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Abstract
Conditional Monte Carlo refers to sampling from the
conditional distribution of a random vector X given
the value T(X) = t for a function T(X). Classical con-
ditional Monte Carlo methods were designed for esti-
mating conditional expectations of functions 𝜙(X) by
sampling from unconditional distributions obtained by
certain weighting schemes. The basic ingredients were
the use of importance sampling and change of variables.
In the present paper we reformulate the problem by
introducing an artificial parametric model in which X
is a pivotal quantity, and next representing the condi-
tional distribution of X given T(X) = t within this new
model. The approach is illustrated by several examples,
including a short simulation study and an application to
goodness-of-fit testing of real data. The connection to a
related approach based on sufficient statistics is briefly
discussed.
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1 INTRODUCTION

Suppose we want to sample from the conditional distribution of a random vector X given T(X) = t
for a function T(X) of X. The condition T(X) = t represents a surface in the space where X takes
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its values, and direct sampling of X may then be difficult. Trotter and Tukey (1956) presented an
interesting technique which they named conditional Monte Carlo. Their idea was to determine a
weight wt(X) and a modified sample Xt such that

E[𝜙(X)|T(X) = t] = E[𝜙(Xt)wt(X)] (1)

for any function𝜙, thus replacing conditional expectations by ordinary expectations and allowing
Monte Carlo computation.

Although the authors were aware that the method had generalizations, they confined them-
selves to rather special cases. Hammersley (1956) used their idea in a slightly more general
and flexible analytic setting, see also chapter 6 of the monograph by Hammersley and Hand-
scomb (1964). Wendel (1957) gave an alternative explanation, wherein the group-theoretic aspect
of the problem played the dominant role. Later, Dubi and Horowitz (1979) gave an explana-
tion of conditional Monte Carlo in terms of importance sampling and change of variables. Their
approach provides a framework by which in principle any conditional sampling problem can
be handled, and is the survivor in textbooks (Evans & Swartz, 2000; Ripley, 1987). Conditional
Monte Carlo, in the form as introduced in the 1950s and the following nearest decades, has appar-
ently received little attention in the later literature and has seemingly remained theoretically
underdeveloped.

In this paper we present a method that can be seen as a reformulation of the main ideas of
the classical concept of conditional Monte Carlo. The basic idea was essentially the introduction
of new coordinates. Trotter and Tukey (1956) made a point of the “skullduggery” related to such
arbitrary new variables which had “nothing to do with the way our samples were drawn.” This
“trick” was, however, the successful ingredient of the method, and is basically also the way our
method works.

The main idea of our method is to represent X as a pivotal quantity (Casella & Berger, 2002,
p. 427) in an artificial statistical model consisting of a random vector U𝜃 indexed by a parameter 𝜃,
such that a transformation 𝜒(U𝜃, 𝜃) has the same distribution as X for each 𝜃. Then, by consider-
ing 𝜃 as the realization of a random parameter Θ, it follows that 𝜒(U,Θ) has the same distribution
as X, where U conditional onΘ = 𝜃 is distributed as U𝜃 . Defining 𝜏(U,Θ) = T(𝜒(U,Θ)), we hence
have

E[𝜙(X)|T(X) = t] = E[𝜙(𝜒(U,Θ))|𝜏(U,Θ) = t]. (2)

As compared with the method of Trotter and Tukey (1956), the new coordinate of our method is
the parameter 𝜃 and its distribution.

The practical application of (2) essentially involves the characterization of the condition
𝜏(U,Θ) = t. Special attention has been given to the case when there is a unique solution 𝜃 =
𝜃̂(u, t) of the equation 𝜏(u, 𝜃) = t. Cases with multiple roots of the equation 𝜏(u, 𝜃) = t will also
be briefly considered; this occurs, for example, when X is discrete.

Typical applications of conditional sampling are in statistical inference problems involv-
ing sufficient statistics (Lehmann & Casella, 1998; Lehmann & Romano, 2005). Engen and
Lillegård (1997) considered the general problem of Monte Carlo computation of conditional
expectations given a sufficient statistic. Their approach was further studied and generalized
by Lindqvist and Taraldsen (2005); see also Lindqvist et al. (2003) and Lindqvist and Tarald-
sen (2007).
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The situation considered in these papers is that X is the observation in a statistical model
indexed by a parameter 𝜃, and where a statistic T(X) is sufficient for 𝜃. A key assumption is here
that X under the parameter 𝜃 can be simulated by a function 𝜒(U, 𝜃), where U has a known
distribution not depending on 𝜃. Now, with 𝜏(U, 𝜃) = T(𝜒(U, 𝜃)), it is clear that E[𝜙(X)|T(X) =
t] = E[𝜙(𝜒(U, 𝜃))|𝜏(U, 𝜃) = t] for all 𝜃, which does not depend on 𝜃 by sufficiency. Hence equality
holds also if the parameter 𝜃 is replaced by a random parameter Θ, stochastically independent
of U. We are thus again led to Equation (2), where the meaning of the ingredients has changed,
though. Further developments of formulas and algorithms based on (2) for the sufficiency case
are developed in Lindqvist and Taraldsen (2005).

The recent literature contains several other approaches to conditional sampling. For example,
Lockhart et al. (2007) and Lockhart et al. (2009) studied the use of Gibbs sampling to generate
samples from the conditional distribution given the minimal sufficient statistic for the gamma
distribution and the von Mises distribution, respectively. Gracia-Medrano and O’Reilly (2005)
and O’Reilly and Gracia-Medrano (2006) constructed corresponding sampling methods based
on the Rao–Blackwell theorem, while Santos and Filho (2019) suggested a method using the
Metropolis–Hastings algorithm. An older reference for conditional sampling in the inverse
Gaussian distribution is Cheng (1984).

Other work related to the present paper is Diaconis et al. (2013) and Brubaker et al. (2012),
who developed algorithms for sampling from probability distributions on submanifolds of Rn.
Bornn et al. (2019) considered models phrased through moment conditions, where posteriors are
supported on manifolds. By careful representation of appropriate densities, the authors were able
to sample from the posteriors by conventional simulation methods such as Markov chain Monte
Carlo and importance sampling.

In the present paper we give several examples in order to demonstrate the applicability of
the new approach, as well as to illustrate different aspects of the theoretical assumptions and
derivations. In particular, our examples include a new method for sampling of uniformly dis-
tributed random variables conditional on their sum, where a method considered in Lindqvist and
Taraldsen (2005) is apparently less attractive. Other examples study conditional sampling given
sufficient statistics in the gamma and inverse Gaussian models, and we reconsider a classical
example from Trotter and Tukey (1956) involving the normal distribution. While the main focus
in the paper is on the case where the X are absolutely continuous, we also consider briefly the
discrete case with an example that is relevant for logistic regression.

The paper is structured as follows. In Section 2 we give a detailed explanation of the approach
and prove some basic results. The highlight of the section is Theorem 1, which can be inter-
preted as our version of (1). Specific methods for simulation and computation based on Theorem 1
are briefly described at the end of the section. Section 3 is devoted to examples, simulations,
and a real data example involving goodness-of-fit testing. The first examples aim at illustrat-
ing the theory of Section 2. An application to a general two-parameter exponential family of
positive variables is given next and provides algorithms of practical interest for conditional
sampling of the gamma and inverse Gaussian distributions. An extension of the approach of
Section 2 to cases of multiple solutions of the equation 𝜏(u, 𝜃) = t is given in Section 4. Par-
ticular interest is here in the case of discrete X. Section 5 sums up some issues regarding
the construction of pivots for X, and also considers the case of a general dimension of T(X).
Some final remarks, in particular comparing the present approach to the one of Lindqvist and
Taraldsen (2005), are given in Section 6. The paper is concluded by an Appendix containing
pseudocodes of the algorithms described in Section 2, and two lemmas referred to earlier in the
paper.
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2 THE MAIN METHOD

2.1 Representing the conditional distribution

Let X be a random vector taking values in  ⊆ Rn . Let further T ∶  → Rk be a function and
consider the random vector T(X). (Here and elsewhere in the paper, any function is assumed to
be measurable). Our aim is to calculate conditional expectations or sample from the conditional
distribution of X given T(X).

