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Abstract: Individual fish identification and recognition is an important step in the conservation and
management of fisheries. One of most frequently used methods involves capturing and tagging
fish. However, these processes have been reported to cause tissue damage, premature tag loss, and
decreased swimming capacity. More recently, marine video recordings have been extensively used
for monitoring fish populations. However, these require visual inspection to identify individual
fish. In this work, we proposed an automatic method for the identification of individual brown
trouts, Salmo trutta. We developed a deep convolutional architecture for this purpose. Specifically,
given two fish images, multi-scale convolutional features were extracted to capture low-level features
and high-level semantic components for embedding space representation. The extracted features
were compared at each scale for capturing representation for individual fish identification. The
method was evaluated on a dataset called NINA204 based on 204 videos of brown trout and on a
dataset TROUT39 containing 39 brown trouts in 288 frames. The identification method distinguished
individual fish with 94.6% precision and 74.3% recall on a NINA204 video sequence with significant
appearance and shape variation. The identification method takes individual fish and is able to
distinguish them with precision and recall percentages of 94.6% and 74.3% on NINA204 for a video
sequence with significant appearance and shape variation.

Keywords: Salmo trutta; identification; deep learning; CNN

1. Introduction

There is a need for effective in situ fish monitoring methods with aims to confirm
the presence of a single species, track changes of threatened species, or document long-
term changes in entire communities [1]. The adaption of technology in such areas is
expanding as the use of video recording systems becomes widespread. Video recording
has a number of advantages, such as being less labor intensive [2], capable of covering
large areas of habitats, and it can be used in areas that are difficult to cover by other
methods [3,4]. Video recordings have an advantage in that a viewer is able to pause,
rewind, or forward the video, thereby also increasing accuracy and precision [5]. The use of
video methods also has advantages over electrofishing, as this can cause injury or death to
the fish [6] and has also been shown to alter the reproductive behaviors of fish [7]. The use
of video recordings has been applied over the world; examples include the Wenatchee
River (USA) [8], Tallapoosa River (USA) [9], Mekong River (Laos) [10], Ongivinuk River
(USA) [11], Ebro River (Spain) [12], Uur River (Mongolia) [13], and Gudbrandsdalslågen
(Norway) [14]. Robust and reliable systems would provide important information about
population counts and movement [15], and therefore, there is a need for further research to
enable the use of automatic systems.

Video recordings, including those from fish ladders, are in many cases manually
viewed [16], such as in the work by [8,10]. Visual inspection with the goal to classify or
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identify individual fish with experts has disadvantages compared to automatic systems,
such as being dependent on an expert observer [16], learning can also impact accuracy
of an observer [8], and being more costly [17] and time-consuming [8]. For continuous
video recording, the review time is extensive, as well as prone to fatigue of the observer.
Event-based recording, when recording starts due to an event, for example, a fish passing a
sensor, has been shown to be less labor intensive and exhibit fewer recording errors [18].
Nonetheless, there is a need for automatic methods to analyze video recordings efficiently
and at a low cost.

Ladder counters using video recording systems have been popular, and videos have
been manually inspected to detect escaped farmed Atlantic salmon [19], the migration of
Atlantic salmon Salmo salar and sea trout Salmo trutta morpha trutta [20], but also to estimate
population size [21]. Research has been carried out to automate the inspection and include
counting the number of fish [22], detecting stocked fish [23], and classifying species [24].
Deep learning has been shown to be a promising method of estimating length, girth, and
weight [25,26]. These are valuable tools for monitoring populations, and have been shown
to provide good precision. However, they do not recognize individual fish.

