
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Truls Kjøsnes Olsen

Modeling and Analysis of a Dynamic
Positioning System for a Wave Energy
Converter

Master’s thesis in Engineering Cybernetics
Supervisor: Morten D. Pedersen

June 2021M
as

te
r’s

 th
es

is





Truls Kjøsnes Olsen

Modeling and Analysis of a Dynamic
Positioning System for a Wave Energy
Converter

Master’s thesis in Engineering Cybernetics
Supervisor: Morten D. Pedersen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Abstract
Waveco is developing a new wave energy converter with two components,
an underwater turbine attached to a buoy on the ocean surface that floats
in the waves. The buoy’s motion then moves the turbine up and down deep
below the wave zone, generating power.

However, there are concerns about ocean currents affecting the turbine drag-
ging the turbine away from its wanted position under the buoy. In this thesis,
a nonlinear model is developed for the wave energy converter to characterize
stability and provide recommendations for the aforementioned highly non-
linear and adverse effects on the system.

The model is Lagrangian based, with hydrodynamical forces modeled with
Morison equations in both heave and surge, and the inertia force is integrated
across the submerged volume of the buoy. Control force is then generated
with a set of wings attached to the turbine. A linear model is developed
to design a Linear quadratic regulator to control the force generated from
the wings to steer the turbine back to its wanted position. The model is
simulated with realistic conditions using numerical simulation to study the
feasibility of the system.





Sammendrag
Waveco utvikler et nytt type bølgekraftverk bestående av to deler, en under-
vanns turbin festet til en bøye som flyter på havoverflaten og følger bølgenes
bevegelse. Bøyens bevegelse beveger dermed turbinen som flyter dypt under
bølgesonen og skaper dermed energi.

Det foreligger bekymringer om at havstrømmer kommer til å påvirke tur-
binen og dra den bort fra den ønskede posisjonen under bøyen. Denne
avhandlingen utvikler en ulineær modell for bølgekraftverket for å karak-
terisere dets stabilitet og gi en anbefalinger for det nevnte høyst ulineære
systemet og de påvirkende effektene på systemet.

Modellen er Lagrangian basert, med hydrodynamiske krefter modellert ved
Morison likningene i to dimensjoner. Treghetskraften blir funnet ved hjelp
av integrasjon over dent nedsenkede volumet til bøyen. Styringskraft blir
skapt ved to vinger festet på turbinen. En liner modell blir utviklet for å de-
signe en Linear Quadratic regulator, som blir bruk til å regulere styringskraften
fra vingene for å styre turbinen tilbake til ønsket posisjon. Modellen blir så
numerisk simulert under realistiske kondisjoner for å utforske gjennomfør-
barheten til systemet.
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Chapter 1

Introduction

The company Waveco is developing a Wave Energy Converter(WEC). How-
ever, there are concerns that the system might be affected by ocean currents
that would negatively impact the system dynamics, that is, might drag the
system out of position and affecting its ability to generate power optimally.
Throughout this thesis, a model is built to investigate these concerns and
potentially mitigate them.

1.1 Waveco’s Underwater Turbine
Waveco are investigating a new approach for a WEC as they are developing
an underwater turbine named Subway, intended to be used in different set-
tings to generate power. The basic idea is that they have a long cylindrical-
shaped turbine, with two sets of rotors attached to the body, as seen in
figure 1.1. The two rotors are counter-rotating, and the moment generated
by the rotation as water moves over the blades is used to generate power.
The blades themself are flexible and are attached so that each blade always
rote in the same direction.

Figure 1.1: An illustration of the basic shape of the Subwave turbine.
(Waveco AS)
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2 CHAPTER 1. INTRODUCTION

Waveco envisions a few different applications for their turbine, including a
tidal power generator, where the turbine is mounted horizontal and anchored
down in place, generating power with the changing tidal currents. However,
the two main uses of interest for this thesis are where it is being used in a
vertical configuration. The main idea is that the turbine is attached to a
floating object on the surface that follows the waves’ motions, which move
the turbine up and down, generating power. A ballast weighs down the tur-
bine for stabilizing purposes and makes sure the rope connecting the turbine
to the surface floater is kept tight at all times to avoid unwanted jerk forces.

In this setting, the first product envisioned by Waveco is the Automar
ocean observation buoy, a self-sustaining anchoress observation platform.
It is common for deepwater observation buoys to be free-floating or have
expensive anchoring that increases with depth, making it hard to deploy
an observation buoy that stays in the same location over a long time. The
Automar buoy aims to change this by having a ready-to-deploy solution
that uses a surface vessel equipped with dynamic positioning electric mo-
tors along with the array of sensors needed. The power needed to maintain
the position required overtime is then provided by the attached turbine, as
illustrated in figure 1.2. The turbine then charges the internal battery of
the observation buoy, allowing it to stay put even when there is too low of
a wave profile to generate power while at the same time providing power to
the onboard sensors.

Figure 1.2: The Automar ocean observation buoy system, as seen from
below, attached to the Subway turbine. (Waveco AS)
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The other application turbine is a pure power generating system. It is
imagined that an array of turbines are deployed off the coast, where the
water is so deep that the turbine can float below the wave zone but still
permits anchoring, allowing the turbine itself to avoid being affected by the
wave forces, and it is commonly set in the literature as half a wavelengths
depth [1]. The turbine would be floating under a buoy, with multiple moored
together, and in the end, they would be attached to an anchor point. Both
of these configurations are illustrated in figure 1.3. Here, a proposed idea
is to combine a fleet of Subway turbines with an existing offshore wind
plant, as the necessary infrastructure is already in place. It would allow the
turbines to float between the wind turbines, attaching to their anchoring.
This solution also gives the advantage that the ocean space is used more
efficiently, considering space is a finite resource, improving the power-output
per square kilometer of sea claimed.

Figure 1.3: To the right the Automar buoy and the attached Subway tur-
bine. And to the left multiple Subway systems anchored together in a power
generating configuration.

1.2 Overview of Current Wave Energy Converters
There already exists a wide field of different wave energy converts in various
stages of development. And the history of attempting to harness energy
from waves goes as far back as the 1800s. It did not see renewed interest
before the 1970s and the rising demand for new energy sources. One possible
classification of WECs can be done with regards to the primary way they
extract energy. There are three main groups in this classification: Oscil-
lating water columns, Wave activated bodies and Overtopping. These can
be further broken down into subclasses, but we will look at the main types
briefly here [2].



