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Preface

This thesis is submitted as the final part of the degree Master of Science in Indus-
trial Cybernetics at the Norwegian University of Science and Technology (NTNU).
It is the culmination of my work at NTNU, under the supervision of Lars Ims-
land, during the spring semester of 2021. The thesis summarizes findings and the
methods used to apply a data-driven methodology in Equinor’s in-house software
for model predictive control (MPC), SEPTIC. The thesis is written in collabora-
tion with Equinor, from where John-Morten Godhavn and P̊al Kittilsen have been
supervisors and collaborators. The thesis was inspired by recent research in the
field of data-driven MPC and on the initiative of Equinor to explore the oppor-
tunity of implementing a data-driven MPC in SEPTIC. The main contribution of
this thesis will be to implement a data-driven inspired methodology for MPC in
SEPTIC, which will be tested on a single subsea well system. The data-driven
methodology is based on using online data from simulations in SEPTIC and using
the data for sustained and increased MPC performance through identifying and
updating step response model gains.

It would benefit the reader to have some knowledge and understanding of control
engineering, especially MPC. The thesis assumes the reader has prior knowledge
of linear and nonlinear systems and some knowledge of optimization. However,
the thesis is structured to give a reader with little or no knowledge on the topics
both a theoretical understanding and understanding of the implementations in the
thesis.
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Summary

The main objective of this thesis is to implement a data-driven methodology in
Equinor’s in-house software for MPC, SEPTIC. Data-driven control consists of
directly utilizing online data from the process subject to control to design the
controller. In this thesis, online data will be used for updating model gains for
the step response models, which are used to predict how a controllable variable
(CV) responds to a change of a manipulated variable (MV). The models in SEP-
TIC are built with experimental single-input single-output (SISO) step response
models. Step response models assume linearity. However, the system on which
the data-driven methodology is implemented is highly nonlinear. Therefore, the
step response models will lose their accuracy if the process parameters move away
from where the models were created. Since MPC is a model-based method of
control, an MPC application depends on having an accurate mathematical model
of the process it is controlling. If the step response models lose their accuracy,
the predicted optimal inputs from the MPC will not be optimal. Updating the
steady-state gains for the step response models yields sustained MPC perform-
ance despite the initial models losing their accuracy, as identified and updated
model gains maintain model quality. Based on process parameters, an automatic
gain identifier will excite the process to identify more precise steady-state gains.
Correct steady-state gains will ensure good MPC performance despite the process
parameters moving away from where the initial step response models were created.

The automatic gain identifier will be tested on a simulated subsea well system.
In a subsea well system, safety is of utmost importance. Preventing constraint
violation is a general objective for an MPC and is considered crucial in the subsea
well system in this thesis. Constraints are added to the MPC application for
safety reasons and are considered the highest priority in the controller. When the
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process is excited, there is a risk of constraint violation. The automatic model
gain identifier will excite the process while respecting the constraints by utilizing
the online data to reduce the risk of constraint violation.
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Sammendrag

Hovedm̊alet med denne oppgaven er å implementere en data-drevet metode i
Equinors interne programvare for MPC, SEPTIC. Data-drevet kontroll best̊ar av
direkte bruk av online data fra en prosess underlagt regulering, for å designe reg-
ulatoren. I denne oppgaven vil online data brukes til å oppdatere modellforster-
kning for stegresponsmodeller, som brukes til å forutsi hvordan en kontrollerbar
variabel reagerer p̊a en endring av en manipulert variabel. Modellene i SEP-
TIC er bygget med ekspermintelle enkelt-p̊adrag enkel-måling stegresponsmodel-
ler. Stegresponsmodeller antar linearitet. Systemet som den data-drevne metoden
er implementert p̊a er imidlertidig svært ulineært. Derfor vil stegresponsmod-
ellene miste nøyaktighet hvis prosessparametrene beveger seg bort fra der mod-
ellene ble opprettet. Siden MPC er en modellbasert reguleringsmetode, er en
MPC-applikasjon avhengig av å ha en nøyaktig matematisk modell av prosessen
den regulerer. Hvis stegresponsmodellene mister nøyaktighet, vil ikke de forut-
sagte optimale p̊adragene fra MPCen være optimale. Oppdatering av likevektstil-
standsforstekninger for stegresponsmodellene gir vedvarende MPC-ytelse til tross
for at de initielle stegresponsmodellene mister nøyaktighet, da identifiserte og op-
pdaterte modellforsterkninger opprettholder modellkvaliteten. Basert p̊a prosess-
parametre, vil en automatisk modellforsterkningsidentifikator eksitere prosessen
for å identifisere mer presise likevektstilstandsforsterkninger. Korrekte likevektstil-
standsforsterkninger vil sikre god MPC-ytelse til tross for at prosessparametrene
beveger seg bort fra der de initielle stegresponsmodellene ble opprettet.

Den automatisk modellforsterkningsidentifikatoren vil bli testet p̊a et simulert
undervannsbrønnsystem. I et undervannsbrønnsystem er sikkerhet av høyeste
betydning. Forhindring av brudd p̊a sikkerhetsgrenser er et generelt mål for en
MPC, og anses som avgjørende for undervannsbrønnssystemet i denne oppgaven.
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Sikkerhetsgrenser legges til i MPC-applikasjonen av sikkerhetsmessige årsaker og
anses å være av høyeste prioritet i regulatoren. N̊ar prosessen eksiteres, er det
en risiko for brudd av sikkerhetsgrensene. Den automatiske modellforsterkning-
sidentifikatoren vil eksitere prosessen mens sikkerhetsgrensene blir respektert ved
å bruke online data for å redusere risikoen for brudd p̊a sikkerhetsgrensene.
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Chapter 1
Introduction

1.1 Background and Motivation

Model predictive control (MPC) has been successfully applied for multiple dec-
ades in industrial processes. There are multiple reasons for the MPC’s success,
including its ability to handle multivariable control problems naturally and its
ability to account for actuator limitations. MPC allows for operation closer to
constraints and allows industrial processes to meet their specialized control needs
while respecting constraints in the process. MPC, in general, are suitable for dif-
ferent operation modes with different operation behaviors, ranging from process
start-ups to normal operation.

SEPTIC is Equinor’s in-house software tool for MPC. The first installation of
SEPTIC was done in 1997, and the status in 2019 is that there are about 100
SEPTIC MPC applications in Equinor. SEPTIC is used upstream and downstream
for various processes, ranging from production well start-up to gasoline blending.
Business cases are generally excellent – for example, the Mongstad Refinery reports
an incentive of 500 MNOK/year, and offshore activities show similar numbers [1].

An MPC’s performance is highly dependent upon having accurate models of the
process being controlled. Practitioners usually spend up to 80% of the overall MPC
design effort to obtain an adequate model for MPC [2]. A common approach for
obtaining an adequate model of input-output behavior in industrial applications
is the use of step responses. SEPTIC uses the same approach for describing input-
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output behavior. Step response models assume linearity, which is based upon the
superposition principle. A real-life system, however, is inherently nonlinear. Previ-
ously the step response models have represented the process sufficiently to achieve
good controller performance and are favored because of simplicity [3]. However, as
higher product quality specifications and increasing productivity demands, tighter
environmental regulations, and demanding economic considerations, it is required
to operate systems over a broader range of operating conditions and often near the
boundary of the admissible region. By operating over a broader range of operating
conditions in a nonlinear process, the step response models may lose their accur-
acy, and they may not be sufficient to describe the process dynamics adequately
[4]. If the linear step response models lose their accuracy, an MPC controller can
not predict optimal inputs to the process, and the performance degrades. The
models may also lose accuracy due to changing process parameters over time, as
external conditions during model identification may change.

Models with less accuracy ultimately lead to performance degradation in the MPC,
as calculated inputs may not be optimal. Practitioners are, for this reason, now
focused on ease of commissioning and automation of maintenance [5], including
continuous performance monitoring and automated model re-identification.

Data-driven control is a term that includes control theories and methods where
the controller is designed directly using online or offline input-output data of the
controlled system [6]. Due to more complex systems and high commissioning
costs, a correctly implemented data-driven methodology might reduce the overall
MPC design effort. A data-driven control methodology will also be an effective
option for highly nonlinear processes and processes affected by process noise and
disturbances.

Data-driven MPC uses data-driven control methods to design the MPC. [7] states
that learning from data is now considered a prime issue in control engineering, and
by applying a data-driven methodology for MPC, sustained MPC performance can
be achieved using online data from the process being controlled.

By improving upon previous successful implementations of SEPTIC in industrial
processes, performance degradation due to step response models losing their accur-
acy could be avoided. Sustained MPC performance in SEPTIC could be achieved
by including elements from data-driven control. SEPTIC could potentially be used
in more complex and nonlinear processes by including an automatic model gain
identifier. In addition to sustained MPC performance, updated model gains al-
low SEPTIC to choose more optimal inputs for the manipulated variables. More
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optimal inputs include less wear and tear on equipment, as more optimal inputs
require less change of the manipulated variables for optimal operation.

1.2 Goal and Method

The main goal of this thesis is to investigate how a data-driven methodology can
be implemented in SEPTIC. The data-driven methodology includes step response
model gain updating based on online process data from a simulation. The proposed
method will be tested on a simulated single subsea well system, which is highly
nonlinear.

As mentioned, SEPTIC uses step response models to model the input-output be-
havior of the process. A step response model assumes linearity, an assumption
that is not satisfied in the example system used in this thesis. Because of this,
the step response models will lose their accuracy if the process parameters change
from the area where the model was created. For an MPC dependent upon having
an accurate mathematical model of the system it controls to perform optimally,
the performance of the MPC will degrade with decreasing model quality.

Depending on critical parameters, the proposed method will excite the process to
identify updated model gains. Updating a model gain is done by scaling the initial
step response model. The model gain is equivalent to the steady-state gain in a
step response model. A process excitement is necessary, as one cannot identify an
updated model gain for a process in steady-state. Critical parameters for process
excitation include the age of the current step response models and changes in
the process parameters and disturbances. It is assumed that the step response
models lose their accuracy with changing process parameters and that the system
operates over a wide range of operating conditions. Because the subsea well system
is highly nonlinear, the assumption that a current model will lose its accuracy if
the process parameters and disturbances change a certain amount is reasonable.
Due to, among others, tighter environmental regulations and demanding operating
conditions, it is also a reasonable assumption that the system operates over a wide
range of operating conditions.

During steady-state optimal operation, the process will be in steady-state given
that the process has reached its setpoint(s)/ideal value(s). Mathematically, this is
when the cost function of the MPC is minimized. During a process excitation for
model gain identification, the process will not be in steady-state. Therefore, one
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must carefully consider the value of a process excitation for model gains identifica-
tion. During a process excitation for model gain identification, the process will not
be optimal, but updated model gains will yield increased controller performance
in case of changes in operating conditions. This thesis assumes that the value of
the model gains being up to date and correct outweighs the disadvantage of briefly
not operating in steady-state. A process excitation is not necessary not optimal
operation, as a process excitation might be needed to operate in another area in
the state-space.

The goal is to implement an automatic model gain identifier during running op-
eration while satisfying all constraints in the system. The goal is to show that
the implementation automatically excites the process, when needed, to identify
updated model gains. An additional goal is to show that the updated model
gains are more accurate than the initial models, ultimately yielding improved and
sustained MPC performance.

SEPTIC is used as the MPC software. SEPTIC can use data from a running
simulation to construct algorithms. The algorithms constructed in SEPTIC are
called calcs and are used for designing the proposed solution in this thesis.

1.3 Outline of Report

This thesis is divided into 8 main chapters.

In Chapter 2: Data-driven MPC a brief literature review about data-driven
MPC will be given. Current challenges for MPC in industrial applications are
described, motivating data-driven control schemes in industrial processes.

Chapter 3: Theory will introduce essential concepts used in this thesis and
provide a fundamental theoretical understanding in order to follow the approach
provided in Chapter 5.

In Chapter 4: Model Aspects and Software describes the subsea well sys-
tem on which the data-driven methodology is implemented. The available tools
available in the software will be briefly described.

Chapter 5: Controller Design will give an overview of how a data-driven meth-
odology might be implemented on the subsea well system described in Chapter 4.
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The methodology will be implemented in Equinor’s in-house software for MPC,
SEPTIC, which is described in Chapter 3.

The main results from applying the data-driven methodology will be presented in
Chapter 6: Results. The results are divided into two parts. The first part seeks
to illustrate improved performance from the MPC after a model gain identification,
compared to using the initial step response models. The second part illustrates
how the implemented application automatically when deemed necessary, excites
the process and subsequently identifies and updates the model gains.

