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Summary

The Master’s thesis describes the development work and validation efforts
of a redundant modular autopilot platform for use in autonomous vehicles.

The work covers the entire process from a given requirement specification,
to the end result of a complete integrated autopilot solution.

The platform is then verified to perform to a satisfying degree in respects
governing hardware and software separately, as well as in an a complete
integrated setting through Hardware in Loop testing.

Sammendrag

Masteroppgaven beskriver utvikling- og etterprøvingsarbeidet av en redun-
dant og modulær autopilotplattform for bruk i autonome fartøyer.

Arbeidet dekker hele prosessen fra en gitt kravspesifikasjon, til en komplett
integrert autopilotløsning som sluttresultat.

Det bekreftes ogs̊a at plattformen yter i en tilfredsstillende grad innenfor
b̊ade hardware og software separat, i tillegg til i et integrert scenario gjen-
nom bruk av “Hardware in Loop”-forsøk.
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1 Introduction

With the increasing rise of unmanned and autonomous vehicles for tasks
that are either too dangerous, costly, or cumbersome for humans to do,
comes the need for reliable control.

In recent years, with the advent of more affordable drones for the consumer
market, as well as sustained academic interest, we have seen a flurry of auto-
pilot solutions for the “tinkering audience”, such as the ArduPilot, APM,
or Pixhawk. These have all seen incredible success and continue to find use
in new applications. However, common for most such off-the-shelf autopilot
solutions, is that they follow a monolithic design paradigm, in the sense that
they consist of a single board that is responsible for sensor sampling, state
estimation, path planning, and low-level controller loops. In some products,
such as the Pixhawk v5X, some responsibility is shared among two on-board
processors, but the overarching monolithic pattern remains the same. This
may have an impact on available computational resources, especially when
routines of widely disparate priorities- and urgencies must be reconciled on
a single target platform.

In such designs, a single point of failure is inherently built in; it is in part
a defining characteristic of the architecture itself. This also necessitates an
undue amount of trust in the end user code - namely, the autopilot is more
often than not designed with the implicit assumption that programmer of
the system will write reliable code. This has been demonstrated to be a
dangerous assumption to make even in the best of circumstances, let alone
regarding mission-critical control algorithms.[26][3]

The present work aims to address these two concerns by developing a novel
autopilot concept that centers around a clear distinction between a low-
level, high criticality part - and a high-level, lower criticality part. This
two part distinction makes it possible to introduce dedicated computational
resources to run unproven- and experimental control algorithms in parallel
with a safer alternative (e.g. a PID), ready to take over in the case of failure.
As an added benefit, this will also allow the use of more resource intensive
control algorithms, that may not be suitable for a highly constrained typical
microcontroller.
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Additionally, the proposed autopilot system is fully platform agnostic, in the
sense that it makes no attempts at forcing a specific sensor array upon the
end user. Rather, it expects sensor information to be presented over a reli-
able connection with provable real-time constraints; that is, one of the two
redundant Controller Area Network Flexible Datarate (CAN-FD) buses.
Alternatively, the embedded Ethernet interface may be used for less critical
data requiring higher transfer capacities.

The proposed design is a double edged sword. On the one hand, the nature
of the design makes it harder to use as a “one stop shop” solution, and will
likely not cater to the uninitiated that do not have at least a rudimentary
background in applied control systems. On the other hand, the distribution
of areas of responsibility makes the autopilot highly flexible and extendable
to new and possibly more demanding applications than most existing off-
the-shelf solutions.

The finished autopilot system has been named “Helmsman”, as a nod to the
etymological roots of the name “Cybernetics” - stemming from the Greek
“kubernetes”, namely meaning helmsman of a ship.[33]
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1.1 Structure of work

High emphasis is placed on robustness aspects of the developed circuit, and
how these may be implemented. Measures undertaken to improve these
qualities are first discussed in section 3, presented with underlying theory
and arguments for specific circuit design principles.

In section 4, we present the implementation endeavors of the Helmsman,
complete with discussions on specific details that do not make themselves
relevant in the design phase.

As far as it has been feasible to do so, all design aspects have been tested
an validated for efficacy. This is presented in section 5.

Finally, from our testing efforts, we present conclusions and proposals for
future work based on the Helmsman in section 6.
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1.2 A clarifying note on terminology

For the most part, only nomenclature that is already established in the
relevant fields to this work is used. Here, a few clarifying notes are presented
where confusion might arise in readers coming from other specializations.

1.2.1 On “robustness”

The heart of the presented work is dedicated to various implementation
aspects of a “robust autopilot platform”. In this work, we mostly mean
fail-tolerant and redundant system design when using the term “robust”.

In terms of controller software running on the autopilot platform, there
is nothing preventing such a scheme from being “robust” in the sense of
robust and adaptive control, but no dedicated focus has been given to that
through the development of the Helmsman autopilot system.

1.2.2 Fault vs. Error vs. Failure

The IEC 60050 standard explains the meaning of these terms as follows:

� Fault A device’s inability to comply with some required functionality.
This will often be the symptom of a failure in the device, but may also
exist independently.

� Error An inconsistency between a calculated, observed, or measured
value and its true specified or theoretically expected value.

� Failure The cessation of a device’s ability to reliably meet a specified
requirement.

These terms are often illustrated as in figure 1, with the motivation being
that various discrepancies may cascade to different parts of a larger system,
by a failure eventually manifesting itself as fault somewhere else.

Fault Error Failure

Figure 1: Illustration of deviance states according to IEC 60050.

IEC 60050 makes the distinction that a fault is a state that a device is
in, while a failure is an event. As such, according to this standard, the term
failure is not applicable to systems that consist entirely of software. The
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argument being that any deviation from specification and observed behavior
was always built into the software itself, in form of a bug in the code, and
did not spontaneously arise.[21]

The present author finds this restriction needlessly limiting in the context
of the current work, and has elected to use the term failure freely in dis-
cussions of both hardware- and software based system components. The
argument for this being that “production ready software” will oftentimes
contain latent bugs that do not hamper the software’s ability to perform
according to specification. Hence, while the software is technically faulty
in some sense, it firstly makes little difference to classify it as such - and
secondly, the developer of the software will usually have no way of knowing
that the software contains a bug before it manifests itself. Therefore, it is
advantageous to colloquially refer to the manifestation of of software fault
as a failure.

Readers who are proponents of the terminology used in IEC 60050 should
be aware of the this author’s more liberal use of the terms therein. This
should not present opportunities for confusion.

1.2.3 Circuit terminology used in this work

Printed Circuit Board (PCB) terminology seems to be well established at
this point. For the few terms that differ between camps or have synonyms,
we have used wording from (Horowitz 2015) and (Wilson 2018).[32][38]
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2 Regarding the 2020/2021 component shortage

Following the Covid-19 pandemic, global demand for Integrated Circuits
(ICs) spiked, as a result of an increasing need for computers, tablets, and
phones for home office use. Long IC production times, complex produc-
tion pipelines, and a market that is dominated by only a few manufacturing
companies almost exclusively located in Asia - have all exacerbated the issue
further.[19]

The global component shortage has hit the automotive sector particularly
hard, following a temporary 2020 fall in IC demand that later surged back
up, catching automotive companies off guard. Faced with lead times of up
to half a year, companies have responded with panic buying and component
stockpiling.[29]

This trend has heavily impacted the current work, as many components
that were considered for use in the autopilot platform are also sought after
by various automotive applications. Where such circumstances have most
significantly impacted the work, it will be made clear in the text. Further-
more, a discussion about future autopilot iterations where components are
more readily available is presented in section 6.
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3 Development Process and Methodology

The high level requirement specification of the autopilot system, that has
motivated all subsequent design choices, may be seen in table 1. In the
following sections, we will frequently refer back to these for design guidance.

Table 1: Requirement specification

Item Description

RS01 The circuit board shall implement a controller scheme ca-
pable of submitting corrective feedback to a simulation of
an Unmanned Aerial Vehicle (UAV) in a Hardware In Loop
(HIL) setup. Sensor data may be assumed to originate in
the simulation and be provided to the autopilot via a data
link.

RS02 The developed autopilot platform should be applicable as a
future test bed for continued controller scheme experimen-
tation, in the sense of providing the capability of running
concurrent regulation algorithms. In addition to this, the
platform should be able to accommodate resource intensive
controller schemes requiring the use of an onboard operating
system, such as embedded Linux.

RS03 The autopilot should have no single point of failure. That is,
neither a single software fault, nor a single faulty IC should
lead to erratic termination of operation.

RS04 Insofar that the autopilot circuit board conducts communi-
cation with other circuit boards, no single point of failure
should permanently disrupt the possibility of further data
exchange.
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RS05 Experimental “end user code” should not pose an undue
risk to continued operation of the autopilot system. That is,
even in cases where supplied user code misbehaves in ways
such as leaking memory, halting, attempting to set invalid
control points, or even crashing, this should not permanently
disable autopilot operation. At most, a graceful degradation
of performance may be tolerated.

By “graceful degradation” it is understood that certain
functionality may become unavailable either temporarily or
permanently, as long as the overall operation of the autopilot
is not terminated.

RS06 Potential for undefined behavior should be prevented in both
hardware and software where it is feasible to do so. That is,
appropriate measures must be taken to ensure e.g. proper
Signal Integrity (SI) conditions, consistent state keeping, and
isolation of faults.

While in reality all requirement concerns were simultaneously taken into
consideration, and a strategy for both hardware and software were laid in
tandem, we will present design choices for hardware and software separately
for greater clarity. This separation of discussion is possible because the
presented software solutions lend themselves to a wide array of underlying
hardware implementations. Thus, the discussion should be easier to follow,
without loss of correctness.

In sections 3.4.1 and 3.4.2, we present alternatives for specific hardware
design choices, along with the implications each alternative has on the end
product.