4 CHAPTER 1. INTRODUCTION

Oscillating water columns work by pressure difference. They are semi-
submerged and open down into the sea, where an air pocket is trapped
inside a chamber connected to the outside atmosphere via a turbine. When
the waves roll in, the air moves to equalize, generating power as it moves
through the turbine.

Then we have wave-activated bodies, probably the largest group of WECs.
This group encompasses a wide range of different shapes and ideas, but the
main principle is that the wave interacts with the body of the WEC to cre-
ate energy. Wavecos Subwave would fall under this category, using heave
translation. Another example would be a tilting device using the surge mo-
tion of the wave to move back and forth with the motions of the wave, as
illustrated in figure 1.4

Lastly, there are overtopping devices. These can be imaged as an open tank,
that when waves come crashing into the sides of them, the water overflows
into the chamber. The water collected then drains out through a turbine,
and generating power.

Figure 1.4: Examples of the three main types of WECs, Oscillating water
columns(left), Wave activated bodies(center) and Overtopping(right)
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1.3 Possible Contributions
• First-principles modeling of a novel wave energy converter Lagrangian

mechanics and classical hydrodynamics.

• A modeling pipeline that could be expanded to add in more degrees
of freedom and forces.

• Development and validation of an optimal control system based on a
linearized model of the system.

• A study of practical feasibility under realistic conditions using numer-
ical simulations of the nonlinear model in closed loop.

• Recommendations addressing the concerns that this thesis is based on
and suggested actions.

1.4 Problem Statement and Structure
The Subwave turbine’s concern is that of ocean currents. The Norwegian
coastal current in the Norwegian sea has speeds as high as over 1 m/s [3],
but are typically characterized by a speed of 0.3 m/s [4]. The drag generated
by these speeds may cause a problem for the turbine as it might get carried
away, causing sub-optimal heave motion or interfering with other equipment
nearby.

This thesis aims to investigate the effect of the current on the turbine and
the possibility to negate the effect of the ocean current drag with a set of
control wings, generating lift force to steer the turbine back into position
using the same heave motion that generates energy. The outline of the thesis
will be

2. Mathematical Modelling - A few assumptions are outlined before a
non-linear kinetic model is made with a Lagrangian approach, and
then the forces acting on the system are added.

3. Linearization and Control - The mathematical model is then simplified
and linearized, such that it is possible to develop a linear controller
for the system.

4. Simulation - The different aspects of the model are thoroughly explored
here, and the controller’s performance is compared to a system without
a controller.

5. Discussion - The model and the results of the simulations are discussed
to see what could be improved upon, recommendations based on the
work are presented while future work is presented.
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Chapter 2

Mathematical Modelling

We start with making a few assumptions of the system that allow us to
build a mathematical model to analyze the system’s behavior and develop
a controller later.

2.1 Assumptions

The system, as mentioned, consists of two parts, a floating surface vehicle
attached to an underwater turbine with a rope. The underwater turbine is
shaped in a tear-drop-like fashion to minimize ocean-current drag and has
a fixed-wing at the back to ensure the turbine always aligns itself with the
ocean currents, as seen in figure 2.1. There are also two controllable wings
attached to the side for control purposes. Originally the intent was to have
more controllable wings around the body to achieve full control in 6-DoF,
as explored in the pre-thesis project. However, the added complexity of this
implementation with 6 controllable wings was found too high, and Waveco
put forward this simpler configuration.

Figure 2.1: The suggested shape of the Subway turbine, with the control
wings and the fixed-wing at the back. (Waveco AS)

7
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When developing the model, a few constraints are imposed on the system
to simplify derivations. By looking at the original concept, a few natural
limitations can be set. We can assume that the turbine is aligning itself with
the ocean current due to its shape. The two sets of turbine blades generate
a slightly different moment. However, the assumption is that the fixed-wing
can dampen this moment. If this is not the case, the control wings could be
used to counter this moment at a later point. When describing the motion
of a craft is common to talk of the 6-DoF, as shown in figure 2.2. However,
due to these constraints, we can limit our model to the 2D xz-plane and
3-DoF in Surge, Heave, and Pitch.
As for the rope connecting the surface vessel and turbine, there are ways of
modeling ropes as a rigid multi-body system [5]. Though, the added com-
plexity of the model would make the overall model hard to develop. Still, it
is safe to assume that the rope is held in tension for normal operating condi-
tions as a ballast weights down the turbine, allowing the rope to be viewed
as a thin massless rod. The ballast is assumed to be placed at the bottom
of the turbine for a low center of gravity. The surface floater is modeled
as a spherical buoy, as this allows for more straightforward hydrodynamic
force calculation without affecting the overall dynamics of the system in
a way that would nullify the results. The turbine propellers would add a
not-insignificant amount of drag force in heave. But we are here interested
in the best case for the control system, so the main drag from the turbine
rotors is neglected.

Heave

Surge

Sway

Yaw

Pitch
Roll

Figure 2.2: The 6 Degrees of Freedom, Surge, Heave, Sway, Roll, Pitch and
Yaw.
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2.2 Kinematics
As the system is connected by the rope, the motion of the turbine is con-
strained to a circle around the buoy with radius l. We view this as a system
with 3 particles, the center of mass and center of buoyancy for the buoy
coincide here are and are viewed as one particle. The other two particles are
the center of buoyancy for the turbine(CB), and lastly, the center of gravity
for the turbine. The turbine’s CB is also the point where the forces affecting
the turbine are calculated. We denominate the position of each particle as

r1 =
[
x
z

]
, r2 =

[
xtb
ztb

]
, r3 =

[
xtg
ztg

]
. (2.1)

If we can express the constraint by an equation on the form,

f(r1, r2, r3, ..., t) = 0 (2.2)

, it is said to be a holonomic constraint, and it introduces two difficulties.
Firstly, the coordinates are no longer independent, and thus the equations
of motion are not. Secondly, the forces of the constraints are not known.
However, both of these can be overcome by introducing generalized coordi-
nates and choosing the Lagrangian approach [6].

l

lb

Figure 2.3: The buoy constricting the motion of the turbine in a circle with
radius l

A general system of particles in the xz-plane without any constraints has
2-DoF, giving 2N independent coordinates. If there exist holonomic con-
straints on the system, we can use these k constraints to eliminate k of the
variables, giving us a system of 2N − k coordinates. We can express this
elimination of dependent coordinates in another way.
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Expressing the dependent variables r with the new generalized coordinates
q as

r1 = r1(q1, q2, ..., qN−k)

...
rN = rN (q1, q2, ..., qN−k),

(2.3)

these equations then contain the constraints in them implicitly. As for the
forces of constraints, they disappear by D’Alembert’s principle. Leading to
Lagrange’s equation

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi,

L = T − U.

