(Visible=True)
126 workbook = excel.Workbooks.Add(interop_excel.XlWBATemplate.xlWBATWorksheet)
127 worksheet = workbook.Worksheets[1]
128 l = 0
129 # Set up header row
130 # Edit this if other dose statistics are desired
131

132 # Add ROI data array to work sheet
133 startcell = worksheet.Cells(1, 1)
134 data_range = worksheet.Range(startcell, startcell.Cells(data_array.GetLength(0),
135 data_array.GetLength(1)))
136 data_range.Value = data_array
137

138 # Auto-fit the width of all columns
139 worksheet.Columns.AutoFit()
140

141 if file_path != None:
142 # File name is PatientNamePlanNameDoseStatistics
143 # Edit this if another file name is desired
144 filename = r"{0}\{1}DoseStatistics.xlsx".format(file_path, patient.PatientName)
145 excel.DisplayAlerts = False
146 workbook.SaveAs(filename)
147 finally:
148 # The following is needed for the excel process to die when user closes worksheet
149 if file_path != None and close_excel:
150 excel.Quit()
151 System.Runtime.InteropServices.Marshal.FinalReleaseComObject(worksheet)
152 System.Runtime.InteropServices.Marshal.FinalReleaseComObject(workbook)
153 System.Runtime.InteropServices.Marshal.FinalReleaseComObject(excel)
154 seriesCollection = None
155 chart = None
156 worksheet = None
157 workbook = None
158 excel = None
159 System.GC.WaitForPendingFinalizers()
160 System.GC.Collect()
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C Script for extracting dosimetric metrics and DVH-curves for treat-

ment plan comparison

The script used to extract clinical goals and average DVH-curves from RayStation 9B for the
evaluation of the script for automatic plan optimization, i.e. for comparison of two treatment
plans. It is written for Ironpython. For this script, the automatic VMAT plan is the main plan
and the plan it is compared with needs to be added as an “Evaluation dose” in RayStation.

All clinical goals to be extracted need to be added for each patient in RayStation. The clinical
goals need to be the same for all patients. The function for extracting clinical goals is, like the
script in appendix B, based on a script by Marit Funderud.

The DVH-curves are extracted as dose and volume values and can be plotted based on this. Four
di↵erent volumes are extracted for each structure. These are the average curves for the manual
hybrid plan and the automatic VMAT plan based on hybrid plan patients and the average curves
for the the manual VMAT plan and the automatic VMAT plan based on the VMAT plan patients.
The DVH-di↵erence-curves can also be extracted, i.e. clinical plan DVH minus the automatic plan
DVH.

The script will make a spreadsheet in Microsoft Excel that contains the results for each patient
with either the clinical goals, DVH-curves or DVH-di↵erence-curves. What is extracted depends
on which is set to “true” in the script.

1 from connect import *
2 import clr, sys, math
3

4 clr.AddReference('Office')
5 clr.AddReference('Microsoft.Office.Interop.Excel')
6 import Microsoft.Office.Interop.Excel as interop_excel
7 import System.Array
8

9

10 def create_array(m, n):
11 """Create two-dimensional array."""
12 dims = System.Array.CreateInstance(System.Int32, 2)
13 dims[0] = m
14 dims[1] = n
15 return System.Array.CreateInstance(System.Object, dims)
16

17

18 def clinical_goals(da, ef, row, start_col, compare_to_found, compare_to, patient_number):
19

20 for i, v in enumerate(ef):
21 try:
22 if ef[i].PlanningGoal.Type == 'DoseAtVolume':
23 goal = ef[i].ForRegionOfInterest.Name + " : D" + str(round(
24 ef[i].PlanningGoal.ParameterValue * 100))
25 if patient_number == 0:
26 da[row - 1, i + start_col] = goal
27 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
28 elif goal == da[0, i+start_col]:
29 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
30 if compare_to_found and goal == da[0, i+start_col]:
31 da[row + 1, i + start_col] = ((ef[i]
32 .GetClinicalGoalValueForEvaluationDose(
33 DoseDistribution=compare_to, ScaleFractionDoseToBeamSet=False))
34 / 100)
35 da[row + 2, i + start_col] = da[row + 1, i +
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36 start_col] - da[row, i + start_col]
37 except:
38 print("Hei")
39 try:
40 if ef[i].PlanningGoal.Type == 'DoseAtAbsoluteVolume':
41 goal = ef[i].ForRegionOfInterest.Name + " : D" + str(
42 ef[i].PlanningGoal.ParameterValue) + "cm3"
43 if patient_number == 0:
44 da[row - 1, i + start_col] = goal
45 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
46 elif goal == da[0, i+start_col]:
47 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
48 if compare_to_found and goal == da[0, i+start_col]:
49 da[row + 1, i + start_col] = ((ef[i]
50 .GetClinicalGoalValueForEvaluationDose(
51 DoseDistribution=compare_to, ScaleFractionDoseToBeamSet=False))
52 / 100)
53 da[row + 2, i + start_col] = da[row + 1, i +
54 start_col] - da[row, i + start_col]
55 except:
56 print("Hei")
57 try:
58 if ef[i].PlanningGoal.Type == 'VolumeAtDose':
59 goal = ef[i].ForRegionOfInterest.Name + " : V" + str(round(
60 ef[i].PlanningGoal.ParameterValue / 100)) + "Gy"
61 if patient_number == 0:
62 da[row - 1, i + start_col] = goal
63 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) * 100
64 elif goal == da[0, i+start_col]:
65 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) * 100
66 if compare_to_found and goal == da[0, i+start_col]:
67 da[row + 1, i + start_col] = ((ef[i]
68 .GetClinicalGoalValueForEvaluationDose(
69 DoseDistribution=compare_to, ScaleFractionDoseToBeamSet=False))
70 * 100)
71 da[row + 2, i + start_col] = da[row + 1, i +
72 start_col] - da[row, i + start_col]
73 except:
74 print("Hei")
75 try:
76 if ef[i].PlanningGoal.Type == 'AverageDose':
77 goal = ef[i].ForRegionOfInterest.Name + " : Dmean"
78 if patient_number == 0:
79 da[row - 1, i + start_col] = goal
80 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
81 elif goal == da[0, i+start_col]:
82 da[row, i + start_col] = (ef[i].GetClinicalGoalValue()) / 100
83 if compare_to_found and goal == da[0, i+start_col]:
84 da[row + 1, i + start_col] = ((ef[i]
85 .GetClinicalGoalValueForEvaluationDose(
86 DoseDistribution=compare_to, ScaleFractionDoseToBeamSet=False))
87 / 100)
88 da[row + 2, i + start_col] = da[row + 1, i +
89 start_col] - da[row, i + start_col]
90 except:
91 print("Hei")
92 try:
93 if ef[i].PlanningGoal.Type == 'HomogeneityIndex':
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94 goal = ef[i].ForRegionOfInterest.Name + " : HI"
95 if patient_number == 0:
96 da[row - 1, i + start_col] = goal
97 da[row, i + start_col] = ef[i].GetClinicalGoalValue()
98 elif goal == da[0, i+start_col]:
99 da[row, i + start_col] = ef[i].GetClinicalGoalValue()

