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We derive on-shell recursion relations for nonrelativistic effective field theories (EFTs) with enhanced 
soft limits. The recursion relations are illustrated through analytic calculation of tree-level scattering 
amplitudes in theories with a complex Schrödinger-type field, real scalar with linear dispersion relation, 
and real scalar with Lifshitz-type dispersion relation. Our results show that the landscape of gapless 
nonrelativistic EFTs with local S-matrix can be constrained by soft theorems and the consistency of the 
low-energy S-matrix similarly to massless relativistic EFTs.
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1. Introduction

On-shell recursion is a procedure to determine all scattering 
amplitudes in a theory recursively from a finite set of “seed” am-
plitudes. It plays a central part in the modern S-matrix program 
where physical and mathematical properties of scattering ampli-
tudes are used to construct the S-matrix directly without the 
aid of a Lagrangian. Originally developed in the context of gauge 
theory by Britto, Cachazo, Feng and Witten (BCFW) [1], on-shell 
recursion was soon generalized to gravity theories [2], string the-
ory [3], generic renormalizable and some nonrenormalizable the-
ories [4]. More recently, there has also been progress towards an 
on-shell formulation of scattering amplitudes in effective field the-
ories (EFTs) [5–8].

Beyond providing an efficient tool for calculating scattering am-
plitudes, recursion relations have also been successfully utilized 
as a framework to explore and classify the landscape of possible 
EFTs [8–11]. This connects to the newly emerging paradigm that 
seeks to define quantum (effective) field theory without reference 
to a Lagrangian. While the basic principles underlying this pro-
gram are mere locality and unitarity, the bulk of work done so far 
has focused on the sector of Lorentz-invariant field theories.1 Yet, 
recent years have witnessed the EFT framework claiming a much 
larger territory than originally conceived. The range of novel ap-
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1 The only exceptions we are aware of include several recent works in a cos-

mological context, limited to EFTs with Lorentz-invariant kinematics but Lorentz-
breaking interactions [12], and a specific application of recursion techniques to 
scattering of phonons in Navier-Stokes fluids [13].
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SCOAP3.
plications of quantum field theory without Lorentz invariance now 
stretches from nonrelativistic gravity [14] and spacetime geome-
try [15] to previously unthinkable exotic phases of quantum matter 
(see e.g. Refs. [16,17] and references therein).

Should the modern scattering amplitude program provide new 
fundamental insight into the very nature of quantum field theory, 
it therefore seems mandatory to extend the scope of discussion by 
giving up on Lorentz invariance altogether. The aim of the present 
letter is to initiate the exploration of this new terra incognita. Our 
main result is that the existing on-shell recursion approach to EFT 
can be modified to nonrelativistic EFTs with rotationally-invariant 
gapless kinematics, where energy is proportional to an in principle 
arbitrary (integer) power of momentum. We demonstrate this by 
explicit examples of EFTs for a complex Schrödinger scalar and a 
real Lifshitz scalar.

The plan of the text is as follows. In the remainder of this sec-
tion, we first briefly overview the BCFW recursion approach and 
its modification applicable to EFTs, and then outline the landscape 
of nonrelativistic EFTs relevant to our discussion. Sections 2 and 3
constitute the core of this letter, showing how to set up the recur-
sion procedure for EFTs with nonrelativistic kinematics. An integral 
part of the text is section 4 where we work out three examples.