The basic assumption of our approach is that X is a pivotal quantity in a statistical model
defined by a family of densities f (u|𝜃), 𝜃 ∈ Ω, for the random vectors U𝜃 taking values in an open
set ⊆ Rn and whereΩ is a parameter set. We formalize this as follows, letting “∼” mean “having
the same distribution as.”

Assumption 1. Let U𝜃 ∈  for 𝜃 ∈ Ω be as defined above. Then there is a function 𝜒(u, 𝜃)
defined for u ∈  , 𝜃 ∈ Ω, with values in Rn, such that

𝜒(U𝜃, 𝜃) ∼ X for each 𝜃 ∈ Ω. (3)

For examples of such a construction, see Section 3 for absolutely continuous X and
Section 4.1.1 for discrete X. Lemma 1 in Section 2.2 gives a general recipe for deriving f (u|𝜃) from
a given function 𝜒(u, 𝜃) in the continuous case.

A key observation is that statement (3) of Assumption 1 will continue to hold if the parameter
𝜃 is given a distribution on Ω, thus treating it as a random variable Θ ∈ Ω. Then f (u|𝜃) will rep-
resent the conditional density of a random vector U ∈  given Θ = 𝜃 and Assumption 1 implies
that

𝜒(U,Θ) ∼ X. (4)

This is seen since, for any bounded function 𝜙 on Rn,

E[𝜙(𝜒(U,Θ))] = E
[
E[𝜙(𝜒(U,Θ))|Θ] = E[𝜙(X)].

Defining 𝜏(U,Θ) = T(𝜒(U,Θ)) it follows that under Assumption 1, we have

(X,T(X)) ∼ (𝜒(U,Θ), 𝜏(U,Θ))

and from this, that the conditional distribution of X given T(X) equals the conditional distribution
of 𝜒(U,Θ) given 𝜏(U,Θ), that is,

X|T(X) ∼ 𝜒(U,Θ)|𝜏(U,Θ). (5)

2.2 Calculation of conditional expectations

Let notation and assumptions be as in Section 2.1. Let Assumption 1 be satisfied and assume now
that X has an absolutely continuous distribution, with density fX(x) on the open set  ⊆ Rn. Let
further Θ have the density 𝜋(𝜃) on the open set Ω ⊆ Rk.

We next introduce an assumption regarding the function 𝜏(u, 𝜃).
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Assumption 2. For any fixed u ∈  , the function 𝜃 → 𝜏(u, 𝜃) is one-to-one and differentiable
with a differentiable inverse t → 𝜃̂(u, t).

Assumption 2 hence assumes that the equations 𝜏(u, 𝜃) = t can be uniquely solved for 𝜃 by
𝜃 = 𝜃̂(u, t) for any given u and t. For possible relaxations of this assumption, see Section 4.

The following result is a key result in the derivation of the conditional distribution in (5).

Proposition 1. Under Assumption 2 we have, for any bounded function 𝜙 on Rn,

E[𝜙(X)|T(X) = t] = E[𝜙(𝜒(U, 𝜃̂(U, t)))|𝜏(U,Θ) = t].

Proof. We have

E[𝜙(X)|T(X) = t] = E[𝜙(𝜒(U,Θ))|𝜏(U,Θ) = t]

= E[𝜙(𝜒(U, 𝜃̂(U, 𝜏(U,Θ))))|𝜏(U,Θ) = t]

= E[𝜙(𝜒(U, 𝜃̂(U, t)))|𝜏(U,Θ) = t].

The first equality here is by (5). The second equality follows from Assumption 2. Indeed, since
𝜏(u, 𝜃) = t ⇔ 𝜃 = 𝜃̂(u, t), we obtain the identity 𝜃 = 𝜃̂(u, 𝜏(u, 𝜃)). The last equality is a con-
sequence of the substitution principle of Bahadur and Bickel (1968), noting that under the
assumptions, there is a regular conditional distribution of (U,Θ) given 𝜏(U,Θ) = t. Here and else-
where in the paper we tacitly assume that the conditional expectations like the ones above should
be considered as functions of t. ▪

Proposition 1 shows that in order to calculate the conditional expectations, we need the
conditional distribution of U given 𝜏(U,Θ). This distribution is obtained from a standard trans-
formation from (U,Θ) to (U, 𝜏(U,Θ)), as shown in the proof of Theorem 1 below. The main result
of the theorem is Equation (6), which gives an explicit formula for calculation of conditional
expectations, and essentially shows the connection to classical Monte Carlo as represented by
Equation (1).

Theorem 1. Let 𝜒(u, 𝜃) be given as in Assumption 1 and let 𝜏(u, 𝜃) satisfy Assumption 2. Let U
for a given 𝜃 ∈ Ω have density f (u|𝜃), and let Θ have density 𝜋(𝜃) for 𝜃 ∈ Ω. Then, for any bounded
function 𝜙 on Rn, we have

E[𝜙(X)|T(X) = t] =
∫ 𝜙(𝜒(u, 𝜃̂(u, t)))h(u, t)du

∫ h(u, t)du
. (6)

Here, h(u, t) is the joint density of (U, 𝜏(U,Θ)), which is given by

h(u, t) = f (u|𝜃̂(u, t))𝜋(𝜃̂(u, t))| det 𝜕t𝜃̂(u, t)|
= f (u|𝜃̂(u, t))𝜋(𝜃̂(u, t))|det 𝜕𝜃𝜏(u, 𝜃)|−1

𝜃=𝜃̂(u,t)
. (7)

Proof. We first prove (7). Note that the joint density of (U,Θ) is

fU,Θ(u, 𝜃) = f (u|𝜃)𝜋(𝜃).
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Consider now the transformation (u, 𝜃) → (u, 𝜏(u, 𝜃)) ≡ (u, t). By Assumption 2 this is
one-to-one, with inverse given as (u, t) → (u, 𝜃̂(u, t)). Assumption 2 allows the use of the standard
transformation formula (Rudin, 1987, theorem 7.26),

fU,𝜏(U,Θ)(u, t) = fU,Θ(u, 𝜃̂(u, t)) ⋅ |J|
where J is the Jacobi-determinant of the inverse transformation. Since the first block of the trans-
formed vector is the identity, u → u, it is readily seen that J = det 𝜕t𝜃̂(u, t). The second equality
of (7) is a well-known property for inverse transformations, and gives moreover the most useful
version of the density h(u, t).

Now, by Proposition 1 we have

E[𝜙(X)|T(X) = t] = E[𝜙(𝜒(U, 𝜃̂(U, t)))|𝜏(U,Θ) = t]

= ∫ 𝜙(𝜒(u, 𝜃̂(u, t)))h(u|t)du

=
∫ 𝜙(𝜒(u, 𝜃̂(u, t)))h(u, t)du

∫ h(u, t)du
,

where h(u|t) denotes the conditional density of U given 𝜏(U,Θ), which equals h(u|t) =
h(u, t)∕ ∫ h(u, t)du. This proves (6). ▪

Lemma 1 below shows how to derive the density f (u|𝜃) from a given transformation 𝜒(u, 𝜃)
and a given density fX(x) of X, in order that Assumption 1 holds. Let notation and assumptions
otherwise be as above.

