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ABSTRACT

Abstract

The demand for electrical power and the share of distributed renewable energy pro-
duction is increasing. These changes are straining the grid by causing a demand for
higher grid capacities, which in turn requires costly grid investments. As a response
to this issue, the interest in local energy communities with shared battery energy stor-
age systems is increasing. With shared storage, the community power peak can be
reduced, relieving the stress on the external grid. However, the realisation of local
energy communities is facing a variety of regulatory barriers.

This thesis seeks to investigate the benefit of shared battery energy storage systems
for community peak shaving, cost reduction and self-consumption of locally produced
energy for commercial buildings. The optimal scheduling of the battery is solved with a
two-stage stochastic linear programme implemented with a receding horizon optimisa-
tion approach that considers monthly measured peak tariffs. The optimisation model
is applied to a Norwegian case study with six different configurations for battery alloc-
ation within a local energy community. The case study includes configurations with
both joint and individual metering. The model is tested for three different months;
January, March and June.

As it is the only configuration with direct incentives for community peak reduction,
the shared battery energy storage system with joint metering outperforms all other
configurations. The community power peak was reduced by 7-11% and the total system
costs by 10-20%, depending on the season. Shared storage within a local energy market
where the participants are metered individually is revealed to perform almost equally
well. The community power peak was reduced by 2-8%, and total costs were reduced
by 6-17%. The self-consumption was increased by an additional 45-46% in June for all
configurations that included a shared battery energy storage system.

The main results show that there is a significant community benefit for shared battery
energy storage systems considering peak shaving, self-consumption and monetary sav-
ings. Although shared storage with joint metering faces regulatory limitations, shared
storage within local energy communities with individual metering proves to be a good
alternative. It is therefore concluded that adaptation of current regulations to local
energy communities with shared battery energy storage systems should be considered.
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SAMMENDRAG

Sammendrag

Forbruket av elektrisk kraft og mengden distribuert produksjon av fornybar energi
øker. Disse endringene fører til et behov for økt overføringskapasitet i kraftnettet, noe
som igjen krever kostbare nettinvesteringer. Med bakgrunn i denne problemstillingen
øker interessen for lokale energisamfunn med felles batterilagringssystemer. Med felles
batterilagringssystemer kan den totale effekttoppen til energisamfunnet reduseres og
dermed avlaste det eksterne distribusjonsnettet. Realiseringen av lokale energisamfunn
står imidlertid overfor en rekke regulatoriske barrierer.

Denne oppgaven undersøker hvorvidt felles batterilagringssystemer for kommersielle
bygninger kan bidra til å redusere effekttopper og totale kostnader, samt øke forbruket
av lokalt produsert energi. En stokastisk to-stegs modell kombinert med en receding
horizon optimeringsmetode har blitt utviklet for å optimalisere driften av batteriet.
Modellen har blitt brukt i en case-studie som tar for seg seks ulike konfigurasjoner for
plassering av et felles batteri innen et lokalt energisamfunn i Norge. Studien baserer
seg på bruk av månedlige effekttariffer og inkluderer konfigurasjoner med både felles
og individuell måling av byggene. Modellen ble testet for både januar, mars og juni.

Ettersom det er den eneste konfigurasjonen med direkte insentiver for reduksjon av
totale effekttopper, gir felles batterilagringssystemer med felles måling for alle bygg
klart best resultater. Den totale effekttoppen ble redusert med 7-11 % og de totale kost-
nadene ble redusert med 10-20 %, avhengig av sesong. Felles batterilagringssystemer
i et lokalt energimarked hvor deltakerne måles individuelt, viser også svært lovende
resultater. Den totale effekttoppen ble redusert med 2-8 %, og de totale kostnadene
med 6-17 %. Forbruket av lokalt produsert energi ble i juni økt med ytterligere 45-46
% for alle konfigurasjoner som inkluderte et delt batterilagringssystem.

Hovedresultatene viser at felles batterilagringssystemer kan bidra betydelig til kostnad-
sreduksjoner, reduksjon av effekttopper og økt forbruk av lokalt produsert energi. Til
tross for at mulighetene for felles batterilagringssystemer med felles måling begrenses
av nåværende reguleringer, viser det seg at tilsvarende systemer med individuell måling
er et godt alternativ. Dermed konkluderes det med at tilpasning av nåværende reg-
uleringer til lokale energisamfunn med felles batterilagringssystemer bør tas opp til
vurdering.
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ABBREVIATIONS

Abbreviations

BESS Battery Energy Storage System

BTM Behind the Meter

DER Distributed Energy Resources

DSO Distribution System Operator

LEC Local Energy Community

LP Linear Programme

MP Measured Peak

NVE The Norwegian Water Resources and Energy Directorate

PV Photovoltaic

RH Receding Horizon

RHO Receding Horizon Optimisation

RMSE Root Mean Square Error

s-BESS Shared Battery Energy Storage System

ToU Time-of-use
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NOMENCLATURE

Nomenclature

Sets Emax: Maximum energy storage capacity

S: Set of all possible scenarios of the battery

B: Set of buildings in the community Kmax: Maximum charge and discharge

H: Set of remaining hours of the month capacity of the battery

H1: Subset of H containing all hours in ηcha: Charging efficiency of the battery

the first stage/prediction horizon of ηdch: Discharging efficiency of the battery

the stochastic problem S0: Initial stored energy in the battery before

H2: Subset of H containing all hours in the first hour in the analysis period

the second stage stochastic problem Sf : Stored energy in the battery at the

Indices final hour of the analysis period

s: A scenario s in set S πs: The probability of scenario s

h: An hour h in set H Rprod
h,b : The real production in hour h by

l: The first hour in set H building b revealed in the

f: The final hour in set H first stage/prediction horizon

b: A building in set B Rcons
h,b : The real consumption in hour h for

k: The building in set B operating building b revealed in the

an individual battery first stage problem/prediction horizon

Deterministic parameters P sys: The highest power peak for the total

CE
h : The energy spot price in hour h system stored from past iterations of

paid to the power retailer [NOK/kWh] the receding horizon algorithm

CP : The peak power price paid to P building
b : The highest power peak for building b

the DSO [NOK/kWh/h] stored from past iterations of

CV : The volumetric costs paid to receding horizon algorithm

the DSO [NOK/kWh] P battery : The highest power peak for the battery

CF : The fixed cost paid to stored from past iterations of the

the DSO [NOK/month] receding horizon algorithm
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NOMENCLATURE

Stochastic parameters ∆psyss : The additional power for reaching the

Dcons
h,b,s: Consumption in hour h at building b in predicted maximum peak in scenario s

scenario s in the second stage hours for the remaining hours of the analysis

Dprod
h,b,s: Production for hour h at building b in period

scenario s in the second stage hours ∆pbuilding
b,s : The additional power for reaching the

predicted maximum peak for building b

Decision variables in scenario s

pGimp
h,s : Power imported from grid in hour h ∆pbatterys : The additional power for reaching the

for scenario s predicted maximum peak for the battery

pGexp
h,s : Power exported to grid in hour h in scenario s

for scenario s eh,s: The energy stored in the battery in hour h

bGimp
h,b,s : Power imported from grid to building b for scenario s

in hour h for scenario s xchah,s : Power consumed by the battery at hour h

bGexp
h,b,s : Power exported to grid from building b in scenario s

in hour h for scenario s xdchh,s : Power delivered by the battery at hour h

bLimp
h,b,s : Power imported from local energy in scenario s

market to building b in hour h for xLcha
h,s : Power consumed from local energy market

scenario s for charging the battery in hour h

bLexp
h,b,s : Power exported to local energy market for scenario s

from building b in hour h for scenario s xLdch
h,s : Power delivered to the local energy market

for discharging the battery in hour h

for scenario s
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1 | Introduction

1.1 Motivation

The power system is experiencing an increase in electricity demand and share of dis-
tributed renewable and intermittent energy production. These changes are straining
the grid by causing large power peaks, potentially leading to a need for large grid in-
vestments in expansions and improvements. Batteries are key enablers in tackling this
change. Batteries have the potential to reduce power peaks and thereby enable higher
consumption than offered by the grid capacity [1]. The ability to store energy also en-
courages increased energy efficiency by increased self-sufficiency and self-consumption
of distributed renewable production. Self-sufficiency is defined as the share of con-
sumption which is covered by local production, and self-consumption is the share of
local production which is consumed within the building or system [2]. A report by
The Norwegian Water Resources and Energy Directorate (NVE), clearly states that
batteries will become a natural part of the grid structure as an important component
in the future renewable power system [3].

A report commissioned by NVE on local energy communities (LECs), states that the
interest in local energy communities, where a community has a collective ownership
of storage units, is increasing [4]. The report presents two key motivations for local
energy communities; postponing grid investments and adding value for property own-
ers. Postponement of grid investments typically implies reducing power peaks, while
increased self-sufficiency is targeted when aiming for added value for property owners.

The concept of local energy communities is still a novel phenomenon, making it hard to
provide an explicit definition of what qualifies as a local energy community. Based on
the motivation presented in the two previous paragraphs, this thesis will focus on local
energy communities in the form of shared battery energy storage systems (s-BESS).
More specifically, shared battery energy storage systems for commercial buildings will
be targeted. Commercial buildings in Norway are subject to monthly measured peak
(MP) grid tariffs, which provide economical incentives for the end users to reduce their
monthly power peaks. Together with large energy consumption and high power peaks,
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1.2. OBJECTIVE

commercial buildings therefore serve as an interesting use case for shared battery energy
storage systems.

It is reasonable to assume that some of the activities normally addressed by the distri-
bution system operator (DSO), would be undertaken by the local energy community
in order to enable a practical solution for the operation strategy of the shared battery
energy storage systems. However, this creates several potential regulatory barriers for
local energy communities. Current regulations do not allow joint metering for buildings
that do not belong to the same legal entity [5]. Even so, the project preceding this
master’s thesis revealed that with joint metering for all members, shared battery en-
ergy storage systems for commercial buildings has the potential to reduce both power
peaks and total costs for the community [6].

1.2 Objective

Based on the aforementioned report on LECs and current regulatory barriers, the main
objective of this thesis is to investigate the potential benefits of shared battery energy
storage systems within the Norwegian distribution system, by considering various con-
figurations for battery placement within the local energy community. This thesis will
investigate how common cost, and and consequently power peaks (due to the MP tariff
model), can be reduced. The thesis will also analyse how this contributes to increased
utilisation of locally produced energy.

1.2.1 Approach

Based on current regulations, different configurations for battery placement within the
local energy community will be developed. The configurations are intended to illustrate
what the authors consider plausible strategic solutions for shared battery energy storage
systems, based on current regulations and licensing regimes. It is assumed that a local
energy market structure must be established to enable efficient management of the
shared battery energy storage system. However, the feasibility of these configurations
within the current regulatory regime is not thoroughly investigated.

With respect to each configuration, the optimal scheduling of the shared battery energy
storage system is formulated as a stochastic linear program (LP) with a receding ho-
rizon (RH) approach. The mathematical problem is modelled using the Python-based
optimisation modelling language, Pyomo 5.7. Statistical theory of time series analysis
and forecasting will be applied to develop autoregressive models to generate scenarios
for consumption and local production. The generated scenarios will then be reduced to
a reasonable amount using SCENRED and incorporated in the optimisation problem.
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1.2. OBJECTIVE

The presented strategy will be used to perform a real life Norwegian case study on
shared battery energy storage systems and a sensitivity analysis on the impact of the
peak tariff on system scheduling.

1.2.2 Contributions

The contributions of this thesis are:

• The development of an RH optimisation model for shared commercial community
under the influence of long-term capacity-based grid tariffs.

• Quantified gains of shared battery energy storage solutions for urban area com-
mercial buildings compared to configurations in line with regulatory regimes.

• A socio-economic perspective on the benefits of s-BESS for commercial buildings.

1.2.3 Limitations

The configurations for shared battery energy storage systems presented in this thesis
will be inspired by what is considered plausible in terms of adaptability to current
regulations, with the intention of illustrating the differences between the configurations.
To ensure that this is done efficiently, this thesis will not consider the actual pricing
model for local energy markets, but assume that power can flow freely within the local
energy market. Hence, neither export or import within the local energy community
will be subject to grid costs or energy market prices.
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1.3. STRUCTURE

1.3 Structure

The remainder of this thesis is structured as follows

Chapter 2 Framework: Provides insight into relevant subjects within shared battery
energy storage systems, local energy markets and regulations for the Norwegian power
system. A literature review on previous research of shared battery energy storage sys-
tems will be presented.

Chapter 3 Optimisation and Scenario Modelling: Gives a brief introduction to stochastic
linear programming and a presents the concept of receding horizon optimisation to-
gether with a literature review on previous research within relevant application areas.
The second part of the chapter presents relevant theory on time series analysis for data
forecasting, scenario generation and scenario reduction.

Chapter 4 Problem Formulation: Presents the underlying procedure for the analysis of
this thesis. The configurations for shared battery energy storage systems developed for
the analysis are presented. Further specifications of the receding horizon optimisation
approach applied for these systems are given, and finally the stochastic LP programme
is presented.

Chapter 5 Case Study: Presents the area and commercial buildings used for this study
together with a description of the battery that has been modelled. An introduction to
the grid tariff pricing model and spot prices of the analysis period is given, followed by
the framework for the case study with a presentation of the cases, each representing a
configuration for shared battery energy storage.

Chapter 6 Scenario Modelling: The methodology for scenario modelling based on the
uncertain variables of the case study is presented together with the resulting autore-
gressive functions for scenario generation. A description of the scenario generation and
reduction process is given, together with an analysis of solution stability and optimal
amount of generated and reduced scenarios for the case study.

Chapter 7 Results: Presents and analyse the results from the case study.

Chapter 8 Discussion: Presents a discussion on the main findings from the results,
with emphasis on battery scheduling, peak shaving, cost reductions and self-sufficiency
and self-consumption.

Chapter 9 Concluding Remarks: Concludes and summarises the key findings of this
study together with suggestions for further work.
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2 | Framework

This Chapter presents the relevant conceptual framework for this thesis regarding stor-
age technologies, local energy communities and associated regulations.

For the content in Section 2.1, 2.2 and 2.4 the identification of the relevant background
material were carried out in the project preceding this thesis[6]. The sections have been
reviewed and modified in line with the thesis’ objective and amended with discussions
of a few papers that have been studied after the project.

2.1 Batteries

The increased integration of variable renewable energy sources such as solar and wind
power poses a challenge to the balancing of energy production and demand. Battery
energy storage technology has emerged as an enabling technology to tackle the inter-
mittency of renewable energy sources [7]. Battery storage, stationary in particular,
enables both reduced curtailment of renewable energy and can provide other services
to the grid such as frequency regulation. There exists a number of different battery
chemistry technologies, but the Li-ion battery has the largest share of market growth
[8].

Battery cycle life is a function of discharge rate and depth and is the number of
charge/discharge cycles a battery can achieve before failing to meet a certain per-
formance criteria. Cycle life is estimated based on predetermined charge and discharge
conditions. In fact, battery degradation is greatly affected by the battery operation
and actual operating life is largely dependent on discharge rate and depth. If operated
too vigorously the battery lifetime will be reduced [9].

Owing to an increasing industry and demand, Li-ion battery prices have plummeted,
experiencing a price drop of 87% from 2010 to 2019 [10]. The Norwegian market
for stationary battery storage has not fully matured, but costs in the range of 4000-
6000NOK/kWh have been registered [11].
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BUILDINGS

2.2 Shared Battery Energy Storage Systems for Com-
mercial Buildings

Batteries can reduce overall grid costs in different grid tariff regimes. A number of pa-
pers have specifically studied the integration of battery energy storage system(BESS)
in commercial buildings. Tiemann et al. evaluate the cost efficiency of BESS imple-
mentation for grid fee reduction in commercial buildings. One of the grid fees used in
this case study correspond to the MP tariff, and with this tariff a maximum grid power
reduction of 10% is obtained for most cases [12]. Sepúlveda-Mora et al. mainly focus on
the economic value of behind the meter(BTM) photovoltaics(PV) coupled with battery
storage (PV-BESS) subject to a time-of-use(ToU) rate as opposed to a standard MP
tariff. However, they also state that the battery also provides a significant peak shaving
effect with the MP tariff [13]. Similar peak shaving effects are expected with the MP
tariff that will be used in this thesis. A ToU rate refers to a grid tariff where charges are
higher during peak hours and lower during off-peak hours, whereas MP tariffs charge
the highest peak during a selected interval (usually 1 month). Meinrenken et al. also
consider a ToU tariff while investigating the value of concurrently optimising thermal
and battery storage in an office building [14]. The study finds that concurrent demand
side management(DSM) is the most effective approach, but it also obtains an electric
cost reduction of 6.5% with battery storage alone. They reason that tariffs with de-
mand charges are effective incentives for smarter grid operation [14]. This conclusion
will be continued and is assumed to apply for the case study of this thesis as well.

Berglund et al. present a mixed-integer linear program (MILP) based optimisation
model for battery storage implementation into an existing grid-connected PV integ-
rated system. They focus on minimising the cost of both battery degradation and
peak power, and they also perform sensitivity analyses over a single month interval on
important system parameters [15]. Wang et al. develop a two-stage stochastic pro-
gram for demand side management for cost optimisation in a commercial building with
integrated PV and both stationary and mobile (i.e. electric vehicles) battery storage.
The study finds that the stochastic model outperforms the deterministic counterpart
[16]. All of the aforementioned papers seek to reduce electricity costs for commercial
buildings in their analyses, however, none of them mentions the possibility of shared
battery energy storage systems.

Shared battery energy storage systems have the potential of reducing community elec-
tricity costs. It can be a reasonable solution for communities where investment in
individual storage is considered too expensive. Moreover, shared storage can decrease
the peak power of the community as a whole. There exists a considerable volume of lit-
erature dedicated to shared battery energy storage systems(s-BESS) in the residential
sector. Keck and Lenzen conduct a thorough Australian case study on the benefits of
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s-BESS and its main enablers [17]. Some studies, such as those of Oh and Son, Roberts
et al. and Syed et al., target the use of s-ESS in apartment buildings, motivated by
the potential monetary savings by BESS integration and the typical lack of space for
individual storage systems in these complexes [18][19][20]. The two latter studies also
consider PV-BESS systems and report increased self-sufficiency by BESS integration.
Such an increase is also expected for the results of this thesis, though the magnitudes
are unknown.

Several other papers also focus on residential areas for s-BESS integration with single
family homes. The following literature consider prosumers with integrated PV systems
and generally include some parameters to ensure fair allocation of the profit between
the users based on their usage of the s-BESS. However, all of the studies assume possib-
ilities for local production with each building. Zhu and Ouahada propose a centralised
and distributed real-time sharing control algorithm, taking into account the stochastic
nature of PV production and load demand of the prosumers. Their aim is to minimise
the long term time-averaged costs of all households [21][22]. Boulaire et al. compare
the benefits of shared versus individual battery storage based on residential dwellings
by means of a custom-developed simulation software. They present a customer as-
sessment based on operational costs, and a network assessment considering the power
consumption among other variables [23]. With a similar agenda, Walker and Kwon pro-
pose optimisation models for optimal daily storage operations of individual and shared
energy storage systems. The results are used to compare the two storage strategies
economically and operationally [24]. The case study in this thesis will unveil weather
similar results for cost reduction as in these papers can be obtained when considering
shared storage for buildings with different possibilities for local production.