1.1. BCFW on-shell recursion

A central idea of the on-shell recursion technology is to pro-
mote n-particle on-shell amplitudes An to meromorphic functions 
by complexifying external momenta in a way that preserves both 
on-shellness and conservation of energy and momentum. In the 
BCFW recursion, two selected external momenta, pi and p j , are 
shifted,
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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p̂i ≡ pi + zq, p̂ j ≡ p j − zq, z ∈C. (1)

(Shifted quantities are denoted with a hat.) The auxiliary momen-
tum q must satisfy the on-shell conditions q2 = pi · q = p j · q = 0. 
In four spacetime dimensions, it is thus fixed up to rescaling. At 
tree level, the complexified amplitude Ân(z) is a rational function 
of z. The original, physical amplitude An = Ân(0) can be recovered 
by

An = 1

2π i

∮
dz

Ân(z)

z
, (2)

where the integration contour is an infinitesimal circle enclosing 
the origin of the complex plane. Cauchy’s theorem and factoriza-
tion then relate the physical amplitude An to lower-point ampli-
tudes in the following way,

An = −
∑

I

Res
z=zI

Ân(z)

z
+ Bn

=
∑

I

Â(I)
L (zI ) Â(I)

R (zI )

P 2
I

+ Bn. (3)

The sum runs over all factorization channels I where the lower-
point amplitudes Â(I)

L and Â(I)
R contain one of p̂i , p̂ j each. More-

over, P I is the intermediate momentum evaluated at z = 0, and zI

is fixed by the on-shell condition P̂ 2
I (zI ) = 0 to zI = −P 2

I /(2P I · q). 
Finally, Bn denotes the contribution of the residue of the pole at 
z = ∞. The validity of the recursion relies on the latter either van-
ishing or being calculable.2

The above approach does not extend straightforwardly to low-
energy EFTs. Technically, the problem is that the derivative cou-
plings of EFTs imply polynomial growth of scattering amplitudes 
at large z, and thus preclude the standard recursion procedure. A 
different kind of complexification of the kinematical phase space 
is needed.

1.2. On-shell recursion for EFTs

The deeper reason why BCFW recursion fails for EFTs is that 
factorization alone is not sufficient to relate higher-point EFT am-
plitudes to lower-point ones; more information is needed. Since 
the form of an EFT is largely dictated by symmetries, it is hardly 
surprising that the additional input comes from symmetry (break-
ing).

Spontaneous symmetry breaking constrains the scattering am-
plitudes of the associated Nambu-Goldstone (NG) boson(s) in the 
“(single) soft limit,” in which the momentum of one of the par-
ticles participating in the scattering process vanishes. This limit 
can be probed by rescaling the momentum of the chosen parti-
cle, pi , as pi → εpi , and taking the scaling parameter ε to zero. 
The asymptotic behavior of the amplitude An is characterized by a 
single scaling exponent,

An ∝ εσi , ε → 0. (4)

As a rule, albeit not without exceptions [11], spontaneous symme-
try breaking ensures that σi ≥ 1; this fact is known as “Adler’s 
zero.” Theories where σi is larger than naively expected from 
counting derivatives in the Lagrangian are dubbed “exceptional.” 
The landscape of Lorentz-invariant exceptional EFTs is very strongly 
constrained [8,19,20]. Single-flavor scalar exceptional EFTs were 
the first effective theories shown to be on-shell constructible [6]

2 Calculating Bn is a challenging problem that has been considered in several 
contexts [18].
2

by a modification of the BCFW recursion procedure known as “soft 
recursion.”

In the soft recursion procedure, all external momenta are 
shifted,

p̂i ≡ pi(1 − ai z), z ∈C, (5)
n∑

i=1

ai pi = 0, (6)

where Eq. (6) is imposed by energy and momentum conservation. 
Nontrivial solutions for the coefficients ai exist for generic kine-
matical configurations when n ≥ D + 2, where D is the spacetime 
dimension. The soft limit for the i-th particle can then be accessed 
by taking z → 1/ai .