Lemma 1. Let 𝜒 ∶  × Ω → Rn be such that, for each fixed 𝜃 ∈ Ω, the function u → 𝜒(u, 𝜃) is
one-to-one and differentiable at every point of  . Assume further that, for each 𝜃 ∈ Ω, the range
𝜒( , 𝜃) contains the support  of X. Then Assumption 1 holds if the density of U𝜃 for 𝜃 ∈ Ω is given
as

f (u|𝜃) = fX(𝜒(u, 𝜃)) |det 𝜕u𝜒(u, 𝜃)| .
Proof. Let𝜙 be an arbitrary bounded function on Rn and fix a 𝜃 ∈ Ω. Then (Rudin, 1987, theorem
7.26) we have

E[𝜙(𝜒(U𝜃, 𝜃))] = ∫
𝜙(𝜒(u, 𝜃))f (u|𝜃)du

= ∫
𝜙(𝜒(u, 𝜃))fX(𝜒(u, 𝜃)) ⋅ |det 𝜕u𝜒(u, 𝜃)| du

= ∫
𝜒( ,𝜃)

𝜙(x)fX(x)dx

= ∫
𝜙(x)fX(x)dx

= E[𝜙(X)].

The result of the lemma then holds since 𝜙 was arbitrarily chosen. ▪
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2.3 Methods of computation and simulation from the conditional
distribution

The integrals in formula (6) of Theorem 1 will usually have an intractable form. The calculation of
(6) or simulation of samples from the conditional distribution hence needs to be done by suitable
numerical techniques. Some approaches are briefly described in the following, with pseudocodes
given in the Appendix.

Importance sampling appears to be the traditional method used in conditional Monte Carlo,
see for example Dubi and Horowitz (1979). It is particularly useful for calculating conditional
expectations of the form given in (6).

In order to obtain explicit samples from the conditional distribution of X given T(X) = t, we
may first sample U = u from a density proportional to h(u, t); then solve the equation 𝜏(u, 𝜃) = t
for 𝜃̂(u, t); and finally return the conditional sample x̂ = 𝜒(u, 𝜃̂(u, t)). With such a recipe, rejection
sampling can be used to produce independent samples from the conditional distributions, while
Markov chain Monte Carlo methods produce approximate samples. We shall also below consider
an alternative approximate method, which we name the naive sampler and use for benchmarking.

2.3.1 Importance sampling

Consider the computation of (6). The numerator and denominator may be calculated sepa-
rately by importance sampling, noting that if U is distributed with density g(u), then (6) can be
written

E[𝜙(X)|T(X) = t] =
E[𝜙(𝜒(U, 𝜃̂(U, t)))h(U, t)∕g(U)]

E[h(U, t)∕g(U)]
.

Algorithm 1 in the Appendix gives the recipe for simulation. Note, however, the bias that is
introduced by division of two averages.

2.3.2 Rejection sampling

In rejection sampling (Ripley, 1987, p. 60) one samples from a density g(u) with support which
includes the support of u → h(u, t) and for which we can find a bound M < ∞ such that h∕g ≤ M,
see Algorithm 2 in the Appendix. It should be noted that for each new proposal u one needs to
solve the equations leading to 𝜃̂(u, t).

2.3.3 Markov chain Monte Carlo

A disadvantage of rejection sampling is the need for the bound M which may be difficult to obtain.
The Metropolis–Hastings algorithm (Hastings, 1970) needs no such bound but, on the other hand,
produces dependent samples. Algorithm 3 in the Appendix describes a version where propos-
als of the Metropolis–Hastings algorithm are independent samples u from a density g(u), where
g, as for the rejection sampling method, needs to have a support which includes the support of
u → h(u, t).
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2.3.4 The naive sampler

In order to check algorithms for conditional sampling, a type of benchmark might be to use a
naive sampler. Then (see Algorithm 4) x is sampled from fX(x) and is accepted if and only if||T(x) − t|| < 𝜖 for an a priori chosen (small) 𝜖 > 0 and an appropriate norm || ⋅ ||. The method
has clear resemblances to the ABC-method of Bayesian statistics (Sunnåker et al., 2013). Here,
parameter values are drawn from the prior distribution, and data samples x are then drawn from
the corresponding statistical model. A sample x is accepted if it is close enough to the observed
sample, often measured with respect to some summary statistic, which naturally corresponds to
T(x) in our approach.

3 EXAMPLES

3.1 Conditional sampling of uniforms

Let X = (X1,X2, … ,Xn) be an i.i.d. sample from U(0, 1), where U(0, a) is the uniform distribution
on (0, a), and let T(X) =

∑n
i=1Xi. Suppose one wants to sample from the conditional distribution

of X given T(X) = t, where 0 < t < n. There appears to be no simple expression for this condi-
tional distribution. Lindqvist and Taraldsen (2005) considered an approach where the uniform
distribution is embedded in a parametric family involving truncated exponential distributions and
utilized the sufficiency of T(X) in this model. The resulting method is, however, surprisingly com-
plicated. A Gibbs sampling method was devised by Lindqvist and Rannestad (2011), apparently
being much quicker than the former method, and much easier to implement.

We now present a solution to the problem using the approach of Section 2. An advantage as
compared with the Gibbs sampling algorithm is that the present method produces independent
samples.

Let U𝜃 = (U𝜃
1 ,U

𝜃
2 , … ,U𝜃

n) be i.i.d. realizations from U(0, 𝜃), where 𝜃 > 0. Then the U𝜃
i ∕𝜃 are

i.i.d. from U(0, 1), so Assumption 1 is satisfied with

𝜒(u, 𝜃) =
(u1

𝜃
,

u2

𝜃
, … ,

un

𝜃

)
, (8)

defined for u ∈  ≡ (0,∞)n and 𝜃 ∈ Ω ≡ (0,∞), and

f (u|𝜃) = 1
𝜃n I(max

i
ui ≤ 𝜃);u ∈  , 𝜃 ∈ Ω,

where I(⋅) is the indicator function. Furthermore, we have

𝜏(u, 𝜃) =
∑n

i=1ui

𝜃
,

so there exists a unique solution for 𝜃 of the equation 𝜏(u, 𝜃) = t, given by

𝜃̂(u, t) =
∑n

i=1ui

t
. (9)

Assumption 2 is hence satisfied.
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Let Θ have density 𝜋(𝜃) on Ω = (0,∞). Then by (7), the joint density of U and 𝜏(U,Θ) is

h(u, t) = f (u|𝜃̂(u, t))𝜋(𝜃̂(u, t))| det 𝜕t𝜃̂(u, t)|
= 1

(𝜃̂(u, t))n
I(max ui ≤ 𝜃̂(u, t)) ⋅ 𝜋(𝜃̂(u, t))

∑n
i=1ui

t2

=

(
t∑n

i=1ui

)n−1

I

(
max ui ≤

∑n
i=1ui

t

)
⋅ 𝜋

(∑n
i=1ui

t

)(1
t

)
. (10)

We then have to choose the density 𝜋(𝜃). The above expression suggests 𝜋(𝜃) ∝ 𝜃n−1. In order
to have a proper density 𝜋(𝜃), we need to bound its support, say, to the interval (0, a) for some
a > 0. It turns out that we may without loss of generality let a = 1, in which case𝜋(𝜃) = n𝜃n−1I(0 <
𝜃 < 1). In order to obtain samples from the conditional distribution of X given

∑n
i=1Xi = t, we

shall hence sample u ∈  from a density in u proportional to

h(u, t) = I

(
max ui ≤

∑n
i=1ui

t

)
⋅ I

( n∑
i=1

ui ≤ t

)(n
t

)
∝ I

(
t ⋅ max ui ≤

n∑
i=1

ui ≤ t

)
. (11)

The resulting conditional density of U given 𝜏(U,Θ) = t is hence seen to be uniform on the set
of u ∈  , satisfying the restriction given by the final indicator function in (11). Note here that if
t ≤ 1, then the left inequality is always satisfied. Moreover, although the conditional density in
principle is defined for all positive ui, the inequalities inside the indicator function imply that it
is positive only if max ui ≤ 1. We may hence sample the ui independently from U(0, 1) and accept
the sample if and only if the restriction is satisfied. Finally, for the accepted samples we conclude
from (8) and (9) that the resulting conditional sample is

x̂ =

(
t u1∑n

i=1ui
, t u2∑n

i=1ui
, … , t un∑n

i=1ui

)
. (12)

It can be verified that (11) is needed in addition to (12) in order to have samples from the correct
conditional distribution. Still the algorithm is very simple, and simpler than the correspond-
ing algorithms of Lindqvist and Taraldsen (2005) and Lindqvist and Rannestad (2011) that were
mentioned above.