In section 3.5 we present an overall strategy for a software architecture,
before we dedicate a discussion to specific software design implications in
sections 3.5.1 through 3.5.2.

For concrete discussions on how the proposed designs are implemented, the
reader is referred to a presentation about hardware aspects in section 4.1,
and a presentation about software in section 4.2.

Lastly, efficacy of implementation choices and autopilot performance are
evaluated in section 5.
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ẋ = f(x, u)

Host computer

u = g(x̂)

Autopilot

Interface

Figure 2: Schematic representation of HIL testing.

3.1 Host computer communication

Requirement specification item RS01 dictates that the autopilot be able to
communicate with a host computer and potentially additional hardware for
HIL testing. This is schematically illustrated in figure 2. The discussion in
this section will revolve around finding a suitable realization for the arrow
market “Interface” in figure 2.

We chiefly identify two main avenues warranting our investigation. Firstly,
we may introduce specific communication interfaces, such as Universal Serial
Bus (USB), to the autopilot for the sole purpose of providing a host-platform
data link.

On the one hand, this allows us to completely decouple regular operation
from HIL testing, while also providing easier access to the autopilot system.
This could potentially make the platform easier to develop software for, thus
partly satisfying requirement RS02.

On the other hand, introducing additional interfaces will inevitably increase
system complexity - ultimately making the platform harder to maintain and
develop further. Space constraints on the physical PCB may also lead to
integration issues regarding components of higher criticality.

As a different approach, we may also consider using system infrastructure
in non-standard ways, such as injecting messages to a bus needed for other
purposes - or even utilizing a test interface such as Joint Test Action Group
(JTAG) and the Flash Patch and Breakpoint unit (FPB) in ARM based
systems to on the fly alter the flow of execution.

Such an approach has the advantage of not requiring additional hardware
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components on the autopilot itself, but may necessitate a communications
adapter between the autopilot and host computer.

The decrease in required hardware on the autopilot PCB has the poten-
tial to simplify the overall circuit layout, which could reduce entry points
for hardware issues. However, if the use of existing infrastructure to facil-
itate HIL testing results in significant system load, this may all together
invalidate the test procedure itself in a worst case scenario.

Examples of both approaches may be found in the available literature. In
some cases, the HIL environment itself necessitates the addition of extra
hardware to allow for meaningful host-platform communication, such as in
(Huijgens 2021)[25]. In other cases, such as (Dai 2021), communication may
be facilitated via existing hardware without negatively affecting the main
running process.[39]

Based on such existing solutions, and motivated by a strive for a higher
level of redundancy and usability, the author proposes the following strat-
egy: Two independent USB interfaces shall be introduced to the autopilot
board. These are intended exclusively for HIL usage. In addition to this,
an extra validation test bed for the autopilot will be developed, allowing
for bus-based communication packet injection, should the USB interfaces
prove unsuitable. Care will be taken to isolate the USB components from
the other components on the PCB, thus allowing for easier future board
modifications and revisions.

The additional autopilot test bed is a simple USB to CAN-FD bridge,
that may additionally simulate sensor noise. It is simple circuit compared
to the Helmsman, and not intended for end application use. Hence, little
discussion will be specifically dedicated to its development, but its use will
be demonstrated in section 5.
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3.2 Redundant communication

The autopilot platform will not directly control actuators and sensors; these
features will be provided by other PCBs via dedicated connections.

Requirement specification item RS04 governs this situation, and demands
that we choose a communication scheme that cannot fail if, say, a single
transceiver IC fails.

Furthermore, as requirement RS03 forces us to implement redundant sub
circuits, the selected communication method should allow for some form of
multi master access, in the sense of allowing either redundant sub circuit to
assume the role of message initiator.

Additionally, it would benefit the overall system reliability if the chosen
communication method is in itself robust. By “robust” in this context, we
understand the bus interface as being tolerant of faults, and possibly also
capable of isolating faults, by method of barring faulty ICs from accessing
the bus.

An alternative that satisfies these requirements, while having the additional
benefit of being standardized, is the Controller Area Network (CAN) and
CAN-FD bus protocols.[30] Other protocols, such as RS-485, Flexray, or
Time-Triggered Protocol were also investigated, but ultimately were not
chosen based on a confluence of hardware unavailability (see section 2) and
more involved development requirements.
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3.3 Number of redundant sub circuits

Requirement specification item RS03 and item RS04 both impose criteria for
redundant hardware. Item RS03 immediately disqualifies all solutions where
control calculations are only performed on a single physical IC. Item RS04 is
a more lenient requirement, in the sense that it applies more to replication
of buses, transceivers, and physical connections, etc.

There is a rich and well established literature connected to the matter of
selecting and designing redundant elements in mission- and safety critical
hardware. An overview may be found in (Leveson 1995).[24] Overarching
strategies have not changed significantly since then, and have made their
ways into several standardization bodies, such as in IEC 61508 and IEC

62439.[8][9]

Arguably, one of the most successful concepts from published works gov-
erning redundancy for safety and continued operation is that of voting. In
voting systems, critical components are implemented several times - usually
duplicated or triplicated. One failing unit may thus be “voted out” by the
other, still functioning, units. A popular version of such a voting system
is the Triple Modular Redundant (TMR). Under this scheme, two agreeing
devices will outvote a single disagreeing device. Among the areas it has
seen high use is the commercial aircraft industry, such as for the fly-by-wire
system of Boeing 777.[40] More recently, the same voting scheme continues
to see extended use in other areas of avionics, such as aircraft positioning
measurements (Grof 2020).[36]

While voting systems may be powerful under correct usage, it is also a well
recognized fact that over-zealous application will lead to complex systems
that are in fact less reliable than their simpler counterparts.[21]

Based on available literature, it thus seems that a TMR system is highly
suitable for the presented autopilot problem. Unfortunately, this was quickly
ruled out as a financial infeasibility, as such a design would result in a circuit
that is prohibitively expensive to manufacture.1

In light of this, it was decided to approach the problem with a somewhat
simpler 1-out-of-2 (1oo2) voting scheme, requiring only two hardware copies
as opposed to three. In section 3.5 we will explore how we may enhance the
availability aspects of such an architecture using software.

1The Helmsman autopilot production is personally financed by the author, on a student
budget, and hence some cuts were inevitable.
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3.4 Hardware configuration in redundant sub circuits

Still on the topic of requirement specification item RS03, it is necessary to
determine the specific type of hardware configuration to implement the cho-
sen 1oo2 redundancy.

Importantly, one needs to determine whether one should aim to simply copy
an identical design two times - or aim for differing designs that offer similar
feature sets. While focusing on a single design and then duplicating this
might have a positive influence on development time, ease of circuit layout,
component availability etc., it seems to be seldomly used. An an example,
design considerations for the Boeing 777 fly-by-wire system explicitly states
design diversity as a primary aim.[40]

Striving for different sub circuit designs will also indirectly aid us in more
easily achieving requirements RS02 and RS05, in the sense of allowing one of
the sub circuits to be significantly simpler than the other. We expect this
to also have a positive impact on requirement RS06, by introducing fewer
venues for undefined behavior as a result of a potentially poorly understood
design.

A natural design choice would be to split the circuit in a low complexity
part implementing the bare necessities for continued operation, and a high
complexity part satisfying requirement RS02. These are separately treated
in sections 3.4.1 and 3.4.2. Finally, a summary of both sub circuits together
is given in section 3.4.3.
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3.4.1 High complexity sub circuit

The high complexity sub circuit is explicitly required to provide resources
necessary to run an onboard operating system, such as embedded Linux.
For this purpose, an ATSAMA5D27 was selected.

Primary selection criteria were support for external Random Access Mem-
ory (RAM) and Secure Digital (SD) cards, as this will be required to run
a modestly resource intensive operating system - along with high capacity
for connectivity, such as support for CAN, Ethernet, USB, and Universal
Asynchronous Receiver-Transmitter (UART).

A number of other System on Chips (SoCs) and Micro Processor Units
(MPUs) were considered. Common for most alternatives were that they
were highly coveted by other organizations during the work of this autopilot
system, as explained in section 2.

Ultimately, the choice fell on the ATSAMA5D27, partly because this IC has
a design deviation that makes it less lucrative for the automotive industry,
which ensured it was in stock during the work on the Helmsman. Namely,
the IC was produced before the final revision of the CAN-FD standard (ISO
11898) was released. Therefore, the ATSAMA5D27 does not fully conform to
the full message format specification of the flexible datarate extension.[37]

This deviation will only superficially impact the Helmsman platform, as the
chip is still capable of following the regular CAN protocol, which has lower
transmission rates and lower packet sizes than CAN-FD. In cases where
it becomes relevant to do so, the Helmsman will thus be able to gracefully
downgrade bus performance by sending only critical data packets, at a lower
speed than during nominal operation.

Auxiliary components that enter into the high complexity design - such
as RAM chips, power supplies, and transceivers - are more interchangeable
and differ less from supplier to supplier. Hence, we dedicate no additional
discussion to the choice of these. For completeness sake, the Bill of Materials
(BOM) is provided in appendix A.

A schematic overview of the most central components entering into the high
complexity sub circuit is illustrated in figure 3.
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A5D27
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Figure 3: Helmsman high complexity sub circuit schematic.
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3.4.2 Low complexity sub circuit

In choosing a suitable backbone for the low complexity circuit, we have a
greater amount of freedom than in section 3.4.1, since a reduced feature set
will be tolerated, as per requirement specification item RS05.

To limit the search space, the author set forth the following additional set
of constraints that a suitable IC should meet:

� The IC should have support for two dedicated CAN-FD buses. The
reason being that this will allow the low complexity circuit to interface
with the same set of buses that the high complexity circuit has access
to without extra bridging hardware. This will allow for a seamless
transition of control in cases where one IC has to take over operation
from the other.