In order to be able to apply Cauchy’s theorem, one modifies the 
behavior of the complexified amplitude Ân(z) at large z by dividing 
it by the factor

Fn(z) ≡
n∏

i=1

(1 − ai z)
σi . (7)

For exceptional EFTs, this is sufficient to ensure vanishing of the 
boundary term Bn [6]. At the same time, the scaling (4) of the 
amplitude in the soft limit guarantees that adding Fn(z) does not 
create any new poles in Ân(z). One can then reconstruct the phys-
ical amplitude An = Ân(0) similarly to the BCFW recursion,

An = 1

2π i

∮
dz

Ân(z)

zFn(z)
= −

∑
I

Res
z=z±

I

Ân(z)

zFn(z)
, (8)

where each factorization channel I now gives rise to two poles 
z±

I corresponding to solutions of the shifted on-shell condition 
P̂ 2

I (z) = 0. These are given explicitly by

z±
I = 1

Q 2
I

[
P I · Q I ±

√
(P I · Q I )2 − P 2

I Q 2
I

]
, (9)

where P I ≡ ∑
i∈I

pi and Q I ≡ ∑
i∈I

ai pi . Factorization together with 

Eq. (8) then imply the recursion formula [6]

An =
∑

I

Â(I)
L (z−

I ) Â(I)
R (z−

I )

P 2
I

(
1 − z−

I

z+
I

)
Fn(z−

I )

+ (z−
I ↔ z+

I ). (10)

1.3. Nonrelativistic EFTs

The theories we will focus on in this letter live in a flat space-
time of D ≡ d + 1 dimensions. They enjoy invariance under space-
time translations and d-dimensional spatial rotations. This is a 
fairly general setup that admits, if desired, a variety of kinematical 
algebras [21]. The latter include the static (or Aristotelian) algebra 
containing no boosts whatsoever, and the Poincaré, Galilei (and its 
central extension, Bargmann) and Carroll algebras featuring differ-
ent implementations of the relativity principle.

The NG modes stemming from spontaneous breakdown of 
global symmetry in such theories can be classified into two fam-
ilies, referred to as type Am and type B2m with positive integer 
m [22]. A NG mode from the first family is described by a real 
scalar field with dispersion relation ω2 ∝ p2m . A NG mode from 
the second family, on the other hand, is described by two real 
scalar fields (or one complex scalar) forming a canonically con-
jugated pair with dispersion relation ω ∝ p2m .

Whether or not NG modes belonging to the Am and B2m fami-
lies can exist in a given spatial dimension d is constrained by the 
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nonrelativistic version of the Coleman-Hohenberg-Mermin-Wagner 
(CHMW) theorem [23,24]. In short, at zero temperature, a NG bo-
son of type Am may exist only if m < d. For fixed m, this in turn 
gives a lower bound on the dimension of space d. On the contrary, 
type B2m NG modes are not constrained at all and can exist, at 
zero temperature, for any positive d and m.

It was observed early on [19] that the enhanced scaling (4) of 
scattering amplitudes in exceptional EFTs is a consequence of hid-
den symmetry. Motivated by this observation, one of us mapped 
in Ref. [25] the landscape of nonrelativistic EFTs that admit such a 
hidden symmetry. We will show in a forthcoming paper that un-
like in the Lorentz-invariant case, this is in fact not sufficient to 
guarantee that a given EFT is exceptional. The catalogue of candi-
date EFTs compiled in Ref. [25] will nevertheless serve as a useful 
guide for construction of explicit examples of nonrelativistic EFTs 
via recursion in section 4. We will thus be able to give examples of 
theories of the A1, A2 and B2 type. Before doing so, we however 
first need to establish the soft recursion procedure for nonrelativis-
tic EFTs. This is the subject of the next two sections.

2. Momentum deformation in nonrelativistic EFTs

In this section, we introduce the momentum shifts needed for 
soft recursion. In contrary to the relativistic momentum shift in 
Eq. (5), we first shift the spatial momenta pi only, and then use the 
on-shell condition to define an appropriate shift of the energies.