The algorithm may be slow if t is close to 0 or n, due to the low acceptance rate of, respec-
tively, the right and left inequality in (11) in these cases. It might then be better to use importance
sampling by drawing the ui from a density g(u) = cuc−1 for c > 0, where c is small (large) if
t is close to 0 (close to n). But note that this leads to sampling from a nonuniform density
h(u|t).

We note that one may in principle use any probability density 𝜋(𝜃) on Ω = (0,∞). As an
example, let 𝜋(𝜃) = e−𝜃 for 𝜃 ∈ (0,∞). Then (10) becomes

h(u, t) = tn−2(∑n
i=1ui

)n−1 e(1∕t)
∑n

i=1 ui I

(
max ui ≤

∑n
i=1ui

t

)
, (13)
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and the task would be to draw u ∈ (0,∞)n from a density proportional to this. Suppose for
illustration that n = 2 and t = 1. Then (13) becomes

h(u1,u2, 1) =
e−(u1+u2)

u1 + u2
, (14)

which actually is itself a proper joint density in u1 and u2. By (12), the desired sample (x̂1, x̂2) is
hence (u1∕(u1 + u2),u2∕(u1 + u2)) when (u1,u2) is drawn from (14). A calculation shows that if
(U1,U2) has density (14), then U1∕(U1 + U2) ∼ U(0, 1), where the latter is easily checked to be
the correct conditional distribution of X1 given X1 + X2 = 1 when X1,X2 are independent with
Xi ∼ U(0, 1).

As a final remark on this example, suppose instead that we wanted to condition on
∑n

i=1Xr
i = t

for some given r > 0. It is then straightforward to check that only a minor modification of the
above derivation is needed. As a result, one may still sample ui from U(0, 1), but change the
indicator of (11) into

I

(
t ⋅ max

i
ur

i ≤
n∑

i=1
ur

i ≤ t

)

and return the samples x̂ where

x̂i = t1∕r ui

(
∑n

𝓁=1ur
𝓁)1∕r

for i = 1, 2, … ,n.

3.2 Conditional sampling of normals

The following is a classical example in conditional Monte Carlo, see, for example, Trotter and
Tukey (1956), Hammersley (1956), Granovsky (1981), and Ripley (1987). Let X = (X1,X2, … ,Xn)
be i.i.d. from N(0, 1). We wish to sample from the conditional distribution of X given T(X) = t,
where T(X) = maxi Xi − mini Xi is the range of the sample.

Now let U𝜃 = (U𝜃
1 ,U

𝜃
2 , … ,U𝜃

n) be i.i.d. realizations from N(0, 𝜃2). Then the U𝜃
i ∕𝜃 are

i.i.d. from N(0, 1), so Assumption 1 is satisfied when

𝜒(u, 𝜃) =
(u1

𝜃
,

u2

𝜃
, … ,

un

𝜃

)
for u = (u1,u2, … ,un) ∈  = Rn and 𝜃 ∈ Ω = (0,∞). The situation is hence much like the one
of the uniform example in Section 3.1, and by arguments similar to the ones used in that example,
in particular choosing 𝜋(𝜃) = n𝜃n−1I(0 < 𝜃 < 1), we arrive at

h(u, t) = 1
(2𝜋)n∕2

(n
t

)
exp

(
− t2

2(maxi ui − mini ui)2

n∑
i=1

u2
i

)
I(max

i
ui − min

i
ui < t). (15)

Noting that the right-hand side of (15) is less than or equal to

exp

(
−1

2

n∑
i=1

u2
i

)
I(max

i
ui − min

i
ui < t),
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we can use rejection sampling (Section 2.3.2) based on sampling of i.i.d. standard normal variates.
If t is small, then in order to increase the acceptance probability of the rejection sampling, it might
be beneficial to use as the proposal distribution, a mixture of a standard normal and a normal
distribution with small variance. For a sampled u, the resulting conditional samples are then of
the form

x̂ =
(

t u1

maxi ui − mini ui
, … , t un

maxi ui − mini ui

)
.

Suppose now that one wants to condition on the empirical median X̃ of the sample X, in addition
to the range as considered above. This extension requires a transformation 𝜒(u, 𝜃) involving two
parameters, where a natural choice in this case is

𝜒(u, 𝜃) =
(

u1 − 𝛼
𝛽

, … ,
un − 𝛼
𝛽

)
,

with 𝜃 = (𝛼, 𝛽). Indeed, letting the U𝜃
i be i.i.d. N(𝛼, 𝛽2), the pivotal condition of Assumption 1 is

satisfied. Defining T(X) = (T1(X),T2(X)) with T1(X) = X̃ and T2(X) = maxi Xi − mini Xi, it is seen
that Assumption 2 is satisfied with the appropriately defined 𝜏(u, 𝜃). Thus by a slight extension of
the argument above, we may use Theorem 1 as a basis for sampling standard normals conditional
on the median and the range.

3.3 Conditional sampling given sufficient statistics
for two-parameter exponential families

The main motivation for the examples in this subsection is the need for simple techniques for
simulation of conditional samples given sufficient statistics for the gamma and inverse Gaus-
sian distributions. For other algorithms in the literature, see, for example, Lockhart et al. (2007),
Gracia-Medrano and O’Reilly (2005), Cheng (1984), Lindqvist and Taraldsen (2007), and Diaconis
et al. (2013). Typical applications are in goodness-of-fit testing, see the case study in Section 3.3.4
below. The present examples also demonstrate the use of Lemma 1 for derivation of f (u|𝜃) from
a given function 𝜒(u, 𝜃).

Suppose X = (X1,X2, … ,Xn) is distributed as an i.i.d. sample from a two-parameter exponen-
tial family of positive continuously distributed random variables with density of the form

f (x; 𝜂1, 𝜂2) = c(𝜂1, 𝜂2)h(x) exp(𝜂1s1(x) + 𝜂2s2(x)), (16)

for x ∈ (0,∞), (𝜂1, 𝜂2) ∈ , where h(x) ≥ 0, s1(x), s2(x) are real-valued functions defined for pos-
itive x, and c(𝜂1, 𝜂2) > 0 for (𝜂1, 𝜂2) ∈ , where  is the natural parameter space (Casella &
Berger, 2002, chapter 3.4). The minimal sufficient statistic can then be written

T(X) = (T1(X),T2(X)) =

( n∑
i=1

s1(Xi),
n∑

i=1
s2(Xi)

)
.

Suppose that t = (t1, t2) is the observed value of T(X), and that we want to sample X =
(X1,X2, … ,Xn) conditionally on T(X) = t. By sufficiency, samples from the conditional
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distribution of X given T(X) = t can be obtained by choosing any density from the given family
(16) as the basic density. Let fX (x) be the chosen density and let fX(x) =

∏n
i=1fX (xi).

Whereas in the examples of Sections 3.1 and 3.2 there were natural pivots in the problems,
there might not be one in the present case. Thus we will take as the point of departure a function
𝜒(u, 𝜃) which is apparently useful for positive random variables, having two parameters since
T(X) has dimension 2.