Taşcıkaraoğlu presents an optimisation algorithm for a s-BESS in a residential area
with installed PV, that aims to minimise total neighbourhood energy costs while con-
sidering fair distribution of the profit between households [25]. The study conducted
by Taşcıkaraoğlu can be considered a continuation of the works of Rahbar et al., how-
ever, the case study of Rahbar et al. consider three differently classified users, one an
apartment building, the other a medium sized office and the last a restaurant [26]. To
the authors’ knowledge, this makes Rahbar et al. stand out as one of the few stud-
ies including s-BESS for commercial buildings. Although comparing slightly different
systems, it will therefore be interesting to use their results for verification of the ones
obtained in the case study of this thesis. Oh and Son also investigate the use of s-
BESS in commercial buildings and propose a s-BESS service model and strategy for
apartment-type factory buildings [27]. They define apartment-type factory buildings
as as "[...]a complex of multiple individually owned small factories and/or offices" [27].
Their study includes a considerable number of units which summarises to a large total
consumption which provided interesting insight into s-BESS for commercial buildings.
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2.3 Local Energy Markets

A local energy market(LEM) is a group of loads, energy storage units and distributed
energy generators within a geographically limited area with a provided market plat-
form for trading of locally produced energy and consumer flexibility [28]. The low
voltage distribution network is not designed to support the increase of distributed en-
ergy resources (DER), like PV panels, and the penetration of electric vehicles (EVs) are
posing challenges regarding energy transition and congestion [29][30]. Several studies
has shown that local energy markets can improve the capacity of distribution grids
to adapt to local power generation, increase energy efficiency, reduce congestion and
reduce consumer costs [29][30][31].

Mengelkamp et al. investigated the role of energy storage in local energy markets
[28]. The simulation study created an optimisation model for a peer-to-peer energy
market with the objective to minimise the overall costs. The model was used for
a community microgrid for residential buildings with distributed PV generation. The
study compared local energy market with and without energy storage, and showed that
self-consumption was increased by 38.7% when energy storage was integrated within
the LEM. In addition, simulation results indicated that local energy markets can be
economically profitable under the assumption of scalable electricity taxes and fees [28].

Many local energy and flexibility market projects are research projects and pilots as
local energy and flexibility markets are all new developments and consequently relat-
ively immature [4]. One example of an international case study is the Cornwall Local
Energy Market in the United Kingdom finalised in November 2020 [4][32]. The project
successfully managed to accommodate increasing renewable generation, reduce carbon
emissions and increase monetary benefit from flexible energy resources [32]. In Norway,
the maturity level of Norwegian local energy communities varies greatly [4]. A com-
menced smart city project in Trondheim called +CityxChange includes local energy
and flexibility markets. The project aims to engage citizens and companies within the
community to create a sustainable and energy positive city [33].

2.4 Regulations for the Norwegian Power System

The Norwegian Energy Regulatory Authority(NVE-RME) is the national regulator for
the power market and grid transmission system in Norway, with their regulatory power
delegated by the Norwegian Energy Act [34][35]. In general, RME seeks to promote
effective energy production, consumption, transmission and trading [35]. The grid
companies’ regional monopolies are regulated by not only securing safe and effective
operation, but also by limiting their profit by setting and upper limit on annual income
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[35]. In addition to regulating the grid companies, RME also regulates the electricity
market by ensuring well-functioning and effective trading [35]. The following sections
uderlines RME’s regulations regarding the Norwegian pricing model, energy metering
and local energy markets which is relevant for this master thesis.

2.4.1 The Norwegian Pricing Model

Norway’s retailer market is separated between the competition oriented power produ-
cers, which the end users are trading power with, and the monopoly regulated grid
companies who are responsible for power transmission [36]. The grid grid companies,
also referred to as distribution system operators (DSOs), are issuing an invoice for
transmission called the grid tariff. In order to buy electricity, a customer will make a
contract with both a grid operator and a power retailer [37].

2.4.1.1 The Power Retailers’ Supply Agreements

The consumers are free to choose its power retailer, which is responsible for buying
electricity from the electricity market on the customer’s behalf. If the consumer has a
contractual agreement based on market price, the hourly consumption will be measured
and billed according to the spot price with an additional surcharge and/or monthly
fixed cost [37]. The hourly spot price, given in NOK/MWh, is given by Nord Pool
[37][38], which is the physical marketplace for power suppliers and retailers [37][39].
With hourly spot price deals the consumer has a great possibility to affect its electricity
bill by shifting or reducing its consumption to other times of the day where the spot
price is cheaper [37].

2.4.1.2 Grid Tariff

Energy consumers pay a grid tariff to the distribution system operators (DSO) for the
transmission of the power bought by the power retailers to their home or business.
The grid tariff revenue should cover costs for operation and maintenance, given that
the grid is operated efficiently. Each DSO in Norway determines the grid tariff for
the customers in their concession area in line with RME’s tariff design and total tariff
revenue regulations [40].

According to RME, there are a few components to the grid tariff that affect the total
electricity costs. The volumetric costs are supposed to reflect the customer’s utilisation
of the grid, and is therefore based on the customers total energy consumption for the
billing month. Another component is the power tariff, which is often based on the
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maximum measured power peak over a defined billing period. The DSOs can choose
not to add this cost to the consumers’ tariff, or just add it to certain customer groups
based on grid utilisation. The maximum peak (MP) tariff is often paid by commercial
actors, but they can be implemented for residential buildings as well. The fixed tariff
is defined as an annual monetary tariff that customers connected to the grid must pay
in order to cover the operational costs of the power transmission system [41].

In addition to the grid companies’ tariffs there are governmental fees, consumption tax,
Value Added Tax (VAT) and surcharge to Enova’s energy fund [41].

2.4.1.3 Prosumers

Prosumers are a special group of the DSO’s customers that both consume and produce
electricity. The excess power production of a prosumer can not be sold to other end
users directly, and participation in the wholesale market is not allowed. Instead, the
prosumer must sell the excess power to its power retailer as long as the sold power
does not reach above 100kW. Prosumers do not pay the fixed grid tariff for exporting
power as power producers do, and the export and import can be measured from the
same meter [42].

2.4.1.4 Proposal Regarding New Grid Tariffs

Today, the grid tariff does not reflect the actual costs for operating the power transmis-
sion system, as the consumption-based volumetric costs for private households stands
for 70% of the grid tariff while only 10-20% are direct costs related to energy consump-
tion. As most of the DSOs costs are related to high power peaks, RME has proposed
a new grid tariff pricing model that would give the end-users incentives to reduce their
power peaks and their overall power consumption on a long-term basis. This will lead
to a more even utilisation of the grid which again provides the DSO with additional
capacity to expand the number of customer affiliations without further unnecessary
and expensive grid expansions [43].

2.4.2 Individual and Joint Metering

Essentially, each customer’s energy and power consumption must be measured and
billed individually. This is because customers with joint metering, sharing one electri-
city bill, do not have to same legal rights considering the quality of supply, metering
and cost settlement on the same terms individual metered customers. In addition, joint
metering will lead to less customers to distribute the DSO’s fixed costs between, which
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again causes a higher grid tariff for the other customers within the DSO’s concession
area. According to RME, individual metering gives an incentive for increasing the en-
ergy efficiency as the individual customers have a greater incentive for responding to
the energy price variations [5].

However, there is an exemption for this regulation for commercial and private customers
where individual metering of consumption will give unreasonable costs [5]. For such
cases the buildings can be billed and metered per common intake line [5][44]. To give
a relevant example, the renters within an office building can be measured and charged
as one, while two neighbouring office buildings with separate intake lines must pay
separate electricity bills.

2.4.3 Local Energy Markets

Paragraph 4-5 of the Energy Act regarding organised marketplaces says that without
concession from RME, no other than the government can undertake the organisation
or operation of a marketplace for electrical energy turnover [34]. There are other regu-
latory limitations considering the Energy Act and its underlying secondary legislation
in addition to general Consumer Protection Legislation [4]. However, they will not be
considered in detail for this thesis. A commissioned report from NVE states that in
order to secure innovation, a standardised process for grating of temporary dispensa-
tions for such regulations should be given to local energy community research projects
and pilots [4][45].
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3 | Optimisation and scenario model-
ling

This chapter presents the basic principles of optimisation and stochastic linear pro-
gramming. An introduction to time series analysis will follow, describing how these
methods can be utilised for scenario generation to model the uncertainty associated
with stochastic programs.

3.1 Optimisation Models

An optimisation model is a mathematical problem formulation which seeks to minimise
or maximise an objective function that is subject to one or more constraints. This thesis
will focus on linear programs (LP). Typically, linear programs search for a minimal-cost
solution with respect to some demand requirement. Deterministic linear programs can
be described, in matrix form, as shown in equation (3.1) [46].

min z = cTx (3.1)

s.t. Ax = b,

x ≥ 0

x is a vector of decision variables, z describes the objective function, whereas c, A and
b are known data.

3.1.1 Stochastic Programming

Stochastic linear programs are linear programs where some program data is considered
uncertain. This data is represented as random variables and described by corresponding
probability measures. The value of the random variables can only be known after
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information about them is obtained. Due to the uncertainty of the random variables,
the set of decisions is divided into two groups. In the first-stage all decisions that must
be made prior to receiving new information are made. In the second-stage, all decisions
that can be taken after receiving new information are made. The second-stage decisions
are a function of the first-stage decision and the new information [46].

3.1.1.1 The Two-Stage Stochastic Program

The two-stage stochastic program with fixed recourse is a well known stochastic pro-
gram. First-stage decisions are made in the first stage, then decisions are updated or
corrected in the second stage by second-stage actions, commonly referred to as recourse
actions. For the formulation of the stochastic two-stage problem the reader is referred
to Birge and Louveaux [46]. Assuming there are S outcomes(scenarios) and that ps is
the probability of outcome s, the second-stage problem can be reformulated to build
a deterministic equivalent of the stochastic problem as shown in equation (3.2). This
enables easier handling of the stochastic problem.

min z = cTx+
S∑

s=1

psq(s)
Tys (3.2)

s.t. Ax = b

x ≥ 0

Wys = h(s)− T (s)x s = 1, ..., S

ys ≥ 0 s = 1, ..., S

x denotes the first-stage decisions and y denotes the second-stage variables, representing
the ability to correct the first-stage decisions. q(s), h(s) and T (s) represents second-
stage data.

Scenario trees are a common way to describe the information flow in stochastic pro-
grams. They also provide a good presentation of the problem structure. The scenario
tree branches out for every uncertain parameter to create one branch per possible out-
come. There can be several time periods within each stage. Each path through the
tree is called a scenario and describes a deterministic sequence of events [47]. The in-
formation flow links the scenarios, all decisions that are based on the same information
must be equal for all scenarios. These restrictions are referred to as non-anticipativity
constraints. A simple illustration of a typical scenario tree is shown in Figure 3.1.
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Figure 3.1: Illustration of the general structure of scenario trees. The bold line repres-
ents one scenario.

3.1.2 Receding Horizon Optimisation

Rolling horizon algorithms have been applied to many scheduling problems and are of-
ten used to solve such problems under uncertainty or large-scale optimisation problems.
They have become important in energy system operation because of the uncertainty of
demand and intermittent renewable production during optimal scheduling [48]. Rolling
horizon models offer a flexible solution strategy for optimisation problems by updating
system data and allowing rescheduling within each time step. There exists different
methods of rolling horizon optimisation. This thesis will adopt a receding horizon
framework, which differs from that of rolling horizon in the sense that the size of the
scheduling horizon is reduced by each iteration.

The receding horizon approach is used for optimal scheduling within a specific time
horizon and allows for an iterative solution method to handle the nature of uncertainty
more delicately. The receding horizon framework used in this thesis is based on the
approach presented by Kopanos et al. [49]. The approach considers a scheduling
horizon (SH) that is decomposed into equally sized time intervals, and a given control
horizon (CH) and prediction horizon (PH). The control horizon defines the time period
in which the optimal scheduling is solved and is usually the length of one time step. The
prediction horizon contains data of future time steps that can be considered known with
some certainty. The length of the prediction horizon depends on the specific problem
and to which extent system data of future time steps can be considered reasonably
accurate.

The basic concept of receding horizon optimisation is that for each control horizon the
system operation is optimised with respect to the data within the prediction horizon.
The solution is saved and the value of the decision variables are used as initial conditions
for the next time step. The algorithm continues to "roll" onward to the next time
step where the prediction horizon is updated with new information. The optimal
scheduling is re-solved using data from the last optimisation, and so the algorithm
continues throughout the scheduling horizon. Figure 3.2 illustrates the receding horizon
approach.
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Figure 3.2: Illustration of a receding horizon framework.

A number of works implement a rolling horizon approach for the optimal management
of microgrids. Although pursuing a slightly different objective, many of the principles
applied in these papers are transferable to the monthly optimal scheduling of a shared
battery energy storage system with respect to total costs for the end-users. Silvente et
al. apply rolling horizon methodology for the simultaneous management of energy pro-
duction and demand within a microgrid. They highlight that the solution of the overall
problem potentially could be suboptimal as future information outside the prediction
horizon is not taken into account. They also consider the data within the prediction
horizon deterministic and conclude that longer prediction horizons contribute to signi-
ficantly reduce the imported power from the external grid and consequently increase
profits [50]. However, there is a trade off between the length of the prediction horizon
and computational time [51]. The methodology of Silvente et al. is considered to be
highly relevant for the receding horizon framework that will be implemented for the
optimisation model in this thesis.

Elkazaz et al. applies a two stage rolling horizon technique for optimal operation
of a battery energy storage system within a microgrid. Their sole objective is to
minimise the daily costs of energy drawn from the grid while also investigating the
impact on self-consumption of renewable energy sources. They conclude that the model
effectively reduces the daily cost of energy imported from the main grid, and increases
self-consumption within the microgrid [52]. Due to their simple objective, the results
of Elkazaz et al. can easily be compared with and used as a verification method for
some of the cases in this thesis.
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Due to their implementation of relevant methods for modelling uncertainty within a
receding horizon framework the following papers have also been investigated. Both Gao
et al. and Yang et al. consider the information in the prediction horizon uncertain
and utilise an autoregressive integrated moving average (ARIMA) model to forecast
data [53][54]. The latter also presents a mixed receding horizon control strategy that
successfully applies both short-term and long-term forecasting within the prediction
horizon [54]. Silvente et al. introduce a two-stage stochastic mixed integer linear pro-
gramme into a rolling horizon approach for the optimal management of a microgrid.
Hence, the model is solved under predicted conditions. They derive that the precense
of uncertainty can increase operational costs by 19.6%, and conclude that longer pre-
diction horizons, assuming precise predictions of the uncertain variables, are favourable
[55].

3.2 Time Series Analysis and Forecasting

Statistics Norway define time series as a sequence of observations at successive points
in time over a period of time [56]. This section will introduce basic concepts of time
series analysis and autoregressive processes as a tool for time series forecasting.

A time series can be either additive or multiplicative [57] depending on its properties.
The decomposition of a time series based on its type is commonly represented as
presented in equations (3.3) and (3.4).

yt = St + Tt +Rt (3.3)

yt = St · Tt ·Rt (3.4)

At time step t, yt is the forecasting variable, St is the seasonal component, Tt is the
trend component and Rt is the residual component consisting of a base level and error
term.

3.2.1 Time Series Analysis

The following section will introduce relevant aspects of time series analysis. Time
series analysis is a necessary step to enable time series forecasting. The process unveils
characteristics of the time series that determine how the data should be handled to
ensure accurate forecasting.
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3.2.1.1 Autocorrelation

Autocorrelation is the correlation of a variable with a former value of itself, also referred
to as lags [57]. It is the similarity between observations as a function of the time lag
between them [58]. Autocorrelation plots(correlograms) are therefore a valuable tool
for identifying correlation with time lags. Partial autocorrelation plots illustrate the
direct correlation between a specific lag, without the influence of previous lags, and
the observation [59]. This is useful for time series forecasting when determining if lags
are to be used in a regression model. An illustration of a typical autocorrelation plot
with the corresponding partial autocorrelation plot is shown in Figure 3.3.

Figure 3.3: Typical autocorrelation and partial autocorrelation plot showing cor-
relation between time lags. The lags are shown on the x-axis, the correlation is
shown on the y-axis.

3.2.1.2 Stationarity

Stationarity implies that the statistical properties of the time series do not change over
time. Thus, properties such as the mean and variance and autocorrelation of the data
remain constant, even while the time series itself does change [58]. This will in turn
enable easier predication of the data as stationarity is a common assumption for many
tools in time series analysis [57].

The Augmented Dickey-Fuller Test The Augmented Dickey-Fuller(ADF) test is
a statistical procedure commonly used to determine if a time series is stationary or
not. The null hypothesis(H0) propose the presence of a unit root, implying that the
time series is not stationary. The alternate hypothesis(H1) states that the time series
does not have a unit root and is thereby stationary [60].

The test statistic, its critical values and the p-value of the Augmented Dickey-Fuller
test, provides the necessary information to determine weather or not the null hypothesis
can be rejected. The p-value is given a predetermined significance level, usually at 5%
[61]. A resulting p-value below the specified threshold suggest that the null hypothesis
can be rejected [62].
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3.2.1.3 Seasonality

Time series often exhibit seasonal behaviour. Seasonality refers to the presence of a
repeating pattern that occurs at a constant frequency[59]. If seasonality is present, it
must be accounted for when modelling time series data.

Dummy Variables Dummy variables can be used to capture seasonal effects in
time series data [63]. Dummy variables are explanatory variables that take the value
dn,t ∈ {0, 1}, depending on weather or not the dependent variable falls within a pre-
determined category n at the relevant time step. When utilising dummy variables
perfect multicollinearity must always be avoided as this will cause failure due to too
many dummy variables. The problem occurs when a dummy is assigned to a category
that is already defined by the intercept of dummies for existing categories. It is eas-
ily avoided by ensuring that there is one fewer dummy variables than categories [57].
The effects of climate on seasonality can also be accounted for by including measures
of precipitation and temperature when modelling time series [63]. Such explanatory
variables are referred to as predictor variables[57]. Dummy variables can be considered
as a specific type of predictor variable. Forecasting of yt by using a regression model
with predictor variables can be modelled as shown in equation (3.5).

yt = α + β1p1,t + β2p2,t + · · ·+ βnpn,t + εt (3.5)

3.2.2 Autoregressive Models

In general, time series regression models assume that the time series of interest has
a linear relationship with other time series [57]. The forecast variable y is estimated
by its linear relationship to predictor variables x. Autoregressive models incorporate
a regression of the forecast variable on past values from the same series[59]. Hence,
autoregressive models are useful when forecasting time series that are typically auto-
correlated, such as electricity demand. An autoregressive process of order p, commonly
referred to as AR(p), is described by equation (3.6).

yt = α + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt (3.6)

α is a constant, φ is the autocorrelation of yt with lag p and εt is normally distrib-
uted white noise with zero mean and constant variance [57]. εt should ideally be a
white noise process in order to ensure independent and identically distributed values.
The parameters α and φ of the autoregressive model can be estimated through vari-
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ous methods. This process is commonly referred to as model fitting. Ordinary least
squares(OLS) estimation is one such method commonly used for fitting autoregressive
models [64]. The principle of the method is to minimise the sum of the squared errors
between the observed and predicted values of the dependent variable. Further elabor-
ation on the statistical theory behind these methods is considered out of scope for this
thesis.

3.2.2.1 Forecast Accuracy

Forecast accuracy must be evaluated based on new data that was not used when es-
timating model parameters, only then can true model performance be evaluated. It is
common practice to divide the available data set into subsets consisting of a training
and test period. This enables model fitting based on the train set, while the actual
forecasting and evaluation of model accuracy is based on the test set[57].

Forecast model accuracy is determined by forecast errors, the difference between the
observed value and its predicted value [57]. The forecast error should ideally be a
white noise process. This serves as evidence that the model successfully incorporates
all information of the time series and that the residuals of the model are solely white
noise, which cannot be modelled. The root mean square error(RMSE) of the forecast
is a common measure for comparing the accuracy of time series.

3.2.3 Scenario Generation

In two-stage stochastic optimisation programs, a set of scenarios that approximates the
actual distribution of the uncertain variables is necessary [65]. The aim of the scenario
generation process is to attain a representative scenario tree that encourage reasonable
decisions [66]. An adequate amount of scenarios should therefore be generated to ensure
sufficient representation of the actual distribution of the uncertain variable.

