
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aslak H
ollund and August Sollesnes Solvang

Aslak Hollund and August Sollesnes Solvang

Engineering Generalizable Features
for Cognitive Performance from Eye-
Tracking Data Through Machine
Learning

Master’s thesis in Informatics
Supervisor: Michail Giannakos
Co-supervisor: Kshitij Sharma

June 2021

M
as

te
r’s

 th
es

is

Aslak Hollund and August Sollesnes Solvang

Engineering Generalizable Features for
Cognitive Performance from Eye-
Tracking Data Through Machine
Learning

Master’s thesis in Informatics
Supervisor: Michail Giannakos
Co-supervisor: Kshitij Sharma
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

iii

Abstract
Modern eye-tracking technology allows for the non-invasive evaluation of cognitive

performance. Many systems for detecting cognition use features tailor-made to the

given context and have limited use in other settings. There have been efforts to

create generalized features from other data sources, but previous work has not ad‐

dressed this for gaze data. In this study, we engineer a multitude of features and

evaluate their generalizability across contexts. We utilize three datasets from dif‐

ferent contexts and a machine learning platform to perform generalizability experi‐

ments. Our work presents several generalizable features and a novel architecture

that can aid in engineering more such features from gaze data and other domains.

iv

Oppsummering
Moderne blikksporingsteknologi gjør det mulig med mindre sjenerende måling av

kognitive ytelse. Kognisjonsevalueringssystemer bruker i dag skreddersydde egen‐

skaper (features) til den gitte konteksten og har begrenset brukbarhet i andre

sammenhenger. Tidligere har det vært forsøkt å lage generaliserbare egenskaper

fra andre datakilder, men dette er ikke gjort for blikkdata. I dette studiet utvikler

vi flere forskjellige egenskaper og evaluerer generaliserbarheten deres på tvers av

kontekster. Vi utnytter tre datasett fra forskjellige kontekster og en maskin‐

læringsplattform for å utføre generaliserbarhetseksperimenter. Vårt arbeid presen‐

terer flere generaliserbare egenskaper og en arkitektur som kan bistå i utviklingen

av flere slike egenskaper fra blikkdata og andre datakilder.

v

Acknowledgment
We extend our deepest gratitude to our advisors Kshitij Sharma and Michalis Gi‐

annakos. Their assistance has been thought-provoking, engaging, and critical to

our success. Further, we would like to thank Jennifer Olsen for providing the Frac‐

tions dataset. Pål and Johannes have made life in the office a true joy. Lastly, we

would like to thank our families and Madeleine Loraas for their support and

proofreading.

vi

p. 3

p. 1

p. 1

p. 3

p. 4

p. 5

p. 7

p. 7

p. 8

p. 10

p. 13

p. 14

p. 19

p. 21

p. 22

p. 24

p. 37

p. 42

p. 44

p. 47

p. 47

p. 49

p. 54

p. 57

p. 59

Table of Contents
Abstract

1. Introduction

1.1. Motivation

1.2. Research Questions

1.3. Terminology

1.4. Outline

2. Related Work

2.1. Eye-Tracking and Cognitive Performance

2.2. Generalizability

2.3. Platform

3. Research Design

3.1. Datasets

3.2. Contexts

4. Implementation

4.1. Preprocessing

4.2. Feature Extraction

4.3. Pipelines

4.4. Evaluation

4.5. Reproducibility

5. Results

5.1. Baselines

5.2. Out-of-Sample Testing

5.3. Generalizability

5.4. Context-Sensitivity

6. Discussion

vii

p. 59

p. 59

p. 60

p. 60

p. 61

p. 64

p. 65

p. 69

p. 71

p. 79

p. 79

p. 79

p. 80

6.1. Findings

6.2. Filtering on the Baseline

6.3. 2-to-1 versus 1-to-1

6.4. Generalizability of our Datasets

6.5. Generalizable Features

6.6. Context-Specific Features

6.7. Limitations and Further Work

7. Conclusion and Contributions

8. Bibliography

Appendix A: Appendix

A.1. Code

A.2. Density Plots

A.3. All Pipelines

1

1. Introduction

1.1. Motivation

Modern user-adaptive systems rely on understanding the current cognitive capa‐

bilities of users [1, 2, 3]. However, many such systems rely primarily on tailor-

made solutions to detect such capabilities [4, 5, 6]. By moving towards generaliz‐

able solutions for detecting cognitive performance, we can decrease our reliance on

the time-consuming development of such detection systems.

Cognition describes the different workings of our mental capacities. Weintraub et

al. [7] identified executive function, episodic memory, language, processing speed,

working memory as the most critical cognition subdomains for health, success in

school and work, and independence in daily functioning. The National Institutes

of Health (NIH) Toolbox Cognition Batteries is a well-established set of tests of

cognition [7]. While the tests in the NIH Toolbox are thorough and well tested,

they are also quite involved and time-consuming. As such, an alternative to the

Toolbox is needed for the evaluation of cognitive performance. Cognitive workload,

measured and assessed using eye-tracking technology, could serve as an alternative

[8, 9].

Cognitive workload describes the level of mental resources that one person re‐

quires to perform a task and naturally falls within the purview of cognitive perfor‐

mance. Cognitive load theory, first proposed by John Sweller, establishes the three

domains of cognitive load as intrinsic, extraneous, and germane. Intrinsic is con‐

cerned with the complexities in the information being learned. Extraneous cogni‐

tive load is the load that stems from the presentation of the instructional material.

Lastly, germane cognitive load is concerned with the learner’s personal characteris‐

tics and the amount of attention that is being applied when learning [10, 11, 12].

Cognitive workload has also been shown to influence one’s eye movements [9, 13,

14].

2

Our project will include data gathered from studies handling many different cogni‐

tive tasks. We will argue that each task has some measure, such as a score, that

correlates to the cognitive performance for that task.

1.1.1. Eye-Tracking

Eye-tracking is the process of tracking and recording the position of a subject’s

gaze while interacting with digital devices. The gaze point for each of the eyes of a

subject is recorded over time. Eye-tracking can be used as input control for inter‐

acting with systems [15], or to record user behavior when interacting with digital

and physical systems [16, 17]. As the equipment involved has become cheaper and

eye-tracking with web cameras has improved [18], eye-tracking has emerged as a

promising non-invasive way to evaluate many facets of interactions with digital

systems. These include collaborative work in MOOC learners [19], collaboration

when interacting with Intelligent Tutoring Systems [20, 21], and detecting task-

demand [9, 14].

1.1.2. Generalizability

Universality and generalism of research are important concepts, and their role in

information systems research is an ongoing debate [22, 23]. Davison et al. point

out that one must be explicitly aware of the context of one’s research and avoid

unjustified generalization [22]. Cheng et al. agree that a close look at the context

of a study is critical. However, they underline that generalizability is the ultimate

goal of research, and well-reasoned generalizability should be pursued [23]. Our

work is acutely aware of the context of each of the datasets we use, and we will

aim to engineer features that are generalizable to other contexts. We will evaluate

the degree of generalizability of our experiments through analysis.

While generalizability is a goal of machine learning research, there is little focus

on feature generalizability in the literature. By feature generalizability, we mean

the extent to which extracted features can predict the same variable, in our case

cognitive performance, in different contexts. Inspired by the methods of Sharma et

3

al. [24], we aim to engineer features that exhibit feature generalizability. The use‐

fulness of understanding the rationale behind features and how they might differ

when predicting the same classification target on different types of data has been

studied by Rogers et al. in the context of text mining [25]. Feature generalizability

has also been considered a central goal in feature selection within music informa‐

tion retrieval [26]. It has also been shown to be important in predicting students'

affect during learning [27].

Sharma et al. engineered generalizable features from physiological data and facial

expressions. They present the results from four independent studies and perform

cross-training and testing with combinations of these datasets to explore the gen‐

eralizability of their features across contexts. To evaluate the generalizability of

their experiments, they proposed a "feature generalizability index" metric [24].

1.2. Research Questions

We will follow the methodology of Sharma et al. to develop generalizable features

from gaze data [24]. In the process, we will also develop and present a machine

learning platform to effectively run experiments to investigate generalizability and

produce features from gaze data.

Our research questions are as follows:

RQ 1 What are the most generalizable features for predicting cognitive per‐

formance using gaze data?

RQ 2 What are the most context-specific features for predicting cognitive

performance using gaze data?

When finding the most generalizable features, we will necessarily discover features

that exhibit a high degree of context-specificity.

The thesis will tackle the research questions through the following research

objectives:

4

RO 1 Design and develop a platform that allows for generalizability

experiments.

RO 2 Collect a wide range of eye-tracking datasets from cognitive tasks in

different contexts.

RO 3 Perform experiments on the developed platform and the selected

datasets to evaluate the generalizability and context-specificity of a range of

features.

RO 4 Create a library of generalizable and context-sensitive gaze features

that account for users’ cognitive performance.

1.3. Terminology

In this section, we will introduce the reader to a few key terms from the eye-track‐

ing field.

The term fixation refers to when the eye holds steady on an object or a position.

Fixations usually reflect attention to a stimulus [9]. When discussing fixations, we

will often refer to the fixation duration, which is the amount between the start

of the fixation and the end of the fixation.

Saccades are small rapid eye movements that occur between two fixations. Cogni‐

tive information is not processed during saccadic eye movements. However, studies

have shown that they still can provide information about viewing behavior and in‐

dicate changes in cognition [9, 28]. We will primarily refer to the measures sac‐

cade duration and saccade length. Saccade length is the euclidean distance be‐

tween the two fixations. Saccade duration is the time that the eye movements

take, the time between the two fixations.

Pupillary changes are changes in pupil size. We will most commonly refer to pupil

diameter, which is the size in pixels or millimeters that the pupil has at a point

5

in time. Changes to the pupil diameter can serve as a reliable proxy of mental ef‐

fort [9].

1.4. Outline

Section 1: Introduction

Our introduction introduces the motivation for the work, our research questions,

some key terminology, and this outline.

Section 2: Related Work

The related work chapter situates our work in relation to the established literature

and provides the theoretical background that outlines our assumptions.

Section 3: Research Design

This chapter outlines how we approach engineering generalizable features from

gaze data and presents the datasets used in our experiments.

Section 4: Implementation

Our chapter on implementation presents the requirements for our platform, de‐

scribes the architecture we propose to meet these requirements, and presents de‐

tails on how we implement that architecture, including how and which features we

engineer and how we evaluate our pipelines.

Section 5: Results

This chapter presents the evaluations of our pipelines and provides assistance in

interpreting the presented materials.

6

Section 6: Discussion

The discussion delves further into the results, presents our interpretations of the

patterns displayed by the results, and discusses the results in relation to the litera‐

ture. The chapter also discusses the limitations of our work and suggests further

work.

Section 7: Conclusion

At last, the conclusion presents a summary of the work and the contributions of

the work.

7

2. Related Work

2.1. Eye-Tracking and Cognitive Performance

Gaze data from a human can be associated with cognition [29]. Multiple studies

have been conducted to find relationships between eye-tracking and cognitive per‐

formance. Literature concerning gaze data and cognitive load is highly relevant for

our work, as cognitive load can be a proxy between a task and a subject’s perfor‐

mance [8]. Zhang et al. [30] classified a driver’s cognitive load in two classes, using

the direction of the subject’s gaze and the mean and standard deviation of change

in pupil dilation. They achieved significant results using a decision tree classifier.

Haapalainen et al. [8] used multiple physiological sensors and combinations of

their signals to determine the usefulness of these signals in assessing cognitive

load. Their results show that pupillometry was one of the least valuable features

for their problem. Steichen et al. [31] investigated how to infer cognitive abilities

from gaze data and showed that aggregated features from gaze data could predict

a subject’s perceptual speed and visual working memory reliably. Contrary to

Haapalainen et al. [8], Toker et al. [32] show that pupil dilation has a significant

effect on predictions of confusion and skill acquisition when included in the feature

set proposed by Steichen et al. [31]. Chen and Epps [33] performed binary classifi‐

cation on cognitive load using a Gaussian mixture model with pupil dilation and

blink frequency. Their work showed promising results for the automatic prediction

of cognitive load with gaze data.

There are also novel features engineered from gaze data. Duchowski et al. [14] en‐

gineered a measure of the frequency of pupil diameter oscillation which captures

an indicator of cognitive load, called Index of Pupillary activity (IPA). IPA was

proposed as an alternative to the existing Index of Cognitive Activity (ICA) since

ICA is not available to the public. Later they proposed an improvement to IPA

called The Low High Index of Pupillary Activity (LHIPA) [13], which can discrim‐

inate cognitive load in several experiments where IPA fails to do so. Sharma et al.

8

[34] used heatmaps generated from the fixtures of subjects to predict students'

performance. Features from the heatmaps were extracted with a pre-trained VG‐

G19 model. They showed that they could predict cognitive performance with an

error rate of less than 5%.

While research on gaze data has achieved promising results predicting cognitive

workload and performance, no work has addressed inferring cognitive performance

between contexts from gaze data.

2.2. Generalizability

While universalism and context-sensitivity in information systems research remain

essential research topics, [22, 23] generalizability continues to be a chief concern in

machine learning research. It is named as one of the primary goals in a slew of

fields ranging from healthcare analytics [35, 36], business research [37], finance [38]

to psychiatry [39]

Turney has worked to provide a formal definition of context-sensitive features

within concept learning [40, 41, 42]. His work is strengthened by John et al. [43]

and others. While our view of context is tangential to his, the definition of con‐

text-sensitive features as features only relevant given a set context is still applica‐

ble to our work. We look to engineer generalizable features that provide predictive

power from data gathered in a context different from the feature’s origin.

Bouchard et al. work with technologies for ambient intelligence to increase the au‐

tonomy of the elderly through enhanced tracking to assist medical personnel.

Their work with Bluetooth beacons revealed a feature based on the received signal

strength indication timeseries that generalize between contexts made up of differ‐

ent hardware, different hardware configurations, and different floor plans [44].

Ferentzi et al. investigated whether information gained from a single interoceptive

modality (mode of understanding one’s own body) can be generalized to other

modalities. [45] They investigated a group of students' ability to count their heart‐

beats, sense their gastric fullness, sense bitterness, pain threshold, proprioceptive

9

sensitivity (ability to position their limbs), and sense of balance. They argue that

their findings strongly support that interoceptive accuracy assessed with a single

modality cannot be generalized to other modalities.

Feature generalizability has seen some popularity in Brain-Computer Interfaces

(BCI) research. Kim et al. demonstrate generalizable features generated using a

simple deep neural network that decodes learning strategies from electroen‐

cephalography (EEG) signals gathered when subjects execute a learning strategy

task [46]. Nurse et al. also showed an approach including a high-dimension neural

network used to do real-time EEG classification for use in BCI. In this approach, a

neural network acted as both feature extractor and classifier, and the technique

was shown to generalize [47].

