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Abstract

The context of this project is the use of multisensor multitarget tracking for an
Autonomous Surface Vehicle (ASV) in a harbour environment. The purpose of the

research is to locate and track an ASV in combination with other targets for collision
avoidance in autonomous navigation. The final goal is to improve robustness and
reliability of the tracking system by means of sensor fusion. Infrared cameras can
improve night vision, improve resolution and provide more feature information.

Therefore, this thesis focuses on detection performance in infrared images.

To address this, a literature review is conducted covering approaches to object detection
in maritime infrared images, with focus given to neural networks and data augmentation

techniques.

There are few available annotated Long Wave Infrared (LWIR) images of boats, therefore
more images are collected and annotated with the purpose of training and testing neural

networks on the data. The neural network models YOLOv3 and EfficientDet-D0 are
trained and tested on the available and collected data and their performance is compared.

Data augmentation is a frequently used technique in the general computer vision
community in order to increase the variation in the training data, but no studies have

previously examined the effect on maritime LWIR images. Because of this and motivated
by the limited available dataset, the effect of data augmentation during training of the

neural networks is examined in this thesis.

The results show that both models perform well with a probability of detection of 100%
for two moving target boats when the pixel area size is above a threshold of 1800. For

smaller objects, the detection performance is significantly reduced, showcasing a limited
range of infrared camera object detection. The comparison of the models shows that

YOLOv3 performing slightly better for smaller targets, although the effect is to small to
conclude that one model is superior to the other.

The effect of the combined data augmentation techniques flip, scale and mosaic is
significant increase in performance for both models, with mosaic providing the greatest

improvement.

Finally, for the application of collision avoidance it can be useful to extract information
related to the type of boat, which can be used for instance for estimation of velocity and

heading. To test the possibility of separating motorboats from sailboats, the neural
networks are tested with detection and classification combined, resulting in promising

performance, although misclassifiactions are common and more false positive predictions
are introduced than when training on one boat-class.
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Sammendrag

Konteksten for denne oppgaven er bruk av multisensor målfølging av flere mål for et
autonomt overflatefartøy i et havneområde. Hensikten med forskningen er å lokalisere og
målfølge en autonom ferge kombinert med andre mål og hindringer for å unngå kollisjon
i autonom navigasjon. Det endelige målet er å forbedre robustheten og påliteligheten til

målfølgingssystemet ved hjelp av sensorfusjon. Infrarøde kameraer kan forbedre
nattsynet og oppløsning, i tillegg til å gi mer informasjon knyttet til målets egenskaper.

Derfor fokuserer denne oppgaven på deteksjon av objekter i infrarøde bilder.

For å adressere dette gjennomgås relevant litteratur som dekker tilnærming til deteksjon
av objekter i maritime, infrarøde bilder, med spesielt fokus på nevrale nettverk og

teknikker for forøkning av data.

Det finnes få tilgjengelige annoterte langbølge-infrarød bilder av båter, slik at mer data er
samlet inn og annotert med mål om å trene og teste nevrale nettverk ved bruk av disse

bildene. De nevrale nettverksmodellene YOLOv3 og EfficientDet-D0 er trent of testet på
tilgjengelig og innsamlet data, og ytelsen deres er sammenlignet.

Dataforøknings-teknikker blir ofte brukt i det generelle datasyn domenet for å øke
variasjonene i treningsdataen, men ingen studier er så langt utført for å undersøke

effekten på maritime langbølge-infrarød bilder. På grunn av dette og kombinert med et
størrelsesbegrenset datasett, blir den potensielle forbedringseffekten av dataforøkning

under trening av de nevrale nettverkene testet i denne oppgaven.

Resultatene viser at begge modellene presterer bra med en deteksjonssannsynlighet på
100% for to båter i bevegelse når pikselarealet for båtene er over 1800. For mindre
objekter blir deteksjonsresultatene betraktelig dårligere, hvilket viser at det er en

avstandsgrense for deteksjon av målene i de infrarøde bildene. Sammenligning av de to
modellene viser at YOLOv3 presterer litt bedre på deteksjon av små objekter, selv om

effekten er for liten til å konkludere med at en modell er bedre enn den andre.

Effekten av å kombinere dataforøkningsteknikkene vending, skalering og mosaikk er
signifikant forbedring av resultatene for begge modeller, hvor mosaikk gir den største

forbedringen.

Når deteksjonene skal brukes til kollisjonsunngåelse kan det være nyttig å hente ut
informasjon knyttet til type båt, noe som kan brukes blant annet til å estimere hastighet
og vinkel på målet. For å undersøke mulightene til å skille motorbåter fra seilbåter er de

nevrale nettverksmodellene testet med deteksjon og klassifikasjon kombinert. Dette
resulterer i lovende ytelse, selv om misklassifiseringer er vanlige og det fører til flere

falskt positive prediksjoner sammenlignet med trening på én båt-klasse alene.
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Chapter 1
Introduction

1.1 Background

The background for this master thesis is the implementation of a collision avoidance sys-
tem based on sensor fusion for the Autonomous Surface Vehicle (ASV) milliAmpere.
ASVs are autonomous vehicles that operate on the surface of the water. Information from
multiple sensor are processed in order to perceive the surroundings by identifying possible
obstacles and finding appropriate navigation paths.

Norwegian Uinversity of Science and Technology (NTNU) leads a project called Auto-
ferry which has developed a research platform for studies and experiments in the field of
autonomous all-electric passenger ferries for urban water transport called milliAmpere.
Currently a prototype is available for experiments while a complete ASV is under con-
struction with the goal of transporting passengers and bicycles. The ferry will operate in
Trondheim, Norway, between Ravnkloa and Fosenkaia.

As a part of this project, an important research topic is multitarget multisensor tracking
for collision avoidance. This is the problem of estimating the states or trajectories of an
unknown number of targets from multiple sensor measurements. The sensors used for
observation of targets are radars, lidars and cameras, included Infrared (IR) cameras. By
fusing data from several sensors, the information on which the collision avoidance system
base its decisions is more secure and we thus minimize the risk. Specific advantages of
including IR cameras are more feature information compared to radar measurements and
better night vision than visible range cameras.

Previous work within the field of multisensor fusion with cameras include [Helgesen et al.,
2019] which examines a measurement level sensor fusion system for tracking in a maritime
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Chapter 1. Introduction

environment using lidar, radar, visible light cameras and IR cameras. In this study, it was
found that the system’s performance and robustness were improved when including the IR
cameras. A neural network based object detection applied on visible light maritime images
was tested in [Kamsvåg, 2018] with promising detection performance on very close ranges
up to 20 meters, and many misdetections for larger ranges. The results were fused with
lidar-data, and the author shows that including the camera detections showed potential for
tracking improvement at close ranges.

This master thesis builds upon previous work in the author’s specialization project [Kjønås,
2021]. This project examined object detection on IR videos in the maritime domain where
a mean and standard deviation based dynamic background subtraction method, which was
compared to a neural network trained solely on RGB-images. The results were not very
good, giving low probabilities of detection (recall) for both methods. For the background
subtraction method the main problem was wakes causing distortion of bounding boxes and
abrupt changes caused by internal camera noise. For the neural network the main problem
was identified to be that training on relevant IR images would be necessary. In addition,
the contrast in the collected IR images was very low, encouraging improvements in future
studies.

Using neural networks for object detection in images is a popular and well performing
method that has received increased attention from the maritime research field [Prasad et al.,
2017]. Thus, it is decided to continue the work from the specialization project by focusing
on neural networks for object detecition in maritime IR images in this thesis.

1.2 Contributions

The application of neural networks for object detection in maritime IR images is a topic
where not much research has been conducted. One of the main contributions is [Schöller
et al., 2019], who compare three neural networks on Long Wave Infrared (LWIR) images.
However, this and other studies focus on the open sea domain, while milliAmpere will
operate in a cluttered harbour environment. Thus the motivation behind this thesis is to
highlight important aspects that needs to be considered moving forward on this topics
through testing and comparison.

Data augmentation, which is a technique for increasing the variation in the training data
frequently used on visible light images, has not been tested on maritime LWIR images as
far as the author is aware. Therefore, this is an important research question examined in
this thesis.

In addition, a lot of research is conducted within the computer vision field on modern
neural network models that improve the general performance significantly. These studies
are very recent and many models have therefore not been tested in maritime IR-images.
[Schöller et al., 2019] uses models from 2015, 2017 and 2018, which will be further pre-
sented in the literature review in chapter 5. Similarly [Helgesen et al., 2019] uses a model

2



1.3 Outline of the thesis

from 2016 on Near Infrared (NIR) images. Thus another interesting problem investigated
in this thesis is comparison of a new state-of-the-art model, EfficientDet [Tan et al., 2020],
with a more frequently used model, YOLOv3 [Redmon and Farhadi, 2018].

Based on these research topics, this thesis searches to answer the following questions:

• Does training on LWIR-images, particularly the specific available and collected
dataset, improve detection performance compared to only using networks pre-trained
on RGB images?

• Can we provide an indication of whether newer models with better general perfor-
mance also performs better on maritime IR images?

• Should data augmentation be used? In which case, which techniques improve the
results the most and are recommended?

• Can we use the neural networks for the classification task of distinguishing between
sailboats and motorboats in IR-images?

• How can the results be improved moving forward?

Another important contribution from this thesis is the improvements of the contrast in
collected LWIR images by methodological adjustments of camera parameters.

1.3 Outline of the thesis

Theory regarding IR imaging and the motivation for including IR cameras will be pre-
sented in chapter 2. Chapter 3 covers theory on the topic of deep learning and neural
networks. The following chapter 4 presents the theory related to the evaluation metrics
that are used for evaluation of the results in this thesis.

Next, a literature review is given in chapter 5 covering previous work of object detection
in IR images and maritime domain, as well as a comparison of neural network models and
data augmentation techniques.

Available datasets and the method for collection, and annotation of more training and test
data is presented in chapter 6. Included in this is the method for adjustments of camera
parameters in order to improve the contrast in the IR images.

Next, chapter 7 covers the choice, setup and training of the two neural network based
object detection models with data augmentation techniques. In addition, the method and
implementation of associated code for further analysis is covered.

3



Chapter 1. Introduction

The results of the analysis is presented in chapter 8, aiming to answer the questions pro-
vided in section 1.2, including comparison of the models, the effect of data augmentation
and the classification performance.

4



Chapter 2
Theory: Infrared (IR) imaging

2.1 IR radiation

Infrared radiation is radiation of electromagnetic waves at a given range of wavelengths. In
general, every object that has a temperature above absolute zero will emit thermal radiation
which will be distributed over a range of wavelengths [Rees, 2012]. Spectral radiance Lλ
is the differential of radiance for the wavelength λ, and for a black body it is given by (2.1)
as:

Lλ,P =
2hc2

λ5(exp( hc
λkT )− 1)

(2.1)

where h is the Planck’s constant, c is the speed of light, k is the Boltzmann constant and
T is the absolute temperature of the body. The subscript P stands for Planck, as this is the
black body behaviour, meaning that the body is a perfect emitter of thermal radiation. Real
materials do not behave as a black body, thus the parameter emissivity ε(λ), dependent on
the wavelength, is introduced to relate Lλ,P to the actual radiance of a body [Rees, 2012]:

Lλ = ε(λ)Lλ,P (2.2)

As the emissivity is material dependent, (2.2) shows that the thermal radiation will vary
for different materials and thus uniform temperatures can result in different pixel values
when using thermal imaging systems.
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Chapter 2. Theory: Infrared (IR) imaging

2.2 IR spectrum

The infrared wavelength spectrum is often divided in sub-bands as shown in figure 2.1
because they have different properties.

Vi
si

bl
e

N
IR

SW
IR

M
W

IR

LW
IR

0.4 0.7 1 3 5 8 12
Wavelength (µm)

Figure 2.1: Infrared wavelengths on the electromagnetic spectrum. Thermal Infrared in red and
visible light in yellow. Atmospheric absorption is very high in the grey area, so this is excluded.

Figure inspired by [Berg, 2016]

While Near Infrared (NIR) and Short Wave Infrared (SWIR) cameras mostly depict radi-
ation reflected from the surrounding scene, Mid Wave Infrared (MWIR) and Long Wave
Infrared (LWIR) measure the emitted radiation and temperature[Berg, 2016]. Therefore,
the latter two are often referred to as Thermal Infrared (TIR). In this thesis a LWIR camera
is used, thus we will focus on LWIR imaging. The camera functionality and specifications
are described in section ??.

2.3 Advantages and disadvantages of IR imaging

All ships are required to have radars and use them for determining risk of collision accord-
ing to Convention on the International Regulations for Preventing Collisions at Sea, 1972
(COLREGs)1. However, radar data have drawbacks such as sensitivity to rain and fog as
well as the shape, size, and material of the targets [Prasad et al., 2017]. In experiments
from [Helgesen et al., 2019] a radar reflector was mounted on the kayak, showing that
this is an object that is particularly difficult for the radar to detect due to non-reflective
materials and smaller size. The humans in kayaks should make them easier to detect with
IR-cameras due to thermal radiation.

In addition, for situational awareness of autonomous vessels sensor fusion is considered a
very important aspect. Fusion of data from several sensors such as radars, lidars, sonars
and Electro-Optical (EO)-cameras can result in more information on which decision mak-
ing for collision avoidance can be based and increased security.

Some advantages of including EO-sensors such as IR-cameras and visible light cameras
are [Prasad et al., 2017]:

1https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx
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2.3 Advantages and disadvantages of IR imaging

• Intuitive for users, no need for specific training to interpret the data

• We can extract more information related to type of vessel, size and angle of object
appearance (front, side, back) to give indication of heading than e.g. radar

There are some obvious drawbacks with EO-sensors, meaning that the information used
for situational awareness from these sensors alone is limited. Some of these drawbacks are
[Prasad et al., 2017]:

• Difficult to predict distance to detected objects

• Shorter range due to atmospheric propagation losses. The detection range of the
IR-camera used in this project will be further investigated in the result section.