The identification of individual animals, including fish, has traditionally been carried
out with capture–mark–recapture methods, where one inserts a physical mark or tag [27].
For fish, these methods can include visible implant tags, fin-clipping, cold branding, tattoos,
and external tag identifiers attached by metal wire, plastic, or string [28–30]. These methods
have been successfully used for different identification tasks. However, there are drawbacks
to using these methods. In large-scale studies, they become expensive and time-consuming
methods. The methods can also be difficult to use with juvenile fish or small fish. Tags also
have the drawback that they can be lost, destroyed, or vanish. In addition, the main concern
is the physical and behavioral influence it brings to the marked individuals [31]. In a study
by Persat [32] it was stated that fish tagging methods, such as jaw tagging and coded tags,
normally do not last longer than 9 months and may cause wounds, infections, increase
mortality and cause the slow growth of the individual. One should thoroughly consider
when to ‘tag or not to tag’ a fish [33], and guidelines have been made for the surgical
implantation of acoustic transmitters [34]. The limitations of traditional capture–mark–
recapture methods unveil the need for the non-invasive recognition of individual fish.

In this paper, we propose a deep learning image-based system for the photo recogni-
tion of individual brown trouts, Salmo trutta. The goal is to be able to match, based on a
photo of an individual brown trout, the same brown trout in a set of other images.

2. Materials and Methods
2.1. Identification Method

Research in deep learning has contributed to advances in a number of applications;
those related to this paper include animal tracking [35] and animal recognition [36,37]. Our
starting point was similar to recognition in other applications [38], where we extracted
features from different layers of the encoder network. An encoder network is a deep
neural network that takes an input image and generates a high-dimensional feature vector.
The fish recognition model is shown in Figure 1. The input to the identification method
was a pair of fish images (Fish A and Fish B in Figure 1). The encoder was composed
of stacked convolutional layers. Encoder features were extracted with EfficientNet [39]
since networks that performed better on the ImageNet dataset were capable of learning
better transferable representations [40]. The layers at the beginning of the encoder network
captured primitive image features, such as edges and textures, while deeper layers capture
rich global information.
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Figure 1. Fish recognition block diagram. Given input images A and B, image features were extracted
at different layers of the deep neural network. The similarity between Fish A and B features was
computed using the cosine similarity metric φ, which indicated the feature distance between Fish
A and B at each scale of the network. FC was a fully connected layer followed by rectified linear
activation function (ReLU). The output of ReLU was passed through a Sigmoid function to give a
value between 0 and 1, indicating non-identical or identical fishes, respectively.

To further explore the spatial features and improve fish recognition performance,
the automated identification method needs to incorporate high-level information about the
fish and semantic information in the scene, and low-level information about the details in
the textures, patterns, as well as an integration of various contexts extracted at different
scales. Bidirectional feature pyramid networks (BiFPNs) [41] were extracted with the
EfficientNet (φ = 0) encoder network (Figure 1). BiFPN leveraged a convolutional neural
network (CNN) to extract bidirectional feature maps with different resolutions. The feature
maps in earlier layers captured the textural and color detail information in the local regions,
while the feature maps in deep layers captured the fish semantic information of the whole
fish image.

Based on the BiFPN representations of a fish, the problem of fish identification was
reduced to a problem of matching low-level and high-level features between the two input
images. It is necessary to identify a given fish correctly when it swims from right to left
with viewpoint, scale, size, and appearance variations (Figure 2). For this, we employed the
cosine similarity φi,j between the corresponding BiFPN of the left and right input images
(Figure 1). Cosine similarity has been shown to be effective in [42]. We used fish i and j
to explain how the distance features were computed. Given the encoder network, BiFPN
features at scale s were extracted for fish i, f s

i , and j, f s
j (Figure 1). The size of each feature

f depended on the depth of the network and we used the last five features for compact
representation. Given the above notation, the cosine distance feature at each scale was
given by Equation (1):

φs
i,j =

〈 f s
i , f s

j 〉

〈 f s
i , f s

i 〉
1
2 〈 f s

j , f s
j 〉

1
2

(1)

where φs
i,j was the spatial cosine distance at each scale s. We concatenated the corresponding

cosine distance from each scale Φi,j = {φ0
i,j}

s=4
s=0 to form the final fused correspondence

representation Φi,j. We applied fully connected layers to encode the correspondence
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representation Φi,j with a vector of size 64× 4 and was then passed to a sigmoid layer.
Mathematically, this can be represented as follows:

p(Ii, Ij) = S
(
max(0, WΦi,j + b)

)
(2)

where S is a sigmoid function, and W and b are the weights and biases of the fully
connected network. The output of the network, p(Ii, Ij), is normalized between [0, 1] as a
post-processing step. We represented the final probability p that the two images in the pair,
Ii and Ij, p(Ii, Ij) were of the same fish, as shown in Equation (3).