(2.4)

T is the system’s kinetic energy, and U is the potential energy of the system.
And Qi is the generalized forces acting on the system, defined as

Qi =
∑
j

Fj ·
∂rj
∂qi

. (2.5)

As noted and seen in figure 2.4, we can represent the system as 3 particles
with 4 generalized coordinates, as we have two constraints in the motions of
the particles. The generalized coordinates are then

γ =


x
z
α
θ

 . (2.6)

Expressing the positions of the particles in the form given in (2.3)

P0 =

[
x
z

]
, P1 =

[
x+ l sin(α) + lb sin(θ)
z − l cos(α)− lb cos(θ)

]
, P2 =

[
x+ l sin(α) + lg sin(θ)
z − l cos(α)− lg cos(θ)

]
. (2.7)

The kinetic energy of the system is then

T =
1

2
m0||Ṗ0||2 +

1

2
m2||Ṗ2||2 +

1

2
Jθ̇2, (2.8)

J, being the moment of inertia for the turbine. The potential energy is

U = −ρVtgP1z +m2gP2z, (2.9)

Vt is the volume of the turbine, while ρ is the density of water. Potential
forces of the buoy are not considered right now but are added on later. The
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α

θ

Fbt

Fgt

P0

P1

P2

lb

lg

x

l

z

SWL

Figure 2.4: The system seen as three different particles kept together by
holonomic constraints.

rope connecting the floater and the turbine is considered massless, and the
moment of the buoy is ignored. The velocity of the points are found as

Ṗ0 =

[
ẋ
ż

]
, Ṗ1 =

[
ẋ+ l cos(α)α̇+ lb cos(θ)θ̇
ż + l sin(α)α̇+ lb sin(θ)θ̇

]
, Ṗ2 =

[
ẋ+ l cos(α)α̇+ lg cos(θ)θ̇
ż + l sin(α)α̇+ lg sin(θ)θ̇

]
.

(2.10)
We then obtain the Lagrangian

L =
1

2
m0(ż

2 + ẋ2) +
1

2
m2(ẋ+ l cos(α)α̇+ lg cos(θ)θ̇)2

+ (ż + l sin(α)α̇+ lg sin(θ)θ̇)2) + 1

2
Jθ̇2ρ

+ Vtρg(z − l cos(α)− lb cos(θ))
−m2g(z − l cos(α)− lg cos(θ)).

(2.11)
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And now solving

d

dt
(
∂L
∂ẋ

)− ∂L
∂x

= Qx,
d

dt
(
∂L
∂ż

)− ∂L
∂z

= Qz,

d

dt
(
∂L
∂α̇

)− ∂L
∂α

= Qα,
d

dt
(
∂L
∂θ̇

)− ∂L
∂θ

= Qθ.
(2.12)

We end up with a system on the form

D(γ)γ̈ +C(γ, γ̇)γ̇ +G(γ) = Q, (2.13)

where

D =


m0 +m2 0 lm2 cos(α) lgm2 cos(θ)

0 m0 +m2 lm2 sin(α) lgm2 sin(θ)
lm2 cos(α) lm2 sin(α) l2m2 llgm2 cos(α− θ)
lgm2 cos(θ) lgm2 sin(θ) llgm2 cos(α− θ) J + l2gm2



C =


0 0 −lm2 sin(α)α̇ −lgm2 sin(θ)θ̇
0 0 lm2 cos(α)α̇ lgm2 cos(θ)θ̇
0 0 0 llgm2 sin(α− θ)θ̇
0 0 −llgm2 sin(α− θ)α̇ 0



G =


0

g((m0 +m2)− Vrρ)
gl(m2 − ρVr) sin(α)
g(lgm2 − lbVrρ) sin(θ)

 .

(2.14)

Generalized forces act on two points of the system: the buoy(P0) and the
CB(P1) of the turbine. The generalized forces acting on P0 are

Qxp0 = F

[
1
0

]
, Qyp0 = F

[
0
1

]
, Qαp0 = F

[
0
0

]
, Qθp0 = F

[
0
0

]
, (2.15)

and on P1 are

Qxp1 = F

[
1
0

]
, Qyp1 = F

[
0
1

]
, Qαp1 = F

[
l cos(α)
l sin(α)

]
, Qθp1 = F

[
lb cos(θ)
lb sin(θ)

]
, (2.16)

or expressed as a matrix

Qp0 =


1 0
0 1
0 0
0 0

 , Qp1 =


1 0
0 1

l cos(α) l sin(α)
lb cos(θ) lb sin(θ)

 . (2.17)
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2.3 Linear Wave Theory
When describing a wave, a few terms are commonly used in the literature [7].
The top of the wave is called the crest, and the lowest point is called the
trough. The wavelength λ is the length from crest to crest. The wave
amplitude ζa is the height from the still water line (SWL) to the crest, while
the wave height H is the height from trough to crest.

λ

H

ζa
z = 0

η(x, t)

z = −d

z

x

SWL

Figure 2.5: The buoy partially submerged in a wave, with submersion depth
zd, position z and wave-height zw.

We also need a mathematical description of the motion of the waves in two
dimensions. When describing waves, it’s common to divide the waves into
what depths of water we are working with, shallow waters, intermediate
water, and deep water, and in this case, we would be at deep water, which
is described as d/λ > 0.5 [8]. We assume that the waves are all traveling
in the same direction. A description of the waves height η(x, t), the waves
velocity, and acceleration field are needed:

η(x, t) = ζa sin(ωt− κx) (2.18)
u = ωζae

κz sin(ωt− κx) (2.19)
w = ωζae

κz cos(ωt− κx) (2.20)
u̇ = ω2ζae

κz cos(ωt− κx) (2.21)
ẇ = −ω2ζae

κz sin(ωt− κx) (2.22)
The horizontal velocity and acceleration are here u u̇, while w and ẇ are the
vertical components. The wavenumber κ and angular frequency ω is related
with

ω =
√
κg. (2.23)

While the wavelength is related with

λ =
2π

κ
. (2.24)
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These equations give us the tools to describe the montion of a regular wave,
a single wave with one frequency and wavelength. A simulation of the wave’s
velocity and acceleration field can be seen in figure 2.6.