A discussion is covered in Chapter 7: Discussion. The data-driven methodology
and its results will be discussed regarding the achieved results and what eventually
could be done differently. Proposals for further work will also be provided. The
discussion focuses on how the proposed method presented in the thesis could be
implemented for an industrial application.

The thesis is summed up and concluded in Chapter 8: Conclusion.
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Chapter 2
Data-driven MPC

This section presents current challenges for MPC in industrial applications, motiv-
ating data-driven control in industrial applications. A brief literature review about
data-driven control, and more specifically, data-driven MPC will be covered. Data-
driven control is a current research area within the process control community, and
data-driven control is not yet well understood, which contrasts with achievements
obtained regarding system identification.

2.1 Challenges for MPC in Industry

According to [2], practitioners usually spend up to 80 % of the overall MPC design
effort to obtain an adequate model for MPC for nonlinear systems. Using step
response models for model identification reduces the design effort dedicated to
obtaining an adequate model. However, the obtained model assumes linearity,
which is a drawback when controlling nonlinear systems. An adequate model is
essential for good MPC performance since poor model quality is often an essential
source of performance degradation [8]. Despite obtaining an initial model with
good performances from an MPC application, the mathematical model of the
system which the MPC control may change with changing operating conditions.
Models with decreasing model quality due to changing operating conditions will
decrease MPC performance as inputs from the MPC cannot be optimally predicted.
As offline model maintenance for the entire plant leads to high maintenance costs,
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acquiring an accurate mathematical model of the plant to decrease plant-model
mismatch by learning from online data is a prime issue in industrial process control.

[9] conducted a survey to clarify state of the art in process control applications,
including MPC. The survey was conducted in Japan in 2009, and the results
will be used to showcase some of the challenges that MPC faces in industrial
applications. The survey was conducted on engineers from industry and researchers
from universities in Japan. Results from the survey are shown in Table 2.1.

It is clear from the results in Table 2.1 that problems and needs for improvement
related to modeling and model errors are highly present. Response to performance
deterioration and coping with changes in process characteristics are problems re-
lated to decreasing model quality. The motivation for learning from data is clear
from the results in the survey.

[5] states that decades of successful application of MPC to industrial processes
has shifted the focus of practitioners to ease of commissioning and automation of
maintenance, including continuous performance monitoring and automated model
re-identification and updating. Model updating means applying mathematical
methods (e.g., calibrating model parameters and bias-correction) to match model
predictions with the physical observations [10]. Data-driven MPC is at the fore-
front of the focus shift and is a trending research area within the process control
community.

2.2 Data-driven MPC

MPC has seen decades of successful applications to industrial processes. It has a
wide adaptation in diverse fields, including process control, automotive systems,
and robotics, and has become the standard approach for implementing constrained,
multivariable control in the process industries today [11].

Due to successes in the field of machine learning and increased computational and
sensing capabilities in modern control systems, there has been a growing interest in
data-driven control techniques [12]. This interest is also strengthened by challenges
in the current MPC implementations today in industrial applications.

According to [13], data-driven control may be defined as:
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Problem: general
Low robustness against model error 26%
Difficulty in tuning 23%
Inability to cope with specific objective 15%
Difficulty in modeling 12%
Others 24%

Problem: maintenance
Transfer of engineering technology 44%
Response to performance deterioration 33%
Education of operators 7%
Difficulty in tuning 7%
Others 9%

Need for improvement: general
To improve modeling technology 28%
To clarify method of estimating effect 25%
To simplify implementation 22%
To increase process control engineers 14%
Others 11%

Need for improvement: theory
To cope with changes in process characteristics 26%
To clarify relations between model accuracy and control performance 24%
To cope with unsteady operation (SU/SD) 16%
To incorporate know-how in control system 16%
To cope with nonlinearity 13%
Others 5%

Need for improvement: response to changes/nonlinearity
To switch multiple linear models 28%
To improve robustness of linear MPC 25%
To use time-varying/nonlinear model 18%
To add adaptive function to linear MPC 18%
To integrate other technique with MPC (e.g. knowledge-based control) 11%

Table 2.1: Industry survey of MPC challenges.
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all control theories and methods in which the controller is designed by
directly using online or offline I/O data of the controlled system or
knowledge from the data processing but not any explicit information
from the mathematical model of the controlled process, and whose
stability, convergence, and robustness can be guaranteed by rigorous
mathematical analysis under certain reasonable assumptions.

As the citation describes, data-driven control directly utilizes I/O(input/output)-
data for control of the system, without needing explicit information from a math-
ematical model of the process. Data-driven control is suitable for applications
where first-principle models are not conceivable when models are too complex for
control design and when detailed modeling and parameter identification is too
costly [14]. A plant-model mismatch is inevitable in practice and is highly desir-
able to minimize such discrepancies to ensure good control performance [15].

The literature on data-driven control is vast, so an approach is highlighted. There
are several different data-driven control methods and techniques which use different
approaches. An approach based on the Willems fundamental lemma [16] will be
highlighted, as approaches based on this lemma have received attention in the last
few years. The lemma answers how to replace process models with data by learning
the systems’ ”behavior”. With the systems ”behavior”, one is not concerned with
a system representation but rather the whole set of trajectories that a linear system
can generate. The lemma stipulates that the set of trajectories can be represented
by a finite set of system trajectories, provided that such trajectories come from
sufficiently excited dynamics.

If a component of the response signal of a controllable linear time-invariant system
is persistently exciting of a sufficiently high order, then the windows of the signal
span the full system behavior. The windows of the signal are then applied to ob-
tain conditions under which the state trajectory of a state representation spans the
whole state-space. [14] presents a data-enabled algorithm, based on the Willems
fundamental lemma, that can be applied to unknown linear time-invariant sys-
tems. The algorithm uses a finite data set to learn the behavior of the unknown
system and computes optimal controls using real-time feedback to drive the system
along a desired trajectory while respecting system constraints. The algorithm’s
performance was superior compared to offline system identification on the same
system followed by MPC. Other examples of data-driven control design based on
Willems fundamental lemma can be found in [17] [18] [19] [20].
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Chapter 3
Theory

3.1 Optimization

Mathematically speaking, optimization is the minimization or maximization of a
function subject to constraints on its variables [21].

An optimization problem is described mathematically in Equation 3.1.

min
x∈Rn

f(x)

subject to

ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(3.1)

x is a vector of decision variables, f(x) is the objective function that we want
to minimize, and ci are constraint functions that define certain equations and
inequalities the vector x must satisfy. I and E are sets of indices for inequality
and equality constraints, respectively.

Dynamic optimization is a category of optimization where the decision variables
are a function of time (x(t)). The solution is, therefore, also a function of time.
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Dynamic optimization is necessary when dynamics play a significant role, which
often is the case for systems with frequent changes in the operating conditions [22].

Convexity

An essential concept in optimization is convexity. A convex optimization problem
is easier to solve both in theory and practice. For this reason, it is a desirable
property in optimization problems. If both the objective function in Equation 3.1
and the feasible region are convex, any local solution will be a global solution. The
feasible region is the area in which all constraints are satisfied.

Both sets and functions can be convex. A set, S ∈ Rn, is convex if a straight
line segment connecting any two points in S lies entirely inside S. This can be
formulated mathematically as:

αx+ (1− α)y ∈ S, ∀α ∈ [0, 1]

and

x, y ∈ S

A function, f , is a convex function if its domain S is a convex set and the following
property is satisfied:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀ ∈ [0, 1]

and

x, y ∈ S

QP

A quadratic program (QP) is an optimization problem with a quadratic objective
function and linear constraints. A fundamental understanding of quadratic pro-
gramming is essential for understanding the use of a linear MPC (see Section 3.2)
in this thesis.
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The general QP is shown in Equation 3.2.

min
x
q(x) =

1

2
x>Gx+ x>c

subject to

a>i x = bi, i ∈ E
a>i x ≥ bi, i ∈ I

(3.2)

G is a symmetric n× n matrix, E and I are finite sets of indices, and c, x, and ai,
i ∈ ε ∪ I, are vectors in Rn. n is the number of decision variables in x.

If the matrix G is positive semi-definite, Equation 3.2 is a convex QP, and any
solution to the optimization problem in Equation 3.2 will yield a global solution.

Any solution x∗ of Equation 3.2 satisfies the first-order KKT conditions shown in
Equation 3.3.

Gx∗ + c−
∑

i∈A(x∗)

λ∗i ai = 0, (3.3a)

a>i x
∗ = bi, for all i ∈ A(x∗), (3.3b)

a>i x
∗ ≥ bi, for all i ∈ I \ A(x∗), (3.3c)

λ∗i ≥ 0, for all i ∈ I ∩ A(x∗), (3.3d)

where λ∗i is the Lagrange multipliers and A is the active set.

3.2 Model Predictive Control

Model predictive control (MPC) is a method of process control. This section will
briefly introduce MPC to establish a theoretical foundation for understanding the
control approach to be presented later in this thesis.

For a more comprehensive discussion on MPC, the reader is referred to [23].
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An MPC is based on solving a dynamic optimization problem at every sampling
instant. The optimization problem seeks to minimize the sum of a quadratic cost
function over a finite prediction horizon. The optimization problem is subject to
state trajectories provided by a model of the real system, the current state of the
real system, and state and input constraints. The dynamic optimization problem
to be solved at every sampling instant is shown in Equation 3.4.

MPC combines dynamic optimization with feedback control, which yields closed-
loop optimization. Closed-loop optimization is achieved when computing the op-
timal control move at each sampling instant.

min
z∈Rn

f(z) =
N−1∑
t=0

1

2
x>t+1Qt+1x

>
t+1 + dxt+1xt+1 +

1

2
u>t Rtu

>
t + dutut +

1

2
∆u>t Rt∆u

>
t

(3.4a)

subject to

xt+1 = Atxt +Btut (3.4b)

x0, u−1 = given (3.4c)

xlow ≤ xt ≤ xhigh (3.4d)

ulow ≤ ut ≤ uhigh (3.4e)

∆ulow ≤ ∆ut ≤ ∆uhigh (3.4f)

where

Qt ≥ 0 (3.4g)

Rt ≥ 0 (3.4h)

R∆t ≥ 0 (3.4i)

Equation 3.4a is the quadratic cost function to be minimized, Equation 3.4b repres-
ents the model of the real system, Equation 3.4c represents the current state while
Equations 3.4d-3.4f represents state and input constraints. Equation 3.4g-3.4i are
weighting matrices. These are normally diagonal, and penalizes the corresponding
state variable.

A basic MPC algorithm is provided in [22] and is shown in Algorithm 1. The
algorithm requires an exact measure of the current state, xt, at each time step
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Algorithm 1: State feedback (N)MPC procedure

for t = 0,1,2... do
Get the current state xt.
Solve a dynamic optimization problem on the prediction horizon from
t to t+N with xt as the initial condition.

Apply the first control move ut from the solution above.
end for

which is unrealistic in industrial processes. The current state is, therefore, usually
an estimate, x̂t, based on measured data.

The general objectives of an MPC controller are to [24]:

1. Prevent violation of input and output constraints.

2. Drive the CVs to their optimal steady-state values (dynamic output optim-
ization).

3. Drive the MVs to their optimal steady-state values using remaining degrees
of freedom (dynamic input optimization).

4. Prevent excessive movement of MVs.

5. When signals and actuators fail, control as much of the plant as possible.

Furthermore, the main reasons for the success of MPC in industrial process control
are, according to [25]:

1. It handles multivariable control problems naturally.

2. It can take account of actuator limitations.

3. It allows operation closer to constraints, which frequently leads to more
profitable operation.

4. Control update rates are relatively low in these applications so that there is
plenty of time for the necessary online computations.

A visual representation of an MPC is shown in Figure 3.1.
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Figure 3.1: Illustration of the MPC principle [22].

3.3 SEPTIC

SEPTIC (Statoil Estimation and Prediction Tool for Identification and Control) is
an in-house control software developed by Equinor and has been successfully used
in many process control applications. It is a software for MPC, real-time optimiz-
ation, dynamic process simulation, and offline and online parameter estimation in
first principle-based process models. A more comprehensive description is given in
[3] and [26].

For clarification purposes, a brief description of the MPC application in SEPTIC
will be given as some notation will vary from the general MPC description in
Section 3.2.

The dynamic optimization problem to be solved at each sample instant in SEPTIC
is given in Equation 3.5.

min
∆u

y>devQyydev + u>devQuudev + ∆u>P∆u (3.5a)
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subject to

umin < u < umax (3.5b)

∆umin < ∆u < ∆umax (3.5c)

ymin < y < ymax (3.5d)

y = M(y, u, d, v) (3.5e)

The subscript dev denotes deviation.

y (output) is referred to as a controlled variable (CV), while u (input) is referred
to as a manipulated variable (MV).