• Sensitive to illumination and weather changes

• Computationally heavy

Furthermore, [Prasad et al., 2017] summarizes some of the advantages of including IR-
cameras compared to visible light cameras:

• Longer range

• Better nightvision as thermal radiation is measured

• Less dynamic water movements which is an advantage for processing methods ex-
ploring temporal features

On the other side, the resolution and optic parameters are in general worse than for visible
light cameras, and color features are lacking.
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Chapter 3
Theory: Deep learning

The following chapter giving an introduction to the theory behind deep learning and neural
networks is fetched from the author’s project thesis [Kjønås, 2021] as the same theory was
relevant here, however it is edited and adapted to this master thesis. Sections 3.2.1 and
3.4 are new.

Machine learning has received an increased amount of attention from the computer vision
community the last two decades due to its impressive performance on detection and clas-
sification tasks in images. This section aims to give a brief introduction to deep learning
using neural networks which is a subgroup of machine learning methods. The theory in
this section is based on [Goodfellow et al., 2016].

Deep Learning is based on deep graphs with many layers on top of each other. The idea
is that abstract, high-level features can be defined/computed in relation to simpler ones.
The first layers in the deep learning method are then responsible for extracting low-level
features, which in the case of images can be edges and colors, and high-level features such
as wheels and leafs are extracted through a combination of the previous ones. Finally, a
mapping is made from the features to output on the desired form. Included in the concept
of machine learning is automating the process based on data used as training input.

3.1 Neural networks

A feedforward deep neural network is a model for approximating a function based on a
composition of simpler functions. This is done by connecting a set of neurons responsible
for simpler operations through multiple layers, inspired by neural connections in a brain.
In its simplest form, each neuron learns an affine (linear) transformation of several inputs
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Chapter 3. Theory: Deep learning

x to an output y by applying a set of weights w and a bias b:

y = wTx+ b (3.1)

The complete network consists of an input layer and an output layer, each containing
several neurons, with multiple hidden layers in between that extract features. An example
with one hidden layer is visualized in figure 3.1.

Hidden layer

Input layer

Output layer

Figure 3.1: Figure from [Kjønås, 2021]
A neural network with an input layer, one hidden layer and an output layer

However, such a network where each neuron represents an affine transformation can never
result in a more complex mapping of input to output, and the hidden layers would in-
evitably be of no use. This is due to its linear properties where combing two affine func-
tions results in another affine transform. We can show this if we have yj = wT

j x + bj =∑
i wijxi + bj , then the final output from one neuron z is

z = vTy + c

=
∑
j

vj

(∑
i

wijxi + bj

)
+ c

= v1w11x1 + v1w12x2 + ...+ v2w21x1 + v2w22x2 + ...+ v1b1 + v2b2 + ...+ c

= (v1w11 + v2w12 + ...)x1 + (v1w21 + v2w22 + ...)x2 + ...+ (v1b1 + v2b2 + ...+ c)

=
∑
i

uixi + d

= uTx+ d

where the terms that are independent on the input at step 4 are replaced by the new weights
u and bias d, which is just another affine transform.
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This means that a neural network with these properties would not be able to approximate
functions that include non-linearities, which is often the case in real world problems. In
order to solve this issue, nonlinear activation functions are applied to each neuron after the
affine transform. An example of an activation function is the Sigmoid Linear Unit (SiLU)
shown in (3.2), which was introduced in [Elfwing et al., 2018].

a(y) = yσ(y) = y · 1

1 + e−y
(3.2)

where σ() is the sigmoid function. Note that y is the output of an affine function, which is
the same as in (3.1).

3.2 Learning using gradient descent

Supervised learning algorithms train on input data with known desired output in order to
find the optimal weights and biases that approximate the input to output mapping. This
optimization problem is phrased in terms of minimizing a cost function, also known as
criterion or loss function, that tells us how well the network has performed by evaluating
the probability that the network gives for the desired output z conditional on the input x
and parameter set θ containing weights and biases. In a classification task, the desired
output is typically on the form of a vector with a probability for each class z, p(z), which
evidently must sum up to 1 over all classes for a given input and parameter set. A com-
monly used cost function for classification problems is the cross-entropy:

C(θ) =
1

m

m∑
i=1

− log p(zi|xi;θ) (3.3)

where we are averaging over m samples of training data, and p(zi|xi;θ) is the probability
for the sample i of the true class z given the input x and the parameter set θ. Finally,
the parameter set θ is updated through back-propagation of the error given by the cost
function. This done in terms of gradient descent, where we can decrease a function by
moving a small enough step in the direction of the negative gradient:

θ′ = θ − ε∇θC(θ) (3.4)

Here, the learning rate ε is determining the step-size, while ∇θ is the gradient operator
that gives all partial derivatives of the cost function C(θ) with respect to θ.
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3.2.1 Hyperparameters

Batch size

Computing the gradient descent from the entire training set of input data is very computa-
tionally expensive and time consuming. Limitations of GPU-memory is another obstacle
for using all training images for gradient descent computation. Since the gradient is an ex-
pectation it can be approximated using a smaller set of samples [Goodfellow et al., 2016].
By using a subset of the training samples in a minibatch of batch size m′ we can estimate
the gradient cross-entropy cost function g as

g =
1

m′
∇θ

m′∑
i=1

− log p(zi|xi;θ) (3.5)

where the input xi is drawn from the minibatch. Then we can update (3.4) by replacing
∇θC(θ) with the estimate g.

The batch size thus determines the number of inputs on which to calculate the gradient.
An advantage of limiting the batch size is that this results in a noisy gradient which gives
a regularizing effect that can give more robust model.

Epoch

An epoch is when all input data in the training propagated through the neural network
once. After each epoch the neural network is evaluated on a validation set and based
on the results we can make choices regarding the hyperparameters e.g. by updating the
learning rate in the gradient descent. The reason for this is to avoid overfitting. Overfitting
is when we create a complex mapping that is too closely related to the training data so that
the model is not able to generalize when prediction is performed on new unseen data.

Step size

The step size is related to the batch size and epochs as the following equation:

steps =
num train imgs · epochs

batch size
(3.6)

This parameter is typically decided indirectly by defining the number of epochs and the
batch size.
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3.3 Convolutional neural network (CNN)

3.3 Convolutional neural network (CNN)

Convolutional neural networks (CNNs) are neural networks where the affine function y =
W Tx + b of at least one layer of neurons is replaced by a convolution [Goodfellow
et al., 2016]. This has proven to be very efficient for images and other data with a grid-
like topology. The regular neural network using matrix multiplication can perform all the
same tasks as a CNN, however due to the large number of pixels that can be contained in
an image, a fully connected layer will have a large memory requirement and large amount
of operations needed. Thus, the reader should be aware that the main motivation for using
CNNs is the efficiency award.

3.3.1 Convolutional layers

In a convolutional layer each output neuron S(i, j) is computed from the multi-dimensional
input image I (H×W×M ) by using a multi-dimensional kernelK (DK×DK×M×N )
in a convolutional operation, which in the case of a two dimensional input and one channel
N for the kernel becomes:

S(i, j) = (I ∗K)(i, j) =
∑
k1

∑
k2

I(i− k1, j − k2)K(k1, k2) (3.7)

The complete output of this layer would be of dimensions H ×W ×N . However, we can
also introduce the parameter stride S, that determines the number of pixels moved after
each convolution, resulting in a scaling of the height and width for the output.

We can see that the convolutional operation is the same linear function using weights as
for the regular neural network, except that the output is only connected to a local region
of the input. To represent the same function in a fully connected fashion, there would be
a lot of weights equalling zero, meaning that we save a lot of computational power and
memory of stored weights. In addition, re-using the same weights in a kernel over the
entire image for multiple output neurons means that the network does not have to learn the
same weights several times to represent the same output. Another advantage of this is that
a movement (translation) of an object in the image will result in the same output after the
convolutional layer, but with a translation factor.

The convolutional layers can be viewed as filters for extracting features, while a fully
connected layer is often used afterward for mapping the features to an output.
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3.4 General architecture for modern object detectors

Modern object detectors based on CNNs are composed of several modules. The first part is
a backbone which is responsible for feature extraction and consists of convolutional lay-
ers. Next, most detectors use a neck such as Feature Pyramid Network (FPN) to improve
scale invariance.

FPN as introduced in [Lin et al., 2017b] is an architecture that exploits the different scales
from the bottom-up convolutional feature-pyramid in the backbone and combine multiple
levels with an inverse pyramid consisting of upsampled top-down layers. The upsampling
of the layers in the top-down pyramid results in spatially coarser, but semantically stronger
(deeper) features for the lower layers and when combined with the bottom-up pyramid
spatial resolution is improved. Prediction are made at each level which results in better
scale invariance.

Finally, a head composed of a box predictor and a classifier is implemented in order to
obtain the final prediction: bounding boxes and class labels.

Figure 3.2 shows neural network consisting of a backbone, neck and head.

Neck

Class prediction

Box prediction

HeadBackbone

Figure 3.2: General architecture of a modern object detector with backbone, neck and head.
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Chapter 4
Theory: Evaluation metrics

The literature uses a common set of evaluation metrics when comparing the performance
of object detection models using bounding boxes. These metrics descend from detection
challenges for two large annotated datasets with multiple classes known as PASCAL VOC
[Everingham et al., 2010] and Microsoft Common Objects in Context (COCO) [Lin et al.,
2015]. The latter is described in more detail in section 6.1.2. As these challenges are made
to find the best performing model for object detection, the evaluation metrics must be
commonly defined for comparison. In this chapter, the metrics are defined and described.
Finally, in the result chapter of this thesis, they will be applied to analyze the results.

As the metrics IoU and precision and recall were also used in the analysis in the author’s
project thesis[Kjønås, 2021], the sections describing these values are similar. However
they are edited and adapted to this master thesis. Section 4.3 is new.

4.1 Intersection over Union (IoU)

In order to quantify how well a predicted bounding box matches a ground truth bounding
box, Intersection over Union (IoU) is calculated as follows:

IoU =
Area of intersection

Area of union
=
Bp ∩Bgt
Bp ∪Bgt

(4.1)

where Bp is the predicted bounding box, and Bgt is the Ground Truth (GT) annotated
bounding box.
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Figure 4.1 illustrates the area of intersection and the area of union.

Figure 4.1: Area of intersection to the left and area of union to the right

A detection is defined as correct if the IoU of a predicted bounding box and the GT
bounding box is above a given threshold value, TIoU .

4.2 Precision and recall

Before we define precision and recall, we must define some other metrics related to correct
detection, false alarms and misdetections.

The number of True Positive (TP) is the number of correctly detected objects, i.e. where
the IoU > TIoU for a predicted bounding box and a GT bounding box.

The number of False Positive (FP) is the number of predicted bounding boxes from the
model that are classified as boats, but not present in the GT annotations, also known as
false alarms.

The number of False Negative (FN) is the number of boats that are present in the image
and thus has GT bounding boxes, but they are not detected by the model, also known as
misdetections.

Based on this, precision and recall are defined as follows.

precision =
TP

TP + FP
(4.2)

recall =
TP

TP + FN
(4.3)

Note that recall corresponds to the detection probability PD of targets. The trade off be-
tween precision and recall can be decided by the user by adjusting the confidence threshold
for the bounding boxes. This results in a precision-recall curve similar to figure 4.2. The
green curve is the traditional curve, while the blue one is interpolated where the interpola-
tion step will be described in the following section.
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Figure 4.2: Example of a precision-recall curve in green and the corresponding interpolated
precision-recall curve in blue.

4.3 Average Precision (AP)

A common evaluation metric for object detection is Average Precision (AP), used for
comparison of models in [Everingham et al., 2010].

In general, AP is the area under the precision-recall curve. However, when used for
calculation of AP the curve is interpolated.

{Ri} is a set of recall values in the interval [0, 1] with a given incremental step i so that we
have a total of 1

i + 1 recall values. For PASCAL VOC evaluation, the incremental step is
0.1 so that {R0.1} = {0, 0.1, ..., 1} [Everingham et al., 2010], while for COCO evaluation
the incremental step i is 0.01 resulting in 101 recall values. As modern object detectors
based on neural networks are evaluated on the COCO dataset, this evaluation method will
be used in this thesis.

For each recall value r̃ ∈ {Ri} the interpolated precision pinterpolated(r̃) is found to be
the maximum precision value for any recall value ≥ r̃ [Everingham et al., 2010]:

pinterpolated(r) = max
r̃:r̃≥r

p(r̃) (4.4)
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We can then find the AP with the following equation [Everingham et al., 2010]:

AP =
1

(1/i) + 1

∑
r∈{Ri}

pinterpolated(r) (4.5)

Graphically the AP corresponds to the area under the interpolated precision-recall curve
in figure 4.2.

The reason for using the interpolated curve when calculating AP is to reduce the impact
of small variations in the ranking [Everingham et al., 2010].

AP can be calculated for each class or as the average of all classes. The latter is often
referred to as mean Average Precision (mAP). However, in evaluation of COCO no dis-
tinction is made between AP and mAP and thus the same notation is used in this thesis.

4.3.1 APIoU

Furthermore, for COCO the AP is averaged over a set of IoU values between [0.5, 0.95]
with an incremental step of 0.05 which corresponds to the notation AP@[.50 : .05 : .95].
PASCAL only uses a single threshold of IoU ≥ 0.5. In addition to AP@[.50 : .05 :
.95], which hereafter will be referred to as AP , the metrics AP@[.50] = AP.50 and
AP@[.75] = AP.75 are often presented as well, where a single threshold of IoU ≥ 0.5
and 0.75, respectively, are used. These metrics give an indication of how accurate the
bounding boxes are by showing the difference when the IoU -threshold is increased. The
AP.50 for the precision-recall example curve in figure 4.2 is given in the legend.

4.3.2 APpixel area

In order to evaluate how well the model detect objects dependent on their spatial extent,
one can differentiate between pixel area sizes. APsmall is the AP for objects with area <
322 pixels, APmed is for 322 < area < 962 pixels, and APlarge is AP for objects with
area > 962 pixels.