0 10 20 30 40 50 60 70

Distance[m]

-5

-4

-3

-2

-1

0

1
D

e
p
th

[m
]

Wave Amplitude
Wave Speed

0 10 20 30 40 50 60 70

Distance[m]

-5

-4

-3

-2

-1

0

1

D
e
p
th

[m
]

Wave Amplitude
Wave Acceleration

Figure 2.6: The wave’s velocity is plotted on the top, with the accompanying
wave elevation. On the bottom, the acceleration of the wave is plotted in
the same fashion.

2.4 Ocean Waves
However, ocean waves are irregular waves, which means that they are a sum
of many wave components, a sum of regular waves:

η(x, t) =
N∑
i=1

ζisin(ωit− κix+ ϵi) (2.25)

ζi,ωi, and κi are elements of the i-th wave, ϵi is the wave’s random phase
angle uniformly distributed between 0 and 2π, and is constant with time.
The irregular waves’ velocity and acceleration can be found in the same
manner:

u =
N∑
i=1

ui, w =
N∑
i=1

wi, u̇ =
N∑
i=1

u̇i, ẇ =
N∑
i=1

u̇i (2.26)

To describe a sea state a wave spectrum are used, these assume that the
waves can be described as a stationary random process, and are called short
term description of the sea because they are from a limited time window
of 0.5 to 12 hours [7]. The amplitude of the wave component can be found
from the wave spectrum with the relation

ζi =
√
2S(ωi)∆ω, (2.27)

S(ω) is a wave spectrum, ∆ω is a constant difference between frequencies.
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A few different wave spectrums are developed. One of the most commonly
used in the North sea is JONSWAP:

S(ω) = 155
H2

s

T 4
1

ω−5exp(−944

T 4
1

ω−4)3.3Y (2.28)

Y = exp
[
−(

0.191ωT1 − 1√
2σ

)2
]

(2.29)

σ =

{
0.07 for ω ≤ 5.24/T1

0.09 for ω > 5.24/T1

(2.30)

The significant wave height Hs is the mean height of 1/3 of the waves,
while T1 is the average wave period. Some other common wave spectrum
descriptors are Tz, the average zero-crossing wave period, which is the inverse
of the amount times the water level crosses the zero water level upward
per second, and T0 peak period. The relationship between them can be
approximated as [9]:

T1 = 1.073Tz (2.31)

T1 = 0.834T0 (2.32)
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Figure 2.7: A wave simulated with the JONSWAP spectrum, where Hs = 2
and Tz = 6.22. To the right is the spectrum used for the wave.
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2.5 Hydrostatics
Now, to calculate the buoyancy force of the buoy, the submerged volume of
the buoy needs to be calculated. We assume that the water level is equal
over the entire buoy, which then gives us the integral

∇b =

∫ η

z−r
π(r2 − (ẑ − z)2) dẑ. (2.33)

The buoyancy force for the buoy is then

Fbb = ρg∇b. (2.34)

z

η

SWL

Figure 2.8: A visualization of the buoy sitting in a wave, with the even wave
height drawn in.

2.6 Wave Forces
The turbine is submerged too deep to be affected by the wave forces, that is,
over half a wavelength deep. However, the buoy is affected by wave forces.
A model of these forces’ interaction with the buoy is needed as this governs
the speed of the turbine. And as follows the amount of lift generated by
the control wings. In calculating hydrodynamic forces, the assumption is
that the fluid is inviscid and irrotational. Bernoulli’s equation is then used
to integrate the pressure over the vessel’s surface to get the hydrodynamic
forces.
These processes are not discussed further here, but the software is used for
calculating these forces is based on both 2D-strip theory and 3D-Potential
theory.
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However, to capture the dynamic motion, some other approach is needed,
and there has been presented an approach that uses Morison equations to
approximate the hydrodynamic forces on the buoy [10]. They have managed
to get good results using Morison with strip theory to model the wave forces
in heave and surge. Empirical data verified their simulations, allowing for
a straightforward method to model the wave forces. Morison’s equation is
a semi-empirical equation that is used to calculate the hydrodynamic forces
on slender objects, that is when D/λ < 0.05 [11].
Before introducing the equation, a quick introduction of the wave forces act-
ing on an object.

If one picture an undisturbed wave-field, without any object in the water, as
shown in figure 2.6. Then the wave’s acceleration creates dynamic pressure
on the submerged body that produces a force.
This force is named The Froude-Krylov force and is together diffraction force
called the excitation force of the wave. In Morison, the wave acceleration
field is assumed to be small varying over the body, so its set as a constant
over the submerged body’s horizontal direction.

Diffraction force is when the incoming wave-field hits the object sitting the
waters and reflects/diffracts waves back that need to be taken into account
as seen in figure 2.9. However, thin objects do not produce any significant
diffraction (see fig 2.10), so the term is dropped in Morison’s equation.

Figure 2.9: A bigger object in a
wave-field causing diffraction

Figure 2.10: Slender object in wave-
field

Now, if we look at an object in still waters accelerating under some force,
that force would also need to move the surrounding water. That is, the
object appears to have some added mass to it. For an object floating on the
surface, this force is frequency dependent on the object’s oscillations.
If one pictures a boat under control by some DP system, it oscillates back
and forth around some given position. This movement creates some waves
carrying energy away from the system. The water under the surface would
also need to be moved as mentioned.
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When calculated by the software in one of the mentioned methods, it gives
A(ω) and B(ω) which are the added mass and dampening matrices, respec-
tively, often referred to as the radiation force of the waves.
While the matrices over are given in the frequency domain, an equal equation
in the time domain is

τ rad = −A(∞) + µrad. (2.35)

Where A(∞) is the infinity added mass matrix. It can be thought of as the
added mass that comes from the water not generating waves. While µrad

is the energy lost due to waves being generated. In Morrison’s equation,
µrad is dropped, as again, due to the slender nature of the object, the waves
generated can be neglected.

The last part is the drag force, and this is due to the viscous friction of
the fluid. And are represented as the standard quadratic drag equation.

Now Morions equation [12] for an object in motion in a wave-field is then

dF = ρAu̇+ ρCabA(u̇− ẍ) +
1

2
ρCdbD(u− ẋ)|u− ẋ|dz, (2.36)

where dF is the force acting on a strip of length dzs.

zs

Figure 2.11: The buoy and wave forces acting on the strips zs

The first part of the left side of the equation is the Froud-Krylov force, A
is the area of the strip, and u̇ is the wave velocity. This term depends on
the wave velocity as it generates the dynamic pressure, independent of the
velocity of the buoy.
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The second term is then the added mass force, where Cab is the added mass
coefficient. The coefficient is depended on the shape of the object. ẍ is the
acceleration of the buoy. The added mass and Froud-Krylov force are often
combined for a non-moving object into an inertial force term.