The cost function, Equation 3.5a, penalizes CV deviations from setpoint, MV
deviations from ideal value, and MV moves. It seeks to minimize the rate of change
for the MV’s, while respecting the constraints given in Equations 3.5b-3.5d.

The model is given in Equation 3.5e. d represents disturbance variables (DV),
while v is estimated and optionally predicted unmeasured disturbances.

The models in SEPTIC are built with experimental (single-input single-output)
SISO step response models, which are described in Section 3.4. These are easy to
build, understand and maintain, but still have some drawbacks. They are linear
and based on the superposition principle. Step response models where linearity is
assumed may be a challenge when controlling nonlinear systems with constantly
changing process parameters, as the models may become inaccurate.

There is a priority hierarchy in SEPTIC to avoid dynamical and stationary infeas-
ibilities due to state constraints. The priority hierarchy is as follows:

1. MV rate of change limits

2. MV high and low limits

3. CV hard constraints, hardly ever used

4. CV setpoint, CV high and low limit and MV ideal value with priority level
1

5. CV setpoint, CV high and low limit and MV ideal value with priority level
n
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6. CV setpoint, CV high and low limit and MV ideal value with priority level
99

Level n is manually adjustable in SEPTIC as part of the tuning procedure.

For SEPTIC to function optimally, it is crucial to have an appropriate tuning.
Correct tuning will yield the best performance from the MPC application.

The parameters in SEPTIC for tuning the weighting matrices are:

• Fulf

• Span

• MovePnlty

Fulf and span are unique for each respective MV or CV. The diagonal elements of
Qyn×n and Qun×n from Equation 3.5a, are calculated as follows:

Qyn×n = (
Fulfn
Spann

)2 (3.6)

Qun×n = (
Fulfn
Spann

)2 (3.7)

n is the respective CV or MV.

For MVs, there is also a weighting matrix that penalizes MV moves. The diagonal
elements of P are calculated as follows:

Pn×n = (
MovePnltyn

Spann

)2

A CV bias update captures the discrepancy between the process and model re-
sponse in SEPTIC to include integral action in the controller (more in Section
3.5). If the process being controlled is subjected to noise, the discrepancy may
have a high rate of change, which leads to aggressive control actions from the
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MV(s) affected by process noise. SEPTIC can low-pass filter the bias updating
to avoid issues with process noise disrupting the MV moves and allow the MV to
choose smoother inputs. The low-pass filter is configured using BiasTfilt for the
respective CV to filter the bias update. If there is noise on the CV measurements,
a typical choice for BiasTfilt would be 2-10 times the sample time. The value of
BiasTfilt is the time constant of the low-pass filter.

For computational efficiency, SEPTIC calculates the prediction horizon automat-
ically, such that each of the CVs has reached steady-state after the last MV move.
The prediction horizon may therefore differ between the CVs. SEPTIC also has
implemented MV (input) blocking. Most often, 4 to 8 blocks provide a good
balance between computational effort and performance.

Other examples of implementations of SEPTIC can be found in [27][28][29][30][31].

3.4 Process Models

Many control approaches rely upon having a precise model of the system to be
controlled. These control approaches may be referred to as model-based control
(MBC). MBC includes theory for both linear and nonlinear systems and is well
established in industrial applications. The first step in MBC is modeling and
system identification of the industrial process to be controlled. In this section, a
brief description of model identification in industrial applications is covered.

In academic literature, most processes are described by state-space representation,
and there exist several system identification methods for finding these models.
However, with industrial systems becoming more substantial and more complex,
plant modeling becomes more expensive and challenging. Therefore, describing the
input-output behavior of the system using step responses is a common approach
for industry applications.

As mentioned in Section 3.3, SEPTIC develops models between a CV and an MV
by using step response models, i.e., a step in an MV yields a response in a CV.
SEPTIC has an option to use the offline commercial product Tai-Ji [32] to identify
the dynamic models and produce the correct model file format directly. Another
option in SEPTIC is using an identification module for directly identifying step
response models. An example of a step response model is shown in Figure 3.2.
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Figure 3.2: An example of a step response model in a SISO-system. A unit step
in the MV yields the following response in the CV.
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Tai-Ji identification is based on the asymptotic method (ASYM) of identification
based on theory in [33]. The theory explains the frequency domain properties of
high-order models obtained using the prediction error method.

Identification consists of at least four steps:

1. Identification test

2. Model order/structure selection

3. Parameter estimation

4. Model validation

The idea of a step response model for a single input variable is to apply a step at
the input variable and record the open-loop response of the outputs until it settles
at a constant value. Linearity is assumed, such that the response of any other
input signal can be deduced by knowing the step responses of the process because
of the superposition principle.

Because linearity is assumed, a drawback of step response models is that, for
nonlinear systems, the step response model would only be accurate in and around
the area the model was created. The predicted response of any other input signal
might be incorrect if the process has moved from where the step response model
was created. Another drawback is that the plant to be modeled needs to be
asymptotically stable.

The step response is discussed in [34] and [35].

By assuming that the process is in steady-state (Section 3.7), and applying a step
on the input j, this can be mathematically expressed as:

{uj(t) = a|t ≥ 0},

where a is the value of the step. The recorded step response on output i becomes

yi(t) =
t∑

k=0

hij(t− k)uj(t) =
N∑
k=0

hij(k)uj(t).
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The response y(t) to an input vector u(t) is given by

y(t) =
N∑
k=0

H(k)u(t),

where

H(t) =


h11(t) h12(t) . . . h1m(t)
h21(t) h22(t) . . . h2m(t)

...
...

. . .
...

hp1(t) hp2(t) . . . hpm(t)

 .

p is the number of outputs, while m is the number of inputs.

The step response matrix is defined as

S(t) =
N∑
k=0

H(k).

Since the input change ∆u(t) = u(t)−u(t− 1) is used rather than the input itself,
the equation used by the MPC controller to model the plant is given by

y(t) =
t∑

k=0

S(k)∆u(t− k).

3.5 Model Quality

Modeling is an approximation of the real system, and modeling errors are therefore
inevitable. Modeling errors lead to less robustness and less stability in a controller.
Model quality is the main factor that affects the control performance of model-
based controllers, such as an MPC. Predictions in an MPC from an inadequate
model can result in computed inputs far from optimal control moves. Output
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feedback (bias updating) is commonly used as compensation for poor model qual-
ity, which means that an MPC might still perform sufficiently. To ensure that
the models used in the controller are adequate, an approach for assessing model
quality is necessary.

Poor model quality may be caused by poor model design, unmodeled disturbances,
or decreasing model quality due to changes in the process. If the control perform-
ance of the MPC degrades over time, it may be due to plant-model mismatch or
tuning factors, which without a model assessment method is challenging to tell.
The alternative of offline model maintenance for the entire plant leads to a high
cost of MPC maintenance and is desirable to avoid. An online model assessment
method to estimate model quality is therefore desirable.

As mentioned, integral action is included in SEPTIC. Integral action is added by
including a CV bias update that captures the discrepancy between the process and
model response. The integral action removes the steady-state offset to the CVs.
This bias should be constant, such that the rate of change between the process
response and model response is constant, which implies that the process models
are correct.

When the process is stable, the bias rate of change will be close to zero. A bias
rate of change close to zero implies that the current input-output models are of
high enough quality to control the process with the current noise and disturbances.

Bias

Output bias captures the discrepancy between the process and the model response.
This provides integral action to the controller, and removes steady-state offsets to
produce a corrected prediction, ỹ(k + j). The corrected prediction is defined as
[36]:

ỹ(k + 1)
∆
= ŷ(k + 1) + b(k + 1)

where ŷ(k+ 1) is the predicted nominal model value (model output value without
corrections from measurements), while b(k + 1) is the bias correction.

In practice, the bias is often specified to be the difference between the latest
measurement y(k), and the corresponding predicted value, ŷ(k):
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b(k + 1) = y(k)− ŷ(k)

This strategy is referred to as output feedback [24]. The bias is added to the model
for use in subsequent predictions:

ỹ(k + 1)
∆
= ŷ(k + 1) + b(k + 1) = ŷ(k + 1) + [y(k)− ŷ(k)]

This feedback form is equivalent to assuming that a step disturbance enters at the
output and remains constant. This constant output disturbance provides integral
action to the controller for stable processes, removing steady-state offset due to
disturbances and plant-model mismatch.

A perfect input-output model of a SISO-system would yield the following response:

˙̂y(k) = ẏ(k) ⇒ ḃ(k + 1) = 0.

The model response matches the process output measurement given an arbitrary
input. Therefore, a measure for assessing model quality could be to monitor the
rate of change of bias, ḃ(k). The closer ḃ(k) is to zero, the higher is the model
quality.

Figure 3.3 and Figure 3.4 show CV responses from a change of input, following
a change of setpoint value for the oil rate. An example of poor model quality is
shown in Figure 3.3, while an example of the same system with near-perfect model
quality is shown in Figure 3.4. Figure 3.3 and Figure 3.4 are nonlinear systems
controlled using an MPC, whose performance is dependent upon model quality.
The systems are modeled using step response models.

In Figure 3.3, there are considerable variations of bias when the process is subjected
to a change of input. The output value also converges slowly towards the setpoint
due to the inadequate step response model.

In Figure 3.4 the model is better, as can be seen with less change in bias than in
Figure 3.3. The output also converges faster to the setpoint value. Because the
controlled system is highly nonlinear, the step response model of higher quality
will still be inaccurate when subjected to a considerable input change. Therefore,
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Figure 3.3: A process excitation with a poor mathematical model.

Figure 3.4: A process excitation with a near perfect mathematical model.
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it is observable that the response overshoots, and there is still some change of
bias.

3.6 Linear vs. Nonlinear Systems

A linear system will satisfy the superposition property [37]. The superposition
property holds if the additivity property and the homogeneity property holds. The
additivity property is described as shown in Equation 3.8, and the homogeneity
property is shown in Equation 3.9.

x1(t0) + x2(t0)

u1(t) + u2(t), t ≥ t0

}
→ y1(t) + y2(t), t ≥ t0 (3.8)

x1(t0)

u1(t), t ≥ t0

}
→ y1(t), t ≥ t0 (3.9)

Combining the additivity property and the homogeneity property shown in, re-
spectively, Equation 3.8 and Equation 3.9 yields the superposition property:

α1x1(t0) + α2x2(t0)

α1u1(t) + α2u2(t), t ≥ t0

}
→ α1y1(t) + α2y2(t), t ≥ t0

for any real constants α1 and α2.

In a linear system the total response from an input u(t) is the sum of the zero-input
response and the zero-state response:

Output due to

{
x(t0)

u(t), t ≥ t0
= output due to

{
x(t0)

u(t) = 0, t ≥ t0

+ output due to

{
x(t0) = 0

u(t), t ≥ t0
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A linear system time-invariant can described as:

ẋ(t) = Ax(t) + Bu(t)

This system is described by state-space representation. x is a state vector, and the
state vector elements are state variables. State-space representation is to describe
systems using vector notation [38].

In a linear system, the change of the output is proportional to the change of the
input.

A system is said to be nonlinear if the superposition property is not satisfied
[39]. The change of the output would not be proportional to the change of input.
Nonlinearity adds complexity to the system and demands analysis tools with more
advanced mathematics. A nonlinear system may be described mathematically as:

ẋ(t) = f(t,x,u)

There are many methods and control techniques available for linear systems [40].
Therefore, it is preferable to linearize nonlinear systems to use control techniques
for linear systems. Linearization consists of forming locally valid linear approxim-
ations of nonlinear systems.

However, if a system deviates from the point (in state-space) where the linearized
model was created, the inaccuracy of the linearization increases. If the system dy-
namics change with time (e.g., change of disturbances), the mathematical model
no longer reflects the actual dynamics [41]. As stated in [4], higher product quality
specifications and increasing productivity demands, tighter environmental regula-
tions, and demanding economic considerations require operating systems over a
wide range of operating conditions and often near the boundary of the admissible
region. Operating systems over a wide range of operating conditions and often near
the boundary of the admissible region also increases the likelihood of linearized
models losing their accuracy.

The reason for the linearized mathematical model of a nonlinear system losing its
accuracy is that the superposition property is not satisfied in nonlinear systems.
An input at one area of the process point may yield a different output response than
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the predicted output response, making such nonlinear systems more challenging
to control.