Scenario generation based on various autoregressive models is a common approach
[67]–[70]. Assuming the error term εt ∼ N(0, σ2) of the model is a white noise process,
a scenario can be generated by randomly drawing εt from a normal distribution and
adding it to the model. This method allows generation of as many scenarios as desired
to complete the scenario tree.
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3.2.4 Scenario Reduction

Due to the computational complexity of stochastic optimisation programs with large
scenario trees, it may be desirable to reduce the number of scenarios to a reasonable
figure. The scenario reduction process aims to reduce the number of scenarios while
maintaining reasonably good approximations of the stochastic data.

Scenario reduction algorithms determine a scenario subset of the finite amount of scen-
arios and assign new probabilities to the preserved scenarios by minimising the distance
between the original probability distribution P and the reduced probability measure
Q [71]. Other papers, such as [72]–[74], have investigated the optimal approach for
scenario reduction, but further elaboration on the subject is considered out of scope
for this thesis.
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In order to quantify the possible benefits with s-BESS, 6 configurations regarding
different battery allocations within a local energy community is created. Based on these
configurations, a receding horizon optimisation algorithm which seeks to minimise total
system costs for these configurations is implemented and presented in this chapter. Due
to the monthly maximum peak power tariff for commercial buildings, the mathematical
problem formulation uses stochastic linear programming with the receding horizon
control approach. This will allow for the monthly peak power tariff to be taken into
consideration for all iterations within the RHO algorithm.

4.1 Shared Battery Energy Storage System Configur-
ations

The probability of external vendors owning and operating batteries in the future and the
regulation against joint metering are key inspirations for the configuration development
process[1]. A total of six different configurations will be presented in the following
sections. Configurations 2 and 3 do not represent a shared energy storage system,
but serve as examples of configurations that are considered to be in line with current
regulations due to individual metering and storage. For the remaining configurations,
the local energy market is assumed to encounter some regulatory barriers. Many of the
presented configurations are quite similar, but they are considered to reflect plausible
allocations of a s-BESS and are implemented in order to perform a comprehensive
analysis.

4.1.1 Configuration 1: All Buildings Behind One Meter

In the first configuration, all the buildings and the battery operate together behind the
meter as shown in Figure 4.1. Other than the battery’s capacity limitations, there are
no other restrictions on power flow between the buildings or utilisation of the battery
to shift the buildings’ consumption and production. Due to joint metering, only the
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community power peak will be "seen" by the DSO and not the buildings’ individual
power peaks. The configuration bares similarities to that of a microgrid. This creates
an opportunity for the buildings’ power peaks to equalise each other. Therefore, this
case is assumed to be the case with the maximum monetary savings, peak shaving and
self-sufficiency although current Norwegian regulations do not allow joint metering.

Figure 4.1: Illustration of configuration 1, where all buildings and the battery are
placed together BTM.

4.1.2 Configuration 2: Individual Metering for the Buildings
and the Battery

For the second configuration, shown in Figure 4.2, all the buildings and the battery are
metered individually. The battery is considered to be owned by a third party, not the
by the DSO or any of the member buildings of the community, and operates by itself.
Such a configuration might be of interest for commercial actors who want to achieve a
monetary benefit by delivering services or doing arbitrage operations and adaptations
to the energy pricing model. Still, since the battery is metered individually, the revenue
gained by arbitrage operations must make up for the grid tariff and energy costs for
the battery.

Figure 4.2: Illustration of configuration 2, where all buildings and the battery are
metered individually, and the battery is operated independently.
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4.1.3 Configuration 3: Individual Storage for One Building

In configuration 3, the battery is owned and operated by one of the buildings in the
community, as shown in Figure 4.3. The building which operates the battery will have
the opportunity to shave its own power peaks and perform price arbitrage operations
to reduce individual costs. The configuration represents an interesting case for analyses
of how an individually operated battery can contribute to community benefits.

Figure 4.3: Illustration of configuration 3, where the buildings are metered individually
and the battery is owned and operated by one of the buildings.

4.1.4 Configuration 4: Community Owned Battery with Indi-
vidual Metering

In configuration 4 all buildings are metered individually, in addition, a local energy
market is included to enable shared battery energy storage. The battery is owned
by the community and can only operate within the local energy market. Hence, the
battery is not billed separately by the DSO or the power retailer as shown in Figure
4.4. The dashed lines in the figure represents the flow within the local energy market.
It is important to note that these lines do not necessarily need to represent a physical
grid. They mainly represent the local energy market, separated from the Nordic power
trading market.
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Figure 4.4: Illustration of configuration 4, where the buildings are metered individually
and the battery capacity is shared within a local energy market.

4.1.5 Configuration 5: Local Energy Market with Individual
Metering for the Battery and Buildings

Figure 4.5 shows configuration 5 where all buildings and the battery is metered indi-
vidually by the DSO, as for configuration 2. The battery is also considered to be owned
by a third party. However, similar to configuration 4, this configuration includes a local
energy market as well. The difference between configuration 4 an 5 is that, here, the
battery operates individually. It has the opportunity to import power directly from
the power grid, and not only through the local energy market.

Figure 4.5: Illustration of configuration 5, where all buildings and the battery is metered
individually, the battery is operated separately within a local energy market.
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4.1.6 Configuration 6: Local Energy Market with Individual
Storage

Configuration 6, like the past two configurations, includes a local energy market. How-
ever, for this configuration the battery is considered to be owned and operated by one
of the buildings, as in configuration 3, but with the possibility to share the capacity
with other buildings within the community. The buildings are metered individually as
shown in Figure 4.6.

Figure 4.6: Illustration of configuration 6, where all buildings are metered individually,
the battery is owned and operated by one of the building and there is a local energy
market.

4.2 Receding Horizon Optimisation

Decision making for battery scheduling within a long time horizon can be challenging
as accurate forecasting of consumption and production for longer time periods is a
difficult task. However, as time moves on, new information and updated consumption
and production forecasts will be obtained. It is therefore desirable to use a receding
horizon approach to iteratively solve the battery scheduling problem.

The optimisation problem of this study is implemented as a stochastic linear pro-
gramme with a receding horizon approach. The model will consider a scheduling ho-
rizon of one month in order to account for the monthly MP tariff. The data within
the prediction horizon will be considered deterministic. However, this model deviates
from the traditional receding horizon framework illustrated in Figure 3.2, by also con-
sidering the data beyond the prediction horizon in each control horizon. This data
will be considered stochastic and will represent the second-stage problem, whereas the
deterministic prediction horizon will represent the first-stage problem. Such long-term
considerations are implemented into the receding horizon optimisation model in order
to solve the scheduling problem within every time step with respect to the monthly
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power peak. An illustration of the receding horizon approach of this thesis is shown
in Figure 4.8. The figure shows how the control and prediction horizon are shifted
within the scheduling horizon for each iteration. The scenario tree showed for the first
iteration depicts the different scenarios of the stochastic problem.

Auto regression

Scenario
generation

and reduction

Stochastic LP
optimisation

Final
iteration

Data update
and time
shifting

Result analysis

Historical data

Autoregressive expression

Scenarios

Time step results

no

yes

Figure 4.7: Flow chart show-
ing the process of optimising
with receding horizon control
including scenario generation
and data updates.

Figure 4.8: The iterative
process of the receding hori-
zon approach, showing how
the scenario tree, control and
prediction horizon is shifted
through time.

The algorithm for the receding horizon approach of this study is described in Figure
4.7. First, an autoregressive model for each uncertain parameter is developed. The
autoregressive model is then used to create several scenarios for the stochastic variables
of the second-stage problem. The scenarios are then reduced to a reasonable amount
and implemented in the second stage of the scheduling problem. The stochastic op-
timisation problem is then solved. The optimal values of the decision variables in the
current control horizon will be fixed and stored as initial conditions for the following
iteration in the receding horizon algorithm. The two most important variables that
follow through the iterations are the energy level stored in the battery and the power
peak for imported power from the grid. Following this step, the control and prediction
horizon are shifted by one time step. If this step corresponds to the final period of
time, the procedure is completed, if not, the process is repeated until the final time
step.

A more detailed description of the scenario generation and reduction process will be
given in Chapter 6.
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4.3 Mathematical Problem Formulation

The stochastic LP optimisation model seeks to minimise total system cost in every
iteration of the RH model for a local energy community with an analysis period lasting
from the beginning of the prediction horizon and till the end of the scheduling horizon.
The stochastic problem is a two-stage problem with the first-stage problem having
the same duration as the prediction horizon. It is assumed that the stochastic vari-
ables for production and consumption will be known in this period. For the following
hours in the second-stage problem, several predicted scenarios regarding production
and consumption for each building will be considered, creating the stochasticity of the
problem.

The mathematical problem presented in this section is for configuration 1, the Stochastic
LP optimisation models for the other configurations are based on this formulation, with
a few added adaptations. The adaptations will be further explained in Section 4.3.3.
The full representations of all the six configurations are showed in Appendix A-F.

4.3.1 Assumptions and Simplifications

This section explains the limitations and the basis of the assumptions for the mathem-
atical optimisation formulation. A fundamental aspect of the mathematical problem
is that the production and consumption of the buildings within the community are
stochastic. However, within the first-stage problem it is assumed that the predicted
consumption and production will be good enough to be deterministic. However, in the
second-stage problem of the model, the consumption and production must be predicted
by creating realistic scenarios.

While consumption and production variables are considered to be stochastic, the spot
prices are considered to be deterministic. It is assumed because the spot prices are
known the day ahead, in addition to relatively easily predictable daily patterns in
pricing levels.

The first assumption is that there is negligible losses in transmission between the dis-
tribution grid, buildings and the battery. In addition, no transmission line congestion
is assumed and power floats freely behind the meter. In addition, the presented model
allows for bidirectional power flow within one time step as long as the objective value
is not increased. This can be accounted for by adding small penalties for export, such
that power is not imported and exported to and from the same receiver at once.

One simplification done for the mathematical model was neglecting the degradation
costs, even though this would affect battery operation and and operating life of the
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battery[9]. Due to the time limitation for this thesis, degradation costs were not in-
cluded in the model. Instead, a charging and discharging capacity limit were added for
the battery in order to limit the amount of full battery cycles.

Another limitation ignored for this thesis is the export limitation for the prosumers.
There is no upper limit for export to the grid, and there is no additional costs for
exporting more power than this limit.

Finally, note that the mathematical model for configuration 3 and 6 only considers
individual operation of the battery for one of the buildings in the community at a time.
In order to consider individual storage for several buildings at once, other features must
be implemented in the mathematical model.

4.3.2 Mathematical Model

The principles regarding the objective function and the different constraints in this sec-
tion is presented for configuration 1. The parameters and variables used are explained
and summarised in Nomenclature.

4.3.2.1 Objective Function

The objective function seeks to minimise the total system costs based on the grid tariff
and spot price energy costs for a community with joint metering as shown in equation
(4.1) . This means that the volumetric and energy costs only depend on the total
energy demand of all buildings and the battery in the community together, and that
the MP costs only depend on the community power peak. The peak costs are are based
on the highest imported power level from past iterations P sys and an additional term,
∆psyss , in case the scenarios predict a higher future power peak.

min
∑

s∈S
πs

∑

h∈H
((pGimph,s (CE

h + CV )− CE
h p

Gexp
h,s ) + CP (P sys + ∆psyss )) + CF (4.1)

4.3.2.2 Energy Balance Constraints

The energy balance constraints ensures that power flows between the distribution grid,
battery and the buildings in the right way. There are two different balance equations
considered: one distribution grid balance constraint and one balance constraint for the
different buildings in the system.
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Balance Constraint for Distribution Grid The balance constraint for the power
flow between the distribution grid and the legal entities in the community ensures that
net import from grid equals net import to the buildings and the battery as shown in
equation (4.2).

pGimph,s − pGexph,s =
∑

b∈B
(bGimph,b,s − bGexph,b,s ) + xLchah,s − xLdchh,s ∀h ∈ H, s ∈ S (4.2)

Balance Constraint for Buildings in the System The balancing constraints for
each building in the community system ensures that the consumption and production
correspond to the imported and exported power from the distribution grid. There
are two different constraints for the buildings’ power balance. The first constraint
includes balance constraints for the hours within the first stage problem in which the
production and consumption of the building is considered to be known. The second
balance equation includes balance constraints for the second stage problem in which
the consumption and production is uncertain. The building balance constraints are
shown in equation (4.3) for the first stage problem and in equation (4.4) for the second
stage problem.

bGimph,b,s − bGexph,b,s = Rcons
h,b −Rprod

h,b ∀h ∈ H1, b ∈ B, s ∈ S (4.3)

bGimph,b,s − bGexph,b,s = Dcons
h,b,s −Dprod

h,b,s ∀h ∈ H2, b ∈ B, s ∈ S (4.4)

4.3.2.3 Battery Constraints

The battery constraints are constraints concerning the operation of the battery alone.
First, there are a few capacity constraints that must be complied with. Second, there
is a battery efficiency constraint which is set to address both the power losses for the
battery and the power balance between charging and discharging operations and the
stored energy level. The initial storage capacity is also considered. Lastly, the final
condition of the battery’s energy storage level is addressed.

Capacity Constraints There are three capacity constraints: One constraint ensures
that the stored energy does not exceed the maximum storage capacity of the battery,
as shown in equation (4.5). The other two capacity constraints ensure that the battery
can not charge or discharge more power than the charging and discharging limit. This
is not an absolute physical limit, but rather a restriction set to ensure a lower number of
battery cycles in order to prolong the battery lifetime, as explained in Section 2.1. The
charging and discharging constraints are shown in equation (4.6) and (4.7) respectively.
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eh,s ≤ Emax ∀h ∈ H, s ∈ S (4.5)

xLchah,s ≤ Kmax ∀h ∈ H, s ∈ S (4.6)

xLdchh,s ≤ Kmax ∀h ∈ H, s ∈ S (4.7)

Battery Efficiency Constraints The battery efficiency constraints address the
charging and discharging power losses when operating the battery. In addition, the
constraint ensure the power balance between the energy stored in the battery and the
power charged or discharged to/from the battery. There are two different constraints
concerning the battery efficiency. The first constraint is used for all hours in the ana-
lysis period, excluding the first. The second constraint is only applied for the first hour
of the analysis period because it need to take the initial condition of the energy storage
level into consideration. These battery efficiency constraints are shown in equation
(4.8) for normal operating hours and for equation (4.9) for the first operating hour.

eh,s − eh−1,s = ηchaxLchah,s −
xLdchh,s

ηdch
∀h ∈ H|h 6= l, s ∈ S (4.8)

el,s − S0 = ηchaxLchal,s −
xLdchl,s

ηdch
∀s ∈ S (4.9)

Final Condition Storage Constraint The final condition storage constraint en-
sures that the battery holds a certain energy level at the end of the scheduling period.
This is because the optimisation program doesn’t take the next scheduling period into
consideration and will therefore wish to empty the battery to the fullest at the end.
It is often beneficial to set the final condition equal to the initial condition, so that in
sum, no energy is gained or lost to the present or next scheduling period. The final
condition constraint is shown in equation (4.10).

ef,s = Sf ∀s ∈ S (4.10)

4.3.2.4 Power Peak Constraint

One of the main goals for the stochastic program is to able to see the possible future
power peak costs, and schedule the battery according to this already at the early stages
of the scheduling period. Therefore, the peak power constraint are of great importance.
The constraint ensure that the peak power of one scenario must always be greater than
or equal to the maximum import of this scenario. The constraint is shown in equation
(4.11).
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P sys + ∆psyss ≥ pGimph,s ∀h ∈ H, s ∈ S (4.11)

4.3.2.5 Non-anticipativity Constraints

The non-anticipativity constraints make sure that variables within the first stage prob-
lem remain equal for every scenario. This forces the model to take all scenarios into
consideration when making decisions for scheduling import, export and battery char-
ging and discharging within the first-stage problem. As ∆psyss reflects the maximum
peak for each scenario, there are no non-anticipativity constraints for this variable,
as that would make the model predict equally peaks for every scenario. The non-
anticipativity constraints for the relevant variables are shown in equations (4.12) to
(4.18).

eh,s = eh,s−1 ∀h ∈ H, s ∈ S|s 6= s1 (4.12)

xLchah,s = xLchah,s−1 ∀h ∈ H, s ∈ S|s 6= 1 (4.13)

xLdchh,s = xLdchh,s−1 ∀h ∈ H, s ∈ S|s 6= 1 (4.14)

pGimph,s = pGimph,s−1 ∀h ∈ H, s ∈ S|s 6= 1 (4.15)

pGexph,s = pGexph,s−1 ∀h ∈ H, s ∈ S|s 6= 1 (4.16)

bGimph,b,s = bGimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6= 1 (4.17)

bGexph,b,s = bGexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6= 1 (4.18)

4.3.2.6 Non-negativity Constraints

Finally, the non-negativity constraints for all the variables in the optimisation problem
are presented in equations (4.19) to (4.22). They are very general and simple, but very
important for avoiding that variables achieve a negative value. A negative value could
result in negative costs, which would give a misleading objective value.

eh,s, xLchah,s , , xLdchh,s ≥ 0 ∀h ∈ H, s ∈ S (4.19)

pGimph,s , pGexph,s ≥ 0 ∀h ∈ H, s ∈ S (4.20)

bGimph,b,s , bGexph,b,s ≥ 0 ∀h ∈ H, b ∈ B, s ∈ S (4.21)

∆psyss ≥ 0 ∀s ∈ S (4.22)
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4.3.3 Adaptations to the optimisation model for other config-
urations

In order to adapt the optimisation model for configurations 2-6, a few tweaks must
be added. As configuration 1 is the only configuration with shared metering, the
objective function in equation (4.1) must be adapted for individual metering for the
other configurations. This results in a objective function where the imported and
exported energy and the maximum power peak for each building is billed separately.
In addition, for configuration 2 and 5 the battery is an independent actor and the
objective function must include the battery’s import and export as well.

The balance constraints are very similar for all the configurations. However, they all
depend on whether the BESS is accessible for the distribution grid or the individual
building. For configuration 3, 4 and 5 an additional balance constraint must be added
in order to ensure power balance within the local energy market. For configuration
4 the battery is shared and is included in the local market balance constraint. For
configuration 5 the battery has access to both local energy market and the distribution
grid, and for configuration 6 the battery is only accessible for the building operating it.
Since, configuration 1 is the only configuration considering joint metering, the balance
constraint for the distribution grid is not needed for the other configurations.

Due to the local energy market in configuration 4, 5 and 6, it is important to separate
import and export from/to the distribution grid and to/from the local energy market
for the separate buildings. Therefore new variables regarding import and export for
the buildings are introduced and added to the balancing constraints where relevant. In
addition, the efficiency constraint described by equations (4.8) and (4.9) must separ-
ate between charging and discharging from the distribution grid and the local energy
market. This also affects constraint (4.7) and (4.6), as they must ensure that the sum
of charge/discharge to/from the grid and local market does not exceed the capacity
limit.

The power peak constraints are adapted in such a way that it calculates peak import
for each of the individual buildings and peak import for the battery in configuration
2 and 5, where it operates as an independent customer of the DSO. Finally, the non-
anticipaticity and non-negativity constraints are added for the new import, export,
charging and discharging variables.

The full model formulation for configuration 1, 2, 3, 4, 5 and 6 are compactly formulated
in Appendix A, B, C, D, E and F respectively.
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This chapter presents the case specific data implemented when using the RHO model
and investigating the case specific performance of the different configurations. The case
study is set to a commercial area in Trondheim, including three commercial buildings
in the local energy community. The assumptions and settings used for conducting this
case study with the RHO model will first be presented followed by background inform-
ation regarding the area and the buildings together with the battery specifications and
pricing model. Finally, the specific cases conducted and their physical characteristics
are explicitly presented.