4.3.3 Average Recall (AR)

Average Recall (AR) is another evaluation metric that measures the object detectors per-
formance on the ground truth annotated objects present in the input images. FPs are not
considered for this metric which is calculated as the integral of recall values r over differ-
ent IoU thresholds tIoU [Padilla et al., 2021]:
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AR = 2

∫ 1

0.5

r(tIoU )dtIoU (4.6)

Similarily as for AP , AR is averaged over all classes and it is possible to differentiate
between pixel area sizes as ARsmall, ARmed and ARlarge.
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Chapter 5
Literature Review

5.1 Object detection in the maritime domain

Object detection is a computer vision method for images with the goal of recognizing and
locating instances from a predefined set of classes such as person and boat.

In the maritime domain, videos from Electro-Optical (EO) cameras have traditionally been
used for surveillance. During the last few years such cameras have shown to be useful in
complementing radar and other sensors for situational awareness at sea through object
detection of relevant boats [Prasad et al., 2017]. With the development of autonomous
ships including systems for collision avoidance and navigation, maritime object detection
and tracking methods are essential.

In [Prasad et al., 2017], the authors present and compare approaches to maritime object de-
tection and tracking in videos using EO-sensors in the infrared and visible light range. Sev-
eral approaches to background subtraction are presented and tested on a maritime dataset.
The main challenge specific to the maritime domain when using background subtraction
methods is identified to be the dynamic water from waves and wakes. This results in poor
performance from static methods. Dynamic background approaches show a significant
improvement, but are still challenged by dynamic movements at sea. In addition, abrupt
changes in weather and illumination and unexpected events may cause problems for these
methods. Finally, it is concluded that exploring state-of-the-art background modelling
techniques from the general computer vision community such as CNNs may be rewarding
in the maritime domain.

It is also worth noting that the current literature in maritime background subtraction almost
exclusively deals with the case of open seas as opposed to urban harbour areas, according
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to the survey.

5.1.1 Related work using IR-images

Object detection using LWIR images in the maritime domain has been and tested with
promising results in [Schöller et al., 2019]. The authors compared three neural network
models trained on 21322 LWIR images: RetinaNet [Lin et al., 2017a], YOLOv3 [Redmon
and Farhadi, 2018] and Faster R-CNN [Ren et al., 2015]. Faster R-CNN was the best
performing model, but with a slow inference time which was found to be 5 times that of
YOLOv3, and approximately 10 times that of RetinaNet. Thus, the authors argue that this
might not be ideal for a real-time object detector in the maritime domain as a part of a
tracking algorithm. YOLOv3 had better recall and precision than the original RetinaNet.
They emphasized that recall is the most important evaluation metric when used for track-
ing, and conclude that given their recall results neither model could be used for stand-alone
detection in an navigation setting, but complement the use of other sensors.

[Helgesen et al., 2019] used the neural network model SSD [Liu et al., 2016] trained on a
total of 2035 NIR maritime images. The detection results were showed to be very good at
target distances up to 400 m.

In [Hølland, 2019], the same neural network SSD was trained on LWIR maritime images.
The object detector showed promising validation performance during training. However
the model was trained and tested on the same data with the only exception being data
augmentation. This results in potentially misleading detection performance and thus the
need for more annotated IR images for both training and testing was addressed by the
author.

5.1.2 Related work using visible light images

In [Grini, 2019], the author Grini compared object detection results from training the neu-
ral networks SSD and YOLOv3 on a collected dataset of 1916 visible light maritime im-
ages. YOLOv3 was the better performing detection model on the author’s dataset. An
identified problem was frequent false detections of buildings that were misclassified as
boats. The author addressed this by testing to train on a separate building class and in-
vestigate whether this could improve the problem of false boat-detection of buildings. Al-
though this seemed to improve this issue somewhat in the training and validation datasets,
when tested on a video collected by Kamsvåg in [Kamsvåg, 2018], including this class
actually gave a higher misclassification rate of buildings.

Landsnes trained Faster R-CNN with FPN [Lin et al., 2017b] and Mask R-CNN [He et al.,
2018] on Grini’s collected dataset merged with another dataset giving a total of 2520 visi-
ble light maritime images with good results in [Landsnes, 2021]. Some interesting obser-
vations are that the results were improved when including the data augmentation methods
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horizontal flipping and random cropping, while rotation degraded the results. In addi-
tion, the author recommends using a unique dataset for testing, as random splitting from a
merged dataset can result in sample leakage.

5.1.3 Spatio-temporal object detection for videos

As the application of the object detection is tracking in video, temporal features may also
be exploited, and ideally in combination with spatial features. Background subtraction,
as thoroughly summarized within the maritime field in [Prasad et al., 2017], is a group
of such methods. The main idea is to model the background and detect objects based on
comparison with and signal processing of incoming frames.

These methods are especially interesting for stationary cameras such as shore mounted
ones. This was investigated in the author’s specialization project [Kjønås, 2021] with the
use of a simple temporal Gaussian approach to background subtraction, including Markov
random fields for spatial filtering. The problems highlighted in [Prasad et al., 2017] such as
wakes and abrupt changes from camera noise were symptomatic for this solution. However
more robust solutions including subspace learning such as Principal Component Analysis
(PCA) might be of interest for future research. Subspace learning in general are methods
where blocks of the video is considered as matrices and background modeling features are
represented more compactly through matrix decomposition. These subspace features can
be learned and updated in an efficient manner and used for object detection [Prasad et al.,
2017].

In the general computer vision field, CNNs are the leading research topic as they have
shown superior performance on available image datasets used for evaluation such as the
COCO dataset. In the extension of this, [Zhu et al., 2020] presents a survey of available
datasets, metrics and methods for video object detection with a main focus on deep learn-
ing approaches as they have shown to be more effective. Such approaches would require
several annotated videos as training data and are therefore not considered in this thesis
with limited available data.

Furthermore, the object detection in the IR video is supposed to contribute to a tracking
algorithm processing data from several sensors. Thus temporal filtering will be performed
through this algorithm, hopefully resulting in more stable detection results.

5.2 Object detection using neural networks

As previously mentioned, the use of neural networks for object detection in images is a
modern and successful method of great popularity in several application domains including
face recognition and autonomous driving [Zhao et al., 2018]. It is also a popular approach
in the maritime domain, and will thus be the focus of this thesis. The following section
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aims to give insight into well performing CNN models for real-time application in object
detection.

5.2.1 Models

In this section we will present and compare state-of-the-art object detection models and
some of the most frequently used in the literature.

In table 5.1 some selected models are presented with metrics comparing accuracy and
efficiency. Average Precision (AP), or equivalently mAP@[0.5 : 0.05 : 0.95], is the main
parameter used to indicate the accuracy of a given model as it is used for COCO evaluation
[Lin et al., 2015]. The meaning of this metric is described in section 4.3. In the table the
AP is the measured results from evaluating on the COCO test-dev subset from the COCO
dataset [Lin et al., 2015].

Frames Per Second (FPS) is the inference time of the given model on a single image
with the input resolution given as size. This parameter thus indicates the efficiency of the
model. The inference time is highly dependent on the machine on which the inference is
running, therefore the GPU used is indicated in parentheses, all from NVIDIA1. According
to [Redmon and Farhadi, 2018] NVIDIA Titan X and NVIDIA Tesla M40 are very similar
GPUs and their times are thus comparable, while NVIDIA V100 is a newer and faster
GPU so the models where this GPU is used to measure FPS are separated into another
group.

Model AP FPS Size
SSD512* (VGG) [Liu et al., 2016] 28.8 19 (Titan X) 512× 512

Faster R-CNN with FPN [Lin et al., 2017b] 36.2 5.8 (M40) 800
Mask R-CNN [He et al., 2018] 39.8 5.1 (M40) 800

YOLOv3 [Redmon and Farhadi, 2018] 33.0 19.6 (Titan X)
73 (V100)

608× 608

YOLOv4-CSP [Wang et al., 2021] 46.2 93 (V100) 512× 512
YOLOv4-CSP [Wang et al., 2021] 47.5 70 (V100) 640× 640
YOLOv4-P5 [Wang et al., 2021] 51.8 41 (V100) 896× 896
YOLOv4-P6 [Wang et al., 2021] 54.5 30 (V100) 1280× 1280
EfficientDet-D0 [Tan et al., 2020] 34.6 98 (V100) 512× 512
EfficientDet-D1 [Tan et al., 2020] 40.5 74 (V100) 640× 640
EfficientDet-D2 [Tan et al., 2020] 43.9 56.4 (V100) 768× 768
EfficientDet-D3 [Tan et al., 2020] 47.2 34.5 (V100) 896× 896

Table 5.1: Comparison of object detectors with real-time application in terms of AP, FPS and size.
AP measured on test-dev COCO test-set [Lin et al., 2015]. The best performance in each group is

marked in bold

1https://www.nvidia.com/
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SSD [Liu et al., 2016], Faster R-CNN with FPN [Lin et al., 2017b], Mask R-CNN [He
et al., 2018] and YOLOv3 [Redmon and Farhadi, 2018] are included in the table because
they are important contributions to modern object detectors and frequently used in the
literature in the maritime domain [Helgesen et al., 2019, Schöller et al., 2019, Hølland,
2019, Grini, 2019], while EfficientDet [Tan et al., 2020] and Scaled-YOLOv4 [Wang et al.,
2021] are current state-of-the-art object detectors with real-time application. The last two
models are scalable and only the versions that satisfy the requirement of FPS ≥ 30 are
included, as this is a common threshold for defining real-time [Bochkovskiy et al., 2020].
In addition 9 FPS is the framerate of the IR-camera used in this thesis, and it is assumed
that the final hardware for processing might not be as powerful as NVIDIA V100 and thus
we need some margin.

For object detection using CNNs, the models can generally be classified into two groups.
The first, one-stage detectors, are grid based and will be further explained in the following
section. The other group is called two-stage detectors, which use a Regional Proposal
Network (RPN) to predict a set of bounding boxes and another network to decide whether
or not there is an object in each box, fine-tune the proposals and classify the objects.

One-stage detectors are in general known to be faster, but at the cost of worse precision
than the two-stage detectors [Jiao et al., 2019] . Examples of two-stage detectors are R-
CNN based models such as Faster R-CNN [Ren et al., 2015] and Mask R-CNN [He et al.,
2018]. As real-time application is desired in this project, the focus will be on one-stage
detectors.

SSD

Single Shot MultiBox Detector (SSD) was first introduced in [Liu et al., 2016] as a one-
stage detector out-performing its predecessor YOLO, which will be presented in following
sections.

A fixed sized grid divides an image into cells. Each grid-cell produces a set of prior
bounding boxes. In SSD the prior is decided by a set of manually selected aspect ratios,
where these aspect ratios are the ratio between the width and height and are combined
with different scaling factors to produce the prior boxes. The predefined total number of
predictions is then N ×N ×B where N is the grid size and B is the number of boxes for
each cell defined by the number of scaling factors and aspect ratios.

The cell located in the center of a ground truth bbox is responsible for the detection of the
given object. For each cell, the dimensions of the boxes in terms of offset from prior is
predicted together with the class predictions, including a background class suggesting that
there is no object in the box.

Figure 5.1 shows an example of the grid-based feature maps used for box predictions. One
grid size is shown where prior boxes are displayed for the center cells of the two ground
truth objects. The location and size offset is predicted for each prior box together with a
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confidence score for each predefined class.

(a) An example image with one boat present (b) 5× 5 feature map with pre-defined
anchor boxes. The closest box is highlighted
in blue. Note that it still needs adjustments

to fit correctly

Figure 5.1: SSD box prediction
Figure inspired by [Liu et al., 2016]

The box predictions and classifications are based on features from differently scaled con-
volutional layers, without the top-down pyramid layers from the FPN. The features are
extracted by the backbone network. The original paper uses VGG-16 as backbone [Liu
et al., 2016], while both Helgesen [Helgesen et al., 2019] and Grini [Grini, 2019] used
MobilenetV2 [Sandler et al., 2018], which is a faster backbone network with lower accu-
racy.

Finally, non-max suppression is applied to the boxes in each cell with the same class
prediction and IoU above a threshold value to keep only the highest confidence box.

YOLO

You Only Look Once (YOLO) was the first one-stage object detector and introduced in
[Redmon et al., 2015]. This model is quite similar to SSD, but one important difference
is that it has no background class and instead uses a probability of there being an object
present for each bounding box in order to filter out non-objects, thus keeping class predic-
tions separated. In addition, the bounding boxes were predicted directly without the use of
priors.

After the publication of YOLO in [Redmon et al., 2015], it has been improved in several
versions. In this thesis, we will focus on YOLOv3 [Redmon and Farhadi, 2018] because
it is a frequently used model for real-time object detection and in the maritime domain
[Schöller et al., 2019][Grini, 2019], and present scaled-YOLOv4 [Wang et al., 2021] which
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at the point of the publication in November 2020 set a new state-of-the-art performance in
terms of AP on the COCO-dataset while also being scaled to real-time frame-rates.

YOLOv3

YOLOv3 [Redmon and Farhadi, 2018] references an incremental improvement showing
that the methodology is based on the framework from YOLO, but the model is improved:
A drawback with the first version was that only one class could be predicted per cell as
can be seen in figure ??, while YOLOv3 allows multiple classes per cell for overlapping
objects. In YOLOv3, the offset compared to prior bboxes are predicted, similarly to SSD
using anchor boxes based on aspect ratios. The author proposes that the best ratios are
determined through k-means clustering of the training data. By including predictions on
multiple scale levels similarly to an FPN, YOLOv3 outperforms its predecessors in terms
of detecting smaller objects.

The backbone is also improved: Darknet-53 is based on the original convolutional network
Darknet from YOLO but with more layers to improve accuracy. In addition a residual
mapping is added to the convolutional layers to avoid degradation, inspired by [He et al.,
2015] who shows that the residuals are easier to optimize, especially for deeper networks.

Scaled-YOLOv4

Scaled-YOLOv4 [Wang et al., 2021] is a further improvement of YOLOv4 [Bochkovskiy
et al., 2020]. YOLOv4 uses a CSPDarknet53 backbone, Spatial Pyramid Pooling (SPP)
and Path Aggregation Network (PANet) in the neck and the same head as YOLOv3. SPP
increases the receptive field, i.e. the size of the input region where the convolutional layer’s
feature is affected. PANet is an alternative to FPN by detecting and combining features
from different layers.