A resource for nonlinear control is given in [42]. Some control techniques for
nonlinear systems are:

• Feedback linearization

• Nonlinear model predictive control (NMPC)

• Adaptive control

• Gain scheduling

3.7 Steady-state

Steady-state is a description of a system or a process where the variables are
constant. If a process has reached steady-state, it is considered to be stable. In
steady-state, the observed behavior will continue if the system or process is not
subjected to external disturbances.

In continuous time, steady-state is described as:

ẋ = f(x, u) = 0

where x is a vector containing the state variables.

In discrete time, steady-state is described as:

xk − xk−1 = 0

In an industrial process subjected to process control, the aim for a state variable
may be to reach and stay at a setpoint. If a process has reached its setpoint(s)
and/or ideal value(s), and ∆u = 0 the cost function in Equation 3.5 is minimized
and operating in steady-state. The process is then said to be in steady-state
optimal operation [43].
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Steady-state Gain

The models generated in SEPTIC are step response models, where a step in an
MV will yield a response in the CVs. This procedure is covered in Section 3.4,
with an example in Figure 3.2.

The steady-state gain corresponds to the ratio between a constant input and the
steady-state output [44] and is a relevant quantity only when a system is stable
about the corresponding equilibrium point.

The steady-state gain in a SISO-system is calculated using Equation 3.10.

Steady-state gain =
CVSteady-state − CV0

MVSteady-state −MV0

(3.10)

The subscript 0 corresponds to the CV- and MV-values before a change of MV.
These are steady-state values before a change of input. The subscript Steady-state
corresponds to the constant MV (input) value and the steady-state CV (output)
value after an input change.

In Figure 3.2 the steady-state gain is 1.74. In this case, a unit step in the input
would increase the output with the magnitude of 1.74 if the system is linear and
the step response model is correct.

Steady-state gain may be referred to as zero frequency gain or DC gain in electrical
engineering.
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Chapter 4
Model Aspects and Software

The single subsea well system provided by Equinor is modeled in Dymola. Dymola
is a complete tool for modeling and simulation of integrated and complex systems
[45]. The model is then exported as an FMU (Functional Mock-up Unit) [46] to
SEPTIC. Exporting the model as an FMU allows SEPTIC to control the process
model, providing inputs to the simulation generated using the MPC software in
SEPTIC. In industrial applications for Equinor, SEPTIC is used as a regulator to
control a real process using MPC. However, in this thesis, SEPTIC is used as a
combined simulator and regulator. The model is a single subsea well system to
simulate subsea well control and is highly nonlinear.

A simplified version of the system is shown in Figure 4.1. There are three CVs,
one MV, and two DVs in the process. These are shown in Table 4.1, along with
their upper and lower limits.

Lower limits Upper limits Unit
MV Production choke 0 100 %
DV Gas lift rate 0 12500 Sm3/h
DV Downstream pressure 1 20 bar
CV Oil rate 100 300 Sm3/h
CV WHP 17 25 bar
CV BHP 155 170 bar

Table 4.1: Variables in the single subsea well system.

31



Figure 4.1: Simplified version of the subsea well system which the automatic model
gain identifier is tested on [1].

In a subsea well system, gas lift is an artificial lift method that uses external
high-pressure gas to lift the well fluids. Gas is injected into the production tubing
to reduce the hydro-static pressure of the fluid production column. Reduction of
the hydro-static pressure of the fluid production column results in a reduction of
bottom hole pressure (BHP) which is an enabler for production, resulting in higher
production rates. In reality, this is an MV in the system, but it is modeled as a
DV for this case.

If the gas lift rate increases, wellhead pressure (WHP) will also increase. An
increase of WHP may present an extra challenge in SEPTIC as it directly affects
the differential pressure ∆P over the production choke.

The disturbances are manually adjustable (for simulation purposes) in SEPTIC,
but it is unknown how they affect the process as they are unmodeled. Unmodeled
disturbances pose a challenge for the controller, as it is impossible to predict the
optimal controller input if the disturbances are changing. Manually adjustable
disturbances allow for flexibility in simulating operation over a broader range of
process parameters. Simulating operation over a broader range of process paramet-
ers contributes to the opportunity of highlighting differences in model gains across
a wide range of operating conditions and highlighting how poor model quality
affects the prediction of optimal inputs in SEPTIC.

The oil rate is subjected to noise. The noise is added to the simulation to simulate
the subsea well system more realistically. The noise added is white noise with an
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amplitude of 1.

The downstream pressure is the pressure downstream of the production choke (to
the right of the production choke in Figure 4.1). The downstream pressure may
be pressure in a separator downstream of the production choke.

The process only has one degree of freedom (DOF), which means it only has one
MV to control the CVs. A process having fewer MVs than CVs may be referred
to as a thin plant [24]. In this case, one cannot guarantee optimal solutions and
constraint satisfaction at all times. A thin plant poses extra challenges, and appro-
priate tuning and establishing correct priority levels in SEPTIC would contribute
to solving these challenges.

If the gas lift rate could be modeled and manipulated, making the gas lift rate an
MV, the process would be a square plant, which leads to the dynamic optimization
in Equation 3.5 having a unique solution. The most desirable situation would be
to have more MVs than CVs, which would lead the MPC to have further optimize
the process [47].

The mass flow rate [kg/s] of fluids from the reservoir into the model is constant.
The constant mass flow rate is a simplification during the simulations.

The step response process models between the production choke and the CVs are
shown in Appendix B, and a schematic overview of the subsea well system in
Dymola is shown in Appendix A.

4.1 The Production Choke

As it is the only MV in the system, a brief description of the production choke used
in the Dymola-model is provided. The production choke controls the flow of fluids
in the process through the production pipe. The production choke opening varies
from 0 to 100%. Typical choke characteristics from the production choke opening
u to the flow Q through the choke are linear, quadratic, and equal percentage. The
production choke used in this model has a linear characteristic. The flow through
a choke with linear characteristic is given by Equation 4.1 [48].

Q = uAvY
√
ρ∆P , ∆P ≥ 0. (4.1)
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The choke valve used in the model is a check valve. A check valve only allows
for the flow of fluids in one direction. If the differential pressure, ∆P , is below 0,
the flow Q through the choke is 0. The flow through the production choke in this
model is

Q =

{
uAvY

√
ρ∆P ∆P ≥ 0

0 ∆P < 0

where Q[m3/s] is the flow through the production choke, u ∈ [0, 100%] is the
choke opening, Av[m

2] is a flow coefficient, Y [m2/kg] is the compressibility factor,
ρ[kg/m3] is the mean density of all the fluids through the choke and ∆P [Pa] is the
pressure drop over the choke. The pressure drop ∆P over the production choke in
this model is given by:

∆P = WHP−Downstream pressure.

Downstream pressure is a DV in the system, while WHP is a CV. If the downstream
pressure increases, WHP will also increase to maintain the pressure drop over the
choke. If the oil rate setpoint is active, the pressure drop ∆P needs to remain
constant to ensure constant flow, Q, at the oil rate setpoint through the production
choke, given a constant production choke opening. However, the production choke
opening is regulated to give the pressure drop ∆P to yield the desired oil rate.

If the downstream pressure increases above the upper limit of WHP, 25bar, con-
straint satisfaction is infeasible. As the production choke is a check valve, the
pressure drop ∆P needs to be positive to have production flow through the valve.
For ∆P to be positive, the WHP needs to be higher than the downstream pressure.
If the gas lift rate could be manipulated, making the process a square plant (the
number of MVs equals the number of CVs), these infeasibilities could be avoided.

4.2 Tools in SEPTIC

The data-driven methodology, i.e., the automatic model gain identifier, is, as men-
tioned, implemented in SEPTIC.
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A useful feature in SEPTIC for updating controller design based on online process
data is called calc. The definition for a calc from the SEPTIC reference document-
ation [26] are as follows:

”Algorithms for intermediate calculations”

Algorithms for intermediate calculations imply that one can construct algorithms
for updating process parameters using online data from running simulations. The
calcs are necessary for implementing a data-driven methodology by including on-
line process data for intermediate calculations. The calcs used for implementing
the data-driven methodology are described in Appendix C.

The figures presented later in this report are generated in Matlab unless stated oth-
erwise. To export data to Matlab from SEPTIC, the Matlab function dta2matlab3.m,
provided by Equinor, is used. From a .dta-file generated from a SEPTIC simula-
tion, the function returns data from the simulation.
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Chapter 5
Controller Design

In this chapter, the proposed method for implementing a data-driven methodology
as an automatic model gain identifier in SEPTIC will be described. The different
elements of the automatic model gain identifier are thoroughly described, and
examples of the implementation will be shown.

The steady-state gain, described in Section 3.7, will be referred to as model gain
when discussing the steady-state gain in the step response models.

As mentioned in Section 3.4, the models for input-output behavior generated in
SEPTIC are step response models, i.e., a step in the input yields a response in
the output. If a process is in steady-state and the input value is changed and re-
mained constant at this value, and subsequently the output reaches steady-state,
the model gain is the ratio between output change and input change. Because
the step response models assume linearity, the step response models will lose their
accuracy if process parameters change from where the step response models were
generated. Since an MPC’s performance depends on having an accurate mathem-
atical model of the process it controls, the performance of the MPC will decrease
if the step response models lose their accuracy. This thesis will propose a data-
driven methodology to combat non-linearity in the system, and at the same time,
identify and implement more precise model gains, yielding improved and sustained
MPC performance.

The proposed method for implementing a data-driven methodology is to exploit
the online data available from the process simulation to update the model gains for
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the initially generated step response models. Utilizing the online data for designing
the controller is a data-driven control technique. The proposed method excites the
process and updates the model gains automatically during simulation, based on
both process parameters and the model’s age. The process can be excited by
moving a CV setpoint or an MV ideal value. Both methods will be implemented
and compared.

Some initial assumptions are made for simplification purposes.

Assumptions:

• The initial step response models are accurate enough to ensure that the
process reaches steady-state, given initial conditions. Accurate initial models
are necessary for the process to become stable and controllable. The initial
step response models are shown in Appendix B.

• The process reaches steady-state after 30 minutes, with known and constant
disturbances.

5.1 Initial Setup

The process is subject to constraints. The constraints include minimum/maximum
values and maximum rate of change for the MV, which is of the highest priority
level in SEPTIC and thus always respected. The production choke, which has a
maximum opening of 100 %, can not, for obvious reasons, exceed 100%. The same
also applies to the maximum rate of change, which is included to reflect a realistic
behavior of the production choke valve. The MV constraints are of the highest
priority in the priority hierarchy in SEPTIC to respect the actual limitations of
MVs.

There are also minimum and maximum constraints for the CVs. These are mainly
included to protect the process, as process values outside these limits may damage
equipment and be sources of safety hazards. Safety is of utmost importance in
a subsea well system, and the CV constraints must be respected. The minimum
and maximum constraints of the CVs are of priority level 1, which is the highest
priority level outside of the MV constraints. Respecting the CV constraints is seen
as one of the most essential role of an MPC, which is reflected in the chosen priority
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level in SEPTIC for this thesis. The priority hierarchy in SEPTIC is described in
Section 3.3.

The desired setpoint for the oil rate is 250 Sm3/h, while the desired ideal value for
the production choke is 31 %. BHP and WHP do not have a setpoint value, but
their constraints need to be respected. Either the setpoint for the oil rate or the
ideal value for the production choke is activated, depending on how the process is
excited. The setpoint and ideal value will have priority level 2, i.e., less critical to
reaching the setpoint/ideal value than respecting the CV constraints.

The initial step response models are generated in SEPTIC. The disturbances are
kept constant at their initial values, and the production choke opening is moved
from 30% to 35%. A production choke opening between 30% and 35% was the
preferred area for the production choke to operate by experimentation and ob-
servation, given the initial conditions. Therefore, the step from 30 % to 35 %
is chosen to generate the initial step response models. The responses in the CVs
were recorded, and the step response models were saved in SEPTIC to use as initial
models for this thesis. The initial values for gas lift rate and downstream pressure
during the generation of the step response models were respectively 5000Sm3/h
and 13bar.

The process is tuned during initial conditions to ensure satisfactory performance
with the initial step response models. The tuning process includes tuning of weight-
ing matrices and filtering. Tuning parameters in SEPTIC are mentioned in Section
3.3. The tuning procedure for the process in this thesis will not be covered in detail,
as it is not crucial for the automatic model gain identifier.

The sample time in the controller is

Nsecs = 10s

which limits the simulation time of the model. The integration time of the model
must be much lower than the sampling time of the controller since the model is
simulated over a prediction horizon for each sample.