100 if compare_to_found and goal == da[0, i+start_col]:
101 da[row + 1, i + start_col] = (ef[i]
102 .GetClinicalGoalValueForEvaluationDose(
103 DoseDistribution=compare_to, ScaleFractionDoseToBeamSet=False))
104 da[row + 2, i + start_col] = da[row + 1, i +
105 start_col] - da[row, i + start_col]
106 except:
107 print("Hei")
108 try:
109 if ef[i].PlanningGoal.Type == 'ConformityIndex':
110 goal = ef[i].ForRegionOfInterest.Name + " : CI"
111 if patient_number == 0:
112 da[row - 1, i + start_col] = goal
113 da[row, i + start_col] = ef[i].GetClinicalGoalValue()
114 elif goal == da[0, i+start_col]:
115 da[row, i + start_col] = ef[i].GetClinicalGoalValue()
116 if compare_to_found and goal == da[0, i+start_col]:
117 da[row + 1, i + start_col] = (ef[i]
118 .GetClinicalGoalValueForEvaluationDose(
119 DoseDistribution=compare_to, ScaleFractionDoseToBeamSet=False))
120 da[row + 2, i + start_col] = da[row + 1, i +
121 start_col] - da[row, i + start_col]
122 except:
123 print("Hei")
124 return da
125

126

127 def add_list_to_list(l1, l2):
128 for element in range(len(l1)):
129 l1[element] += l2[element]
130 return l1
131

132 def subtract_list_from_list(l1, l2):
133 for element in range(len(l1)):
134 l1[element] -= l2[element]
135 return l1
136

137

138 def divide_list_with_number(list1, number):
139 for li in range(len(list1)):
140 list1[li] /= number
141 return list1
142

143

144 def make_dict_for_rois(rois, length_of_lists):
145 dictionary_of_rois = {}
146 for r in range(len(rois)):
147 dictionary_of_rois[rois[r]] = [0] * length_of_lists
148 return dictionary_of_rois
149

150

151 # Choose what the script should extract.
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152 get_clinical_goals = False
153 get_DVH = True
154 get_DVH_difference = False
155

156 list_of_rois = ['CTVp', 'CTVn', 'PTVpc', 'PTVnc', 'PTV', 'Body', 'Heart', 'Breast_R',
157 'Lung_L', 'Lung_R', 'HumeralHead_L', 'Esophagus', 'Thyroid',
158 'Trachea', 'SpinalCanal']
159

160

161 list_of_doses = []
162 for i in range(0, 4400, 22):
163 list_of_doses.append(float(i))
164

165

166 patient_db = get_current('PatientDB') # Load patient database
167

168 try:
169 info = patient_db.QueryPatientInfo(Filter={'LastName': 'Lokomamma',
170 'PatientID': '01012021 10*'})
171 except:
172 print("Could not find patient info")
173

174 case0 = 'For auto-script validation'
175

176 data_array = create_array(500, 500)
177 if get_clinical_goals:
178 data_array[0, 0] = 'PatientID'
179 data_array[0, 1] = 'Plan'
180 elif get_DVH:
181 vmat_patient_nr = 0
182 hybrid_patient_nr = 0
183 dict_of_rois_auto_hybrid = make_dict_for_rois(list_of_rois, len(list_of_doses))
184 dict_of_rois_auto_vmat = make_dict_for_rois(list_of_rois, len(list_of_doses))
185 dict_of_rois_hybrid = make_dict_for_rois(list_of_rois, len(list_of_doses))
186 dict_of_rois_vmat = make_dict_for_rois(list_of_rois, len(list_of_doses))
187 elif get_DVH_difference:
188 vmat_patient_nr = 0
189 hybrid_patient_nr = 0
190 dict_of_diff_vmat = make_dict_for_rois(list_of_rois, len(list_of_doses))
191 dict_of_diff_hybrid = make_dict_for_rois(list_of_rois, len(list_of_doses))
192