In addition, YOLOv4 introduces two concepts for enhancing performance: Bag of freebies
are methods that does not affect inference time, but can increase training time and change
training strategies such as data augmentation. Bag of specials are methods that improves
the model at a low cost and examples in YOLOv4 are SPP blocks and PANet in the neck.
For full description of all the methods in the two bags, the reader is referred to the original
paper [Bochkovskiy et al., 2020].

Scaled-YOLOv4 [Wang et al., 2021] further improves the model by using Cross Stage Par-
tial Network (CSPNet) to reduce number of parameters and computations while improving
accuracy in the backbone and neck. CSPNet as introduced in [Wang et al., 2019] divides
the output signal of a base layer, e.g. a feature map from the first convolutional layer in the
backbone, into two parts: Half of the signal follows the main path of the network. This re-
sults in more semantic information. The other half of the signal is bypassed and combined
with the other part in a transitional layer. This preserves more spatial information.
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Finally, it was found in [Wang et al., 2021] that compound scaling, a concept introduced in
[Tan et al., 2020] and explained in the next section, of input size and number of stages in
backbone and neck gave best performance. Then depth and width was dynamically scaled
according to real-time requirements.

EfficientDet

EfficientDet [Tan et al., 2020] is a modern one-stage object detector. The backbone of Ef-
ficientDet is called EfficientNet [Tan and Le, 2019], and this is combined with a BiFPN for
more complex feature combination at different scales and a shared box and class prediction
network.

The EfficientNet [Tan and Le, 2019] backbone has contributed with the methodology for
scaling of the backbone of an object detection model. This allows the user to choose
the trade-off between accuracy and efficiency based on application specific constraints for
inference time.

A convolutional network consists of several layers which can devide the neurons in differ-
ent manners. Parameters determening this related to the depth and size of the model must
be decided.

• Number of channelsN in the kernel and output, determining the width of the model

• Number of layers, determining the depth of the model

• Input size H ×W , determining the resolution of the model

Note that the same notation as in section 3.3 is used. A visualization of scaling of the
different parameters can be seen in figure 5.2.

# channels

layer resolution

wider

deeper

higher
resolution

a) Baseline b) Width scaling c) Depth scaling d) Resolution scaling e) Compound scaling

Figure 5.2: Scaling of convolutional network compared to a baseline. (a) is a baseline network
with the tree parameters indicated. (b) shows width scaling. (c) shows depth scaling. (d) shows

resolution scaling. (e) is compound scaling used in EfficientNet.
Figure inspired by [Tan and Le, 2019].

In EfficientNet, compound scaling is used. This methods consists of finding a balance
between the scaling parameters through an architecture search.l Then model scaling is
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performed by scaling each parameter with a constant ratio, meaning that when we increase
the model size, depth, width and resolution are all scaled uniformly.

EfficientDet [Tan et al., 2020] contributes to the model with the method that is used to
extract features in the different layers are combine them in order to make detections. A
Bidirectional Feature Pyramid Network (BiFPN) is used, which fuses information from
low-level features with high-level ones just as much as the opposite way around. The
BiFPN layer is repeated multiple times in the neck dependent on the scaling factor for
more complex fusion of features.

The final network is then provided with 9 different scaling parameters, D0-D7 and D7x,
each providing different trade-offs between efficiency and accuracy.

The choice of models to investigate in this thesis is presented in section 7.

5.3 Data augmentation

Data augmentation is a set of techniques that introduces manipulated copies of existing
data in order to increase the total amount of data [Shorten and Khoshgoftaar, 2019]. It is
applied to the training images in order to increase the training set size.

There are two main motivations for using data augmentation. The first is generalizability,
which refers to the comparison of performance for a model when evaluated on validation
data that is previously seen and test data that is unseen [Shorten and Khoshgoftaar, 2019].
A common problem with neural network is overfitting to the training data, the opposite
of generalizability. By applying data augmentation techniques, one can introduce more
variations to the collected data and thus use more data points for training of the model.
Because of this, data augmentation is a powerful method for avoiding overfitting.

The second advantage, which is highly related to avoiding overfitting, is that neural net-
work rely on big data in order to learn features and detect objects while in many cases
the available annotated data is limited. For the application of training neural networks on
IR-images in the maritime domain, approximately 2000 images were used for training in
[Helgesen et al., 2019] and 20000 in [Schöller et al., 2019]. For this project we have a total
annotated training and validation dataset of 261 images, which constitutes a considerably
smaller dataset. This motivates exploring the effect of data augmentation in this thesis.

[Shorten and Khoshgoftaar, 2019] is a survey that covers data augmentation techniques
for images used in deep learning. They present an overview of existing methods from
simple geometrical and color transformation to advanced deep learning based Generative
Adversarial Network (GAN). The survey states that not many studies are performed on
comparison of different augmentation techniques, but cite [Taylor and Nitschke, 2017] that
compares some frequently used geometric and color transformations and find that cropping
gives best detection performance. In addition [Shijie et al., 2017] also compares geometric
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and color transformations and include GANs, Wasserstein GANs and combinations of
different techniques. They found that cropping, flipping, Wasserstein GAN, and rotation
generally performed better than others. Time was not found in this thesis to explore the
more advanced methods such as Wasserstein GANs. Instead, we focus on geometrical
transformations, as they are easier to implement and are highlighted in the augmentation
survey.

Another topic discussed in [Shorten and Khoshgoftaar, 2019] is the safety of an augmen-
tation. This refers to the likelihood that the annotation is correct after the transformation.
For instance, in text recognition tasks, rotation of the letter ”n” results in the letter ”u” and
consequently a wrong label. Augmentation methods must thus be useful for the general
task, which in this case is object detection in terms of bounding boxes and classes, and do-
main, where questions such as ”Should the object detector consider a boat upside down?”
arise.

Finally, it is worth noting that it is not possible to solve all problems related to biases in a
small dataset through data augmentation. It cannot help the detector learn kayaks if there
are no kayaks present in the training data.

5.3.1 Online and offline augmentation

In an offline augmentation scheme, the images are augmented before training and stored
separately. Then the same set of training images is shown each epoch. This method takes
up a larger storage space, but makes training faster and the augmented images can easily
be verified.

With online augmentation, the dataset varies each epoch, as the augmentation is performed
during training. If the augmentations are too strong, they can potentially deteriorate the
images relative to the ground truth, and it is difficult to verify this. Thus, safety is espe-
cially important when using online augmentation.

5.3.2 Geometrical augmentation methods

Geometrical augmentations are methods that affects the geometrical properties of an im-
age, i.e. the location of the pixels. The motivation for using geometrical augmentation is
to avoid overfitting and overcome positional biases. An example of a positional bias is if
the objects of interest in the training set are located in the bottom left corner of the image
in almost all images, the neural network might learn that the probability of detecting this
object is greater in this specific area of the image. However, the applied detector should
be able to detect boats regardless of where in the image they are located.

The augmentation techniques investigated in this thesis will be presented in section 7.2.3.

30



Chapter 6
Method: Datasets and collection of
more data

Data is extremely important in machine learning, thus this chapter aims to present the
datasets used for training, validation and testing of the object detector.

6.1 Datasets used for pre-training

6.1.1 ImageNet

[Russakovsky et al., 2015] introduced ImageNet as a benchmark dataset for image classi-
fication: the task of identifying whether there are objects of pre-defined classes present in
the image or not. There are a total of over 14 million images containing objects from more
that 1000 classes [Russakovsky et al., 2015]. This dataset is typically used for pre-training
of the backbone in order to learn feature extraction. When the backbone is used for ob-
ject detection such that the instances must also be localized with bounding boxes, the last
soft-max layer is removed and the neck and head is then connected to the backbone before
further training on other datasets.

6.1.2 COCO-dataset

Microsoft Common Objects in Context (COCO) is a large annotated dataset containing
complex images from everyday scenes with common objects in their natural context [Lin
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et al., 2015]. There are 2.5 million annotations in a total of 328k images, which are divided
into a trainval set and a testdev set. There are 80 object classes of which each instance is
annotated with a segmentation mask and class label. Examples of this can be seen in figure
6.1. Note that one of the classes is ”boat” which means that when a network is pre-trained
on this dataset we can detect boats in the images.

Figure 6.1: Images from [Lin et al., 2015]
Example images from the COCO-dataset with instance segmentation masks

6.2 Available LWIR datasets

6.2.1 Hurtigruten

The images in the Hurtigruten dataset are collected and annotated by Michael Ernesto
Lopez and Edmund Brekke in June 2019. The complete dataset consists of both IR and
visual spectrum images, but only the IR images are considered here. The images are col-
lected along the Norwegian coast from onboard the cruise ship Hurtigruten with a LWIR
camera.

The IR images are of size 512 × 640 (H ×W ) and there are a total of 313 images. The
annotations are made as bounding boxes with two different detail levels of the class-labels:
fine-detailed and simplified. There are a total of 21 fine-detailed classes which represent
different types of boats. Noting that some of these classes are constituted of very few
samples, it is decided to focus on the simplified labels of which there are 6, and they are
summarized in table 6.1. As there are very few barges, this class is considered a part of
”Motorboat with priority” hereafter.

Total number of images 313
Barge 4

Building 739
Motorboat 55

Motorboat with priority 342
Sailboat with sails down 29

Sailboat with sails up 3

Table 6.1: Overview of simplified class labels and the number of instances in Hurtigruten dataset

Examples of pictures with annotations from this dataset is shown in figure 6.2
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Figure 6.2: Example images from the Hurtigruten-dataset with bounding box annotations and class
labels

Two of the most frequently used class labels from the detailed labels are cruise ship and
cargo ship. These are both very large ships which are not very relevant in the small canal
where milliAmpere will be operating, and in the infrared images they can resemble build-
ings as shown in figure 6.3.

(a) Picture of cruise ship from Hurtigruten dataset. (b) Picture from Fosenkaia dataset in section 6.2.2

Figure 6.3: The ship in figure (a) can resemble the buildings on the left side of figure (b) due to
windows and similar structure.

During early testing false detection of buildings which were classified as boats were fre-
quently present. This motivated changing the dataset to remove data that potentially could
make performance worse because of the similar appearance in the images. Thus, a sub-
set of the dataset called Hurtigruten small was created by excluding images of very large
ships that are not relevant in the narrow canal in Trondheim, based on manual inspection
of the images. For example, the image in figure 6.3a was removed. Hurtigruten small is
summarized in table 6.2

Separating cruise-ships from buildings may very well be feasible for the neural network,
but it is assumed that it might require more data, as the current dataset is already quite
small. In addition, it is not relevant for the particular case of harbour environments in a
narrow canal in this thesis.
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Total number of images 167
Building 368

Motorboat 42
Motorboat with priority 159
Sailboat with sails down 20

Sailboat with sails up 3

Table 6.2: Overview of simplified class labels and the number of instances in the subset
Hurtigruten small dataset

6.2.2 Fosenkaia

An important part of the author’s specialization project [Kjønås, 2021] was to collect a
dataset synchronized between several sensors, including an LWIR camera mounted on a
sensor rig at Fosenkaia in Trondheim. One scenario consisting of 911 frames in a video
has been annotated with bounding boxes. An example of an image can be seen in figure
6.3b. This dataset called Fosenkaia was originally planned to be used for evaluation and
testing in this thesis. However, as the contrast is very low, a newly collected dataset with
better contrast due to change in camera parameters is used instead. This will be further
explained in the following sections.

Since the camera and thus the background is stationary, the Fosenkaia dataset is probably
prone to overfitting if used for training. There is a risk that if a large part of the total
training-data contains pictures with the same background and the same weather condition
etc. the background will be learned instead of features of the objects of interest. This
will surely give problems for the object detector that handles the IR-cameras onboard mil-
liAmpere with a dynamic background. In addition, changes in the background, such as
different weather conditions or additional docked boats may cause trouble for the station-
ary IR-camera object detection if the detector is overfitted.

For future interest in this sort of dataset, it is recommended to change the camera parame-
ters as will be described in section 6.3.1 and record new data.

6.3 Collection of datasets

The motivation for collecting more data is that previous work with similar goals have
used more data for training. For instance, Helgesen used 2035 IR-images in [Helgesen
et al., 2019], Grini used 1916 images in [Grini, 2019]. Hurtigruten very small dataset by
itself, and when some image are excluded in the Hurtigruten small dataset the result is
even less data. Therefore it is considered necessary to collect more data in order to get
decent results from training the neural networks. In addition, there is an overweight of
large ships and open-sea images in the Hurtigruten dataset, while not as many are from
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harbour environments. The sailboat-classes are also quite small.

Another goal when collecting more data is to investigate hypotheses from the author’s
supervisors regarding improvement of the contrast in the images. It is suggested that
exclusion of the sky might help and potentially one can look at other camera settings for
the IR-camera as well.

6.3.1 IR camera specifications

The camera used when collecting new data and for the Fosenkaia dataset from [Kjønås,
2021] is a Boson640 LWIR-camera. Table 6.3 presents an overview of the key specifica-
tions for the camera.

Name Boson 640
Sensor Technology Uncooled VOx Microbolometer

Resolution 640x512
Horizontal Field of View (HFOV) 95◦

Effective Focal Length 4.9mm
Spectral range LWIR: 7.5 µm - 14 µm

Frame rate 9 FPS

Table 6.3: IR-camera specifications from [FLIR Systems Inc., 2019a]. A similar table is presented
in [Kjønås, 2021].

A full description of the functionality of the IR-camera is given in [FLIR Systems Inc.,
2019b]. The sensors consists of a 2D array of vanadium-oxide (VOx) microbolometers.
These all have a temperature dependent resistance that varies with incident radiation flux,
and thus measures the thermal radiation of the surroundings. Each bolometer is applied
with an internal bias, and the measured current signal is digitized into a measurement of
width 14.2 bits (i.e. 2 digits after the decimal point and 16 bits in total). The signal is
then pre-processed in terms of Non-uniformity Correction and Spatial/Temporal Filtering
according to factory default settings given in [FLIR Systems Inc., 2019b].

