
PHYSICAL REVIEW B 104, 104515 (2021)

First-order superconducting phase transition in a chiral p + ip system
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We use large-scale Monte Carlo computations to study the phase transitions between a two-component chiral
p-wave superconductor and normal state in zero external magnetic field. We find a first-order phase transition
from the normal state to a chiral superconducting state, due to interplay between vortices and domain walls.
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I. INTRODUCTION

Chiral superconductors constitute a class of unconven-
tional superconductors whose order parameter features finite
angular momentum and a phase that winds around the
Fermi surface [1]. The chiral nature arises from sponta-
neously broken time-reversal symmetry (TRS), which yields
a twofold degenerate superconducting state with broken
U (1) × Z2 symmetry. Chiral superconductors are of fun-
damental interest because they are predicted to display
topological properties such as Majorana modes in vortex
cores and edge currents leading to a quantized thermal Hall
conductance [2–5].

The prototypical chiral p-wave superfluid state is realized
in A phase of superfluid 3He [6–8]. The search for chiral
p-wave pairing in a bulk superconductor has been going
on since the discovery of superfluid 3He. For many years,
the leading candidate has been the extensively investigated
superconductor Sr2RuO4; a highly anisotropic layered ma-
terial with tetragonal crystal structure and strong spin-orbit
coupling [9–13]. ARPES measurements have revealed three
bands crossing the Fermi surface, supporting a multicompo-
nent theory [14]. Several groups have also found that in zero
field there is a single phase transition, where TRS is broken
along with the onset of superconductivity [10,11,15,16], while
split transitions were reported to arise under strain [17]. How-
ever, the evidence against the chiral p-wave superconductivity
has been growing in recent years. The first notable example
was the absence of chiral edge currents that should produce
magnetic signatures at the boundary between domains of
opposite chirality [18–20]. Recently, the mounting evidence
against the chiral p-wave pairing lead to the discussion of
other order parameters in an attempt to reconcile all the exper-
imental data, such as near degenerate between d- and g-wave
pairing for Sr2RuO4 [21,22]. Recent studies of ultrasound
[23,24], and vortex state [25] point to a multicomponent order
parameter.

Another candidate for chiral triplet superconductivity
is the heavy fermion superconductor UPt3 [26–28]. Un-
like Sr2RuO4, it is claimed to feature two separate phase

transitions in zero applied magnetic field, where TRS is spon-
taneously broken within the superconducting phase [29–31].
The superconducting state in UPt3 is believed to be chiral f
wave with an order parameter that has the two-dimensional
irreducible representation E2u [32]. Although this is a higher-
order pairing than chiral p wave, our theoretical description
will be relevant for UPt3 since the order parameter symme-
try group has the same irreducible representation. In more
recent works, chiral superconductivity has also been claimed
in other systems, such as van der Waals materials and
nanotubes [33–35].

Even after decades of research, the nature of multicompo-
nent superconductivity in Sr2RuO4 remains a puzzle. This fact
and the emergence of new candidates for chiral superconduc-
tors raise the need to understand the nature of superconducting
phase transition in a chiral p-wave superconductor beyond
mean-field approximations and possible clues it may yield in
real materials.

The question of fluctuations in a chiral p-wave supercon-
ductor is nontrivial because it breaks two symmetries: U (1)
and Z2. Therefore, in general, fluctuations can cause a single
transition or a sequence of transitions. A similar question
arises for s + is superconductors, which share the U (1) ×
Z2 symmetry and has been studied by numerical methods
[36,37]. Recent experiments reported fluctuations-induced
splitting of the phase transition [38]. Analogous questions for
chiral p-wave superconductors were studied in Ref. [39], but
no Monte Carlo calculations were performed for this problem.
In this paper, we use large-scale Monte Carlo calculations
to study the phase transition a chiral two-component super-
conductor transition in Ginzburg-Landau (GL) theory for an
E2u order parameter. Before we proceed to calculations, we
note that the problem is related to the more general question
of the phase transitions in multicomponent gauge theories,
where large-scale Monte Carlo studies were performed. For a
U (1) × U (1) two-component London superconductor, it has
been shown that for moderate values of the gauge charge
and equal amplitudes in the two ordering fields there is
a single first-order phase transition where both symmetries
are broken at the same temperature. For high values of the
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gauge charge the single transition line splits into two sepa-
rate transitions predicting an intermediate metallic superfluid
with broken global U (1) symmetry but restored local U (1)
symmetry [40–44]. In Refs. [40,45] the merging of the two
phase transitions was coined a preemptive phase transition,
where ordering in one symmetry sector of the model leads to
ordering in the other. For the case of interacting U (1) × U (1)
neutral superfluid a detailed study of the first-order character
of the phase transition was presented in Ref. [42], where also
the existence of a tricritical point was reported. Similarly,
for a SU (2)-symmetric model, where the amplitudes of the
two matter fields (�1, �2) are related by a CP1 constraint
|�1|2 + |�2|2 = 1, a single transition was found for moderate
values of the gauge charge, which split into two transitions for
higher values [46,47]. The model we consider in this paper
is different from a U (1) × U (1) London superconductor, due
to the presence of a term that explicitly breaks the global
U (1) symmetry down to a Z2 symmetry. It is also different
from s + is superconductor due to the structure of a so-called
mixed gradient terms (MGT). These terms are products of two
gradient terms, as in the standard kinetic energy, but where the
two factors are gradients in different directions involving dif-
ferent order-parameter components (see below). Such terms
are common for chiral p-wave superconductors [48] and can
also originate for instance with spin-orbit coupling [49]. Such
terms will provide an additional direct coupling between the
U (1)- and Z2-symmetry sectors of the model.