Prediction =

{
identical f ish, if 0.5 ≤ p(Ii, Ij) ≤ 1
Notidentical f ish, if 0 ≤ p(Ii, Ij) ≤ 0.5

}
(3)

We optimized this framework by minimizing the widely used cross-entropy loss over
a training set of N pairs:

L(p, q) = − 1
N

N

∑
n=1

[qn log(pn) + (1− qn) log(1− pn)] (4)

where qn is the 0/1 output label for the input pair, which represents the same fish or not.

Figure 2. Appearance and shape variations of fish ID 344 from a video recording as it swam from
right to left frame number 260, 418, 421, 426, 452, and 474, respectively.

2.2. Dataset

Our dataset was provided by the Norwegian Institute for Nature Research and was
the same basis material as used by Myrum et al. [23]. It contained 204 video clips captured
in a fish ladder, where 101 videos were of stocked brown trout and 103 videos were of
wild brown trout. Each video clip contained only one fish. The videos were referred to
as the NINA204 dataset. The video clips were 24 s with a resolution of 320 × 240 pixels.
The videos had different qualities, they varied in terms of illumination level, illumination
uniformity, and they contained distortions such as air bubbles and algae. We annotated
the videos with a rectangular bounding box around each fish using the Computer Vision
Annotation Tool [43]. As these clips had multiple frames of the same brown trout, we were
sure that it was the same individual, being a ground truth for our analysis. We selected
video clips excluding small fish, juvenile fish, and clips where the we could not obtain
enough images of full fish (excluding images of partial fish). Our dataset contained 49
unique, randomly chosen fish in the training set, with a total of 1943 images and 48 fish in
the test set, and in the validation set, 1479 images, respectively. To train and validate the
network, we created matched pairs for a given fish at frame T with {T + ∆t : ∆t ∈ Z} and
random unmatched pairs. For all our experiments, ∆t was varied from one to five frames.
For robust evaluation, we sampled the test set and created 16,269 unique matched (8K) and
unmatched pairs (8K).
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We also tested our method on a similar dataset to that of Zhao et al. [44], referred
as TROUT39 dataset. This dataset was labeled in the same way as the previous dataset.
Experts from the Norwegian Institute of Nature Research verified that it contained the
same individual brown trouts, resulting in a ground truth for our analysis. The dataset
contained 39 brown trouts with a total of 288 frames taken with a high-definition camera.
Note that these images were taken outside the water and vary significantly from the dataset
used to train the network.

2.3. Implementation Details

Our model was implemented using Pytorch library on a single NVIDIA GeForce GTX
1080 GPU. Due to the different image sizes in the dataset, we first cropped large boundary
margins and resized all images into fixed dimensions with a spatial size of 512× 512 before
feeding to both encoders, and finally normalized them to [0, 1]. We used Adam [45] as an
optimizer with a batch size of 4 and the learning rate α set to 0.0001. The EfficientNet [39]
encoder network is initialed with pre-trained ImageNet weights for fine-tuning.

2.4. Training Procedure

To train the network, we started by creating matched and unmatched image pairs.
Matched image pairs are images showing the same fish at a different time in the video.
Unmatched image pairs are two different randomly generated fish pairs. Matched and
unmatched image pairs are labeled as “1” and “0”, respectively. Given a sample from
matched and unmatched pairs with their corresponding label, we optimized the loss func-
tion defined in Equation (4) and monitored the validation loss. To increase the robustness
and reduce overfitting of our model, we increased the amount of training data by apply-
ing a random rotation of angle (45°, 90°, 135°) and random vertical and horizontal flips.
The network was trained by gradually increasing the difficulty of matched pairs from
∆t = 0 to ∆t = 5, where t is frames. This enabled the network to learn from simple to
significant appearance variations between consecutive frames.