Automatic Gain Correction (AGC) algorithm

The 14.2 bits values need to be converted into 8 bits because imaging system displays
represent each pixel value (for a given channel) using 8 bits. In order to keep as much
information from the signal as possible, an Automatic Gain Correction (AGC) algorithm
is used to convert the data to 8-bit output signals [FLIR Commercial Systems, 2018].
Using a linear mapping or classical histogram equalization could result in low contrast for
the foreground objects, as fairly uniform background parts such as the sky would actually
consume a large portion of the dynamic range during mapping.

35



Chapter 6. Method: Datasets and collection of more data

The AGC algorithm plots the input pixel values vs. number of pixels in a histogram.
Optimizations adjusted by a set of parameters can change the calculation of the histogram.
These parameters are briefly described in 6.4. Then the mapping function that transforms
the 16-bit data to an 8-bit space is applied to the histogram.

Parameter Short description Default
value

Information-
Based Mode

Dynamic range is proportional to the amount of scene
information in the pixel values. Ideal when the back-
ground is uniform, for instance the sky. A High-Pass
and Low-Pass filter is used to extract details and back-
ground, and High-Pass content is weighted more.

On

Tail rejection Sets a percent-wise lower and upper threshold in the
histogram where all values outside will be mapped to
min and max, respectively, leaving more bits to the cen-
tral grey-shades.

0

Max Gain Most effect in scenes with a narrow dynamic region.
In such images increased value results in a better ex-
ploitation of the entire 8-bit spectrum, but risks over-
exposure and more grainy noise.

1.38

Damping Factor Changes the update rate of the AGC algorithm between
video frames.

85

Adaptive Contrast
Enhancement

Adjust the perceived brightness of the image by priori-
tizing lower or upper part of histogram.

0.97

Plateau Value When increased, the most frequent pixel values are pri-
oritized, while these are otherwise clipped. FLIR rec-
ommends using the default value.

7

Linear Percent How linear the mapping is. With a high value the rela-
tive temperature difference is more accurate.

20

Detail Headroom Increases the amount of the 8-bit range that is dedicated
to the Low-Pass filter data.

12

Digital Detail En-
hancement

Increases the amount of the 8-bit range that is dedicated
to the High-Pass filter data.

0.95

Smoothing Factor Defines the cut off for the HP filter. FLIR recommends
using the default value.

1250

Region of Interest Decides which parts of the image that will be used for
optimization of the AGC-algorithm.

0-639,
0-511

Table 6.4: AGC parameters with name, description and default value. Information from [FLIR
Commercial Systems, 2018].

All these setting were tuned and tested by taking pictures with the same view of a boat in
a relevant setting from Ravnkloa in Trondheim. The results were compared to the default
values and the most interesting setting parameters are further investigated in the following
sections. The most difficult part is considered to be to separate boats from background
objects such as buildings. But improving the contrast between the targets and the sea is
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also important. Thus this is the focus when tuning the parameters. Parameters that do not
have a significant effect or degrades the contrast are not further discussed, and the default
values were used.

Region of Interest (ROI)

As stated in the application note [FLIR Commercial Systems, 2018], when the background
is fairly uniform such as the sky or sea, it dominates the histogram, and is therefore allo-
cated a large portion of the dynamic range. It would thus be preferable to exclude the sky
from the histogram used in the AGC-mapping. However, as the vertical FOV is large (77◦

[FLIR Systems Inc., 2019b]) and the lens is convex, meaning that the corner parts of the
image are distorted, it is difficult to exclude the sky from the images. This is especially
difficult in the upper corners without using an unnatural angle on the pointing direction of
the camera. Thus, a better method is to set the ROI for the AGC as described in [FLIR
Systems Inc., 2019b]. This parameter lets you define the start and stop column and row
which defines the region on which the AGC-algorithm is based when mapping the 16 bits
to 8. This does not mean that the part that it excluded from the ROI is not displayed, only
that it does not affect the AGC-optimization.

Figure 6.4 shows two images where one has the entire image as ROI, while in the other
image the AGC-algorithm is based on the pixel values from row 120 (counted from the
top) and down, meaning that most of the sky is excluded.

(a) ROI is the entire image (b) ROI is limited to row 120 and down

Figure 6.4: Comparison of effect of limiting ROI

As can be seen from this figure, excluding the sky when using the AGC-algorithm by
changing the ROI clearly affects the contrast in the image. Especially the contrast between
the boat in the middle of the image and the sea is improved, but also details on foreground
objects such as the pier are more visible.

For the shore mounted camera, the ROI limit can easily be determined, as the background
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with the sky region is stationary. However, for the cameras that will be mounted on board
the autonomous vessel, the region containing sky in the images will vary as the ferry and
thus the camera FOV is affected by wave movements. Excluding parts of the sky from
the ROI also improves the contrast because it would be less dominant in the histogram,
although not as much and it is thus recommended to limit the ROI for the on board mounted
cameras as well. The exact row to set as start row for the ROI depends on the mounting
angle of the IR cameras.

Digital Detail Enhancement (DDE)

Besides ROI, the most interesting parameter to adjust was found to be Digital Detail En-
hancement (DDE), keeping in mind that the goal was to improve the contrast between the
objects of interest from background objects such as buildings and piers.

DDE determines if the AGC-mapping should allocate more bits to the contents of the
High-pass filter compared to the Low-pass filter [FLIR Commercial Systems, 2018]. If
the parameter is turned up, the edges and transitions between objects are more detailed at
the cost of more noise in the image. This is shown in figure 6.5.

(a) Default: DDE = 0.95 (b) DDE = 1.36 (c) DDE = 2

Figure 6.5: Comparison of effect of DDE

The difference is clear: the details e.g. on the boat are more visible, but the image becomes
more noisy. The middle boat is considered easy to detect, however this image contains
some difficult background boats prone to low contrast. In figure 6.6, we zoom in on these
boats to showcase the effect of DDE.

It seems like these boats are more visible when DDE is increased, indicating that the
contrast is improved. Especially the boat marked in red is nearly impossible to observe
with the default parameters, while slightly easier when DDE is increased.

There may be reasons to not set the DDE too high given possible disadvantages of a noisy
image. The behaviour of the neural network on very noisy images is unknown. Thus it is
considered safe to not use a value that is to high, but still increase the value in order to get
the advantages of the contrast improvement.
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(a) Default: DDE = 0.95 (b) DDE = 1.36

(c) DDE = 2 (d) RGB image of the same boats that are present in
the IR-images, marked in green and red

Figure 6.6: Comparison of effect of DDE when zooming in

6.3.2 Nidelva

As the parameter testing was performed in parallel with collecting more data, the new
settings were not applied before the third day of data collection, where DDE was set to
1.05 and ROI was limited to row 120 and down. However, weather conditions, distance to
target and other factors may also affect the contrast, so for training and validation data all
collected images are highly relevant.

The plan was to merge the new images with the Hurtigruten dataset, thus some areas to
focus on when taking new pictures were identified based on manual inspection of the
Hurtigruten dataset:

• Harbour environments

• Smaller boats (typical sizes in the canal)

• Kayaks if possible
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• Different distances, especially close up as these are lacking for smaller boats in the
Hurtigruten dataset

• More sailboats, because there are very few sailboat instances compared to motorboat
(especially with priority) in Hurtigruten

The procedure for collecting data was to walk along the canal-area and different parts
of Nidelva in Trondheim and take pictures of boats on the 18th, 20th and 23rd of March
2021. In order to ease the annotation process, visible light images were taken of the same
objects as in the IR-images, so that they could be compared. The pictures were not directly
overlapping, so it was only intended to be a visual aid.

Most of the pictures are taken of docked boats, but a few boats where passing by and
depicted. Unfortunately, no kayaks was observed. These are considered crucial for the
IR sensor to detect, so future work includes collecting images of kayaks. An overview of
the collected images with the number of class instances are shown in table 6.5 for the new
dataset hereafter called Nidelva.

Total number of images 94
Building 0

Motorboat 283
Motorboat with priority 1
Sailboat with sails down 135

Sailboat with sails up 0

Table 6.5: Overview of class labels and the number of instances in the Nidelva dataset

The same class labels as in the Hurtigruten dataset were used in order to easily merge
the two datasets. Although this project focuses on bounding boxes, future work may in-
clude segmentation tasks, and it was thus decided to annotate the images with polygons
of up to 20 points, which automatically generates bounding boxes as well. The annotation
procedure for the collected images will be discussed in section 6.3.4. Some examples of
annotated images from the Nidelva dataset are shown in figure 6.7.

Figure 6.7: Example images from the collected Nidelva dataset with instance segmentations and
class labels. Pink is ”sailboat with sails down”, blue is ”motorboat”
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6.3.3 milliAmpere

Øystein Helgesen in cooperation with Kjetil Vasstein collected a new synchronized dataset
from several sensors in the harbour area between Ravnkloa and Fosenkaia on the 5th of
May 2021. This included videos from three IR-cameras taken on board milliAmpere. The
new camera setting adjustments as explained in section 6.3.1 were used with DDE = 1.32
and ROI set to the lower 2/3 of the image. With these settings, Helgesen, who has collected
several similar datasets previously, stated that the contrast in the IR-images with the new
settings seemed much better than before.

A video from one of the three cameras is annotated with bounding boxes and class labels
by the author according to the annotation rules in the next section. An overview of the
number of class instances is shown in table 6.6.

Total number of images 628
Building 0

Motorboat 2723
Motorboat with priority 0
Sailboat with sails down 2490

Sailboat with sails up 0

Table 6.6: Overview of class labels and the number of instances in the milliAmpere dataset

The scenario in the video is one boat approaching the camera before passing and exiting
the frame, then a new motorboat enters the frame from the opposite side. In addition,
several sailboats and motorboats are docked on each side of the canal. The detection
performance on the two moving boats will be interesting to analyze separately as they will
give a clear indication of how the pixel size and thus the distance from the camera affects
performance. Example images with annotations are shown in figure 6.8.

Figure 6.8: Example images from the collected milliAmpere dataset with bounding box
annotations and class labels. Pink is ”sailboat with sails down”, blue is ”motorboat”.

The two sailboats on the leftmost part of the images in figure 6.8 in addition to the two
moving boats are marked as not difficult when the view is reasonable. The other boats in
the background are marked as difficult. This distinction will be used in the analysis of the
results.
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6.3.4 Annotation of datasets

Computer Vision Annotation Tool (CVAT) 1 was used to annotate the collected images.
This includes a tracking functionality that is very useful when annotation videos.

Two concerns were made during annotation of these datasets:

• General guidelines for object detection

• Consistency with the Hurtigruten-dataset annotations

The Pascal VOC guidelines as described in [Everingham et al., 2010] and recited here
were used as a basis for the annotation, where the relevant points are:

What to label: All objects of the defined categories, unless:
• you are unsure what the object is
• the object is very small (at your discretion)
• less than 10-20% of the object is visible.

Bounding box: Mark the bounding box of the visible area of the object (not the estimated
total extent of the object). Bounding box should contain all visible pixels, except where
the bounding box would have to be made excessively large to include a few additional
pixels (< 5%) e.g. a car aerial.

Truncation: If more than 15-20% of the object lies outside the bounding box mark as
Truncated. The flag indicates that the bounding box does not cover the total extent of the
object.

Difficult: Labeled objects which are particularly difficult to detect due to small size, il-
lumination, image quality or the need to use significant contextual information. In the
challenge evaluation, such objects are discarded, although no penalty is incurred for de-
tecting them. The aim of this annotation is to maintain a reasonable level of difficulty
while not contaminating the evaluation with many near unrecognisable examples.

Furthermore, it is important to be consistent across multiple images. For instance, back-
ground boats with the same contrast and distance must always be labeled if one is labeled.

The second consideration is consistency with the annotation of the Hurtigruten dataset. An
important change from the guidelines is that even though the masts on sailboats with sails
down often constitute less than 5% of the object, they are included in the bounding box
annotation. This is done in the Hurtigruten dataset. For differentiating between sailboats
and motorboats the mast is an essential feature. Therefore, the masts are also included in
the annotations of the sailboats.

1https://cvat.org/
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6.4 Dataset split: training, validation and testing

The same class labels as the simplified version in the Hurtigruten dataset are used for
annotation of the collected data, except the class ”barge”, which is merged with ”motorboat
with priority”.

Furthermore, it was decided to not annotate the buildings in the collected datasets. The
main reason for this is that it is a time consuming task and difficult to do correctly. Build-
ings are often situated next to each other, making it difficult to decide how to separate
their bounding boxes. In addition they are often obscured by other foreground objects. In
the harbour area, there are a lot of buildings, including low contrast background buildings
which are very difficult to annotate. Grini examined the hypothesis of whether including
a boat class would improve boat detection performance by giving fewer false alarms from
buildings in [Grini, 2019]. It was found that in harbour environments, the inclusion of a
boat class had little effect on the detection performance, while in open sea environments,
including a building class helped lowering false detections of land as boats. Since this the-
sis focuses on harbour environments, it is not considered worthwhile to annotate buildings
in all collected images.

6.4 Dataset split: training, validation and testing

Before training the neural network on the available data, we need to split the dataset into
three subsets: train, validation and test. During training, the training set is showed to the
neural network for minimization of the loss function and after each epoch the updated
weights are evaluated on the validation set. The motivation for using a separate valida-
tion set is to avoid overfitting and for aiding hyperparameter search, such as updating the
learning rate. If we exclude the validation set it is likely that the network will not be able
to generalize.

In this thesis, the collected dataset Nidelva is merged with Hurtigruten small for training
and validation. Each of the two are randomly split into a training set and a validation
set with a ratio of 85-15. This solution of a random split might not be ideal as some
images are similar as they are taken of the same object with only a slightly different angle.
However, several images will contain unique instances, and the time constraint makes this
the preferred choice.