� The IC should have an embedded double precision Floating Point
Unit (FPU). This is advantageous as control code relying on floating
point arithmetic may be more seamlessly integrated, without having
to resort to execution time reducing tweaks - which could ultimately
deteriorate code quality, hence impacting requirement RS06.

� The IC should be supplied in some form of a dual-inline or quad-
flat package. Such a package will take up more PCB area than an
equivalent Ball Grid Array (BGA) package, but is far more forgiving
to misalignment issues, and is easier to visually inspect for correctness.
This requirement was introduced to compliment the high complexity
sub circuit, as the ATSAMA5D27 is supplied in a 289 pin count BGA
package. We also argue that this choice might have a positive effect on
specification item RS06, as we understand a simpler package to present
fewer failure vectors than a complex one.

These criteria narrowed the search space down to a handful of candidates,
all implementing similar feature sets. Out of these, the choice initially fell
on the ATSAME70. This chip was selected over similar alternatives, as it uses
the same programming- and debug probe as the ATSAMA5D27, which limits
required development hardware.

Shortly after the initial Helmsman prototype was ordered, the ATSAME70

became unavailable at all major component distributors. This was solved
by selecting the ATSAMV71 IC instead, which is mostly feature compatible,
but sold at a higher price, likely making it less appealing for the automotive
industry.

As with the high complexity sub circuit, a separate discussion on auxiliary
components is not warranted due to their higher interchangeability. For the

16



full BOM, the reader is referred to appendix A.

Lastly regarding choice of components, the author would like to draw some
attention the the addition of a 128 Mbit Flash memory chip to the low
complexity sub circuit. This addition will enable physical code segregation,
allowing for several software suites backing up each other in case of failure,
as outlined in section 3.5.2. Ultimately, this will enable better coverage of
specification items RS03 and RS05.

A schematic illustration of the low complexity sub circuit is provided in
figure 4.

V71

Flash

USB 1

USB 0

CAN 0 CAN 1

Figure 4: Helmsman low complexity sub circuit schematic.
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3.4.3 Joining the redundant sub circuits

The proposed sub circuits from sections 3.4.1 and 3.4.2 need a mechanism
for communication to ensure correct cooperation between the two. Ideally,
this interface should provide a low overhead, meaning that it should not
unduly strain other parts of the system during nominal operation. Hence it
is tempting to avoid additional hardware to facilitate this communication,
as that would both make the overall design more complex, and put extra
load on both sub circuits.

However, we must also satisfy the requirement that no single point of failure
should be possible, which must include intra-sub circuit communication, as
per requirement RS03.

A decent compromise between these requirements may be reached by taking
advantage of the fact that both the ATSAMA5D27 and the ATSAMV71 support
Direct Memory Access (DMA) on their communication peripherals. This
will allow us to send and receive messages between the sub circuits using less
Central Processing Unit (CPU) time than we would otherwise have needed,
ultimately reducing the system load.

Moreover, we may rely on message matching triggering interrupt routines
with appropriate priorities on either CPU for communication that has real-
time constraints.

In light of this, the author argues for the adoption of a hybrid approach. In
normal conditions, a single dedicated UART pair will provide connectivity
between the high- and low complexity sub circuits. In a situation where this
communication venue fails, the sub circuits may fall back on using the two
CAN buses for message passing. A failed UART will likely be the symptom
of deeper fault, where the appropriate course of action is for one of the sub
circuits to solely take over operation. As such, required communication on
the CAN buses may be expected to be only transient, thus not substantially
loading these buses over a long time in a partial failure scenario.

Joining the two sub circuits together, we arrive at the schematic illustrated
in figure 5. Not shown in the schematic are voltage regulators and associated
filters. These are, however, also unique to each sub circuit, as otherwise a
power supply fault would cause a total system fault.
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Figure 5: Overall simplified Helmsman schematic.
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3.5 High level software architecture

The choice of hardware platform, as illustrated in figure 5, provides a highly
flexible basis on which to develop software. As noted in section 3.3, the
proposed 1oo2 hardware solution was partially motivated by the restrictive
costs of a full hardware based TMR system. Nonetheless, it is possible to
make up for some of the lost redundancy by carefully crafting error detecting
software with fallback alternatives.

One of the most common methods for introducing software redundancy is
called N-version programming. In this scheme, N versions of a software
suite are developed from the same specification, often by different developer
teams. Versions are then brought together in some voting setup, mimicking
hardware redundancy implementations.

While the established literature agrees N-version programming provides
some benefit, there seems to be little consensus regarding what degree of
benefit one might expect. For example, when NASA investigated the merits
of N-version programming in 1990, they found only a modest gain in terms
of reliability. Furthermore, they concluded that independently developed
versions of software alone is not sufficient to provide a meaningful reliability
gain. Instead, an emphasis on reducing coincident faults that independently
arise from the same specification is necessary for increased reliability.[10]

Similarly, a survey from 2001 found that although N-version programming
usually provides a reliability benefit; still, they were able to point to TMR
systems that had worse reliability than single software versions alone in
pathological cases. Also this survey concluded that a higher emphasis should
be placed on reducing coincident faults by increasing design diversity.[5]

Contemporary literature seems focused on specific novel implementations
for N-version programming, rather than inquiries into their effectiveness at
increasing redundancy. There also seems to be no established successful
method of estimating the “degree of diversity”, or even defining it, for a
set of software solutions, although a few attempts have been made, such as
(Nascimento 2012).[2]

We thus have to conclude that we are in the dark regarding a sound method
of developing a guaranteed redundant software suite, a least to a somewhat
higher degree than regarding hardware design. Based on observations made
in the available literature, we may take an educated guess on an effective
strategy. We will lay out a proposed strategy here, and later attempt to
verify the merits of our work, in section 5.
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� Firstly, we note that both (Eckhardt 1990)[10] and (Littlewood 2001)[5]
were able to create redundant software systems with lower reliability
than single software counterparts, with relative ease. Based on this,
we might want to avoid complex voting systems, out of fear that this
would be only be of detriment.

� Secondly, the available literature seems to unanimously agree that
different and independent teams are a prerequisite of truly ensuring
design diversity, insofar that true diversity is even possible. Since all
developer teams in this work would consist solely of the author, they
could hardly claim to be particularly independent by any stretch of
the imagination.

� Lastly, by embracing the already existing different potential for fall-
back solutions in the high- and low complexity sub circuits of section
3.4.1 and 3.4.2, and further building on this difference, we may make
a heuristic guess that an ultimately more diverse design solution will
be reached. As of yet, we have no guarantee that this approach will
lead to a system with fewer coincident faults, as noted by (Eckhardt
1990)[10]. However, for now we will take a leap of faith, and attempt
to validate- or disprove our design in section 5.

With a background in these simple heuristics, we propose two different soft-
ware fallback solutions for the two sub circuits making up the autopilot
platform. These are outlined below. Details on how these approaches may
be realized are deferred for section 4.2.
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3.5.1 High complexity sub circuit fallback chain

For the high complexity sub circuit, we propose a simple two step fallback.
Under nominal conditions, this circuit will be running a modestly powerful
operating system, such as embedded Linux. Linux, as noted by (Allende
2021), is a ubiquitous operating system that is continuing to find areas of
application in safety critical domains.[20]

We may reasonably conclude that this operating system will highly likely
be far more stable than any fallback solution we may come up with. Still,
a kernel panic cannot be ruled out - in which case we may fall back on a
custom control firmware. This firmware naturally has to implement the bare
necessities for continued autopilot operation - likely for the singular reason
of safely ending a mission without loss of vehicle in a real scenario.

A block diagram illustrating the various software constituents, as well as
the single fallback link is provided in figure 6. Here, drivers and control
algorithms for the nominal case are lumped together with the operating
system block, to indicate that an end user has a high degree of freedom
regarding the implementation of these, and that these software components
will run as tasks governed by the operating system itself.

The block indicating “Firmware” represents a much more rigid structure,
that should not contain other auxiliary components than those indicated;
drivers to interface with the hardware, and a basic control algorithm for
continued operation.

The reader is referred to section 4.2.1 for a discussion on implementation of
the proposed design.
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Firmware Linux etc.
On Failure

Fallback Nominal operation

Figure 6: High complexity sub circuit fallback chain.
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3.5.2 Low complexity sub circuit fallback chain

For the low complexity sub circuit, we propose a longer fallback chain than
for the high complexity sub circuit. This choice is motivated by the lack of
a well tested (and presumably stable) operating system like Linux.

Despite this, the avenue of introducing a lower powered real time operating
system for running various control and estimation algorithms is inviting.
One such operating system, that warrants a brief discussion, is FreeRTOS.

FreeRTOS is a free and open source Real Time Operating System (RTOS),
that has seen widespread adoption in medium- to high end resource con-
strained microcontrollers, such as the ATSAMV71. FreeRTOS prides itself on
fast execution, while still having a reasonably low memory footprint. In
FreeRTOS, kernel scheduling follows a priority based preemptive algorithm,
and context switching is realized by pushing task contexts to each thread’s
stack. These features and design details make FreeRTOS a good fit for the
ATSAMV71, and interesting from our point of view.[14]

From the author’s experience, FreeRTOS is a mostly good mixed bag. The
project has been developed continuously for 15 years, in close collaboration
with influential IC companies.[14] This cuts both ways, in making available
documentation mature and overall satisfactory - while on the other hand,
some of the available Application Programming Interfaces (APIs) can feel
a bit “tacked on”, as they were introduced to cater to the needs of a specific
client or some group.

Accepting the good parts of FreeRTOS, we may leverage its maturity and
stability as a basis on which to implement our first fallback link. This may
be done by taking advantage that FreeRTOS tasks offer some isolation from
one another, and can take over in the event that one should fail. We hence
propose dividing FreeRTOS tasks into two regimes; the first of which allows
for experimental features and code that can be assumed to be less reliable.
In case we observe unexpected results from the first regime, we may fall
back on a second regime of FreeRTOS tasks, that must by some standard
be “less experimental” than the first one.