193 total_patients = 0
194 for p in range(len(info)):
195 # iterates through the patients
196 patient = patient_db.LoadPatient(PatientInfo=info[p])
197 if patient.Name == "Lokomamma_1":
198 continue
199

200 eval_funcs = patient.Cases[case0].TreatmentPlans[
201 'Automatisk VMAT'].TreatmentCourse.EvaluationSetup.EvaluationFunctions
202

203

204 tp = patient.Cases[case0].TreatmentPlans
205 clinical_plan_name = "none"
206 for i, v in enumerate(tp):
207 if tp[i].Name == "Klinisk VMAT":
208 clinical_plan_name = "Summed Dose Klinisk VMAT"
209 elif tp[i].Name == "Klinisk hybrid":
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210 clinical_plan_name = 'Summed Dose Klinisk hybrid'
211

212 clinical_plan = (patient.Cases[case0].TreatmentDelivery.FractionEvaluations[0]
213 .DoseOnExaminations[0].DoseEvaluations[0])
214 if clinical_plan.Name == clinical_plan_name:
215 clinical_plan_found = True
216 else:
217 clinical_plan_found = False
218

219 if get_clinical_goals:
220 data_array[3 * total_patients + 1, 0] = patient.PatientID
221 data_array[3 * total_patients + 1, 1] = 'Automatisk VMAT'
222 if clinical_plan_name == "Summed Dose Klinisk VMAT":
223 data_array[3 * total_patients + 2, 1] = 'Klinisk VMAT'
224 elif clinical_plan_name == 'Summed Dose Klinisk hybrid':
225 data_array[3 * total_patients + 2, 1] = 'Klinisk hybrid'
226 data_array[3 * total_patients + 3, 1] = "Klinisk - Automatisk"
227 clinical_goals(data_array, eval_funcs, 3*total_patients+1, 2, clinical_plan_found,
228 clinical_plan, total_patients)
229

230 elif get_DVH:
231 tc = patient.Cases[case0].TreatmentPlans[
232 'Automatisk VMAT'].TreatmentCourse
233 if clinical_plan_name == "Summed Dose Klinisk VMAT":
234 vmat_patient_nr += 1
235 for r in range(len(list_of_rois)):
236 # Automatic
237 volume_at_dose = tc.TotalDose.GetRelativeVolumeAtDoseValues(
238 RoiName=list_of_rois[r], DoseValues=list_of_doses)
239 dict_of_rois_auto_vmat[list_of_rois[r]] = add_list_to_list(
240 dict_of_rois_auto_vmat[list_of_rois[r]], volume_at_dose)
241 # Clinical VMAT
242 volume_at_dose_clinical = clinical_plan.GetRelativeVolumeAtDoseValues(
243 RoiName=list_of_rois[r], DoseValues=list_of_doses)
244 dict_of_rois_vmat[list_of_rois[r]] = add_list_to_list(
245 dict_of_rois_vmat[list_of_rois[r]], volume_at_dose_clinical)
246

247 elif clinical_plan_name == "Summed Dose Klinisk hybrid":
248 hybrid_patient_nr += 1
249 for r in range(len(list_of_rois)):
250 # Automatic
251 volume_at_dose = tc.TotalDose.GetRelativeVolumeAtDoseValues(
252 RoiName=list_of_rois[r], DoseValues=list_of_doses)
253 dict_of_rois_auto_hybrid[list_of_rois[r]] = add_list_to_list(
254 dict_of_rois_auto_hybrid[list_of_rois[r]], volume_at_dose)
255 # Clinical hybrid
256 volume_at_dose_clinical = clinical_plan.GetRelativeVolumeAtDoseValues(
257 RoiName=list_of_rois[r], DoseValues=list_of_doses)
258 dict_of_rois_hybrid[list_of_rois[r]] = add_list_to_list(
259 dict_of_rois_hybrid[list_of_rois[r]], volume_at_dose_clinical)
260

261 elif get_DVH_difference:
262 tc = patient.Cases[case0].TreatmentPlans[
263 'Automatisk VMAT'].TreatmentCourse
264 if clinical_plan_name == "Summed Dose Klinisk VMAT":
265 vmat_patient_nr += 1
266 for r in range(len(list_of_rois)):
267 volume_at_dose_auto = tc.TotalDose.GetRelativeVolumeAtDoseValues(
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268 RoiName=list_of_rois[r], DoseValues=list_of_doses)
269 volume_at_dose_clinical = clinical_plan.GetRelativeVolumeAtDoseValues(
270 RoiName=list_of_rois[r], DoseValues=list_of_doses)
271

272 difference = subtract_list_from_list(volume_at_dose_clinical,
273 volume_at_dose_auto)
274

275 dict_of_diff_vmat[list_of_rois[r]] = add_list_to_list(
276 dict_of_diff_vmat[list_of_rois[r]], difference)
277

278 elif clinical_plan_name == "Summed Dose Klinisk hybrid":
279 hybrid_patient_nr += 1
280 for r in range(len(list_of_rois)):
281 volume_at_dose_auto = tc.TotalDose.GetRelativeVolumeAtDoseValues(
282 RoiName=list_of_rois[r], DoseValues=list_of_doses)
283 volume_at_dose_clinical = clinical_plan.GetRelativeVolumeAtDoseValues(
284 RoiName=list_of_rois[r], DoseValues=list_of_doses)
285