II. MODEL

A. Ginzburg-Landau model

We consider a superconductor with tetragonal crystal struc-
ture and spin-orbit coupling, belonging to the point group D4h.
Gauge invariance and TRS yields the full symmetry group
of the system G = D4h × U (1) × Z2. In the two-dimensional
odd-parity representation E2u, the superconducting gap func-
tion may be written as d(k) = (ηxkx + ηyky)ẑ. The complex
matter fields (components) describe two types of Cooper pairs
in the theory, and can be written in terms of an amplitude and a
phase on the form ηi = ρieiθi . This leads to a GL energy func-
tional E = ∫

f d3r where the dimensionless energy density is
given by [48,50,51]

f = −α(|ηx|2 + |ηy|2) + u0

2
(|ηx|4 + |ηy|4) (1a)

+γ |ηxηy|2 cos 2(θx − θy)

+|Dηx|2 + |Dηy|2 + |∇ × A|2 (1b)

+γm[(Dxηx )(Dyηy)∗ + (Dyηx )(Dxηy)∗ + H.c.]. (1c)

The matter fields are minimally coupled to the gauge field
A through covariant derivatives D = ∇ − igA and the energy
is normalized to the condensation energy f0 = B2

c/4π , where
Bc is the critical magnetic field. Lengths are given in units of
ξ = 1/

√
α. α and u0 set the scale for the critical temperature.

Our results do not sensitively depend on their precise values,
but they apply only in a domain where the phase-only approxi-
mation is approximately valid, for example deep in the type-II
regime. The coefficients γ and γm, which control the strength
of the intracomponent potential and MGT, respectively, will
typically be sensitive the electronic structure and in particular

the shape of the Fermi surface [48,49]. In order to present a
systematic study of the effects these terms have on a class of
physical systems, we will treat them as phenomenological pa-
rameters. They are still constrained by our numerical methods,
discussed further in Sec. II B. The decay of magnetic fields
in this model usually involves multiple modes and multiple
length scales [52], that yields further differences compared to
s + is models previously studied in Monte Carlo simulations
[36,37]. In what follows we will not distinguish between the
subdominant electromagnetic scales.

The mean field ground state of Eq. (1) is found by setting
A = 0 and ignoring spatial variations in the matter fields.
Minimization of the potential energy in Eq. (1a) then yields
the ground state

|ηx| = |ηy| =
√

α

u0 − γ
≡ ρ0, (2)

θx − θy = ±π/2 ≡ θ0. (3)

We find two degenerate solutions due to the phase-locking
term. Theses are related by a Z2 symmetry operation, which
will be discussed in more detail in Sec. II C. Finally, we note
that this ground state gives an order parameter on the form
kx ± iky, corresponding to a superconducting state with chiral
p-wave pairing which spontaneously breaks the U (1) × Z2

symmetry of the theory.

B. London limit

In order to perform Monte Carlo simulations on the free
energy introduced in Eq. (1), we will work within the London
approximation where the amplitudes of the matter fields are
frozen. The London limit is commonly used for similar mod-
els [40,41]. However, in the case of a multicomponent order
parameter, and with the addition of Ising anisotropy and MGT,
such an approach requires considerable care and is generally
not applicable [52].

We will first explicitly assess the validity of this approach,
following a similar but not identical method to the one pre-
sented in Ref. [52]. To this end, we expand all fluctuating
fields to second order in deviations from their mean-field
values, introducing

εi = ρi − ρ0, (4)

θ� = 1
2 (θx − θy − θ0), (5)

pi = Ai − 1

g
∂iθ, (6)

θ = (θx + θy)/2, (7)

where pi essentially is a gauge-invariant current. Expanding
the energy to second order in these fluctuations and Fourier
transforming, we obtain an expression on the form

f = f0 + vGv†, (8)

where f0 is the ground-state energy, G(k) is a matrix describ-
ing the coupling between fluctuations in different fields, and v
is the fluctuation vector given by

v(k) = (ε+ ε− θ� px py). (9)
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FIG. 1. Nonzero entries of the eigenvector ψ∗ corresponding to
the lowest eigenvalue of the coupling matrix, plotted along the line
kx = ky. In (a) there are no MGT and the coupling matrix is diagonal
with pure modes. In (b) we have included MGT, which cause mixed
modes with fluctuations in multiple fields. In both cases fluctuations
in the phase difference are dominant in the long wavelength limit.