Should FreeRTOS itself fail, we may fall back on a custom firmware, similar
to the approach proposed in section 3.5.1. The difference here is that we
intend to create a longer chain of different code to fall back on. This is
advantageous over the single fallback option, as it allows for an increasingly
“strict” chain of fallback alternatives. As a simple illustration, one might
imagine to start a mission off with a sliding mode H∞ based algorithm - to
then fall back on a more well-proven LQR Kalman based approach. Should
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that fail, it would then be possible to fall back on, say, a simple least squares
backed Proportional Integral Derivative (PID) solution.

As a final fallback solution, we propose a rigid, mostly non-configurable,
layer of software that will be relied upon to safely end an ongoing mission.
Should all other approaches fail, one must assume that a majority of the
sensors have gone offline, that actuators have stopped working, or that the
craft has received substantial damage. All of these would warrant a safe
discontinuation of the mission. We will refer to this software layer as the
“Containment Domain”, as its purpose is solely to contain the effects of
faults until the mission may be safely ended.

The definition of such a Containment Domain will necessarily be different
from application to application. For example, in a UAV setting, its purpose
might be to lock the craft control surfaces into a position where controlled
gliding descent can be expected. For a simpler application domain, such as
a positive buoyancy underwater vehicle, it might be enough to stop any and
all actuation altogether while activating a location beacon, should the craft
have one.

The low complexity sub circuit fallback chain may be seen illustrated in
figure 7. A discussion detailing implementation aspects of the proposed
architecture is provided in section 4.2.

Observer

Controller

Drivers

Firmware [0..n] FreeRTOS

Task

Task

Controller

Controller

On Failure

Fallback Nominal operation

On Failure

ConDom

Drivers

On Failure

Last Resort

Figure 7: Low complexity sub circuit fallback chain.
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4 Implementation

This section outlines implementation details of the Helmsman platform. The
design that is implemented is the design that was presented in section 3. In
some areas, limitations and design considerations that were not apparent or
relevant on an architecture level will further refine our design. In such cases,
background literature will be referred to, and implementation trade-offs and
choices made will be presented where appropriate.

Mirroring sections 3.4 and 3.5, we first approach hardware implementation
details in section 4.1, before presenting the corresponding software details
in section 4.2.
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4.1 Hardware implementation

To make the following discussions and references more tangible, we first
present the finished PCB in figure 8. We then give a brief explanation that
outlines the overall board structure in section 4.1.1. Next, in sections 4.1.2
through 4.1.5, we continue to discuss specific implementation aspects that
motivated the finished design seen in figure 8.

For additional clarity when comparing the layout process to the complete
board, the Helmsman PCB is also shown without components in figure 9
and figure 10.

Figure 8: Helmsman PCB with components.
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Figure 9: Helmsman PCB front side.

Figure 10: Helmsman PCB back side.
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4.1.1 Overall board structure

At first glance, we are able to identify certain features that have a route in
physical necessity or convenience. For example, all connectors and the SD
card slot are placed along the PCB edges. This allows for easier access, and
has relatively little bearing on the rest of the design, other than somewhat
dictating where ICs that interface to said connectors should be placed. We
see one exception to this, that was made out of space constraints; the Single-
Wire Debug (SWD) connector for the high complexity sub circuit is placed
in the middle of the PCB, rather than along any of the edges. Since the high
complexity sub circuit will nominally run an operating system located on its
SD storage, and not have to be programmed as often as the low complexity
sub circuit, this will not significantly impact the usability of the autopilot
system during software development.

After connector placement had been determined, the remaining components
were roughly divided into two board halves; one for the high complexity
sub circuit, and one for the low complexity sub circuit. The reasoning for
this division is two-fold. Firstly, a clear sub circuit division will make board
traces easier to route. Secondly, it will marginally improve circuit reliability,
by reducing the risk of total board failure, if one of the sides were to suffer
superficial physical damage on the outer board layers.

A wide region toward one of the board edges was then reserved for power
supply ICs. This was chosen to so that the board power connector would
be physically far away from communications connectors, as they share the
same connector type. Secondly, by reserving a wide area on the PCB, we
aim to aid thermal dissipation from the switching power regulators.

When these elements were in place, the rest of the circuit components were
laid out in the remaining available space, with an emphasis on co-locating
high frequency ICs that need to interface with each other.
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4.1.2 Return path considerations

The popular assertion that current flows in the direction of least resistance
is a bit of a misnomer. Particularly in PCB applications, where frequencies
are higher, and the specific trace geometries introduce significant reactance,
we must update instead focus on the total impedance of a return path.[6]

Impedance, Z, is defined by equation 1. Here, R represents resistance, and
X represents the reactance; j is the imaginary unit.

Z = R + jX (1)

Since both a higher capacitance, and a higher frequency, will contribute to
the lowering of capacitive reactance, the reactance will be dominated by
inductive effects. For PCB applications, we may then rather use equation
2 to give a reasonable approximation of the impedance in a trace.

Z = R + jωL (2)

For very low frequencies, the only impedance contributing factor will be the
copper resistance in the trace itself. In typical PCB applications, however,
this typically changes radically somewhere between 1 kHz and 10kHz, where
trace inductance begins to dominate entirely.[6]

This fact has deep reaching implications for how we should lay out our
circuit traces. Firstly, it means that if the circuit has a dedicated ground
plane underneath a current carrying trace at high frequencies, almost the
entirety of the return current will be carried directly under the signal line.
Secondly, it means that if the ground plane has any discontinuities under a
trace, such as plane slits, that trace will experience a significant impedance
discontinuity as well. It is a well established matter of fact that impedance
discontinuities cause signal reflections, and contribute to Electromagnetic
Interference (EMI) issues.[38][7]

This has motivated a high focus on avoiding reference plane splits where
possible. In the Helmsman autopilot platform, one full, unbroken inner
layer is dedicated as a ground plane. Another inner layer is dedicated as a
voltage supply plane. Unfortunately, in the latter, some slits were necessary,
to separate different voltage levels from each other.
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4.1.3 Transmission line effects

There is no set frequency or length at which a PCB microstrip line becomes
a transmission line. It will always behave like a transmission line irrespective
of what kind of signal is sent along. That being said, for many applications,
transmission line effects may be neglected.[38]

The number of applications where the effects of transmission lines become
noticeable to the point that they can no longer be ignored, however, is
steadily increasing. One factor is the faster switching frequencies that enter
into modern circuits. Still, even a circuit with the unlikely clock frequency of
one transition per year will experience transmission line effects if the signal
rise time becomes short enough. This is a natural result from the Fourier
transform of a quickly rising signal.[7]

In the Helmsman circuit board, we expect signal rise times on the order
of a few nanoseconds. This is fast enough to justify special attention to
transmission line effects such as signal reflections.[37]

We may do this by matching our microstrip line impedance to the given
characteristic impedances of the IC terminals where possible. The ICs used
in our application typically specify a characteristic impedance Z0 = 50 Ω,
which can easily be matched by using a PCB manufacturer’s impedance
calculators, which will return a recommended microstrip line width. In this
work, JLCPCB was chosen as the PCB manufacturer, so their guidelines
were followed.[23]

Another harsh reality of transmission lines, is that signals propagate with a
finite speed through a circuit. For many signals, such as differential pairs, or
collections of parallel lines, it is of importance to take steps to ensure that
signals arrive at the recipient at the same time. An example where this is
an essential focus is Double Data Rate (DDR) RAM.[17]

Our high complexity sub circuit incorporates 4 GB of DDR3L RAM, as
such, care was taken to length- and impedance match lines where possible,
and otherwise follow line grouping suggestions from NXP’s application note
AN2582 and Micron’s technical note TN-41-08.[17][11]

Length matching was achieved by manually adding meandering patterns
in the individual microstrip lines that were too short. An extreme example
of this may be seen in figure 11. Here, the red square indicates the location
of the ATSAMA5D27 IC, while each of the blue rectangles indicate one 2 GB
DDR3L RAM IC each. Only the PCB’s top layer is included in the figure.
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Figure 11: Meandering length matching of DDR RAM bus.

A less involved example of an application of the same technique is seen
in figure 12. The red square indicates the location of the low complexity
ATSAMV71, while the blue rectangle indicates the Flash memory module.
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Figure 12: Meandering length matching of Flash data- and clock lines.
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4.1.4 Decoupling

Decoupling is the practice of reducing the effects of inherent inductance from
microstrip lines, thereby limiting the repercussions of events such as power
demand spike transients. In a worst case scenario, such spikes may lead
to a significant drop in voltage at the input pin of an IC, which may then
misbehave, or sporadically reset. The most effective means of combating
this issue from a PCB design point of view, is by adding low-inductance
capacitors close affected IC pins.[38]

For a decoupling capacitor the be effective, inductive contributions from
the interconnects between the IC pin and the capacitor must be kept to a
minimum. This means limiting the distance from the IC pin to the capacitor
legs as much as possible. Different schools of though exist regarding exactly
how to achieve this, and on which side of a PCB each capacitor should be
placed. For example, the ATSAMV71 datasheet explicitly recommends against
routing decoupling capacitors through circuit vias.[1]

Industry SI experts offer definitive and opposing advice, however. The
reader is referred to for example (Johnson 2003)[18]. The reasoning given
is that while vias themselves introduce inductance to some degree, they will
overall reduce inductive effects with appropriate placement.