It is decided to merge the ”motorboat” and ”motorboat with priority” classes and ”sailboat
with sails down” and ”sailboat with sails up” classes for training, validation and test. There
are two main reasons for this: Firstly, there are only two classes present in the test set,
namely ”motorboat” and ”sailboat with sails down”. Therefore, the other classes can not
be properly evaluated. Secondly, there are very few ”sailboats with sails up” instances in
the merged dataset. Such an unbalanced class distribution would cause problems for the
neural network when it comes to learning this class. The resulting label distribution for
the train and validation datasets is shown in table 6.7 and 6.8.

Finally, we need unseen an independent data as a test set in order to properly evaluate the
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Total number of images 222
Motorboat 417
Sailboat 143

Table 6.7: Overview of the training dataset,
which is a part from fusion of
Hurtigruten small and Nidelva

Total number of images 39
Motorboat 68
Sailboat 15

Table 6.8: Overview of the validation
dataset, which is the other part from fusion

of Hurtigruten small and Nidelva

general performance of the neural network. This allows us to compare different models.
The milliAmpere dataset is used as a test set in this thesis. For the test set it is much more
important to avoid sample leakage, which is ensured when using this new test set.

The reason for choosing the milliAmpere dataset over the Fosenkaia dataset is that initial
training showed poor performance on the Fosenkaia dataset, where low contrast is consid-
ered the most important reason. As new and better camera settings have been tested, future
application is expected to be more similar to what we can see in the milliAmpere dataset,
giving more realistic results.
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7.1 Choice of model

The choice of models to investigate in this thesis is based on the literature review in section
5.2.1.

An interesting hypothesis to test is if the newest neural network object detection mod-
els that achieves state-of-the-art on the COCO-dataset also performs better in the specific
domain of maritime detection in LWIR-images. Thus it is decided to compare one well
known model that is frequently used in the literature with a newer model. YOLOv3 [Red-
mon and Farhadi, 2018] is chosen as the frequent model as it is tested with promising
results in the same domain in [Schöller et al., 2019] and is preferred in terms of real-time
application over the slower two-stage detector Faster R-CNN. YOLOv3 also outperforms
SSD in terms of AP on the COCOeval dataset, and when compared in the maritime do-
main in [Grini, 2019].

EfficientDet [Tan et al., 2020] is chosen as the modern object detector. This was state-of-
the-art for real-time application at the start of the author’s specialization project [Kjønås,
2021] and barely tested here, so it was decided to continue to investigate this model. How-
ever, at similar frame rates Scaled-YOLOv4 outperforms EfficientDet, and future work on
this area may including using this improved model. The scaled version D0 is chosen as
this has the fastest inference time.

For the implementation of EfficientDet a PyTorch implementation called ”Yet Another
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EfficientDet Pytorch”1 was used. The reason for this was that this was an extension of the
unpublished work of Thomas Skarshaug within the Autoferry-project. However this led to
bad results after training. The detection performance was actually better when pre-trained
on the COCO-dataset alone than when trained on the IR-images. A lot of effort was put
into troubleshooting, among this tuning of hyperparameters, change of data and more. This
was not leading to large progress with the training so finally, it was decided to abandon
this implementation and use the original implementation in Tensorflow2 made available
by the authors of [Tan et al., 2020]. This has been an expensively learned lesson and it is
recommended for everyone interested in performing future work with similar projects to
verify the implementation and use the original work if possible.

For YOLOv3 the original implementation was first tested, but it was unfortunately diffi-
cult to make it work. Due to the delayed progress from struggling with the EfficientDet
implementation, it was decided to use a PyTorch implementation by a company called Ul-
tralytics3, which has been acknowledged by the authors of [Bochkovskiy et al., 2020] for
their contribution to improvements to the YOLO-models.

7.2 Experimental method

As described in the introduction, this thesis aims to explore different aspects of object
detection in LWIR-images using neural networks. In order to systematically investigate
the focus areas of comparing models, the effect of data augmentation and classification of
motorboats and sailboats the following method has been used.

EfficientDet-D0 backbone, EfficientNet-B0, is pre-trained on the RGB-images dataset Im-
ageNet, while this is not the case for the YOLOv3 backbone. Then both the EfficientDet-
D0 and YOLOv3 models are pre-trained on the RGB-images COCO-dataset as introduced
in section 6.1.2. The main advantage of this is that the neural network needs less training
data in order to learn object features. A disadvantage of this is that RGB-images have three
color channels, while IR-images only have one. This is currently solved by copying the
IR-image and sending in all three color channels. This means that there will be additional
weights in each convolutional layer in order to represent color features that are not neces-
sary for the IR-images. Maybe the network could have been smaller with same results or
deeper instead with same amount of weights? However, it is assumed that the size of the
current available IR-dataset is not sufficient for training a neural network from scratch.

The pre-trained weights are downloaded from the repositories for the two models. Then
both models and their corresponding pre-trained weights and the training, validation and
test set that are described in section 6.4 are uploaded to a GeForce GTX 1080 Ti GPU for
training and evaluation.

1https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
2https://github.com/google/automl/tree/master/efficientdet
3https://github.com/ultralytics/yolov3

46

https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
https://github.com/google/automl/tree/master/efficientdet
https://github.com/ultralytics/yolov3


7.2 Experimental method

First, all labels were merged into a combined ”boat” class for evaluation of the general
detection performance. Then the original labels ”sailboat” and ”motorboat” were used for
training and testing in order to evaluate classification performance as will be described in
section 7.2.5.

7.2.1 Training: Choice of hyperparameters

Both models come with a set of hyperparameters that control the learning process of the
neural network. The key hyperparameters are desicrbed in section 3.2.1. In order to im-
prove the performance hyperparameter optimization can be applied. This has not been
considered for this thesis due to limited time and scope. However, optimization is shown
to have positive effect on the performance and is thus a recommended subject for fur-
ther investigation in future work. [Yu and Zhu, 2020] is a survey that covers some major
optimization algorithms and their applicability and can be a good starting point.

Nevertheless, the hyperparameters need to be set for training of the neural networks. Thus
the strategy used for determining the key parameters are described in the following.

Epochs

The necessary number of epochs is found trough testing. It can be said that the network is
done training when it starts overfitting so that the validation loss starts to increase while the
training loss continues to decrease. Thus, the weights with the best validation performance
in terms of AP is kept instead of the last available weights in order to avoid overfitting.
Training is initially run with fewer epochs, e.g. for testing all data augmentation methods,
and then extended if it is found necessary because the network does not show indications
of overfitting. The main motivation for limiting the number of epochs is that it is time
consuming to have many epochs. When presenting the results we will be operating with
step size as described in (3.6) because the batch size is different for the two models.

Batch size

Typical batch sizes range from one to a few hundred [Goodfellow et al., 2016]. If a large
batch size is chosen the estimated gradient is more accurate. However the hardware results
in upper bounding of the value. It is decided to use the maximum value that the GPU
allows. For YOLOv3 the batch size is set to 16 while for EfficientDet-D0 it is 32.

Besides these hyperparameters the default values described in the original papers are used
[Tan et al., 2020][Redmon and Farhadi, 2018].
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7.2.2 Evaluation

When evaluating the results of the training the evaluation metrics from chapter 4 are used
on the test set. This is done for initial testing in order to quatify the results and compare
them e.g. different data augmentation techniques. The best results are further investigating
by plotting precision-recall curve etc. as will be further described in section 7.2.4.

7.2.3 Data augmentation

When examining the possible performance improvement of data augmentation, a selected
set of augmentation techniques are applied individually during training and evaluated on
the validation set for both neural network models. Then the best performing methods
are combined and tested in the same manner. The validation set performance gives an
indication of which methods improves the results and these are evaluated on the test set.

Online augmentation is used, primarily because it saves a lot of storing space, but also
because it does not limit the amount of variations in images, as new augmentations can be
applied each epoch.

This thesis will focus on geometrical data augmentation methods. [Shorten and Khoshgof-
taar, 2019] recommends that the geometric transformations random cropping and transla-
tion should be manually inspected in order to ensure that the correct label is preserved, thus
these methods are not tested in this thesis with the use of online augmentation. Otherwise,
the selected techniques are horizontal flipping, scaling, rotating and mosaic transforma-
tion.

Horizontal flipping

Horizontal flipping is flipping the image and the overlaying bboxes in the horizontal di-
rection, i.e. from left to right. By flipping the images we double the number of training
images, where a flipped image is considered different than the original. In an online aug-
mentation scheme, this means that for each image there is a probability of 50% that it will
be flipped when loaded and prepared for training. An example of a flipped image where
the ground truth annotation bounding box is flipped correspondingly is shown in figure
7.1.

An important motivation for using horizontal flipping is that it is a safe augmentation
technique in the maritime object detection domain, as the bounding boxes and class labels
do not risk being distorted.

In general it is also possible to use vertical flipping. However, given the maritime domain
and the mounting of the cameras that this detection method will be used on, it does not
really make sense to train on boats that are upside down, and it is therefore not applied.
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Figure 7.1: Example of a flipped image with ground truth annotation. The label 0 signifies ”boat”.

Rotation

The camera on board milliAmpere will be subject to rotations as waves can change the
view of the camera given the movements of the ferry. Thus, it is interesting to train on ro-
tated images for this case. In addition, it can help improve positional biases and overfitting
as previously discussed.

When enabling rotation for training, the method is implemented so that each image has
a 50% chance of being rotated, and the rotation angle is randomly drawn from a uniform
distribution of degrees between [−10, 10]. When an image is rotated, the size of the bound-
ing boxes is affected. Since they are described in terms of 4 positional arguments, xmin,
ymin, xmax, ymax, some information is lost when they are rotated, and they might cover
a larger area than the rotated object. An example of a rotated image that illustrates this is
shown in figure 7.2.

Figure 7.2: Example of the original and rotated image with ground truth annotation rotated
correspondingly. The label 0 signifies ”boat”.
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Note how the foremost boat has an annotated bounding box that is no longer tightly cov-
ering the object after rotation.

Scaling

The Hurtigruten dataset contains a substantial amount of instances that cover a large
amount of the image. And the Nidelva dataset contains images of boats at a short dis-
tance, meaning that they also have large bounding boxes. During runs of training with no
data augmentation, an early version of the detector seemed to prefer large bounding boxes
that cover a large portion of the image. For this reason, downscaling might be a beneficial
augmentation method, as the bounding boxes will be smaller in size during training.

In addition, zooming in, which is equivalent to scaling up, can result in a greater precision
for small instances, thus scaling up is also performed.

Figure 7.3 shows an example image scaled both up and down.

Figure 7.3: Example of a scaled image where the first is scaled down and the second is scaled up
with ground truth annotation scaled correspondingly. The label 0 signifies ”boat”.

When scaling is enabled, each image is scaled by a scaling factor that is randomly drawn
from a uniform distribution of [0.5, 1.5], meaning that the size will be between 50% smaller
and 50% larger.

Mosaic

[Bochkovskiy et al., 2020] presents a new data augmentation method which improves the
detection performance on the COCO-dataset in terms of AP. The idea is to combine four
images in a mosaic fashion so that different contexts are mixed so that detections can
be less context dependent. Another advantage of this is that the batch size on which the
gradient descent is performed is based on a larger subset of the images.
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An example of a training image on which mosaic augmentation has been performed is
shown in 7.4.

Figure 7.4: Mosaic composition of four training images, cropped in order to fit the input size. The
label 0 signifies ”boat”.

As can be seen from the figure, the image is randomly cropped as the combined images
exceeds the input size. When enabled, the augmentation is applied with a probability of
50%.

Unfortunately, it was difficult and would have been more time consuming to adapt the
dataloader used for training for EfficientDet to this method when using an online augmen-
tation scheme, and thus this was not prioritized. However, the method is tested with the
YOLOv3 detector and it is assumed that the results can give an indication as to whether
this technique should be prioritized and applied to models in future work.

7.2.4 Comparison of the best models

In order to properly compare the performance of the two neural network models, the eval-
uation metrics from section 4 are used.

Then, interpolated precision-recall curves are plotted for different IoUs according to the
equations in section 4.3 inspired by [Schöller et al., 2019].

Based on these results tuning of evaluation parameters is necessary before inference on
the test set, as these thresholds are used for inference.
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Tuning of evaluation parameters

In order to quantify whether a prediction is counted as a detection of a ground truth object,
an IoU threshold must be determined. However, this threshold will not affect the perfor-
mance of a tracker as we do not have ground truth bounding boxes in real applications and
so it is used purely for evaluation purposes. Because of this the choice is based on similar
values found in the literature.

The confidence of a bounding box is a part of the prediction output describing objective-
ness, i.e. if an object is present or not in the given predicted bounding box. This value
determines the trade-off between precision and recall from the precision-recall curves and
must be pre-defined by the user for detection applications. By setting the confidence
threshold lower, we favor higher recall values, while increasing confidence threshold re-
sults in higher precision.

The ideal threshold depends on the specific application, thus the value should be tuned
for the final tracking-algorithm which is beyond the scope of this project. However, as
we know that tracking is the application, some reflections regarding the trade-off between
precision and recall can be made.

A possible consequence of false negatives or misdetections is track loss. When the tracking-
system is used for collision avoidance the worst consequence of not detecting a present
boat is collision between the autonomous vessel and the other boat. The predictions from
the IR-images will be fused with predictions from other sensors and if the misdetection
rate is too high this can degrade the fused data, rather than improving them. As a result,
we must limit the confidence threshold in order to avoid too many misdetections.

On the other side, false positives or false alarms can result in tracking of non-existing
targets. The worst consequence of this is that false tracks hinders the autonomous vessel
from operating, or even worse, collision avoidance of a false track could be prioritized over
a real one in a situation where collision is unavoidable. However, false positive predictions
may be handled by sensor fusion for target tracking. Furthermore, if the false alarm rate is
too high, the total number of predictions can potentially cause problems for the processing
time of the track management and data association algorithms and thus struggle to operate
in real-time. This can be handled by limiting the number of allowed detections per image
or by setting a lower limit for the confidence threshold.

The conclusion from this is that minimizing misdetections is considered more important
and thus a high recall is prioritized, meaning that the confidence threshold can be de-
creased.