We have introduced a rotated amplitude basis ε± = (εx ±εy)/√
2 in order to simplify the structure of the coupling matrix.

The exact form of the coupling matrix, along with details of
the derivation are given in Appendix A.

To determine what fluctuations are most important, the
coupling matrix is diagonalized to obtain the lowest eigen-
value λ∗ along with the corresponding eigenvector ψ∗. In the
absence of MGT, the coupling matrix is already diagonal and
the eigenvectors are pure modes with fluctuations in only one
field. In the long wavelength limit, we then find that the phase-
difference mode θ� corresponds to the lowest eigenvalue for
low values of the Ising anisotropy

γ � 0.17 (10)

when α = u0 = g = 1.0. Above this value amplitude fluc-
tuations become important as the ε− mode corresponds to
the lowest eigenvalue. The effect of MGT is that the eigen-
vectors become mixed modes with multiple nonzero entries

for nonzero momentum [52]. To investigate the degree of
mixing, we plot the k dependence of the nonzero entries in
ψ∗ in Fig. 1(b) with the corresponding parameters without
MGT in Fig. 1(a). For low momentum magnitude k the phase
difference mode is now weakly mixed with ε+ amplitude fluc-
tuations, but phase difference fluctuations are still dominant.

Note that although taking a London limit eliminates some
of the mixing at the level of bare model, we find below that
the phase transition is relatively weakly first order, so in a
fluctuating model the mixing can reappear at the level of a
large-scale effective field theory. Otherwise, at the level of
bare model, the London limit is a good approximation for the
regime of small mixing.

C. Charged and chiral symmetry sectors

In this section we introduce the chiral basis, which is
obtained by a unitary transformation η± = (ηx ± iηy)/

√
2.

Under TRS, the chiral components transform as K̂η± = η∗
∓.

It is common to recast the model in terms of these chiral
components [51,53,54], but in the present setting we introduce
them because they provide an order parameter in the Z2 sym-
metry sector. If we calculate the chiral component amplitudes
in terms of the xy-components, we find

|η±| =
√

1
2 [|ηx|2 + |ηy|2 ± 2|ηxηy| sin(θx − θy)]. (11)

By inserting the ground-state values form Eqs. (2) and (3), we
see that one of the chiral amplitudes is spontaneously chosen.
Coming from the low-temperature regime, chiral symmetry
is then restored by a proliferation of topological defects in
the form of Ising domain walls separating areas of opposite
chirality. From Eq. (11) we see that these domain walls can
be described by a gradient in the phase difference of the xy
components.

The superconducting phase transition is associated with
spontaneous symmetry breaking of the local U (1) symmetry.
The low-temperature phase is well understood at mean-field
level, where the gauge field A acquires a mass, yielding a
Meissner effect. In the context of single-component supercon-
ductors it has been shown that going beyond mean field, the
(nonlocal) order parameter of the U (1) sector is still the gauge
field mass, which now corresponds to the inverse magnetic
penetration length of the problem. Upon heating the system,
the mass of the gauge field is eventually destroyed at some
critical temperature. The phase transition is driven by a prolif-
eration of thermally excited topological defects in the form of
charged vortex loops [55,56].

In the London limit, we can perform a separation of vari-
ables to rewrite the model in terms of charged and chiral terms

f = ρ2
0

2
[∇(θx + θy) − 2gA]2 + ρ2

0

2
[∇(θx − θy)]2 + γ ρ4

0 cos 2(θx − θy) + |∇ × A|2

+ γmρ2
0 cos(θx − θy){[∂x(θx + θy) − 2gAx][∂y(θx + θy) − 2gAy] − [∂x(θx − θy)][∂y(θx − θy)]}. (12)

This form highlights the interplay between the symmetry sec-
tors of the model in an intuitive way. We have the charged

sector given by the phase-sum coupling to a gauge field
with strength 2g. The chiral sector is governed by the phase
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difference, where we have a three-dimensional (3D) XY
model with an easy axis anisotropy that demotes the symmetry
from global U (1) down to Z2. Then finally there are the MGT
that provide an explicit coupling between the two sectors.
Note that even in the absence of MGT, the two symmetry sec-
tors are still connected as the phase sum and phase difference
are not independent variables.