The cost function in SEPTIC is given in Equation 3.5a. The cost function can be
used as a measure of how the controller performs. The dynamic optimization prob-
lem in Equation 3.5 tries to minimize the cost function. A lower value, therefore,
implies a more efficient and better-performing controller.
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The cost function depends upon the method of process excitement. As mentioned
in Section 3.3, the cost function penalizes CV deviations from setpoint, MV de-
viations from the ideal value, and MV moves. When the process is excited by
moving the oil rate setpoint, there is no deviation from MV ideal value, as there
is no ideal value active. The same logic applies when exciting by moving the ideal
value of the production choke. Then there is no setpoint active.

When the process is excited by moving the oil rate setpoint, the cost function
becomes as shown in Equation 5.1.

min
∆u

JSP = (Oil rate−oil rate setpoint)2 ∗ (
FulfOilrate

SpanOilrate

)2+

∆Choke2 ∗ (
MovePnltyChoke

SpanChoke

)2.

(5.1)

When the process is excited by moving the ideal value for the production choke,
the cost function becomes as shown in Equation 5.2.

min
∆u

JIV = (Choke−choke ideal value)2 ∗ (
FulfChoke

SpanChoke

)2+

∆Choke2 ∗ (
MovePnltyChoke

SpanChoke

)2.

(5.2)

These are included in SEPTIC to monitor the current performance of the control-
ler. The value of JSP and JIV is calculated for each sample and gives the cost of
the current sample. If the process has reached steady-state, and either the pro-
duction choke ideal value or the oil rate setpoint is reached, the cost will be 0.
Mathematically, steady-state optimal operation minimizes JSP and JIV [43].

5.2 Process Excitation

Process excitation provides the process with an input signal to ensure that the
process is not in steady-state. A process not being in steady-state is necessary as
an updated model gain cannot be identified if the process is in steady-state. From
Equation 3.10, it is clear that the model gain could not be calculated without a
change of MV.
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Figure 5.1: Excitation by moving the
oil rate setpoint.

Figure 5.2: Excitation by moving the
production choke ideal value.

The process may either be excited by moving a setpoint value for a CV or moving
the ideal value for the MV. Moving of a setpoint or an ideal value for process
excitation will be referred to as an excitation step, where the size of the excitation
step is the difference between the initial setpoint/ideal value and the setpoint/ideal
value after the process excitation. Both methods will be implemented for process
excitation. A change of ideal value or setpoint will, if the constraints are respected,
ignite a change of MV. If a given change in an MV yields a response in all CVs, it
will be sufficient to calculate an updated model gain for all step response models
for the MV. A desired oil rate set is often used as a specific production goal in a
subsea well system. This process aims to control the oil rate as well; consequently,
moving the oil rate setpoint is used for excitation. The production choke ideal
value is used for excitation by moving the ideal value, as it is the only MV in the
process.

When the process is excited by moving the oil rate setpoint value, the priority level
in SEPTIC of the oil rate setpoint will be 2, i.e., less critical than CV high and low
limits. This choice of priority level is to ensure that the other CV constraints are
respected during an excitation. When the process is excited by moving the ideal
value of the production choke, the priority level will be 2 for the same reasons as
for the setpoint excitation.

The different excitation methods yield different responses and subsequently dif-
ferent model gains. This will be highlighted in Chapter 6, but examples of the
difference in excitation method are illustrated in Figure 5.1 and Figure 5.2.

By moving the oil rate setpoint, the process response is more comfortably con-
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trolled, as can be seen in Figure 5.1. When the process is excited by moving the
production choke ideal value, shown in Figure 5.2, the response in the oil rate
will be more subjected to noise, as the production goal is to keep the production
choke at its ideal value. The production goal when exciting by moving the oil rate
setpoint is to reach and stay at the setpoint. Minor changes in the production
choke will counteract the process noise.

Depending on the disturbance values, situations where either the oil rate or the
production choke cannot reach their respective setpoint or ideal value, may arise.
Figure 5.1 is an example of this situation, as the desired oil rate is 250Sm3/h.
Situations where the setpoint or ideal value cannot be reached may arise if another
CV will not satisfy its constraint if the oil rate or production choke moves closer
to its respective setpoint or ideal value. It is desirable to excite the process from
where the oil rate or ideal value currently is, as this gives control of the size of
the excitation step. Given a situation where the desired setpoint or ideal value
cannot be reached, the setpoint or ideal value is temporarily changed to where
the process has stabilized. The process excitation will begin from the temporarily
changed setpoint or ideal value. The process in Figure 5.1 excites from an oil rate
setpoint of 262Sm3/h. In Figure 5.2, the production choke cannot stabilize at its
desired ideal value, 31%. The process still excites from the value it stabilizes at,
since the production choke stabilizes close to its desired ideal value, and a margin
of ±0.5% is added. After the process excitation and updated model gains have
been identified, the setpoint or ideal value returns to its original value.

An initial assumption in the automatic model gain identifier was that the process
reaches steady-state after 30 minutes, given constant disturbances. In Figure 5.1
and Figure 5.2, the disturbances are constant for the whole duration of 80 minutes.
The processes are excited at 25 minutes, and reaches steady-state. The setpoint or
ideal value is moved and stays constant for 30 minutes, due to the assumption, be-
fore the setpoint or ideal value is reversed. To ensure that the process has actually
reached steady-state, two extra conditions are added for steady-state verification.
The first condition is to check if the oil rate has reached its steady-state value, by
comparing the steady-state value with the current oil rate. The steady-state value
can be found with the SEPTIC calc ”getssval”. If the current oil rate is within
±1Sm3/h of the steady-state value, the condition is considered to be satisfied.
The second condition is to compare the current production choke opening to the
optimal production choke opening in the next sample. The optimal production
choke opening can be found the SEPTIC calc ”mvmget”. If the production choke
is within 0.01% of the optimal production choke at the next sample, the condition
is satisfied. If the production choke is within 0.01%, it is assumed that the process
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is in steady-state.

5.3 Updating the Model Gain

The model gain can be updated during simulation by implementing the calc ”mod-
set”:

Alg = ”modset(CV,MV,scale,apply)”

where apply = 1 commands to set scale, and any other value gives unaffected scale.
If the scale is set, the updated model gain is implemented. Scale is calculated by:

Scale =
Model gaincalculated

Model gaininitial

Model gaininitial is the initial model gain. By using the calc ”modget” at N = 0,
the initial model gains can be acquired:

Alg = ”if(N=0,modget(CV,MV))”

The Model gaincalculated is calculated by using Equation 3.10, which is repeated
below:

Model gain =
CVSteady-state − CV0

MVSteady-state −MV0

CV0 and MV0 are the respective CV- and MV-values before the process excitation,
while CVSteady−state MVSteady−state are the CV- and MV-values after the process
has reached steady-state after the excitation.

For added robustness, the CV- and MV-values to calculate the model gains are
calculated using the values from every sample for the past 5 minutes. The CV-
and MV-values will be the average of the values from the past 5 minutes. Using
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Figure 5.3: The initial step response model between oil rate and production choke,
compared with the same step response model scaled by a factor of 1.2.

the values of the past 5 minutes to calculate the average improves the robustness
of the gathered value, as it will be less affected by process noise. Using more values
to calculate an average value is common practice in industrial applications.

An example of a scaled model is shown in Figure 5.3. The figure shows the ini-
tial step response model between oil rate and choke, compared to the same step
response model, scaled by a factor of 1.2.

After the process has been excited and has reached steady-state, the setpoint/ideal
value is reversed to the desired setpoint/ideal value.

The calculated model gains are verified before they are implemented. The calcu-
lated gain may suffer from noise, or the assumption of time to reach steady-state
does not hold. An easy verification procedure is therefore added. The verification
procedure is primarily a safety measure to ensure that the updated model gains will
not be implemented if there is a risk of them being subjected to miscalculations.

The verification procedure is as follows:
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Obtain the values for the CV and MV (CVafter and MVafter) after the excitation
step has been reversed. Calculate an additional model gain value by using the
following equation:

Model gainafter =
∆MV

∆CV
=

MVSteady-state−MVafter

CVSteady-state − CVafter

The values for MVafter and CVafter also use the average values for the past 5
minutes after the process has reached steady-state.

This value is then compared to Model gaincalculated:

Gain Ratio =
min(Model gaincalculated,Model gainafter)

max(Model gaincalculated,Model gainafter)
∈ 〈0, 1]

If the gain ratio is above 0.8, the model gain is updated. The first calculated
model gains, Model gaincalculated, are then implemented. If the gain ratio is below
0.8, the initial model gain from before the process excitation is kept. It is then
assumed that the process is too affected by noise or does not reach steady-state
either before or after the excitation.

5.4 Constraint Satisfaction During Excitation

The expected steady-state CV-values (referred to as expected CV-values here)
after an excitation step can be calculated from the online data available from the
simulation. The expected CV-values help decide which direction the excitation
step should be. Because of the priority levels in SEPTIC, the constraints are
satisfied at all times given feasibility. However, the identified model gains will be
more robust if the setpoint/ideal value is reached after the process excitation.

The default excitation step is positive. A positive excitation step means that
when a process excitation is deemed necessary, either the oil rate setpoint or the
production choke ideal value, depending on the excitation method, will change in
a positive direction. When the process is excited by moving the oil rate setpoint,
the default step for the setpoint will be +10 Sm3/h. When the process is excited
by moving the production choke ideal value, the default step will be +3 %.
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The excitation steps of +10Sm3/h and +3% for the oil rate setpoint and the
production choke ideal value were used as the model gains calculated were not too
affected by process noise. Smaller excitation steps could not ensure consistency in
the calculated model gains, which were avoided with larger excitation steps. It is
also not desirable to have too large excitation steps either, as not to disrupt the
process too much.

Before each process excitation, the expected CV-values after the excitation step is
calculated. The motivation behind calculating the expected CV-values is that the
default positive excitation step might yield expected CV-values that do not respect
the constraints. Because of the priority levels in SEPTIC, the CV constraints will
still be respected. However, the process might not reach either the oil rate setpoint
or the production choke ideal value after an excitation step. The reason for the
process not reaching the setpoint/ideal value is that respecting the constraints is
of higher priority.

If the process does not reach a setpoint/ideal value after a process excitation, the
calculated model gains are less accurate and less robust because of a reduced excit-
ation. The expected CV-values are calculated for excitation steps in both positive
and negative directions. When exciting the process by moving the production
choke ideal value, the expected CV-values are calculated using Equation 5.3.

CVexpected = CV0 + GainCV ∗ ±∆MV (5.3)

∆MV is the excitation step for the production choke, and the expected CV-values
will be calculated for both positive and negative excitation steps, yielding two
expected values for each CV. The expected values indicate in which direction the
excitation should be.

If the expected CV-values when ∆MV is positive respects the CV-constraints, the
excitation step will be positive (+3 % change of production choke). If a positive
∆MV yields expected CV-values which do not respect the CV-constraints, while
a negative ∆MV yields expected CV-values which respects the constraints, the
excitation step will be negative (-3 % change of production choke).

When the process excitation is done by moving the oil rate setpoint, the expected
CV-values is calculated by first calculating the expected movement of the produc-
tion choke:
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∆MVexpected = ±Oil rateSteady-state −Oil rate0

GainOilRate

= ± ∆Oil rate

GainOilRate

∆Oil rate is a setpoint change of 10 Sm3/h. The expected CV-values (BHP and
WHP) from both a positive and negative excitation step can then be calculated
by using Equation 5.3 (∆MV = ∆MVexpected). As with process excitation by
moving the ideal value of the production choke, both the positive and the negative
excitation steps will be investigated to detect which direction the excitation step
is expected to respect the constraints.

Situations where neither a positive or a negative excitation step expects constraint
satisfaction may occur. In these situations, the deviations for all expected CVs
which do not respect the constraints are calculated. The deviations are the differ-
ence between the constraint limit and the expected CV-value which violates the
constraint:

DeviationCVn = CVnexpected
− CVnHigh

DeviationCVn = CVnLow
− CVnexpected

CVnexpected
is calculated using both positive and negative excitation steps. A pos-

itive value for DeviationCVn imply that constraint satisfaction is not expected. For
these CVs, a maximum allowable excitation step is calculated. If a positive excit-
ation does not expect constraints satisfaction, the maximum allowable expected
excitation step is calculated as:

CVnHigh
− CVn0

GainCVn

∗GainOilrate

CVn0 is the current value of the CV. If neither a positive or negative excitation
step yields constraint satisfaction, the excitation step will go in the direction which
the maximum of the expected maximum allowable excitation step is.