286 difference = subtract_list_from_list(volume_at_dose_clinical,
287 volume_at_dose_auto)
288

289 dict_of_diff_hybrid[list_of_rois[r]] = add_list_to_list(
290 dict_of_diff_hybrid[list_of_rois[r]], difference)
291

292 total_patients += 1
293 print('Patient number: ' + str(total_patients))
294

295

296 if get_DVH:
297

298 print('VMAT pasienter: ' + str(vmat_patient_nr))
299 print('Hybrid pasienter: ' + str(hybrid_patient_nr))
300 # dele på antall lister summert/pasienter
301 for r in range(len(list_of_rois)):
302 if vmat_patient_nr != 0:
303 dict_of_rois_auto_vmat[list_of_rois[r]] = divide_list_with_number(
304 dict_of_rois_auto_vmat[list_of_rois[r]], vmat_patient_nr)
305 dict_of_rois_vmat[list_of_rois[r]] = divide_list_with_number(
306 dict_of_rois_vmat[list_of_rois[r]], vmat_patient_nr)
307 if hybrid_patient_nr != 0:
308 dict_of_rois_auto_hybrid[list_of_rois[r]] = divide_list_with_number(
309 dict_of_rois_auto_hybrid[list_of_rois[r]], hybrid_patient_nr)
310 dict_of_rois_hybrid[list_of_rois[r]] = divide_list_with_number(
311 dict_of_rois_hybrid[list_of_rois[r]], hybrid_patient_nr)
312

313 data_array[4*r+1, 0] = list_of_rois[r] + ' (Automatic VMAT (VMAT))'
314 data_array[4*r+2, 0] = list_of_rois[r] + ' (Automatic VMAT (Hybrid))'
315 data_array[4*r+3, 0] = list_of_rois[r] + ' (VMAT)'
316 data_array[4*r+4, 0] = list_of_rois[r] + ' (Hybrid)'
317 for d in range(len(list_of_doses)):
318 if r == 0:
319 data_array[0, 0] = 'Dose (Gy)'
320 data_array[0, 1+d] = list_of_doses[d]/100
321 data_array[4*r+1, 1 + d] = dict_of_rois_auto_vmat[list_of_rois[r]][d]*100
322 data_array[4*r+2, 1 + d] = dict_of_rois_auto_hybrid[list_of_rois[r]][d] * 100
323 data_array[4*r+3, 1+d] = dict_of_rois_vmat[list_of_rois[r]][d]*100
324 data_array[4*r+4, 1+d] = dict_of_rois_hybrid[list_of_rois[r]][d]*100
325
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326 if get_DVH_difference:
327

328 print('VMAT pasienter: ' + str(vmat_patient_nr))
329 print('Hybrid pasienter: ' + str(hybrid_patient_nr))
330 # dele på antall lister summert/pasienter
331 for r in range(len(list_of_rois)):
332 if vmat_patient_nr != 0:
333 dict_of_diff_vmat[list_of_rois[r]] = divide_list_with_number(
334 dict_of_diff_vmat[list_of_rois[r]], vmat_patient_nr)
335 if hybrid_patient_nr != 0:
336 dict_of_diff_hybrid[list_of_rois[r]] = divide_list_with_number(
337 dict_of_diff_hybrid[list_of_rois[r]], hybrid_patient_nr)
338

339 data_array[2*r+1, 0] = list_of_rois[r] + ' VMAT'
340 data_array[2*r+2, 0] = list_of_rois[r] + ' Hybrid'
341 for d in range(len(list_of_doses)):
342 if r == 0:
343 data_array[0, 0] = 'Dose (Gy)'
344 data_array[0, 1+d] = list_of_doses[d]/100
345 data_array[2*r+1, 1 + d] = dict_of_diff_vmat[list_of_rois[r]][d]*100
346 data_array[2*r+2, 1 + d] = dict_of_diff_hybrid[list_of_rois[r]][d] * 100
347

348

349 # Select path where the Excel file should be saved
350 # Set file_path = None if the file should not be automatically saved
351 file_path = None
352

353 # Should the Excel file be closed after it is created?
354 # If no file path is selected, the Excel application will not be closed
355 close_excel = True
356 # Create an Excel file
357

358 try:
359 # Open Excel with new worksheet
360 excel = interop_excel.ApplicationClass(Visible=True)
361 workbook = excel.Workbooks.Add(interop_excel.XlWBATemplate.xlWBATWorksheet)
362 worksheet = workbook.Worksheets[1]
363 l = 0
364 # Set up header row
365 # Edit this if other dose statistics are desired
366

367 # Add ROI data array to work sheet
368 startcell = worksheet.Cells(1, 1)
369 data_range = worksheet.Range(startcell, startcell.Cells(data_array.GetLength(0),
370 data_array.GetLength(1)))
371 data_range.Value = data_array
372

373 # Auto-fit the width of all columns
374 worksheet.Columns.AutoFit()
375

376 if file_path != None:
377 # File name is PatientNamePlanNameDoseStatistics
378 # Edit this if another file name is desired
379 filename = r"{0}\{1}DoseStatistics.xlsx".format(file_path, patient.PatientName)
380 excel.DisplayAlerts = False
381 workbook.SaveAs(filename)
382 finally:
383 # The following is needed for the excel process to die when user closes worksheet
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384 if file_path != None and close_excel:
385 excel.Quit()
386 System.Runtime.InteropServices.Marshal.FinalReleaseComObject(worksheet)
387 System.Runtime.InteropServices.Marshal.FinalReleaseComObject(workbook)
388 System.Runtime.InteropServices.Marshal.FinalReleaseComObject(excel)
389 seriesCollection = None
390 chart = None
391 worksheet = None
392 workbook = None
393 excel = None
394 System.GC.WaitForPendingFinalizers()
395 System.GC.Collect()
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D Additional results from evaluation of automatic segmentation models

Additional results from the evaluation of the segmentation models can be found in this appendix,
both for geometric and dosimetric evaluations.