2.5. Evaluation Metrics

We evaluated the effectiveness of each method using precision (P), recall (R), F1-score
(F1), accuracy (A), Likelihood Ratio Positive (LR+) [46], and specificity (Spec) metrics,
which are defined below:

A =
NTP + NTN

NTP + NTN + NFP + NFN
, P =

NTP
NTP + NFP

, R =
NTP

NTP + NFN
, (5)

F1 =
2PR

P + R
, Spec =

NTN
NTN + NFP

, LR+ =
TRP
FPR

(6)

where NTP and NTN are the number of true positives and negatives and NFP and NFN
are the number of false positives and negatives, respectively. Furthermore, TPR and FPR
represent the true positive rate (i.e., recall) and false positive rate defined as NFP

NFP+NTN
,

respectively. Accuracy (A) describes the difference between the correctly predicted and
actual value. Precision (P) represents how well the model was able to predict positive cases,
while Recall (R) represents how well the model predicted actual positives by labeling them
as positive. F1-score was a good measure for the balance between precision and recall.
Specificity (Spec) represented the proportion of negatives that were correctly predicted.
An Accuracy, Precision, Recall, F1 score, or specificity of 1 was considered perfect, while
0 was the lowest possible. Similarly, a method with 100 LR+ indicates would indicate a
100-fold increase in the odds of identical fish being in a matched pair.
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3. Results

We presented the baseline results of the identification method on multiple experimen-
tal setups and compared them with histogram of oriented gradient (HOG) [47], rotation
invariant local binary pattern (LBP) [48] feature-based methods. For each fish, HOG and
LBP features were extracted and the histogram intersection was used to train a linear
support vector machine classifier [49]. The HOG features were computed with eight orien-
tations with 32 pixels per block, giving 2048 feature dimension. Thirty six rotation invariant
LBP features were computed with a radius of 3 at each pixel and the resulting texture
image was represented with a histogram of 512 dimension. The identification method was
performed in multiple stages. First, we evaluated the method for geometric variations such
as flipping and rotation. To do so, given an image and its transformation, we predicted
the performance whether the two brown trouts were identical or not. For the NINA204
dataset, an F1-score of 0.974 was obtained for T + 0 and the F1-score decreased to 0.832 for
T + 5 (Table 1). Our proposed method performed better than HOG and LBP at all times in
all performance metrics.

Furthermore, we evaluated the identification method on the TROUT39 dataset. The
TROUT39 dataset was significantly different from NINA204, as the pictures were taken in
open-air with a high-definition camera. We obtained an overall performance of 0.592 in the
F1-score (Table 2). Sample visual results are given in Table 3.

Table 1. Fish recognition performance vs. temporal distance in NINA204 test dataset. Each fish was compared with frames
containing the same fish taken at different time step ∆t (frames).