Kidzinski et al. discuss how the bias-variance trade-off is a central concern when

studying generalizability in the context of Massive Open Online Courses (MOOCs)

[48]. The bias-variance trade-off refers to the fact that one cannot achieve both

zero variance and zero bias in practice. A model with a significant bias captures

the general trend of the data but does not fit the sample data points closely. On

the other hand, variance is how similarly the model captures the testing dataset

compared to the training dataset. Kidzinski et al. argue that much of the research

on MOOCs focuses on the specific course being studied and, as such, models do

not generalize to other courses. Their view is that the bias-variance trade-off is

central when assessing the generalizability of MOOC models [48].

Recently feature generalizability has also been shown to have relevance when pre‐

dicting driver’s intentions at intersections in an automotive context [49], when us‐

ing ML for personality assessment [50], in speech enhancement systems [51], in

face-based mind wandering detection [52], and in music information retrieval [26].

10

2.3. Platform

Machine learning platforms and pipelines are essential in many research projects.

In bioinformatics, Guzzetta et al. present an L1L2 based machine learning pipeline

that is effective for fitting quantitative phenotypes from genome data [53]. Foun‐

tain-Jones et al. demonstrate how a flexible ensemble pipeline can predict

pathogen exposure in animal ecology. To demonstrate their pipeline, they model

pathogen exposure risk in two different viruses that infect African lions [54]. Sut‐

ton et al. have developed PhysOnline, a pipeline built on the Apache Spark plat‐

form. PhysOnline uses streaming physiological data and can be used for real-time

classification in the biomedical and health informatics field [55]. Shaikh et al. tack‐

le the complicated task of creating a machine learning pipeline that can ensure

fairness in decision-making. The system can understand policies written in natural

language and will assist users in ensuring that set fairness policies are followed

[56].

There has been some research that focuses on the pipelines themselves. Olson and

Moore present TPOT, a tree-based tool for optimizing pipelines, which has recent‐

ly shown much promise [57]. This system exists in the new and promising field of

AutoML, which seeks to automate the design of pipelines for machine learning, de‐

mocratizing machine learning further. Mohr et al. have contributed to predicting

pipeline runtimes to improve one of the significant limitations of current AutoMl

technology [58]. The systems we have available today take a considerable amount

of time to arrive at good pipeline designs if the case is even slightly complex. Ef‐

fectively predicting pipeline runtimes would enable us to significantly decrease the

cost of AutoML systems, as one could ignore pipelines that would not complete

within the systems timeout limits.

There have also been several attempts at creating more generally applicable plat‐

forms for machine learning. López García et al. presents the DEEP-Hybrid-Data‐

Cloud framework as "a distributed architecture to provide machine learning practi‐

tioners with a set of tools and cloud services to cover the whole machine learning

11

development cycle" [59]. The DEEP framework represents an important step in de‐

mocratizing machine learning and deep learning for all research areas. Ribeiro et

al. present an architecture to provide scalable machine learning capabilities as a

service, along with an open-source implementation [60]. Kraska et al. have devel‐

oped MLBase, which includes a simple declarative language for specifying machine

learning tasks to be used by both researchers and end-users [61]. The available re‐

sources for machine learning such as proposed architectures, open-source and com‐

mercial platforms and pipelines, tooling, and other supporting technologies have

increased significantly in the last couple of years. Machine learning tools to

process large-scale data for decision assistance, automation, and interactive data

analytics are growing and will continue to be essential for research and business

[62].

2.3.1. Reproducibility

The ability to reproduce a scientific work’s central finding, reproducibility, is key

to the scientific process, and as such, is essential in information systems research

[63, 64, 65, 66]. This challenge is both more complicated and more straightforward

in the age of digital. Analyses are made on larger, more complex datasets and

more complex digital tools supporting the analysis. While this added complexity

adds to the difficulty in adequately describing the process involved in reaching

conclusions, digital tools can also enable us to share the exact code that confirms

our results [63, 67]. There has been a growing push to include code with materials

published along with scientific findings [67, 68]. Ince et al. argue that even with

the complete source code, one is not guaranteed reproducibility. Local software

and hardware environments introduce noise that could impact results. They argue

for including descriptions of the environments in which the code was executed [67].

With the advent of containerization and commercial cloud platform, it is possible

to reach close to the same descriptive rigor of the hardware and software environ‐

ments as sharing code represents for the system [69, 70, 71].

13

3. Research Design
The study design, described below, is inspired by a previous study by Sharma et

al. conducted to engineer generalizable features to predict cognitive performance

from physiological responses (sensor data recorded from subjects' wrists) and fa‐

cial expressions [24]. We follow the methodological design proposed by Sharma et

al. [24] but focus on the user’s gaze and leverage datasets by other researchers.

We have selected three datasets used in published articles that all include gaze

data from subjects completing one or more cognitive tasks. The studies that pro‐

duced the datasets were distinct, and their differences allow us to argue that the

datasets have different contexts. With these datasets, we generate several different

pipelines consisting of different feature groups, different methods for reducing the

feature space, and different combinations of the datasets. These pipelines are then

evaluated using both out-of-sample testing to determine the predictive power

on unseen data and out-of-study testing to assess the generalizability of the

pipeline.

For each pipeline, we designate either one or two datasets as in-study and one

dataset as out-of-study. In the cases where two datasets are selected as in-study,

they are combined into one larger dataset. If we use only one dataset as in-study,

we do not include the third dataset in that pipeline.

We split the in-study dataset into three parts: training, validation, and testing

data by leave-one-participant-out. The training data is used to train the model;

the validation data is used to set weights for the classifiers in the voting ensemble,

and the testing data is used to evaluate the predictive power of each pipeline on

unseen data. The testing of the pipeline on unseen data from the same dataset(s)

is our out-of-sample testing.

Our next step is the out-of-study-testing. In this step, we use the model outputted

from a pipeline to make predictions on data gathered in separate contexts. This

14

allows us to analyze the generalizability of the pipeline.

3.1. Datasets

We have been working with three different datasets gathered and published by

other researchers. They are all gathered during cognitive tasks and, as such, are

suitable for investigating cognitive performance. The selected datasets differ in

context and what parts of the spectrum of cognitive processes they cover. We have

used the shorthand names EMIP, CSCW, and Fractions to refer to the datasets.

They are further described in the following section.

3.1.1. EMIP

The Eye-Movements In Programming (EMIP) dataset is a large eye-tracking

dataset collected as a community effort involving 11 research teams across four

continents. The goal was to provide a substantially large dataset open and free to

stimulate research relating to programming and eye-tracking [72]. EMIP is pub‐

lished under the CC 4.0 license [73] at http://emipws.org/emip_dataset/.

Participants

Each site recruited participants by opportunity sampling. Data from 216 partici‐

pants at differing levels of expertise is included in the dataset. There were 41 fe‐

male and 175 male participants; their mean age was 26.56, with a standard devia‐

tion of 9.28. The participants were primarily university students enrolled in com‐

puting courses but included academic and administrative staff and professional

programmers [72].

15

Tasks

The participants were recorded while performing two code comprehension tasks.

They filled out a questionnaire where they self-reported their level of programming

expertise from the options none, low, medium, and high, and recorded years of

programming experience. In addition, they answered several other questions that

make up the metadata that accompanies the eye-tracking data. The participants

also selected the language to be used in the task, from Java, Scala, or Python.

After the questionnaire, the eye-tracker was calibrated, and the code comprehen‐

sion task was started. The task consisted of reading two different pieces of code in

three languages, called Vehicle and Rectangle, each comprising 11 to 22 lines of

code. After reading and trying to understand a piece of code, the participants

would indicate that they were ready to proceed by pressing the spacebar. Next,

the system presented the participants with a multiple-choice question that evaluat‐

ed code comprehension. After completing the question for Vehicle, they were pre‐

sented with the code for Rectangle and, subsequently, its accompanying question.

The rectangle code consists of a class representing a rectangle, instantiated

through a constructor that accepts four coordinates. The class also has methods to

calculate width, height, and area. In the main function of the class, two rectangles

are instantiated, and their areas are printed. The code was based on a code com‐

prehension task developed by Hansen [74], and the EMIP researchers translated

code from Python to Scala and Java. The vehicle code is a class that represents a

vehicle with several variables and a function to accelerate the car. A constructor

takes a producer, a type, and a top speed. In the main function, a vehicle is creat‐

ed, and its speed is accelerated [72].

16

Technology and Experimental Setup

The recording was performed using a screen-mounted SMI RED25 mobile video-

based eye tracker. The tracker has a sample rate of 250 Hz with an accuracy of

less than 0.4◦ and a precision of approximately 0.03◦ of visual angle. Stimuli

were presented on a laptop computer screen with a resolution of 1920 x 1080 pix‐

els and were viewed without a headrest in a fashion that closely simulated a famil‐

iar programming environment. The data collection procedure was implemented in

the SMI Experimental Suite software. The laptop, eye-tracker, and software were

shipped between the locations to minimize differences in setup [72].

Description of the Data

Below is a list of the dataset’s contents provided by Bednarik et al. [72].

Contents of the dataset

rawdata: a folder with 216 TSV files containing raw eye movement data.

stimuli: screenshots of the experiment slides in JPG-format and CSV files

with AOI (area of interest) coordinates for the stimulus program

metadata: a CSV file with information with background information on the

participants, results from the questioner, and the order in which the stimulus

programs were shown.

date: TXT file specifying when the dataset was uploaded.

3.1.2. CSCW

The CSCW dataset was gathered during the Computer-Supported Cooperative

Work and Social Computing course at École Polytechnique fédérale de Lausanne.

The study intended to show the different gaze patterns across learners in Massive

Open Online Courses (MOOCS) and study the priming effect on learning [19].

The dataset was provided to us by our thesis advisor Kshitij Sharma.

17

Participants

The dataset contains gaze data from 98 students in the CSCW course at EPFL.

There were 49 participants in each of the two priming groups [19].

Tasks

The experiment centered around a collaborative task with a contextual primer.

Participants were presented with pre-tests, which also served as primers. They

were given either a schematic or a text-based primer. The textual primer had

questions described in text form, while the schematic primer had the same ques‐

tions but presented as a schema. Participants that received the textual primer

were called T, and participants that received the schematic primer were called S.

After the primer, participants watched a video from Khan Academy [75] on the

topic of "resting membrane potential." Arranged in 16 TT pairs, 16 SS pairs, and

17 ST pairs, each team collaborated to create a concept map using IHMC CMap

tools [76]. Lastly, the participants also completed a post-test [19].

Technology and Experimental Setup

Gaze data was recorded using SMI RED250 eye trackers [77]. The participants

were recorded while they watched the video and during the collaborative concept

mapping task. [19].

Description of the Data

The dataset contains two files with gaze data for each participant. One file de‐

scribes the video watching phase, and one part describes the concept mapping

phase. We will not be considering any links between the two and will treat them

as separate. While the concept mapping task was cooperative, all measurements

are individual. We will be working with the data on the individual level [19].

18

3.1.3. Fractions

The dataset that we refer to as Fractions was gathered by Olson et al. [21]. Frac‐

tions is an eye-tracking dataset from an experiment that investigated the differ‐

ences between individual and collaborative performance when working on concep‐

tually or procedurally oriented problems in an intelligent tutoring system (ITS)

designed to teach fractions. The dataset was provided to us by Jennifer K. Olsen,

through our thesis advisor Kshitij Sharma.

Participants

The study was conducted with 84 4th and 5th graders from two US elementary

schools in the same school district. The students left their regular instruction dur‐

ing the school day to participate in the study. Teachers from the student’s classes

paired the students based on their mathematical abilities and who would work

well together. Before participating in the experiment, the students worked with

the Fractions Tutor to acclimatize them to the software during two of their regular

classes. The pairs of students were randomly assigned to four groups completing

different tasks. They were: collaborative conceptual, collaborative procedural, indi‐

vidual conceptual, and individual procedural. Twice as many pairs were assigned

the collaborative tasks as the individual [21].

Tasks

Olsen et al. hypothesized that students working collaboratively would show learn‐

ing gains on both procedural and conceptual tasks and that of those working on

conceptual tasks, students working collaboratively would have more substantial

learning gains than those working individually. They also hypothesized that stu‐

dents working individually would have greater learning gains than those working

cooperatively for procedural tasks.

To investigate these hypotheses, the pairs of students worked with their assigned

tasks in an ITS. The tasks used different techniques to assist the students in learn‑

19

ing equivalent fractions. Participants also completed a pre-test on the morning of

the experiment and a post-test the next day [21].

Technology and Experimental Setup

Students participating in the study completed their tasks in an interactive tutor‐

ing system developed by the researchers. They communicated verbally through a

skype connection. No video signal was transmitted. Gaze data was recorded using

SMI RED250 eye trackers [21, 77].

Description of the Data

The data includes individual files with gaze data and a file describing all the pre-

and post-test results for each student. Our dataset consists of only the data used

by Sharma et al. [20]. This only includes the pairs that worked on the collabora‐

tive tasks, not the students who worked individually.

3.2. Contexts

Our work seeks to investigate generalizability between specific contexts; thus, we

must be aware of our contextual biases. We have selected datasets that we consid‐

er to cover a significant spectrum of cognitive processes.

EMIP is an individual task that is about reading and understanding programming

code. We hypothesize that the task in EMIP relies primarily on three of the cogni‐

tive subdomains deemed most critical by Weintraub et al. [7]. Reading and under‐

standing code is a trained skill reliant heavily on one’s understanding of language.

Understanding the entirety of a class requires keeping all functions of the class in

one’s working memory. The post-test is organized so that one needs to remember

these functions for a short time after reading the code. As with almost all cogni‐

tive tasks, attention is a critical part of performing well when reading and under‐

standing code.

20

CSCW is a task where participants collaborate in creating a concept map from a

video they have watched individually. Naturally, language will be an important

part of any collaborative work as one needs to express one’s understanding of the

content to one collaborator. Executive function, specifically planning, is essential

for creating concept maps. Concept maps include tying different pieces of informa‐

tion together in a complete whole. Before starting the concept map, they viewed a

video explaining the concept they were to map. In order to remember information

presented in the videos, the cognitive subdomain episodic memory is at work.

Again, attention is essential when viewing a video for learning and successful col‐

laboration with another party.

The Fractions dataset also stems from a collaborative task. Students work togeth‐

er to learn about equivalent fractions in an ITS. For the collaborative aspect, at‐

tention and language are again important.

All cognitive tasks likely include some aspect of all cognitive subdomains. What

we intend with this section is to illustrate how our three datasets cover tasks that

rely more heavily on five of the six cognitive subdomains presented by Weintraub

et al. [7] as most important. Of the six cognitive subdomains, our datasets do not

include tasks that rely heavily on processing speed. Processing speed is an impor‐

tant factor in good collaboration, but we did not consider this subdomain to be as

central in any of the tasks and thus will not claim to cover it with these datasets.

21

4. Implementation
Our goal is to create a platform on which we can perform our feature generaliz‐

ability experiments efficiently and consistently.

In order to achieve this goal, multiple components have to be present.

1. We need methods to standardize datasets so the units are the same and the

data is in the same form.