The last term is then the quadratic drag force. Where Cdb is the drag coef-
ficient, it usually depends on the Reynolds number and the object’s shape
but is often found empirical. D is then the diameter of the strip.

Then to get the total force acting on the buoy, integration over the sub-
merged part of buoy is done.

F =

∫ η

z−r
ρAu̇+ ρCabA(u̇− ẍ) +

1

2
ρCdbDh(u− ẋ)|u− ẋ| dz. (2.37)

Similarly, the heave wave forces can be expressed

F =

∫ η

z−r
ρAu̇+ ρCabA(ẇ − z̈) +

1

2
ρCdbDv(w − ż)|w − ż| dz. (2.38)

2.7 Turbine Forces
As with the buoy, the turbine has an added mass component, and it is,
according to [9] possible to consider this an added kinetic energy:

Tm =
1

2
mat ||Ṗ 1||2 (2.39)

It is then added to the Lagrangian in (2.11) as a constant additional mass.
This an approximation because the added mass is, in reality, a matrix of
constants. The major way this would come into play, in a different added
mass for x and z acceleration. However, the added mass for a cylinder is
1 [13], and when looking at the system from the top, the added mass from
the turbine blades with the topside of the cylinder could be approximated as
a circle that has the same added mass coefficient. Allowing for a lot cleaner
equations of motion without too much loss of accuracy, especially since more
precise coefficients are not available at this time.

The other main force acting on the turbine is drag force. At the operat-
ing depths of the turbine, we do still have ocean currents, and these are
assumed slow time-varying, and irrotational. The current generates a drag
force across the turbine to move it away from the desired position below
the buoy. And we have the turbine movement itself in the heave, which
depends on the wave state, in this direction, the drag force is the drag from
the turbine body and turbine rotors. They would add a noticeable amount
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of drag force.
We are, however, here interested in the best case for the control system, so
the main drag from the turbine rotors are neglected.
An aspect that needs to be taken into account is that to generate a control
force by the wings, the wings themselves have an area. That area will then
again contribute to more drag, as illustrated in figure 2.12.
The drag force acting on the turbine is then

1

2
ρ(CdtxAt + Cdw2Aw)(uc − Ṗ1x)|uc − Ṗ1x|, (2.40)

a sum of the two drag forces as mention, where Ṗ1x is the speed of CO in
heave.
The amount of control force is the amount of lift generated by the wings,
and this is expressed with the lift equation

Fl =
1

2
ρAwCl(αw)Ṗ1

2
y. (2.41)

While the coefficient of lift Cl is a number deepening on factors like angle
of attack and Reynolds number, it can be approximated with [14]

Cl(αw) ≈
2πAR

2 +AR
αw, AR =

s2

Aw
. (2.42)

Where s is the span of the wings, and αw is the angle of attack.

AtAw Aw

Fdw
Fdw

Fdt

Figure 2.12: The projected area of the turbine with the control wings and
the drag forces acting on the turbine.
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2.8 Nonlinear Model
Now we want to combine the model (2.13) and the added mass from (2.39).
We also separate the added mass from Morison that depend on the buoy
acceleration

Qm =


1 0
0 1
0 0
0 0


 ∫ η

z−r ρAu̇+ ρCabA(u̇− ẍ) +
1

2
ρCdbDh(u− ẋ)|u− ẋ| dz∫ η

z−r ρAẇ + ρCabA(ẇ − z̈) +
1

2
ρCdbDv(w − ż)|w − ż| dz

 , (2.43)

Qm =


∫ η
z−r ρAu̇+ ρCabAu̇+

1

2
ρCdbDh(u− ẋ)|u− ẋ| dz∫ η

z−r ρAẇ + ρCabAẇ +
1

2
ρCdbDv(w − ż)|w − ż| dz
0
0

 . (2.44)

This gives new G and C matrices.

D =


mb +mt 0 lmt cos(α) lgmt cos(θ)

0 mb +mt lmt sin(α) lgmt sin(θ)
lmt cos(α) lmt sin(α) l2mt llgmt cos(α− θ)
lgmt cos(θ) lgmt sin(θ) llgmtcos(α− θ) J + l2gmt

 ,

C =


0 0 −lmt sin(α)α̇ −lgmt sin(θ)θ̇
0 0 lmt cos(α)α̇ lgmt cos(θ)θ̇
0 0 0 llgmt sin(α− θ)θ̇
0 0 −llgmt sin(α− θ)α̇ 0

 .

(2.45)

Where
mb = m0 + ρCabVb(t), mt = m2 + ρCatVt. (2.46)

The stiffness matrix G is not affected in any way since it only depends on
mass and volume.

Now the rest of the forces acting on the turbine is going to be expressed as

Qd =


1 0
0 1

l cos(α) l sin(θ)
lb cos(α) lb sin(θ)


−1

2
ρ(CdtxAt + Cdw2Aw)(vc − Ṗ1x)|vc − Ṗ1x|

−1

2
ρCdtz Ṗ1y|Ṗ1y|

 , (2.47)

Qd =



−1

2
ρ(CdtxAt + Cdw2Aw)(vc − Ṗ1x)|vc − Ṗ1x|

−1

2
ρCdtz Ṗ1y|Ṗ1y|

−1

2
ρ(CdtxAt + Cdw2Aw)(vc − Ṗ1x)|vc − Ṗ1x|l cos(α)− 1

2
ρCdtz Ṗ1y|Ṗ1y|l sin(α)

−1

2
ρ(CdtxAt + Cdw2Aw)(vc − Ṗ1x)|vc − Ṗ1x|lb cos(θ)− 1

2
ρCdtz Ṗ1y|Ṗ1y|lb sin(θ)


, (2.48)
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where vc is the current velocity. The lift force is

Ql =


1 0
0 1

l cos(α) l sin(θ)
lb cos(α) lb sin(θ)


[1
2
ρAwClṖ1

2
yαw

0

]
, (2.49)

Ql =



1

2
ρAwClαṖ1

2
yαw

0

lcos(α)
1

2
ρAwClṖ1

2
yαw

lbcos(α)
1

2
ρAwClṖ1

2
yαw

 . (2.50)

Lastly, adding in the buoyancy acting on the as

G =


0

g((m0 +m2)− (Vr + Vb(t))ρ)
gl(m2 − ρVr) sin(α)
g(lgm2 − lbVrρ) sin(θ)

 . (2.51)

Giving a complete system with (2.45)(2.44)(2.48)(2.50)(2.51) as

D(γ)γ̈ +C(γ, γ̇)γ̇ +G(γ) = Qm +Qd +Ql. (2.52)

Giving a solid mathematical model as a basis for further analyses of the
system.
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Linearization and Control

In this section, a linear model is derived from the nonlinear one to develop
a controller for the system.