Let

𝜒(u, 𝜃) =
((

u1

𝛽

)𝛼

,

(
u2

𝛽

)𝛼

, … ,

(
un

𝛽

)𝛼)
, (17)

where u = (u1,u2, … ,un) ∈  = (0,∞)n and 𝜃 = (𝛼, 𝛽) ∈ Ω = (0,∞)2. Then Assumption 1 is
satisfied by Lemma 1 if U𝜃 has density

f (u|𝜃) = n∏
i=1

{
𝛼

𝛽

(
ui

𝛽

)𝛼−1

fX

((
ui

𝛽

)𝛼)}
. (18)

Furthermore, Assumption 2 requires that there is a unique solution for 𝜃 of the equation

𝜏(u, 𝜃) = t,

which here means
n∑

i=1
s1

((
ui

𝛽

)𝛼)
= t1,

n∑
i=1

s2

((
ui

𝛽

)𝛼)
= t2.

Assume that there is such a unique solution 𝜃̂(u, t) = (𝛼̂(u, t), 𝛽(u, t)) of these equations and that
also the rest of Assumption 2 is satisfied.

If 𝜋(𝜃) ≡ 𝜋(𝛼, 𝛽) is the density of Θ, then (7) gives

h(u, t) = f (u|𝜃̂(u, t))𝜋(𝜃̂(u, t))|det 𝜕𝜃𝜏(u, 𝜃)|−1
𝜃=𝜃̂(u,t)

=
(𝛼̂∕𝛽)n(∏n

i=1x̂i
)1−1∕𝛼̂ (∏n

i=1fX (x̂i)
)
𝜋(𝛼̂, 𝛽)| det 𝜕𝜃𝜏(u, 𝜃)|𝜃=𝜃̂(u,t) , (19)

where

x̂i =
(

ui

𝛽

)𝛼̂

(20)

and

det 𝜕𝜃𝜏(u, 𝜃)|𝜃=𝜃̂(u,t) = 1
𝛽(u, t)

[( n∑
i=1

s′1(x̂i)x̂i

)( n∑
i=1

s′2(x̂i)x̂i log(x̂i)

)

−

( n∑
i=1

s′2(x̂i)x̂i

)( n∑
i=1

s′1(x̂i)x̂i log(x̂i)

)]
.
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When sampling from (19) by the Metropolis–Hastings algorithm (Section 2.3.3) it seems to
be a good idea to let the proposal distribution g(u) correspond to an i.i.d. sample from the origi-
nal density (16) with parameter values equal to the maximum likelihood estimates based on the
observed t. Then the calculated 𝛼̂, 𝛽 are expected to be around 1, and we therefore suggest to
choose the density of Θ as

𝜋(𝛼, 𝛽) = I(a1 ≤ 𝛼 ≤ a2, b1 ≤ 𝛽 ≤ b2)∕[(a2 − a1)(b2 − b1)]

for suitably chosen 0 < a1 < 1 < a2, 0 < b1 < 1 < b2, see examples in Section 3.3.3.
In a practical application one would usually also have the original data x = (x1, … , xn) which

led to the values t1 = T1(x), t2 = T2(x). The vector x may then be used as the initial sample of the
Metropolis–Hastings simulation, and will give 𝛼̂ = 𝛽 = 1. In this case, the successively simulated
accepted conditional samples x̂ = (x̂1, … , x̂n) defined by (20) will have the correct distribution,
so there is no need for a burn-in period in the Metropolis–Hastings simulations.

3.3.1 Gamma distribution

The gamma distribution with shape parameter k > 0 and scale parameter 𝜃 > 0 has density

f (x; k, 𝜃) = 1
𝜃kΓ(k)

xk−1e−x∕𝜃 for x > 0, (21)

which is of the form (16) with s1(x) = x, s2(x) = log x. Hence we need to solve the equations
n∑

i=1

(
ui

𝛽

)𝛼

= t1,

n∑
i=1

log
(

ui

𝛽

)𝛼

= t2.

with respect to 𝛼 and 𝛽. It is shown in Lemma 2 in the Appendix that there is a unique solution
(𝛼̂, 𝛽) for (𝛼, 𝛽).

We suggest using k = 𝜃 = 1 in (21) to get fX (x) = e−x. Thus (19) gives

h(u, t) =
(𝛼̂∕𝛽)ne(1−1∕𝛼̂)t2 e−t1𝜋(𝛼̂, 𝛽)

(1∕𝛽)
(

t1t2 − n
∑n

i=1x̂i log x̂i
) ,

which is the basis for simulation of conditional samples as already outlined.
Note that the assumption fX (x) = e−x, that is, the standard exponential density, means that the

(Xi∕𝛽)𝛼 are Weibull distributed with shape parameter 𝛼 and scale parameter 𝛽. Thus the trans-
formation (17), together with Lemma 1, leads to a natural pivot in Assumption 1 defined from a
Weibull model.

3.3.2 Inverse Gaussian distribution

The inverse Gaussian distribution has density which can be written as

f (x;𝜇, 𝜆) =
√

𝜆

2𝜋x3 exp
(
− 𝜆

2x
− 𝜆x

2𝜇2 + 𝜆

𝜇

)
for x > 0, (22)
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T A B L E 1 Values used for simulation of conditional samples

Case Distribution n t1 t2 Sample sizes 𝝅 𝝐1, 𝝐2

1 Gamma 3 3 −1.7 104 I[0.5,1.5]2 1∕4, 1∕4

2 Gamma 10 20 1 104 I[0.5,1.5]2 1, 1

3 Inverse Gaussian 3 3 6 104 I[0.5,1.5]2 1∕4, 1∕4

4 Inverse Gaussian 10 20 6 104 I[0.5,1.5]2 1, 1

where 𝜆, 𝜇 > 0 are parameters, and which is hence of the form (16) with s1(x) = x, s2(x) = 1∕x.
The equations to solve are then

n∑
i=1

(
ui

𝛽

)𝛼

= t1,

n∑
i=1

(
ui

𝛽

)−𝛼

= t2.

As for the gamma case, there is a unique solution (𝛼̂, 𝛽) for (𝛼, 𝛽), see Lemma 3 in the Appendix.
Let now fX (x) be the density obtained when 𝜇 = 𝜆 = 1, that is,

fX (x) =
√

1
2𝜋x3 exp

(
− 1

2x
− x

2
+ 1

)
, x > 0.

Then f (u|𝜃) is found from (18) and we get from (19),

h(u, t) =
(𝛼̂∕𝛽)n(∏n

i=1x̂i
)−1∕2−1∕𝛼̂e−(1∕2)(t1+t2)+n𝜋(𝛼̂, 𝛽)

(1∕𝛽)
(

t2
∑n

i=1x̂i log x̂i − t1
∑n

i=1 log x̂i∕x̂i
) .

It was suggested for the general case above to use the parametric model itself as a proposal
distribution in Metropolis–Hastings simulations, with parameters given by the maximum likeli-
hood estimates from the original data. Following Seshadri (2012, p. 7), the maximum likelihood
estimates of the parameters in (22) are found from

𝜇̂ = x, 𝜆̂
−1 = 1

n

n∑
i=1

(
1
xi

− 1
x

)
,

where x = (1∕n)
∑n

i=1xi.

3.3.3 A simulation study

A simulation study was performed in order to illustrate the above constructed algorithms for the
gamma and inverse Gaussian distributions. The setup of the study is summarized in Table 1.

For example, in case 1, a sample x with n = 3 was given, resulting in the observed sufficient
statistic (t1, t2) = (3,−1.7) for the gamma distribution. Conditional samples were then simulated,
as suggested above, using the Metropolis–Hastings algorithm with proposal distribution chosen
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F I G U R E 1 Simulated marginal cumulative distribution functions for the sampled x̂1 from the conditional
samples for the cases of Table 1 using the Metropolis–Hastings algorithm as described in Section 3.3 (black), and
the naive sampler of Section 2.3.4 (gray). Case 1: upper left. Case 2: upper right. Case 3: lower left. Case 4: lower
right

as the gamma density (21) with parameters equal to the maximum likelihood estimates com-
puted from the sufficient statistic (t1, t2). The density 𝜋(𝛼, 𝛽) was chosen to be uniform over
(𝛼, 𝛽) ∈ [0.5, 1.5] × [0.5, 1.5]. In addition was applied the naive sampling method described in
Section 2.3.4. Values 𝜖1, 𝜖2 (see Table 1) were chosen so that the sampler accepts an i.i.d. sample
x′ = (x′1, x

′
2, … , x′n) from the proposal distribution if and only if

|T1(x′) − t1| ≤ 𝜖1 and |T2(x′) − t2| ≤ 𝜖2.