If vias are placed close together, they will effectively squish the inductive
loop area, as seen through the cross section of the PCB. This alone presents
a convincing argument to rethink advice from e.g. the ATSAMV71 datasheet.
Another contributing factor is the dedicated ground- and power planes found
in most modern PCB applications; by replacing a microstrip wire with a via
to a plane, a much wider path is available for the supply current (namely
the whole plane), thus limiting the overall resulting inductance.[18]

Specifically, what this means for the layout of the Helmsman autopilot PCB
may be seen in figure 13. To the left in this figure, we see a “traditional”
microstrip line connection; this is what we have been avoiding in our layout
process on the basis of the stated arguments. To the right in figure 13, we
see connections from IC pins and capacitors alike, going immediately to the
power- and ground planes. In many cases, we have also placed capacitors
on the back side of the board, to further limit the distance between ICs and
decoupling components.

For the most part, this strategy has been easy to abide by. Nonetheless,
due to the physical limitations of the board manufacturer’s capabilities, this
approach could not always be satisfied around the ATSAMA5D27 IC in the
high complexity sub circuit. In these cases, inductive loops have inevitably
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gotten somewhat bigger. We attempt to assess the repercussions of this in
section 5, and give a brief discussion on how this aspect of the design may
be improved upon with different manufacturing technologies in section 6.

GND

VCC

GND

GND

VCC

VCC

GND

Figure 13: Decoupling strategies; microstrip line connection on the left, vias
to dedicated planes on the right. Rectangles represent the IC connection
footprints on the physical board.
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4.1.5 Clock signal integrity preservation

Clock signals are a vital part on most digital circuitry. While clock signals
may be generated from simple RC oscillators for applications that demand
only modest precision, better clock signal regularities require components
such as ceramic resonators or quartz crystal feedback circuits.[38]

Of these, quartz crystal feedback circuits offer the highest precision. One
of the chief ways to derive a clock signal from a quartz crystal is to use an
inverting amplifier on thermal noise, feed it through the crystal - which in
this configuration may be viewed as a very narrow bandpass filter, and then
through a Schmitt-trigger.[32]

When a frequency is needed that is higher than what one can reasonably
generate from a quartz crystal alone, a common technique is to use a Phase-
Locked Loop (PLL). A PLL used in this fashion will generate a multiple of
the clock signal supplied by the quartz crystal, with the caveat being that
the resulting signal will of lower regularity than its input.[32]

These physical realities contribute to make clock signals somewhat fragile,
and care must be taken in the layout process of a quartz crystal to ensure a
viable clock signal. In the design process of the Helmsman autopilot system,
crystal layout was largely based on suggestions made in STMicroelectronics’
AN2867 application note.[31] Suggestions here are specifically given for their
STM8 and STM32 series, but mostly applies to any quartz crystal containing
circuit.

Central to the AN2867 application note is an aspiration for isolating the
oscillator circuit as much as possible from outside interference, which also
has the additional benefit of keeping clock pulses from “escaping” and from
affecting other circuitry. This amounts to limiting trace lengths, and using
ground “guard traces” around each crystal.

Moreover, care is taken to not reference the ground plane from the other
side of the PCB close to the crystals on the board. An example is given
in figure 14. Here, the pads marked D12 designate the placement of the
crystal, while the orange enclosing line is a guard ring, tightly coupled to
the ground plane with numerous vias shown in blue.
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Figure 14: Example of crystal layout in low complexity sub circuit.

Finally, we mention that the Helmsman has separate low- and high frequency
clocks, for a separation of real time counting and system clock signals. Both
the high- and low complexity sub circuits also boast internal RC oscillators,
that the controllers will automatically fall back on should the crystals fail.
This is a feature of the ATSAMA5D27 and ATSAMV71 themselves, and thus not
subject to dedicated design considerations from the author’s side.
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4.2 Software implementation

We begin our discussion with implementation details regarding the high
complexity sub circuit, as these are, perhaps somewhat ironically, far less
complex from a software point of view. The fallback chain is simple, as
noted in section 3.5.1, and leans heavily on a feature rich operating system
to do its work.

Next, from section 4.2.3 onward, we present software solutions for the low
complexity sub circuit. These are more involved, and is also where most of
the implementation effort went in terms of software.
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4.2.1 High complexity sub circuit: Linux

The process of integrating Linux on the high complexity sub circuit is
straight forward. The operating system image is already supplied by the
manufacturer via a dedicated distribution website.[27]

Interfacing with other hardware and utilizing the ATSAMA5D27’s internal
peripherals is made easy by using drivers supplied by the manufacturer.
Concerns such as which drivers to load, and which peripherals to enable,
are handled by a platform agnostic hardware identification language named
Open Firmware Device Tree, most commonly referred to as “Devicetree” or
simply “DT”.[12]

In the Devicetree specification, individual hardware components may be
identified with parameters such as their addresses in a memory mapped In-
put Output (IO) scheme, their interrupt graphs, DMA support, and their
preferred programming models. If necessary, an end user may modify the
Devicetree to add support for new hardware, or customize drivers that are
being used. Yet, writing custom Linux drivers tend to be a lengthy process,
and was not relevant for the work of this project.

Before the Devicetree is loaded and the operating system started, some
custom program must initialize the resources of the ATSAMA5D27, and the
operating system code itself must be read and copied to RAM. A program
carrying out this operation is typically called a “bootloader”. Under normal
conditions, a simple fuse configuration may be set in the ATSAMA5D27’s non
volatile memory, that will automatically load code from the platform’s SD
card and run this. However, for our purposes, we need the ability to detect
whether an abnormal restart has occurred, as this is a signal that we should
fall back on the custom firmware solution as described in section 3.5.1. This
is simply done by first checking a reserved area in the chip’s volatile memory
for a flag we define. The flag is set on Linux boot, so if the flag is already
present when we start the MPU, it implies that the previous run of Linux
crashed without clearing the startup flag. To reset this flag, it is necessary
to either manually clear it, or power cycle the high complexity sub circuit
for long enough that the volatile memory be invalid.

This strategy amounts to an exceedingly simple custom bootloader, that
only needs to enable the ATSAMA5D27’s power management controller, check
the volatile boot flag, and then jump to either the SD card or the on-chip
persistent memory accordingly. This bootloader was implemented in C,
with manual memory mapping, and leveraging the “branch and execute”
(bx) ARM instruction to swap code execution from the bootloader to the
designated software solution. A thorough discussion on the mechanisms of
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such techniques may be found in (Zhu 2018).[41]

Regarding the actual Linux environment, little extra code was added, due
to time and scope constraints of the project. A simple program sending
messages to the low complexity sub circuit over UART was used to verify
that the operating system had successfully booted. Apart from that, only
code to intentionally cause a crash was added to the Linux implementation,
as this was used for fallback validation in section 5.
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4.2.2 High complexity sub circuit: Custom firmware

As stated in section 3.5.1, the overarching design of the high complexity sub
circuit fallback firmware follows a central doctrine of minimalism. During
the work of the project, the simplified class structure illustrated in figure 15
was implemented in the C programming language. This structure is seen
to be essentially identical to the proposed fallback architecture of figure 6,
with two exceptions worth mentioning.

Firstly, figure 6 makes no mention of the block indicated as “setup.h” in
figure 15. In actuality, this is really just a driver for the ATSAMA5D27 Power
Management Controller (PMC); responsible for enabling the correct clock
signals internally. As such, it could have been lumped together with the
“drivers” module. Due to the universal need for PMC setup before any
other drivers, it was decided to implement it as a standalone entity in the
final implementation.

Secondly, while figure 6 alludes to the addition of an observer, this was
in fact not implemented in the high complexity sub circuit fallback firmware
due to time- and scope limitations. During the project work, the observer
block was simply replaced with “stub.h” in figure 15, which is a dummy
implementation that passes sensor data unfiltered through to the “pid.h”
block.

The two drivers, “can.h” and “uart.h” are present to simulate sensor- and
actuator communication over CAN, and inter sub circuit communication
over UART, respectively. Importantly, when the can.h driver activates,
it also forces both CAN buses into strict CAN 2.0B mode (as opposed to
CAN-FD). The reasoning is that the ATSAMA5D27 implements a message
format that does not conform to the latest CAN-FD specification, as noted
in section 3.4.1.
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Figure 15: High complexity fallback firmware structure.
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4.2.3 Low complexity sub circuit: FreeRTOS

The first step in the low complexity sub circuit’s fallback chain is FreeRTOS,
as discussed in section 3.5.2, and illustrated in figure 7. The implementation
is straight forward, and does not warrant an in depth discussion.

At system start, a single task is statically created, designated as the system
“Supervisor”. It is this task’s responsibility to react to exceptions caused
by failing code, and activate fallback solutions. This is implemented by the
top level task dynamically creating a single controller task; if this task fails,
another task of a different controller implementation is created and added
to the scheduler, while the failed one is removed.

In this implementation, only two tasks are specified; the same simple PID
algorithm used in section 4.2.2, and a dummy “open loop” algorithm that
only sends empty set point messages over CAN at equal intervals.

Considering the implementation is identical to that of section 4.2.2, nothing
is gained in terms of design diversity - and having an open loop algorithm as
a fallback solution is clearly questionable from a control engineering point of
view. However, since the scope of this project is first and foremost to verify
the robustness of the autopilot platform implementation, simple algorithms
were chosen so focus could be concentrated on the fallback details over the
control theory aspects.
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4.2.4 Low complexity sub circuit: Firmware fallbacks

Significantly more development went into custom firmware solutions for the
low complexity sub circuit than its primary FreeRTOS strategy. FreeRTOS
remains a very well known, and widely used operating system, and from an
implementation point of view it is not that interesting in the eyes of this
work. The story is quite different regarding the custom firmware solutions,
which will necessarily be of a more experimental nature. Hence, a more in
depth discussion is presented on this topic.