2. We need to clean the data to achieve high data quality, which can produce

good features.

3. We need a platform that can generate computationally expensive features for

multiple large datasets.

4. We need a platform that can run multiple concurrent pipelines for combina‐

tions of datasets, features, and methods for dimensionality reduction.

5. We need an evaluation step that collects the results from all the pipelines

and can prove pipelines generalizable.

6. We need reproducibility.

Figure 1 shows the outlines of the architecture we propose. The first step is data

preprocessing, explained in Section 4.1. Preprocessed data is then fed to the fea‐

ture extraction step explained in Section 4.2. Then we organize 216 separate pipe‐

lines that consist of unique combinations of datasets, feature groups, and methods

for reducing the feature space explained in Section 4.3. All pipelines use the same

ensemble classifier. Results are then evaluated in the evaluation step (see Section

4.4) and logged (see Section 4.5).

22

Figure 1. Diagram of our architecture.

4.1. Preprocessing

This subsection explains how we achieved goals 1 & 2 of creating a platform for

generating generalizable features.

We need methods to standardize datasets so the units are the same

and the data is in the same form.

We need to clean the data to achieve high data quality, which can pro‐

duce good features.

4.1.1. Standardization of Datasets

We use three datasets from different experiments with different contexts. Each

dataset has its own set of column names, and they also use different units. Some

of the datasets measure time in milliseconds, while others measure it in microsec‐

onds. In standardizing the dataset, we converted all differing units and renamed

columns representing the same values so that all datasets are consistent. Some

subjects were missing labels; this was solved by removing the subject from the

dataset.

23

For the EMIP dataset, we were provided with the raw data without fixations cal‐

culated. In order to use this dataset, we calculated fixations ourselves with the li‐

brary PyGaze Analyzer [78]. The algorithm used is a dispersion-based algorithm

that requires us to set the maximum distance and minimum duration for a fixa‐

tion. We set the minimum duration by finding the minimum duration of fixations

from our two other datasets. Pieter Blignaut [79] suggests that the maximum dis‐

tance of a fixation when using a dispersion algorithm for finding fixations should

be 1º of the foveal angle. The distance between the subject and the stimulus was

700 mm for EMIP; thus, 1º of the foveal angle works out to about 45 pixels. We

only used fixations where the subject was reading code and disregarded data gath‐

ered during setup and calibration.

4.1.2. Normalization and Outlier Removal

As our subjects come from multiple contexts, the need for normalization and out‐

lier removal is extra apparent. It is essential to normalize pupil diameter. Pupil di‐

ameter can be affected by several factors, such as lighting conditions and how well-

rested the subject is [80]. We chose to min-max normalize the pupil diameter in

the range of 0 to 1 per subject. To mitigate some contextual biases, we use a

rolling mean with a window size of 100 samples to smooth the timeseries.

Our time recordings are made at the start point of each fixation. This can be

problematic, as there are situations where more time passes between fixations than

would be reasonable for regular saccades. This might be due to blinking, the sub‐

ject looking outside the range of the eye-tracker, or technical malfunction. To miti‐

gate this, we remove the outliers by setting a threshold of 1000 ms for saccade du‐

ration. All gaps in time over 1000ms were reduced to 1000ms.

24

4.2. Feature Extraction

This subsection explains how we achieved goal 3.

We need a platform that can generate computationally expensive fea‐

tures for multiple large datasets.

We will present the flow of the feature extraction process and discuss the specific

features we extract. The features are organized into three sections:

Timeseries Features

Gaze Characteristics

Heatmap features

4.2.1. Flow

The flow of the feature extraction job is as follows:

1. Download the datasets from google cloud storage.

2. Standardize and normalize data.

3. Generate aggregated attributes, such as saccade duration and

saccade_length.

4. Smooth the signal with rolling mean.

5. Generate features.

6. Upload features to google cloud storage.

25

4.2.2. Timeseries Features

After preprocessing, our dataset includes several different eye-tracking variables.

The variables we use are pupil diameter, fixation duration, saccade duration, and

saccade length. We interpret these signals with different timeseries modeling tech‐

niques, which are elaborated upon in this section.

From each of these signals, we calculate five features.

Power Spectral Histogram.

ARMA.

GARCH.

Hidden Markov Models.

LHIPA.

Power Spectral Histogram

The power spectrum decomposes the timeseries into the frequencies in the signal

and the amplitude of each frequency. Once computed, they can be represented as

a histogram called the power spectral histogram. We computed the centroid, vari‐

ance, skew, and kurtosis of the power spectral histogram.

The power spectral histogram describes the repetition of patterns in the data. We

hypothesize that similar pattern repetitions will be present in subjects that display

a high cognitive performance across contexts.

26

Autoregressive Moving Average model (ARMA)

We know that a cognitive process takes place over a span of time, and our gaze

data is organized as a timeseries. If our goal is to model cognitive workload, we

need to capture the temporal aspects of cognition. ARMA combines an auto-re‐

gressive part and a moving average part to model movements in a timeseries. It

uses information for previous events to predict future events with the same source.

An ARMA process describes a time series with two polynomials. The first of these

polynomials describes the autoregressive (AR) part of the timeseries. The second

part describes the moving average (MA). The following formula formally describes

ARMA:

The features we extract from ARMA are extracted with the following algorithm

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH)

GARCH is similar to ARMA, but it is applied to the variance of the data instead

of the mean.

ARMA assumes a uniform distribution of the events it is modeling with shifting

trends. However, we know that this is not entirely descriptive of cognitive process‐

es. When working with a cognitive task, one has periods of intense focus to under‑

best_fit = null

for p up to 4

 for q up to 4

 fit = ARMA(timeseries, p, q)

 if(best_fit.aic > fit.aic)

 best_fit = fit

return best_fit["ar"], best_fit["ma"], best_fit["exog"]

27

stand one aspect of the problem and other periods where one’s mind rests. The

heteroskedasticity aspect of GARCH accounts for this grouping of events. In the

analysis of financial markets, GARCH can account for the spikes and sudden

drops in prices of specific investment vehicles [81]. We posit that GARCH will al‐

low us to model the perceived grouping of cognitive workload spikes in a like

manner.

We extract features from GARCH similar to how we extract features from

ARMA.

Hidden Markov Models (HMM)

Hidden Markov Models contains the Markov assumption, which assumes that the

present value is conditionally independent on its non-ancestors given its n last par‐

ents. Similarly to ARMA, this means that the current value is a function of the

past values. While ARMA models continuous values, HMM is discrete. Hence we

discretize the values into 100 buckets before we model the transitions between

these buckets with HMM. We then use the resulting transition matrix as the

feature.

The reasoning behind using HMM is the same as to why we chose ARMA. We hy‐

pothesize that HMM might model the changing state nature of cognitive work.

best_fit = null

for p up to 4

 for q up to 4

 fit = GARCH(timeseries, p, q)

 if(best_fit.aic > fit.aic)

 best_fit = fit

return [best_fit["alpha"],

 best_fit["beta"],

 best_fit["gamma"],

 best_fit["mu"],

 best_fit["omega"]]

28

The Low/High Index of Pupillary Activity (LHIPA)

LHIPA [13] enhances the Index of Pupillary Activity [14], which is a metric to dis‐

criminate cognitive load from pupil diameter oscillation. LHIPA partially models

the functioning of the human autonomic nervous system by looking at the low and

high frequencies of pupil oscillation.

Cognitive load has been shown to correlate with cognitive performance [82]. The

Yerkes-Dodson law describes the relationship between the two, indicating an opti‐

mal plateau where a certain degree of cognitive workload is tied to maximized cog‐

nitive performance. If the cognitive workload is increased beyond this point, cogni‐

tive performance is diminished [82].

Our implementation of LHIPA is based on the code found in [13, 14].

normalized_timeseries = normalize the timeseries between 0 and 1

discretized_timeseries = discretize timeseries in 100 bins

best_fit = null

for i up to 8

 fit = GaussianHMM(covariance_type="full")

 .fit(discretized_timeseries, n_components=i)

 if(best_fit.aic > fit.aic)

 best_fit = fit

flat_transistion_matrix = best_fit.transition_matrix.flatten()

padded_transition_matrix =

 pad flat_transistion matrix with n zeroes so the length is 64

return padded_transition_matrix

29

4.2.3. Gaze Characteristics

Gaze Characteristics are features that are interpreted directly from the eye-track‐

ing data and are not subject to additional signal processing.

Information Processing Ratio

Global Information Processing (GIP) is often analogous to skimming text. When

skimming, one’s gaze jumps between large sections of the material and does not

stay in place for extended periods. This manifests as shorter fixations and longer

saccades. Local Information Processing (LIP) is the opposite; one’s gaze focuses on

smaller areas for longer durations and does not move around as much. For this

metric, fixations are measured in time, while saccades are measured in distance.

Hence we capture both the spatial and temporal dimensions.

The information processing ratio describes how much a subject skimmed the mate‐

rial versus how much they focus intently. To compute the ratio, we divide GIP by

LIP.

30

The following algorithm extracts the feature:

Skewness of Saccade Speed

Saccade velocity skewness has been shown to correlate with familiarity [83]. If the

skewness is highly positive, that means that the overall saccade speeds were high.

This indicates that the subject is familiar with the stimulus and can quickly ma‐

neuver to the relevant sections when seeking information. Saccade speed does not

necessarily indicate expertise in the relevant subject matter. A non-expert partici‐

pant could be familiar with the material and hence know where to look for infor‐

mation, but an expert would also quickly assert what information they are

seeking.

upper_threshold_saccade_length = 75 percentile of saccade_lengths

lower_threshold_saccade_length = 25 percentile of saccade_lengths

upper_threshold_fixation_duration = 75 percentile of fixation_durations

lower_threshold_fixation_duration = 25 percentile of fixation_durations

LIP = 0

GIP = 0

for s_length, f_duration in saccade_lengths, fixation_durations

 fixation_is_short = f_duration <= lower_threshold_fixation_duration

 fixation_is_long = upper_threshold_fixation_duration <= f_duration

 saccade_is_short = s_length <= lower_threshold_saccade_length

 saccade_is_long = upper_threshold_saccade_length <= s_length

 if fixation_is_long and saccade_is_short:

 LIP += 1

 elif fixation_is_short and saccade_is_long:

 GIP += 1

return GIP / (LIP + 1)

31

To calculate this feature, we calculated the speed by dividing the saccade length

by the saccade duration. We then got the skew of the outputted distribution.

Verticality of Saccades

By verticality of saccades, we mean the ratio of saccades moving vertically over

horizontally. Our intuition for generating this feature is based on the difference be‐

tween how we read code versus how we read text. An experienced coder reads ver‐

tically, focusing on definitions and conditionals. Traditional text, on the other

hand, is read line by line in a horizontal fashion. Based on this anecdotal observa‐

tion, we are interested in how well the verticality of saccades would generalize.

To calculate the feature, we get the angle between every consecutive fixation with

respect to the x-axis. We do that with arctan2, which outputs the angle in radians

between pi and -pi. Since we are only interested in the verticality of the saccade,

we take the absolute value of the angle. To describe the horizontality of each point

in a range between 0 and 1, we take the sine of every angle.

get_skewness_of_saccades(saccade_duration, saccade_length):

 saccade_speed = saccade_length / saccade_duration

 return saccade_speed.skew()

angles = atan2(y2 - y1, x2 - x1)

for angle in angles

 angle = sin(absolute_value(angle))

verticality = angles.average()

32

Entropy of Gaze

The entropy of gaze explains the size of the field of focus for a subject. Entropy is

higher when the subject’s attention is more evenly spread over the stimulus and

lower if the subject focuses on a minor part of the stimulus.

To calculate the entropy of gaze, we create a grid of 50 by 50 px bins. We then

normalize the x and y positions of each fixation in a range from 0 to 1000. Fur‐

ther, we place each fixation in its corresponding bin based on its x and y position.

When we have this grid, we flatten it and take the entropy of the resulting

distribution.

The following algorithm extracts the feature:

4.2.4. Heatmaps

A heatmap is a graphical representation of data where values are depicted by col‐

or. Areas of higher activity will be highlighted more. Our heatmaps represent the

gaze position of a subject over time. To capture both spatial and temporal data,

we create multiple heatmaps for each subject. Sharma et al. [34] show that deep

features of heatmaps from gaze data can predict cognitive performance in learning

activities.

x_normalized = normalize x between 0 and 1000

y_normalized = normalize y between 0 and 1000

x_axis = [50, 100, 150 ... ,1000]

y_axis = [50, 100, 150 ... ,1000]

2d_histogram = 2d_histogram(xaxis, yaxis, x_normalized, y_normalized)

return entropy(2d_histogram.flatten())

33

These are the steps we take to create our heatmaps:

1. Split the data from each subject into 30 partitions.

2. Create a 1920 * 1080 image.

3. Plot the gaze position with heatmappy [84].

4. Resize the image to 175 * 90.

Figure 2. Three consecutive heatmaps without stimulus from CSCW.

Figure 3. Three consecutive heatmaps without stimulus from EMIP.

Figure 4. Three consecutive heatmaps without stimulus from Fractions.

34

From the heatmaps, we used a pre-trained vgg19 model [85] with the imagenet

weights [86] to generate a feature vector per image.

1. Scale images using the preprocess_input function provided by Keras [87]

2. Use the pre-trained VGG-19 model to extract features per image

3. Combine the matrices outputted by the VGG19 model to a single feature

vector

4.2.5. Final Feature Set

After feature extraction, these are the features that are generated for each subject.

Table 1. Final feature set.

Name Description

Information Processing Ratio LIP divided by GIP.

Saccade Speed Skewness Skewness of the saccade speed

distribution.

frames = Split each subject into 30 partitions

features = []

for frame in frames

 image = image of with dimensions 1920, 1080

 heatmap = heatmappy.heatmap_on_img(frame.x_and_y_postions, image)

 scaled_down_heatmap = keras.applications.image_netutils(heatmap)

 heatmap_features = vgg19model.predict(scaled_down_heatmap)

 features.append(heatmap_feature.flatten())

return features.flatten()

35

Name Description

Entropy of Gaze Entropy of the gaze

Verticality Of Saccades Metric between 0 and 1 describing the

average angle of the saccades.

Heatmaps Features extracted from heatmaps

with VGG19.

Spectral Histogram - Pupil Diameter Skew, Kurtosis, Mean, and Variance

of the spectral histogram.

LHIPA - Pupil Diameter The Low/High Index of Pupillary

Activity.

HMM - Pupil Diameter Transition matrix of a fitted Hidden

Markov Model.

ARMA - Pupil Diameter The AR, MA, and Exog attributes of

a fitted ARMA model.

GARCH - Pupil Diameter The mu, omega, alpha, gamma, and

beta attributes of a fitted GARCH

model.

Spectral Histogram - Fixation

Duration

Skew, Kurtosis, Mean, and Variance

of the spectral histogram.

36

Name Description

HMM - Fixation Duration Transition matrix of a fitted Hidden

Markov Model.