The manual editing to the segmentations before the evaluations can be seen in figure D.1. An
example of a di↵erence in length can be seen in figure D.1a for the spinal canal segmented by the
Siemens model. While figure D.1b shows how the breast was cropped for the Siemens model.

(a) Spinal canal in saggital plane (b) Left breast (CTVp) in transversal plane

Figure D.1: (a) Shows the di↵erence in length of the spinal canal segmented by the Siemens
model before and after removing slices so the length is the same as the manual delineation.
Yellow is the original segmentation and blue is the edited one. (b) Shows the left breast before
and after cropping 5mm below the body surface. Yellow is the original segmentation, blue is
the edited one, and pink is the manual delineation.

D.1 Geometric evaluation

Separate lymph node areas were segmented by the local model and were evaluated individually, in
addition to as the union CTVn. Mean DSC and HD95 for the individual lymph node areas are
presented in table D.1. DSC and HD95 are also presented for the lymph node areas as boxplots
in figure D.2. L1, L2, L3, and L4 indicate axillary lymph nodes levels 1-4. The volumes of the
lymph nodes are plotted in figure D.3. Statistically significant di↵erences were found for L1, L2,
and pectoral lymph nodes.

Additional metrics, i.e., HD99, HD100 and average distance (AVD), can be found in table D.2 and
figures D.4 and D.5 for all structures.

Table D.1: Mean DSC and HD95 for the lymph node areas segmented by the local model. SD
is denoted as the ± value.

DSC HD95 [cm]

L1 0.75 ± 0.09 1.3 ± 0.6
L2 0.68 ± 0.08 1.7 ± 0.9
L3 0.80 ± 0.07 0.6 ± 0.1
L4 0.79 ± 0.08 0.5 ± 0.2
Pectoral 0.5 ± 0.1 2 ± 1
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Figure D.2: DSC and HD95 for the lymph node areas segmented by the local model.

Figure D.3: Volume of automatic segmentation by the local model plotted against the volume
of the manual delineation for all patients. Dotted line represents equality.
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Table D.2: Mean HD99, HD100, and AVD obtained by both segmentation models for all
structures. SD is denoted as the ± value.

HD99 [cm] HD100 [cm] AVD [cm]
Local model Siemens model Local model Siemens model Local model Siemens model

Heart 1.0 ± 0.3 1.3 ± 0.4 2.5 ± 0.5 2.6 ± 0.6 0.20 ± 0.04 0.3 ± 0.1
Left lung 0.7 ± 0.2 1.0 ± 0.3 2.0 ± 0.5 3.0 ± 0.5 0.16 ± 0.03 0.16 ± 0.01
Right lung 0.8 ± 0.4 1.2 ± 0.4 2.6 ± 0.8 3.6 ± 0.7 2.6 ± 0.8 3.6 ± 0.7
Spinal canal 0.25 ± 0.07 0.27± 0.03 0.5 ± 0.2 0.35 ± 0.05 0.079 ± 0.009 0.13 ± 0.02
Esophagus 0.39 ± 0.06 1 ± 1 0.7 ± 0.1 1 ± 2 0.103 ± 0.008 0.13 ± 0.04
Sternum 2 ± 1 1.0 ± 0.8 2 ± 1 1 ± 1 0.17 ± 0.06 0.15 ± 0.04
Right Breast 1.3 ± 0.3 2.4 ± 0.8 2.1 ± 0.4 3.6 ± 0.8 0.21 ± 0.03 0.4 ± 0.1
CTVp 1.0 ± 0.3 2.5 ± 0.9 1.6 ± 0.5 4 ± 1 0.20 ± 0.04 0.4 ± 0.1
CTVn 2 ± 1 3 ± 1 0.4 ± 0.1
L1 1.7 ± 0.7 2.1 ± 0.7 0.4 ± 0.2
L2 2.5 ± 1.0 3.0 ± 0.9 0.8 ± 0.2
L3 0.8 ± 0.2 1.0 ± 0.2 0.24 ± 0.04
L4 0.7 ± 0.2 0.9 ± 0.2 0.22 ± 0.04
Pectoral 3 ± 1 3 ± 1 0.6 ± 0.4
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Figure D.4: HD99, HD100, and AVD obtained by both segmentation models for all organs at
risk.
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Figure D.5: HD99, HD100, and AVD obtained by both segmentation models for all target
volumes.

D.2 Dosimetric evaluation

The mean values with SD for the additional dosimetric metrics can be found in table D.3 and D.4
for the local model and Siemens model, respectively. The dosimetric metrics for the individual
lymph node areas can also be found in figure D.5.
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Table D.3: Additional mean values of the dosimetric metrics for the local model. The treatment
plans are made based on automatic segmentations by the local model. SD is denoted as the ±
value. P-values in bold font are considered statistically significant and ”-” indicates not enough
data points to calculate p-value.