Time + ∆t Method Accuracy Precision Recall F1-Score Specificity LR+

T + 0
Proposed 0.974 0.980 0.967 0.974 0.981 50.894

HOG+SVM [47] 0.807 0.771 0.877 0.821 0.735 3.309
LBP+SVM [48] 0.804 0.904 0.684 0.779 0.926 9.24

T + 1
Proposed 0.967 0.978 0.954 0.966 0.980 47.7

HOG+SVM [47] 0.779 0.715 0.856 0.779 0.715 3.0
LBP+SVM [48] 0.788 0.858 0.640 0.734 0.912 7.27

T + 2
Proposed 0.951 0.973 0.924 0.948 0.976 38.5

HOG+SVM [47] 0.761 0.715 0.813 0.761 0.716 2.86
LBP+SVM [48] 0.754 0.841 0.583 0.688 0.904 6.07

T + 3
Proposed 0.917 0.966 0.848 0.903 0.975 33.92

HOG+SVM [47] 0.752 0.691 0.778 0.732 0.731 2.89
LBP+SVM [48] 0.780 0.869 0.584 0.699 0.932 8.59

T + 4
Proposed 0.903 0.961 0.813 0.881 0.974 31.27

HOG+SVM [47] 0.744 0.680 0.766 0.720 0.727 2.80
LBP+SVM [48] 0.775 0.847 0.582 0.690 0.920 7.27

T + 5
Proposed 0.874 0.946 0.743 0.832 0.969 23.96

HOG+SVM [47] 0.725 0.658 0.726 0.691 0.725 2.64
LBP+SVM [48] 0.757 0.833 0.529 0.647 0.923 6.87

Table 2. TROUT39 dataset recognition performance. Note that the unmatched pairs were randomly
generated for evaluation.

Method Accuracy Precision Recall F1-Score Specificity LR+

Proposed 0.718 0.766 0.483 0.592 0.891 1.86
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Table 3. Randomly chosen sample fish in the TROUT39 validation dataset that were correctly
recognized. Note that the network was trained using under-water videos and the results here show
the performance of the identification method for out-of-water fish recognition.

Fish ID Images Predicted

Brown Trout 1 Brown Trout 2 Image 1 Image 2

Brown Trout 14 Brown Trout 23 Not Identical

Brown Trout 39 Brown Trout 39 Identical

Brown Trout 24 Brown Trout 13 Not Identical

Brown Trout 5 Brown Trout 5 Identical

Brown Trout 10 Brown Trout 10 Identical

Brown Trout 17 Brown Trout 17 Identical

Brown Trout 14 Brown Trout 23 Not Identical

Brown Trout 38 Brown Trout 36 Not Identical

4. Discussion

There is a vast amount of literature related to fish in underwater images, both in
freshwater and saltwater. This includes detection and tracking [50], the recognition of
species [15], fish behavior [51], quantifying fish habitat [52], and more. However, with re-
gard to the automatic recognition of individual fish, to the best of our knowledge, the only
attempt has been made by Zhao et al. in [44,53]. Zhao et al. [44] proposed two different
methods that concerned on the head region of brown trouts. The first method was based
on local density features, where the image was binarized and divided into blocks. For each
block, the number of spots were counted. The other proposed method was based on a list of
common features, usually called a codebook. The codebook represented different informa-
tion from the input image. Haurum et al. [53] proposed a method for the re-identification of
zebrafish using metric learning, where they learned a distance function based on features.

To achieve the non-invasive recognition of fish, the fish need to have unique features,
and these features need to stay present throughout the lifetime of the individual. The
proposed identification method was robust to transformation, with an F1-score of 0.974.
Furthermore, we performed the evaluation from easier (T + 1) to more difficult cases
(T + 5) with significant appearances, lighting, and shape variations. With T + 5 examples,
the identification method was able to perform fish identification with an F1-score of 0.832.
Sample visual results for correctly recognized fishes are given in Table 4 and failure cases
are shown in Table 5. Fish identification in the wild was difficult especially under high
turbidity and orientation changes (Table 5).

In the TROUT39 dataset, the performance loss compared to NINA204 dataset was
expected, as the training data source is significantly different from the testing data source.
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The identification method was able to differentiate pictures of brown trouts taken at
different time instances (Table 3).

Table 4. Randomly chosen sample fish in NINA204 dataset that were correctly recognized. The iden-
tification method was able to recognize difficult cases with significant variation in shape, turbidity,
and appearance.