For illustration purposes, an example is presented. In this example, the process
is excited by moving the oil rate setpoint. The initial model gains and the initial
disturbance conditions are shown in Table 5.1.
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Model gain oil rate 7.25 Sm3/h
%choke

Model gain WHP -1.74 bar
%choke

Model gain BHP -0.37 bar
%choke

Gas lift rate 5000Sm3/h
Downstream pressure 13bar

Table 5.1: Initial model gains and disturbances.

Oil rate0 290.9Sm3/h
WHP0 25bar
BHP0 164.7bar

Table 5.2: Steady-state CV-values after disturbance changes.

The gas lift rate and downstream pressure change to, respectively, 12000Sm3/h
and 5bar, such that the model gains need updating. The CV-values then stabilizes
at the values shown in Table 5.2. The oil rate cannot reach its desired setpoint of
250Sm3/h, and the WHP is at its high limit.

In this situation the expected movement of the choke is:

∆MVexpected = ± ∆Oil rate

GainOilrate

= ± 10Sm3/h

7.25Sm3/h
%choke

= ±1.38%choke

A negative excitation step (moving the oil rate setpoint −10 Sm3/h) would lead
to the following expected WHP:

WHPexpected = WHP0 +GainWHP ∗ −∆MVexpected

= 25bar + (−1.74
bar

%choke

∗ −1.38%choke) = 27.38bar

The WHP high limit is not respected, yielding a deviation of:

DeviationWHP = WHPexpected −WHPHigh = 27.38bar − 25bar = 2.38bar

A positive excitation step would lead to a deviation of the oil rate upper limit:
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DeviationOilrate = Oil rateexpected −Oil rateHigh

= 300.9Sm3/h− 300Sm3/h = 0.9Sm3/h,

as Oil rateexpected = Oil rate0 +∆Oil rate = 300.9Sm3/h. The maximum allowable
expected excitation step in positive direction becomes:

Oil rateHigh −Oil rate0 = 300Sm3/h− 290.9Sm3/h = 9.1Sm3/h.

Comparing this with the maximum allowable expected excitation step in negative
direction:

WHPHigh −WHP0

GainWHP

∗GainOilrate =
25bar − 25bar

−1.74 bar
%choke

∗ 7.25
Sm3/h

%choke

= 0Sm3/h

As the maximum allowable expected step in the negative direction is 0, the process
would not move if the oil rate setpoint was moved in a negative direction. To
perform a successful process excitation, the setpoint would therefore have to be
moved in a positive direction.

In these situations, the oil rate setpoint would be set to 300 Sm3/h instead of
300.9 Sm3/h, such that the setpoint is not set outside of the high/low limits.

The example is shown in Figure 5.4.

As the disturbances change, it is seen that the oil rate stabilizes at 290.9Sm3/h,
while WHP reaches its high limit of 25bar. The process excitation will begin from
where the oil rate stabilizes if the oil rate cannot stabilize at the desired setpoint
of 250Sm3/h. When the process stabilizes, it is calculated which direction the
excitation should be for maximum possible excitation. As has been explained, the
direction which would yield the maximum allowable excitation step was in the
positive direction. This is shown in Figure 5.4. If the excitation step was in the
opposite direction, the process would remain in steady-state and the process would
not be excited, with the reason being that the oil rate cannot be reduced (as the
production choke opening would need to be reduced) without breaking the upper
limit of WHP.
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Figure 5.4: The disturbances changes and WHP reaches its upper limit. The auto-
matic model gain identifier recognizes this, and the direction of the excitation step
is positive as this is the direction which yields the maximum available excitation
step. Excitation by moving the oil rate setpoint. The oil rate reaches its upper
limit.

50



Figure 5.5: The process is first excited by moving the oil rate in positive direction,
and then in negative direction. This yields two different model gains, respectively,

8.2 Sm3/h
%choke

and 9.9 Sm3/h
%choke

.

The automatic model gain identifier will identify different model gains depending
on the direction the excitation step will be, even if the disturbances are constant
during the two identification periods. An example is shown in Figure 5.5, where a
movement of the oil rate setpoint is used as the excitation method. In the example,
the gas lift rate is 5000Sm3/h and the downstream pressure is 13bar. When the
excitation step is in a positive direction, the production choke opening increases to
reach the setpoint, while the production choke decreases to reach the setpoint if the
excitation step is in a negative direction. If the production choke decreases, WHP
pressure increases. However, if the production choke increases, WHP pressure
decreases. As the downstream pressure is kept constant, the pressure drop ∆P
over the production choke depends upon which direction the excitation step is. As
the square root of ∆P determines the production choke opening needed to reach
a specified oil rate (Equation 4.1), the change of production choke opening will
differ depending on the direction of the excitation step. Because the production
choke opening differs, the identified model gains will also differ.
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Initial conditions Acceptable movements
Gas lift rate 5000Sm3/h ± 2000Sm3/h
Downhole pressure 13bar ± 3bar

Table 5.3: Disturbances: initial conditions and acceptable movements.

5.5 Excitation Triggers

In a best-case scenario for an industrial process, it is preferable to avoid a process
excitation if production rates are satisfactory. During operation, it is preferable
to keep the process in steady-state to avoid wear and tear on the equipment. It is
therefore essential to carefully select in which scenarios to excite process for model
gain identification.

An excitation trigger added to the data-driven methodology is the age of the
current model gains. This excitation trigger is added to have a continuous model
gain identification to verify the current model gains. The process will excite and
identify updated model gains if the existing model gains has not been updated in
the last 24 hours.

Due to the non-linearity in the process, the model gains will differ from where
in the state-space the process currently is. Therefore, an excitation trigger is
added based on the value of the disturbances, as a change of disturbance values
corresponds to a process moving in the state-space.

The disturbances in the process are gas lift rate and downhole pressure, as men-
tioned in Chapter 4. Initial conditions and acceptable movements in the state-
space for each of the disturbances are listed in Table 5.3.

The acceptable movements are the minimum and the maximum change of the
disturbances before the current model gains are deemed unacceptable. From these
acceptable movements, an area of model acceptance is created. If the process
disturbances are within these limits, the current process models are considered
acceptable and kept. The initial acceptable area for the disturbances is shown in
Figure 5.6.

An excitation is triggered if the process disturbances moves outside of this area.
A percentage for each disturbance is calculated based on where in the state-space
the disturbance is. This is implemented as follows:
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Figure 5.6: Initial acceptable area for the disturbances, with a gas lift rate of
5000Sm3/h and a downstream pressure of 13bar.
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% = 100 ∗ |DV −DVinit|
DV±

where DV is the current disturbance value, DVinit is the initial disturbance value,
and DV± is the acceptable movements for the disturbances. The percentage is
calculated for both disturbances, and summed to a total percentage:

%total = %Gas lift rate + %Downhole pressure

If %total exceeds 100%, the process is outside of the acceptable area, and the process
is subsequently excited.

If the model gains are updated, the initial conditions are also updated such that
the acceptable area is updated. The acceptable movements are kept for further
creation of a new acceptable area.

When the disturbances are manually adjusted in SEPTIC, the disturbances reach
their adjusted values after 30 minutes with a constant rate of change. This is
to avoid sudden changes to the process, as this is not realistic during a real life
environment during normal operation. The gas lift rate (normally an MV) are
limited in rate of change. The downstream pressure may change suddenly in a real
life scenario, however this is not expected during normal operation, and therefore
outside of the scope of this thesis.
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Chapter 6
Results and Simulations

In this chapter, the main results of this thesis will be presented. The aim is to show
increased performance from the MPC using the automatic model gain identifier.
The gain identifier will automatically excite the process to identify model gains if
the existing model gains are deemed unacceptable.

The main results will be presented in two parts. The first part illustrates how a
set of previously implemented model gains affects the process, compared to how
the process is affected after the model gains have been updated. The model gains
will first be identified from a process excitation by moving the oil rate setpoint.
The responses with the previous model gains and the updated model gains from a
setpoint procedure will be compared. The oil rate setpoint will be set to its upper
limit of 300Sm3/h from its initial setpoint of 262Sm3/h. When the process has
stabilized and reached steady-state, the setpoint will be set to its lower limit of
100Sm3/h. The model gains will then be identified and updated, and the same
setpoint procedure with updated model gains is repeated. The goal is to illustrate
increased performance from the MPC, given correct model gains. The model gains
are updated with the automatic model gain identifier presented in Chapter 5. The
same procedure will be repeated by exciting the process by changing the production
choke ideal value. The ideal value is then first set to 100% from its initial ideal
value 31% and then to 0% after reaching steady-state. A brief discussion of the
difference between excitation by ideal value and setpoint follows.

The second part aims to illustrate that the model gain identifier is automatic. The
disturbances will change with time, and the process will excite, when necessary,
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Figure 6.1: Common legends in the plots.

Model gain oil rate 3.1 Sm3/h
%choke

Model gain WHP -0.4 bar
%choke

Model gain BHP -0.2 bar
%choke

Table 6.1: Initial model gains from setpoint excitation for model gains identific-
ation, identified with a gas lift rate of 2500Sm3/h and a downstream pressure of
15bar.

and model gains will be identified and updated. An additional aim is to show the
consistency of identified and updated model gains, i.e., the model gains identified
at a set of process parameters will be equal if the process returns to this set of
process parameters. An additional aim is to illustrate that the excitation steps do
not lead to constraint dissatisfaction. In case of a risk of constraint dissatisfaction,
the excitation step will be in the direction that allows the maximum allowable
excitation step size. The automatic model gain identifier is presented using both
setpoint excitation and ideal value excitation separately.

6.1 Part 1

The first part shows that the identified model gains from a process excitation
improve the MPC performance compared with the previously implemented model
gains.

6.1.1 Setpoint Excitation

The initially identified model gains are shown in Table 6.1. The model gains are
identified with a gas lift rate of 2500Sm3/h and a downstream pressure of 15bar.

The updated acceptable area is shown in Figure 6.2.

The disturbances are then adjusted. The gas lift rate is set to 7500Sm3/h, while
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Figure 6.2: Updated acceptable area for the disturbances, after model gains iden-
tification at a gas lift rate of 2500Sm3/h and a downstream pressure of 15bar.
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Figure 6.3: Setpoint procedure, with a gas lift rate of 7500Sm3/h and a down-
stream pressure of 9bar, using the initial model gains. Model gains identified with
oil rate setpoint excitation, with a gas lift rate of 2500Sm3/h and a downstream
pressure of 15bar.

the downstream pressure is set to 9bar. The disturbance values are outside of
the acceptable area in Figure 6.2 as the total percentage %total is above 100%,
and the model gains are therefore not considered acceptable. Given the value
of the disturbances, the oil rate cannot reach the desired setpoint of 250Sm3/h
but stabilizes at 262Sm3/h. The oil rate cannot reach the setpoint of 250Sm3/h
because WHP is at its upper limit of 25bar. This constraint would not be respected
if the oil rate would decrease because the production choke opening would have to
decrease. A reduction of production choke opening leads to increased WHP.

The model gains are tested in a procedure where the oil rate setpoint is set first to
its upper limit 300Sm3/h and then to its lower limit of 100Sm3/h. This setpoint
procedure is used as large process excitations are optimal to illustrate the compar-
ison in performance between the updated model gains and the initial model gains.
The responses from the setpoint procedure using the initial model gains are shown
in Figure 6.3.
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Model gain oil rate 11.5 Sm3/h
%choke

Model gain WHP -2.0 bar
%choke

Model gain BHP -0.9 bar
%choke

Table 6.2: Updated model gains from setpoint excitation for model gains identi-
fication, identified with a gas lift rate of 7500Sm3/h and a downstream pressure
of 9bar.

The process is then excited, and new model gains are identified. The updated
model gains are shown in Table 6.2.

To test the updated model gains, the setpoint procedure is repeated. The responses
from the setpoint procedure using the updated model gains are shown in Figure
6.4.

In Figure 6.3 the oil rate goes outside of the upper limit of 300Sm3/h when adjust-
ing the setpoint to the upper limit. Because the model gains are not optimal given
the process parameters, the MPC cannot predict optimal inputs from the mathem-
atical model of the process, which leads to constraint violation. The production
choke takes aggressive control actions as a direct consequence of not predicting
optimal inputs. Aggressive control actions from the production choke are not de-
sirable in an industrial process, as the production choke will wear out quicker.
When the oil rate setpoint is set to its lower limit of 100Sm3/h, a slight overshoot
in WHP is also observed.

Figure 6.4 shows smoother input values from the choke with less aggressive con-
trol actions. The MPC can predict more optimal values from the mathematical
model of the process. The oil rate converges quicker to the upper limit, compared
with Figure 6.3. The constraints are respected throughout the oil rate setpoint
procedure.