Region Metric Manual del. Local model
Pairwise di↵erence

P-value
(Manual - model)

Heart D2 [Gy] 4 ± 1 4 ± 1 -0.2 ± 0.2 0.005

V20Gy [%] 0.0 ± 0.1 0.0 ± 0.1 0.00 ± 0.01 -
Left lung D1cm3 [Gy] 40.9 ± 0.3 40.6 ± 0.4 0.3 ± 0.4 0.017

Right lung D1cm3 [Gy] 5 ± 1 4.3 ± 0.9 0.3 ± 0.2 0.001

Right breast V3Gy [%] 2 ± 2 2 ± 2 0 ± 1 0.078
D1cm3 [Gy] 8 ± 4 12 ± 6 -3 ± 6 0.088

Esophagus Dmean [Gy] 2.2 ± 0.2 2.2 ± 0.2 0.0 ± 0.1 0.427
CTVp Dmean [Gy] 40.14 ± 0.04 40.12 ± 0.03 0.02 ± 0.02 0.023

D2 [Gy] 41.4 ± 0.1 41.4 ± 0.2 0.03 ± 0.05 0.011

V90 [%] 99.98 ± 0.04 99.9999 ± 0.0001 -0.02 ± 0.04 0.041

V105 [%] 0.05 ± 0.06 0.04 ± 0.05 0.01 ± 0.02 0.009

HI [1] 1.07 ± 0.01 1.068 ± 0.008 0.000 ± 0.004 1.000
CTVn Dmean [Gy] 39.9 ± 0.1 40.03 ± 0.06 -0.1 ± 0.1 0.023

D2 [Gy] 41.4 ± 0.1 41.1 ± 0.2 0.3 ± 0.2 0.001

V90 [%] 99.5 ± 0.9 100.0 ± 0.0 -0.5 ± 0.9 0.001

V105 [%] 0.05 ± 0.06 0.04 ± 0.05 0.02 ± 0.02 0.009

HI [1] 1.09 ± 0.03 1.052 ± 0.005 0.04 ± 0.03 0.001

PTVpc D2 [Gy] 41.59 ± 0.06 41.59 ± 0.06 -0.008 ± 0.007 0.003

V90 [%] 98.6 ± 0.8 99.76 ± 0.06 -1.1 ± 0.9 0.001

V105 [%] 0.1 ± 0.1 0.1 ± 0.1 -0.004 ± 0.008 0.069
CI [1] 0.61 ± 0.07 0.62 ± 0.08 -0.01 ± 0.02 0.069

PTVnc D2 [Gy] 41.61 ± 0.07 41.65 ± 0.06 -0.04 ± 0.06 0.031

V90 [%] 96 ± 2 99.83 ± 0.04 -3 ± 2 0.001

V105 [%] 0.24 ± 0.08 0.4 ± 0.1 -0.1 ± 0.1 0.001

CI [1] 0.31 ± 0.06 0.28 ± 0.07 0.03 ± 0.02 0.001

Table D.4: Additional mean values of the dosimetric metrics for the Siemens model. The
treatment plans are made based on manual delineations. SD is denoted as the ± value. P-
values in bold font are considered statistically significant and ”-” indicates not enough data
points to calculate p-value.

Region Metric Manual del. Siemens model
Pairwise di↵erence

P-value
(Manual - model)

Heart D2 [Gy] 4 ± 2 5 ± 3 -1 ± 2 0.001

V20Gy [%] 0.1 ± 0.2 0.2 ± 0.3 -0.1 ± 0.2 0.169
Left lung D1cm3 [Gy] 41.0 ± 0.3 40.9 ± 0.2 0.2 ± 0.3 0.012

Right lung D1cm3 [Gy] 4.1 ± 0.9 3.9 ± 0.9 0.2 ± 0.1 0.002

Right breast V3Gy [%] 2 ± 2 4 ± 2 -2 ± 2 0.006

D1cm3 [Gy] 9 ± 5 14 ± 7 -4 ± 7 0.015

Esophagus Dmean [Gy] 2.3 ± 0.4 2.4 ± 0.4 -0.1 ± 0.1 0.020

CTVp Dmean [Gy] 40.11 ± 0.03 39.7 ± 0.3 0.4 ± 0.3 0.001

D2 [Gy] 41.4 ± 0.1 41.4 ± 0.1 0.00 ± 0.04 0.570
V90 [%] 100 ± 0 98 ± 2 2 ± 2 0.001

V105 [%] 0.02 ± 0.02 0.03 ± 0.04 -0.02 ± 0.03 0.019

HI [1] 1.065 ± 0.005 1.2 ± 0.3 -0.2 ± 0.3 0.001
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Table D.5: Mean values of the dosimetric metrics for the lymph node areas segmented by
the local model. The treatment plans are made based on automatic segmentations by the local
model. SD is denoted as the ± value. P-values in bold font are considered statistically significant
and ”-” indicates not enough data points to calculate p-value.