Fish ID Images Predicted

Fish 1 Fish 2 Image 1 Image 2

Fish8 Fish84 Not Identical

Fish479 Fish236 Not Identical

Fish358 Fish358 Identical

Fish238 Fish238 Identical

Fish144 Fish238 Not Identical

Fish479 Fish479 Identical

Fish449 Fish65 Not Identical

Fish305 Fish84 Not Identical

Although not directly comparable, Zhao et al. [44] showed an accuracy of 0.649 and
0.740 on images from the TROUT39 dataset in their publication. This was around the same
as the proposed method, which had an accuracy of 0.718 (Table 2). It is important to note
that the method from Zhao et al. only used the head region of the brown trouts, while our
identification method was based on the entire brown trout.

The results indicated that our method is able to perform even when the testing data
are significantly different from the training data. The TROUT39 dataset was different from
the NINA204 set, as the images were taken outside of the water, making the testing data
different from the training data. Despite this, our identification method was able to achieve
an accuracy of 0.718.

A comparison to other applications where re-identification was used showed that
our accuracy of 0.974 for T + 0 and 0.874 for T + 5 in the NINA204 dataset and 0.718 for
TROUT39 was similar to that obtained for other animals. The method used in [54] obtained
an accuracy of 0.92 for chimpanzees, while [55] obtained 0.938 for individual lemurs, 0.904
and for golden monkeys, and 0.758 for chimpanzees.
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Table 5. Randomly chosen sample fish in NINA204 dataset that were incorrectly recognized.

Fish ID Images Predicted

Fish 1 Fish 2 Image 1 Image 2

Fish298 Fish298 Not Identical

Fish248 Fish59 Identical

Fish293 Fish293 Not Identical

Fish183 Fish541 Identical

Fish71 Fish71 Not Identical

Fish299 Fish299 Not Identical

Fish438 Fish539 Identical

Fish153 Fish448 Identical

Our approach was non-invasive, avoiding the limitations of capture–mark–recapture
methods. Being able to identify individual fish automatically from photos can be seen as
desirable due to its lower cost and reduced workload, compared to, for example, capture
and re-capture methods. However, criticism exists in regard to density estimation from
camera traps, especially for animals that lack obvious natural markings [56]. This was
also the case for the proposed identification method, in that it required fish species with
natural markings. Automatic methods, if robust, can be a way to complement visual
identification by humans. Identification by observers using camera traps can have inter-
observer variation [57]. Misidentification due to subjective natural markers has also been
stated as a problem [56].

Such a non-invasive system has potential in the monitoring of fish, for example,
migration patterns, or to be used to analyze behavior. The proposed method could allow
one to analyze the behavior of individuals, for example, being able to detect the number
of times a specific fish passes downstream or upstream in a fish ladder. It could also be
useful for monitoring weight growth patterns and health conditions, which are crucial for
optimizing cultivation factors such as temperature, fish density, and breeding frequency. It
can also be used for population estimation, as it can be used to avoid counting the same
fish multiple times.

Future work should include an evaluation of this method using additional video
data sets. In the NINA204 dataset, images are extracted from a video clip within a time-
limited section. Investigating how robust the method is to longer time intervals is a natural
extension of this work. The dataset used can be seen as limited compared to what is used
for evaluation in other computer vision tasks, and a larger dataset would strengthen the
evaluation. Future work may also include the additional evaluation of the identification
method using both brown trouts and other species such as European grayling, Thymallus
thymallus) or European whitefish, Coregonus lavaretus. Additional work could also be



Appl. Sci. 2021, 11, 9039 10 of 12

carried out to make it more robust to different water turbidity levels. One can also study
the method of combining deep learning abstract features with traditional manual features.

5. Conclusions

In this paper, we developed a deep convolutional architecture for the identification of
individual fish. We employed a deep multi-scale bidirectional feature pyramid network
to capture low-level features and high-level semantic components for embedding space
representation. Based on the pyramid matching strategy, we designed a metric learning
feature representation to capture robust representation to solve the fish identification
problem. We demonstrated the effectiveness and promise of our method by reporting
extensive evaluations on two different datasets containing brown trouts, Salmo trutta. In the
NINA204 dataset, comparisons were made in the same environment, while in the TROUT39
dataset, comparison was made between different environments.
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