3.1 Small Angle Approximation and Linearization
Now to derive a linear model, the first step is to assume small angles. This
assumption is safe to make, as the turbine won’t drift that far off-center
compared to the length of the rope. Nor will it tilt far from 0 degrees
due to the restoring moment from the ballast. For reference, small-angle
approximation says that

sin(x) ≈ x, cos(x) ≈ 1. (3.1)

Applying (3.1) on (2.13), we get the new system

mb +mt 0 lmt lgmt

0 mb +mt lmtα lgmtθ
lmt lmtα l2mt llgmt(αθ + 1)
lgmt lgmtθ llgmt(αθ + 1) J + l2gmt

 γ̈ +


0 0 −lmtαα̇ −lgmtθθ̇

0 0 lmtα̇ lgmtθ̇

0 0 0 llgmt(α− θ)θ̇
0 0 −llgmt(α− θ)α̇ 0

 γ̇ +


0

g((m0 +m2)− Vrρ)
gl(m2 − ρVr)α
g(lgm2 − lbVrρ)θ

 = Q.

(3.2)
We also view Q as

Q = Ql + d, (3.3)

because we view the other external forces as disturbances acting on the
linear system. Ql with a small-angle approximation is

Ql =


Fl

0
Fll
Fllb

 . (3.4)

Further, we assume low speeds, and this makes the entire Coriolis matrix
fall away, such that

γ̇2 ≈ 0. (3.5)

23
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We also assume neutral buoyancy, and as a result, constant submerged vol-
ume and added mass for the buoy

g((m0 +m2)− Vrρ− Vbρ) = 0, (3.6)

mb = m0 + ρCabVbk , (3.7)
leaving us with the system

m0 +m2 0 lm2 lgm2

0 m0 +m2 lm2α lgm2θ
lm2 lm2α l2m2 llgm2(αθ + 1)
lgm2 lgm2θ llgm2(αθ + 1) J + l2gm2

 γ̈ +


0
0

gl(m2 − ρVr)α
g(lgm2 − lbVrρ)θ

 = Q. (3.8)

We separate the acceleration terms for the system,

γ̈ = D(γ)−1(Ql −G(γ)). (3.9)

Since we are interested in controlling the angle and not the angular speed,
we need to separate the system into two linear differential equations. We
also linearise around the working position and force

γ, Fl → 0. (3.10)

That gives us the linear system

ς̇ = Aς +Bu, (3.11)

A =

 0 I

D(0)−1dG(0)

dγ
0

 , B =

[
0

D(0)−1Ql

]
. (3.12)

Or in its complete form

A =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 0
g(m2 − Vr)ρ

mb
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −
g(l2gmbmt + J(mb +mt))(m2 − lbVrρ)

Jlmbmt

glg(lgm2 − lbVrρ)

Jl
0 0 0 0

0 0
glg(m2 − Vrρ)

J

g(lbVrρ− lgm2)

J
0 0 0 0



B =



0
0
0
0
0
0

J + lgmt(lg − lb)

Jlmt
lb − lb
J



. (3.13)
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We can now use the linear system derived here to tune and implement a
controller for the system, then use the controller for the non-linear system
as shown in 3.1.

−
Controller System

r ςue

ζa, u, w, u̇, ẇ, vc

ud
ν

Figure 3.1: The system shown in the context of a feedback loop.

r is a vector of the system’s set points, and in the case of this system, it would
simply be zeros. The error term e is the difference between the setpoint,
and the system states ς. ud is the desired control from the controller. The
constant λ is here as a scaling factor on the desired control signal, in the
case of this model, that is, a single input, ν is the difference of the desired
control force by the controller and what lift force the wings could produce
u. Because the wings would be constrained to

− 10◦ < αw < 10◦, (3.14)

to preserve laminar flow over them. In this case, this could be found by
solving the lift equation within the set constraint. If control in yaw were
to be added, this could be done by solving the force distribution as a QP
problem. How this could be done was explored in the pre-project.

3.2 The Linear Quadratic Regulator
When choosing a multi-variable system controller, the ease of tuning and
performance is essential. The LQR controller was found to give both good
preference and intuitive tuning. LQR seeks to minimize the function [15]

J =

∫ ∞

0
xᵀQx+ uᵀRu dt. (3.15)

Where Q and R and positive definite and symmetric weighting matrices,
chosen as a tuning parameter of the controller.
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The feedback law for the controller is

ud = −Kς, K = R−1(BTP ). (3.16)

The closed loop-system is then

ς̇ = (A−BR−1(BTP ))ς. (3.17)

Where P is the symmetric solution to the algebraic Riccati equation

AᵀP + PA + Q − (PB)R−1(BᵀP) = 0. (3.18)

If the matrix in (3.16) is Hurwitz, that is, the poles have negative real part.
The feedback minimizes the LQR criterion (3.15).
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Simulation

In this section, the simulation results from the different aspects of the model
are presented.

4.1 System Parameters

Buoy Parameters
m0 2200 Kg Mass of Buoy
Cab 0.5 Added Mass Coefficient for Buoy
rb 1.25 m Raidus of Buoy
Cdb 0.47 Drag Coefficient for Buoy
l 100 m Rope Length

Turbine Parameters
m2 1500 Kg Mass of Turbine
Cat 1 Added Mass Coefficient for Turbine
ht 6 m Hight of Turbine
dt 0.4 m Width of Turbine
lg 5 m Length from Top of Turbine to CG
lb 3 m Length from Top of Turbine to CB
Vt 0.754 m3 Turbine Displacement
Cdtx 0.7 Turbine Body Drag Coefficient in x
Cdtz 1 Turbine Body Drag Coefficient in z
Cdw 1.16 Turbine Wings Drag Coefficient in x
Cl 4.65 Coefficient of lift

Environmental Parameters
g 9.81 m/s2 Acceleration of Gravity
ρ 1024 kg/m3 Sea Water Density

27
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The accurate parameters for the system are hard to estimate without proper
CAD models and software to calculate such numbers, or empirical data
gathered, however with a few basic assumptions made and data provided by
Waveco, reasonable parameters can be found.