2.1. Soft shifts for type B2m theories

The following shifts respect the on-shell condition for type B2m

theories,

p̂i ≡ pi(1 − ai z), (11)

p̂0
i ≡ p̂2m

i = p2m
i (1 − ai z)

2m. (12)

Momentum and energy conservation then impose respectively the 
following constraints on the ai coefficients,

n∑
i=1

aiei pi = 0, (13)

n∑
i=1

(1 − zai)
2mei p2m

i = 0. (14)

Here ei denotes a sign, chosen so that ei = +1 for particles in the 
final state and ei = −1 for particles in the initial state. Similarly 
to the relativistic case reviewed in section 1.2, the existence of 
nontrivial solutions to Eq. (13) requires n ≥ d + 2. Equation (14)
then imposes 2m additional constraints. Only amplitudes with 
n ≥ d + 2 + 2m may therefore be reconstructed using soft recur-
sion. For given d and m, this tells us how many seed amplitudes 
we need to initiate the recursion procedure.

2.2. Soft shifts for type Am theories

For type Am theories we define analogously

p̂i ≡ pi(1 − ai z), (15)

p̂0
i ≡ |(p2m

i )1/2|(1 − ai z)
m, (16)

which preserves on-shellness and yields the following constraints 
from momentum and energy conservation,
3

n∑
i=1

aiei pi = 0, (17)

n∑
i=1

(1 − zai)
mei |(p2m

i )1/2| = 0. (18)

Analogously to the type B2m case, the existence of nontrivial solu-
tions for ai requires n ≥ d +2 +m > 2 +2m, where the last inequal-
ity follows from the nonrelativistic CHMW theorem. For the special 
case of m = 1, which includes the family of Lorentz-invariant the-
ories, the above constraints become equivalent to Eq. (6) and we 
recover the relativistic bound n ≥ d + 3 = D + 2.

Note that for both type Am and type B2m theories, the manifold 
of solutions for the ai coefficients is invariant under overall rescal-
ing, ai → λai , and overall shift, ai → ai + c. This guarantees that in 
the special case of type A1 theories where all the constraints on ai
are linear, possible solutions for ai span an affine space.

3. Soft recursion

We argued in section 1.2 that for relativistic exceptional EFTs, 
recursion relations among scattering amplitudes may be set up us-
ing Eq. (8). Since the argument only depends on the assumed soft 
behavior of An , factorization and vanishing of the boundary term, 
it can be generalized to any theory with these properties. Specifi-
cally, for theories of type Am and B2m we obtain

An = −
∑

I

2m∑
i=1

Res
z=zi

I

Ân(z)

zFn(z)
. (19)

Here zi
I , i = 1, . . . , 2m are solutions to the on-shell condition, 

which is of algebraic order 2m in z,(
P̂ 0

I

)2 − P̂
2m
I = 0 for Am, (20)

P̂ 0
I − P̂

2m
I = 0 for B2m, (21)

for a given factorization channel I , where compared to Eq. (10), P I

is now defined with the appropriate signs ei where necessary. Fac-
torization then implies that the amplitude (19) can be expressed 
in terms of lower-point amplitudes,

An = −
∑

I

2m∑
i=1

Res
z=zi

I

Â(I)
L (z) Â(I)

R (z)

zFn(z)D(I)(z)
, (22)

where

D(I)(z) = (
P̂ 0

I

)2 − P̂
2m
I for Am, (23)

D(I)(z) = P̂ 0
I − P̂

2m
I for B2m. (24)

Notice that the contribution from factorization channel I in 
Eq. (22) matches the residue at z = zi

I of the following meromor-
phic function

Â(I)
L (z) Â(I)

R (z)

zFn(z)D(I)(z)
. (25)

This function can also have nonvanishing residues at z = 1/ai and 
z = 0. This follows from the fact that the intermediate propaga-
tor D(I)(z), hence also the subamplitudes Â(I)

L (z) and Â(I)
R (z), is 

off-shell for z 
= zi
I . The on-shell argument implying that the soft 

behavior of the amplitudes dictated by Eq. (4) cancels the zeros of 
Fn(z) is then no longer valid. In the special case where Â(I)

L (z) and 
Â(I)