ARMA - Fixation Duration The AR, MA, and Exog attributes of

a fitted ARMA model.

GARCH - Fixation Duration The mu, omega, alpha, gamma, and

beta attributes of a fitted GARCH

model.

Spectral Histogram - Saccade Length Skew, Kurtosis, Mean, and Variance

of the spectral histogram.

HMM - Saccade Length Transition matrix of a fitted Hidden

Markov Model.

ARMA - Saccade Length The AR, MA, and Exog attributes of

a fitted ARMA model.

GARCH - Saccade Length The mu, omega, alpha, gamma, and

beta attributes of a fitted GARCH

model.

Spectral Histogram - Saccade

Duration

Skew, Kurtosis, Mean, and Variance

of the spectral histogram.

37

Name Description

HMM - Saccade Duration Transition matrix of a fitted Hidden

Markov Model.

ARMA - Saccade Duration The AR, MA, and Exog attributes of

a fitted ARMA model.

GARCH - Saccade Duration The mu, omega, alpha, gamma, and

beta attributes of a fitted GARCH

model.

4.3. Pipelines

This section explains how we solved goal 4 of creating our platform.

We need a platform that can run multiple concurrent pipelines for

combinations of datasets, features, and methods for reducing the fea‐

ture space.

By a pipeline, we mean a specific combination of datasets, feature groups, and

methods for reducing the feature space (dimensionality reduction or feature selec‐

tion). We will refer to these parts as pipeline components.

4.3.1. Datasets

We have three different datasets: EMIP, Fractions, and CSCW. As discussed in

Section 3, we designate either one or two datasets as in-study for each of our pipe‐

lines. All pipelines include a single dataset as the out-of-study dataset. No dataset

is used twice in one pipeline.

38

We refer to the pipelines where one dataset is designated in-study as 1-to-1 pipe‐

lines, as these pipelines train on one dataset and test on another. Pipelines, where

two datasets are designated in-study, are referred to as 2-to-1 pipelines since we

train on two datasets combined and test on one dataset. We have three datasets,

which make up nine dataset combinations, six of which create 1-to-1 pipelines, and

three go into 2-to-1 pipelines.

4.3.2. Feature Groups

Initially, we considered running pipelines to test all combinations of features.

These would prove to be unfeasible. With 22 features, nine dataset combinations,

and two methods of reducing the feature space, there would be 75 597 472 pipe‐

lines. With a theoretical runtime of one second per pipeline, the total computing

time necessary to tackle this challenge would be approximately two years, and we

would not make our deadline for this thesis.

As an alternative, we decided to group our features manually. We created one

group for the gaze characteristics, four for the type of signal, and five for the dif‐

ferent time series features. In addition, we have a separate group for heatmaps

and, lastly, one group that includes all the features. The groups are presented in

the following table:

Table 2. Feature groups and the features contained in them.

Name Features

Gaze Characteristics Information Processing Ratio,

Saccade Speed Skewness,

Entropy Of Gaze,

Verticality Of Saccades

39

Name Features

Heatmaps Heatmaps

Spectral Histogram Spectral Histogram - Pupil Diameter,

Spectral Histogram - Fixation Dura‐

tion,

Spectral Histogram - Saccade Length,

Spectral Histogram - Saccade

Duration

LHIPA LHIPA - Pupil Diameter

HMM HMM - Fixation Duration,

HMM - Pupil Diameter,

HMM - Saccade Duration,

HMM - Saccade Length

ARMA ARMA - Pupil Diameter,

ARMA - Fixation Duration,

ARMA - Saccade Length,

ARMA - Saccade Duration

GARCH GARCH - Saccade Duration,

GARCH - Fixation Duration,

GARCH - Pupil Diameter,

GARCH - Saccade Length

40

Name Features

Pupil Diameter Spectral Histogram - Pupil Diameter,

LHIPA - Pupil Diameter,

HMM - Pupil Diameter,

ARMA - Pupil Diameter,

GARCH - Pupil Diameter

Fixation Duration Spectral Histogram - Fixation Dura‐

tion,

HMM - Fixation Duration,

ARMA - Fixation Duration,

GARCH - Fixation Duration

Saccade Length Spectral Histogram - Saccade Length,

HMM - Saccade Length,

ARMA - Saccade Length,

GARCH - Saccade Length

Saccade Duration Spectral Histogram - Saccade Dura‐

tion,

HMM - Saccade Duration,

ARMA - Saccade Duration,

GARCH - Saccade Duration

All All features

41

4.3.3. Reducing the Feature Space

Our pipelines perform either feature selection or dimensionality reduction to re‐

duce the number of features and decrease variance. The focus of our thesis was on

testing different features, and as such, we decided not to test a wide range of alter‐

natives. The effect of different methods for reducing the feature space on generaliz‐

ability is a potential area for further study. The method we use for dimensionality

reduction is Principal Component Analysis (PCA), and the one for feature selec‐

tion is Least Absolute Shrinkage and Selection Operator (LASSO). We also use a

zero-variance filter for all pipelines to remove the features with no variance in

their data.

LASSO was selected as our feature selection algorithm because it has been shown

to perform very well when the number of samples is less than the number of fea‐

tures [88, 89], which is the case for most of our feature groups.

4.3.4. Prediction: Ensemble Learning

Our pipelines were tested with the same regressor, a weighted voting ensemble

with a KNN-regressor, a Random forest regressor, and a Support Vector regressor.

An ensemble combines several different base regressors or classifiers in order to

leverage the strengths of each classifier or regressor. A voting regressor is an en‐

semble that fits several regressors, each on the whole dataset. Then it averages the

individual predictions respective to their given weights to form a final prediction.

To find the weights for the voting, we perform cross-validation, with the validation

set, on each regressor and set their respective weights to 1 - Root Mean Square

Error (RMSE). Many studies have been published that demonstrate that ensemble

methods frequently improve upon the average performance of the single regressor

[90, 91].

KNN predictors approximate the target by associating it with its n nearest neigh‐

bors in the training set. KNNs are simplistic algorithms that, despite their sim‐

plicity, in some cases, outperform more complex learning algorithms. However, it is

42

also negatively affected by non-informative features [92]. A random forest fits a

number of classifying decision trees on various sub-samples of the dataset and ag‐

gregates the predictions from the different trees. Random forests have been shown

to outperform most other families of classifiers [93]. SVR, support vector regres‐

sors are a regression version of support vector machines proposed by Drucker et al.

[94] SVRs estimate the target value by fitting a hyperplane by minimizing the

margins of the plane with an error threshold. Support vector regressors perform

particularly well when the dimensionality of the feature space representation is

much larger than the number of examples [94], which is the case for some of our

feature groups. All our hyperparameters are set to the default values provided by

sklearn [95].

4.4. Evaluation

This section will outline how we achieve the fifth goal of our platform:

We need an evaluation step that collects the results from all the pipe‐

lines and can prove pipelines generalizable.

Models produced by our pipelines are evaluated in two ways, with out-of-sample

testing and out-of-study testing. Out-of-sample testing uses a subset of the in-

study dataset to evaluate the predictive power of the model. Out-of-study testing

uses the dataset designated as out-of-study to evaluate generalizability. This sub‐

section explains how we evaluate the results of each test.

43

4.4.1. Evaluation Criteria

We use Normalized Root Mean Squared Error (NRMSE) as our primary evalua‐

tion metric. NRMSE is a probabilistic understanding of errors as defined by Ferri

et al. [96]. NRMSE is commonly used in learning technologies to evaluate learning

predictions [97]. The score in all our contexts is based on binary outcomes; a ques‐

tion is either correct or incorrect. Pelánek et al. [98] argue that for such cases,

metrics such as Root Mean Squared Error (RMSE) or Log-Likelihood (LL) are

preferred to metrics such as Mean Average Error (MAE) or Area Under the Curve

(AUC). MAE considers the absolute difference between the predictions and the er‐

rors and is not a suitable metric, as it prefers models that are biased toward the

majority result. RMSE, on the other hand, does not have this issue, as it is based

on the squared value of each error, giving greater weight to larger errors in its av‐

erage. The main difference between RMSE and LL is the unbounded nature of LL,

which means that it can very heavily punish models that confidently make incor‐

rect assertions [98]. While this can be preferred in some contexts, we decided to

proceed with the more common RMSE measure.

The root part of RMSE serves to move the sum of errors back into the range of

the labels being predicted to improve interpretability. This might have limited use‐

fulness as the resulting numbers can still be challenging to interpret [98]. In our

case, the labels exist in three different contexts with labels in different ranges, and

since we are working across these contexts, we need normalized values. Since we

normalize the labels in a range from 0 to 1 before training, RMSE is equivalent to

Normalized RMSE (NRMSE). Our NRMSE is normalized between 0 and 1, where

1 is the maximum error possible for the dataset.

The following formulas calculate NRMSE.

44

4.4.2. Feature Generalizability Index (FGI)

Our measure for generalizability was proposed by Sharma et al. [24]. We measure

the generalizability of features by comparing the distributions of NRMSE values

from the out-of-sample testing and the out-of-study testing. Since the ground

truth in both the in-study datasets and the out-of-study datasets indicate cogni‐

tive performance, we can assume that similar behavior will indicate similar results.

To compare the distributions of NRMSE, we use analysis of similarity (ANOSIM),

a non-parametric function, to find the similarity of two distributions [99].

The denominator normalizes the values between -1 and 1, where 0 represents a

random grouping. Pipelines that have an FGI value closer to zero are more gener‐

alizable [24].

4.5. Reproducibility

This section explains how we reached the sixth goal of our platform.

We need reproducibility.

Our reproducibility strategy primarily consists of four components. The version-

control tool, git; the machine learning management tool, comet.ml; the python

package management tool, poetry; and google cloud platform.

4.5.1. comet.ml

comet.ml is a machine learning management tool [100]. It can handle user manage‐

ment, visualization, tracking of experiments, and much more. We use comet.ml to

track the results of our experiments, the relevant hyperparameters, the git commit

hash, which indicates our software state, and the virtual machine on the google

cloud platform, which executed the code.

45

4.5.2. Poetry

Poetry is a dependency manager for python [101]. As with any large software

project, our platform relies on several third-party libraries. To ensure both repro‐

ducibility and ease of use and development, we use poetry to track the versions of

the libraries we use. Poetry stores these versions in a lock-file which is tracked by

git.

4.5.3. Git

Git keeps track of all versions of our source code [102]. We have set up safeguards

that ensure that all changes to the local code are committed before a run can be‐

gin. In addition, all parameters of experiments are represented in the code. As a

result, the complete state of the software, including configuration and hyper-para‐

meters, is recorded in git. The commit hash, which uniquely identifies the point of

commitment in our history, is logged, and we can reproduce the software side of

our experiment.

When we run an experiment in the cloud, we log the start parameters of the sys‐

tem and the hash associated with the commit.

4.5.4. Google Cloud Platform

Our experiments are run on virtual machines in the Google Cloud Platform

(GCP) [103]. GCP is one of several providers of commercial cloud and container‐

ization services. Their products allow us to run our experiments on identical virtu‐

al machines, which also ensures reproducibility in our work’s hardware aspects.

46

4.5.5. Seeding

All of our experiments ran with seeded randomness. Our implementation for seed‐

ing the experiments is as follows:

4.5.6. Datasets

At this point, we can reproduce any of the experiments presented in this work.

However, as we cannot share the data we received from other researchers, com‐

plete external repeatability is impossible.

seed = 69420

np.random.seed(seed)

random.seed(seed)

os.environ["PYTHONHASHSEED"] = str(seed)

tf.random.set_seed(seed)

47

5. Results
We ran a total of 216 pipelines with different combinations of datasets, methods

for reducing the feature space, and feature groups. 144 of these pipelines were 1-

to-1 pipelines, where we trained on only one dataset and tested on another. 72 of

the pipelines were 2-to-1, where two datasets are designated in-study and one

dataset designated out-of-study. In this section, we will present the results from

these pipelines. In Section 5.1, we explain how baselines for the different datasets

are calculated. Section 5.2 presents how pipelines performed in out-of-sample test‐

ing and which components performed the best overall by aggregating the results.

The pipelines that show generalizability are presented in Section 5.3. The section

also presents which components make up those pipelines. Pipelines that exhibit

more context-sensitivity are presented in Section 5.4.

5.1. Baselines

We calculate a specific baseline for each dataset combination. The baseline is

equivalent to predicting the mean of the labels from the in-study dataset. We then

quantify this baseline by the NRMSE from those predictions. The calculation of

the baseline is done separately for each dataset combination. Our pipelines are

evaluated against the baseline for the given dataset combination.

Table 3. The baselines for each dataset combination

Dataset Baseline (NRMSE)

CSCW 0.205

EMIP 0.310

48

Dataset Baseline (NRMSE)

Fractions 0.229

EMIP & Fractions 0.294

EMIP & CSCW 0.289

CSCW & Fractions 0.234

Pseudocode for the in-study baseline:

def get_baseline(labels):

 error = labels - labels.mean()

 error_squared = (error**2).mean()

 baseline = math.sqrt(error_squared)

 return baseline

49

5.2. Out-of-Sample Testing

Our work focuses on engineering generalizable features. This section outlines the

results from the out-of-sample testing, which does not indicate generalizability.

However, the section is presented to the reader to benchmark the range of predic‐

tive power that our features exhibit in more traditional tasks.

5.2.1. Aggregation of the Results

To evaluate how each feature space reduction method and each feature combina‐

tion performs across all the pipelines, we need to aggregate the pipelines' results.

We do this by ranking, giving each pipeline a rank for NRMSE, then grouping on

feature space reduction method or feature group, and finding the median. The me‐

dian of ranks gives us the results of what pipeline components perform best when

testing in the same context it was trained.

50

5.2.2. Dimensionality Reduction and Feature Selection

Figure 5. The four best pipelines by NRMSE per dataset and whether they used

PCA or LASSO. Figure 5 and Figure 6 are the same figure with different labels.

Figure 5 shows which method reduces the feature space for the pipelines with the

five smallest NRMSEs per dataset. Which method performs better seems to rely

heavily on the in-study dataset, making it hard to conclude which of the two per‐

forms better.

However, when we aggregate the results as seen in Table 4 and Table 5, we can see

that LASSO performs slightly better than PCA across all 1-to-1 pipelines and

clearly better across the 2-to-1 pipelines. So our results indicate that feature selec‐

tion performs better than dimensionality reduction in predicting cognitive perfor‐

mance on gaze data for out-of-sample testing.

51

Method Mean NRMSE Median NRMSE

Rank

Table 4. Mean NRMSE and Median NRMSE Rank for PCA and LASSO for all 1-

to-1 pipelines.

Method Mean NRMSE Median NRMSE

Rank

LASSO 0.265 69.5

PCA 0.269 76.0

Table 5. Mean NRMSE and Median NRMSE Rank for PCA and LASSO for all 2-

to-1 pipelines.