The bias and the bias rate of change throughout the procedure from the old model
gains are compared with the bias and the bias rate of change throughout the
procedure from the new model gains. The comparisons are shown in Figure 6.5-
6.7. A lower bias rate of change corresponds to higher model quality, as explained
in Section 3.5.

The total bias rate of change from the setpoint procedure is shown in Table 6.3.
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Figure 6.4: Setpoint procedure, with a gas lift rate of 7500Sm3/h and a down-
stream pressure of 9bar, using the updated model gains. Model gains identified
with oil rate setpoint excitation, with a gas lift rate of 7500Sm3/h and a down-
stream pressure of 9bar.
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Figure 6.5: Comparing oil rate absolute value of bias rate of change and bias
between the initial and the updated model gains for the oil rate setpoint procedure.
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Figure 6.6: Comparing WHP absolute value of bias rate of change and bias between
the initial and the updated model gains for the oil rate setpoint procedure.
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Figure 6.7: Comparing BHP absolute value of bias rate of change and bias between
the initial and the updated model gains for the oil rate setpoint procedure.
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Total bias rate of change
Oil rate WHP BHP

Initial model gains 108.37 9.73 4.06
Updated model gains 50.19 5.17 1.44
Reduction 53.69 % 46.87 % 64.53 %

Table 6.3: Comparison of total bias rate of change for the oil rate setpoint pro-
cedure.

The total bias rate of change is calculated using Equation 6.1.

|
N−1∑
k=0

b(k + 1)− b(k)| (6.1)

b(k + 1) is calculated using Equation 3.5. The absolute value of the bias rate of
change is used, as it better illustrates the differences in the bias rate of change
between old and new model gains. As explained in Section 3.5, a perfect input-
output model of a SISO-system would yield ḃ(k) = 0. A bias rate of change
closer to zero corresponds to higher model quality. When comparing the bias
rate of change from the old and new model gains, the absolute value is ideal for
illustrating the bias rate of change.

The reduced total bias rate of change shows that the updated model gains perform
better than the old model gains. Using the updated model gains yields a reduction
of 53.69 % of the total bias rate of change for the oil rate, a reduction of 46.87 %
total bias rate of change for the WHP, and a reduction of 64.53 % total bias rate
of change for the BHP.

With constraint satisfaction despite considerable process excitations and great
reductions of the total rate of change of bias, the updated model gains show
promising results. The gain identification used process data from the simulation
to identify the gains. The results presented show that the gains acquired from
the gain identification are better performing than using initial gains identified at
different process parameters.
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Model gain oil rate 5.6 Sm3/h
%choke

Model gain WHP -0.8 bar
%choke

Model gain BHP -0.4 bar
%choke

Table 6.4: Initial model gains from ideal value excitation for model gains identi-
fication, identified with a gas lift rate of 2500Sm3/h and a downstream pressure
of 15bar.

Model gain oil rate 8.7 Sm3/h
%choke

Model gain WHP -1.5 bar
%choke

Model gain BHP -0.7 bar
%choke

Table 6.5: Updated model gains from production choke ideal value excitation
for model gains identification, identified with a gas lift rate of 7500Sm3/h and a
downstream pressure of 9bar.

6.1.2 Ideal Value Excitation

The ideal value for the production choke is used instead of setpoint for the oil
rate for process excitation in this section. This yields slightly different initial
model gains at the initial disturbance values. The initial model gains at the initial
disturbances are shown in Table 6.4.

The disturbances are adjusted, i.e., the gas lift rate is set to 7500Sm3/h, and
downstream pressure is set to 9bar. The responses from an ideal value procedure
using the initial model gains with adjusted disturbances are shown in Figure 6.8.
First, the ideal value procedure moves the production choke ideal value to 100%
and then to 0% after the process has reached steady-state.

The process is then excited, and model gains are updated. The updated and
implemented model gains are shown in Table 6.5.

The responses using the updated model gains with adjusted disturbances are shown
in Figure 6.9.

The bias from the old model gains is compared with the bias from the new model
gains and the bias rate of change. This is shown in Figure 6.10-6.12.

The total bias rate of change and reduction in total bias rate of change from using
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Figure 6.8: Ideal value procedure, with a gas lift rate of 7500Sm3/h and a down-
stream pressure of 9bar, using the initial model gains. Model gains identified
with production choke ideal excitation, with a gas lift rate of 2500Sm3/h and a
downstream pressure of 15bar.
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Figure 6.9: Ideal value procedure, with a gas lift rate of 7500Sm3/h and a down-
stream pressure of 9bar, using the updated model gains. Model gains identified
with production choke ideal value excitation, with a gas lift rate of 7500Sm3/h
and a downstream pressure of 9bar.
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Figure 6.10: Comparing oil rate absolute value of bias rate of change and bias
between the initial and the updated model gains for the ideal value procedure.
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Figure 6.11: Comparing WHP absolute value of bias rate of change and bias
between the initial and the updated model gains for the ideal value procedure.
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Figure 6.12: Comparing BHP absolute value of bias rate of change and bias
between the initial and the updated model gains for the ideal value procedure.

70



Total bias rate of change
Oil rate WHP BHP

Initial model gains 120.65 6.13 2.57
Updated model gains 99.71 3.43 1.15
Reduction 17.36 % 44.05 % 55.25 %

Table 6.6: Comparing total bias rate of change in initial and updated model gains
for the ideal value procedure.

updated model gains is shown in Table 6.6.

6.1.3 Discussion

Both excitation methods yield increased performance after identifying and updat-
ing model gains, both in terms of less aggressive control actions and reduced total
bias rate of change. The excitation methods yield slightly different model gains,
and using an ideal value for excitation leaves the oil rate more exposed to process
noise.

If the subsea well system were linear, the model gains from the excitation methods
would be equal, as the superposition principle (explained in Section 3.6) would be
satisfied. When exciting the process using the oil rate setpoint, the model gain for

the oil rate was 11.5Sm3/h
%choke

. This yields an expected change of production choke

opening ∆MV of 10Sm3/h

11.5
Sm3/h
%choke

= 0.87%. When the process is excited by changing

the ideal value of the production choke, the total expected change of oil rate was

3% ∗ 8.7Sm3/h
%choke

= 26.1Sm3/h. The values used in the calculations are from Table
6.2 and Table 6.5, and using default excitation step values. The reduction of total
bias rate of change are shown in Table 6.3 for setpoint excitation and Table 6.6
for ideal value excitation. The reduction is overall greater for setpoint excitation.
A greater reduction of the total bias rate of change implies that the model gains
identified from setpoint excitation yield better performance than the model gains
identified from ideal value excitation.

Comparing the excitation methods in terms of bias, using setpoint excitation yields
better results in the total rate of change in bias for the oil rate. Since the oil rate
is subjected to process noise and there is no active setpoint for the oil rate, the
process noise can be observed in Figure 6.8 and Figure 6.9. The process noise can
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be indirectly observed in Figure 6.10. The term indirectly is used, as the process
noise does not directly influence the bias or bias rate of change but is observable in
both the bias and the bias rate of change. When the process is excited by changing
the oil rate setpoint, the process noise is counteracted, i.e., the production choke
takes control actions to counteract the process noise to ensure that the oil rate
reaches its setpoint. When the ideal value for the production choke is active, the
production choke takes no control actions to counteract the process noise. The
control actions are to ensure constraint satisfaction, preferably at the production
choke ideal value. If all constraints are satisfied and the production choke is at its
ideal value, no control actions will be taken. The process noise is then more easily
observed, and the total bias rate of change will not be as much reduced.

6.2 Part 2

The second part will show that SEPTIC will automatically excite the process
if disturbances move outside of the acceptable area, and the acceptable area will
subsequently be updated if the model gains updates. The disturbances are adjusted
and kept constant while model gains are identified. The initial model gains are
identified with a gas lift rate of 6500Sm3/h and a downstream pressure of 14bar.
The gas lift rate is then adjusted to 6000Sm3/h, while the downstream pressure is
adjusted to 11.5bar. The initial acceptable area with a gas lift rate of 6500Sm3/h
and a downstream pressure of 14bar is illustrated in Figure 6.13, where the asterisk
shows the adjusted disturbances. The asterisk is outside of the acceptable area,
which triggers a process excitation. Part 2 is divided into two parts, where the
first part uses oil rate setpoint for process excitation, while the second part uses
production choke ideal value for process excitation.

After the model gains have been identified with a gas lift rate of 6000Sm3/h and a
downstream pressure of 11.5bar, the disturbances are adjusted back to where the
initial model gains were identified. When the disturbances are adjusted back, the
consistency of the updated model gains can be verified.

The initial state of the process is shown in Table 6.7. The initial state is the same
for both oil rate setpoint excitation and production choke ideal value excitation.
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Figure 6.13: Initial acceptable area, with a gas lift rate of 6500Sm3/h and a
downstream pressure of 14bar. The asterisk shows where the disturbances are
adjusted to after the initial model gains identification.

Gas lift rate 5000Sm3/h
Downstream pressure 13bar

Model gain oil rate 7.25 Sm3/h
%choke

Model gain WHP -1.74 bar
%choke

Model gain BHP -0.37 bar
%choke

Table 6.7: Initial state of the process in Part 2.

73



Model gain oil rate 8.47 Sm3/h
%choke

Model gain WHP -1.47 bar
%choke

Model gain BHP -0.65 bar
%choke

Table 6.8: Initial model gains from oil rate setpoint excitation, identified at a gas
lift rate of 6500 Sm3/h and a downstream pressure of 14bar.

Figure 6.14: %total during the setpoint excitation simulation in Part 2. %total resets
to 0 after implementing identified model gains.

6.2.1 Setpoint Excitation

The initially identified model gains, identified at a gas lift rate of 6500Sm3/h and
a downstream pressure of 14bar, are shown in Table 6.8.

Figure 6.14 shows %total changing with time during simulation. When updated
model gains have been identified and implemented, the %total resets to 0. When
%total first and third exceeds 100%, the gas lift rate reaches 6500Sm3/h, and the
downstream pressure reaches 14bar. On the second occasion, %total exceeds 100%,
the gas lift rate reaches 6000Sm3/h, and the downstream pressure reaches 11.5bar.
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Figure 6.15: Process simulation of oil rate and the model gain updates, through
disturbance changes. Oil rate setpoint excitation.

Figure 6.15-6.17 shows the process simulation during changing disturbances, with
process excitations and model gains identification. The initial model gains are
identified from the first process excitation at 88 minutes and implemented at 148
minutes. The process is excited from an oil rate of 253.6Sm3/h as the process
cannot stabilize at the desired oil rate setpoint of 250Sm3/h because the WHP
has reached its upper limit.

The disturbances are adjusted to the asterisk in Figure 6.13 at 150 minutes when
the model gains have been implemented after the first excitation. The disturbances
reach their final values of 6000Sm3/h and 11.5bar for the gas lift rate and the
downstream pressure, respectively, after 30 minutes, i.e., at 180 minutes. The
process then stabilizes at 208 minutes, and the process is then excited as the
disturbance values are outside of the acceptable area. The identified model gains
are shown in Table 6.9.

The reduction of gas lift rate allows the oil rate to reach its desired setpoint of
250Sm3/h without breaking the upper limit of WHP. As the downstream pressure
decreases and WHP is still at its upper limit, the pressure drop ∆P over the
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Figure 6.16: Process simulation of WHP and the model gain updates, through
disturbance changes. Oil rate setpoint excitation.

Model gain oil rate 10.84 Sm3/h
%choke

Model gain WHP -1.83 bar
%choke

Model gain BHP -0.81 bar
%choke

Table 6.9: Model gains identified using oil rate setpoint excitation, identified at a
gas lift rate of 6000 Sm3/h and a downstream pressure of 11.5bar.
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Figure 6.17: Process simulation of BHP and the model gain updates, through
disturbance changes. Oil rate setpoint excitation.
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Model gain oil rate 8.56 Sm3/h
%choke

Model gain WHP -1.48 bar
%choke

Model gain BHP -0.65 bar
%choke

Table 6.10: Model gains identified using oil rate setpoint excitation, identified at
a gas lift rate of 6500Sm3/h and a downstream pressure of 14bar.

Initial identification 2nd identification

Model gain oil rate 8.47 Sm3/h
%choke

8.56 Sm3/h
%choke

Model gain WHP -1.47 bar
%choke

-1.48 bar
%choke

Model gain BHP -0.65 bar
%choke

-0.65 bar
%choke

Table 6.11: Comparison of model gains identified at equal disturbances: a gas lift
rate of 6500Sm3/h and a downstream pressure of 14bar. Model gains identified
using oil rate setpoint excitation.

production choke increases. When ∆P increases, the ∆Choke necessary to reach
the desired setpoint after the excitation step decreases (see Equation 4.1). It is
therefore expected that the (absolute) values of the model gains increases:

Model gain =
∆CV

∆Choke
.