Region Metric Manual del. Local model
Pairwise di↵erence

P-value
(Manual - model)

L1 Dmean [Gy] 39.9 ± 0.2 40.06 ± 0.05 -0.2 ± 0.2 0.002

D2 [Gy] 41.2 ± 0.2 41.1 ± 0.2 0.1 ± 0.2 0.078
V90 [%] 99 ± 1 100 ± 0 -1 ± 1 0.003

V105 [%] 0.03 ± 0.07 0.01 ± 0.05 0.01 ± 0.04 0.263
HI [1] 1.09 ± 0.05 1.046 ± 0.006 0.04 ± 0.05 0.001

L2 Dmean [Gy] 40.1 ± 0.1 40.01 ± 0.09 0.10 ± 0.09 0.002

D2 [Gy] 41.5 ± 0.2 41.0 ± 0.2 0.4 ± 0.3 0.001

V90 [%] 99.9 ± 0.4 100 ± 0 -0.1 ± 0.4 -
V105 [%] 0.04 ± 0.09 0.001 ± 0.003 0.04 ± 0.08 0.003

HI [1] 1.07 ± 0.02 1.048 ± 0.009 0.02 ± 0.02 0.001

L3 Dmean [Gy] 39.9 ± 0.1 39.9 ± 0.1 -0.01 ± 0.05 0.570
D2 [Gy] 40.8 ± 0.3 40.7 ± 0.3 0.02 ± 0.09 0.650
V90 [%] 100 ± 0 100 ± 0 0 ± 0 -
V105 [%] 0 ± 0 0 ± 0 0 ± 0 -
HI [1] 1.05 ± 0.01 1.05 ± 0.01 0.004 ± 0.009 0.173

L4 Dmean [Gy] 40.2 ± 0.2 40.1 ± 0.1 0.06 ± 0.09 0.011

D2 [Gy] 41.7 ± 0.2 41.5 ± 0.2 0.2 ± 0.2 -
V90 [%] 99.9 ± 0.3 100 ± 0 -0.1 ± 0.3 -
V105 [%] 0.5 ± 0.4 0.1 ± 0.2 0.4 ± 0.4 0.004

HI [1] 1.08 ± 0.01 1.068 ± 0.008 0.01 ± 0.01 0.053
Pectoral Dmean [Gy] 40.1 ± 0.2 39.9 ± 0.1 0.2 ± 0.1 0.001

D2 [Gy] 41.6 ± 0.3 41.0 ± 0.3 0.7 ± 0.4 0.001

V90 [%] 100 ± 0 100 ± 0 0 ± 0 -
V105 [%] 0.1 ± 0.2 0.0 ± 0.1 0.1 ± 0.2 0.043

HI [1] 1.08 ± 0.01 1.06 ± 0.01 0.02 ± 0.01 0.001
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E Additional results from validation of automatic plan optimization

Additional dosimetric metrics for the validation of the automatic plan optimization can be found
in this appendix. The mean values with SD can be found in tables E.1 and E.2 for the hybrid and
VMAT plan patients, respectively. The DVH curves for the left humeral head and spinal canal can
be seen in figure E.1.

Table E.1: Additional mean dosimetric metrics for the automatic VMAT plans and the clinical
hybrid plans. SD is denoted as the ± value. P-values in bold font are considered statistically
significant and ”-” indicates not enough data points to calculate p-value.

Region Metric Automatic VMAT Clinical hybrid
Pairwise di↵erence

P-value
(Clinical - Automatic)

CTVp Dmean [Gy] 40.13 ± 0.06 40.16 ± 0.09 0.0 ± 0.1 0.237
D2 [Gy] 41.3 ± 0.2 41.5 ± 0.2 0.2 ± 0.3 0.176
V90 [%] 99.999 ± 0.002 99.997 ± 0.004 -0.002 ± 0.004 0.500
HI [1] 1.065 ± 0.009 1.072 ± 0.006 0.007 ± 0.009 0.063

CTVn Dmean [Gy] 40.06 ± 0.02 40.2 ± 0.1 0.1 ± 0.1 0.128
D2 [Gy] 41.2 ± 0.2 41.4 ± 0.3 0.2 ± 0.4 0.310
V90 [%] 100 ± 0 99.99 ± 0.01 -0.01 ± 0.01 -
HI [1] 1.053 ± 0.007 1.06 ± 0.01 0.01 ± 0.02 0.398

PTVpc D2 [Gy] 41.6 ± 0.2 41.52 ± 0.05 -0.1 ± 0.2 0.612
V90 [%] 99.72 ± 0.03 99.92 ± 0.08 0.20 ± 0.09 0.018

CI [1] 0.6 ± 0.1 0.4 ± 0.1 -0.11 ± 0.03 0.018

PTVnc D2 [Gy] 41.7 ± 0.1 41.5 ± 0.2 -0.2 ± 0.2 0.043

V90 [%] 99.86 ± 0.04 99.99 ± 0.02 0.13 ± 0.03 0.018

CI [1] 0.30 ± 0.05 0.24 ± 0.03 -0.06 ± 0.02 0.018

Body Dmax [Gy] 42.5 ± 0.3 42.4 ± 0.4 -0.1 ± 0.5 0.237
Heart D2 [Gy] 4 ± 2 12 ± 6 7 ± 5 0.018

V20Gy [%] 0.1 ± 0.2 1.1 ± 0.7 1.0 ± 0.6 -
Right Breast V3Gy [%] 1 ± 2 3 ± 3 1 ± 2 0.612

D1cm3 [Gy] 7 ± 8 9 ± 12 2 ± 6 0.398
Left Lung D1cm3 [Gy] 40.5 ± 0.9 40.9 ± 0.3 0.4 ± 0.8 0.176
Right Lung D1cm3 [Gy] 4 ± 2 8 ± 2 5 ± 1 0.018

Esophagus Dmean [Gy] 3 ± 1 8 ± 6 6 ± 5 0.018

Thyroid Dmean [Gy] 12 ± 6 21 ± 8 9 ± 5 0.018

L. humeral head Dmean [Gy] 11 ± 4 21 ± 4 10 ± 4 0.018

D1cm3 [Gy] 33 ± 6 39 ± 2 6 ± 5 0.018

Spinal canal Dmax [Gy] 14 ± 4 17 ± 5 3 ± 5 0.176
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Table E.2: Additional mean dosimetric metrics for the automatic VMAT plans and the clinical
VMAT plans. SD is denoted as the ± value. P-values in bold font are considered statistically
significant and ”-” indicates not enough data points to calculate p-value.