The primary challenge of conditionally running several firmware versions
is that of code separation. A simple approach would be to compile a single
binary from a code base comprising all fallback solutions, and then selecting
the branch to execute on startup. This would work, but requires the entire
“fallback binary” to be recompiled, linked, and flashed every time a single
fallback solution is modified. As such, this approach was quickly deemed
to be difficult to scale efficiently. Another issue is that of physical code
separation. Following this method, there are no guarantees that “firmware
version 1” does not use routines from “firmware version 2” and so on, as all
responsibility is left to the programmer.

To get around both these limitations, an approach leveraging the Flash
memory IC introduced in section 3.4.2 was developed. Since the ATSAMV71

has execute in place capabilities, code from the Flash may be run directly,
without first shadowing to RAM. Hence, we may thus dedicate the whole
internal persistent memory of the ATSAMV71 to a combined bootloader and
the FreeRTOS binary from section 4.2.3. The bootloader may then transfer
execution to separate codes from Flash, should the FreeRTOS strategy fail.

To get us started, we present the ATSAMV71 memory map in figure 16. Details
such as memory mapped IO and reserved sections are not included. The
various sections warrant a quick explanation to make our strategy clear.

The section called “Code” on the ATSAMV71 (ranging from 0x00000000 to
0x20000000) contains our simple bootloader and FreeRTOS. Following this,
the region “Internal SRAM” contains 384 kB actual space, with a beginning
at address 0x20c00000. Nothing is located here when the IC starts up; it
must be copied from somewhere else, such as a data section on the external
Flash, or the internal Read Only Memory (ROM).

Of most interest to us is the 512 MB address space starting at 0x80000000
for our external Flash chip. Our chip only physically has 128 Mb of capacity,
which is why the entire memory region is not used. We further segment this
memory into five regions allowing for completely separate fallback firmware
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...

QSPI Flash
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Internal SRAM

Code

0x00000000

0x20000000

0x40000000

0x80000000

0xa0000000

0xffffffff

ROM

Internal Flash

Boot Memory

DTCM

SRAM

Fallback 0

Fallback 1

Fallback 2

Fallback 3

Fallback 4

0x00000000

0x00400000

0x00800000

0x00c00000

0x20000000

0x20400000

0x20c00000

0x80000000

0x81900000

0x83200000

0x84b00000

0x86400000

0x88000000

Figure 16: Simplified ATSAMV71 memory map.

solutions. This is implemented as four regions à 25 Mb, and a single region
à 28 Mb. This is done so the regions line up correctly with entire Flash
memory pages.

To effectively use the proposed memory map illustrated in figure 16, it was
necessary to write a custom linker script, and ensure that the compiler would
place different functions and data elements in different sections. The latter
is easily achieved in the gcc compiler via the -ffunction-sections and
-fdata-sections flags. The former is more involved, and justifies a more
in depth discussion.

Firstly, we specify the memory map as linker sections, as in listing 1. This
informs the linker about the available regions our finished binary should
consist of.

Next, it is necessary to ensure that each specific part of our fallback code
lands in their designated areas. This will be partly the responsibility of our
toolchain - namely compilation and binary merging, but also touch on the
domain of our startup code; which in our case will be a small stub of C and
assembly that will get executed before we reach the main function of our
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MEMORY

{

bootrtos (rx) : ORIGIN = 0x00400000, LENGTH = 0x00200000

ram (rwx) : ORIGIN = 0x20400000, LENGTH = 0x00060000

fallback0 (rw) : ORIGIN = 0x80000000, LENGTH = 0x01900000

fallback1 (rw) : ORIGIN = 0x81900000, LENGTH = 0x01900000

fallback2 (rw) : ORIGIN = 0x83200000, LENGTH = 0x01900000

fallback3 (rw) : ORIGIN = 0x84b00000, LENGTH = 0x01900000

fallback4 (rw) : ORIGIN = 0x86400000, LENGTH = 0x01c00000

}

Listing 1: Linker script memory regions for low complexity sub circuit.

bootloader. To achieve this, we must “back export” symbols from link time,
back to compile time, which we accomplish by appending listing 2 to our
linker script.

__bootrtos_start__ = ORIGIN(bootrtos);

__bootrtos_size__ = LENGTH(bootrtos);

__ram_start__ = ORIGIN(ram);

__ram_size__ = LENGTH(ram);

__fb0_start__ = ORIGIN(fallback0);

__fb0_size__ = LENGTH(fallback0);

__fb1_start__ = ORIGIN(fallback1);

__fb1_size__ = LENGTH(fallback1);

__fb2_start__ = ORIGIN(fallback2);

__fb2_size__ = LENGTH(fallback2);

__fb3_start__ = ORIGIN(fallback3);

__fb3_size__ = LENGTH(fallback3);

__fb4_start__ = ORIGIN(fallback4);

__fb4_size__ = LENGTH(fallback4);

Listing 2: Linker “back exporting” of link time symbols.

Listing 2 provides a foundation our startup code may build on, but it is
still necessary to place compilation artifacts in their correct areas. This will
be discussed presently. Building further on our linker script, we place the
bootloader code in its correct location, as shown in listing 3.

46



STACK_SIZE = 0x2000;

SECTIONS

{

.text :

{

KEEP(*(.vector*))

*(.text*)

} > bootrtos

.bss (NOLOAD) :

{

*(.bss*)

*(COMMON)

} > ram

.stack (NOLOAD) :

{

. = ALIGN(8);

. = . + STACK_SIZE;

. = ALIGN(8);

} > ram

.data :

{

*(.data*)

} > ram AT > bootrtos

}

Listing 3: Linker section placement of bootloader code components.
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Most of what is shown in listing 3 is standard in low level microcontroller
applications.[41] Nonetheless, for completeness, we point out two details in
particular, as these will differ from other architectures. Firstly, we see that
we use an 8-byte alignment for the .stack section in our linker script. This
might differ from microcontroller to microcontroller, but will be specified in
each respective technical reference manual. In our case, we have followed
the ARM Architecture Procedure Call Standard (AAPCS).[34]

Secondly, we see that the the .data segment has specified both a storage
region and a load region via the linker AT command. This tells us that the
.data segment should reside in non-volatile internal Flash at load, but be
copied into RAM when we are running. This is significant, because we may
use the same technique for our fallback firmware versions. One additional
thing to note is that this technique represents a promise to the linker; we are
still responsible for implementing the loading from internal Flash to RAM,
as the linker itself has no idea of how to accomplish this. Incidentally, this
is also where we must rely on our startup code.

Building further on the techniques of listing 3, we may employ the same
tactics on fallback code, as demonstrated in listing 4 for fallback code 0.
The procedure is identical for the other fallback firmware versions.

Both listings 3 and 4 present us with the obligation of ensuring that data
loading happens before control is handed over to the relevant code. As
stated, this will fall under the responsibility of our startup code, which is
presented in listing 5. Certain universal parts of a startup code have been
omitted for clarity; these include disabling interrupts at the beginning of
the startup sequence, setting chip errata workarounds, and zeroing the .bss

segment. Firstly, our startup code loads segments from internal memory
into chip RAM, by use of pointers to our “back exported” linker symbols,
and the C runtime function memcpy, which copies size number of bytes from
internal Flash to RAM. Secondly, we exploit the assembly instruction “bx”
to do an unconditional branch to an arbitrary point in our code - which
happens to be the beginning of our bootloader. To achieve this, we resorted
to the unorthodox method of leveraging the placements of arguments in the
AAPCS; functions having four arguments or fewer will use the registers r0
to r3, without creating a new stack frame. This method was selected to
limit the amount of inline assembly needed, as the author is more familiar
with C than the Thumb-2 ARM instruction set. The procedure is identical
for our fallback firmware versions, replacing the __bootrtos_start__ and
__bootrtos_size__ symbols with the symbols __fb[0..4]_start__ and
__fb[0..4]_size__.
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SECTIONS

{

.fb0_text :

{

KEEP(*(.fb0_vector*))

*(.fb0_text*)

} > fallback0

.fb0_bss (NOLOAD) :

{

*(.fb0_bss*)

*(COMMON)

} > ram

.fb0_stack (NOLOAD) :

{

. = ALIGN(8);

. = . + STACK_SIZE;

. = ALIGN(8);

} > ram

.fb0_data :

{

*(.fb0_data*)

} > ram AT > fallback0

}

Listing 4: Linker section placement of fallback code 0 components.
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/* Pointers to source and destination of bootloader */

uint32_t * p_s = (uint32_t *) &__bootrtos_start__;

uint32_t * p_d = (uint32_t *) &__ram_start__;

/* Size of bootloader */

int size = (int) &__bootrtos_size__;

/* Copy byte for byte from internal Flash to RAM */

memcpy(p_d, p_s, size);

/* Load initial Stack Pointer and Program Counter */

uint32_t sp = p_d[0];

uint32_t pc = p_d[1];

/* Call static function to place SP and PC in ARM registers */

execute_branch(pc, sp);

/* ... */

/* Transfer execution from startup code to loaded code */

static void execute_branch(uint32_t pc, uint32_t sp){

__asm("

msr msp, r1 /* SP lives in register R1 per AAPCS */

bx r0 /* PC lives in register R0 per AAPCS */

");

}

Listing 5: Startup code responsible for code loading and branch execution.
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4.2.5 Low complexity sub circuit: Containment Domain

Should all the fallback solutions of sections 4.2.3 and 4.2.4 fail, our design
from section 3.5.2 calls for a “Containment Domain”, which sole area of
responsibility will be to contain faults, and hopefully lead to a controlled
mission abort.

As this is the last resort, it is imperative that the code it is built on be
structured differently than all other firmware, and implemented by using
different technologies, to maximize our chances for successfully leveraging
the principles of design diversity.