III. MONTE CARLO SIMULATIONS

The critical properties of the model in Eq. (1) in the London
limit are investigated using Monte Carlo simulations. This
is achieved by discretizing the model on a numerical cubic
lattice, where the matter fields live on lattice points and the
gauge field is discretized through renormalized noncompact
link variables [57]. Periodic boundary conditions are used
because we are interested in bulk properties of the model. In
simulations, we use the Metropolis Hastings algorithm with
a local update scheme and parallel tempering between differ-
ent temperatures to numerically evaluate various observables
[58–60]. The gauge field is discretized through renormalized
noncompact link variables defined as

Ar,μ ≡ −1

g

∫ r+μ̂

r
Aμ(r′) dr′ ∈ (−∞,∞), (13)

for μ ∈ {x, y, z}. These are noncompact in the sense that they
do not have a 2π periodicity [57] and this means that the
discretization of the pure gauge term in Eq. (1b) will have
the form ∫

d3r |∇ × A|2 	→ f r
A = 1

g2

∑
r,μ

(� × A)2, (14)

where (� × A)μ = εμνλ�νAr,λ using the Levi-Civita symbol
and summation over repeated indices. �μ is a discrete for-
ward difference operator such that �μAr,ν = Ar+μ̂,ν − Ar,ν .
We note that writing out the sums over μ, ν, and λ, Eq. (14)
can be written in term of plaquette sums. The link variables
are renormalized in the sense that we multiply the field by a
factor −1/g to simplify the covariant derivatives.

The covariant derivatives are discretized using forward dif-
ference where the order-parameter component value at r + μ̂

is parallel transported back to r by the gauge-field link vari-
ables by

Dμηa(r) 	→ ηa
r+μ̂e−iAr,μ − ηa

r . (15)

This ensures that the resulting lattice-discretized GL theory
remains invariant under the gauge transformation

ηa
r 	→ eiλrηa

r

Ar,μ 	→ Ar,μ + �μλr, (16)

where λr is an arbitrary real field.
The resulting lattice theory is expected to yield the same

quantitative behavior as the continuum theory, at least in the
strong type-II regime [56]. The remaining expressions for the
discretized effective free energy density f r are presented in
Appendix B. Once a lattice formulation of the GL model
is obtained, Monte Carlo simulations are carried out in the
following manner. We start from some given configuration

of the phase and gauge-field variables. In principle this con-
figuration can be completely arbitrary, but we typically start
from a fully correlated low-temperature configuration or a
fully uncorrelated high-temperature configuration. From this
configuration, we propose a local update by changing the field
values at one lattice site. The update is either accepted or
rejected, with a probability given by the Boltzmann weight
of the change in energy between the old and proposed con-
figuration. After identifying the two symmetry sectors of the
model, these updates are done in a two-step manner. We first
attempt to change the phase difference θ x

r − θ
y
r while keeping

the phase-sum constant. The second step is attempting to
change the phase-sum θ x

r + θ
y
r and the gauge field Ar,μ while

keeping the phase difference constant. All proposed updates
were drawn from a uniform distribution about the value in the
current configuration. For updates to the phase variables we
set θmax = 2π/3, such that the new value was drawn from the
interval [θr − θmax, θr + θmax] (mod 2π ). Similarly, updates to
the gauge field were drawn from [Ar,μ − Amax, Ar,μ + Amax],
where Amax = 0.6. The values of θmax and Amax were set after
initial testing to keep the acceptance rate around 30%. This
procedure respects the important requirements of ergodicity
and detailed balance, and also has the benefit of allowing a
high acceptance rate in one symmetry sector even if the other
one is completely frozen. A Monte Carlo sweep consists of
performing one such update on each lattice site in the system.
Before doing measurements, we carry out a number of Monte
Carlo sweeps to let the system thermalize at a configuration
with high probability. This is done in a stepwise manner
where the system is thermalized at incrementally higher or
lower temperatures, depending on the starting configuration,
towards the target temperature. This stepwise procedure de-
creases the probability of getting stuck in local minima of
the energy landscape. Furthermore, our algorithm employs
parallel tempering where a number of systems are running in
parallel at an interval of closely spaced temperatures. After
a number of Monte Carlo sweeps, two configurations can
swap temperature with a probability given by the Boltzmann
weight. This further remedies issues associated with local
minimas and ensures faster thermalisation and sampling.