Based on the tuned thresholds, videos and images of the prediction results are made. Fur-
thermore, it is especially interesting to analyze the detection performance on the moving
motorboats in the test set as these are the most important targets to track. The pixel area
of the ground truth bounding boxes are plotted vs. time, combined with which frames
have true positives (detection) of the moving targets, and which result in false negatives
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(misdetection).

7.2.5 Classification

In order to test classification performence of the models, the original labels ”sailboat” and
”motorboat” were used for both training, validation and testing. Buildings were still not
included as these are difficult to annotate.

The results will be shown on the test set in terms of videos, and confusion matrices show-
ing how often sailboats are misclassified as ”motorboat” and the other way around. These
matrices will be explained together with the results as this makes it easier for the reader to
follow the explinations.
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Chapter 8
Experimental results

This section aims to present and discuss results that can answer the questions provided in
the introduction in section 1.2.

8.1 Effect of training on IR-images

Since ”boat” is a class label in the COCO-dataset and both models are pre-trained on
this dataset, it is interesting to compare training-results to evaluation from the pre-trained
weights. This will function as a benchmark for evaluating the effect of training on IR-
images. The pre-trained weights are inferred on the test set and evaluated for both EfficientDet-
D0 and YOLOv3. These results are compared to training of EfficientDet-D0 and YOLOv3
with no data augmentation in table 8.1. The data used for training, validation and test is
described in section 6.4. For the training the batch size is set to 32 for EfficientDet and
16 for YOLOv3 due to hardware limitations. Otherwise, default hyperparameters are used
except that all data augmentation is turned off. Steps signifies the number of times the
weights are updated as given in (3.6) for the best epoch, while the total number of steps
ran is shown in parentheses.

We can see from this table that training largely improves the results. We can also see that
YOLOv3 performs slightly better than EfficientDet-D0 both on AP and AR. However,
EfficientDet-D0 is better on medium and large objects which is later shown in table 8.4 to
be true for AR as well.
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Model Steps AP AP.50 AP.75 APsmall APmed APlarge AR

E-D0 0 0.0 0.1 0.0 0.0 0.0 7.4 1.7
E-D0 297 (988) 17.7 40.0 13.1 1.6 24.0 34.6 33.2

YOLOv3 0 0.0 0.2 0.0 0.0 0.0 7.3 1.6
YOLOv3 1680 (1680) 18.0 36.4 15.4 6.8 22.7 27.1 35.7

Table 8.1: Comparison of results from using only COCO pre-trained weights and after training.

8.1.1 Overfitting

Overfitting as described in section 3.2.1 occurs when the network is not able to generalize
by being overly adapted to the training data.

Figure 8.1: Loss vs. number of steps for EfficientDet-D0. Blue is training-loss and yellow is
validation-loss. A visual smoothing factor of 0.5 is used for the plot.

After epoch 5 at step 246 the validation loss starts to increase even though the training
loss continues to decrease. This is a sign of overfitting. The effect could have been even
stronger was it not for the adaptive learning rate for these models which decreases the
learning rate when the validation loss increases. The appearance of overfitting to the train-
ing data is the reason for using the weights from the best validation epoch instead of the
last epoch. Note that although the validation loss is larger at epoch 6, this epoch provides
the best APval and is thus presented in the results.

The overfitting happens quite early which is expected given the small size of the training
set. This motivates using data augmentation in order to continue to decrease the loss for
more steps.
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8.2 The effect of data augmentation

When analyzing the effect of data augmentation the method described in section 7.2.3 is
used. The evaluation results on the validation set using individual and combined augmen-
tation techniques are shown in table 8.2. Steps denotes the best performing step, while the
total number of steps ran is shown in parentheses.

Model Steps Flip Scale Rotate Mosaic APval ARval

EfficientDet-D0 297 (988) 40.3 56.7
EfficientDet-D0 642 (988) X 42.2 57.9
EfficientDet-D0 988 (988) X 51.8 65.5
EfficientDet-D0 544 (988) X 37.2 54.6
EfficientDet-D0 1482 (1679) X X 56.9 66.0

YOLOv3 1680 (1680) 46.2 59.7
YOLOv3 1386 (1400) X 46.1 60.7
YOLOv3 1372 (1400) X 55.2 64.6
YOLOv3 1400 (1400) X 50.1 59.2
YOLOv3 1400 (1400) X 58.9 66.8
YOLOv3 1358 (1400) X X 51.9 62.0
YOLOv3 1316 (1400) X X X 53.8 64.6

Table 8.2: Comparison of results on the validation set for different data augmentation methods.

The first thing to note from this table is that for EfficientDet the step and thus epoch
that gives the best validation results is lower when no augmentation is used than when
various techniques are applied. For the combination of augmentations, the network is
trained for even more steps as the validation AP continued improving longer for this
model. This means that the network was overfitting earlier when data augmentation was
not used, which is expected behaviour and a good sign because this indicates that the
variation in the data is so that the neural network learns more features. For YOLOv3
however, the steps executed do not seem to result in overfitting. With no augmentation, the
model started to overfit around epoch 1960, and due to time constraints it was decided to
train all models to epoch 1400 instead of arrival of overfitting to have comparable training
length to EfficientDet. It is assumed that the compared metrics on the validation set give
an indication of how well the techniques perform. The best performing models are trained
more steps before evaluation on the test set with the results shown in table 8.3 and 8.4.

Another result that can be observed from table 8.2 is that applying rotation to the training
data degrades the results for EfficientDet. This is unexpected, as the FOV of the image is
indeed rotated by a few degrees in the test set. The same problem with rotation was found
in [Landsnes, 2021], where rotation deteriorate precision. It is difficult to tell exactly
why this augmentation methods works poorly because the training process of the neural
network is not transparent. One possible explanation is that the rotation of the bounding
boxes results in less accurate bounding boxes which leads to degraded precision. For
YOLOv3 the performance in terms of AR is worse, while the AP is improved. From this
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it is decided to not combine rotation with the other methods for further training.

For EfficientDet, the individual tests of data augmentation show that flip and scale seem
most promising and are thus combined for the final test. There is no guarantee that com-
bining data augmentation techniques that are individually effective results in better per-
formance for several reasons such as safety issues and that augmentation does not solves
issues related to limited training data diversity [Shorten and Khoshgoftaar, 2019]. How-
ever, here the table shows that combining scale and flip further improves performance for
the validation set.

Similarly, flip and scale are combined for YOLOv3 in order to compare the results to
EfficientDet. Furthermore, we can see that mosaic outperforms all other techniques on the
validation set. These tree methods are combined which actually results in worse metrics
than both scale and mosaic individually. This is unexpected, but a possible reason is that
the combined techniques might need more training steps.

The best performing augmentation methods from table 8.2 are evaluated on the test set and
the results are shown in table 8.3 for AP -metrics and table 8.4 shows AR-metrics.

Model Augment AP AP.50 AP.75 APsmall APmed APlarge

E-D0 No aug 17.7 40.0 13.1 1.6 24.0 34.6
E-D0 Flip + Scale 18.3 45.4 15.4 1.0 22.0 50.4

YOLOv3 No aug 18.0 36.4 15.4 6.8 22.7 27.1
YOLOv3 Flip + Scale 20.4 48.0 15.0 5.2 27.0 32.7
YOLOv3 Flip + Scale + Mosaic 21.9 56.6 13.7 11.6 27.6 28.1
YOLOv3 Mosaic 27.7 54.1 23.9 7.5 34.0 46.4

Table 8.3: Comparison of AP results on test set for different data augmentation methods.

Model Augment AR ARsmall ARmed ARlarge

E-D0 No aug 33.2 9.4 42.1 55.6
E-D0 Flip + Scale 34.1 15.1 37.5 69.4

YOLOv3 No aug 35.7 28.7 36.8 49.5
YOLOv3 Flip + Scale 38.9 30.0 43.3 42.4
YOLOv3 Flip + Scale + Mosaic 43.7 36.8 46.1 51.0
YOLOv3 Mosaic 39.5 24.5 44.1 58.3

Table 8.4: Comparison of AR results on test set for different data augmentation methods.

The first thing to notice is that the evaluation metrics for the test set are all significantly
lower than for the validation set. The most probable reason for this is that several images
in the validation set are very similar to those in the training set because they are depicting
the same objects shortly before or after the other image is taken. Examples of this is shown
in figure 8.2.

This may cause overfitting and is unfortunate. From this perspective, the validation set
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(a) Training - Nidelva (b) Validation - Nidelva

(c) Training - Hurtigruten (d) Validation - Hurtigruten

Figure 8.2: Example images from training and validation set that are similar.

should not have been chosen at random, in stead unique images should have been selected
in order to avoid sample leakage. Unfortunately, time was not found to do this after the
production of these results in this thesis and it is recommended as future work.

Another effect from this is that the significant performance improvement of the validation
metrics when using data augmentation is not transferred to the test set. Although we can
see an improvement it is not as large as we would have expected from the results of the
validation metrics. Furthermore, with a biased validation set, the best performing results
during validation might not be the best on unseen data if the weights are overfitted. This
is illustrated by YOLOv3 where we see that flip + scale + mosaic performs better on the
test set in terms of AR than mosaic alone, which is not the results on the validation set.

Nevertheless, AP and AR are both improved when adding the data augmentation. Table
8.3 shows that for EfficientDet, the greatest improvement in AP is APlarge. A possible
reason for this is that the data augmentation technique scaling enables the possibility to
learn object with a greater variation of sizes. However, APsmall and APmed are worse.
The author has no good explanation for this. Table 8.4 shows that AR are generally im-
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proved by introducing flipping and scaling in addition to improvements of both ARsmall
and ARlarge. For YOLOv3, flip + scale performs similarly, where some metrics are im-
proved while others are better without augmentation. By introducing mosaic almost all
metrics are improved, both alone and with flip and scale. This shows great potential for
using this data augmentation technique and is recommended for future work.

The overall results are considered improved when introducing the specific data augmenta-
tion methods. In addition, the significant improvement on the validation set shows great
potential for using data augmentation techniques on IR-images.

8.3 Analysis and comparison of the best results

The best performing models from table 8.3 and 8.4 are considered to be flip + scale for
EfficientDet because bothAP andAR are better than without augmentation. For YOLOv3
it is considered to be flip + scale + mosaic becauseAR is better with these techniques than
mosaic alone. Recall is the most important metric for the tracking application since it
is of higher importance to detect all objects and avoid false negatives than to introduce
false positives which can be suppressed during fusion with data from other sensors. These
models with the given data augmentation techniques will be the base for further analysis.

The inference time of the two models are not tested as the final hardware is unknown.
However, it is assumed that the times provided by their respective papers, which are re-
cited in table 5.1, are valid so that EfficientDet-D0 is approximately 1.34 times faster than
YOLOv3.

The precision-recall curves for different IoU thresholds are plotted in figure 8.3 for EfficientDet-
D0 and 8.4 for YOLOv3.

The figures show that for high precision values and high recall values the performance
of the two models are similar. Although there is a clear difference for larger IoUs where
EfficientDet-D0 favors precision and YOLOv3 favors recall. The middle parts along the
curves are better for YOLOv3 as better performing models have curves that are closer
to the upper right corner, meaning that the trade-off between precision and recall is less
expensive.

However, the differences are not very large and the two models will be further compared
in the following analysis.

8.3.1 Choice of tuneable evaluation parameters

An IoU and a confidence threshold must be decided for further evaluation.
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Figure 8.3: Precision-recall curve for different IoU-values. EfficientDet-D0: Flip + scale.
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Figure 8.4: Precision-recall curve for different IoU-values. YOLOv3: Flip + scale + mosaic.

IoU threshold

In [Schöller et al., 2019] an IoU threshold of 0.3 was chosen in order to favor a high recall.
They argue that for small objects, small errors in the predicted bounding boxes affects the
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IoU a lot.

We see from the precision-recall curves in figure 8.3 and 8.4 that the difference between
an IoU of 0.3 and 0.4 is quite small, especially for higher precision values, and thus we
choose an IoU threshold of 0.4.

Confidence threshold

[Schöller et al., 2019] uses a confidence threshold of 0.6. However, it is noteworthy that
their precision-recall curves resembles the shape of a 90 degrees angle meaning that the
high threshold sacrifices less recall than for the curves presented in this thesis. In order to
keep a high recall, the confidence threshold needs to be set lower in this case.

For the given IoU threshold it can be seen from figure 8.4 and 8.3 that we can go up to a
recall of at least 0.4 without significant loss of precision. This corresponds to a confidence
of 0.3 for EfficientDet-D0 and approximately 0.21 for YOLOv3. Based on these values,
tuning is performed through manual inspection of the image inference results. Some ob-
servations will be presented in the following.

With a higher threshold of 0.3 we miss moving boats at large distances for both models.
Reducing the threshold to 0.2 does not seem to result in significantly more false detections
while detecting the moving boats at a greater distance. If the confidence threshold is further
reduced to 0.1 we can observe more false positives which can be seen from figure 8.5a,
comparing the same image with a threshold of 0.1 and 0.2, respectively.

(a) Confidence threshold of 0.1 (b) Confidence threshold of 0.2

Figure 8.5: EfficientDet-D0: Flip + scale. Inference on the same image with different confidence
thresholds.

The first observation to note from this figure is the ”random” prediction covering parts of
the water that appear in the lower right corner of figure 8.5a with a confidence score of
0.12 and not present when the confidence threshold is increased to 0.2. It is present in the
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given frame and not the former or proceeding frames. Such jumpy predictions can easily
be handled by track initialization or management. However, if there are too many such
false positives in a neighboring area, they might result in false tracks.

The second noteworthy observation is the double detections of the moving boat in the right
center in figure 8.5a, where a detection with confidence 0.16 is highly overlapping with
the detection visible in figure 8.5b with a confidence of 1. By increasing the threshold
we see that only one detection of this boat is present. However, this can also be handled
by modifying the non-max suppression of the output predictions so that if the IoU of two
predictions is too large, only the one with the highest confidence is kept. A similar double
detection is made for the sailboat in the left side of the image, but with a much lower IoU.
For such cases, it is preferable to increase the confidence threshold.