In case 1 were used 𝜖1 = 𝜖2 = 1∕4. Both the Metropolis–Hastings algorithm and the naive sampler
were ran for enough iterations to produce at least 104 samples.

The description is similar for cases 2–4. Figure 1 shows, for each of the four cases in Table 1, the
simulated cumulative distribution functions for the sampled x̂1. Although we have for illustrative
purposes chosen relatively large values of 𝜖1, 𝜖2, the closeness of the curves for each case clearly
indicate that the algorithms derived in the paper produce samples from the correct conditional
distributions.

3.3.4 Application to goodness-of-fit testing

As already noted, a typical use of conditional samples given sufficient statistics is in
goodness-of-fit testing.

Consider the null hypothesis H0 that an observation vector X comes from a particular dis-
tribution indexed by an unknown parameter 𝜃 and such that T(X) is sufficient for 𝜃. For a test
statistic W(X) for which large values indicate departures from the null hypothesis, we define the
conditional p-value by

pW
cond = PH0(W(X) ≥ w∗|T(X) = t),
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where w∗ is the observed value of the test statistic and t is the observed value of the sufficient
statistic. A conditional goodness-of-fit test based on W rejects H0 at significance level 𝛼 if pW

cond ≤
𝛼. Let now x̂j for j = 1, 2, … , k be a sample from the conditional distribution of X given T(X) = t.
Then the observed p-value is approximated by

pW
cond ≈ 1

k

k∑
j=1

I(W(x̂j) ≥ w∗). (23)

Consider now data from Best et al. (2012), giving the precipitation from storms in inches at
the Jug Bridge in Maryland, USA. The observed data are

1.01, 1.11, 1.13, 1.15, 1.16, 1.17, 1.2, 1.52, 1.54, 1.54, 1.57, 1.64,
1.73, 1.79, 2.09, 2.09, 2.57, 2.75, 2.93, 3.19, 3.54, 3.57, 5.11, 5.62

comprising the data vector x = (x1, x2, … , xn), where n = 24. The question is whether the gamma
or inverse Gaussian distributions fit the data. Using the setup and notation from Section 3.3 we
calculate the sufficient statistics as

t1 =
n∑

i=1
xi = 52.72, t2 =

n∑
i=1

log xi = 15.7815

for the gamma distribution and

t1 =
n∑

i=1
xi = 52.72, t2 =

n∑
i=1

1
xi

= 13.8363

for the inverse Gaussian distribution.
Some common test statistics for goodness-of-fit testing are constructed as follows. Let

(x(1), x(2), … , x(n)) be the order statistic of x. Then define the transformed values zi =
F(x(i) ; 𝜃̂1, 𝜃̂2), where F(⋅ ; 𝜃1, 𝜃2) is the cumulative distribution function of the gamma or inverse
Gaussian distributions with parameters 𝜃1, 𝜃2, while 𝜃̂1, 𝜃̂2 are the maximum likelihood estimates
which can be found from the corresponding t1 and t2.

From this setup we can write down the following test statistics:
Kolmogorov–Smirnov test (Razali & Wah, 2011)

D = max
1≤i≤n

(
zi −

i − 1
n

,
i
n
− zi

)
.

The Cramér–von Mises test (Stephens, 1970)

𝜔2 = 1
12n

+
n∑

i=1

(
zi −

2j − 1
2n

)2

.

Anderson–Darling test (Stephens, 1970)

A2 = −n − 1
n

n∑
i=1

(2i − 1) (ln zi + ln(1 − zn−i+1)) .
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T A B L E 2 Conditional p-values

Test
Inverse Gaussian
distribution

Gamma
distribution

D 0.217 0.061

𝜔2 0.102 0.031

A2 0.094 0.024

Now let D∗, 𝜔∗, A2
∗ denote the observed values of the test statistics as calculated from the

observed data x. The approximated conditional p-values pD
cond, p𝜔2

cond, pA2

cond can now be calcu-
lated from (23) for the null hypotheses of gamma distribution and inverse Gaussian distribution,
respectively.

We simulated k = 105 samples from the conditional distributions and obtained the results of
Table 2. The calculated conditional p-values indicate that the fit of the inverse Gaussian distri-
bution is marginal, which agrees with the results of Best et al. (2012). Using significance level
𝛼 = 0.05, the tests based on 𝜔2 and A2 suggest that the gamma distribution does not fit the
data.

4 CONDITIONAL MONTE CARLO WITH MULTIPLE
SOLUTIONS OF THE EQUATION 𝝉(u, 𝜽) = t

In general it might be difficult or impossible to find a suitable statistical model and a pivot𝜒(U𝜃, 𝜃)
satisfying Assumption 1, for which the uniqueness requirement of Assumption 2 is satisfied as
well. Suppose therefore that Assumption 1 holds, while the equation 𝜏(u, 𝜃) = t does not have a
unique solution for 𝜃. Below we consider first the case when X has a discrete distribution, and
then the case of continuous X. In the former case, the set of solutions of the equation is typically
an interval in Ω, while in the latter case there are usually a finite number of distinct solutions,
where the number may depend on the values of u and t.

4.1 Conditional Monte Carlo with discrete X

Let the situation be as in Section 2.1, and assume that X has a discrete distribution. Then the
function T(X) also has a discrete distribution. Suppose we want to calculate E[𝜙(X)|T(X) = t]
for a given t with P(T(X) = t) > 0. Assume that Assumption 1 and hence (4) and (5) hold for
appropriately defined U, Θ, and functions 𝜒(u, 𝜃) and 𝜏(u, 𝜃). Then

E[𝜙(X)|T(X) = t] = E[𝜙(𝜒(U,Θ))|𝜏(U,Θ) = t]

=
E[𝜙(𝜒(U,Θ))I(𝜏(U,Θ) = t)]

P(𝜏(U,Θ) = t)
, (24)

which makes sense since P(𝜏(U,Θ) = t) = P(T(X) = t) > 0.
For given t and u, let Γ(u, t) = {𝜃 ∶ 𝜏(u, 𝜃) = t}. In the discrete case, these sets are usually sets

with positive Lebesgue measure, typically intervals or unions of intervals. If 𝜋(𝜃) is chosen as the
density of Θ, then we can continue from (24) to get
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E[𝜙(X)|T(X) = t] =
∫ ∫(u,𝜃)∶𝜏(u,𝜃)=t 𝜙(𝜒(u, 𝜃))f (u|𝜃)𝜋(𝜃)d𝜃du

∫ ∫(u,𝜃)∶𝜏(u,𝜃)=t f (u|𝜃)𝜋(𝜃)d𝜃du

=
∫ [∫

𝜃∈Γ(u,t) 𝜙(𝜒(u, 𝜃))f (u|𝜃)𝜋(𝜃)d𝜃] du

∫ [∫
𝜃∈Γ(u,t) f (u|𝜃)𝜋(𝜃)d𝜃] du

. (25)

In many cases, including the example below, 𝜒(u, 𝜃) is the same for all 𝜃 satisfying 𝜏(u, 𝜃) = t.
In such a case there is a function x(u, t) such that 𝜒(u, 𝜃) = x(u, t) for all 𝜃 ∈ Γ(u, t), and if we
introduce in addition

h(u, t) = ∫
𝜃∈Γ(u,t)

f (u|𝜃)𝜋(𝜃)d𝜃, (26)

we can write (25) as

E[𝜙(X)|T(X) = t] =
∫ 𝜙(x(u, t))h(u, t)du

∫ h(u, t)du
. (27)

This is of the same form as (6) in Theorem 1 and can hence be seen as the discrete version of (6)
and hence also a version of (1). Similar results are found in Lindqvist and Taraldsen (2005) for the
case where T(X) is sufficient.