Region Metric Automatic VMAT Clinical VMAT
Pairwise di↵erence

P-value
(Clinical - Automatic)

CTVp Dmean [Gy] 40.14 ± 0.04 40.16 ± 0.04 0.02 ± 0.07 0.515
D2 [Gy] 41.5 ± 0.2 41.4 ± 0.2 -0.1 ± 0.2 0.594
V90 [%] 99.999 ± 0.001 99.998 ± 0.005 -0.002 ± 0.004 0.575
HI [1] 1.0727 ± 0.0093 1.07 ± 0.01 -0.01 ± 0.01 0.214

CTVn Dmean [Gy] 40.06 ± 0.03 40.0 ± 0.1 0.0 ± 0.1 0.214
D2 [Gy] 41.2 ± 0.2 40.9 ± 0.2 -0.3 ± 0.3 0.021

V90 [%] 99.998 ± 0.006 99.998 ± 0.007 0.000 ± 0.001 -
HI [1] 1.053 ± 0.009 1.04 ± 0.01 -0.01 ± 0.01 0.066

PTVpc D2 [Gy] 41.6 ± 0.1 41.6 ± 0.2 -0.1 ± 0.2 0.314
V90 [%] 99.69 ± 0.08 99.7 ± 0.3 0.0 ± 0.3 0.515
CI [1] 0.68 ± 0.06 0.64 ± 0.05 -0.03 ± 0.01 0.008

PTVnc D2 [Gy] 41.64 ± 0.09 41.4 ± 0.2 -0.2 ± 0.2 0.021

V90 [%] 99.83 ± 0.03 99.9 ± 0.2 0.1 ± 0.2 0.110
CI [1] 0.23 ± 0.06 0.22 ± 0.06 -0.009 ± 0.008 0.021

Body Dmax [Gy] 42.6 ± 0.1 42.5 ± 0.3 0.0 ± 0.3 0.767
Heart D2 [Gy] 8 ± 5 8 ± 5 0 ± 2 0.859

V20Gy [%] 0.4 ± 0.4 0.3 ± 0.5 0.0 ± 0.2 0.735
Right Breast V3Gy [%] 5 ± 4 8 ± 10 3 ± 6 0.139

D1cm3 [Gy] 15 ± 7 15 ± 9 1 ± 4 0.515
Left Lung D1cm3 [Gy] 39.9 ± 0.8 40.3 ± 0.5 0.4 ± 0.8 0.139
Right Lung D1cm3 [Gy] 2.9 ± 0.5 6 ± 2 3 ± 2 0.008

Esophagus Dmean [Gy] 3 ± 1 8 ± 5 4 ± 4 0.008

Thyroid Dmean [Gy] 10 ± 4 16 ± 4 6 ± 3 0.008

L. humeral head Dmean [Gy] 12 ± 5 15 ± 5 3 ± 3 0.021

D1cm3 [Gy] 32 ± 10 34 ± 8 2 ± 2 0.011

Spinal canal Dmax [Gy] 13 ± 3 12 ± 3 0 ± 3 0.441

(a) Compared to hybrid plans (b) Compared to VMAT plans

Figure E.1: Cumulative DVH for the left humeral head and spinal canal.
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F Main results from the project thesis

Results from the evaluation of the first version of the local segmentation model from the project
thesis in 2020, together with the inter-observer variability found. The model was trained on 45
patients, tested on 17 patients, and the model segmentations were geometrically compared to
manual delineations. Inter-observer variability was calculated pairwise between four physicians
for five patient cases. One physician did not delineate the last three cases, giving a total of
21 combinations of delineations to calculate the inter-observer variability from. Inter-observer
variability was not evaluated for the lungs. The mean values are presented in table F.1, and
boxplots of DSC and HD95 are presented in figures F.1 and F.2, respectively.

Table F.1: DSC and HD95 for the comparison of segmentations made by the previous local
model and manual delineations and the inter-observer variability (IOV). Mean values ± standard
deviation.

DSC HD95 [cm]
IOV Local model IOV Local model

Heart 0.961 ± 0.008 0.96 ± 0.02 0.39 ± 0.06 0.5 ± 0.2
Spinal canal 0.90 ± 0.02 0.94 ± 0.02 0.21 ± 0.03 0.21 ± 0.02
Esophagus 0.85 ± 0.03 0.88 ± 0.02 0.25 ± 0.05 0.24 ± 0.03
Left lung 0.985 ± 0.002 0.31 ± 0.01
Right lung 0.987 ± 0.001 0.305 ± 0.007

Figure F.1: DSC for inter-observer variability (IOV) and the first version of the local.
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Figure F.2: HD95 for inter-observer variability (IOV) and the first version of the local.
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