The last false positive prediction to note is present in the lower center of the image for
both images. A part of the autonomous vessel present in all images from this camera is
predicted to be a boat with a high confidence of 0.45. However, as this region of the image
is equal in all frames, false predictions in these areas can easily be suppressed by ignoring
predictions from the pre-defined area.

Similar observations are present in several frames for both EfficientDet-D0 and YOLOv3
when setting the confidence threshold to 0.1. When increasing the threshold to 0.2, many
are removed, especially the double detections and jumpy predictions. In conclusion, a
confidence threshold of 0.2 is chosen for further evaluation in this thesis. For comparison
reason, the same confidence threshold is chosen for both models.

The final chosen evaluation parameters are summarized in table 8.5

Parameter Value
IoU 0.4

Confidence threshold 0.2

Table 8.5: Choice of evaluation parameters

8.3.2 Video results

Videos showing the inference of the trained networks using the confidence threshold from
table 8.5 can be found on

[https://drive.google.com/file/d/1dhRbIbwMPdq5G4-w aVc42n130
PHnzxp/view?usp=sharing] for EfficientDet-D0 and

[https://drive.google.com/file/d/1zj5GoqHDMj2KvSCpOiRihpuOp
RKIGPnO/view?usp=sharing] for YOLOv3.1

1These links will be maintained in three months from submission of this thesis. If the reader is interested in
the videos after this and the links don’t work, feel free to contact the author by e-mail.
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In addition to the videos, randomly chosen images comparing ground truth, EfficientDet-
D0 and YOLOv3 are shown in figure 8.6, 8.7 and 8.8. These are meant as a supplement to
the videos, which are recommended to watch as the text in the images is quite small.

Figure 8.6: Example images from frame 20: Ground truth to the left, EfficientDet-D0 in the middle
and YOLOv3 to the right. For ground truth pink is ”sailboat” and blue is ”motorboat”.

Figure 8.7: Example images from frame 111: Ground truth to the left, EfficientDet-D0 in the
middle and YOLOv3 to the right. For ground truth pink is ”sailboat” and blue is ”motorboat”.

Figure 8.8: Example images from frame 253: Ground truth to the left, EfficientDet-D0 in the
middle and YOLOv3 to the right. For ground truth pink is ”sailboat” and blue is ”motorboat”.

In general, the videos and images show that both models are able to detect boats in IR-
images. The overall results seems promising in spite of some false predictions and misde-
tections. We can observe that both models struggle with the moving boats at large distances
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i.e. small pixel areas. In addition, the difficult docked sailboats and motorboats at the right
side of the images are often misdetected. These are all marked as difficult and it was thus
expected that the models would perform worse for these objects.

The videos show that YOLOv3 is better at large distances for the moving targets, while
figure 8.7 and 8.8 show that at close ranges, the confidence score is higher for the moving
boats when using EfficientDet-D0 than for YOLOv3.

8.3.3 Detection of moving boats

From the videos it seems that many misdetections are related to difficult small docked
boats on the right side of the images, thus it is interesting to analyze the detection perfor-
mance on the targets of interest, i.e. the two moving boats. As these are the only boats that
are annotated with the combination of the label ”motorboat” and difficult ”0” in the test
set, they can easily be extracted for evaluation.

Another interesting analysis we can perform on the moving boats is the correlation be-
tween detection performance and pixel area, which corresponds to the distance between
the camera and the target. Since the moving targets are moving towards and away from
the camera, the pixel area will increase and decrease correspondingly for the given targets.
The combination of pixel area and whether the moving boat is detected or not is shown
in figure 8.9 for EfficientDet-D0 and 8.10 for YOLOv3. The blue graph is the pixel area
vs. time, while the orange scattering points are showing whether the moving boats are
detected (”yes”) or not (”no”) and when neither boat is present (”gone”) at each time step
in the test video. The boats are detected when a prediction is made with an IoU with the
ground truth and a confidence score above the chosen thresholds.

For both models, we can observe that when the pixel area is large enough, i.e. the boats are
close enough to the camera, the detection probability is 100%, which is very good. In the
transition when the boats leave or enter the frame both models have some misdetections.
This is not surprising as when the boats are truncated along the edges of the frame, their
features can be difficult to recognize. As milliAmpere will be equipped with several IR-
cameras with different while somewhat overlapping fields of view, the targets may be
detected in images from neighbouring cameras in the transition region.

Some small differences for the two models are present. For EfficientDet-D0, the moving
boat that enters the frame is detected in the majority of the frames up to approximately 50
s, while this is limited to approximately 40 s for YOLOv3. However, for both models some
misdetections are present in some frames up to these points in time. It is assumed that the
tracking algorithm can handle a few jumpy misdetections before loosing the track. Still,
this might cause loss of the track for instance given the density of misdetections around 40
s for YOLOv3. This should be tested in analysis of the tracking performance.

On the other side, YOLOv3 performs slightly better for very small pixel areas and large
distances in the end of the video. Note the upper right corner of figure 8.10 showing several
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Figure 8.9: Pixel area and detection of moving targets vs. time for EfficientDet-D0.

0 10 20 30 40 50 60 70

Time [s]

0

2000

4000

6000

8000

10000

12000

P
ix

e
l 
a

re
a

Gone

No

Yes

D
e

te
c
te

d

Moving boats. YOLOv3: Flip + scale + mosaic.

Figure 8.10: Pixel area and detection of moving targets vs. time for YOLOv3.

detections with very small pixel sizes. However, these are not consecutive and surrounded
by many misdetections and may therefore not result in proper tracks.

The detection performance on the moving targets is very promising for the application
of tracking alone or combined with other sensors. Including fusion of other sensor data
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might extend the pixel area threshold limit for detection and help the tracker to deal with
the jumpy misdetections.

8.4 Detailed classes

The following analysis examines the classification performance of the two best mod-
els with data augmentation from section 8.3 in order to distinguishing ”sailboat” from
”motorboat”. The same confidence and IoU thresholds as in table 8.5 are used. The
results from inference of the test video are shown for EfficientDet-D0 in: [https:
//drive.google.com/file/d/1opcpqPj83nyuRIskFj zPBfu1SEYV3
WR/view?usp=sharing]

and for YOLOv3: [https://drive.google.com/file/d/18TN2TREzoAKv8
xqR29jBHc9MFteFRr5L/view?usp=sharing]

One example image frame comparing ground truth, EfficientDet-D0 and YOLOv3 is shown
in figure 8.11.

Figure 8.11: Example images for detailed classes from frame 598: Ground truth to the left,
EfficientDet-D0 in the middle and YOLOv3 to the right. For ground truth pink is ”sailboat” and

blue is ”motorboat”.

The first observation from the videos and images is that the general detection performance
seems slightly worse than when training with only the one class ”boat”. Note for instance
that we have more false positives predicting buildings as boats. This can be seen in figure
8.11 where the building to the right in the images is predicted as sailboat for both models.
False predictions of buildings has been a problem for previous work within the domain
[Kamsvåg, 2018][Grini, 2019]. When using only one ”boat” class almost no building
were predicted to be boats. This change is strange behaviour as we train on the same
data. One suggestion for why it happens is that when using two classes fewer training
examples per class are available which may lead to the detectors not being able to learn
and generalize features properly. For further investigation of this, it is recommended to
include more training data.
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In order to evaluate the networks ability to correctly predict the label can be examined
through plotting of a confusion matrix. A confusion matrix shows a comparison between
the ground truth classes in the images, and the predicted classes from our models.

The confusion matrix for EfficientDet-D0 is shown in figure 8.12 and for YOLOv3 in
figure 8.13.

Figure 8.12: Confusion matrix for EfficientDet-D0.

The x-axis represent the true classes which are the ground truth labels for the bound-
ing boxes for ”sailboat” and ”motorboat”, and a background class for evaluation of false
positives. The y-axis shows the predicted classes which are the predicted labels for the
bounding box outputs from the models. When we predict a ”sailboat” or ”motorboat” and
the truth is background as in the rightmost column we have false positives. We have false
negatives or misdetections when we predict background and the truth is either ”sailboat”
or ”motorboat” as in the lowest row. In this case of object detection when using bound-
ing boxes, it does not make sense to talk about true negatives, so the lower right box is
empty. The remaining boxes represent true positives that are either correctly classified
when predicted and true labels match, or misclassified.

From the confusion matrices we observe that we have some misclassifications for both
models. EfficientDet-D0 more often misclassify ground truth ”sailboats” as ”motorboats”
compared to YOLOv3, while the latter more often predict ”sailboat” when ”motorboat” is
ground truth. Both models generally struggle to predict motorboats and performs much
better at classifying sailboats.

68



8.5 Discussion of the evaluation metrics

Figure 8.13: Confusion matrix for YOLOv3.

In the videos we see that the moving motorboats almost always are classified as ”motor-
boat” and the large sailboats to the left of the images are very often classified as ”sailboat”
and the masts are included in the predicted bounding boxes. Thus, the low numbers in
the confusion matrices might be a result of poor performance on the difficult targets to the
right in the image. Note that when the moving targets passes a sailboat the motorboats are
sometimes classified as ”sailboats” meaning that masts seem to be a learned and important
feature for classifying sailboats.

As a conclusion we see potential for classification in terms of separating ”motorboats”
from ”sailboats”, but we probably need more training data in order to improve perfor-
mance.

8.5 Discussion of the evaluation metrics

Finally, it should be noted that in order to count a prediction as a true positive, the IoU
threshold is used, although the adequacy of a prediction depends mostly on the lower edge
of the predicted bounding box. When the IR-detections are used for tracking, we need to
find the distance to the target and the bearing angle. The distance from the camera to the
target can be found using georeferencing in the maritime domain, where we can apply a
method presented in [Helgesen et al., 2020] using the lower bound of the target and camera

69



Chapter 8. Experimental results

properties and calibration. An accurate georeferencing estimation of position requires very
high precision for the object pixel coordinates because of the sensor resolution [Helgesen
et al., 2020]. In addition, for the bearing angle, the side edges of the bounding boxes
should be accurate.

However, IoU is not directly presenting these edges accurately. For instance, some detec-
tions of sailboats only include the hull and not the mast. This can give a very accurately
positional estimate although the IoU is low. Still, for classification, the mast seems to be an
important feature for sailboats and can thus be essential to detect as a part of the bounding
box.

[Prasad et al., 2020] highlight some problems using the general AP and AR metrics in
the maritime domain and suggest a new metric called bottom edge proximity for a better
performance evaluation. This metric addresses the previous discussion and focus on the
accuracy of the lower edge of the bounding boxes.

8.6 Discussion of the datasets

As previously discussed, there are images that resemble in the validation set and training
set, which can result in problems of avoiding overfitting. The test set used in this thesis
is a video, motivated by independence from the training and validation data. In addition,
another advantage of using this test set is that the video is a realistic application of the
IR detector, providing useful information regarding detection of moving targets and the
relation between pixel area (and target distance) and detection performance given the same
target.

On the other hand, a disadvantage of using a video combined with metrics such as precision-
recall, AP andAR is that the images are correlated across frames. This means that we test
on a smaller variety of targets than when using independent images in different contexts.
The background is also similar across the images. Thus, before the detector is applied
for collision avoidance, it is recommended to test the performance on a greater variety of
targets and with different backgrounds.
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Chapter 9
Conclusion

This thesis has compared the neural network models EfficientDet-D0 and YOLOv3 on
maritime LWIR images from a dataset partly collected by the author for this project. As a
conclusion, we will aim to answer the questions from the introduction in section 1.2.

Compared to using COCO pre-trained weights, training the networks on LWIR images
significantly improves the performance. This shows that the collected dataset has potential
for future usage.

It is difficult to conclude which model is better because their performances are very sim-
ilar. We observe from the inferred videos that both models perform well on close and
large targets. When the pixel area is larger than approximately 1800, both models detect
the moving target in 100% of the cases. For very small pixel area targets YOLOv3 seems
slightly more promising. The superior performance might be because the data augmenta-
tion technique mosaic is used during training for YOLOv3 and not for EfficientDet-D0.
We note that the COCO AP is only slightly better than for YOLOv3 in table 5.1 and
we conclude that hyperparameters without complete tuning and augmentation differences
counterbalance the improvement. As EfficientDet-D0 is 1.34 times faster than YOLOv3,
one might test with a larger scaled model, for instance EfficientDet-D1 or D2, that can
highlight the performance difference better for similar inference times. Larger models are
expected to perform better on smaller targets.

Geometrical data augmentation techniques including flip, scale, rotate and mosaic have
been tested in this thesis, where rotation degraded the results, while the other techniques
improved the performance on the validation and test set alone or combined. Mosaic was
only tested for YOLOv3 and showed very promising results and is thus recommended for
future work.
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Classification of types of boats, in terms of differentiating between motorboats and sail-
boats, is shown to work to some degree, especially on large and close targets. The models
struggle more when motorboats and sailboats passes one another and at large distances. It
is thus concluded that more training data is needed in order to improve the classification
results.

Furthermore, excluding the sky from the ROI of the LWIR camera and increasing DDE
has shown to significantly improve the contrast of the images.

9.1 Future work

Some suggestions for future work are:

• Collection of more data for testing and training. It is preferable to include more
classes such as kayaks, and collect data under different weather and lighting condi-
tions. Included in this point is the need for an independent validation set.

• Further tuning of hyperparameters should be performed, including hyperparameter
optimization. One suggestions is to look into calculation of aspect ratios using k-
means clustering.

• As data augmentation have shown to improve the current results, researching and
testing even more augmentation methods, not only geometrical ones but also color
transformations and GANs, is recommended. Other suggestions from the literature
are CutMix and grid mask. Mosaic is recommended to include for EfficientDet if
one wish to continue with this model.

• Depending on the final hardware, using larger models such as EfficientDet-D1 or D2
could be tested as this is expected to improve performance, especially for smaller
targets.

• Sensor fusion for multitarget tracking.

Although several areas of improvement are identified, the detector has a high detection
probability on large pixel area targets and can thus be tested with sensor fusion for multi-
target tracking with the current results.
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