Method Mean NRMSE Median NRMSE

Rank

LASSO 0.272 31.5

PCA 0.283 44.0

52

5.2.3. Features

Figure 6. The four best pipelines by NRMSE per dataset and their feature group.

Figure 5 and Figure 6 are the same figure with different labels.

Figure 6 shows the best four pipelines by NRMSE and their feature groups. It

seems that several different feature groups perform quite well for the different

dataset combinations. We note that Fixation duration performs well in most com‐

binations and that Spectral Histograms performs well in several pipelines, and All

perform well, particularly for fractions_cscw.

53

As seen in Table 6 and Table 7, when we aggregate the results, we see that Gaze

Characteristics is the best feature group for out-of-sample testing amongst the 1-

to-1 pipelines, performing slightly better than Spectral Histograms and Heatmaps.

2-to-1 pipelines that include Fixation duration seem to outperform other 2-to-1

pipelines, but GARCH also performs quite well.

Table 6. The five feature groups with the best median NRMSE Rank and their

mean NRMSE across all 1-to-1 pipelines.

Method Mean NRMSE Median NRMSE

Rank

Gaze Characteristics 0.246 34.0

Spectral Histogram 0.268 45.0

Heatmaps 0.253 51.0

Pupil Diameter 0.274 63.5

Saccade Length 0.266 65.0

54

Method Mean NRMSE Median NRMSE

Rank

Table 7. The five feature groups with the best median NRMSE Rank and their

mean NRMSE across all 2-to-1 pipelines.

Method Mean NRMSE Median NRMSE

Rank

Fixation Duration 0.269 22.5

GARCH 0.264 24.0

Spectral Histogram 0.271 31.5

All 0.267 32.5

LHIPA 0.282 37.5

5.3. Generalizability

We evaluate the generalizability of the pipelines with the out-of-study dataset. We

compare the errors from making predictions on the out-of-study dataset to the

out-of-sample results using FGI, explained in Section 4.4.2. In order to identify the

most generalizable pipelines, we need to filter out pipelines that perform poorly in

out-of-sample testing. We do this by filtering out the pipelines that do not per‐

form better than the baseline. From 216 pipelines, 72 beat the baseline.

55

Figure 7. Kernel Density Estimation plot of the FGI by pipeline type.

As represented in Figure 7, 2-to-1 pipelines are, in general, more generalizable

than 1-to-1 pipelines. This is in line with the results of [24]. Our focus is generaliz‐

ability, and as such, we will only refer to the 2-to-1 pipelines in the following

sections.

Table 8. The 10 most generalizable pipelines.

FGI In Study Feature Group PCA or

LASSO

0.007 fractions_cscw GARCH LASSO

0.0074 fractions_cscw Spectral

Histogram

LASSO

56

FGI In Study Feature Group PCA or

LASSO

0.0074 fractions_cscw All PCA

0.0077 fractions_cscw Saccade Duration LASSO

0.0077 fractions_cscw Heatmaps PCA

0.0077 fractions_cscw Saccade Length LASSO

0.0077 fractions_cscw Heatmaps LASSO

0.0078 fractions_cscw All LASSO

0.0078 fractions_cscw HMM LASSO

0.0081 emip_cscw GARCH PCA

Table 8 shows the most generalizable pipelines. The first and most prevalent fac‐

tor for generalizable pipelines is which datasets were designated in-study datasets

for that pipeline. When the in-study dataset combines Fractions and CSCW (frac‐

tions_cscw), and EMIP is the out-of-study dataset, the pipelines are more gener‐

alizable. Nine of the ten more generalizable pipelines contain this combination of

datasets.

LASSO is the most represented method of feature space reduction among the

more generalizable pipelines. We note that more pipelines with LASSO beat the

baseline, which might explain the trend we are seeing. LASSO is also included in

the two pipelines with the best FGI. PCA performs very well for the feature

57

groups All and heatmap; this might be explained by the fact that these are the

largest feature groups with hundreds of thousands of values.

Seven of our twelve feature groups are represented among the ten most generaliz‐

able pipelines. However, three feature groups show up more than once, All,

Heatmaps, and GARCH. This indicates that they might be more generalizable fea‐

ture groups. It should also be noted that GARCH is also the only pipeline with an

in-study dataset that is not fractions_cscw of the ten most generalizable pipelines.

5.4. Context-Sensitivity

The bottom third of the filtered baselines contain pipelines that are more context-

specific.

Table 9. The 10 most context-sensitive pipelines.

FGI In Study Feature Group PCA or

LASSO

0.0117 emip_cscw All LASSO

0.0102 emip_cscw Gaze

Characteristics

LASSO

0.0102 emip_cscw Pupil Diameter LASSO

0.0098 emip_cscw Saccade Length LASSO

0.0096 emip_cscw HMM LASSO

0.0096 emip_fractions LHIPA PCA

58

FGI In Study Feature Group PCA or

LASSO

0.0095 emip_fractions Spectral

Histogram

LASSO

0.0093 emip_cscw Heatmaps LASSO

0.0093 emip_cscw ARMA PCA

Again we can see that the dataset combination is an important factor in what

pipelines exhibit context-sensitivity. LASSO is more represented among the more

context-specific pipelines. As with the generalizable pipelines, there are more pipe‐

lines with LASSO that beat the baseline. For the feature groups, we observe some

differences from the generalizable pipelines. ARMA, LHIPA, Gaze Characteristics,

and Pupil Diameter are present in the context-sensitive pipelines but not in the

more generalizable pipelines. This indicates that these feature groups are more

likely to produce context-sensitive pipelines. Heatmaps, Spectral Histogram, Hid‐

den Markov Models, All, and Saccade Length appear in generalizable and context-

sensitive pipelines. This further supports the observation that dataset combination

is an essential variable for generalizability.

59

6. Discussion

6.1. Findings

2-to-1 pipelines are more generalizable than 1-to-1 pipelines.

2-to-1 pipelines where Fractions and CSCW are the in-study datasets pro‐

duce more generalizable pipelines.

GARCH, Power Spectral Histogram, heatmaps, Saccade Duration, Saccade

Length, and HMM can produce generalizable pipelines.

Pupil Diameter, Gaze Characteristics, LHIPA, and ARMA, can produce con‐

text-sensitive pipelines, and we do not observe any tendencies to generalize.

6.2. Filtering on the Baseline

Our goal was to identify generalizable pipelines, and for that, we have the FGI

measure described in Section 4.4.2. FGI describes how similar the distribution of

errors from out-of-sample testing and out-of-study testing and is a measure of gen‐

eralizability [24]. However, it is not enough that the two distributions are similar.

Generalizability should be a measure of usable predictive power in contexts other

than the training context. Random guesses would create identical distributions of

error in out-of-sample testing and out-of-study testing, and as such, would have a

good FGI value. To counteract this, we chose to disregard all pipelines that do not

outperform their respective baselines for the purpose of measuring generalizability.

60

6.3. 2-to-1 versus 1-to-1

As shown in Figure 7, 2-to-1 pipelines tend to generalize better than 1-to-1 pipe‐

lines. Combining two datasets from two separate contexts for training introduces

more variability to the dataset. By introducing more variability, we are optimizing

for both bias and variance, which is crucial for generalizability [48]. These results

align with the findings of Sharma et al. [24]. When we generate a feature that can

predict cognitive performance in two separate contexts, that feature has mutual

information with cognitive performance in those two contexts. Such a feature like‐

ly describes some non-contextual aspects of cognitive performance, meaning it

should have higher mutual information with cognitive performance in a third con‐

text. In further discussions, we will focus on results from the 2-to-1 pipelines.

6.4. Generalizability of our Datasets

Table 8 indicates that pipelines that combine Fractions and CSCW for training

and use EMIP for testing are more generalizable than pipelines where EMIP was

included in the training set. The EMIP dataset consists of gaze data recorded of

people completing individual tasks. All datasets include information from one or

more context-specific tasks, but the Fractions and CSCW also have a collaborative

aspect. We theorize that pipelines trained on EMIP do worse at describing this

collaborative aspect. The variability introduced by the interactions that come with

collaborative work assists those pipelines in generalizing. There is a degree of divi‐

sion of labor in collaboration, which gives rise to individual tasks even in the col‐

laborative context; as such, there is mutual information even with cognitive per‐

formance in individual tasks even when training on collaborative tasks. Pinpoint‐

ing the effectiveness of training on collaborative data when generalizing to con‐

texts without a collaborative aspect is a promising area for more experimentation.

61

6.5. Generalizable Features

Table 8 presents our more generalizable pipelines. In this section, we will explain

why we believe the feature groups used in those pipelines generalize.

6.5.1. Heatmaps

We observe that Heatmaps are among the generalizable feature groups. The fea‐

ture group only contains one feature vector, the heatmaps. Our heatmap feature is

the gaze-position for each subject over time, split into 30 partitions, converted to a

heatmap, and fed to a pre-trained VGG19 model. The resulting feature vector is

the feature we call heatmaps. In a heatmap, the stimulus is captured through the

subject’s interaction with it, as the gaze pattern follows the stimulus. While the

stimulus is not included in the heatmap image, information about the stimulus is

still encoded. The feature vector we call heatmaps represents how the gaze inter‐

acts with the given stimulus. Taking EMIP as an example, a heatmap will tell us

the shape of the code being presented to the subject. However, it will also tell us

how much time a subject spends reading the syntactic structures versus the vari‐

able names or conditional logic. The latter two are focus points for experienced

coders. Heatmaps generalize well because instead of just capturing how a subject

interacts with their stimulus, it also captures their interaction patterns and how

they relate to their presented stimulus. The stimulus and the interaction pattern

individually might be context-specific; however, the relationship between the two

should generalize. In addition, heatmaps encode information about time and space

rather than just one of the dimensions.

62

6.5.2. GARCH and Spectral Histogram

GARCH is a statistical modeling technique used to model timeseries data. Our

data suggest that GARCH is the most generalizable feature group of the ones we

have tested. GARCH models the variance of data and has the heteroscedasticity

property. Heteroscedasticity means that the random disturbance is different across

the elements. In our case, this means the variance of indicators of cognitive perfor‐

mance varies from point to point in the timeseries. In different contexts, the tim‐

ing of the indicators will vary based on the task and other factors. This might ex‐

plain why GARCH is generalizable across contexts.

Our results indicate that spectral histograms generalize quite well. Spectral his‐

tograms are the distribution of frequencies and their corresponding amplitudes.

Spectral histograms capture repetitiveness and hence might capture patterns of

behavior exhibited by the subjects. Repetitiveness indicates a flow that suggests

that the subject is comfortable in their task; on the other hand, chaotic non-repet‐

itive behavior might occur when one is not comfortable. We suggest that this rela‐

tionship should be represented across contexts and could be why spectral his‐

tograms seem to generalize.

63

6.5.3. Saccade Duration and Saccade Length

Both saccade duration and saccade length seem to generalize. Saccades are the

movements of the eyes from one fixation to another. As discussed in Section

4.2.3.2, higher saccade speeds correlate with familiarity with the stimulus [83].

Saccade speed is a function of saccade duration and saccade length; both factors

map familiarity to some degree. The fact that saccade duration and saccade length

generalizes might be explained by the fact that familiarity with the interface is rel‐

evant for all tasks contained by our datasets. Table 9 shows that saccade length

also displays context-sensitivity in some pipelines. De Luca et al. [28] show that

saccadic length increases when reading longer pseudowords. Due to human limita‐

tions on how quickly an eye can move, saccade length and saccade duration will

correlate after a certain threshold of saccade velocity is met. Reading code is anal‐

ogous to reading pseudowords, which might explain why saccade length displays

context-sensitivity when EMIP is one of the designated in-study datasets.

6.5.4. All

In pipelines with the All feature group, we combine all features in one group. Our

results show that these pipelines capture both generalizable patterns and context-

sensitive, as seen in Table 8 and Table 9. The feature preferred by the regressor

will be the feature with the most mutual information with cognitive performance

in the in-study datasets; when this feature also has mutual information with cog‐

nitive performance in the out-of-study dataset, the pipeline can generalize. Since

the All feature group contains all the features, the generalizability of the pipeline

is highly dependent on the selected in-study dataset Section 6.4. As a result, we

see pipelines with the All feature group both among the most generalizable and

the most context-specific pipelines.

64

6.6. Context-Specific Features

Table 9 presents our more context-sensitive pipelines. In this section, we will ex‐

plain why we believe the feature groups exhibit context-sensitivity.

6.6.1. ARMA

Our results indicate that ARMA produces quite context-sensitive pipelines.

ARMA models the conditional mean of a timeseries, as opposed to the variance

which GARCH models. Intuitively the mean value would be more dependent on

the measurement’s context than the variance. For example, an ARMA model

would be impacted by a stimulus with longer distances between points of interest

when modeling saccade length, while GARCH would not.

6.6.2. LHIPA and Pupil Diameter

LHIPA was developed to be an indicator of cognitive load [13]. Cognitive load con‐

sists of intrinsic, extraneous, and germane loads [10, 11, 12]. The characteristics of

the material determine intrinsic and extraneous cognitive load. Intrinsic load is de‐

termined complexity of the information and extraneous load by the presentation of

the material. Both of these are context-specific factors. On the other hand, the

germane load is concerned with the subject’s personal characteristics and would

likely be more generalizable. Our observations that LHIPA can produce context-

sensitive pipelines indicate that LHIPA captures germane cognitive loads to a less‐

er degree.

Pupil diameter has been shown to be affected by several task-specific factors. Both

task difficulty and time limits have an impact on pupil dilation [9]. These are task-

related factors, and as such, it might explain why pupil diameter seems to produce

context-specific pipelines.

Shojaeizadeh et al. also point out that pupil size might convey information about

variation in cognitive effort. This factor seems more likely to generalize and is

65

what we model with GARCH. GARCH of pupil diameter is included in this fea‐

ture group. However, the group primarily consists of features that model the mean

of the pupil diameter.

6.6.3. Gaze Characteristics

Gaze Characteristics is the group of features that are interpreted directly from the

eye-tracking data and are not subject to additional signal processing. The feature

group tries to encapsulate different strategies for interacting with the stimulus.

The information processing ratio represents the tendency to skim text versus more

focused reading. A skimming or focused reading strategy might be more appropri‐

ate for a specific task, which might be why this indicates context-specificity. How‐

ever, this is not an entirely specific trait. There might be some skill involved in

picking the correct strategy when presented with a stimulus, and greater familiari‐

ty might lead to a faster transition to focused reading.

Entropy models the spread of the gaze over the stimulus, which might model the

generalizable aspect of focus; however, it is also affected by the task design. The

verticality of saccades is also certainly context-specific as it relies heavily on the

nature of and how the stimulus is organized.

6.7. Limitations and Further Work

In Section 3.2, we outline how we believe our datasets are representative of a sig‐

nificant portion of human cognition. However, it would be presumptuous to say

that three datasets from three different contexts could represent all of the cogni‐

tive processes. Our goal has been to generalize between our three contexts, and we

believe that our methods provide meaningful insights into how one could create

generalizable features for other contexts. We do not mean to say that our features

will generalize to any context. Nevertheless, this is a first step that provides evi‐

dence on how gaze-related features provide a certain level of generalizability across

three distinct and commonly employed contexts.