To measure ordering in each of the symmetry sectors
at the phase transition, we introduce two order parameters.
As discussed in Sec. II C, the Z2 transition is characterized
by an imbalance between the chiral components introduced
in Eq. (11). Hence, we can measure spontaneous symmetry
breaking of TRS using the chiral amplitude difference

δη± =
〈∣∣∣∣∣ 1

L3

∑
r

|η+(r)|2 − |η−(r)|2
∣∣∣∣∣
〉
. (17)

This is zero in the high-temperature phase and tends to 2ρ2
0

in the low-temperature phase. The superconducting phase is
characterized by a nonzero gauge field mass m = λ−1

L . This
can be computed via the dual stiffness [41]

ρμμ
q = 1

(2π )2L3

〈∣∣∣∣∣
∑

r

(� × A)μeiqr

∣∣∣∣∣
〉

∼ q2

q2 + λ−2
L

. (18)

The low q limit of this expression tends to zero in the su-
perconducting phase, where λL is finite, and some constant
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in the normal state, where λL is infinite. Hence, we measure
the dual stiffness at the lowest nonzero momentum allowed by
our discretization as an order parameter in the U (1)-symmetry
sector. Finally, both phase transitions are accompanied by
singularities in the specific heat

Cv = β2〈(E − 〈E〉)2〉, (19)

where β is the inverse temperature.
In numerical simulations, we thermalize systems of sizes

up to 323 from both an ordered state given by Eqs. (2) and (3),
or fully disordered states in some cases, over 3 × 105 Monte
Carlo sweeps. We then make measurements of the energy,
dual stiffness and chiral order parameter over 1 × 106 Monte
Carlo sweeps. The measurements are done every 40th sweep
to account for the autocorrelation time. Ferrenberg-Swendsen
multihistogram reweighting has been used to postprocess the
raw data [61,62]. Errors in the results were estimated using
the jackknife method [63].

IV. RESULTS

In this section we present results from large-scale Monte
Carlo simulations using the parameter regime discussed in
Sec. II B. For all simulations we have fixed α = 1.0, u0 = 1.0,
g = 1.0 and we consider a cubic geometry for lattices of size
L × L × L with periodic boundary conditions.

A. Model without mixed gradient terms

Results without MGT, γm = 0, are shown in Fig. 2. For
the considered parameters, we find that ordering in both sym-
metry sectors occurs simultaneously. In Fig. 2(a) the chiral
order parameter has a kink as it drops to zero at the critical
temperature. The dual stiffness in Fig. 2(b) displays similar
behavior; in the Meissner phase, where λL is finite, it tends
to zero and in the normal state it grows, as the thermal gauge
fluctuations become larger. The normal phase and Meissner
phase are separated by a jump in both order parameters ac-
companied by a singularity in the specific heat in Fig. 2(c). In
summary, we find that with decreasing temperature the system
goes from a normal state to a chiral superconducting state with
spontaneously broken U (1) × Z2 symmetry.

The fact that they coincide is explained by a preemptive
phase transition scenario, discussed previously for multi-
component superfluids and superconductors [40,45], see the
earlier discussion in terms of j currents in Ref. [42]. The pro-
cess of proliferating topological defects in the two symmetry
sectors is cooperative. Namely, as the charged vortices in the
U (1) sector proliferate, the stiffness of the Ising domain walls
drops to zero triggering a proliferation in the Z2 sector and
vise versa. The smoking gun signature of a preemptive phase
transition is that it is first order, with a latent heat related to
the sudden drop in the chiral/charged order parameters at the
phase transition. An intuitive way of understanding this is to
consider the case where the two symmetry sectors are com-
pletely decoupled. The chiral sector is then, with increasing
temperature, headed towards a continuous second-order phase
transition in the Ising universality class. At some lower tem-
perature, charged vortices in the U (1) sector will proliferate,
which also triggers the Z2 phase transition due to the interplay
between domain walls and vortices. This scenario is sketched

FIG. 2. Results from Monte Carlo simulations of model in
Eq. (1) with γ = 0.1 and γm = 0.0 for L = 24, 28, 32. (a) Chiral
amplitude difference given by Eq. (17). (b) Dual stiffness given by
Eq. (18). (c) Specific heat given by Eq. (19). We find a single phase
transition at Tc � 3.745 characterized by ordering in both symmetry
sectors and a singularity in the specific heat.

in Fig. 3, where the order parameters in both symmetry sectors
are cut off at the preemptive transition temperature resulting in
a single first-order transition. To investigate this numerically,
we plot the energy probability distribution in Fig. 4(a). We
find a pronounced double peak, indicative of a first-order
phase transition where two phases coexist at the critical tem-
perature. Furthermore, we have performed a finite-size scaling
analysis of the difference in free energy between the double
peak value and the valley minimum �F = ln(Pmax/Pmin)/β,
where Pmax and Pmin are the energy probabilities at the double
peak and the valley minimum, respectively. For a first-order
phase transition, this quantity should scale asymptotically as
Ld−1 [64] for large system sizes. Such scaling is confirmed in
Fig. 4(b).

B. Full model

We now consider the full model in Eq. (1) and exam-
ine how the MGT modify results from the previous section.
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FIG. 3. Schematic drawing of the preemptive phase transition
scenario. The chiral and charged order parameters would exhibit
two separate continuous phase transitions, were it not for the mutual
interplay between the two sectors. At some intermediate temperature,
interplay between topological defects in the two symmetry sectors
lead to ordering in both, resulting in a single first-order phase transi-
tion at Tc.