(z) are both local functions of momenta (that is, they have no 
R
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poles) we can apply Cauchy’s theorem to the meromorphic func-
tion in Eq. (25) and recast the amplitude (22) in terms of a sum 
over residues at z = 0 and z = 1/ai ,

An =
∑

I

Â(I)
L (0) Â(I)

R (0)

D(I)(0)

+
∑

I

n∑
i=1

Res
z=1/ai

Â(I)
L (z) Â(I)

R (z)

zFn(z)D(I)(z)

≡ Ach
n + Act

n . (26)

This expression is particularly useful for concrete applications. In 
terms of Feynman diagrams, the first term corresponds to the sum 
over diagrams with an internal propagator, whereas the second 
(double) sum encodes contributions from n-point contact opera-
tors. The two different types of contributions are distinguished by 
the notation introduced in the last line of Eq. (26).

3.1. Validity criterion

Thus far we have simply assumed that the boundary term 
Bn vanishes. A sufficient condition for this to happen is that 
Ân(z)/Fn(z) → 0 as z → ∞. A criterion for the latter was in turn 
given by Elvang et al. in Ref. [9]. Their argument only relies on di-
mensional analysis, the soft behavior of An , the analytic structure 
of tree-level amplitudes, and the freedom to shift all ai by an over-
all constant. Since the latter property survives in all type Am and 
B2m theories, as shown in section 2, it is easy to adapt the argu-
ment of Ref. [9] for our purposes.

We start with a generic expression for the n-point tree-level 
amplitude,

An =
∑

j

(∏
k

g
n jk

k

)
M j, (27)

where M j are functions of momenta and gk are coupling constants 
associated with fundamental operators in the Lagrangian. Funda-
mental operators are defined in turn as the lowest-dimension op-
erators whose on-shell matrix elements are needed to derive, at 
the leading-order in the low-energy expansion, any tree-level am-
plitude in the theory by recursion. Following the line of reasoning 
of Ref. [9] then leads to the generalized validity criterion

[An] − min
j

(∑
k

n jk[g j]
)

−
n∑

i=1

σi < 0, (28)

where square brackets indicate scaling dimension with respect to 
a uniform rescaling of all the momenta pi . It is easy to check that 
the criterion (28) is satisfied by all the example theories presented 
in the next section.

4. Example calculations

We will now work out three simple analytical examples of re-
cursive reconstruction of scattering amplitudes in theories of type 
B2, A1 and A2, respectively. All three sample theories feature tree-
level amplitudes with soft scaling σi = 2. Yet, each of the theories 
possesses Lagrangian representations with less than two deriva-
tives per field, which means that they possess enhanced soft limits. 
We will show in a forthcoming paper that the enhanced scaling 
of scattering amplitudes in these theories is a consequence of an 
interplay of spontaneously broken symmetry and dispersion rela-
tions of NG bosons. Each of the three theories contains just one 
4

physical NG mode. Since we no longer have to distinguish differ-
ent σi for different particles participating in the scattering process, 
we introduce a shorthand notation replacing Eq. (7),

F (σ )
n (z) ≡

n∏
i=1

(1 − ai z)
σ . (29)

4.1. B2: Schrödinger-DBI theory

Our first example features a complex scalar field � endowed 
with the action

S =
∫

dt ddx
(
�†i∂0� + √

G − 1
)
, (30)

G ≡ 1 − 2∇� · ∇�† + (∇� · ∇�†)2

− (∇� · ∇�
)(∇�† · ∇�†). (31)

This is a minimal nonrelativistic modification of one of the very 
few relativistic single-flavor exceptional theories [19]: the Dirac-
Born-Infeld (DBI) theory. We therefore name it the “Schrödinger-
DBI” (SDBI) theory.