66

Table 8 and Table 9 show some indications that datasets from individual tasks

generalize poorly to contexts that include collaborative work. Had individual work

been better represented in our data, we might be able to say more about how indi‐

vidual tasks generalize in general. Ideally, we should have had at least one more

dataset for individual tasks.

Our work assumes that cognitive performance can be characterized by labels in

our datasets and represented in gaze data. For our approach, we need an object,

quantifiable metric to assess cognitive performance, but as with many other things

in cognition, the reality is likely more complex.

For complete external repeatability, we would ideally publish the data we used to

perform our experiments. However, the scope of our thesis project was such that it

would be impossible to gather our own data to perform the analyses we have per‐

formed. As a result, we had to turn to generous researchers who allowed us to

work with their data, which in turn means that the data is not ours to share.

Due to the considerable effort put into creating our experimental platform, it

would be possible to expand the different pipeline components we test greatly. In

our work, we tested 22 features in 12 feature groups, three datasets in 9 combina‐

tions, two methods for reducing the feature space, and a single ensemble classifier.

While our tested features are exhaustive, we limited how many feature-space re‐

duction methods we worked with and tested only a single ensemble classifier. It

would be possible to investigate the effects of other variants of these pipeline com‐

ponents on generalizability in further work.

While we can identify feature groups that can produce generalizable pipelines, we

do not know how the individual features in each group affect the generalizability.

It is also likely that combinations of features from different groups would create

very generalizable pipelines.

The Hidden Markov Models (HMM) are included in both Table 8 and Table 9.

That HMMs generalize seems counter-intuitive, especially given that ARMA does

not generalize (see Section 6.6.1). At its core, the transition matrix of HMM repre‑

67

sents a discrete version of ARMA. ARMA models how previous values in a time‐

series affect the current value, while HMMs describe how previous states affect the

current state. What dataset was used might be a significant contributing factor to

why HMMs either generalize or exhibit context-specificity; However, more research

is needed to draw any conclusions.

69

7. Conclusion and Contributions
In this work, we apply the methodology presented by Sharma et al. [24] to engi‐

neer generalizable features from gaze data. The work draws on three independent

studies with data gathered on a total of 370 subjects. We present two lists of pipe‐

lines based on distinct feature groups, dataset combinations, and methods to re‐

duce the feature space. The lists contain the ten most generalizable and the ten

most context-specific pipelines. These pipelines indicate that the features used to

produce them can generalize between our contexts. We also propose and imple‐

ment an architecture to efficiently and easily test the generalizability of pipelines

constructed of different combinations of pipeline components. The code for our

platform and the analysis is available on GitHub [104].

Our contributions include:

A set of features that has the capacity to generalize across contexts, present‐

ed in Table 8.

A set of features that has the capacity to display context-sensitivity, present‐

ed in Table 9.

The architecture and implementation for experimenting on modular pipe‐

lines for generalizability experiments, presented in Section 4.

71

8. Bibliography
[1] A. Kobsa and J. Schreck, “Privacy through Pseudonymity in User-Adaptive Systems,”
ACM Transactions on Internet Technology, vol. 3, no. 2, pp. 149–183, May 2003, doi:
10.1145/767193.767196.

[2] E. T. Solovey et al., “Sensing Cognitive Multitasking for a Brain-Based Adaptive User
Interface,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Sys‐
tems, New York, NY, USA, 2011, pp. 383–392, doi: 10.1145/1978942.1978997.

[3] I. E. Nicolae, L. Acqualagna, and B. Blankertz, “Neural Indicators of the Depth of Cog‐
nitive Processing for User-Adaptive Neurotechnological Applications,” in 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2015, pp. 1484–1487, doi: 10.1109/EMBC.2015.7318651.

[4] R. Buettner, S. Sauer, C. Maier, and A. Eckhardt, “Real-Time Prediction of User Per‐
formance Based on Pupillary Assessment via Eye Tracking,” AIS Transactions on Human-
Computer Interaction, vol. 10, no. 1, pp. 26–56, Mar. 2018, doi: 10.17705/1thci.00103.

[5] Y. Yamada and M. Kobayashi, “Detecting Mental Fatigue from Eye-Tracking Data
Gathered While Watching Video: Evaluation in Younger and Older Adults,” Artificial Intel‐
ligence in Medicine, vol. 91, pp. 39–48, Sep. 2018, doi: 10.1016/j.artmed.2018.06.005.

[6] R. Zemblys, D. C. Niehorster, O. Komogortsev, and K. Holmqvist, “Using Machine
Learning to Detect Events in Eye-Tracking Data,” Behavior Research Methods, vol. 50, no.
1, pp. 160–181, Feb. 2018, doi: 10.3758/s13428-017-0860-3.

[7] S. Weintraub et al., “Cognition Assessment Using the NIH Toolbox,” Neurology, vol. 80,
no. Issue 11, Supplement 3, pp. S54–S64, Mar. 2013, doi: 10.1212/WNL.0b013e3182872ded.

[8] E. Haapalainen, S. J. Kim, J. F. Forlizzi, and A. K. Dey, “Psycho-Physiological Mea‐
sures for Assessing Cognitive Load,” in Proceedings of the 12th ACM International Confer‐
ence on Ubiquitous Computing, Copenhagen Denmark, 2010, pp. 301–310, doi:
10.1145/1864349.1864395.

[9] M. Shojaeizadeh, S. Djamasbi, R. C. Paffenroth, and A. C. Trapp, “Detecting Task De‐
mand via an Eye Tracking Machine Learning System,” Decision Support Systems, vol. 116,
pp. 91–101, Jan. 2019, doi: 10.1016/j.dss.2018.10.012.

[10] J. Sweller, “Cognitive Load during Problem Solving: Effects on Learning,” Cognitive
Science, vol. 12, no. 2, pp. 257–285, Apr. 1988, doi: 10.1016/0364-0213(88)90023-7.

[11] J. Sweller, J. J. G. van Merrienboer, and F. G. W. C. Paas, “Cognitive Architecture
and Instructional Design,” Educational Psychology Review, vol. 10, no. 3, pp. 251–296, Sep.
1998, doi: 10.1023/A:1022193728205.

[12] J. Sweller, “Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive
Load,” Educational Psychology Review, vol. 22, no. 2, pp. 123–138, Jun. 2010, doi:
10.1007/s10648-010-9128-5.

[13] A. T. Duchowski, K. Krejtz, N. A. Gehrer, T. Bafna, and P. Bækgaard, “The
Low/High Index of Pupillary Activity,” in Proceedings of the 2020 CHI Conference on Hu‐
man Factors in Computing Systems, New York, NY, USA, 2020, pp. 1–12, doi:
10.1145/3313831.3376394.

[14] A. T. Duchowski et al., “The Index of Pupillary Activity: Measuring Cognitive Load
Vis-à-Vis Task Difficulty with Pupil Oscillation,” in Proceedings of the 2018 CHI Confer‑

72

ence on Human Factors in Computing Systems, New York, NY, USA, 2018, pp. 1–13, doi:
10.1145/3173574.3173856.

[15] V. Cantoni and M. Porta, “Eye Tracking as a Computer Input and Interaction
Method,” in Proceedings of the 15th International Conference on Computer Systems and
Technologies, New York, NY, USA, 2014, pp. 1–12, doi: 10.1145/2659532.2659592.

[16] L. Granka, T. Joachims, and G. Gay, “Eye-Tracking Analysis of User Behavior in
WWW-Search,” Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Apr. 2004, doi:
10.1145/1008992.1009079.

[17] A. Bojko, “Eye Tracking in User Experience Testing: How to Make the Most of It,”
Proceedings of the 14th Annual Conference of the Usability Professionals’ Association
(UPA). Montréal, Canada, Jan. 2005.

[18] N. T. Bott, A. Lange, D. Rentz, E. Buffalo, P. Clopton, and S. Zola, “Web Camera
Based Eye Tracking to Assess Visual Memory on a Visual Paired Comparison Task,” Fron‐
tiers in Neuroscience, vol. 11, 2017, doi: 10.3389/fnins.2017.00370.

[19] K. Sharma, D. Caballero, H. Verma, P. Jermann, and P. Dillenbourg, “Looking AT ver‐
sus Looking THROUGH: A Dual Eye-Tracking Study in MOOC Context,” in CSCL, 2015.

[20] K. Sharma, J. K. Olsen, V. Aleven, and N. Rummel, “Measuring Causality between
Collaborative and Individual Gaze Metrics for Collaborative Problem-Solving with Intelli‐
gent Tutoring Systems,” Journal of Computer Assisted Learning, vol. 37, no. 1, pp. 51–68,
2021, doi: 10.1111/jcal.12467.

[21] J. K. Olsen, D. M. Belenky, V. Aleven, and N. Rummel, “Using an Intelligent Tutoring
System to Support Collaborative as Well as Individual Learning,” in Intelligent Tutoring
Systems, vol. 8474, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, A. Kobsa, F.
Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, D. Ter‐
zopoulos, D. Tygar, G. Weikum, S. Trausan-Matu, K. E. Boyer, M. Crosby, and K. Panour‐
gia, Eds. Cham: Springer International Publishing, 2014, pp. 134–143.

[22] R. M. Davison and M. G. Martinsons, “Context Is King! Considering Particularism in
Research Design and Reporting,” Journal of Information Technology, vol. 31, no. 3, pp.
241–249, Sep. 2016, doi: 10.1057/jit.2015.19.

[23] A. Cheng, A. Dimoka, and P. Pavlou, “Context May Be King, but Generalizability Is
the Emperor!,” Journal of Information Technology, vol. 31, Sep. 2016, doi: 10.1057/s41265-
016-0005-7.

[24] K. Sharma, E. Niforatos, M. Giannakos, and V. Kostakos, “Assessing Cognitive Perfor‐
mance Using Physiological and Facial Features: Generalizing across Contexts,” Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 3, pp.
95:1–95:41, Sep. 2020, doi: 10.1145/3411811.

[25] B. Rogers, C. Justice, T. Mathur, and J. E. Burge, “Generalizability of Document Fea‐
tures for Identifying Rationale,” in Design Computing and Cognition ’16, Cham, 2017, pp.
633–651, doi: 10.1007/978-3-319-44989-0_34.

[26] P. Saari, T. Eerola, and O. Lartillot, “Generalizability and Simplicity as Criteria in
Feature Selection: Application to Mood Classification in Music,” IEEE Transactions on Au‐
dio, Speech, and Language Processing, vol. 19, no. 6, pp. 1802–1812, Aug. 2011, doi:
10.1109/TASL.2010.2101596.

[27] S. Hutt, J. Grafsgaard, and S. D’Mello, “Time to Scale: Generalizable Affect Detection
for Tens of Thousands of Students across An Entire School Year,” in CHI ’19: Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–14, doi:
10.1145/3290605.3300726.

73

[28] M. De Luca, M. Borrelli, A. Judica, D. Spinelli, and P. Zoccolotti, “Reading Words and
Pseudowords: An Eye Movement Study of Developmental Dyslexia,” Brain and Language,
vol. 80, no. 3, pp. 617–626, Mar. 2002, doi: 10.1006/brln.2001.2637.

[29] G. E. Raptis, C. A. Fidas, and N. M. Avouris, “Using Eye Tracking to Identify Cogni‐
tive Differences: A Brief Literature Review,” in Proceedings of the 20th Pan-Hellenic Con‐
ference on Informatics, Patras Greece, 2016, pp. 1–6, doi: 10.1145/3003733.3003762.

[30] Y. Zhang, Y. Owechko, and J. Zhang, TuC4.1 Driver Cognitive Workload Estimation:
A Data-Driven Perspective. .

[31] B. Steichen, G. Carenini, and C. Conati, “User-Adaptive Information Visualization: Us‐
ing Eye Gaze Data to Infer Visualization Tasks and User Cognitive Abilities,” in Proceed‐
ings of the 2013 International Conference on Intelligent User Interfaces, New York, NY,
USA, 2013, pp. 317–328, doi: 10.1145/2449396.2449439.

[32] D. Toker, S. Lallé, and C. Conati, “Pupillometry and Head Distance to the Screen to
Predict Skill Acquisition During Information Visualization Tasks,” in Proceedings of the
22nd International Conference on Intelligent User Interfaces, New York, NY, USA, 2017,
pp. 221–231, doi: 10.1145/3025171.3025187.

[33] S. Chen and J. Epps, “Using Task-Induced Pupil Diameter and Blink Rate to Infer
Cognitive Load,” Human-Computer Interaction, vol. 29, Apr. 2014, doi:
10.1080/07370024.2014.892428.

[34] K. Sharma, M. Giannakos, and P. Dillenbourg, “Eye-Tracking and Artificial Intelli‐
gence to Enhance Motivation and Learning,” Smart Learning Environments, vol. 7, no. 1, p.
13, Apr. 2020, doi: 10.1186/s40561-020-00122-x.

[35] G. P. Dexter, S. J. Grannis, B. E. Dixon, and S. N. Kasthurirathne, “Generalization of
Machine Learning Approaches to Identify Notifiable Conditions from a Statewide Health
Information Exchange,” AMIA Summits on Translational Science Proceedings, vol. 2020,
pp. 152–161, May 2020.

[36] S. Vollmer et al., “Machine Learning and Artificial Intelligence Research for Patient
Benefit: 20 Critical Questions on Transparency, Replicability, Ethics, and Effectiveness,”
BMJ, vol. 368, p. l6927, Mar. 2020, doi: 10.1136/bmj.l6927.

[37] J. Salminen, V. Yoganathan, J. Corporan, B. J. Jansen, and S.-G. Jung, “Machine
Learning Approach to Auto-Tagging Online Content for Content Marketing Efficiency: A
Comparative Analysis between Methods and Content Type,” Journal of Business Research,
vol. 101, pp. 203–217, Aug. 2019, doi: 10.1016/j.jbusres.2019.04.018.

[38] S. McNally, J. Roche, and S. Caton, “Predicting the Price of Bitcoin Using Machine
Learning,” in 2018 26th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), 2018, pp. 339–343, doi: 10.1109/PDP2018.2018.00060.

[39] A. M. Chekroud et al., “Cross-Trial Prediction of Treatment Outcome in Depression: A
Machine Learning Approach,” The Lancet Psychiatry, vol. 3, no. 3, pp. 243–250, Mar. 2016,
doi: 10.1016/S2215-0366(15)00471-X.

[40] P. Turney, “The Identification of Context-Sensitive Features: A Formal Definition of
Context for Concept Learning,” CoRR, vol. cs.LG/0212038, Dec. 2002.

[41] P. D. Turney, “Exploiting Context When Learning to Classify,” in Proceedings of the
European Conference on Machine Learning, Berlin, Heidelberg, 1993, pp. 402–407.

[42] P. D. Turney, “Robust Classification with Context-Sensitive Features,” in Proceedings
of the 6th International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, Edinburgh, Scotland, 1993, pp. 268–276.