For the content in Section 5.2.1 and 5.2.2 the identification of the relevant background
material were carried out in the project preceding this thesis [6]. The sections are
amended in line with data studied after the project.

5.1 Assumptions and Settings for the Case Study

The case study will be conducted for January, March and June in the year of 2020.
January is considered the darkest and often the coldest month of the year which may
result in critical high power peaks and minimal PV production. It is therefore crucial to
analyse how a BESS manages to reduce these peaks in January. The complete opposite
will happen in June as power consumption will be lower and the PV production is at
is maximum. It is therefore interesting to see how the BESS manages to exploit this
excess power produced in June. March is a month where the weather is relatively cold,
but there will still be higher PV production than in January. It is therefore of interest
to run the cases in March to see how the different s-BESS configurations handles both
high consumption peaks and PV production at the same time.
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The scheduling horizon of the RHO model is set to stretch over a full calendar month.
This is because the peak power tariff is based on the highest power consumption value
over a month. The prediction horizon is set to be 8 hours, as it is assumed that the
consumption and production of the buildings can be predicted with sufficient accuracy
for the first 8 hours of the stochastic LP model. The control horizon is for 1 hour only,
which means that a new iteration of the RHC model will start for every hour within
the scheduling horizon.

Finally, it is worth mentioning that 2020 was an abnormal year, not only due to the
COVID-19 pandemic, but the power spot prices were also extremely low compared
to previous years [39]. Due to the fact that the AR-model is trained based on 2019
historical data, it is expected that the generated scenarios for 2020 will deviate a little
more than normal from middle of March and throughout the rest of 2020.

5.2 Background

5.2.1 Brattøra

Brattøra is a city district and harbour area in Trondheim that has been under great
urban development the recent years [75][76]. When Brattøra’s planned projects are
finalised, the district will be an important hub for public transportation and house a
great amount of workplaces and businesses, residents, and experience and recreational
industries [76][77].

Such fast development of a district will cause an increase in power demand. This comes
with a few challenges for the DSO as it potentially leads to congestion and need for grid
expansions. With the underlying motivation to increase energy efficiency and postpone
possible grid investment costs, the case study is relevant for seing the effects of using a
battery for increasing energy efficiency, peak shaving for the respective buildings and
decreasing total system costs for the community.

There are three "buildings" analysed in this case study; two office buildings: Brat-
tørkaia 15A,B and Brattørkaia 16. They will be referred to as BK15AB and BK16
respectively. Lastly, there is a walking bridge called Sjøgangen. The two office build-
ings and Sjøgangen will be referred to as "buildings", and they are located at Brattøra
as marked in Figure 5.1a. The geographical relation of the buildings at Brattøra is
shown in Figure 5.1b, where Sjøgangen is shown in red, BK16 is shown in blue, and
BK15AB is shown in orange.
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(a) Map over Trondheim city showcasing Brattøra and the
specific area investigated for the case study

(b) Map showing Sjøgangen(red), BK16(blue) and
BK15AB’s(orange) geographically relation

Figure 5.1: Maps over Brattøra and Sjøgangen, BK15AB and 16 specifically (The
Norwegian Mapping Authority/Kartverket)

5.2.2 Buildings

This section is a closer description of the buildings included in the community system
located at Brattøra. The goal is to give an understanding of the consumption and
production patterns and the factors in which they depend on.

5.2.2.1 Brattørkaia 15AB

At Brattørkaia 15AB, there are two associated buildings with 5 and 6 stories that are
mainly used as office buildings [78]. BK15AB is a passive house built in 2013 [79],
and is BREEAM(Building Research Establishment Environment Assessment Method)
certified as a "Very Good" building when it comes to energy efficiency and sustainability
[78][80].
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5.2.2.2 Brattørkaia 16

The building at Brattørkaia 16 was built for BI Norwegian Business School, and was
finalised in 2018 [81]. The intention was to build a sustainable and energy efficient
building, which is now BREEAM-NOR certified as "Excellent" [82]. The building has
PV panels installed on the roof with an expected solar power production of 152MWh

per year [82].

5.2.2.3 Sjøgangen

Sjøgangen is a walking bridge that stretches across Trondheim central station and
the railroad tracks connecting the Brattøra area to Trondheim city centre [83]. A
conversation with a service electrician that has been working with the bridge the recent
years, conveyed that there are heating cables in the concrete walkway in order to keep
the bridge free from snow and ice during the winter. A control system turns the heating
cables on when a weather station placed on the bridge detect any precipitation with
temperatures under a specific set-value.

5.2.3 The Battery

According to key sources from Trønderenergi AS, an Alfen battery that is currently
used for a microgrid project will be moved to Brattøra to contribute to a local flexibility
market project. The case study will be based on utilising this specific battery. It is a
battery of the type "TheBattery TB-548-1C" with a usable energy storage capacity of
521kWh [84]. The battery have been operated by Trønderenergi for a while and shows
a 92% charging efficiency and 95% discharging efficiency.

The rated power for the battery is 636 kVA at 25◦C[84]. However, the active power
limit for charging and discharging is set to 200kWh/h for the optimisation programme.
This limit is set to restrict the amount of battery cycles. It is assumed that the initial
energy stored in the battery is 300kWh, and therefore the final condition of energy
stored in the battery at the end of the scheduling horizon should be 300kWh as well.
The battery parameters used in the RHC model is summarised in Table 5.1.

Parameter Value
Energy storage capacity 521kWh
Charge/Discharge limit 200kWh/h
Charging efficiency 92%
Discharging efficiency 95%
Inital battery storage 300kWh
Final battery storage 300kWh

Table 5.1: Battery parameters used for the optimisation model
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5.2.4 Energy Price and Grid Tariff Pricing Models

5.2.4.1 Spot Prices

For the case studies it is assumed that all buildings at Brattøra have a market based
spot price agreement with their power retailer. Another assumption regarding the spot
prices is that they will be known for the full analysis month. The pricing values for
2020 are retrieved from Nord Pool[39], and the obtained prices are concerning the area
surrounding Trondheim, called NO3[38]. The spot prices for January, March and June
2020 are plotted in Figure 5.2.

Figure 5.2: The spot prices for January, March and June 2020

5.2.4.2 Pricing Model

Since this study seeks to examine a s-BESS’s ability to shave the power peaks, a
pricing model which gives a reasonable peak shaving incentives will be applied to the
optimisation model. The case study will therfore be based on Elvia’s winter pricing
model for commercial buildings in 2020[85]. Elvia is the DSO of Oslo/Viken and
Innlandet, and since Oslo is a city with assumable similar congestion problems as
Trondheim, Elvia’s winter pricing model, shown in Table 5.2, will be representative for
this case study, which includes consumption tax and the surcharge to Enova’s energy
fund[85][86]. VAT is excluded[85], and it is assumed that all the buildings in the case
study has a main fuse over 125A by 230V or 80A by 400V[85].

The power tariff in winter is usually higher than in summer, this is to reflect that winter
season is the most critical season as the power consumption is at its highest. Although
the case study is conducted for several seasons, Elvia’s winter pricing model is used for
all months investigated. This is because these winter dominated power tariffs creates
incentives to reduce maximum power consumption[85].
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Fixed part
Fixed price 3280 NOK/yr/meter-ID
Surcharge to Enova’s energy fund 800 NOK/yr/meter-ID
Energy based part
Energy price winter (nov-mar) 0.07 NOK/kWh
Consumption tax 0.1613 NOK/kWh
Power based part
Power tariff winter 1 (dec-jan) 150 NOK/kW/month

Table 5.2: Elvia’s power based grid tariff pricing model for low voltage commercial
buildings

5.3 Simulated Cases

The cases investigated for this study are based on the configurations presented in
Section 4.1 in order to compare the different approaches to shared storage storage with
each other and with individual storage and base case. The base case configuration
is a business as usual case with no available BESS or local energy market and with
individual metering for the respective buildings in the case study.

For configuration 3 and 6 with individual storage, three cases will be run with indi-
vidual storage for each of the buildings. Case 3.1, 3.2 and 3.3 are all run with the
mathematical model for configuration 3, referring to individual storage for BK15AB,
BK16 and Sjøgangen respectively. The same yields for case 6.1, 6.2 and 6.3, where all
cases are run with the mathematical model formulation for configuration 6.

There are two cases conducted for configuration 4 as well, one with a shared community
BESS and one without access to battery storage at all. This is done in order to quantify
the possible benefits of a local energy market alone and the benefits by including a BESS
in a local energy market.

The different cases investigated in this case study is summarised in Table 5.3, where
the description of their configuration’s physical characteristics are showed.
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Characteristics
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Joint metering
Local energy market
No battery
Individual battery
Battery access to grid
Battery access to local energy market

Table 5.3: Overview over the different cases investigated in the case study with their
physical characteristics
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6 | Scenario Modelling

As described in Chapter 4, the production and consumption of the different commercial
buildings analysed are seen as stochastic beyond the prediction horizon. This chapter
describes the procedure of creating realistic scenarios for these variables, by means of
time series forecasting, that will be used for the stochastic optimisation problem.

Historical data of the power production and consumption are analysed, modelled and
later used to create forecasts used for scenario generation. The analysis of this chapter
will be based on historical data from 2019. The analysis will consider four forecast
variables y1,t, y2,t, y3,t and y4,t, referring to the consumption at BK15AB, consump-
tion at BK16, production at BK16 and consumption at Sjøgangen respectively. The
regression expressions of the forecast variables will be derived in the following sections.

6.1 Time Series Analysis for Case Study

This section will analyse the y1,t, y2,t, y3,t and y4,t time series. Autoregressive models
of each variable y, will be developed through systematic investigation of appropriate
predictor and lag variables.

6.1.1 Introduction of Forecast Variables

In order to visualise patterns and seasonal trends, Figure 6.1 show plots of historical
data from 2019 for all forecast variables. Simple analyses of the entire data set of each
forecast variable allow easier selection of which factors should be considered for the
more detailed analysis.

BK15AB and BK16 are both office buildings, and therefore present similar consumption
patterns. There exists an obvious pattern in both Figure 6.1a and 6.1b, that repeats at
constant intervals, indicating that the time series has a prominent seasonal component.
The plots also show a conspicuous reduction in power consumption during Easter,
summer and Christmas holidays.
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6.1. TIME SERIES ANALYSIS FOR CASE STUDY

(a) Consumption profile for BK15AB (y1,t), 2019. (b) Consumption profile for BK16 (y2,t), 2019.

(c) Production profile for BK16 (y3,t), 2019. (d) Consumption profile for Sjøgangen (y4,t), 2019.

Figure 6.1: Presentation of the time series of each forecast variable

As one would expect, Figure 6.1c reveals increasing power production during summer
months when solar irradiation is higher and regular drops representing the no produc-
tion hours during night time. It is reasonable to assume the irregular drops are caused
by random factors such as clouds, which would restrict production.

For simplicity, it is assumed that the consumption at Sjøgangen act as a regular time
series. In reality, the irregular consumption at Sjøgangen makes it an intermittent time
series, however, such special tratment of time series are considered out of scope. Still,
this will affect the results of the scenario modelling at Sjøgangen. As the need for
snow melting varies, Figure 6.1d shows fluctuating and seemingly random large power
consumption peaks during winter season, whereas the consumption during summer
season appears stable and close to zero.

6.1.2 Auto Regressive Model

6.1.2.1 Checking for Stationarity in Forecast Variables

Each forecast variable is checked for stationarity by means of the Augmented Dickey-
Fuller test. The test is run on historical data from 2019, which is the data that will be
used to derive the regression expression for each forecast variable. The critical limit
for the p-value was set to 5%. The results can be found in Table 6.1. All variables
are well within the critical limits for both the p-value and test statistic, even with a
1% significance level. Consequently, the null hypothesis can be rejected for all cases,
implying that all forecast variables are stationary.
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6.1. TIME SERIES ANALYSIS FOR CASE STUDY

y1,t y2,t y3,t y4,t
ADF test statistic -13,075 -9,615 -5,808 -6,655
p-value 1.920 ·10−24 1.774 ·10−16 4.460 ·10−7 5.022 ·10−9

1% -3.431 -3.431 -3.431 -3.431
10% -2.567 -2.567 -2.567 -2.567
5% -2.862 -2.862 -2.862 -2.862

Table 6.1: Results from the Augmented Dickey-Fuller test for each forecast variable

6.1.2.2 Correlation with Temperature

Building energy consumption in Norway can be assumed to increase during the winter
season for heating purposes when outdoor temperatures are low. Consumption at
Sjøgangen occurs at low outdoor temperatures, and though not caused by increased
temperatures, solar power production increases during summer months when irradi-
ation and, consequently, temperatures are higher. Correlation plots between the con-
sumption of each building and temperature was created and can be seen in Figure 6.2.
Although showing weak correlation with temperature, the consumption at each build-
ing is negatively correlated to outdoor temperature, while the production is positively
correlated, as expected. To simplify the scenario generation process it will therefore be
assumed that all forecast variables are correlated to outdoor temperature and therefore
dependent on the same predictor variable Tt. This allows for fewer simulations as each
realisation of the forecast variables can be assumed to belong to the same scenario
when generated in the same simulation.

(a) BK15AB consumption (y1,t) (b) Sjøgangen consumption (y4,t)

(c) BK16 consumption (y2,t) (d) BK16 production (y3,t)

Figure 6.2: Correlation between temperature and the forecast variable at each building
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6.1. TIME SERIES ANALYSIS FOR CASE STUDY

6.1.2.3 Non-seasonal Predictor Variables

As stated in section 6.1.2.2, solar irradiation can be considered closely related to the
amount of solar power production. The correlation between solar irradiation and power
production at BK16(y3,t) is shown in Figure 6.3. There exists an obvious positive linear
relationship between the two variables. Therefore, solar irradiation, It, is added as a
predictor variable for the regression expression of y3,t.

Figure 6.3: Correlation between solar irradiation and production at BK16(y3,t)

Figure 6.2b depicts an obvious correlation between outdoor temperatures and power
consumption at Sjøgangen, however, the relation does not appear to be linear. The
control system of the bridge is programmed to turn on whenever temperatures below
a critical limit and precipitation occurs simultaneously. In an attempt to imitate this
effect, three dummy variables are added to the regression expression for y4,t. The dum-
mies d1,t, d2,t and d3,t are created to represent the occurrence of cold temperatures, the
occurrence of precipitation and the union of the occurrence of both cold temperatures
and precipitation. The first two dummies, d1,t and d2,t, are mainly added to enhance
the effect of the third dummy as the power consumption can be relatively large.
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6.1.2.4 Autocorrelation in Forecast Variables

As stated in Section 3.2.2, electricity demand is typically an autocorrelated time series.
As the probability of solar irradiation also can be considered conditional given the
event that there was irradiation in previous hours, autocorrelation and partial auto-
correlation plots are created for all forecast variables. The plots for BK15AB(y1,t) and
Sjøgangen(y4,t) can be seen in Figure 6.4 and 6.5 respectively. The autocorrelation and
partial autocorrelation plots for energy consumption and production at BK16(y2,t and
y3,t) show similar patterns as in Figure 6.4. Figure 6.4b show significant correlation
between the forecast variable and its first two time lags, indicating that these should
be included in the autoregressive model for y1,t, y2,t and y3,t. The damped sinusoidal
pattern in Figure 6.4a indicates the presence of a seasonal component in the time series
data, which repeats every 24 hours. Figure 6.5b shows significant correlation between
the forecast variable and the first time lag, this suggests that only the first lag should
be included in the autoregressive model for y4,t.

(a) Autocorrelation (b) Partial autocorrelation

Figure 6.4: Autocorrelation and partial autocorrelation plots for the consumption at
BK15AB(y1,t).

(a) Autocorrelation (b) Partial autocorrelation

Figure 6.5: Autocorrelation and partial autocorrelation plots for consumption at
Sjøgangen(y4,t).
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6.1.2.5 Seasonality in Forecast Variables

The consumption profile for BK15AB and BK16, depicted in Figure 6.1a and 6.1b,
both show a distinct and similar weekly pattern. Seasonality curves for the two forecast
variables y1,t and y2,t are therefore created, using historical data from 2019, for further
insight into the seasonality of the time series. The plots for weekly and daily seasonality
for y1,t can be seen in Figure 6.6 and 6.7 respectively. By analysing Figure 6.6 it is
evident that the power consumption during weekends is much lower than for the rest
of the week. Figure 6.7 provides a more detailed illustration of which hours during the
day consumption is high. The plot shows a clear correlation between working hours
and peak consumption hours. Similar trends can be seen in the seasonality plots for
y2,t.

Figure 6.6: Weekly seasonal plot of the power consumption at BK15AB in 2019

Figure 6.7: Daily seasonal plot of the power consumption at BK15AB in 2019
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6.1. TIME SERIES ANALYSIS FOR CASE STUDY

Based on the seasonality plots the regression expression for y1,t and y2,t is extended by a
set of dummy variables to encapsulate the seasonality of the time series. Three dummy
variables d1,t, d2,t and d3,t are added to represent weekday working hours, weekday peak
working hours and weekend working hours respectively. The dummies take the value
dw,t = 1 if the current time step is classified as a working hour within their respective
working hour categories w. For example, if considering y1,t, d1,t = 1 if t falls within
hours 7-18 of the nychthemeron, 0 otherwise. It should be emphasised that the working
hour categories overlap so as to enhance each others effects and do not cause perfect
multicollinearity, as no dummy is created for the intercept of each category. In other
words, the perfect multicollinearity is avoided by ensuring that no category for non-
working hours exist. As stated previously in this chapter, consumption for the two
office buildings tends to be lower during holidays. Therefore, a fourth dummy variable,
d4,t, for working hours during a holiday, is also added to account for this effect.

6.1.2.6 Resulting Autoregressive Models of the Time Series

The resulting autoregressive model for each forecast variable is shown in equations
(6.1) to (6.4). The parameter values for the predictor variables were estimated based
on historical data from the first 4380 hours of 2019, for each forecast variable. The
parameters were estimated by means of the AutoReg function, available through the
statsmodels module in Python.

y1,t = α + β0Tt + β1d1,t + β2d2,t + β3d3,t + β4d4,t + φ1y1,t−1 + φ2y1,t−2 + εt (6.1)

y2,t = α + β0Tt + β1d1,t + β2d2,t + β3d3,t + β4d4,t + φ1y2,t−1 + φ2y2,t−2 + εt (6.2)

y3,t = α + β0Tt + β1It + φ1y3,t−1 + φ2y3,t−2 + εt (6.3)

y4,t = α + β0Tt + β1d1,t + β2d2,t + β3d3,t + φ1y4,t−1 + εt (6.4)

An overview of the predictor variables and their respective parameters for each forecast
variable is shown in Table 6.2. As the intercept α of y3,t was estimated to less than
zero, the forecast variable was manually forced to never be negative.
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Stochastic

Variables
Predictor Variables Variable Parameter

p-value

P >|z|
z-value

Standard

Error

y1,t
(BK15AB

Consumption)

Intercept α = 35.7653 0.000 65.638 0.545

Outdoor temperature Tt β0 = -0.5502 0.000 -26.214 0.021

Weekday working hour d1,t β1 = 30.2184 0.000 41.536 0.728

Weekday peak working hour d2,t β2 = 29.4528 0.000 38.890 0.757

Weekend working hour d3,t β3 = 1.0036 0.040 2.056 0.488

Holiday Hours d4,t β4 = -14.0224 0.000 -9.838 1.425

Time lag 1 y1,t−1 φ1 = 1.0243 0.000 77.197 0.013

Time lag 2 y1,t−2 φ2 = -0.4166 0.000 -44.350 0.009

y2,t
(BK16

Consumption)

Intercept α = 8.7955 0.000 26.252 0.335

Outdoor temperature Tt β0 = -0.0805 0.000 -5.269 0.015

Weekday working hour d1,t β1 = 5.8251 0.000 15.125 0.385

Weekday peak working hour d2,t β2 = 4.6921 0.000 10.711 0.438

Weekend working hour d3,t β3 = 3.7521 0.000 9.346 0.401

Holiday Hours d4,t β4 = -1.3215 0.221 -1.224 1.079

Time lag 1 y2,t−1 φ1 = 1.0747 0.000 68.077 0.016

Time lag 2 y2,t−2 φ2 = -0.3221 0.000 -23.429 0.014

y3,t
(BK16

Production)

Intercept α = -0.6951 0.000 -5.010 0.139

Outdoor temperature Tt β0 = 0.0365 0.045 2.002 0.018

Solar irradiation It β1 = 0.0714 0.000 59.437 0.001

Time lag 1 y3,t−1 φ1 = 0.6682 0.000 47.684 0.014

Time lag 2 y3,t−2 φ2 =-0.1271 0.000 -11.358 0.011

y4,t
(Sjøgangen

Consumption)

Intercept α = 15.4098 0.009 2.599 5.928

Outdoor temperature Tt β0 = -1.7726 0.000 -3.657 0.485

Cold temperatures d1,t β1 = 9.6798 0.167 1.381 7.007

Precipitation d2,t β2 = 7.3687 0.406 0.830 8.873

Cold temp. ∪ precipitation d3,t β3 = 52.4760 0.000 5.006 10.482

Time lag 1 y1,t−1 φ1 = 0.8112 0.000 70.335 0.012

Table 6.2: Table showing the predictor variables used to model the consumption and
production for the different buildings and their respective parameters. The less significant
parameters are marked in grey.