The disturbances are then adjusted back to a gas lift rate of 6500Sm3/h and down-
stream pressure of 14bar. The disturbances are adjusted back to verify that the
identified gains are equal at equal disturbance values. The model gains identi-
fied when returning to the previous disturbance values are shown in Table 6.10.
The model gains are identified in the last process excitation in Figure 6.15, which
begins at the 253rd minute.

The aim of part 2 was to show that the model gain identifier was automatic.
Additionally, an aim was to show the consistency of identified gains and constraint
satisfaction throughout the simulation by correctly choosing the direction of the
excitation steps. The presented results show that no process excitations violate
any constraints. Correctly chosen directions of the excitation steps ensure that the
setpoints after the excitation steps were reached during simulation, which could
not happen with constraint satisfaction if the directions of the excitation steps were
opposite. Figure 6.14 shows %total throughout the simulation. Figure 6.5-6.7 shows
that when %total exceeds 100%, the process reaches steady-state and is excited to
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Model gain oil rate 7.81 Sm3/h
%choke

Model gain WHP -1.32 bar
%choke

Model gain BHP -0.6 bar
%choke

Table 6.12: Model gains identified using production choke ideal value excitation,
identified with a gas lift rate of 6000 Sm3/h and a downstream pressure of 11.5bar.

identify updated model gains. The identified model gains were consistent given
consistent disturbances, and the process excitations were automatic when %total

exceeded 100%.

Comparing Table 6.8 with Table 6.10, consistency in the model gains are acquired
when identifying model gains at equal disturbances. A direct comparison is shown
in Table 6.11. The results are promising, yielding consistent model gains given
equal disturbance values.

6.2.2 Ideal Value Excitation

The same procedure is repeated as in Subsection 6.2.1, using production choke ideal
value excitation instead of oil rate setpoint excitation. The disturbance changes
are equal, with first reaching the center in Figure 6.13, then reaching the asterisk
after a process excitation, and then back to the center. The process simulations
for the oil rate, the WHP, and the BHP are shown in Figure 6.18-6.20, along with
the model gains updates. The figures show automatic model gains identification
after the process has reached steady-state after %total exceeds 100%.

The model gains identified with a gas lift rate of 6000Sm3/h and downstream
pressure of 11.5bar (the second process excitation) is shown in Table 6.12, while
Table 6.13 shows the comparison between model gains identified with a gas lift
rate of 6500Sm3/h and a downstream pressure of 14bar.

The identified gains using production choke ideal value excitation with a gas lift
rate of 6500Sm3/h and a downstream pressure of 14bar yielded consistent gains
between the first and the second excitation with these disturbance values.

Figure 6.18-6.20 shows that the process automatically excites when %total exceeds
100% and after the process has stabilized, and that all constraints are satisfied
throughout the process simulation. There is no constraint violation despite only
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Initial identification 2nd identification

Model gain oil rate 7.19 Sm3/h
%choke

7.19 Sm3/h
%choke

Model gain WHP -1.25 bar
%choke

-1.25 bar
%choke

Model gain BHP -0.56 bar
%choke

-0.56 bar
%choke

Table 6.13: Comparison of model gains identified at equal disturbances: a gas lift
rate of 6500Sm3/h and a downstream pressure of 14bar. Model gains identified
using production choke ideal value excitation.

Figure 6.18: Process simulation of oil rate and the model gain updates, through
disturbance changes. Production choke ideal value excitation.
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Figure 6.19: Process simulation of WHP and the model gain updates, through
disturbance changes. Production choke ideal value excitation.
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Figure 6.20: Process simulation of BHP and the model gain updates, through
disturbance changes. Production choke ideal value excitation.
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the production choke ideal value is active.

The results are similar to the results presented in Subsection 6.2.1. The simulation
was subjected to the same disturbance changes. Both methods yielded consistent
model gains and no constraint violation through the process simulations.
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Chapter 7
Discussion

The goal of this thesis was to implement an automatic model gain identifier in
SEPTIC. The automatic model gain identifier was tested on a simplified subsea
well system with a single subsea well. Gas lift rate was modeled as a disturb-
ance, further simplifying the gain identification process. MPC performance was
improved, and the bias rate of change decreased. These results are promising, and
the results from this thesis should inspire further work. Despite showing promising
results in this thesis, simulations are limited compared to a real-life environment.
In a real-life environment, there is more uncertainty as unexpected events might
occur. The process would likely be exposed to more random process noise and be
affected by other wells in a subsea well cluster.

The gas lift rate was modeled as a DV in the simulations. Gas lift rate modeled as
a DV gave the advantage of manually adjusting the variable in SEPTIC to simulate
over a wide operating range. However, in a real-life environment, the gas lift rate is
an MV. Gas lift rate as an MV introduces an extra degree of freedom which yields
overall better performance from the MPC. However, identifying model gains with
more than one MV active adds a challenge. The other MV(s) other than the one
for which the models are identified needs to be constant to identify model gains
correctly.

Simulating the subsea well system in more complex situations could verify the
automatic model gain identifier further. As mentioned in Chapter 4, the mass flow
rate from the reservoir is kept constant during the simulations. A non-constant
mass flow rate could have been added to the system as another DV to simulate
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the subsea well system more realistically. In a real subsea well system, the mass
flow rate from the reservoir would decrease as the reservoir ages and influence the
model qualities.

A process excitation moves a process away from steady-state. However, the process
excitation is necessary for model gains updating. The value of updated model
gains must be carefully compared with the value of a process in steady-state, as
a process in steady-state yields optimal operation. In this thesis, the DVs were
used as excitation triggers. The DVs were used, as a change of DVs means that
the system moves in the state-space. If the system moves in the state-space, the
step response models lose their accuracy as they assume linearity. Other excitation
triggers may be considered instead of the DVs. From Equation 4.1, ∆P is decisive
for the flow through the production choke. The differential pressure ∆P could
instead be used as an excitation trigger, as it is dependent upon both gas lift rate
and downstream pressure. The gas lift rate influences ∆P , as the gas lift rate
increase also increase WHP. Alternatively, the movement of the production choke
itself could trigger an excitation. If the production choke moves to sustain the
current oil rate at its setpoint, one can conclude that the process moves in the
state-space.

In this thesis, the size of the excitation steps was decided from the process noise
added to the simulation. The chosen size of the excitation steps was found to
produce consistent model gains, as they were large enough not to be too affected
by the process noise. In an actual process, the process noise may change in size
with time. The size of the excitation steps could therefore be a function of the
current process noise. Size of excitation steps dependent upon the process noise
can ensure that the ratio between the size of the excitation step and the process
noise is large enough to ensure the robustness of the calculated model gains.

As a process excitement is preferable to avoid, a gain scheduling method could
be added. The gain scheduling method could be implemented as follows: when a
model gain is updated, the value is saved along with the respective disturbance
variables. If the process returns the area where this was previously acceptable, the
model gain could be implemented without a process excitement. For example, the
model gain can be saved for 24 hours, as the model gain is considered outdated
after 24 hours.

As mentioned in Chapter 1, the thesis assumes that the value of the process excit-
ations to identify correct model gains outweighed the disadvantage of briefly not
operating in steady-state. This assumption was necessary for the thesis’ subject.
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However, in an industrial application, this assumption needs to be thoroughly dis-
cussed. The gain scheduling method mentioned above would reduce the number of
process excitations. The size of the excitation steps being a function of the current
process noise would yield more effective excitation steps.

Another element to consider for reducing process excitations would be to util-
ize natural variations during the process simulation for model gain identification.
Natural variations may arise from external disturbance changes, i.e., a change of
incoming mass flow rate. If the process is naturally excited, the model gain identi-
fier could recognize this and identify updated model gains. Implementing a model
gain identifier that recognizes natural changes in the process would further utilize
available data from the process.
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Chapter 8
Conclusion

In this thesis, a data-driven inspired approach has been presented. The approach
has been implemented in Equinor’s in-house software for MPC, SEPTIC. Online
data from running operations have been utilized in SEPTIC calcs, where one
can construct algorithms for intermediate calculations. The approach comprised
of process excitations for updating model gains in the step response models in
SEPTIC. The process excitations were necessary to calculate updated model gains.
The implemented approach identifies when an update of model gains is necessary,
based on process parameters and disturbances.

The results show that the identified model gains yield better performance by mon-
itoring the bias rate of change. It is shown that the process automatically excites
the process to identify model gains when %total exceeded 100%. When the %total

exceeds 100%, the current model gains were deemed unacceptable. The value of
%total was calculated based on disturbance variables, as a change of disturbances
corresponds to movement in the state-space. When model gains were identified
at equal disturbance variables, the model gains were consistent. Consistent model
gains show robustness from the model gain identifier.

Online data from process simulations were used for constraint satisfaction during
process excitations and model gain identification. The online data were used to
recognize when process excitations for model gain identification were necessary.
Utilizing the online data for controller design is a data-driven control-inspired
implementation implemented in SEPTIC using calcs; algorithms for intermediate
calculations.
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The automatic model gain identifier was implemented using two different excitation
methods; moving the production choke ideal value, or moving the oil rate setpoint.
The results were similar; however, the oil rate was more subjected to noise when
using the production choke for process excitation.

The automatic model gain identifier was implemented on a simulation of a single
subsea well system. The results are promising; however, improvements can be
made before implementing in industrial applications. Improvements include:

• Modeling the gas lift rate as an MV without affecting the identified model
gains for the production choke.

• Utilizing the online data more efficiently, reducing the number of process
excitations.

• Size of excitation steps based on process data

• Alternative excitation triggers.
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Appendix A
Dymola Model
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Figure A.1: Dymola model
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Appendix B
Initial Step Response Models in SEPTIC

The initial step response models are shown in Figure B.1-B.3. The responses
in the CVs are generated from a step in the choke. As seen in the figures, the
step response models reach steady-state after approximately 30 minutes, which
supports the initial assumption in Section 5.
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Figure B.1: Step response model, oil rate and choke. Steady-state gain: 7.25Sm3/h
%choke

.

Figure B.2: Step response model, WHP and choke. Steady-state gain: −1.74 bar
%choke

.

Figure B.3: Step response model, BHP and choke. Steady-state gain:
−0.369 bar

%choke
.
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Appendix C
Calcs in SEPTIC

As mentioned in Section 4, calcs are algorithms for intermediate calculations in
SEPTIC. In this section, an overview of the calcs used in the implementation will
be provided.

The descriptions are given in the SEPTIC Reference Documentation [26].

The algorithms may be combined, where a typical example may be to include an
if-calc to decide when to apply the model scaling for modset (for example:
Alg = ”modset(OilRate, Choke, if(condition=true, apply, do not apply))”).

If

Alg = ”if(A,B,C)”

A is a logical test. If A is true, the output of the algorithm is B; else, it is C.

Modget

Alg = ”modget(CV,MV)”

An algorithm for acquiring the steady-state gain from the step response model
between a CV and an MV.
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Modset

Alg = ”modset(CV,MV,Scale,Apply)”

An algorithm for updating the steady-state gain of a step response model between
a CV and an MV. Scale is the value that is multiplied with the current steady-state
gain for setting the new steady-state gain. The scale is applied if Apply = 1.

Setsetpnt

Alg = ”setsetpnt(CV,Setpoint)”

An algorithm for changing the setpoint of a CV during simulation.

Gethist

Alg = ”gethist(Xvr,n,x)”

An algorithm for getting a historic value or an average value of historic values.
Xvr is the variable or member of a variable. n is the sample number from the
current value and backward. x is the number of values to include for calculating
the average.

Getappln()

Alg = ”getappln()”

The output is the current sample number in the simulation.

Mvmget

Alg = ”mvmget(MV)”

The output is the calculated optimal MV (input) value for the following sample.

Delta

Alg = ”delta(Xvr,n)”

Calculates the difference between a historic Xvr-value at sample n and n-1.

100



Abs

Alg = ”abs()”

Returns the absolute value.

Getbias

Alg = ”getbias(CV)”

Returns the current bias of the CV.

Setmeas

Alg = ”setmeas(CV, CV-value)”

Can set the measured CV-value. Used for adding noise to the process.

Min

Alg = ”min(a,b,c...)”

Returns the minimum value.

Max

Alg = ”max(a,b,c...)”

Returns the maximum value.

Getssval

Alg = ”getssval(CV)”

Returns the current predicted steady-state CV-value.

Setiv

Alg = ”setiv(MV,Ideal value)”
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An algorithm for changing the ideal value of an MV during simulation.
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