The weight and buoyancy are taken as reference values from Automar prod-
uct description. So for the buoy, the radius is taken so that a given buoyancy
is met. The added mass for a sphere is then used, the same with the drag
coefficient. The shape of the turbine body is approximated as a cylinder
with a rounded nose. The parameters were chosen to be as close to design
specifications as possible. The center of mass is moved down in the body to
simulate the effect of the ballast. Appropriate parameters are then found in
DNV - Modelling and Analysis of Marine Operations [13].

4.2 Implementation

The nonlinear model derived is implemented in Matlab and solved using the
ode45 solver, with the different forces implemented as functions. A simu-
lation window was made better to get an intuitive feeling for the system’s
dynamics, as shown in the figure under.
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Figure 4.1: The system is visualized in Matlab, where the buoy can be seen
in red, with the black rope connecting to the dark blue turbine at the bottom
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4.3 Hydrodynamic Effects On The Buoy
We start by evaluating the free-floating buoy’s hydrodynamic model to see
if it performs as expected. To find an appropriate sea state, we can look to
DNV - Wave loads [16].

We start by looking at the buoy’s position in surge as shown in figure 4.2,
where the plot shows the x position for the buoy under the effect of two
different seized regular waves. Here we can observe the effects of Stokes
drift, and its scaling up with the taller waves. It is a good indication that
our model performs as desired.

Looking at the heave forces in figure 4.3, we can see that the wave load
forces mainly depend on inertia force, that is, the Froude-Krylov and added
mass force. These forces depend on the acceleration of the wave, and as
can be seen, follow the wave’s acceleration profile. The drag term is mostly
small, except when the buoy hits the trough and breaks from the again ris-
ing waters. Oscillations can be observed in the total force, stemming from
the buoyancy force.

In surge, we see the same behavior, with drag forces being player a more
significant role as one would expect, with more water movement across the
sides of the buoy. We can see that the buoy’s speed is slightly higher on
the wave crests, adding up to a slow movement with the waves due to the
slightly higher vertical wave velocity in the wave crests than the trough.
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Figure 4.2: The buoys x-position plotted for two different wave sizes, showing
the effects of stokes drift.
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Figure 4.3: The wave forces acting on the buoy in heave, for a wave with
H = 2 and Tz = 8.
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Figure 4.4: The wave forces acting on the buoy in surge, for a wave with
H = 2 and Tz = 8.

The simulations seem to validate that the method presented by [10]holds up
for an approximation of the wave load forces, giving us a good fundament
for further analysis.
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4.4 Nonlinear Model
When looking at the complete model, we still observe the wave-drift and
see how the oscillating motion propagates down in the system as it gets
carried away with the waves. While α follows the wave-drift oscillations
almost perfectly, it can be seen that θ, while following the main motions,
has a more complicated motion, in line with the more chaotic nature of a
pendulum. The more interesting result is that we are talking about tiny
numbers under likely wave conditions. While the motion affects the entire
system, the displacement in the horizontal position from the buoy to the
turbine is maximum 2 meters. Even when adding an ocean current of -0.3
m/s, we see little change in this behavior. However, the drag on the turbine
does overcome the wave drift and drags the system in the current direction.

Figure 4.5: The full model with no current and a regular wave with H = 2
and Tz = 7.45.
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Figure 4.6: FThe full model with a current of -0.3 m/s and a regular wave
with H = 2 and Tz = 7.45.

4.5 Performance for Linear Model
When using the provided parameters, we end up with a linear system with
the matrices

A =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 2.98165 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −0.169573 0.127739 0 0 0 0
0 0 1.81931 −2.55477 0 0 0 0


, B =



0
0
0
0
0
0

0.00000794
−0.0000678


. (4.1)

In figure 4.7 we first see a direct comparison between the two models. How-
ever, the drag forces are removed from the non-linear model as they are not
represented in the linear one. The result is an acceptable approximation for
tuning the LQR Controller. We can observe that the differences are highest
where expected, as with α when crossing zero degrees, and this is where the
speed is highest and, as a result, where the linear model is least accurate.
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There is, of course, some model deviations as time goes on, and this becomes
apparent in θ, and might be partly due to the heavy motion in the non-linear
model.

Figure 4.7: The linear and non-linear model, without drag-forces affecting
either(Top) and drag forces affecting the non-linear system(Bottom).
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However, as seen when the drag terms are included, the differences become
more dramatic. The non-linear model is, of course, more damped, and the
deviations grow fast. Nevertheless, we do expect the LQR controller to be
robust so that it can handle the difference.

When wanting to extract force from the wings to control the system, the size
and shape matter, as there is drag created by them and the turbine’s body.
And this has to be weighed against the amount of lift generated as discussed.
In figure 4.8 a few different wing configurations are plotted against the drag
force they create, with the greatest allowed angle of attack. The average
turbine speed generated by a wave with H = 1.5 and T1 = 6.7 is approxi-
mately 0.5 m/s. This is used as a low basis for the lift force generated, and
a current of 0.3 m/s is used as a basis for the drag created. The different
Cl is the constant part of (2.42), where longer spans create more lift, so by
the same equation, if the area of the wing grows, do the span to keep the
coefficient high. While only an estimate, moving forward wings with a span
of 2 m each and a total area of 1.4 m2 is used.
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Figure 4.8: Drag forces of the wings with a fixed area, compared to the lift
of the wings in different span configurations.

Now when closing the loop and attaching the LQR Controller, we start by
first looking at the premise of the work done in the pre-project, that is, can
such a system be used to position the system with the help of wave-forces.
And as we can be seen from figure 4.9 this is achieved. The figure shows the
system overcoming the wave load forces and a low ocean current of 0.2 m/s.
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This while also keeping a low angle on both α and θ. The horizontal displace-
ment of the turbine relative to the buoy would be at most a few meters—
however, we why this might have issues on its own later.

Figure 4.9: The turbine could be used to move the buoy under the influence
of wave forces and ocean currents acting on the turbine, simulated with a
regular wave with H = 2 and T1 = 5.6.

The premise of the system as presented by Waveco is that the buoy itself is
tethered to some anchoring system as mentioned or kept in place by a DP
system when used as an observation buoy. So moving forward, we assume
that it is kept in place, and we make a simple model for this by spring
locking the system in x-direction. We update our model by adding

Fs = kx. (4.2)
And the new A in the linear model becomes

A =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−11.11 0 2.98165 0 0 0 0 0
0 0 0 0 0 0 0 0

0.1111 0 −0.169573 0.127739 0 0 0 0
0 0 1.81931 −2.55477 0 0 0 0


. (4.3)
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When looking at the system locked in place in figure 4.10 a few things be-
come apparent. First and formost is that under these conditions that is a
ocean current of 0.3 m/s, there is little to gain on having control wings.
While the controller manges the keep the turbine in place under the buoy,
the displacement without the controll system is minor to begin with. Also,
adding more movement in θ, while not by a lot, is a downside.