The p-values above 5% for Cold temperatures and Precipitation (d1,t and d2,t for t4,t)
and Holiday Hours (d4,t for y2,t) indicate that these parameters are unnecessary. Simple
tests without the aforementioned parameters were conducted. The results indicated
that the model performed worse, and the parameters were therefore kept. The large
z-values for the lag variables indicate that the autoregressive models could have been
improved. However, due to time restrictions and based on the results from the Dickey-
fuller test which proved stationarity, no corrections were made. Generally the standard
errors are small, indicating that the confidence interval for the value of most parameters
is relatively narrow, which in turn implies rather accurate values.
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6.1.2.7 Evaluation of Model Performance

In order to investigate the accuracy of the autoregressive models, the first three models
were tested for the last 4380 hours of 2019, while y4,t was tested for the last 2190 hours
of 2019 due to inactivity during the summer months when temperatures are high. The
lag variables and dummies were assumed to be known and based on historical data
from 2019. Figures G.1 to G.4 in Appendix G show a segment of the predictions for
forecast variable y1,t, y2,t, y3,t, y4,t respectively.

The error between the actual realisation of each forecast variable and its predicted
value was recorded in order to find the mean, µn, and standard deviation, σn of the
sample. The results are presented in Table 6.3 together with the root mean square
error. The prediction errors for each forecast variable was deemed qualified to be
considered normally distributed. Their distributions can be seen in Figure 6.8.

(a) Prediction error for BK15AB consumption (b) Prediction error for BK16 consumption

(c) Prediction error for BK16 production (d) Prediction error for Sjøgangen consumption

Figure 6.8: Distribution of the prediction error for each forecast variable

y1,t y2,t y3,t y4,t
Standard Deviation σn 10.4799 5.4933 4.7517 79.3525
Mean µn -1.0468 -0.3597 -0.2277 28.4954
RMSE 10.532 5.505 4.757 84.314

Table 6.3: Standard deviation and mean of prediction error for each forecast variable

The standard deviation and mean of the prediction error for y4,t is relatively large,
indicating that the time series is not modelled well enough. In general it is expected that
the mean of the sample should be zero. However, the inaccuracy of the autoregressive
model for y4,t is ignored as Sjøgangen in reality should have been modelled as an
intermittent time series. Based on the RMSE, all autoregressive models were considered
sufficiently accurate. Hence, no corrections were made to the regression expressions
before applying them for scenario generation.
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6.2 Scenario Generation and Reduction

This section will focus on how the autoregressive models derived in the previous sections
are used to generate realistic scenarios through time series forecasting. To ensure
scenarios that encapsulate usual trends, the amount of generated scenarios should
be high enough to cover the spectrum of plausible outcomes and not just extreme
values. The generated scenarios should then be reduced to a reasonable amount of
scenarios with respect to computational time limitations. The reduced scenarios should
reflect the basic trends of the generated scenarios with a corresponding probability of
realisation for each scenario.

6.2.1 Scenario Generation

The scenario generation process for this case study is based on the assumption that
forecasting of the predictor variables is possible, available through external vendors,
and consequently considered known for the entire scheduling horizon.

The solution strategy for the scenario generation process is shown in Algorithm 1. Ns

denotes the number of scenarios, Ny denotes the number of forecast variables, while T
denotes the hours in the second stage problem.

1 while s < Ns do
2 for n ∈ Ny do
3 for t ∈ T do
4 generate random error εt ∼ N(µn, σ

2
n);

5 generate yn,t with εt;
6 add yn,t to history;
7 end
8 end
9 end
Algorithm 1: Algorithm describing the logic of the scen-
ario generation process

To create forecasts of each forecast variable, an error term with a normal distribution
and a corresponding mean and standard deviation, was generated and added to the
relevant regression expression. The calculated value of yn,t was then stored and used
as a lag variable when calculating yn,t+1. This will lead to consequential errors (which
is one reason why a good prediction model does not necessarily imply good forecasts),
however, this is considered to appropriately model the nature of uncertainty in forecast-
ing. This process was repeated for each time step in the remainder of the second stage
problem to form a complete scenario. The probability, πs, of realisation of scenario s
was set to be equal for all scenarios in Ns.
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Preliminary results from a test run of the scenario generation model can be found
in Appendix H. The plots illustrate and provide useful information on the accuracy
of the forecasts. y1,t gives pretty accurate forecasts and is able to follow the general
trends of the time series. y2,t underestimates power peaks during working hours and
predicted peak values stabilise around a level below what could be expected. y3,t is
often estimated to have a value larger than zero during night time due to the error term,
as nothing corrects for this. However, this will probably not affect optimal scheduling
as consumption is low during these hours and therefore already unlikely to affect ∆psyss .
y4,t is largely affected by the error term, leading to predictions of high power peaks far
beyond what could be expected.

6.2.2 Scenario Reduction

SCENRED has been used to conduct the scenario reduction process. SCENRED is a
tool provided by GAMS Development Corporation. In line with the theory presented
in Section 3.2.4, the scenario reduction algorithms provided by SCENRED determine
a subset of the initial set of scenarios and assign new optimal probabilities to the
preserved scenarios [87]. The number of reduced scenarios can be specified within the
program. The preserved scenarios with their respective probabilities are used to model
future uncertainty in the second stage problem of the optimisation model.

6.2.3 Optimising the Amount of Scenarios

Prior to performing the case study, a sensitivity analysis was performed to find the
optimal amount of generated and reduced scenarios. Due to the stochastisity of the
presented optimisation problem, this sensitivity analysis was performed in order to
ensure that the optimal solution of the optimisation problem converges. The variability
of the objective value was used as the measure of accuracy and the test period was set
to 72 hours.

Table 6.4 gives a summary of the stability of the objective value when increasing the
number of reduced scenarios and keeping a constant number of generated scenarios
of 1000. The analysis shows that the maximum change in objective value, relative to
having 3 reduced scenarios, is 1.2%.
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Number of reduced scenarios 3 4 5 6 7 8 9 10 11 12
Objective value [NOK] 51580 51147 51031 51371 51142 51187 51052 50962 51014 51053
% change in objective value 0.0 -0.8 -1.1 -0.4 -0.9 -0.8 -1.0 -1.2 -1.1 -1.0

Table 6.4: Evaluation of solution stability with varying number of reduced scenarios
and a constant number of generated scenarios of 1000. The percent change in objective
value is calculated relative to having 3 reduced scenarios.

The results show no significant change in the objective value with a number of re-
duced scenarios larger than 3. In line with previous statements of this section, it was
considered necessary to generate a sufficient amount of scenarios to ensure a good rep-
resentation of all possible outcomes. However, with respect to computational time it
was concluded that 500 scenarios should be generated and later reduced to 3 scenarios.
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7 | Results and Observations

This chapter shows the results and observations obtained from the case study. In
addition, deviating values and trends connected to the design of the mathematical
model are explained. The most important findings from the case study are considered
to be the results regarding battery scheduling, peak shaving effects, self-sufficiency,
self-consumption and the cost contributions and savings. When not specifically stated,
referring to configuration 3, 4 or 6 will imply all subcases investigated for the respective
configuration. Lastly, the results from a brief sensitivity analysis on the MP tariff
pricing model is presented.

7.1 Battery Scheduling

The scheduling of the battery differ for every case conducted. An example is the number
of battery cycles which varies between 0 and 25 cycles and with different depth of
dicharge depending on the case and season. Figure 7.1 show the battery energy storage
pattern for configuration 1 in March, which shows a lower number of battery cycles,
and a high utilisation of the battery charge and discharge capacity when charging or
discharging. Figure 7.2 represents the opposite. It depicts the battery energy storage
pattern for configuration 3.2 in June, and shows a higher amount of battery cycles. The
charging/discharging operations happens often, but the full charge/discharge capacity
is rarely fully exploited.

By observing the battery storage curves for each configuration, it is apparent that there
are a few trends regarding the number of battery cycles. First, there seem to be a lower
number of battery cycles in March compared to January and June. In addition, case
3.1 and 3.2 seem to have a higher number of battery cycles than other configurations
throughout the seasons. For configuration 2, the BESS is not utilised at all for any of
the investigated months.
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Figure 7.1: The battery energy storage pattern for configuration 1 in March

Figure 7.2: The battery energy storage pattern for configuration 3.2 in June

7.2 Peak Shaving

The peak shaving results show to which extent the BESS manages to reduce the com-
munity and the buildings’ power peaks for the different configurations in different
months of the year. In general, the results prove that there is a substantial peak shav-
ing effect when the predicted power peaks of the scenarios correspond well to the actual
consumption’s peak.

Figure 7.3 show an example of peak shaving after running configuration 3.1 for January.
The figure shows the net import for BK15AB in blue in addition to the predicted
future power peak for each scenario in each time step. The net import clearly reflects

Page 53 of 99



7.2. PEAK SHAVING

an increased consumption during working hours. However, the daily import curves
are flat for midday hours, indicating a significant peak shaving result. The plotted
curves representing the predicted power peak correspond well to actual peaks for all
time steps, resulting in a substantial peak shaving result.

There are a few steep power peaks and dips for the net import in Figure 7.3 that
deviates from the regular pattern. This is because the building’s power import is
affected by the decisions regarding charging and discharging of the battery. However,
the optimisation model ensures that the net import does not exceed the power peak
predictions.

Figure 7.3: BK15AB’s import and predicted power peak for configuration 1 in January.

When calculating the power peak reductions, the peaks are compared to base case for
the respective month. The different configurations’ peak shaving effect for both the
community and each individual building are shown for January, March and June in
Table 7.1, 7.2 and 7.3 respectively.

January

Case Total system peak BK15AB BK16 Sjøgangen
Power
peak
[kWh/h]

Peak
reduction
[%]

Power
peak
[kWh/h]

Peak
reduction
[%]

Power
peak
[kWh/h]

Peak
reduction
[%]

Power
peak
[kWh/h]

Peak
reduction
[%]

Base case 841 - 270 - 96 - 577 -
1 764 9.2 270 0.0 96 0.0 577 0.0
2 841 0.0 270 0.0 96 0.0 577 0.0
3.1 812 3.5 208 22.8 96 0.0 577 0.0
3.2 830 1.4 270 0.0 70 26.4 577 0.0
3.3 841 0.0 270 0.0 96 0.0 589 -2.2
4 with battery 822 2.3 243 10.2 59 38.1 533 7.6
4 without battery 841 0.0 266 1.4 86 9.9 573 0.6
5 819 2.6 239 11.5 66 31.2 526 8.8
6.1 822 2.3 288 -6.5 62 35.2 493 14.5
6.2 822 2.3 164 39.3 231 -141.1 430 25.5
6.3 822 2.3 242 10.3 60 37.6 527 8.5

Table 7.1: Peak values for each configuration in January.
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March

Case Total system peak BK15AB BK16 Sjøgangen
Power
peak
[kWh/h]

Peak
reduction
[%]

Peak with
battery
[kWh/h]

Peak
reduction
[%]

Power
peak
[kWh/h]

Peak
reduction
[%]

Power
peak
[kWh/h]

Peak
reduction
[%]

Base case 794 - 278 - 98 - 591 -
1 742 6.6 278 0.0 98 0.0 591 0.0
2 794 0.0 278 0.0 98 0.0 591 0.0
3.1 794 0.0 206 25.8 98 0.0 591 0.0
3.2 794 0.0 278 0.0 73 25.3 591 0.0
3.3 794 0.0 278 0.0 98 0.0 536 9.2
4 with battery 758 4.6 255 8.0 66 33.2 437 26.0
4 without battery 794 0.0 274 1.4 76 22.6 535 9.5
5 767 3.4 253 8.7 77 21.6 437 26.0
6.1 747 6.0 248 10.7 59 40.1 440 25.5
6.2 760 4.3 206 25.8 190 -93.4 364 38.3
6.3 754 5.1 234 15.6 59 40.2 461 22

Table 7.2: Peak values for each configuration in March.

June

Case Total system peak BK15AB BK16 Sjøgangen
Power
peak
[kWh/h]

Peak
reduction
[%]

Peak with
battery
[kWh/h]

Peak
reduction
[%]

Power
peak
[kWh/h]

Peak
reduction
[%]

Power
peak
[kWh/h]

Peak
reduction
[%]

Base case 246 - 219 - 39 - 8 -
1 218 11.3 219 0.0 39 0.0 8 0.0
2 246 0.0 219 0.0 39 0.0 8 0.0
3.1 223 9.3 182 17.1 39 0.0 8 0.0
3.2 232 5.9 219 0.0 26 33.7 15 -97.4
3.3 245 0.4 219 0.0 39 0.0 9 -16.6
4 with battery 235 4.6 106 51.9 82 -109.0 47 -515.3
4 without battery 247 -0.4 190 13.4 72 -82.5 13 -70.0
5 227 7.6 128 41.5 42 -7.1 57 -647.4
6.1 231 6.1 163 25.6 63 -59.1 5 34.2
6.2 228 7.5 81 63.2 132 -234.6 15 -97.4
6.3 247 -0.4 21 90.6 226 -474.5 0 100.0

Table 7.3: Peak values for each configuration in June.

Based on these results, the most important finding is that configuration 1 considering
shared storage with joint metering give the best results for community peak shaving.
This configuration is followed by configurations 4 with battery, 5 and 6 considering
storage within a local energy market and individual metering. Configuration 4 without
battery does not contribute to community peak shaving at all, deviating from the other
local energy market cases.

Case 3.1, 3.2 and 3.3 show varying results for each season. However, case 3.1 proves
to give a better peak shaving result than the other individual storage configurations.
In June, configuration 3.1 manage a 9.3% peak reduction, obtaining the second best
results of the month. However, this trend does not apply for the other months in-
vestigated. Generally the results for configurations 2, 3 and 4 without battery show
lower peak shaving effects compared to the configurations who include shared storage
systems. Configuration 2, where the battery operates by itself, tend to not affect the
the community peak at all.
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An interesting observation from configuration 3.3 in January, shown in Table 7.1, is
an increase in individual peak for Sjøgangen instead of a decrease as one would ini-
tially expect. Looking further into the data, it is clear that the predicted future peak
is generally too high compared to actual consumption. This allows for battery char-
ging during peak hours, increasing the power peak for Sjøgangen. This is caused by
the scenarios reflecting an unnecessary high power consumption, due to an inaccurate
auto regressive model. The opposite trend is shown in Figure 7.4 where the model
underestimates future power peaks.

For each case within a scheduling month, the peak occurs at approximately the same
time. This substantiate that the variations in community peak reduction between the
cases regarding local markets with individual metering(configurations 4-6) in March
and June, are due to stochastic variations. The same is true for January, but stochastic
variations are smaller as the predictions are more accurate and are therefore not visible.
This is because January is the only simulated month that is not affected by the COVID-
19 pandemic in 2020, and consumption and production profiles are therefore better
described by the parameters of the autoregressive models.

Due to no market strategy implementation for the optimisation model, there are no ma-
jor mathematical differences between configuration 4, 5 and 6 that affects the optimal
scheduling of the battery. However, it seems rather random which buildings increase
or decrease their individual peak. This can be explained by looking at the objective
function for these configurations, shown in Appendix D-F. The objective function seeks
to minimise total system costs, which includes minimising the sum of each buildings’
individual power peak. According to the mathematical model, it does not matter which
buildings import excess power in order to reduce total costs. A building can therefore
import more than its individual consumption in order to export power to the local
energy market, and thereby reducing total system costs.

A clear example of this mathematical occurrence is shown in Figure 7.4 for BK16’s
power import and export in March for configuration 6.2. The figure shows BK16’s net
import from the distribution grid in blue and the net import from the local energy
market in orange. BK16’s power consumption is to some extent reflected by the net
import from the grid as a repeated pattern between 0-50kWh/h. However, the power
peaks are approximately 4 times as high as the consumption, which is a substantial
increase compared to base case. These power peaks for import occurs at the exact
same time as the building exports power to the local energy market, which contributes
to reducing the other buildings’ maximum power peak as shown in Table 7.2.
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Figure 7.4: BK16’s import, export and predicted power peak for configuration 6.2 in
March.

7.3 Self-Sufficiency and Self-Consumption

The local consumption and production in terms of self-sufficiency and self-consumption
are calculated for each case, including base case. The results for June are displayed in
Table 7.4. Naturally, due to low PV production during winter season, self-sufficiency
decreases and self-consumption increases. In January and March, the differences in
these measures between the configurations will therefore be indistinguishable, which is
why the only results displayed are for a high production month.

June

Case Self-sufficiency [%] Self-consumption [%]
Community BK16 Community BK16

Base case 13.4 61.9 54.3 54.3
1 24.7 61.9 100.0 54.3
2 13.4 61.9 54.3 54.3
3.1 13.4 61.9 54.3 54.3
3.2 20.3 93.9 82.3 82.3
3.3 13.4 61.9 54.3 54.3
4 with battery 24.7 61.9 100.0 54.3
4 without battery 24.6 61.9 99.2 54.3
5 24.7 61.9 100.0 54.3
6.1 24.7 61.9 100.0 54.3
6.2 24.7 47.0 100.0 41.2
6.3 24.7 61.9 100.0 54.3

Table 7.4: Calculated self-sufficiency and self-consumption for each case in the case run
in June.

From Table 7.4, it is clear to see that there are variations for self-sufficiency and
self-consumption depending on the configuration, especially for the community. The
self-sufficiency and self-consumption for the community is at its greatest for configur-
ation 1, 4 with battery, 5 and 6. Configuration 4 without battery have high energy
efficiency values as well, although it is not quite as good as the previously mentioned
configurations.
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The energy efficiency values for BK16 in general is very similar for most cases, with two
exceptions. The first exception is for Case 3.2, with individual storage for BK16, where
self-sufficiency and self-consumption is much higher than for other configurations. The
second exception is for Case 6.2. In this case BK16 also operates its own battery.
However, self-sufficiency and self-consumption has decreased compared to the other
cases.

7.4 Cost Analysis

The calculations for the cost analysis section is conducted to clarify the possible mon-
etary savings achieved by BESS within the local energy community. The first section
display calculations that are computed for total costs and savings for each case and
season, compared to base case. The second section refers to results regarding cost
contributions of the different elements of the grid tariff and energy costs.