Figure 5 shows results for the phase transition at γm = 0.1.
The difference between the results with and without MGT,
can be seen by comparing with Fig. 2. The critical temper-
ature decreases slightly, and we can also see that finite-size
effects become more prominent as the peak in specific heat
changes more with system size. To investigate whether this
is still a preemptive phase transition, the energy probability
distribution along with finite-size scaling of �F are plotted
in Fig. 6. We find a clear double peak and quadratic scaling,
which both indicate a first-order preemptive phase transition.
By comparing with Fig. 4, we observe that the first-order be-
havior is even stronger in case of nonzero MGT, as the double
peak structure is now resolved for the smallest system with
L = 24. The discontinuous character of the phase transition is
consistent with intuition from mean-field GL solutions where
vortices and domain walls tend to form a strong bound states
in chiral p-wave superconductors [51,65,66].

To characterize the strength of the transition, we calculate
the difference in entropy between the two coexisting states
at the phase transition. The entropy is calculated from the
free energy F = E − T S. Because the two states have the
same free energy the entropy difference is given by �S =
�E/Tc ≡ ckb. In Table I we show the coefficient c for the
change in entropy per lattice site for increasing values of γm.
We see a significant increase from the case without MGT to
the case with MGT, meaning the phase transition becomes
more strongly first order. As γm is increased further, this trend
continues. This can be explained by the fact that the MGT
introduce stronger interaction between vortices and domain
walls that results in a larger latent heat and stronger first-order
behavior.

V. SUMMARY AND DISCUSSION

In this paper we have investigated fluctuation effects on
the phase transition in a GL model for chiral superconductors.
Within the parameter regime we have used, consistent with

FIG. 4. (a) Energy per lattice site probability distribution at the
critical temperature for system parameters γ = 0.1 and γm = 0.0
and system sizes L = 24, 28, 32. For larger system sizes we see
an increasingly pronounced double peak, indicating a first-order
phase transition. (b) Finite-size scaling of the difference in free
energy between the double peak value Pmax and the valley mini-
mum Pmin, �F = ln(Pmax/Pmin )/β, measured at the critical point.
Ferrenberg-Swendsen multihistogram reweighting has been used to
obtain histograms with peaks of similar height.

taking (ηx, ηy) to be constants, a single phase transition from
the normal state to a chiral superconducting state with spon-
taneously broken U (1) × Z2 symmetry is found. We show
that this is a preemptive first-order phase transition, where
interplay between the topological defects in both symmetry
sectors of the model cause them both to disorder at the same
temperature. We have also investigated the effect of MGT
term, which enhance the first-order character of the phase
transition.

TABLE I. Critical temperature Tc and coefficient for the change
in entropy �S = ckB for different strengths of the MGT with γ = 0.
As γm increases the critical temperature decreases and the change in
entropy increases, making the phase transition stronger first order.
Data is taken from simulations with L = 32, and Tc is determined
using multihistogram reweighting to find the temperature where the
two peaks in the energy probability distribution have the same height.
The uncertainty in Tc and c are determined by our numerical resolu-
tion in energy and temperature.

γm Tc c

0.0 3.7452 ± 0.0004 0.088 ± 0.004
0.1 3.7434 ± 0.0004 0.120 ± 0.004
0.2 3.7359 ± 0.0004 0.121 ± 0.004
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FIG. 5. Results from Monte Carlo simulations of model in
Eq. (1) with g = 1.0, γ = 0.1, and γm = 0.1 for L = 24, 28, 32.
(a) Chiral amplitude difference given by Eq. (17). (b) Dual stiffness
given by Eq. (18). (c) Specific heat given by Eq. (19). We find a
single phase transition at Tc � 3.743 characterized by ordering in
both symmetry sectors and a singularity in the specific heat.

An issue that we have not dealt with in this paper is whether
we can tune parameters of the model such that the discon-
tinuous phase transition we find may be separated into U (1)
and Z2. Such a separation was demonstrated in s + is models
[36–38] and was discussed also in a chiral p-wave model
[39]. In principle, one can increase the critical temperature
of the charged sector alone by lowering the gauge charge g
and similarly decrease the critical temperature of the chiral
sector by lowering γ in an attempt to swap the order of
the two phase transitions (i.e. make critical temperature of
Z2 transition smaller than that of U (1) transition). However,
Eq. (12) shows that in the limit g = γ = 0 (ignoring MGT)
both symmetry sectors are reduced to global U (1). Since these
have the same stiffness, ρ0/2, they will also have the same
critical temperature, meaning the two phase transitions can
never swap places in the considered model case. Additionally,
the MGT in Eq. (1) make vortices more strongly bound to
domain walls than in the absence of MGT. However, adding
different MGT fourth order in fields and second order in

FIG. 6. (a) Energy per lattice site probability distribution at the
critical temperature for system parameters γ = 0.1 and γm = 0.1
and system sizes L = 24, 28, 32. For larger system sizes we see an
increasingly pronounced double peak, indicating a first-order phase
transition. (b) Finite-size scaling of �F . Ferrenberg Swendsen multi
histogram reweighting has been used to obtain histograms with peaks
of similar height.

gradients as in Ref. [38] should produce splitting as it tunes
domain wall energy relative to the vortex energy.