Now what can be perhaps seen as a worst-case for the control system is
shown in 4.11, where a stronger current is pulling on the system in combi-
nation with relatively low waves. There is not enough lift force generated to
make up for the added drags of the wings. While a current of that strength
is uncommon, at least in the Norwegian Sea, it highlights a weakness of the
approach.

Showing the same scenario again in figure 4.12 with higher wave amplitude,
we see that we again gain performance, but at the cost of higher oscillations
in θ. The wings are mounted higher than the center of gravity, so this can
not be avoided when pulling more force from the wings.

Figure 4.10: The system without a controller plotted against a system with
an LQR controller, with ocean currents of -0.3 m/s, wave height H = 2, and
peak period T0 = 9.
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Figure 4.11: The system without a controller plotted against a system with
an LQR controller, with ocean currents of -0.3 m/s, wave height H = 2, and
peak period T0 = 9.

Figure 4.12: The system without a controller plotted against a system with
an LQR controller, with ocean currents of -0.3 m/s, wave height H = 9, and
peak period T0 = 14.
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4.6 JONSWAP System Simulation
We finish by simulating the system in a JONSWAP wave, figure 4.13 shows
a simulation with an irregular wave. And what can be seen is that the ran-
domness in the wave causes problems for the controller, as there are periods
of the wave with low amplitude waves and visa-versa. This inconsistency
makes α jump around the setpoint and causes oscillations in θ.

Figure 4.13: The system without a controller plotted against a system with
an LQR controller, with ocean currents of -0.3 m/s, in a JONSWAP wave
spectrum with Hs = 2, and peak period T0 = 9.
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Chapter 5

Discussion

We have implemented a model and controller in Matlab, simulated the re-
sults under different settings, and interpreted what this means for the sys-
tem. Some thoughts about what the results could be interpreted as are
given.

5.1 Model Accuracy
The choices made regarding the model, while done in the best effort, do have
their limitations. A fully developed hydrodynamical model for the surface
vessel in 6-DoF would need to be found once the shape and dimensions of the
craft are finalized. We cannot be sure that diffraction and radiation forces
affect the system’s dynamics in a meaningful way. However, it is expected
that those forces would not interact with the turbine dynamics significantly.
Now the numerical results from the implementation of [10] against their ex-
perimental data suggest we should capture the main hydrodynamical forces
in a good way, at least when looking at the configuration with a buoy. And
that we observe behavior in our simulations in line with what is expected,
considering wave drift forces are found that increase with wave magnitude.

One of the most significant part left out of the model is the force gener-
ated by the turbine blades and how that would affect the heave dynamic
of the system, a proper model for the dynamic of the blades would be de-
veloped. While it does affect the heave speed profile of the turbine, it does
not change the conclusion of the thesis. Another omission is that of the
moment generated by the slightly different rotating speed of the two sets of
turbine blades. The model could be updated to have yaw motion, but this
is omitted here due to the increasing size of the equations of motion. As
mention, the same is true for the different sized added mass. However, we
get back to the moment generated by the turbines in a bit.

41
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The most considerable uncertainty regarding the control system is the tur-
bine’s drag coefficient in surge, as this is the main force moving the turbine,
however as it is taken of that of a cylinder. The turbine itself would, in
likelihood, be more aerodynamic with a smaller drag coefficient and area.

5.2 Control System Implementation
While the systems LQR Controller achieves what it set out to be done, that
is to contract the effects of the ocean currents quite well in some situations.
It does have its shortcomings, most notably its dependence on ocean waves
to work. As becomes especially clear when simulating with the JONSWAP
wave spectrum, needing bigger wave amplitudes to work against greater
currents, which can not be guaranteed. While at the same time, this provides
a passive way to control the drift of the turbine, and some scenarios offer
a more noticeable counter to the ocean currents. It does, however, come at
the cost of more oscillations in the turbine pitch, θ.

5.3 Recommendations
When looking at the simulations done, it quickly becomes apparent that the
turbine does not get displaced by a lot, even in conditions with high ocean
currents. We are looking at horizontal displacement of at most 10 m, and
that in current speeds up to 0.8 m/s. There are parts of the sea with currents
at speeds higher than that, for instance, the gulf stream with speeds up to
2 m/s. Though, this approach would not work at such high speeds, as the
drag created by such speeds would be far too high to be countered by the lift
from the wings. And in parts of the sea where it would be natural to place
the system as a part of a power plant, the ocean currents are significantly
lower.

Therefore it is hard to see a benefit to adding the control system, at least
in counteracting ocean currents. The added complexity of adding wings,
motors to control the angle of attack of the wings, general electrical compo-
nents such as sensors and micro-controllers would all add points of failure.
And when the benefit is as low as this, it is hard to recommend implement-
ing the system.

However, if it is found necessary to compensate for the momentum gen-
erated by the turbine blade rotation, this system could easily be modified
to compensate for this. It could be done with the approach done in the pre-
thesis project, where the wings’ angle of attack is solved for optimal force
distribution, with an updated model as mentioned previously.
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Depending on the approach chosen, the wing area could be chosen rather
freely. If the focus would be to counteract the moment, smaller wings with
less drag could be chosen.

An exciting aspect could be to add two more wings for a 4 winged tur-
bine, expanding on what is shown by figure 4.9, to help then the DP system
keep the buoy in place. By adding the two extra wings, control could be
achieved in 3-DoF compared to the 2 with the current set-up. It would then
allow moving the buoy in both surge and sway, no matter what direction
the ocean current flows in that area, and could lower the energy need of the
buoys DP-system, allowing more energy to be stored up for low wave sea
states.

5.4 Future Work
• A logical next step would be to see if possible to use some other way

to counteract the ocean currents in more high-velocity scenarios. For
instance, this could be done by adding a thruster in the bowl on the
turbine while simply using a set of wings to steer counter the moment if
needed. This solution would work in all scenarios and be in-depended
on the ocean wave states.

• An updated hydrodynamical model should be developed when the sur-
face buoy and turbine are finalized. At the same time, a proper model
capturing the DP-system of the buoy should be added or a mooring
model if looked at in the power plant setting, instead of the rudimen-
tary solution used here. Also, a model in 6-DoF could be constructed
from the same methods if deemed necessary

• It should also be looked into to develop a model for the turbine blades
and their dynamics to see if the moment generated is significant and
how this would affect the system.
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