4.1.1 Example with Bernoulli variables

Let X = (X1,X2, … ,Xn) be a vector of independent Bernoulli random variables where P(Xi =
1) = pi for i = 1, 2, … ,n. Suppose we want to sample X conditional on

∑n
i=1Xi = t where

0 < t < n. A typical application is in logistic regression, see example 4 of Lindqvist and
Taraldsen (2005).

Let U𝜃 = (U𝜃
1 ,U

𝜃
2 , … ,U𝜃

n) be independent variables in U(0, 𝜃), where 𝜃 ∈ Ω = (0,∞), say, and
let

𝜒(u, 𝜃) = (I(u1 < p1𝜃), … , I(un < pn𝜃)).

Then 𝜒(U𝜃, 𝜃) ∼ X, so Assumption 1 holds. Define

𝜏(u, 𝜃) =
n∑

i=1
I(ui < pi𝜃).

Let then 𝜓i(u) = ui∕pi for i = 1, 2, … ,n and let the corresponding ordered values be

𝜓(1)(u) < 𝜓(2)(u) < · · · < 𝜓(n)(u)

(these are different with probability 1). Then

𝜏(u, 𝜃) = t ⇔ 𝜓(t)(u) < 𝜃 < 𝜓(t+1)(u),
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so the sets Γ(u, t) = {𝜃 ∶ 𝜏(u, 𝜃) = t} are intervals on Ω. It is, moreover, seen that 𝜒(u, 𝜃) is
the same for all 𝜃 ∈ Γ(u, t). Hence we may use (27) with h(u, t) given by (26) which here
becomes

h(u, t) = ∫
𝜓(t+1)(u)

𝜓(t)(u)
𝜃−nI(max ui ≤ 𝜃)𝜋(𝜃)d𝜃. (28)

A sampling algorithm may hence consist in drawing u from a density proportional to h(u, t) and
then returning the sample x(u, t). Various choices may be made for 𝜋(𝜃), for example, 𝜋(𝜃) ∝ 𝜃n

on some bounded interval, which simplifies (28).

4.2 Multiple solutions of the equation 𝝉(u, 𝜽) = t in the continuous
case

Let X be an absolutely continuous random vector and let the situation be as considered in
Section 2.2. Let

Γ(u, t) = {𝜃̂ ∶ 𝜏(u, 𝜃̂) = t}

and assume that this is a finite set for any u, t. In this case the transformation (u, 𝜃) → (u, 𝜏(u, 𝜃))
is many-to-one, so there is no inverse as in the proof of Theorem 1. Instead, for a fixed u there is
a contribution to the probability element of (u, 𝜃̂) for each 𝜃̂ ∈ Γ(u, t), given by

f (u|𝜃̂)𝜋(𝜃̂)|det 𝜕𝜃𝜏(u, 𝜃)|−1
𝜃=𝜃̂
,

where this expression can be deduced from the proof of Theorem 1. The following formula then
extends (6) to the situation of the present subsection,

E[𝜙(X)|T(X) = t] = E[𝜙(𝜒(U,Θ))|𝜏(U,Θ) = t]

=
∫ ∑

𝜃̂∈Γ(u,t) 𝜙(𝜒(u, 𝜃̂))f (u|𝜃̂)𝜋(𝜃̂)|det 𝜕𝜃𝜏(u, 𝜃)|−1
𝜃=𝜃̂

du

∫ ∑
𝜃̂∈Γ(u,t) f (u|𝜃̂)𝜋(𝜃̂)|det 𝜕𝜃𝜏(u, 𝜃)|−1

𝜃=𝜃̂
du

.

A corresponding result for the case when T(X) is sufficient can be found in Lindqvist and
Taraldsen (2007).

5 CONSTRUCTION OF PIVOTS

As is clear from the construction developed in Section 2, the parameter 𝜃 of the artificial model
should always have the same dimension as the statistic T(X). This ensures that the number
of equations to solve for obtaining the 𝜃̂(u, t) in Assumption 2 is the same as the number of
unknowns. This is also the underlying assumption in Section 4 in the case of multiple solutions
to the equation 𝜏(u, 𝜃) = t.

In the examples of Section 3, there were natural pivots, for example, based on the scaling
transformation u∕𝜃 for one-dimensional T(x), and (u∕𝛽)𝛼 or (u − 𝛽)∕𝛼 for two-dimensional T(x).



20 LINDQVIST et al.

When there are no natural parametric families to satisfy Assumption 1, one may instead start by
considering flexible functions 𝜒(u, 𝜃) with appropriate dimension of 𝜃. Having chosen the func-
tion 𝜒(u, 𝜃), the statistical model that ensures Assumption 1 to hold, is then given by Lemma 1.
Equation (18) is an example of such a construction.

While the presented examples have T(X) with dimension one or two, a natural question is
what to do in order to condition on T(X) with dimension k > 2. An obvious choice for continuous
X might be to let 𝜃 = (𝜂0, 𝜂1, … , 𝜂k−1) and consider

𝜒(u, 𝜃) =

(k−1∑
j=0

𝜂juj
1, … ,

k−1∑
j=0

𝜂juj
n

)
. (29)

If we put k = 2 in (29), then this is in fact equivalent to the transformation based on (u − 𝛼)∕𝛽.
For the case of positive Xi, a general suggestion might be to use

𝜒(u, 𝜃) =

(
exp

{k−1∑
j=0

𝜂juj
1

}
, … , exp

{k−1∑
j=0

𝜂juj
n

})
,

which for k = 2 is equivalent to the transformation based on (u∕𝛽)𝛼 .
The crucial next question is, however, whether 𝜏(u, 𝜃) = T(𝜒(u, 𝜃)) satisfies Assumption 2. It

is clear that this will not generally be the case. Appropriate modifications of 𝜒(u, 𝜃) may then be
tried, but as considered in Section 4, one may still get around the problem when there are multiple
solutions of the given equations.

We will not pursue this latter issue here. It is notable, however, that the problem of deter-
mining the proper function 𝜒(u, 𝜃) and checking Assumption 2 is completely connected to the
function T(x), and not to the distribution fX(x) of X. Thus, having chosen a suitable function
𝜒(u, 𝜃) and checked that Assumption 2 holds for our T(x), we can via Lemma 1 and Theorem 1
perform conditional sampling of X given T(X) = t for in principle any joint distribution fX(x) for
X, only noting the requirement that the range of𝜒(u, 𝜃) contains that of X. Thus, in the example of
sampling normals in Section 3.2, only a slight modification of the algorithm would be necessary in
order to sample from, for example, a Student distribution or a Cauchy distribution conditionally
on the statistics T(X) of that example.

6 CONCLUDING REMARKS

In this work we have presented a new method for dealing with conditional distributions of a
random vector X given T(X) = t for a given function T(X). The method is motivated by the clas-
sical notion of conditional Monte Carlo introduced by Trotter and Tukey (1956). Moreover, our
approach is strongly motivated by the corresponding problem when T(X) is a sufficient statistic,
as studied by Engen and Lillegård (1997) and later by two of the present authors in Lindqvist and
Taraldsen (2005).

It has been indicated in the Introduction that, although the latter approach and the one of the
present paper share several features, they still lead to differing algorithms. In the new approach,
an artificial parametric model is introduced, which does not need to have any connection to how
the data were obtained. By contrast, the approach of Lindqvist and Taraldsen (2005) is tailored
for analyzing a particular statistical model and the associated data. As discussed in the latter
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paper, the particular methods for conditioning may then also suggest efficient algorithms for other
inference tasks such as calculation of Bayesian posteriors or fiducial distributions.