The results presented in this paper are relevant for
superconductors with spontaneously broken time-reversal
symmetry and a D4h symmetry group, which can be described
by the energy density in Eq. (1). In general, spin-triplet
superconductors with Fermi-surface anisotropy, Fermi-level
particle-hole anisotropy, or spin-orbit coupling, will yield a
GL theory of the type we have used in this work. The pa-
rameter regime considered is limited by the fixed amplitude
approximation discussed in Sec. II B, which also puts clear
restrictions on real materials that could display the behavior
found in this paper. The main merit of the paper is therefore
insight into the nature of the phase transition in chiral p-
wave superconductors in a parameter regime where phase and
gauge field fluctuations are dominant, which can be expected
in the strongly type-II regime [55].
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APPENDIX A: COUPLING MATRIX

The energy in Eq. (1) is expanded to second order in the fluctuation fields introduced in Eqs. (4)–(6). For the potential in
Eq. (1a), we find

fV = − α
(
u2

x + u2
y

) + u0

2

(
u4

x + u4
y

) − γ u2
xu2

y

+ (−α + 3u0u2
x − γ u2

y

)
ε2

x + (−α + 3u0u2
y − γ u2

x

)
ε2

y − 4γ uxuyεxεy + 8γ u2
xu2

yθ
2
�, (A1)

where f0 is the ground-state energy. The Maxwell term keeps the exact same form to second order in p, since it only differs by
a gradient from A

fA = |∇ × p|2. (A2)

Finally for the various gradient terms, we expand the gradients to first order since all relevant combinations are squared

Diηx = [∂iεx − i(gpi − ∂iθ�)ux]ei(θ+θ0/2), (A3)

Diηy = [∂iεy − i(gpi + ∂iθ�)uy]ei(θ−θ0/2). (A4)

These expressions can now be combined to form all the terms in the energy functional. After Fourier transforming and rotating
the amplitude basis, we can write the energy on the form in Eq. (8)

f = f0 + vGv†, (A5)

where v is given in Eq. (9). We can write the coupling matrix as a sum of three contributions, a diagonal part with massive terms,
a diagonal part with k-dependant terms, and an off-diagonal part from the MGT.

G = GD + GMGT (A6)

GD =

⎛
⎜⎜⎜⎜⎜⎝

2α(u0+γ )
u0−γ

+ k2 0 0 0 0
0 2α + k2 0 0 0
0 0 8γα2

(u0−γ )2 + 2α
u0−γ

k2 0 0
0 0 0 2α

u0−γ
g2 + k2 0

0 0 0 0 2α
u0−γ

g2 + k2

⎞
⎟⎟⎟⎟⎟⎠ (A7)

GMGT = ±γm

√
2α

u0 − γ

⎛
⎜⎜⎜⎝

0 0 −2kxky 0 0
0 0 0 −igky −igkx

−2kxky 0 0 0 0
0 igky 0 0 0
0 igkx 0 0 0

⎞
⎟⎟⎟⎠. (A8)

In Eq. (A7), we note that the Meissner effect gives rise to massive gauge-field fluctuations, which yield a massless Goldstone
mode associated with the phase sum when g = 0. The phase-difference mode is also seen to evolve to a massless Goldstone
mode when the Ising-anisotropy parameter γ = 0. Furthermore, Eq. (A8) shows that the MGT have an effect for g = 0,
coupling fluctuations in the ε+ amplitude mode to fluctuations in the phase difference θ�. Finite g will moreover couple the
ε− amplitude mode to gauge-invariant currents. Contrary to the one-component case, the eigenmodes are in general complicated
linear combinations of amplitude modes, phase-difference modes, and gauge-invariant currents [52]. Only in a limited parameter
regime do the eigenmodes simplify significantly.

APPENDIX B: LATTICE REGULARIZED FREE ENERGY

In this section we apply the regularization procedure introduced in Sec. III to the dimensionless effective free energy density
in Eq. (1). The resulting expression was used in the Metropolis-Hastings algorithm to find the energy difference between different
field configurations as well as when calculating the energy as an observable, which again was used in calculating of the specific
heat.