74

[43] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant Features and the Subset Selection
Problem,” in Machine Learning Proceedings 1994, Elsevier, 1994, pp. 121–129.

[44] K. Bouchard, M. R. Eusufzai, R. Ramezani, and A. Naeim, “Generalizable Spatial Fea‐
ture for Human Positioning Based on Bluetooth Beacons,” in 2016 IEEE 7th Annual Ubiq‐
uitous Computing, Electronics Mobile Communication Conference (UEMCON), 2016, pp.
1–5, doi: 10.1109/UEMCON.2016.7777884.

[45] E. Ferentzi, T. Bogdány, Z. Szabolcs, B. Csala, Á. Horváth, and F. Köteles, “Multi‐
channel Investigation of Interoception: Sensitivity Is Not a Generalizable Feature,” Fron‐
tiers in Human Neuroscience, vol. 12, 2018, doi: 10.3389/fnhum.2018.00223.

[46] D. Kim, M. H. Kim, and S. W. Lee, “Decoding Learning Strategies from EEG Signals
Provides Generalizable Features for Decoding Decision,” in 2021 9th International Winter
Conference on Brain-Computer Interface (BCI), 2021, pp. 1–5, doi:
10.1109/BCI51272.2021.9385334.

[47] E. S. Nurse, P. J. Karoly, D. B. Grayden, and D. R. Freestone, “A Generalizable Brain-
Computer Interface (BCI) Using Machine Learning for Feature Discovery,” PLOS ONE,
vol. 10, no. 6, p. e0131328, Jun. 2015, doi: 10.1371/journal.pone.0131328.

[48] Ł. Kidzinski, K. Sharma, M. Shirvani Boroujeni, and P. Dillenbourg, “On Generaliz‐
ability of MOOC Models,” in Proceedings of the 9th International Conference on Education‐
al Data Mining, 2016, no. CONF, p. 406.

[49] D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, “Generalizable Intention Predic‐
tion of Human Drivers at Intersections,” in 2017 IEEE Intelligent Vehicles Symposium
(IV), 2017, pp. 1665–1670, doi: 10.1109/IVS.2017.7995948.

[50] W. Bleidorn and C. J. Hopwood, “Using Machine Learning to Advance Personality As‐
sessment and Theory,” Personality and Social Psychology Review, vol. 23, no. 2, pp. 190–
203, May 2019, doi: 10.1177/1088868318772990.

[51] D. Baby and S. Verhulst, “Biophysically-Inspired Features Improve the Generalizability
of Neural Network-Based Speech Enhancement Systems,” in Interspeech 2018, 2018, pp.
3264–3268, doi: 10.21437/Interspeech.2018-1237.

[52] A. Stewart, N. Bosch, and S. K. D’Mello, “Generalizability of Face-Based Mind Wan‐
dering Detection Across Task Contexts,” p. 8.

[53] G. Guzzetta, G. Jurman, and C. Furlanello, “A Machine Learning Pipeline for Quanti‐
tative Phenotype Prediction from Genotype Data,” BMC Bioinformatics, vol. 11, no. 8, p.
S3, Oct. 2010, doi: 10.1186/1471-2105-11-S8-S3.

[54] N. M. Fountain-Jones, G. Machado, S. Carver, C. Packer, M. Recamonde-Mendoza,
and M. E. Craft, “How to Make More from Exposure Data? An Integrated Machine Learn‐
ing Pipeline to Predict Pathogen Exposure,” Journal of Animal Ecology, vol. 88, no. 10, pp.
1447–1461, 2019, doi: 10.1111/1365-2656.13076.

[55] J. R. Sutton, R. Mahajan, O. Akbilgic, and R. Kamaleswaran, “PhysOnline: An Open
Source Machine Learning Pipeline for Real-Time Analysis of Streaming Physiological Wave‐
form,” IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 1, pp. 59–65, Jan.
2019, doi: 10.1109/JBHI.2018.2832610.

[56] S. Shaikh, H. Vishwakarma, S. Mehta, K. R. Varshney, K. N. Ramamurthy, and D.
Wei, “An End-To-End Machine Learning Pipeline That Ensures Fairness Policies,”
arXiv:1710.06876 [cs], Oct. 2017.

[57] R. Olson and J. Moore, “TPOT: A Tree-Based Pipeline Optimization Tool for Au‐
tomating Machine Learning,” 2019, pp. 151–160.

75

[58] F. Mohr, M. Wever, A. Tornede, and E. Hullermeier, “Predicting Machine Learning
Pipeline Runtimes in the Context of Automated Machine Learning,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2021, doi:
10.1109/TPAMI.2021.3056950.

[59] Á. López García et al., “A Cloud-Based Framework for Machine Learning Workloads
and Applications,” IEEE Access, vol. 8, pp. 18681–18692, 2020, doi:
10.1109/ACCESS.2020.2964386.

[60] M. Ribeiro, K. Grolinger, and M. A. M. Capretz, “MLaaS: Machine Learning as a Ser‐
vice,” in 2015 IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), 2015, pp. 896–902, doi: 10.1109/ICMLA.2015.152.

[61] T. Kraska, A. Talwalkar, and J. Duchi, “MLbase: A Distributed Machine-Learning Sys‐
tem,” p. 7.

[62] G. Nguyen et al., “Machine Learning and Deep Learning Frameworks and Libraries for
Large-Scale Data Mining: A Survey,” Artificial Intelligence Review, vol. 52, no. 1, pp. 77–
124, Jun. 2019, doi: 10.1007/s10462-018-09679-z.

[63] K. Ram, “Git Can Facilitate Greater Reproducibility and Increased Transparency in
Science,” Source Code for Biology and Medicine, vol. 8, no. 1, p. 7, Feb. 2013, doi:
10.1186/1751-0473-8-7.

[64] R. D. Peng, “Reproducible Research in Computational Science,” Science, vol. 334, no.
6060, pp. 1226–1227, Dec. 2011, doi: 10.1126/science.1213847.

[65] M. Schwab, N. Karrenbach, and J. Claerbout, “Making Scientific Computations Repro‐
ducible,” Computing in Science Engineering, vol. 2, no. 6, pp. 61–67, Nov. 2000, doi:
10.1109/5992.881708.

[66] L. Rupprecht, J. C. Davis, C. Arnold, Y. Gur, and D. Bhagwat, “Improving Repro‐
ducibility of Data Science Pipelines through Transparent Provenance Capture,” Proceedings
of the VLDB Endowment, vol. 13, no. 12, pp. 3354–3368, Aug. 2020, doi:
10.14778/3415478.3415556.

[67] D. C. Ince, L. Hatton, and J. Graham-Cumming, “The Case for Open Computer Pro‐
grams,” Nature, vol. 482, no. 7386, pp. 485–488, Feb. 2012, doi: 10.1038/nature10836.

[68] “Devil in the Details,” Nature, vol. 470, no. 7334, pp. 305–306, Feb. 2011, doi:
10.1038/470305b.

[69] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and C.
Notredame, “Nextflow Enables Reproducible Computational Workflows,” Nature Biotech‐
nology, vol. 35, no. 4, pp. 316–319, Apr. 2017, doi: 10.1038/nbt.3820.

[70] R. Nagler, D. Bruhwiler, P. Moeller, and S. Webb, “Sustainability and Reproducibility
via Containerized Computing,” arXiv:1509.08789 [cs], Sep. 2015.

[71] P. Vaillancourt et al., “Reproducible and Portable Workflows for Scientific Computing
and HPC in the Cloud,” in Practice and Experience in Advanced Research Computing,
Portland OR USA, 2020, pp. 311–320, doi: 10.1145/3311790.3396659.

[72] R. Bednarik et al., “EMIP: The Eye Movements in Programming Dataset,” Science of
Computer Programming, vol. 198, p. 102520, Oct. 2020, doi: 10.1016/j.scico.2020.102520.

[73] “Creative Commons — Attribution 4.0 International — CC BY 4.0.” https://cre‐
ativecommons.org/licenses/by/4.0/.

[74] M. E. Hansen, “Quantifying Program Complexity and Comprehension,” p. 6, Oct.
2013.

76

[75] “Khan Academy | Free Online Courses, Lessons & Practice,” Khan Academy.
https://www.khanacademy.org/.

[76] A. J. Cañas et al., “CmapTools: A Knowledge Modeling and Sharing Environment,” p.
9.

[77] “SMI RED250 - iMotions,” Imotions Publish. https://imotions.com/hardware/smi-
red250/.

[78] E. S. Dalmaijer, S. Mathôt, and S. Van der Stigchel, “PyGaze: An Open-Source, Cross-
Platform Toolbox for Minimal-Effort Programming of Eyetracking Experiments,” Behavior
Research Methods, vol. 46, no. 4, pp. 913–921, Dec. 2014, doi: 10.3758/s13428-013-0422-2.

[79] P. Blignaut, “Fixation Identification: The Optimum Threshold for a Dispersion Algo‐
rithm,” Attention, Perception, & Psychophysics, vol. 71, no. 4, pp. 881–895, May 2009, doi:
10.3758/APP.71.4.881.

[80] B. Pfleging, D. K. Fekety, A. Schmidt, and A. L. Kun, “A Model Relating Pupil Diam‐
eter to Mental Workload and Lighting Conditions,” in Proceedings of the 2016 CHI Confer‐
ence on Human Factors in Computing Systems, San Jose California USA, 2016, pp. 5776–
5788, doi: 10.1145/2858036.2858117.

[81] T. Bollerslev, “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of
Econometrics, vol. 31, no. 3, pp. 307–327, Apr. 1986, doi: 10.1016/0304-4076(86)90063-1.

[82] D. O. Hebb, “Drives and the C. N. S. (Conceptual Nervous System),” Psychological Re‐
view, vol. 62, no. 4, pp. 243–254, 1955, doi: 10.1037/h0041823.

[83] I. Pappas, K. Sharma, P. Mikalef, and M. Giannakos, “Visual Aesthetics of E-Com‐
merce Websites: An Eye-Tracking Approach,” 2018, doi: 10.24251/HICSS.2018.035.

[84] LumenResearch, “LumenResearch/Heatmappy.” Lumen Research, May-2021.

[85] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” arXiv:1409.1556 [cs], Apr. 2015.

[86] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90,
May 2017, doi: 10.1145/3065386.

[87] Fran\ccois Chollet and Others, “Keras.” 2015.

[88] M. N. Giannakos, K. Sharma, I. O. Pappas, V. Kostakos, and E. Velloso, “Multimodal
Data as a Means to Understand the Learning Experience,” International Journal of Infor‐
mation Management, vol. 48, pp. 108–119, Oct. 2019, doi: 10.1016/j.ijinfomgt.2019.02.003.

[89] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[90] K. An and J. Meng, “Optimal-Weight Selection for Regressor Ensemble,” in 2009 In‐
ternational Conference on Computational Intelligence and Software Engineering, 2009, pp.
1–4, doi: 10.1109/CISE.2009.5365635.

[91] L. Kuncheva, “Combining Pattern Classifiers: Methods and Algorithms, 2nd Edition |
Wiley,” Wiley.com. https://www.wiley.com/en-
us/Combining+Pattern+Classifiers%3A+Methods+and+Algorithms%2C+2nd+Edition-p-
9781118315231.

[92] A. Gul et al., “Ensemble of a Subset of kNN Classifiers,” Advances in Data Analysis
and Classification, vol. 12, Jan. 2016, doi: 10.1007/s11634-015-0227-5.

[93] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do We Need Hun‐
dreds of Classifiers to Solve Real World Classification Problems?,” Journal of Machine

77

Learning Research, vol. 15, no. 90, pp. 3133–3181, 2014.

[94] H. Drucker, C. C, L. Kaufman, A. Smola, and V. Vapnik, “Support Vector Regression
Machines,” Advances in Neural Information Processing Systems, vol. 9, Nov. 2003.

[95] F. Pedregosa et al., “Scikit-Learn: Machine Learning in Python,” MACHINE LEARN‐
ING IN PYTHON, p. 6.

[96] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An Experimental Comparison of Per‐
formance Measures for Classification,” Pattern Recognition Letters, vol. 30, no. 1, pp. 27–
38, Jan. 2009, doi: 10.1016/j.patrec.2008.08.010.

[97] P. M. Moreno-Marcos, C. Alario-Hoyos, P. J. Muñoz-Merino, and C. D. Kloos, “Predic‐
tion in MOOCs: A Review and Future Research Directions,” IEEE Transactions on Learn‐
ing Technologies, vol. 12, no. 3, pp. 384–401, Jul. 2019, doi: 10.1109/TLT.2018.2856808.

[98] R. Pelanek, “Metrics for Evaluation of Student Models,” Journal of Educational Data
Mining, vol. 7, no. 2, pp. 1–19, Jun. 2015.

[99] K. Clarke, “Nonparametric Multivariate Analyses of Changes in Community
Structure,” Austral Ecology, vol. 18, pp. 117–143, Mar. 1993, doi: 10.1111/j.1442-
9993.1993.tb00438.x.

[100] Comet.ML, “Comet.ML Home Page.” https://www.comet.ml/, Feb-2021.

[101] “Poetry - Python Dependency Management and Packaging Made Easy.”
https://python-poetry.org/.

[102] “Git.” https://git-scm.com/.

[103] M. Kumar, “Google Cloud Platform: A Powerful Big Data Analytics Cloud Platform,”
International Journal for Research in Applied Science & Engineering Technology, vol. 4, pp.
387–392, Nov. 2016.

[104] S. Sollesnes August and A. Hollund, “Ideal-Pancake.” https://github.com/s0lvang/ide‐
al-pancake, May-2021.

[105] “MIT License.” https://www.mit.edu/~amini/LICENSE.md.

79

Appendix A: Appendix

A.1. Code

Our code is available at https://github.com/s0lvang/ideal-pancake under the MIT

License [105]. If there are any questions or bugs regarding the code, please open

an issue. The text of this thesis can be found at https://github.com/aslakhol/the‐

sis.

A.2. Density Plots

Figure 8 shows the density for all the values in the datasets and signals we use.

The data is normalized, as explained in Section 4.1.

Figure 8. Density plots per signal and dataset.

80

A.3. All Pipelines

Table 10. All 216 pipelines.