7.4.1 Total Costs and Savings

The results show a significant cost reduction in many of the cases, but they vary de-
pending on season. The total costs, total savings and reduction of total costs compared
to base case for each configuration are calculated for January, March and June showed
in Table 7.5, 7.6 and 7.7 respectively.

Through all seasons, configuration 1 manages to reduce the costs the most, followed
by configuration 1, 4 with battery and 5, 6. For the configurations with individual
operation of the battery, configuration 3.1 tends to give the overall best cost reduction
results. However, configurations 2, 3 and 4 without battery, generally present lower cost
reductions than the remaining configurations. Due to an additional electricity meter
for the battery and its fixed costs, the total costs are actually increased in January and
March for configuration 2. Another trend worth mentioning are generally greater cost
reductions in March and June compared to January.
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January
Cases Total costs [kNOK] Total savings [kNOK] % of total costs
Base case 273.1 - -
1 245.4 27.7 10.2
2 273.4 -0.3 -0.1
3.1 263.8 9.3 3.4
3.2 269.4 3.7 1.4
3.3 274.8 -1.7 -0.6
4 with battery 256.7 16.4 6.0
4 without battery 270.6 2.5 0.9
5 256.4 16.7 6.1
6.1 257.9 15.2 5.6
6.2 255.2 18.0 6.6
6.3 255.9 17.2 6.3

Table 7.5: Costs and savings compared to base case for all configurations in January.

March
Cases Total costs [kNOK] Total savings [kNOK] % of total costs
Base case 209.2 - -
1 174.7 34.5 16.5
2 209.6 -0.5 -0.2
3.1 198.6 10.6 5.1
3.2 205.5 3.7 1.8
3.3 201.0 8.1 3.9
4 with battery 177.8 31.4 15.0
4 without battery 196.9 12.3 5.9
5 179.6 29.6 14.2
6.1 176.1 33.0 15.8
6.2 178.1 31.0 14.8
6.3 177.2 31.9 15.3

Table 7.6: Costs and savings compared to base case for all configurations in March.

June
Cases Total costs [kNOK] Total savings [kNOK] % of total costs
Base case 67.8 - -
1 53.9 13.9 20.5
2 65.4 2.4 3.6
3.1 59.4 8.4 12.4
3.2 62.5 5.3 7.8
3.3 65.3 2.6 3.8
4 with battery 57.1 10.8 15.9
4 without battery 63.2 4.6 6.8
5 56.3 11.5 17.0
6.1 56.5 11.3 16.7
6.2 56.0 11.8 17.4
6.3 58.9 8.9 13.2

Table 7.7: Costs and savings compared to base case for all configurations in June.

7.4.2 Cost Contributions

In order to better understand how the elements of the energy bill affect the total
costs and the total savings, the cost contribution from each element in the energy
bill is calculated. The cost contributions for January, March and June are shown in
Appendix I.

The general trends for the cost contribution is that the peak costs make up most of the
total costs covering 50-60% depending on season and configuration. The contribution
of the peak costs for the configurations tend to decrease compared to base case.
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The volumetric costs make up around 30 % of total costs. An interesting aspect con-
cerning the fixed costs is an increase in contributions for the configurations compared
to base case in January and March. In contrast, there is a decrease in cost contributions
for the fixed in June.

It is obvious that the fixed costs do not affect the scheduling of the battery at all, and
the results proved it is of little significance for the total costs. The small changes in
fixed costs are only depended on the number of meters used for each configuration.

The energy costs have varying contribution depending on season. In January the energy
costs make up approximately 25% in January, 10% in March and 5% in June.

7.5 Sensitivity Analysis on MP tariff

The purpose of the sensitivity analysis is to analyse to which extent the grid tariff
pricing model affects the peak shaving. Since a reduction of the maximum peak is
desired by the regulatory authorities and grid companies [43][85], it is important to
realise what incentives will trigger customers into reducing their power consumption.
For this sensitivity analysis the optimisation model from Chapter 4 is used for invest-
igating the effect of the power tariff term of the MP grid tariff. The analysis is based
on configuration 1 for January operation. The different power tariffs tested are for 0,
50, 100, 150 and 250 NOK/kW/month with other components of the energy bill being
held equal to the pricing model presented in Table 5.2.

The results from the sensitivity analysis show that the maximum peak reduction
clearly increases with increasing power tariff. This is shown in Figure 7.5. There
seem to be a relatively abrupt transition between not peak shaving at all and shaving
the peak substantially as the power tariff increases. Somewhere between 50 and 100
NOK/kW/month the optimisation model considers peak shaving to be more econom-
ically beneficial than spot price arbitrage. The small decrease in power peak reduction
from 150 to 250NOK/kW/month is assumed to be caused by the stochasticity of the
problem, as there is no mathematical reason to why the peak is slightly increasing
when the power tariff is increasing.

When increasing the power tariff and holding all other parameters constant, it is obvi-
ous that the total consumer costs will increase. However, this increases the possibility
for cost reductions, as shown in Figure 7.6. By increasing power tariff the incentives
for the end users to shave the power peaks and save costs are increasing.
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Figure 7.5: Graph showing the in-
crease in peak reduction with increas-
ing power tariff.

Figure 7.6: Graph showing the in-
crease in cost reduction with increas-
ing power tariff.
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8 | Discussion

This Chapter discusses the benefits and the challenges with s-BESS based on the case
study results from Chapter 7. First, the peak shaving and energy efficiency effect for the
different configurations are discussed. Then, the battery performance will be evaluated
in regards to battery costs, and later there will be a summarising comparison of the
different configurations. Finally, the regulations for s-BESS are taken into consideration
by discussing possible changes that will affect a s-BESS implementation.

8.1 Battery Scheduling

In general, there is not an excessive number of battery cycles in any of the configurations
for the case study. This is not only due to the charge and discharge limit implemented
in the model formulation, but also because there are energy losses when utilising the
battery. Considering the consumption tax and the DSO’s volumetric costs, these losses
are expensive, and the benefits by utilising the battery must outweigh the costs for these
losses.

Although the general number of battery cycles is relatively low, the results show some
variations. One example is a lower number of battery cycles in march compared to
January and June. This may be caused by a less varying spot price for short time
intervals in March, as shown in Figure 5.2. Additionally, there is a smaller number of
high power peaks that must be shaved in March than the other months investigated.
With high PV production in June, the battery works harder in order to balance con-
sumption and PV production surplus compared to March. This results in an increasing
number of cycles for configurations 1, 3.2, 4, 5 and 6.

In addition, there is a generally a higher number of battery cycles for configuration 3.1
and 3.2. This is caused by the many even power consumption peaks for the respective
buildings. As long as the power peaks are predicted with some degree of accuracy,
successive and even peaks throughout the scheduling horizon lead to a higher utilisation
of the battery for peak shaving. Another explanation is a greater battery size relative
to the building’s shiftable consumption as this configuration only considers individual
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storage. For the other configurations the relative battery size is much smaller as the
battery is shared between all the buildings.

The reason why there is no utilisation of the battery in configuration 2 is because the
objective function does not provide any incentives for utilising locally stored energy.
For the buildings, utilising the battery would be just as costly as importing from the
grid.

It is known that the battery lifetime depends on the number of battery cycles [9].
Battery degradation costs and life time are not considered when implementing the
RHO model. Figure 7.4 show a higher number of battery cycles, and this could have
been reduced by including degradation costs as Berglund et. al. states [15]. However,
the methodology implemented for this study was simplified to limit the battery cycles
by implementing a charge and discharge power as explained in Section 5.2.3. This
limitation does not directly reflect the costs of battery degradation, but it limits the
battery’s cycles which may prolong the battery lifetime.

By observing the charge and discharge occurrences for the case study results, like shown
in Figure 7.1 and 7.2, and comparing them to the spot prices shown in Figure 5.2. It
is apparent that the battery tend to charge when the spot prices are low compared to
hours in the closest time intervals. The battery discharges either when the spot prices
are high or during high power peaks. For configurations in June, the battery tend to
charge when there is excess power produced at BK16 in order to utilise this energy
later for reducing import costs.

8.2 Peak Shaving

One of the main goals for this thesis is to see how a BESS best possibly can contribute
to reduce the monthly power peaks and thereby also reducing the total electricity
costs. The results from Tables 7.1-7.3 clarified that several of the BESS configurations
contributed to community peak shaving. However, the most promising configurations
for peak shaving was for the local energy community configurations with either joint
or individual metering as they both provide sufficient flexibility to the community.

Still, configuration 1 showed the overall best peak shaving effect. This is because con-
figuration 1 is the only configuration where reducing the community system peak is
targeted directly in the objective function. The power peak is reduced by 7-11% de-
pending on the season. This corresponds well with the results presented by Elkazaz
et. al who pursue a similar objective [52]. For the local market configurations with
individual metering the peak costs are minimised as long as the sum of each individual
building’s peak is minimised. However, if these peaks are coinciding, the monthly
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community peak will get a higher value than for joint metering as there is no direct in-
centive to avoid coinciding peaks. For the local market configurations 4-6 with battery,
the peak is reduced by 2-8%.

One important result to discuss is that a local energy market or joint metering itself
does not contribute much for peak shaving alone, this is because a flexible asset within
the system, like an integrated BESS, is needed in order to shift the peak consumption.
This is clearly shown by comparing the peak reduction for configuration 4 with battery
against configuration 4 without battery. Both configurations include local energy mar-
kets, but configuration 4 without battery has no flexible assets and does not manage
to shave its community peak at all.

The results for the local market cases 4, 5 and 6 indicate that it is economically be-
neficial for one building to import a larger amount of power in order to export to
other buildings or the battery locally, as shown in Figure 7.4. However, it is import-
ant to note that the market strategy for the local market was not implemented in the
model. Implementing a market strategy that considers fair allocation of profit and
where each building seeks to increase its own individual benefit, such as in the works
of Taşcıkaraoğlu et. al. and Ouahada and Zhu [25][22], might not give these extreme
results. It is also not unlikely that the DSO would want to introduce a small trans-
mission cost for the local energy market, reducing transmission between the buildings
directly.

Considering the objective function in the model used for the case study, there are two
substantial ways each configuration can reduce the total system costs: The first way is
by shaving the greatest power peaks within a month and thereby reduce the MP grid
costs, and the second way by doing spot price arbitrage and reducing the energy costs.
Sometimes, reducing the power peak might affect the spot price arbitrage operations
as the battery capacity might be exhausted for peak shaving. Other times, doing spot
price arbitrage might increase the power peaks and thereby the power costs. The
results show that there is an economical trade off between doing spot price arbitrage
and peak shaving.

Figure 7.4 shows an underestimation of the future power peak. This can lead to unused
potential for spot price arbitrage. An overestimation of future power peak causes an
unnecessary peak cost, as configuration 3.3 in Table 7.1. These results substantiate
the importance of accurate prediction of production and consumption profiles.

As emphasised by Meinrenken et. al., grid tariffs with demand charges are effective
incentives for smarter grid operations [14]. Additionally, the studies of Tiemann et.
al. and Sepúlveda-Mora et. al. show that the MP pariff effectively contribute to
peak shaving for commercial building [12][13]. The sensitivity analysis in Section 7.5
substantiate that the MP pricing level affect the peak shaving for shared storage com-
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munities. Increasing the MP tariff makes the peak shaving benefit outweigh the spot
price arbitrage benefit, creating a direct incentive for end-user to reduce their max-
imum power consumption. However, increasing MP costs increases the DSOs revenue,
which might be problematic due to RME’s regulations of monopoly practices [40]. The
DSO’s should therefore consider decreasing other elements for the grid tariff, like the
volumetric costs, as RME suggests [43].

8.3 Self-Sufficiency and Self-Consumption

Similar to the peak shaving effects, configurations 1, 4, 5 and 6 have the overall best res-
ults for self-sufficiency and self-consumption. These cases increase the self-consumption
by an additional 45-46%. This is due to the flexibility opportunities these configur-
ations offer as they allow for trading of local production and shifting of power peaks
without extra tariff costs.

Configuration 4 without battery however, showed an interesting result as it was almost
as good as the other local energy market configurations, but not quite. It is clear
that a local energy market will help increasing the community’s energy efficiency by
distributing local production between the neighbouring buildings. However, energy
storage is needed in order store excess production for later consumption and thereby
increase self-consumption further. This agrees with Mengelkamp et. al., who conclude
that energy storage increases self-consumption within local energy markets [28].

For the self-sufficiency and self-consumption for BK16 alone case 3.2 and 6.2 deviated
from the other cases. These are both cases where BK16 operates the battery inde-
pendently and therefore has the opportunity to control its import and export to some
extent. In configuration 3.2 the self-consumption and self-consumption were increased
because BK16 had the opportunity to store excess production for later consumption.
However, for configuration 6.2 the self-sufficiency and self-consumption decreased. This
is because configuration 6.2 includes a local energy market. Therefore, production at
BK16 can be sold to the market in order to reduce other buildings’ power peak and
thereby reducing the total community costs which is the main objective.
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8.4 Costs

A few apparent connections between the results are revealed by comparing the cost re-
ductions and contributions against the peak shaving and utilisation of locally produced
energy. First, there is a clear link between the cases where the maximum power peak is
considerably reduced and the cases with the greatest cost reductions. Due to the high
power tariff of 150 NOK/kW, the community receives a high monetary benefit from
shaving the peaks. Configuration 1 with s-BESS and joint metering shaves the power
peaks the most, leading to a cost reduction of 10-20% depending on season. The second
best results in terms of cost reductions are given by configuration 4 with battery, 5
and 6, with cost reductions of 6-17% compared to base case. In line with the results
presented by Rahbar et. al, these results show that shared battery energy storage
systems for commercial buildings provide a substantial cost saving potential[26].

There is also a link between reduced costs and spot price arbitrage. Although the
sensitivity analysis indicate that such a high peak tariff makes the model prefer peak
shaving operations over spot price arbitrage, there is a small energy cost reduction for
some of the configurations. This is because the battery can still exploit the spot price
variations as long as the import does not exceed the predicted future power peaks.

The last link worth mentioning is the connection between self-consumption/ self-
sufficiency and savings. It is clear that a higher share of self-sufficiency reduces the
need for importing energy. Therefore the energy costs and volumetric costs are clearly
reduced in June for configurations where self-sufficiency and self-consumption are in-
creased, like configurations 1, 4, 5 and 6.

The cost contribution results show that the peak costs make up the greatest savings for
the different configurations, substantiating that the MP tariff give reasonable incentives
for peak shaving. The volumetric costs make up a significant share of the total costs
as well. However, they do not affect the battery scheduling to a high extent, but may
affect the cost of energy loss within the battery and thereby the battery utilisation as
discussed in Section 8.1. This is reflected in the increased volumetric cost in some of
the configurations in January and March, indicating that the battery has been utilised.
However, the decrease in volumetric costs for some of the configurations in June indicate
that the community has decreased its import from the distribution grid by increasing
the self-sufficiency.
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The seasonal variations for the energy costs are due to the seasonal variations for the
spot price as shown in Figure 5.2. With high spot price costs, these costs make up a
greater share of the total costs, and thereby increasing the energy costs contribution.
Unlike the volumetric costs, the spot price is varying and therefore affect scheduling
of the battery. This is reflected in a decreased spot price contribution for some of the
configurations when compared to base case.

As mentioned, the case study is based on operation with an already existing battery at
Brattøra, neglecting the investment costs and lifetime of the battery. However, if the
optimisation model were to be implemented for a new s-BESS community, these factors
should be taken into consideration. For a new system, it is not only important that
there are sufficient incentives for peak shaving, but there should be sufficient incentives
for investing in a BESS as well. As mentioned in Section 2.1, investing in storage
technologies are still very expensive [11]. However, as the future BESS pricing levels
are expected to decrease the coming years [11][10], and the studies of Keck and Lenzen
reveal that s-BESS can be net present value positive by 2023 in Australia [17]. This
indicates that shared energy storage within local energy communities in Norway can
be beneficial in the near future as well.

8.5 Configurations and Regulations

From the case study it was clear that s-BESS with joint metering was the system
configuration which gave the overall best results for peak shaving, self-consumption,
self-sufficiency and costs. However, RME argues that joint metering does not provide
sufficient rights for consumers and imposes increasing costs for the other users in the
concession area [5]. Still, joint metering clearly gives a strong incentive to reduce power
peaks , which again might lead to postponement of expensive grid investment. One
can argue that these future savings should be considered when processing applications
for joint metering dispensation.

As joint metering seem hard to implement due to the regulations, the second best
alternative are local energy markets with individual metering as implemented in con-
figuration 4 with battery, 5 and 6. Local energy markets are a great way of utilising
a BESS for flexibility purposes. All results presented proves that the aforementioned
configurations have close to the same benefits as joint metering results, although with
slightly smaller peak and cost reductions. While there is no specific standardise process
for granting temporary dispensation for local energy market regulations, dispensation
have been given in Norway. There exists projects on flexibility markets that are cur-
rently being implemented [33][45][4].
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As mentioned, the market strategy for the local energy market in configurations 1, 4,
5 and 6 are not included in the mathematical model, but rather assumes free power
flow within the market with no cost limitations. With this in mind, the community
benefits for these configurations do not depend on who owns and operates the battery.
The monetary savings, energy efficiency and peak shaving effects show similar results
for all the local energy market configurations independent of battery allocation. If the
local market strategy were to be implemented in the model, there might be apparent
differences between the case results for configurations 4, 5 and 6.

In configurations 2 and 3, the BESS’s flexibility can not be shared within the local
energy community in any way and the results are not very promising in comparison
to the other configurations. For configuration 3 with individual storage, the building
operating the battery is the only building benefiting from it. However, if joint metering
or local energy markets are out of the question, it seems like the best allocation of the
battery is with buildings with high and predictable peaks, such as BK15AB in case
3.1. This configuration seem to have a small affect on reducing the community power
peak.

A configuration where an external actor operates the battery alone with individual
metering, as for configuration 2, seem to provide no benefits for the community at all.
There are no incentives for utilising the battery, as stated in Section 8.1. An external
actor operating the battery individually is more valuable if there exists a local energy
market for the community, as for configuration 5. However, in neither of these cases
the external operators will utilise the distribution grid for charging and discharging the
battery due to the peak costs.
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Based on the recent development of the power system regarding increasing power de-
mand and renewable production, this thesis have investigated how a s-BESS can reduce
power peaks and increase energy efficiency for commercial buildings in order to adapt
to these changes. This was done by creating a receding horizon optimisation model
where a stochastic linear program was solved itereatively in order to operate the BESS
in the most cost efficient way for the community as a whole. As shared storage with
joint metering is not in line with the Norwegian regulations, the optimisation model
was used for different s-BESS configurations that take different stances to these reg-
ulations. This is done with the intention to find alternative approaches to s-BESS
with joint metering, which would provide the community with approximately the same
benefits.

The configurations where the battery’s flexibility services can either be shared BTM or
sold on a local energy market give the greatest results regarding peak shaving, energy
efficiency and electricity cost reductions compared to the configurations with individual
storage. Shared storage with joint metering reduced the community power peak by 7-
11% and thereby reduced its costs by 10-20% depending on season. With individual
metering the system managed to reduce its peak by 2-8% and the costs by 6-7%. For all
these configurations self-consumption was increased by an additional 45-46% in June
by more efficient utilisation of locally produced energy.

When assuming that a local energy market is a perfect market, it does not matter for
the community benefits which actors in the community owns and operates the battery.
The individual benefits may differ depending on whether the battery is operated by
individual buildings, whether it is shared or operated by external actors. However, fair
allocation of monetary benefits between the buildings and implementation of the local
energy market strategy was considered to be out of scope for this theses.