Inserting the discretization of the covariant derivative in Eq. (15) yields

|Dμηa|2 	→∣∣ηa
r+μ̂

∣∣2 + ∣∣ηa
r

∣∣2 − 2 Re
(
ηa

r+μ̂ηa ∗
r e−iAr,μ

) ∼ 2
[(

ρa
r

)2 − ρa
r+μ̂ρa

r cos
(
θa

r+μ̂ − θa
r − Ar,μ

)]
. (B1)

In the second line we have introduced the notation ηa
r = ρa

r eiθa
r for the amplitude and phase of the components of the order

parameter. We have also used periodic boundary conditions to map the term |ηa
r+μ̂|2 back to |ηa

r |2 by a simple shift of the index
in the sum

∑
r fr.
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Using the formula above we immediately get the lattice-regularized conventional kinetic energy density

f r
K = reg

{ ∑
a

|Dηa|2
}

=
∑
μ a

reg{|Dμηa|2} = 2
∑
μ a

[(
ρa

r

)2 − ρa
r+μ̂ρa

r cos
(
θa

r+μ̂ − θa
r − Ar,μ

)]
, (B2)

where μ runs over x, y, and z, while a ∈ {x, y}. Using the notation

ā =
{

y : a = x
x : a = y

(B3)

the MGT in Eq. (1c) can be written on the more compact form

fMGT = 2γm

∑
a

Re[Dxηa(Dyηā)∗]. (B4)

Inserting the discretization of covariant derivatives we find in Eq. (15) gives

Dxηa(Dyηā)∗ = (
ρa

r+x̂ei(θa
r+x̂−Ar,x ) − ρa

r eiθa
r
)(

ρ ā
r+ŷe−i(θ ā

r+ŷ−Ar,y ) − ρ ā
r e−iθ ā

r
)

= ρa
r+x̂ρ

ā
r+ŷei(θa

r+x̂−θ ā
r+ŷ−(Ar,x−Ar,y )) − ρa

r+x̂ρ
ā
r ei(θa

r+x̂−θ ā
r −Ar,x ) − ρa

r ρ ā
r+ŷe−i(θ ā

r+ŷ−θa
r −Ar,y ) + ρa

r ρ ā
r ei(θa

r −θ ā
r ). (B5)

Taking the real part of this gives

Re[Dxηa(Dyηā)∗] = ρa
r+x̂ρ

ā
r+ŷ cos

(
θa

r+x̂ − θ ā
r+ŷ − (Ar,x − Ar,y)

) − ρa
r+x̂ρ

ā
r cos

(
θa

r+x̂ − θ ā
r − Ar,x

)
− ρ ā

r+ŷρ
a
r cos

(
θ ā

r+ŷ − θa
r − Ar,y

) + ρa
r ρ ā

r cos
(
θa

r − θ ā
r

)
. (B6)

This gives the final expression for the discretized MGT

f r
MGT = 2γm

∑
a

[
ρa

r ρ ā
r cos

(
θa

r − θ ā
r

) − ρa
r+x̂ρ

ā
r cos

(
θa

r+x̂ − θ ā
r − Ar,x

)
− ρa

r+ŷρ
ā
r cos

(
θa

r+ŷ − θ ā
r − Ar,y

) + ρa
r+x̂ρ

ā
r+ŷ cos

(
θa

r+x̂ − θ ā
r+ŷ − (Ar,x − Ar,y)

)]
, (B7)

where we have switched the superscripts a ↔ ā on the third line. To ensure that this discretized term is rendered invariant under
the fourfold rotations of the square numerical lattice, we may average as follows:

f r
MGT → f̃ r

MGT (B8)

= 1
4

[
f r
MGT + C4 f r

MGT + C2
4 f r

MGT + C3
4 f r

MGT

]
, (B9)

where C4 denotes a 90 degree counterclockwise rotation of the xy-coordinate system. We then find

f̃ r
MGT = γm

2

∑
a

[
ρa

r+x̂ρ
ā
r+ŷ cos

(
θa

r+x̂ − θ ā
r+ŷ − (Ar,x − Ar,y)

) − ρa
r−x̂ρ

ā
r+ŷ cos

(
θa

r−x̂ − θ ā
r+ŷ + (Ar−x̂,x + Ar,y)

)
+ ρa

r−x̂ρ
ā
r−ŷ cos

(
θa

r−x̂ − θ ā
r−ŷ − (Ar−ŷ,y − Ar−x̂,x )

) − ρa
r+x̂ρ

ā
r−ŷ cos

(
θa

r+x̂ − θ ā
r−ŷ − (Ar,x + Ar−ŷ,y)

)]
. (B10)

The potential terms in Eq. (1) are simply discretized by mapping to the amplitude phase notation and become

f r
V =

∑
a

[
− α

(
ρa

r

)2 + u0

2

(
ρa

r

)4
]

+ γ
(
ρx

r ρ
y
r

)2
cos 2

(
θ x

r − θ y
r

)
. (B11)

These expressions together with the regularization of the pure gauge-potential term in Eq. (14) then give the complete discretized
free energy density

f r = f r
V + f r

K + f̃ r
MGT + f r
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