Our SDBI theory can be interpreted as describing fluctuations 
of a d-dimensional brane embedded in a (d + 2)-dimensional Eu-
clidean space. The symmetry of the SDBI action (30) is accordingly 
R × ISO(d + 2), with the first factor of R corresponding to time 
translations [25]. This symmetry is spontaneously broken down 
to R × ISO(d) × SO(2) by the presence of the brane, and the 
real and imaginary parts of � correspond to NG fields of sponta-
neously broken translations in the two extra dimensions. The term 
in Eq. (30) with a single time derivative is only invariant under 
the full symmetry up to a surface term. It is thus an example of a 
Wess-Zumino-Witten (WZW) term.

The action (30) fixes all tree-level amplitudes. We will now 
demonstrate that the recursion formula (26) correctly reproduces 
the six-point amplitude starting from the seed four-point ampli-
tude. In fact, the argument of section 2.1 limits the validity of 
the recursion for n = 6 to d ≤ 2 spatial dimensions. However, the 
amplitudes An as functions of the momenta pi do not depend ex-
plicitly on d. Whatever analytic relations between the amplitudes 
we find will therefore be independent of d as well. One may think 
of this as carrying out the recursive step from A4 to A6 in d = 2 di-
mensions, and then analytically continuing the result to any value 
of d of interest.

To make the calculation transparent, we first explicitly list the 
relevant parts of the Lagrangian,

L2 = �†(i∂0 + ∇2)�, (32)

L4 = −1

2

(∇� · ∇�
)(∇�† · ∇�†), (33)

L6 = −1

2

(∇� · ∇�
)(∇� · ∇�†)(∇�† · ∇�†). (34)

Charge conservation dictates that the numbers of incoming and 
outgoing Schrödinger scalars must match in any scattering pro-
cess. We use the convention that the particles labeled 1, . . . , n/2
are incoming, whereas the particles n/2, . . . , n are outgoing. The 
seed on-shell four-point amplitude then follows immediately from 
Eq. (33) as

A4 = 2(p1 · p2)(p3 · p4). (35)

We are now ready to derive the six-point amplitude by recur-
sion. We will use the indices a, b, c to label a permutation of the 
incoming particles and d, e, f a permutation of the outgoing par-
ticles such that a, b, f are on the same side of the factorization 
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channel. We can then identify the nine factorization channels in 
terms of c and f alone,

I = {(c, f )} = {(14), (15), (16), (24), (25), (26),

(34), (35), (36)}. (36)

Energy and momentum conservation fix the parameters of the in-
termediate propagator for each factorization channel,

P I ≡ pa + pb − p f = pd + pe − pc, (37)

1

2

(
P 0

I − P 2
I

)
= −pa · pb − p f · p f + pa · p f + pb · p f

= −pd · pe − pc · pc + pd · pc + pe · pc.

The channel contribution Ach
6 as defined by Eq. (26) reads

Ach
6 = 4

∑
I

(pa · pb)(pd · pe)(pc · P I )(p f · P I )

P 0
I − P 2

I

(38)

=
∑

σ ,ρ∈S3

(pσ (1) · pσ (2))(pρ(4) · pρ(5))(pσ (3) · kσρ)(pρ(6) · kσρ)

k0
σρ − k2

σρ

,

where σ and ρ denote respectively permutations of {1, 2, 3} and 
{4, 5, 6}, and we have used the shorthand notation

kσρ ≡ pσ (1) + pσ (2) − pρ(6). (39)

The second line of Eq. (38) is manifestly equal to the Feynman 
diagram expression one obtains from Eq. (33).

Similarly, the contact contribution to the six-point amplitude 
follows from Eq. (26) as

Act
6 = 4

∑
I

6∑
i=1

Res
z=zi

(p̂a · p̂b)(p̂d · p̂e)(p̂c · P̂ I )(p̂ f · P̂ I )

zF (2)
6 (z)

(
P̂ 0

I − P̂
2
I

)
≡ −2

∑
I

6∑
i=1

f (zi). (40)

The residues at zi ≡ 1/ai for a given factorization channel can be 
rewritten as

f (za) = Res
z=za

(p̂a · p̂b)(p̂d · p̂e)(p̂c · p̂ f − p̂c · p̂b)

zF (2)
6 (z)