To guide our attempt, inspiration was taken from the “Formula Student”
organization “Revolve NTNU”. According to the 2019 team’s developer of
the Vehicle Control Unit (VCU), the most elusive type of bug to root out
for that system was the dreaded segmentation fault, where illegal memory
is being accessed erroneously.[28]

While modern tools such as the gcc address sanitizer may be helpful in
tracking down such faults, we must seek out a completely different approach
all together to stay true to the tenets of design diversity. The decision was
therefore made to implement the Containment Domain in Rust; a language
that makes segmentation faults virtually impossible, if the language is used
idiomatically.[22]

As of the time of writing, Rust for embedded systems such as the ATSAMV71

has a “developer feeling” comparable to that of a desktop system. Some
key differences include that one cannot necessarily expect all features of the
standard library, and one also has to implement the ARM Reset Handler

function through Rust, by using the so-called unsafe directive, for direct
access to memory locations. As this is the most non-standard part of the
Containment Domain, our Rust Reset Handler is presented in listing 6.

Briefly explained, the code presented in listing 6 works similarly to the code
in listing 5, by accessing symbols defined by the linker, to copy necessary
raw data into place from internal Flash to RAM, and then branching to the
programs main function.

The other aspects of our Rust Containment Domain differ little from the
strategy we have had for our other firmware versions, and do not demand
an in depth presentation.
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pub fn reset_handler() -> ! {

extern "C" {

// Use the same symbols from our Rust linker script

static mut __sbss: u32;

static mut __ebss: u32;

static mut __sdata: u32;

static mut __edata: u32;

static __sidata: u32;

}

// Zero the .bss segment

unsafe {

// Start and end of .bss segment

let mut sbss: *mut u32 = &mut __sbss;

let ebss: *mut u32 = &mut __ebss;

while sbss < ebss {

core::ptr::write_volatile(

sbss,

core::mem::zeroed()

);

sbss = sbss.offset(1);

}

}

// Load data

unsafe {

// Start and end of .data segment

let mut sdata: *mut u32 = &mut __sdata;

let edata: *mut u32 = &mut __edata;

let mut sidata: *const u32 = &__sidata;

while sdata < edata {

core::ptr::write_volatile(

sdata,

core::ptr::read(sidata)

);

sdata = sdata.offset(1);

sidata = sidata.offset(1);

}

}

// Transfer execution to main Containment Domain

main()

}

Listing 6: Rust based Reset Handler section of the Containment Domain.
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5 Validation and Results

Continuing the split theme from before, we attempt to treat hardware- and
software validation as separate topics to the degree that this distinction
makes sense. Ultimately, however, the Helmsman autopilot must be seen as
a complete system, to which we have dedicated section 5.3.

Regarding the Helmsman platform, hardware validation may broadly be
divided into signal integrity and power distribution. The tests done must be
classified as quite rudimentary, but have still provided some level of insight.
Suggestions for future hardware validation tests are presented in section 6.

For software validation, most of the effort is focused on various forms of
software linting and run time testing. Possible alternative future test venues
are briefly outlined in section 6.
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5.1 Hardware validation

Both signal integrity and power distribution are essentially concerned about
some signal in the general sense arriving from a source to a destination,
without being mangled too badly.

For the domain of signal integrity, this equates to a (typically) low voltage
signal being allowed to travel through an interconnect without experiencing
disruptive reflections, skews, distortions, or significant cross talk from other
interconnects.

For power distribution, we must drive a supply voltage to the pins of some
IC, and tolerate a specified amount of power demand spiking. Furthermore,
we must normally also satisfy some specified bounds on supply ripple for
reliable performance.

We are able to measure both of these aspects to some degree using an
oscilloscope with a high impedance probe. In our work, we have used a
Tektronix TBS 1052B, which is capable of 1 giga-samples per second, and
specified for signal bandwidths of up to 50 MHz.

Additionally, we have utilized the electric field solver in the Elmer Finite
Element Method (FEM) package, which is distributed freely by the Finnish
CSC; IT Center for Science.[35] This was done in an effort to compliment
our oscilloscope results, considering its rated signal bandwidth is quite low
for our application.

5.1.1 Oscilloscope: Power distribution

Power distribution tests were carried out by sampling the supply pins of
each IC on the Helmsman PCB. For the ATSAMA5D27 and ATSAMV71, this
was done both under nominal load, and specially constructed code that
turned on all internal peripherals and busied the CPU for the duration of
the test.

In all cases, our tests seem to suggest that we are within the respective
specified maximum ripple limitations. Nonetheless, the author would like to
attach a reasonably large caveat to this claim; in the cases of the ATSAMA5D27
and its two RAM ICs, these tests might as well be discarded. The reason
is that all of these three chips are BGAs, and were thus difficult to test on.
The only extent that this was possible, was in fact by carefully touching
untented vias on the PCB with the oscilloscope probe. In some cases, these
vias were comparatively far away from the IC itself, which might add to a
larger measurement uncertainty.
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5.1.2 Oscilloscope: Signal integrity

The maximum sampling frequency of the oscilloscope used in the tests placed
significant limitations on what signals could be measured. One simple test
that was carried out, was to indirectly measure the PCB’s clock signals, by
programming the ATSAMA5D27 and ATSAMV71 to directly output their system
clocks on a given pin. This clock signal was then measured, and compared
to the prescribed frequencies of 16 MHz for the high frequency oscillator,
and 32.768 kHz for the real time clock. For both the high frequency clocks,
deviations were typically within ∼ 40 ppm, while for the low frequency real
time clock the deviation was typically within ∼ 60 ppm.

Again, these results should be taken critically, as for example (Nakagawa
2009) recommends using an oscilloscope capable of measuring at least five
times the expected clock frequency.[15] Our TBS 1052B is well on the low
side of this.

Additionally, we were able to measure the CAN buses under regular load
conditions. Unsurprisingly, at the relatively low frequencies of 1 MHz in
CAN mode and 4 MHz in CAN-FD mode, no discernible signal degradation
could be observed. Under test conditions, these signals always stayed within
recommendations given by the ISO 11898-1:2015 CAN standard.[30]

5.1.3 Elmer FEM: Signal integrity

In an attempt to validate our microstrip line routing strategies outlined in
sections 4.1.2 and 4.1.3 we employed basic field solver routines from the
Elmer FEM package.

Figures 17 and 18 both show similar simulation setups. Here, we see a
PCB in top view; the black line extending across the board is on the top
layer, and carries a 10 MHz signal from the top via to the bottom via. The
gray background represents a ground plane on the bottom layer of the PCB.

Relative electric fields strengths are shown by field concentrations ranging
from red (being the most concentrated), to violet, blue, cyan, green, yellow,
and finally orange (being the least concentrated).

While it was difficult to get concrete results in terms of absolute expected
fields strengths, we are able to see their relative spreading. In figure 17, we
see that almost all of the signal return current is carried directly under the
microstrip line. We do observe some amount of fringing, but even at a PCB
thickness of 1.6 mm, this is strongly bounded.
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In figure 18, we observe a radically different scenario. Return current is
forced to follow the edge of the ground plane slit, and as a result of this
sharp change in impedance, we detect the resulting electric field virtually
everywhere on the PCB, including to some degree in the dielectric space
making up the slit itself.

Figure 17: Relative electric field strengths for current return path over an
unbroken ground plane at a signal frequency of 10 MHz.

Figure 18: Relative electric field strengths for current return path over a
ground plane with a 5 mm wide slit covering most of the height of the
board. The simulated signal frequency is 10 MHz.
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5.2 Software validation

For software validation, a handful of different tools were used. Included
in these ale the Clang Static Analyzer for linting and checking of C code,
the gcc compiler toolchain itself, Rust’s “Clippy” static checker, the tool
Valgrind for memory correctness, and custom written unit tests for critical
functions and common functionality.

5.2.1 Linting for C and Rust

Linting, the process of detecting and flagging known problematic language
constructs or suspicious code, is a similar process for both C and Rust. The
difference mainly being that Rust’s “Clippy” is able to uncover marginally
more common errors than the Clang Static Analyzer, due to the stricter
language form.

Linting was always run for every file modification of any source code during
the work with the project. Compiler “pedantic” modes were enabled, and
flags turning warnings into errors were used. This ensured that dubious
code would be harder to run.

Since no code was developed without these tools, it is difficult to estimate
numbers on how many potential bugs were stopped using this method, based
on this work alone. However, we may compare the code developed here with
empirical studies on bug characteristics found in contemporary open source
projects, for example (Li 2006) and (Catolino 2019).[3][16]

This yields some comparative metric, but as these studies focus on widely
different software domains than the one presented in our work, we do not
attempt to make a one to one comparison. Types of bugs that we ignore
from (Li 2006) and (Catolino 2019) include graphical issues, some network
code, and most security related bugs.

To get a more representative bug characteristic comparison, we thus also
compared our code to static analyses of code from repositories maintained
by Revolve NTNU.

Against both comparison groups, our code had significantly fewer linting
errors, and presented no detectable serious issues like memory faults from a
static analysis point of view.

5.2.2 Address sanitizer and Valgrind

A static analysis can usually only hope to uncover a portion of potential
faults. Linting results suggested that our code be unlikely to contain major
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memory corrupting faults, but to investigate this more thoroughly, both an
address sanitizer and Valgrind were used.

An address sanitizer compiles in extra error checking code that enters into
the finished binary, which may then be be run on an emulator such as QEMU
(qemu.org). The completed binary will then perform a host of verifications,
such as out-of-bounds checking, double free detection, memory leaks, and
use-after-free violations.

Valgrind works similarly, but instead of adding code into the binary itself,
it implements a whole simulated target processor, where the original binary
is run without modifications.

Both tools supported the previous assertion that our code does not contain
common errors observed by (Li 2006), such as NULL pointer dereferences;
or the segmentation faults that were common in subsets of code developed
by Revolve NTNU.[28]

5.2.3 Unit testing

Unit testing is the process of writing constructed cases for specific functions,
methods, or related discrete pieces of code under set circumstances. In our
work, unit testing was used extensively to validate correctness of functions
in drivers, communication interfaces, and control code.