A configuration which enables all buildings of the community to utilise the flexibility
of the battery is not the only factor which community peak shaving is dependent on.
The DSO’s pricing model have a huge impact on the consumer’s decision making and
battery scheduling. When operating a BESS there is often a trade-off between spot
price and peak shaving benefits. This study shows that increasing the MP tariff above
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a certain level creates higher incentives for peak shaving, and thereby outweighing the
spot price arbitrage benefit. The results emphasise the significance of a pricing model
that reflects the actual costs of the DSO in order to give reasonable incentives for the
community to respond to transmission congestion.

Finally, it should be pointed out that the s-BESS configuration with joint metering
is the only configuration which directly seek to minimise the community power peak
and not each individual building’s peak. Therefore, this configuration gives the overall
best results for both peak shaving and cost reductions, challenging the regulations
regarding joint metering. Since s-BESS with joint metering have greater incentives for
peak reductions and thereby may be able to postpone expensive grid investments due
to congestion, these possible benefits versus the disadvantages of joint metering should
be discussed further.

Although s-BESS with joint metering proves to give the overall best community bene-
fits, a local energy market with individual metering turns out to be a good alternative
as long as dispensation is granted. Anyhow, shared storage behind the meter or within
a local energy market has proven to benefit consumers and assist the DSOs with ad-
apting to increasing demand and renewable production, and therefore it should be
considered when developing the future power system.

9.1 Further Work

There are several aspects of this study that could be investigated further. The first
aspect worth mentioning is the implementation of a market strategy for the local energy
market configurations. As each individual building would seek to maximise their own
individual benefit, it is assumed that a market strategy implementation would affect
the total system costs and optimal scheduling.

Another continuation of the work conducted in this thesis could be to include flexible
loads within the commercial buildings in the local market, where the loads’ consump-
tion can be shifted in order to reduce total system peak.

As this theses only optimised operation of s-BESS, an investment analysis and calcu-
lation on optimal battery size for the community system was considered to be out of
scope. However, as s-BESS communities tend to have greater monetary benefits for
the community than when a BESS is operated individually, the investment analysis
of the s-BESS might have better chances for profitability than individual BESS. The
optimal size for the battery in such a community is also of interest.
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A. OPTIMISATION MODEL: CONFIGURATION 1 APPENDICES

A Optimisation Model: Configuration 1

min
∑

s∈S
πs

∑

h∈H
((pGimph,s (CE

h + CV )− CE
h,sp

Gexp
h,s )

+ CP (P sys + ∆psyss )) + CF (A.1a)

s.t.
∑

b∈B
(bGimph,b,s − bGexph,b,s ) = pGimph,s − pGexph,s ∀h ∈ H, s ∈ S (A.1b)

bGimph,b,s − bGexph,b,s = Rcons
h,b −Rprod

h,b ∀h ∈ H1, b ∈ B, s ∈ S (A.1c)

bGimph,b,s − bGexph,b,s = Dcons
h,b,s −Dprod

h,b,s∀h ∈ H2, b ∈ B, s ∈ S (A.1d)

eh,s ≤ Emax ∀h ∈ H, s ∈ S (A.1e)

xLchah,s ≤ Kmax ∀h ∈ H, s ∈ S (A.1f)

xLdchh,s ≤ Kmax ∀h ∈ H, s ∈ S (A.1g)

ηchaxLchah,s −
xLdchh,s

ηdch
= eh,s − eh−1,s ∀h ∈ H|h6=l, s ∈ S (A.1h)

ηchaxLchal,s −
xLdchl,s

ηdch
= el,s − S0 ∀s ∈ S (A.1i)

ef,s = Sf ∀s ∈ S (A.1j)

P sys + ∆psyss ≥ pGimph,s ∀h ∈ H, s ∈ S (A.1k)

eh,s = eh,s−1 ∀h ∈ H, s ∈ S|s 6=1 (A.1l)

xLchah,s = xLchah,s−1 ∀h ∈ H, s ∈ S|s6=1 (A.1m)

xLdchh,s = xLdchh,s−1 ∀h ∈ H, s ∈ S|s6=1 (A.1n)

pGimph,s = pGimph,s−1 ∀h ∈ H, s ∈ S|s6=1 (A.1o)

pGexph,s = pGexph,s−1 ∀h ∈ H, s ∈ S|s6=1 (A.1p)

bGimph,b,s = bGimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (A.1q)

bGexph,b,s = bGexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (A.1r)

eh,s, xLchah,s , , xLdchh,s ≥ 0 ∀h ∈ H, s ∈ S (A.1s)

pGimph,s , pGexph,s ≥ 0 ∀h ∈ H, s ∈ S (A.1t)

bGimph,b,s , bGexph,b,s ≥ 0 ∀h ∈ H, b ∈ B, s ∈ S (A.1u)

∆psyss ≥ 0 ∀s ∈ S (A.1v)
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B. OPTIMISATION MODEL: CONFIGURATION 2 APPENDICES

B Optimisation Model: Configuration 2

min
∑

s∈S
πs(

∑

b∈B
(
∑

h∈H
(bGimph,b,s (CE

h + CV )− CE
h b

Gexp
h,b,s )

+ CP (P building
b + ∆pbuildingb,s ) + CF ) +

∑

h∈H
(xGchah,s (CE

h

+ CV )− CExGdchh,s ) + CP (P battery + ∆pbatterys ) + CF ) (B.2a)

s.t. bGimph,b,s − bGexph,b,s = Rcons
h,b −Rprod

h,b ∀h ∈ H1, b ∈ B, s ∈ S
(B.2b)

bGimph,b,s − bGexph,b,s = Dcons
h,b,s −Dprod

h,b,s ∀h ∈ H2, b ∈ B, s ∈ S
(B.2c)

eh,s ≤ Emax ∀h ∈ H, s ∈ S (B.2d)

xGchah,s ≤ Kmax ∀h ∈ H, s ∈ S (B.2e)

xGdchh,s ≤ Kmax ∀h ∈ H, s ∈ S (B.2f)

ηchaxGchah,s −
xGdchh,s

ηdch
= eh,s − eh−1,s ∀h ∈ H|h6=l, s ∈ S (B.2g)

ηchaxGchal,s −
xGdchl,s

ηdch
= el,s − S0 ∀s ∈ S (B.2h)

ef,s = Sf ∀s ∈ S (B.2i)

P building
b + ∆pbuildingb,s ≥ bbuildingh,b,s ∀h ∈ H, b ∈ B, s ∈ S

(B.2j)

P battery + ∆pbatterys ≥ xGchah,s ∀h ∈ H, s ∈ S (B.2k)

eh,s = eh,s−1 ∀h ∈ H, s ∈ S|s 6=1 (B.2l)

xGchah,s = xGchah,s−1 ∀h ∈ H, s ∈ S|s6=1 (B.2m)

xGdchh,s = xGdchh,s−1 ∀h ∈ H, s ∈ S|s6=1 (B.2n)

bGimph,b,s = bGimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1

(B.2o)

bGexph,b,s = bGexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1

(B.2p)

eh,s, xGchah,s , , xGdchh,s ≥ 0 ∀h ∈ H, s ∈ S (B.2q)

bGimph,b,s , bGexph,b,s ≥ 0 ∀h ∈ H, b ∈ B, s ∈ S
(B.2r)

∆pbatterys ≥ 0 ∀s ∈ S (B.2s)

∆pbuildingb,s ≥ 0 ∀b ∈ B, s ∈ S (B.2t)
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C Optimisation Model: Configuration 3

min
∑

s∈S
πs

∑

b∈B
(
∑

h∈H
(bGimph,b,s (CE

h + CV )− CE
h,sb

Gexp
h,b,s )

+ CP (P building
b + ∆pbuildingb,s ) + CF ) (C.3a)

(C.3b)

s.t. Rcons
h,k −Rprod

h,k + xGchah,k,s − xGdchh,k,s = bGimph,b,s − bGexph,b,s ∀h ∈ H1, s ∈ S (C.3c)

Dcons
h,k,s −Dprod

h,k,s + xGchah,k,s − xGdchh,k,s = bGimph,k,s − bGexph,k,s∀h ∈ H2, s ∈ S (C.3d)

Rcons
h,b −Rprod

h,b = bGimph,b,s − bGexph,b,s ∀h ∈ H1, b ∈ B|n6=k, s ∈ S
(C.3e)

Dcons
h,b,s −Dprod

h,b,s = bGimph,b,s − bGexph,b,s ∀h ∈ H2, b ∈ B|b6=k, s ∈ S (C.3f)

eh,s ≤ Emax ∀h ∈ H, s ∈ S (C.3g)

xGchah,s ≤ Kmax ∀h ∈ H, s ∈ S (C.3h)

xGdchh,s ≤ Kmax ∀h ∈ H, s ∈ S (C.3i)

ηchaxGchah,s −
xGdchh,s

ηdch
= eh,s − eh−1,s ∀h ∈ H|h6=l, s ∈ S (C.3j)

ηchaxGchal,s −
xGdchl,s

ηdch
= el,s − S0 ∀s ∈ S (C.3k)

ef,s = Sf ∀s ∈ S (C.3l)

P building
b + ∆pbuildingb,s ≥ bbuildingh,b,s ∀h ∈ H, b ∈ B, s ∈ S (C.3m)

eh,s = eh,s−1 ∀h ∈ H, s ∈ S|s 6=1 (C.3n)

xGchah,s = xGchah,s−1 ∀h ∈ H, s ∈ S|s 6=1 (C.3o)

xGdchh,s = xGdchh,s−1 ∀h ∈ H, s ∈ S|s 6=1 (C.3p)

bGimph,b,s = bGimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (C.3q)

bGexph,b,s = bGexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (C.3r)

eh,s, xGchah,s , , xGdchh,s ≥ 0 ∀h ∈ H, s ∈ S (C.3s)

bGimph,b,s , bGexph,b,s ≥ 0 ∀h ∈ H, b ∈ B, s ∈ S (C.3t)

∆pbatterys ≥ 0 ∀s ∈ S (C.3u)

∆pbuildingb,s ≥ 0 ∀b ∈ B, s ∈ S (C.3v)
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D Optimisation Model: Configuration 4

min
∑

s∈S
πs

∑

b∈B
(
∑

h∈H
(bGimph,b,s (CE

h + CV )− CE
h,sb

Gexp
h,b,s )

+ CP (P building
b + ∆pbuildingb,s ) + CF ) (D.4a)

(D.4b)

s.t. bGimph,b,s − bGexph,b,s + bLimph,b,s − bLexph,b,s = Rcons
h,b −Rprod

h,b ∀h ∈ H1, b ∈ B, s ∈ S (D.4c)

bGimph,b,s − bGexph,b,s + bLimph,b,s − bLexph,b,s = Dcons
h,b,s −Dprod

h,b,s∀h ∈ H2, b ∈ B, s ∈ S (D.4d)
∑

b∈B
(bLimph,b,s − bLexph,b,s ) = xLchah,s − xLdchh,s ∀h ∈ H, s ∈ S (D.4e)

eh,s ≤ Emax ∀h ∈ H, s ∈ S (D.4f)

xLchah,s ≤ Kmax ∀h ∈ H, s ∈ S (D.4g)

xLdchh,s ≤ Kmax ∀h ∈ H, s ∈ S (D.4h)

ηchaxLchal,s −
xLdchl,s

ηdch
= eh,s − eh−1,s ∀h ∈ H|h6=l, s ∈ S (D.4i)

ηchaxLchal,s −
xLdchl,s

ηdch
= el,s − S0 ∀s ∈ S (D.4j)

ef,s = Sf ∀s ∈ S (D.4k)

P building
b + ∆pbuildingb,s ≥ bbuildingh,b,s ∀h ∈ H, b ∈ B, s ∈ S (D.4l)

eh,s = eh,s−1 ∀h ∈ H, s ∈ S|s 6=1 (D.4m)

xLchah,s = xLchah,s−1 ∀h ∈ H, s ∈ S|s 6=1

xLdchh,s = xLdchh,s−1 ∀h ∈ H, s ∈ S|s6=1 (D.4n)

bGimph,b,s = bGimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1

bGexph,b,s = bGexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (D.4o)

bLimph,b,s = bLimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1

bLexph,b,s = bLexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (D.4p)

eh,s, xLchah,s , , xLdchh,s ≥ 0 ∀h ∈ H, s ∈ S (D.4q)

bGimph,b,s , bGexph,b,s , bLimph,b,s , bLexph,b,s ≥ 0 ∀h ∈ H, b ∈ B, s ∈ S (D.4r)

∆pbuildingb,s ≥ 0 ∀b ∈ B, s ∈ S (D.4s)
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E Optimisation Model: Configuration 5

min
∑

s∈S
πs(

∑

b∈B
(
∑

h∈H
(bGimph,b,s (CE

h + CV )− CE
h b

Gexp
h,b,s )

+ CP (P building
b + ∆pbuildingb,s ) + CF ) +

∑

h∈H
(xGchah,s (CE

h

+ CV )− CExGdchh,s ) + CP (P battery + ∆pbatterys ) + CF ) (E.5a)

s.t. bGimph,b,s − bGexph,b,s + bLimph,b,s − bLexph,b,s = Rcons
h,b −Rprod

h,b ∀h ∈ H1, b ∈ B, s ∈ S
(E.5b)

bGimph,b,s − bGexph,b,s + bLimph,b,s − bLexph,b,s = Dcons
h,b,s −Dprod

h,b,s∀h ∈ H2, b ∈ B, s ∈ S
(E.5c)

∑

b∈B
(bLimph,b,s − bLexph,b,s ) = xLchah,s − xLdchh,s ∀h ∈ H, s ∈ S (E.5d)

eh,s ≤ Emax ∀h ∈ H, s ∈ S (E.5e)

xGchah,s + xLchah,s ≤ Kmax ∀h ∈ H, s ∈ S (E.5f)

xGdchh,s + xLdchh,s ≤ Kmax ∀h ∈ H, s ∈ S (E.5g)

ηcha(xGchal,s + xLchal,s )−
(xGdchl,s + xLdchl,s )

ηdch
= eh,s − eh−1,s ∀h ∈ H|h6=l, s ∈ S

(E.5h)

ηcha(xGchal,s + xLchal,s )−
(xGdchl,s + xLdchl,s )

ηdch
= el,s − S0 ∀s ∈ S (E.5i)

ef,s = Sf ∀s ∈ S (E.5j)

P building
b + ∆pbuildingb,s ≥ bbuildingh,b,s ∀h ∈ H, b ∈ B, s ∈ S

(E.5k)

P battery + ∆pbatterys ≥ xGchah,s ∀h ∈ H, s ∈ S (E.5l)

eh,s = eh,s−1 ∀h ∈ H, s ∈ S|s6=1

(E.5m)
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xchah,s = xchah,s−1 ∀h ∈ H, s ∈ S|s 6=1

(E.5n)

xdchh,s = xdchh,s−1 ∀h ∈ H, s ∈ S|s 6=1

(E.5o)

xLchah,s = xLchah,s−1 ∀h ∈ H, s ∈ S|s 6=1

(E.5p)

xLdchh,s = xLdchh,s−1 ∀h ∈ H, s ∈ S|s 6=1

(E.5q)

bGimph,b,s = bGimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1

(E.5r)

bGexph,b,s = bGexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1

(E.5s)

bLimph,b,s = bLimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1

(E.5t)

bLexph,b,s = bLexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1

(E.5u)

eh,s, xGchah,s , , xGdchh,s , xLchah,s , , xLdchh,s ≥ 0 ∀h ∈ H, s ∈ S (E.5v)

bGimph,b,s , bGexph,b,s , bLimph,b,s , bLexph,b,s ≥ 0 ∀h ∈ H, b ∈ B, s ∈ S
(E.5w)

∆pbatterys ≥ 0 ∀s ∈ S (E.5x)

∆pbuildingb,s ≥ 0 ∀b ∈ B, s ∈ S (E.5y)
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F Optimisation Model: Configuration 6

min
∑

s∈S
πs

∑

b∈B
(
∑

h∈H
(bGimph,b,s (CE

h + CV )− CE
h,sb

Gexp
h,b,s )

+ CP (P building
b + ∆pbuildingb,s ) + CF ) (F.6a)

(F.6b)

s.t. bGimph,k,s − bGexph,k,s + bLimph,k,s − bLexph,k,s = Rcons
h,k −Rprod

h,k

+ xLchah,k,s − xLdchh,k,s ∀h ∈ H1, s ∈ S (F.6c)

bGimph,k,s − bGexph,k,s + bLimph,k,s − bLexph,k,s = Dcons
h,k,s −Dprod

h,k,s

+ xLchah,k,s − xLdchh,k,s ∀h ∈ H2, s ∈ S (F.6d)

bGimph,b,s − bGexph,b,s + bLimph,b,s − bLexph,b,s = Rcons
h,b −Rprod

h,b ∀h ∈ H1, b ∈ B|b6=k, s ∈ S
(F.6e)

bGimph,b,s − bGexph,b,s + bLimph,b,s − bLexph,b,s = Dcons
h,b,s −Dprod

h,b,s∀h ∈ H2, b ∈ B|b 6=k, s ∈ S
(F.6f)

∑

b∈B
(bLimph,b,s − bLexph,b,s ) = xLchah,s − xLdchh,s ∀h ∈ H, s ∈ S (F.6g)

eh,s ≤ Emax ∀h ∈ H, s ∈ S (F.6h)

xLchah,s ≤ Kmax ∀h ∈ H, s ∈ S (F.6i)

xLdchh,s ≤ Kmax ∀h ∈ H, s ∈ S (F.6j)

ηchaxLchal,s −
xLdchl,s

ηdch
= eh,s − eh−1,s ∀h ∈ H|h6=l, s ∈ S (F.6k)

ηchaxLchal,s −
xLdchl,s

ηdch
= el,s − S0 ∀s ∈ S (F.6l)

ef,s = Sf ∀s ∈ S (F.6m)

P building
b + ∆pbuildingb,s ≥ bbuildingh,b,s ∀h ∈ H, b ∈ B, s ∈ S (F.6n)

eh,s = eh,s−1 ∀h ∈ H, s ∈ S|s 6=1 (F.6o)

xLchah,s = xLchah,s−1 ∀h ∈ H, s ∈ S|s 6=1 (F.6p)

xLdchh,s = xLdchh,s−1 ∀h ∈ H, s ∈ S|s 6=1 (F.6q)

bGimph,b,s = bGimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (F.6r)

bGexph,b,s = bGexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (F.6s)

bLimph,b,s = bLimph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (F.6t)

bLexph,b,s = bLexph,b,s−1 ∀h ∈ H, b ∈ B, s ∈ S|s 6=1 (F.6u)

eh,s, xLchah,s , , xLdchh,s ≥ 0 ∀h ∈ H, s ∈ S (F.6v)

bGimph,b,s , bGexph,b,s , bLimph,b,s , bLexph,b,s ≥ 0 ∀h ∈ H, b ∈ B, s ∈ S (F.6w)

∆pbuildingb,s ≥ 0 ∀b ∈ B, s ∈ S (F.6x)
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G Predictions by the Autoregressive Models

Figure G.1: Prediction of consumption at BK15AB(y1,t)

Figure G.2: Prediction of consumption at BK16(y2,t)
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Figure G.3: Prediction of production at BK16(y3,t)

Figure G.4: Prediction of consumption at Sjogangen(y4,t)
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H Preliminary Results of Scenario Generation

Figure H.1: Preliminary results showing the forecasting accuracy of y1,t

Figure H.2: Preliminary results showing the forecasting accuracy of y3,t
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Figure H.3: Preliminary results showing the forecasting accuracy of y3,t

Figure H.4: Preliminary results showing the forecasting accuracy of y4,t
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I Cost Contribution Tables