,

f (zb) = Res
z=zb

(p̂a · p̂b)(p̂d · p̂e)(p̂c · p̂ f − p̂c · p̂a)

zF (2)
6 (z)

,

f (zc) = Res
z=zc

(p̂a · p̂b)(p̂c · p̂d + p̂c · p̂e)(p̂d · p̂ f + p̂e · p̂ f )

zF (2)
6 (z)

,

f (zd) = Res
z=zd

(p̂a · p̂b)(p̂d · p̂e)(p̂c · p̂ f − p̂e · p̂ f )

zF (2)
6 (z)

,

f (ze) = Res
z=ze

(p̂a · p̂b)(p̂d · p̂e)(p̂c · p̂ f − p̂d · p̂ f )

zF (2)
6 (z)

,

f (z f ) = Res
z=z f

(p̂d · p̂e)(p̂a · p̂c + p̂b · p̂c)(p̂a · p̂ f + p̂b · p̂ f )

zF (2)
6 (z)

.

After substituting the expressions above into Eq. (40), collecting 
the contributions to the residue at each zi from all factorization 
channels, and using (shifted) momentum conservation, we obtain
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ct
6 = − 1

2

6∑
i=1

Res
z=zi

1

zF (2)
6 (z)

(41)

×
∑

σ ,ρ∈S3

(p̂σ (1) · p̂σ (2))(p̂σ (3) · p̂ρ(4))(p̂ρ(5) · p̂ρ(6)).

final application of Cauchy’s theorem yields

ct
6 = 1

2

∑
σ ,ρ∈S3

(pσ (1) · pσ (2))(pσ (3) · pρ(4))(pρ(5) · pρ(6)), (42)

hich is manifestly equal to the contribution from the contact 
rm in Eq. (34).

2. A1: spatial Galileon

Our second example includes a whole class of Lagrangians of a 
al scalar field φ,

= 1

2
(∂μφ)2 +

d+1∑
n=3

cnφGn−1, (43)

here cn are real coupling constants and Gn is a polynomial of 
der n in the second spatial derivatives of φ,

n ≡ 1

(d − n)!ε
i1···inkn+1···kdε

j1··· jn
kn+1···kd

× (∂i1∂ j1φ) · · · (∂in∂ jnφ). (44)

is is a nonrelativistic version of another type of a relativis-
 single-flavor exceptional theory [19]: the Galileon. As opposed 
 the usual, Lorentz-invariant Galileon theory [26], the interac-
n part of Eq. (43) contains only spatial derivatives of φ. We 

erefore dub it “spatial Galileon.” The action (43) is invariant un-
r polynomial shifts of φ of first order in spatial coordinates, 
→ φ + α + β · x. This spatial version of the usual Galileon sym-
etry is a special case of a class of “multipole algebras” that have 
cently attracted attention in the context of fracton physics [16]. 
l interaction terms in Eq. (43) as well as the spatial part of the 
netic term are of the WZW type [27].

Since the spatial Galileon is a type A1 theory, the validity of 
e recursion is limited to n-point amplitudes with n ≥ d + 3, as 
own in section 2.2. For illustration, we will now restrict Eq. (43)
 the quartic interaction term and show how to reconstruct the 
x-point amplitude. This requires setting d = 3, since for d < 3 the 
artic spatial Galileon interaction does not exist.
It is convenient to express the Feynman rule for the n-point 

atial Galileon vertex as [28]

n(p1, . . . , pn) = c′
n

∑
σ∈Zn

G(pσ (1), . . . , pσ (n−1)), (45)

here G(p1, . . . , pn−1) is the Gram determinant, that is the de-
rminant of the (n − 1) × (n − 1) matrix with entries pi · p j . 
portantly, the Gram determinant is a symmetric, homogeneous 
lynomial of order two in all its arguments,

(λp1, . . . , pn−1) = λ2G(p1, . . . , pn−1). (46)

e to momentum conservation in the vertex, all the contribu-
ns to the sum in Eq. (45) are then equal and we can write 

n = nc′
nG(p1, . . . , pn−1).