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

cscw emip ARMA LASSO 0.232 0.0076

cscw emip ARMA PCA 0.24 0.0078

cscw emip All LASSO 0.274 0.0079

cscw emip All PCA 0.233 0.008

cscw emip Fixation

Duration

LASSO 0.213 0.008

cscw emip Fixation

Duration

PCA 0.24 0.008

cscw emip GARCH LASSO 0.238 0.0081

cscw emip GARCH PCA 0.235 0.008

81

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

cscw emip Gaze

Character‐

istics

LASSO 0.215 0.0078

cscw emip Gaze

Character‐

istics

PCA 0.22 0.0078

cscw emip HMM LASSO 0.227 0.008

cscw emip HMM PCA 0.197 0.0076

cscw emip Heatmaps LASSO 0.206 0.0078

cscw emip Heatmaps PCA 0.23 0.0077

cscw emip LHIPA LASSO 0.262 0.0078

cscw emip LHIPA PCA 0.207 0.0079

cscw emip Pupil

Diameter

LASSO 0.186 0.0081

cscw emip Pupil

Diameter

PCA 0.245 0.008

82

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

cscw emip Saccade

Duration

LASSO 0.197 0.0079

cscw emip Saccade

Duration

PCA 0.203 0.0081

cscw emip Saccade

Length

LASSO 0.196 0.0081

cscw emip Saccade

Length

PCA 0.249 0.008

cscw emip Spectral

Histogram

LASSO 0.22 0.008

cscw emip Spectral

Histogram

PCA 0.232 0.0081

cscw fractions ARMA LASSO 0.202 0.0158

cscw fractions ARMA PCA 0.183 0.0137

cscw fractions All LASSO 0.205 0.0153

cscw fractions All PCA 0.248 0.0179

83

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

cscw fractions Fixation

Duration

LASSO 0.18 0.0139

cscw fractions Fixation

Duration

PCA 0.2 0.0146

cscw fractions GARCH LASSO 0.211 0.0144

cscw fractions GARCH PCA 0.209 0.0135

cscw fractions Gaze

Character‐

istics

LASSO 0.203 0.014

cscw fractions Gaze

Character‐

istics

PCA 0.191 0.0141

cscw fractions HMM LASSO 0.193 0.0149

cscw fractions HMM PCA 0.238 0.0161

cscw fractions Heatmaps LASSO 0.21 0.0147

cscw fractions Heatmaps PCA 0.191 0.0137

84

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

cscw fractions LHIPA LASSO 0.221 0.0152

cscw fractions LHIPA PCA 0.249 0.0171

cscw fractions Pupil

Diameter

LASSO 0.205 0.0155

cscw fractions Pupil

Diameter

PCA 0.239 0.0179

cscw fractions Saccade

Duration

LASSO 0.224 0.0156

cscw fractions Saccade

Duration

PCA 0.217 0.0163

cscw fractions Saccade

Length

LASSO 0.234 0.0144

cscw fractions Saccade

Length

PCA 0.222 0.0151

cscw fractions Spectral

Histogram

LASSO 0.184 0.0141

85

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

cscw fractions Spectral

Histogram

PCA 0.22 0.0161

emip cscw ARMA LASSO 0.323 0.0102

emip cscw ARMA PCA 0.326 0.0107

emip cscw All LASSO 0.354 0.0111

emip cscw All PCA 0.304 0.0106

emip cscw Fixation

Duration

LASSO 0.337 0.0102

emip cscw Fixation

Duration

PCA 0.285 0.0101

emip cscw GARCH LASSO 0.34 0.011

emip cscw GARCH PCA 0.294 0.0105

emip cscw Gaze

Character‐

istics

LASSO 0.327 0.0103

86

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

emip cscw Gaze

Character‐

istics

PCA 0.304 0.0099

emip cscw HMM LASSO 0.289 0.01

emip cscw HMM PCA 0.301 0.0105

emip cscw Heatmaps LASSO 0.353 0.0106

emip cscw Heatmaps PCA 0.311 0.0101

emip cscw LHIPA LASSO 0.307 0.0096

emip cscw LHIPA PCA 0.279 0.0103

emip cscw Pupil

Diameter

LASSO 0.249 0.0099

emip cscw Pupil

Diameter

PCA 0.35 0.0104

emip cscw Saccade

Duration

LASSO 0.335 0.01

87

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

emip cscw Saccade

Duration

PCA 0.317 0.0102

emip cscw Saccade

Length

LASSO 0.343 0.0106

emip cscw Saccade

Length

PCA 0.325 0.0109

emip cscw Spectral

Histogram

LASSO 0.319 0.0105

emip cscw Spectral

Histogram

PCA 0.378 0.0114

emip fractions ARMA LASSO 0.311 0.0164

emip fractions ARMA PCA 0.345 0.0158

emip fractions All LASSO 0.258 0.0125

emip fractions All PCA 0.348 0.0159

emip fractions Fixation

Duration

LASSO 0.336 0.0174

88

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

emip fractions Fixation

Duration

PCA 0.348 0.0176

emip fractions GARCH LASSO 0.32 0.0157

emip fractions GARCH PCA 0.299 0.0138

emip fractions Gaze

Character‐

istics

LASSO 0.335 0.017

emip fractions Gaze

Character‐

istics

PCA 0.312 0.0178

emip fractions HMM LASSO 0.287 0.017

emip fractions HMM PCA 0.368 0.0191

emip fractions Heatmaps LASSO 0.311 0.0165

emip fractions Heatmaps PCA 0.293 0.0151

emip fractions LHIPA LASSO 0.327 0.0127

89

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

emip fractions LHIPA PCA 0.287 0.0104

emip fractions Pupil

Diameter

LASSO 0.297 0.0124

emip fractions Pupil

Diameter

PCA 0.372 0.018

emip fractions Saccade

Duration

LASSO 0.336 0.0195

emip fractions Saccade

Duration

PCA 0.307 0.0158

emip fractions Saccade

Length

LASSO 0.355 0.0208

emip fractions Saccade

Length

PCA 0.34 0.0165

emip fractions Spectral

Histogram

LASSO 0.322 0.0172

emip fractions Spectral

Histogram

PCA 0.361 0.0171

90

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

emip_c‐

scw

fractions ARMA LASSO 0.29 0.01

emip_c‐

scw

fractions ARMA PCA 0.259 0.0093

emip_c‐

scw

fractions All LASSO 0.277 0.0117

emip_c‐

scw

fractions All PCA 0.274 0.0093

emip_c‐

scw

fractions Fixation

Duration

LASSO 0.258 0.0092

emip_c‐

scw

fractions Fixation

Duration

PCA 0.3 0.0123

emip_c‐

scw

fractions GARCH LASSO 0.246 0.009

emip_c‐

scw

fractions GARCH PCA 0.247 0.0081

91

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

emip_c‐

scw

fractions Gaze

Character‐

istics

LASSO 0.268 0.0102

emip_c‐

scw

fractions Gaze

Character‐

istics

PCA 0.306 0.0114

emip_c‐

scw

fractions HMM LASSO 0.277 0.0096

emip_c‐

scw

fractions HMM PCA 0.303 0.0107

emip_c‐

scw

fractions Heatmaps LASSO 0.284 0.0093

emip_c‐

scw

fractions Heatmaps PCA 0.295 0.0092

emip_c‐

scw

fractions LHIPA LASSO 0.279 0.0081

emip_c‐

scw

fractions LHIPA PCA 0.304 0.0115

92

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

emip_c‐

scw

fractions Pupil

Diameter

LASSO 0.288 0.0102

emip_c‐

scw

fractions Pupil

Diameter

PCA 0.323 0.0112

emip_c‐

scw

fractions Saccade

Duration

LASSO 0.267 0.0091

emip_c‐

scw

fractions Saccade

Duration

PCA 0.301 0.0124

emip_c‐

scw

fractions Saccade

Length

LASSO 0.287 0.0098

emip_c‐

scw

fractions Saccade

Length

PCA 0.295 0.01

emip_c‐

scw

fractions Spectral

Histogram

LASSO 0.261 0.0089

emip_c‐

scw

fractions Spectral

Histogram

PCA 0.309 0.0131

93

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fraction‐

s_emip

cscw ARMA LASSO 0.33 0.0099

fraction‐

s_emip

cscw ARMA PCA 0.278 0.0082

fraction‐

s_emip

cscw All LASSO 0.323 0.01

fraction‐

s_emip

cscw All PCA 0.323 0.0099

fraction‐

s_emip

cscw Fixation

Duration

LASSO 0.241 0.0084

fraction‐

s_emip

cscw Fixation

Duration

PCA 0.313 0.0102

fraction‐

s_emip

cscw GARCH LASSO 0.303 0.0093

fraction‐

s_emip

cscw GARCH PCA 0.288 0.0084

94

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fraction‐

s_emip

cscw Gaze

Character‐

istics

LASSO 0.316 0.0094

fraction‐

s_emip

cscw Gaze

Character‐

istics

PCA 0.295 0.0091

fraction‐

s_emip

cscw HMM LASSO 0.304 0.0098

fraction‐

s_emip

cscw HMM PCA 0.311 0.0091

fraction‐

s_emip

cscw Heatmaps LASSO 0.377 0.011

fraction‐

s_emip

cscw Heatmaps PCA 0.325 0.01

fraction‐

s_emip

cscw LHIPA LASSO 0.33 0.0095

fraction‐

s_emip

cscw LHIPA PCA 0.283 0.0096

95

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fraction‐

s_emip

cscw Pupil

Diameter

LASSO 0.295 0.0096

fraction‐

s_emip

cscw Pupil

Diameter

PCA 0.295 0.0097

fraction‐

s_emip

cscw Saccade

Duration

LASSO 0.33 0.0099

fraction‐

s_emip

cscw Saccade

Duration

PCA 0.324 0.0106

fraction‐

s_emip

cscw Saccade

Length

LASSO 0.303 0.0093

fraction‐

s_emip

cscw Saccade

Length

PCA 0.336 0.01

fraction‐

s_emip

cscw Spectral

Histogram

LASSO 0.278 0.0095

fraction‐

s_emip

cscw Spectral

Histogram

PCA 0.306 0.0103

fractions cscw ARMA LASSO 0.247 0.0127

96

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fractions cscw ARMA PCA 0.302 0.0127

fractions cscw All LASSO 0.266 0.013

fractions cscw All PCA 0.213 0.0128

fractions cscw Fixation

Duration

LASSO 0.283 0.0133

fractions cscw Fixation

Duration

PCA 0.23 0.0128

fractions cscw GARCH LASSO 0.252 0.0125

fractions cscw GARCH PCA 0.316 0.0126

fractions cscw Gaze

Character‐

istics

LASSO 0.174 0.0126

fractions cscw Gaze

Character‐

istics

PCA 0.181 0.0125

fractions cscw HMM LASSO 0.299 0.0129

97

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fractions cscw HMM PCA 0.314 0.0127

fractions cscw Heatmaps LASSO 0.212 0.0126

fractions cscw Heatmaps PCA 0.268 0.0124

fractions cscw LHIPA LASSO 0.204 0.0125

fractions cscw LHIPA PCA 0.324 0.0128

fractions cscw Pupil

Diameter

LASSO 0.243 0.0129

fractions cscw Pupil

Diameter

PCA 0.236 0.0128

fractions cscw Saccade

Duration

LASSO 0.269 0.0134

fractions cscw Saccade

Duration

PCA 0.322 0.0134

fractions cscw Saccade

Length

LASSO 0.246 0.0125

98

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fractions cscw Saccade

Length

PCA 0.175 0.0122

fractions cscw Spectral

Histogram

LASSO 0.216 0.0131

fractions cscw Spectral

Histogram

PCA 0.318 0.0128

fractions emip ARMA LASSO 0.331 0.0085

fractions emip ARMA PCA 0.266 0.0087

fractions emip All LASSO 0.246 0.0088

fractions emip All PCA 0.286 0.0087

fractions emip Fixation

Duration

LASSO 0.237 0.0088

fractions emip Fixation

Duration

PCA 0.271 0.0085

fractions emip GARCH LASSO 0.305 0.0087

99

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fractions emip GARCH PCA 0.277 0.0084

fractions emip Gaze

Character‐

istics

LASSO 0.3 0.0088

fractions emip Gaze

Character‐

istics

PCA 0.183 0.0089

fractions emip HMM LASSO 0.339 0.0088

fractions emip HMM PCA 0.294 0.0089

fractions emip Heatmaps LASSO 0.24 0.0089

fractions emip Heatmaps PCA 0.215 0.0086

fractions emip LHIPA LASSO 0.293 0.0085

fractions emip LHIPA PCA 0.278 0.0086

fractions emip Pupil

Diameter

LASSO 0.341 0.0088

100

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fractions emip Pupil

Diameter

PCA 0.327 0.0087

fractions emip Saccade

Duration

LASSO 0.295 0.0089

fractions emip Saccade

Duration

PCA 0.166 0.009

fractions emip Saccade

Length

LASSO 0.245 0.0087

fractions emip Saccade

Length

PCA 0.265 0.0089

fractions emip Spectral

Histogram

LASSO 0.221 0.0087

fractions emip Spectral

Histogram

PCA 0.229 0.0089

fraction‐

s_cscw

emip ARMA LASSO 0.254 0.0076

101

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fraction‐

s_cscw

emip ARMA PCA 0.285 0.0071

fraction‐

s_cscw

emip All LASSO 0.204 0.0078

fraction‐

s_cscw

emip All PCA 0.199 0.0074

fraction‐

s_cscw

emip Fixation

Duration

LASSO 0.243 0.0078

fraction‐

s_cscw

emip Fixation

Duration

PCA 0.256 0.0077

fraction‐

s_cscw

emip GARCH LASSO 0.227 0.007

fraction‐

s_cscw

emip GARCH PCA 0.274 0.0077

fraction‐

s_cscw

emip Gaze

Character‐

istics

LASSO 0.24 0.0075

102

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fraction‐

s_cscw

emip Gaze

Character‐

istics

PCA 0.254 0.0072

fraction‐

s_cscw

emip HMM LASSO 0.226 0.0078

fraction‐

s_cscw

emip HMM PCA 0.245 0.0074

fraction‐

s_cscw

emip Heatmaps LASSO 0.214 0.0077

fraction‐

s_cscw

emip Heatmaps PCA 0.226 0.0077

fraction‐

s_cscw

emip LHIPA LASSO 0.251 0.0074

fraction‐

s_cscw

emip LHIPA PCA 0.246 0.0077

fraction‐

s_cscw

emip Pupil

Diameter

LASSO 0.259 0.0077

103

In Study

Datasets

Out Of

Study

Dataset

Feature

Group

PCA or

LASSO

NRMSE FGI

fraction‐

s_cscw

emip Pupil

Diameter

PCA 0.251 0.0077

fraction‐

s_cscw

emip Saccade

Duration

LASSO 0.221 0.0077

fraction‐

s_cscw

emip Saccade

Duration

PCA 0.26 0.0076

fraction‐

s_cscw

emip Saccade

Length

LASSO 0.229 0.0077

fraction‐

s_cscw

emip Saccade

Length

PCA 0.245 0.0076

fraction‐

s_cscw

emip Spectral

Histogram

LASSO 0.212 0.0074

fraction‐

s_cscw

emip Spectral

Histogram

PCA 0.26 0.0076

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aslak H
ollund and August Sollesnes Solvang

Aslak Hollund and August Sollesnes Solvang

Engineering Generalizable Features
for Cognitive Performance from Eye-
Tracking Data Through Machine
Learning

Master’s thesis in Informatics
Supervisor: Michail Giannakos
Co-supervisor: Kshitij Sharma

June 2021

M
as

te
r’s

 th
es

is