January
Grid tariff Energy costs

Cases Peak costs Volumetric costs Fixed costs Spot price

Base case Costs [kNOK] 141.4 65.0 1.0 65.7
% of total costs 51.8 23.8 0.4 24.1

1 Costs [kNOK] 114.6 65.2 0.3 65.3
% of total costs 46.7 26.6 0.1 26.6

2 Costs [kNOK] 141.4 65.0 1.4 65.7
% of total costs 51.7 23.8 0.5 24.0

3.1 Costs [kNOK] 132.1 65.3 1.0 65.4
% of total costs 50.1 24.8 0.4 24.8

3.2 Costs [kNOK] 137.6 65.1 1.0 65.6
% of total costs 51.1 24.2 0.4 24.4

3.3 Costs [kNOK] 143.3 65.2 1.0 65.3
% of total costs 52.1 23.7 0.4 23.8

4 with battery Costs [kNOK] 125.2 65.2 1.0 65.3
% of total costs 48.8 25.4 0.4 25.4

4 without battery Costs [kNOK] 138.8 65.0 1.0 65.7
% of total costs 51.3 24.0 0.4 24.3

5 Costs [kNOK] 124.6 65.2 1.4 65.3
% of total costs 48.6 25.4 0.5 25.5

6.1 Costs [kNOK] 126.4 65.2 1.0 65.3
% of total costs 49.0 25.3 0.4 25.3

6.2 Costs [kNOK] 123.6 65.2 1.0 65.3
% of total costs 48.5 25.6 0.4 25.6

6.3 Costs [kNOK] 124.4 65.2 1.0 65.3
% of total costs 48.6 25.5 0.4 25.5

Table I.1: Cost contributions for the energy bill in January
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March
Grid tariff Energy costs

Cases Peak costs Volumetric costs Fixed costs Spot price

Base case Costs [kNOK] 145.0 43.7 1.0 19.5
% of total costs 69.3 20.9 0.5 9.3

1 Costs [kNOK] 111.3 43.8 0.3 19.3
% of total costs 63.7 25.1 0.2 11.1

2 Costs [kNOK] 145.0 43.8 1.4 19.6
% of total costs 69.1 20.9 0.6 9.3

3.1 Costs [kNOK] 134.2 43.9 1.0 19.4
% of total costs 67.6 22.1 0.5 9.8

3.2 Costs [kNOK] 141.2 43.7 1.0 19.5
% of total costs 68.7 21.3 0.5 9.5

3.3 Costs [kNOK] 136.8 43.8 1.0 19.4
% of total costs 68.0 21.8 0.5 9.6

4 with battery Costs [kNOK] 113.7 43.8 1.0 19.4
% of total costs 63.9 24.6 0.6 10.9

4 without battery Costs [kNOK] 132.6 43.7 1.0 19.5
% of total costs 67.4 22.2 0.5 9.9

5 Costs [kNOK] 115.1 43.8 1.4 19.4
% of total costs 64.1 24.4 0.8 10.8

6.1 Costs [kNOK] 112.0 43.8 1.0 19.4
% of total costs 63.6 24.9 0.6 11.0

6.2 Costs [kNOK] 114.0 43.8 1.0 19.3
% of total costs 64.0 24.6 0.6 10.9

6.3 Costs [kNOK] 113.1 43.8 1.0 19.4
% of total costs 63.8 24.7 0.6 10.9

Table I.2: Cost contributions for the energy bill in March

June
Grid tariff Energy costs

Cases Peak costs Volumetric costs Fixed costs Spot price

Base case Costs [kNOK] 39.9 20.8 1.0 6.1
% of total costs 58.9 30.7 1.5 8.9

1 Costs [kNOK] 32.7 18.2 0.3 2.6
% of total costs 60.7 33.8 0.6 4.8

2 Costs [kNOK] 39.9 20.8 1.4 3.3
% of total costs 61.1 31.8 2.1 5.0

3.1 Costs [kNOK] 34.3 21.0 1.0 3.1
% of total costs 57.8 35.3 1.7 5.1

3.2 Costs [kNOK] 39.1 19.4 1.0 3.1
% of total costs 62.5 31.0 1.6 4.9

3.3 Costs [kNOK] 40.1 20.8 1.0 3.3
% of total costs 61.5 31.9 1.6 5.0

4 with battery Costs [kNOK] 35.2 18.2 1.0 2.6
% of total costs 61.7 32.0 1.8 4.6

4 without battery Costs [kNOK] 41.2 18.2 1.0 2.8
% of total costs 65.2 28.7 1.6 4.5

5 Costs [kNOK] 34.1 18.2 1.4 2.6
% of total costs 60.6 32.4 2.4 4.6

6.1 Costs [kNOK] 34.6 18.2 1.0 2.6
% of total costs 61.3 32.3 1.8 4.6

6.2 Costs [kNOK] 34.1 18.2 1.0 2.6
% of total costs 60.9 32.6 1.8 4.7

6.3 Costs [kNOK] 37.0 18.2 1.0 2.6
% of total costs 62.9 31.0 1.7 4.4

Table I.3: Cost contributions for the energy bill in June
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Abstract. The power system is experiencing an increasing share of renewable and intermittent
energy production and increasing electrification. However, these changes are creating high
power peaks, are straining the grid and call for expensive investments in expansions and
improvements. This paper examines how the operational strategy of shared battery energy
storage systems (s-BESS) can address these issues for commercial buildings with relatively high
power peaks. Due to the uncertainty in long-term costs when subject to a measured peak
(MP) grid tariff, the scheduling of the battery is optimised with a receding horizon control
algorithm. The optimisation model is used on a Norwegian real-life case study to find the best
possible configuration with an already existing battery. Although current Norwegian regulations
challenge the possibility for shared metering and billing for a s-BESS configuration, the results
show that the total system cost was reduced by 19.2% compared to no battery. The community
peak was reduced by 17.8% compared to no battery and 6.22-17.5% compared to individual
storage, which indicates that s-BESS is of value for the DSO as well.

Sets Dcons
h,b,s Consumption in hour h by building b

S Set of scenarios η Battery (dis)charging efficiency
B Set of buildings πs Probability of scenario s
H Set of hours P peak Previously measured system
Indices power peak

s A scenario s in set S P building
b Previously measured power peak

h An hour h in set H for each building
k The final hour in the Decision variables

first stage problem eh,s Energy stored in the battery
b A building in set B in hour h for scenario s

Parameters ∆ppeaks The additional power to reach new

Cspot
h Energy spot price in hour h maximum total system peak

Cpeak Peak power tariff ∆pbuildingb,s The additional power to reach new

Cvol Volumetric costs maximum peak for each building

Cfixed Fixed cost pimp
h,s , pexph,s Total power imported/exported to

Emax Battery energy storage capacity grid in hour h for scenario s

Kmax Battery (dis)charge capacity yimp
h,b,s, y

exp
h,b,s Power imported/exported in

δb Battery connected to building{0,1} hour h by building b in scenario s
δjoint Joint metering for all buildings{0,1} xchah,s , xdchh,s Power to/from the battery at

Dprod
h,b,s Production in hour h by building b hour h in scenario s

∗Corresponding author.
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1. Introduction
The interest in battery energy storage systems (BESS) integration on the demand side is
increasing due to the ability to handle the intermittency of renewable energy sources and the
increasing power demand. This ability to provide location-specific services can in turn postpone
costly grid investments [1]. Batteries can assist in peak-shaving which ensures that the grid will
not experience the full effects of high energy demands [1]. In addition, other studies show that
optimal operation of s-BESS between several residential buildings will result in higher energy
efficiency and lower total system cost for the whole area compared to individual battery storage
[2, 3]. It should, however, be noted that these studies typically include buildings with similar
load and production patterns.

Due to the high consumption of commercial buildings and their varying consumption patterns
and power peaks, this work will focus on the integration of a s-BESS between commercial
buildings in urban areas, including a case study from Trondheim, Norway. There are already
considerable volumes of work dedicated to the economic value of BESS implementation in
commercial buildings under different grid tariffs [4, 5]. Work in Refs. [6, 7] considered the
monetary benefits of peak shaving for commercial buildings with BESS and photovoltaics(PV),
showing increased self-consumption and that costs can be efficiently reduced by peak shaving.
Shared BESS between commercial buildings has been considered by [8, 9], but few others
investigate the effects of s-BESS for commercial buildings with different production profiles
and measured peak (MP) grid tariff.

Currently, Norwegian DSOs use MP grid tariffs for high demand commercial buildings, but
regulations do not allow shared metering for more than one building or legal entity [10]. This
challenges the s-BESS, as the economical benefits disappears with individual metering.

This paper investigates the monetary benefits of s-BESS and metering and compares this
configurations to other configurations that are in line with current regulations. When optimising
BESS operatio, a receding horizon control (RHC) approach is advantageous because of the
ability to consider future uncertainties [11]. Therefore, a receding horizon optimisation model
is developed to perform the analysis, with a stochastic linear program to consider future
uncertainties. The contributions from this paper are:

• The development of an RHC model for shared commercial community under the influence
of long-term capacity-based grid tariffs.

• Quantified gains of shared energy storage for urban area commercial buildings compared to
configurations in line with regulatory regimes.

2. Methodology
The presented methodology aims at investigating the benefit of using a BESS as a shared asset
in a community, or individually by a chosen building in the community. To be able to properly
control the battery, while taking into account the long-term significance of the maximum power
peak grid tariff, a receding horizon control (RHC) optimization algorithm has been developed.
The RHC makes use of a stochastic LP problem to control the BESS optimally. Both the
stochastic LP model and RHC is explained further in the following sections.

2.1. Stochastic linear program(LP) model formulation
The objective of the stochastic LP-formulation is to minimise the electricity costs by operating
the BESS. The optimization model is divided into two stages; the first stage has deterministic
information up until hour k, while the second stage has the problem split into three discrete
stochastic scenarios for the rest of the month. The second stage allow the model to foresee the
possible future peak levels and include the peak power grid tariff.

Page 95 of 99



J. SCIENTIFIC PAPER APPENDICES

2.1.1. Objective function The objective function is dependent on whether the BESS is shared
by the community or owned individually. For joint metering the binary variable δjoint holds
value 1, and 0 for individual metering, hence changing the objective function. As shown in Eq.
(1), the objective function represents the cost from the energy spot price and the grid tariff that
consists of volumetric costs, peak power costs and fixed costs from the DSO.

min z = δjoint
∑

s∈S
πs(

∑

h∈H
((Cspot

h +Cvol)pimp
h,s −C

spot
h pexph,s ) +Cpeak(∆ppeaks +P peak) +Cfixed)

+ (1− δjoint)
∑

s∈S
πs(

∑

b∈B
(
∑

h∈H
((Cspot

h + Cvol)yimp
h,b,s

− Cspot
h yexph,b,s) + Cpeak(∆ppeakb,s + P building

b ) + Cfixed)) (1)

2.1.2. Energy balance constraints The electric energy balance between the buildings and the
grid is shown in Eq. (2), while the balance for each individual building is captured in Eq. (3).
The BESS can be placed either in the community or with a specific building, based on the
parameters δjoint and δb. δb holds value 1 if it is placed with building b and 0 otherwise.

pimp
h,s − p

exp
h,s + δjointxdchh,s +

∑

b∈B
yexph,b,s =

∑

b∈B
yimp
h,b,s + δjointxchah,s ∀ h ∈ H, s ∈ S (2)

yimp
h,b,s − y

exp
h,b,s +Dprod

h,b,s + δbx
dch
h,s = Dcons

h,b,s + δbx
cha
h,s ∀ h ∈ H, b ∈ B, s ∈ S (3)

2.1.3. Battery constraints The BESS has an upper and lower limit on how much energy the
battery can store, shown in Eq. (5), and how much power can be charged and discharged within
an hour, as shown in Eq. (4). Eq. (6) addresses the energy balance for the battery based on
charging/discharging quantities.

0 ≤ xchah,s , x
dch
h,s ≤ Kmax ∀ h ∈ H, s ∈ S (4)

0 ≤ eh,s ≤ Emax ∀ h ∈ H, s ∈ S (5)

eh,s − eh−1,s = ηxchah,s −
xdchh,s

η
∀ h ∈ H, s ∈ S (6)

2.1.4. Power peak constraints The maximum power peak grid tariff is based on the highest
single-hour peak import level during a one month period, for the community or for the individual
buildings. As shown in Eq. (7) for the community and Eq. (8) for the individual building, the
peak power is based on previous peak levels, PPeak, and the increase of peak levels during

operation, ∆ppeaks , for each scenario.

∆ppeaks + P peak ≥ pimp
h,s ∀ h ∈ H, s ∈ S (7)

∆pbuildingb,s + P building
b ≥ yimp

h,b,s ∀ h ∈ H, b ∈ B, s ∈ S (8)

2.1.5. Non-anticipativity constraints The purpose of Eq. (9) is to ensure the first-stage problem
has equal State-of-charge (SoC) until the stochastic second-stage problem has started.

ek,s = ek,s+1 ∀ s ∈ S (9)
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Auto regression

Scenario
generation

and reduction

Stochastic LP
optimisation

Data update and
time shifting

Result analysis

Historical data

Autoregressive expression

Scenarios

Time step results

Optimisation results

Updated data

Figure 1: Flow chart showing the pro-
cess of optimising with receding horizon
control including scenario generation and
data updates.

Figure 2: The iterative process of
receding horizon control, showing how
the scenario tree, control and prediction
horizon is shifted through time.

2.2. Receding horizon control
The RHC has the following setup, as illustrated in Figure 1: First, scenarios are generated by

finding an auto regressive expression for the stochastic time series, Dprod
h,b,s and Dcons

h,b,s, used in
the optimisation model. Historical data for production and consumption of the previous year
is used for training the auto regressive process. Then, several scenarios are generated and later
reduced to obtain a reasonable scenario tree that is representative of all the possible outcomes.
These scenarios are used to solve the stochastic LP problem, and find the operational plan
for the BESS within the control horizon (CH) time period. As seen in Figure 2, the CH and
prediction horizon(PH) is considered deterministic, but the period beyond is stochastic with a
given number of discrete scenarios to capture the uncertainty of operation. After solving the LP
problem, time is shifted with a step equal to the CH, and the process is repeated with updated
data concerning current battery storage and previous measured power peak. For every iteration
new realistic, simulated scenarios are generated and used for solving the stochastic LP problem
until the end of the scheduling horizon (SH).

3. Case studies
The presented RHC optimization algorithm has been tested for a real-life case study located
in Trondheim, Norway for January 2020. The case study examines three consumers/prosumers
(referred to as 1, 2 and 3). Building 1 and 2 are office buildings (where 1 has installed PV).
Consumer 3 is a walking bridge with an integrated system for snow melting. The grid tariffs
consist of volumetric cost Cvol = 0.00687EUR

kWh , fixed cost Cfixed = 881.78EUR, and peak cost

Cpeak = 8.163 EUR
kWh/h . A conversion factor at 10.00 NOK/EUR has been used.

The goal of the analysis is to see how an existing BESS with Kmax = 200 kW and Emax = 500
kWh can benefit the community by reducing the total electricity cost with both peak-shaving
and load-shifting. As the current Norwegian regulations do not allow shared metering for a
community of commercial buildings and facilities [10], the cases will not only involve looking
into s-BESS, but also individual metering and ownership of the battery.

The analysis is conducted for January 2020 when power peaks are on their highest during
the year. However, due to minimal irradiation in Norway in January, the total PV-production
is merely 260.8kWh, limiting impact from PV-production with joint metering and a s-BESS.
The CH and PH have a 1 and 8 hour horizon, respectively, with hourly resolution and actual
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measuring data. The scenario tree is made up of three scenarios from 100 generated scenarios
for consumption and production for the buildings, which is updated for each operating hour.
The number of scenarios were chosen to limit computational time. The presented optimization
algorithm is programmed using the Python-based optimisation modeling language, Pyomo 5.7,
with the GLPK solver. The simulations were run on a AMD Ryzen 5 4500 64-bit processor,
with an average run time of 1 hour per case. The following cases are investigated:

3.1. Case 1: All buildings and the battery behind the meter
Case 1 consist of the community operating together behind a shared meter (δjoint = 1), with a s-
BESS at their disposal (δb = 0, ∀b ∈ B). The peak grid tariff is paid based on the accumulated
import from all participants. With free float of power behind the meter, this configuration can
be seen as a microgrid depending on a strong connection to the distribution grid.

3.2. Case 2: Individual metering and no battery
Case 2 let all three consumers being metered individually(δjoint = 0), and the BESS is not
present in the system (δb = 0, ∀b ∈ B). Each consumer pays electricity imported and their
own separate peak grid tariff.

3.3. Case 3: Individual battery and metering
Case 3 is divided into three different sub-cases, where it is looked into how the BESS can assist
each individual consumer behind their individual meter (δjoint = 0). Case 3.X depicts where the
BESS is connected to consumer X (δX = 1, δb6=X = 0 ∀b ∈ B). The BESS can assist in storing
electricity to perform peak-shaving or load-shifting without extra costs only for consumer X.

4. Results and discussion
With the RHC optimization algorithm, the BESS can be operated to consider the short-term
costs of operation, and the long-term effects of for instance peak-shaving. Based on the case
depicting the location of the BESS, the value the BESS can offer to peak-shaving and load
shifting changes. The performance of the three cases are presented in Table 1. The results show
that the RHC model successfully manages to reduce total system costs and power peaks by
considering the uncertainty of high power peaks even in the early stages of the SH.

With s-BESS, total system power peaks are reduced by 17.8%, while individual BESS power
peaks are reduced by 0.4 − 12.4% compared to having no battery. This shows that s-BESS
reduces the power peaks with 6.2− 17.5% compared to individual batteries, resulting in a cost
reduction of 19.2% and 13.9−18.3% compared to no battery and individual batteries respectively.
The cost reduction obtained here supports the results displayed in References [8, 9], finding the
s-BESS beneficial for the community. In addition, the findings show that the s-BESS promote
cost reduction for buildings with different production profiles and an MP grid tariff.

The system still experiences such high power peaks with individual batteries, because only
one consumer will benefit from the peak shaving effect of battery operation. This causes one
consumer’s reduced power peaks to possibly have little effect on total system peak reduction,
if the consumers experience coinciding peak hours. While the RHC model optimises the total
system costs, case 3 highlights that for the consumers without an integrated BESS, there are
no incentives for importing power from the local battery rather than the grid as costs will be
exactly the same. Case 1 shows that even with low PV-production, there is great potential
for consumer cost reductions with joint metering and s-BESS as well as reduced system power
peaks which in turn will benefit the DSOs. Even though this configuration is not in line with
current Norwegian regulations, the results indicate that the introduction of means such as local
grid tariffs or a local energy or flexibility market to get closer to the realisation of case 1, should
be of interest.
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Table 1: Total cost and peak power for the 3(5) cases.

Case 1 Case 2 Case 3.1 Case 3.2 Case 3.3
Total Peak [kW] 769 936 910 932 820

Total Cost [EUR] 14 927.6 18 463.8 18 091.4 18 260.5 17 337.0
Buildings 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Building Peak [kW] 270 96 617 270 96 617 228 96 617 270 72 617 270 96 479

5. Conclusion
This paper presents a receding horizon control (RHC) model for optimal battery operation to
minimise total system costs under a measured peak (MP) grid tariff. The MP tariff incentivises
the reduction of power peaks to reduce costs, which is enabled by battery operation.

The RHC model is applied to a realistic case study in Norway to find the optimal placement
of a 500kWh battery in an urban area. The case study shows that a shared battery energy
storage system (s-BESS) can reduce total system costs by up to 17.8% and allow consumers to
reduce their costs by not having to import all their power from the grid. s-BESS also reduce total
power peaks more effectively than individually owned batteries, making the case for s-BESS for
commercial buildings with varying consumption and production profiles.

An s-BESS where there is a free float of power behind the meter, is clearly the most energy
efficient and monetary beneficial solution. However, as this is not in line with current Norwegian
regulations, one should look at other shared storage solutions. As power peak and total system
costs were significantly reduced, one can conclude that there are incentives for other solutions.
Further work should investigate solutions such as implementing local grid tariffs or local energy
and flexibility markets for s-BESS.
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