An apparent advantage of the new method is, on the other hand, the flexible choice of dis-
tributions for X, which can be done independently of the function T(x) and the transformation
𝜒(u, 𝜃), as discussed at the end of the previous section. Suppose instead we will use the method
of Lindqvist and Taraldsen (2005) for calculation of conditional expectations E[𝜙(X)|T(X) = t]
in a nonstatistical setting. Lindqvist and Taraldsen (2005) suggested to embed the problem into
a statistical model where X is observed and T(X) is a sufficient statistic. This can be done by
considering the exponential family with densities

f (x; 𝜃) = c(𝜃)h(x)e𝜃′T(x), (30)

where h(x) is the original density of X, and 𝜃 is a parameter vector of the same dimension as T(X).
As indicated by Lindqvist and Taraldsen (2005), it may, however, be difficult to find appropriate
data generating functions 𝜒(U, 𝜃) for simulation from densities of the form (30). Indeed, in con-
trast to the method of the present paper, such functions will have to depend on T(x). The derived
sampling algorithms may also otherwise be untractable.

The strength of the new method can thus be described as not having to condition on sufficient
statistics. Methods based on conditioning on sufficient statistics may moreover not be used when
appropriate sufficient statistics cannot be found. This is the case, for example, when the minimal
sufficient statistic has a higher dimension than the parameter vector. This situation was consid-
ered by Lillegård (2001), who suggested to condition on the maximum likelihood estimator. The
author considered the Behrens–Fisher problem in particular. In very recent research, Barber and
Janson (2020) consider resampling of data conditional on an asymptotically efficient estimator.
They name their method as approximate cosufficient sampling, where the clue is to condition on
a perturbed maximum likelihood estimator which is asymptotically a minimal sufficient statistic.
The method presented in our paper may have a potential in such approaches.
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APPENDIX

Pseudocode for the algorithms of Section 2.3

Algorithm 1. Pseudo-code for importance sampling. t is the value of T(X), 𝜙(X) is the
function of X, and N is the number of simulations

Data: t, 𝜙, N
Result: Calculates E[𝜙(X)|T = t]
for i = 1 to N do

Draw ui ∼ g;
Solve 𝜏(ui,𝜽) = t for 𝜃̂(ui, t);
numi = 𝜙(𝜒(u, 𝜃̂(ui, t)))h(ui, t)∕g(ui);
deni = 𝜃(ui, t)h(ui, t)∕g(ui);

end
exp = mean(num)∕mean(den)

Algorithm 2. Pseudo-code for rejection sampling. t is the value of T(X), M is the bound
for h∕g, and N is the number of samples

Data: t, n, M, N
Result: Samples x̂i for i = 1,… ,N
i=0;
while i ≤ N do

Draw u ∼ g;
Solve 𝜏(u,𝜽) = t for 𝜃̂(u, t)Draw z ∼ Unif[0, 1];
if Mz ≤ h(u, t)∕g(u) then

x̂i = 𝜒(u, 𝜃̂(u, t))
i = i + 1

end
end

https://doi.org/10.1111/sjos.12549
https://doi.org/10.1111/sjos.12549
https://doi.org/10.1111/sjos.12549
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Algorithm 3. Pseudo-code for Metropolis–Hastings algorithm. t is the value of T(X),
and N is the number of samples

Data: t, N
Result: Samples x̂i for i = 1,… ,N
initialization;
Draw u0 ∼ g; // Require h(u0, t) > 0
for i = 1 to N do

Draw u′ ∼ g Solve 𝜏(u′,𝜽) = t for 𝜃̂(u′, t);
Draw z ∼ Unif[0, 1];
if z ≤ h(u′,t)

h(ui−1,t)
⋅ g(ui−1)

g(u′)
then

ui = u′

else
ui = ui−1

end
x̂i = 𝜒(u, 𝜃̂(ui, t));

end

Algorithm 4. Pseudo-code for the naive sampler. t is the value of T(X), 𝜖 is the error
bound, and N is the number of samples

Data: t, 𝜖, N
Result: Samples x̂i for i = 1,… ,N
i=0;
while i ≤ N do

Draw x ∼ fX;
if ||T(x) − t|| ≤ 𝜖 then

x̂i = x
i = i + 1

end
end

Lemmas for Section 3.3

Lemma 2. Let n ∈ N and u1,u2, … ,un ∈ R+, and let for some v1, v2, … , vn ∈ R+,
∑n

i=1vi = t1,∑n
i=1 ln vi = t2. Then the system of equations

⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

(
ui

𝛽

)𝛼

= t1

n∑
i=1

ln
(

ui

𝛽

)𝛼

= t2,

has a unique solution for 𝛼, 𝛽 ∈ R+.
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Proof. We can transform the system into

⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

(
ui

𝛽

)𝛼

= t1∑n
i=1u𝛼i(∏n

i=1u𝛼i
)1∕n = t1

exp(t2∕n)

.

If the function

p(𝛼) =
∑n

i=1u𝛼i(∏n
i=1u𝛼i

)1∕n

is monotone, then there is a unique solution. The derivative is

p′(𝛼) =

( n∑
i=1

(
ui(∏n

i=1ui
)1∕n

)𝛼)′

=
n∑

i=1

(
ui(∏n

i=1ui
)1∕n

)𝛼

ln ui(∏n
i=1ui

)1∕n .

We note that lim𝛼→0+ p′(𝛼) = 0. The second derivative is

p′′(𝛼) =
n∑

i=1

(
ui(∏n

i=1ui
)1∕n

)𝛼

ln2 ui(∏n
i=1ui

)1∕n ≥ 0.

Since the second derivative is positive, the first derivative is increasing. Hence we can conclude
that the first derivative is always positive and p is increasing. The solution exists, since

lim
𝛼→0+

p(𝛼) = n

and

t1

exp(t2∕n)
=

∑n
i=1vi(∏n

i=1vi
)1∕n ≥ n.

The last inequality holds because the arithmetic mean is always larger than or equal to the
geometric mean. ▪

Lemma 3. Let n ∈ N and u1,u2, … ,un ∈ R+, and let for some v1, v2, … , vn ∈ R+,
∑n

i=1vi = t1,∑n
i=1v−1

i = t2. Then the system of equations

⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

(
ui

𝛽

)𝛼

= t1

n∑
i=1

(
ui

𝛽

)−𝛼

= t2,

has a unique solution for 𝛼, 𝛽 ∈ R+.
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Proof. We can transform the system into

⎧⎪⎪⎨⎪⎪⎩

n∑
j=1

u𝛼j
n∑

i=1
u−𝛼

i = t1t2

n∑
i=1

(
ui

𝛽

)−𝛼

= t2

.

If the function

p(𝛼) =
n∑

j=1
u𝛼j

n∑
i=1

u−𝛼
i

is monotone, then there is a unique solution for 𝛼. In order to prove the monotonicity, let yij =
uj

ui
,

where i, j = 1, 2, … ,n, i ≠ j. The derivative is

p′(𝛼) =

( n∑
j=1

n∑
i=1

(uj

ui

)𝛼
)′

=

( n∑
j=1

n∑
i=1

y𝛼ij

)′

=
n∑

j=1

n∑
i=1

y𝛼ij ln yij =
∑
i<j

ln yij

(
y𝛼ij − y−𝛼ij

)
. (A1)

Now, if yij > 1, then ln yij > 0 and y𝛼ij > y−𝛼ij , which means that

ln yij

(
y𝛼ij − y−𝛼ij

)
> 0.

If yij < 1, then ln yij < 0 and y𝛼ij < y−𝛼ij , which means that

ln yij

(
y𝛼ij − y−𝛼ij

)
> 0.

Hence, we can conclude that (A1) is positive and the function p is increasing. Since

lim
𝛼→0+

p(𝛼) = n2

and

t1t2 =
n∑

i=1
vi

n∑
i=1

v−1
i ≥ n2

the solution always exists. ▪