The method of implementation differs between our C and Rust code. In
Rust, unit testing is a natural extension of the language framework, and
may be introduced by decorating code with the #[test] attribute. Next,
assertion macros may be used to verify the correctness of some condition.

In C, there is no accepted “one way” of writing unit tests, and the author
resorted to manually implementing assertions that would be conditionally
compiled in- or left out, depending on compiler flags.

Unit testing proved valuable in the work of this project. Not only was
it able to further reaffirm the case for our code likely being memory fault
free, it was also able to greatly aid in the development of control code. One
example of this, is a set of linear algebra routines that were ported from
some of the author’s previous work (Austreng 2020).[4] Under pathological
conditions, these routines would produce NaN s (the floating point “not a
number”). Unit testing aided in isolating the culprit, and validated that the
adjusted implementation worked for the tested scenarios.
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5.3 Helmsman validation

The Helmsman autopilot platform would be useless without the capability
of functioning as an integrated whole system. As outlined in section 3, we
outlined that an important part of the application as a whole is to act as
the central controlling unit in a HIL setup.

To facilitate this, the on board USB interfaces were used for autopilot to
host communication. A somewhat simplified version of the simulator due to
(Oland 2018) was used during testing.[13] Simplifications comprised “hard
coding” their noise free “perfect knowledge” version of simulation. This was
done in an effort to restrict scope, and allow more rigorous testing on the
platform concept itself, as explained in section 1. The HIL tests carried
out consisted of alternating between keeping steady heading and altitude,
and performing 180◦ coordinated turns. Disturbances were kept, but were
limited to one tenth of their original magnitudes.

The Helmsman system performed satisfactorily under nominal conditions.
To validate the platform’s fail-over capabilities, which is the heart of this
work, controller code was forced to catastrophically crash from user input.
This consistently triggered the fail-over routines, without loss of autopilot
availability. In fact, the redundant takeover proved to happen too fast to
be discernible from the MATLAB/Simulink environment the simulator was
running in.

In an attempt to agitate noticeable deterioration of performance, a small
custom interface driver was written to speak with the Helmsman from the
host computer. This driver would register as a file under the file system, and
be read and written by MATLAB/Simulink. The driver would sporadically
drop packets needed for the HIL simulation. When this happened frequently
enough, the Helmsman would register the fault, and switch to the next fall-
back solution. MATLAB/Simulink, however, remained blissfully unaware of
this in all tests, due to its significantly lower execution speed.
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Figure 19: USB to CAN-FD bridge.

Lastly, to simulate Helmsman performance under conditions where its HIL
interface would not consume processor time, a simple auxiliary CAN-FD
to USB bridge was developed. This bridge may be seen in figure 19. The
twisted pair going off to the right side are the CAN-FD lines, while the
USB section plugs directly into a computer. Power is provided via USB.
The development of this bridge is not central to the Helmsman circuit, so
we dedicate no extra discussion regarding it.

The use of this bridge allowed the Helmsman USB interfaces to remain off,
instead relying on the always-on CAN-FD buses for host communication.
During this stage, additional sensor noise was also injected on the CAN-
FD buses. No change in performance could be detected, indicating that the
Helmsman has superfluous computational resources even when carrying out
subordinated tasks such as HIL communication.
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6 Conclusions and Future Work

In this work, we have presented the process of developing a redundant and
fault tolerant modular autopilot platform designated as the “Helmsman”.
Validation efforts suggest that our platform meets or exceeds all relevant
development criteria that were set forth.

Hardware In Loop (HIL) testing has shown promise in further use and
potential development of the autopilot system, with a sizable and mostly
unused capacity for integrating additional features, even those demanding
extensive computational resources.

Many topics have been left untouched, and potential avenues for further
technical and academic inquiry have uncovered in great numbers. Some of
the ones that present themselves as immediately of interest to the author
are outlined below.

6.1 Future work in hardware

Based on observations from section 5, we identify several areas that may be
improved upon. Firstly, as noted during the development process and testing
alike, it was difficult to verify power supply integrity for the ATSAMA5D27 and
its two RAM ICs. This may be addressed in future revisions by selecting
decoupling capacitors or smaller form factors and opting for a manufacturer
allowing thinner microstrip lines and smaller vias. This would significantly
ease the task of adding decoupling to the board’s BGA components. One
might also opt for the use of so-called “blind vias” - namely vias that do not
penetrate the PCB entirely, but is only exposed on one side. This is a more
expensive solution to manufacture, but would greatly increase routability.

For easier and better design validation, the board may also be produced
at a facility providing x-ray inspection of the solder connections. This is
among the only viable options for proper inspection of BGA connections.

An oscilloscope with a higher signal bandwidth would also greatly aid the
trustworthiness of signal integrity results collected in section 5.1.

A board revision that is not constructed around components that happen to
be available could also benefit the overall design. Particularly, this applies to
the ATSAMA5D27, ATSAMV71, and the CAN-FD transceivers. None of these
components were ever intended as the first choice for their respective uses,
but the state of the industry (as outlined in section 2) forced some of the
development to take a perhaps sub optimal direction in certain respects.
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In section 3.3, we pointed out that it was sadly not feasible to produce
a full TMR 2-out-of-3 voting system due to the production expenses this
would incur. However, for even higher availability requirements, benefits
might outweigh the costs.

Lastly regarding the hardware of the Helmsman itself, striving for a higher
level of component integration, and an ability to more strictly meet real
time requirements, basing future designs around Field Programmable Gate
Array (FPGA) technologies presents an attractive area of exploration.

Apart from the Helmsman hardware, testing the autopilot system in an
actual UAV application is the only way of obtaining irrefutable empirical
validation for our design. Hence, such an endeavor would be appealing for
future work.
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6.2 Future work in software

We identify vast potential for software advances in the Helmsman auto-
pilot. Firstly, the potential power of running high-level control routines on
the embedded Linux platform were never explored deeply. Furthermore, in
investing more development time for this part of the high complexity sub
circuit, that fallback chain might be eliminated entirely; leaving fail-over
capabilities to the low complexity sub circuit.

Secondly, while on the topic of embedded operating systems, it was seen
early on that the FreeRTOS solution is needlessly complex. There is little
reason to create tasks dynamically, if a single control task will be running
at any given time. This warrants an exploration into an implementation of
reduced scope, perhaps leveraging a set of statically created tasks for each
of the controller- and observer software components.

Common to both the high- and low complexity sub circuits, we see some
tendency to over-zealous fallback solution implementation. An example of
this is the low complexity sub circuit’s “Containment Domain”. This could
likely be combined with a single custom firmware fallback, provided the
RTOS implementation is given more sustained development attention.

If one were to strip some fail-over capabilities, this could also open up the
possibility of using the high complexity sub circuit to for example carry out
model predictive control on a large time horizon, while the low complexity
sub circuit would handle direct control.

Apart from software running on the Helmsman directly, we also see a promis-
ing avenue for more extended use of simulation software. For example, Elmer
FEM was only superficially used in the validation work of this project, on
a somewhat constructed scenario. If would be of interest to expand its use
into other aspects of the circuit, such as thermal dissipation from switching
mode power supplies. A more deliberate use of simulation techniques would
moreover be imperative if an FPGA were to be introduced to the Helmsman
platform.

Finally, we acknowledge that testing has benefited the project work in all
matters regarding software. While unit testing has been the chief focus in
this pursuit, it is by no means the only form of testing could have been
explored. In the future, it might hence be of interest to explore for example
property based testing solutions, or more rigorous integration testing.
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In closing: Personal comments

In the author’s view, a matte black PCB is about six times cooler than a
standard green PCB. When an electron nickel immersion gold plating is
applied to the exposed copper on the circuit, instead of a standard tin based
hot air solder leveling, the coolness factor increases to about eight times its
original value.

While the author wants to stay true to his Scandinavian roots in embracing
the central doctrine that function must precede form, he would also like to
add that there is nothing wrong with reaching for better form when perfect
function has been achieved.

In light of this, the author would like to personally, and heartily, encourage
the use of matte black PCBs in areas where consistent operation has already
been secured by previous revisions.

In the author’s humble opinion, this serves as a signature that the developer
is ready to take complete ownership over- and pride in the finished solution.
PCB design is an arduous and taxing effort, fraught with contradicting and
perilous advice from schools of old. A matte black signature PCB hence
serves to embolden the beneficiaries of an impeccably designed circuit, and
foster courage and a stoic attitude in the generations of engineers to come
after us.

The importance of matte black,

Kolbjørn Austreng
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A Bill of Materials

For ease of future revisions and reproducibility, we supply the following
BOM containing critical components. Each entry is the exact part number
used by the Digikey component supplier, where all parts were ordered.

Common components such as chip resistors and ceramic capacitors have
been left out, to avoid unnecessary cluttering. For such components, the
0603 form factor (1608 metric) was used. Capacitors were selected from the
X5R series, with the exception of capacitors used for clock circuitry, where
the C0G series was employed.

1253-1698-1-ND

1092-1228-ND

296-48677-1-ND

SMAJ7.0CA-FDICT-ND

A135698-ND

256-W632GU6NB-12CT-ND

HR1972CT-ND

KSZ8041TL-CT-ND

1278-1011-ND

428-4121-1-ND

732-12918-ND

150-MCP16502TAA-E/S8BCT-ND

ATSAMV71Q21B-AAB-ND

WM7623CT-ND

ATSAMA5D27C-CU-ND

SER4081CT-ND

AP2111H-3.3TRG1DICT-ND

732-4988-1-ND

1175-1735-ND

497-4492-1-ND

BD9E302EFJ-E2CT-ND

WM1723-ND

WM1142CT-ND
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