The six-point amplitude is now determined in terms of the 
ur-point seed amplitude by Eq. (26),
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A6 =
∑

I

{
A(I)

4L A(I)
4R

(P 0
I )

2 − P 2
I

+
6∑

i=1

Res
z=1/ai

Â(I)
4L (z) Â(I)

4R(z)

zF (2)
6 (z)

[
( P̂ 0

I )
2 − P̂

2
I

]
}

. (47)

For a generic permutation σ of the external momenta, the numer-
ator in the last term can be cast as

V 4(p̂σ (1), p̂σ (2), p̂σ (3), P̂ I )V 4(p̂σ (4), p̂σ (5), p̂σ (6), P̂ I )

= (4c′
4)

2G(p̂σ (1), p̂σ (2), p̂σ (3))G(p̂σ (4), p̂σ (5), p̂σ (6)). (48)

The scaling property (46) of the Gram determinant then ensures 
that the denominator factor F (2)

6 (z) in Eq. (47) is canceled. Thus, 
all the residues inside the second sum in Eq. (47) vanish and only 
the first, “channel” term therein survives. This is manifestly equal 
to the expression for A6 one obtains using Feynman diagrams.

4.3. A2: Lifshitz scalar with polynomial shift symmetry

Our final example is a so-called z = 2 Lifshitz theory, which 
possesses the following kinetic term,

L2 = 1

2
(∂0φ)2 − 1

2

(
∇2φ

)2
. (49)

This Lagrangian is strictly invariant under the spatial Galileon 
symmetry.3 We can thus add the spatial Galileon interactions in 
Eq. (43) to it. The ensuing theory can be viewed as a fine-tuned 
version of the spatial Galileon where the usual kinetic term pro-
portional to (∇φ)2 is set to zero.

This is a type A2 theory, so the validity of the recursion is lim-
ited to n-point amplitudes with n ≥ d + 4 as shown in section 2.2. 
At the same time, the CHMW theorem requires that d > 2. We 
thus cannot reconstruct the six-point amplitude by recursion. We 
can however consider a seed five-point vertex and use recursion to 
reconstruct the eight-point amplitude. This requires setting d = 4, 
since for d < 4 the quintic spatial Galileon does not exist.

Following the same steps as in the previous example, Eq. (26)
then gives the following result for the eight-point amplitude,

A8 =
∑

I

A(I)
5L A(I)

5R

(P 0
I )

2 − P 4
I

, (50)

which agrees with the Feynman diagram expression.

5. Outlook

We have derived recursion relations for nonrelativistic EFTs 
with enhanced soft limits. To the best of our knowledge, this is the 
first time that on-shell constructibility for theories without Lorentz 
invariance has been shown.

Beyond providing a new tool for calculating explicit tree-level 
amplitudes in specific field theories, soft recursion is a key ingre-
dient in the “soft bootstrap” program, which explores and classifies 
the space of possible EFTs. In a paper soon to appear, we will 
carry out a more detailed classification of possible seed ampli-
tudes. When combined with soft recursion, this will allow us to 
perform a scan of the landscape of nonrelativistic EFTs, improving 
on our previous symmetry-based study [25].

Our recursion relations can also be applied to theories with uni-
versal albeit not necessarily vanishing soft behavior by following 

3 Lifshitz scalars with polynomial shift symmetries have been classified in 
Refs. [22,29] and shown to exhibit rich and surprising features that shed new light 
on the concept of naturalness in nonrelativistic quantum field theory [22,23].
6

the line of reasoning in Ref. [7]. This would require new soft the-
orems for NG boson amplitudes [11], an avenue we leave open for 
future work.
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[14] P. Hořava, Phys. Rev. D 79 (2009) 084008;
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