
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Bendik Austnes
Increasing Validity and U

ncovering U
tility in M

achine Learning Studies

Bendik Austnes

Increasing Validity and Uncovering
Utility in Machine Learning Studies

An Illustrative Approach to Essential Concepts
and Procedures in Model Development and
Assessment

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed
Co-supervisor: Lise Lyngsnes Randeberg

June 2021

M
as

te
r’s

 th
es

is

Bendik Austnes

Increasing Validity and Uncovering
Utility in Machine Learning Studies

An Illustrative Approach to Essential Concepts and
Procedures in Model Development and Assessment

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed
Co-supervisor: Lise Lyngsnes Randeberg
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Recent advances in deep learning has been remarkable. As the availability
of computational power and simple-to-use machine learning frameworks are
rapidly increasing, deep learning systems are increasingly deployed to new
fields of research. Many machine learning studies in medicine report perfor-
mance comparable or better than clinicians, however many of them were found
to be at high risk of bias, and deviated from existing reporting standards. In
particular, a frequent lack of evaluation on external data, as well as develop-
ment on too narrow datasets, limit the medical utility for many of the methods
presented. Moreover, classical model development can be time consuming and
cumbersome, thus migration to machine learning methods can be tempting.
Therefore, there is a need for increased knowledge on the behaviour of ma-
chine learning methods among users from non-statistical disciplines, as well as
well-defined methods and protocols suitable for machine learning research in
various fields. This thesis aims at illustrating the effects and impacts of some im-
portant aspects on model development and assessment, in an explanatory and
illustrative fashion, striving towards increased understanding and intuition, in
order to be more accessible to inexperienced users. Finally, guidelines are pre-
sented to assist developers in achieving increased model validity and uncover
utility.

Sammendrag

De siste årene har det skjedd store fremskritt innen dyp læring. I takt med
stadig økende tilgang på datakraft og brukervennelige maskinlæringsmetoder,
har stadig flere forskningsdisipliner tatt i bruk dyp læring. Mange medisinske
studier som benytter maskinlæring rapporterer om resultater som er like gode
eller bedre enn standard klinisk praksis, men undersøkelser viser at flere av
disse studiene kan ha lavere vitenskapelig betydning enn først antatt. Spesielt
er det mangel på ekstern validering, samt at flere av publikasjonene baserer
seg på svært små og ensformige datasett, som gjør at den faktiske nytten av
de nye metodene er usikker. Utvikling av klassiske og veldefinerte metoder kan
være svært vanskelig og tidkrevende, noe som gjør at det i mange tilfeller kan
være svært fristene å gå over til maskinlæringsmetoder. Derfor er det et behov
for å øke forståelse for virkemåten til maskinlæringsmodeller blant brukere in-
nen ikke-statistiske felt, samt å innføre veldefinerte forskningsmetoder og pro-
tokoller for å øke validiteten til videre forskning på området. I denne rapporten
vises effekten og innvirkningen av sentrale emner innen utvikling og validering
av maskinlæringsmodeller. Gjennom en forklarende og illustrativ tilnærming til
teori, forsøker rapporten å gi økt forståelse og intuisjon, spesielt for uerfarne
brukere. Avslutningsvis foreslås retningslinjer som er ment for å hjelpe utviklere
med å oppnå økt ytelse og validitet, og samtidig avdekke vitenskapelig betyd-
ning og relevans på nye områder.

v

Contents

Abstract . i
Sammendrag . iii
Preface . ix
List of Figures . xiv
List of Tables . xv
Nomenclature . xix

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Goals and Objectives . 2

1.2.1 Objectives . 2
1.3 Outline of the Report . 3

2 Theory 5
2.1 Human Skin and Basic Anatomy of the Hand 5
2.2 Wrinkle Analysis: Previous Work 7
2.3 General Filters and Techniques 8

2.3.1 Frangi Filter (FRF) . 8
2.3.2 Gabor Filter . 9
2.3.3 Hysteresis Thresholding 10
2.3.4 Contrast Histogram Equalization 11
2.3.5 Anti-Aliasing: Gaussian Blur 11
2.3.6 Morphological Transformations 11
2.3.7 Elastic-, Grid- and Optical Distortion 13
2.3.8 Sørensen-Dice Coefficient. Jaccard Similarity Index 15

2.4 Artificial Neural Networks and Deep Learning 16
2.4.1 Fully-Connected Neural Networks (FCNN) 16
2.4.2 Convolutional Neural Networks (CNN) 21
2.4.3 Autoencoders . 23
2.4.4 U-Net: Convolutional Networks for Biomedical Image Seg-

mentation . 24
2.5 Training and Assessment Strategies 24

2.5.1 Assessment of Machine Learning Models in a Nutshell . . . 25
2.5.2 Holdout-Set Validation: Train-Test Split (TTS) 28

vi

2.5.3 Development Cohort and External Validation Cohort . . . 28
2.5.4 k-Fold Cross-Validation . 29
2.5.5 The Curse of Dimensionality 32

3 Methods and Setup 33
3.1 Datasets . 33

3.1.1 The Kumar Dataset . 33
3.1.2 High Resolution Dataset (HiRes Dataset) 34

3.2 The Frangi-Gabor Process . 38
3.2.1 Preprocessing . 40
3.2.2 Frangi Filtering (FRF) . 41
3.2.3 Gabor Filtering . 41
3.2.4 Hysteresis Thresholding 42

3.3 The U-Net Process . 42
3.3.1 Implementation . 42
3.3.2 Preprocessing and Data Augmentation 42
3.3.3 Training . 42
3.3.4 Inference . 43

3.4 U-Net Models . 43
3.4.1 Model A: Supervised Learning on the HiRes Dataset with

Train-Test Split Assessment Strategy 43
3.4.2 Model B: Supervised Learning on the HiRes Dataset with

Leave-One-Out Cross-Validation Assessment Strategy . . . 44
3.5 Setup . 45

3.5.1 Hardware . 45
3.5.2 Software . 46
3.5.3 COVID-19 Considerations on Data Collection 47
3.5.4 Ethical Considerations . 47

4 Results and Discussion 49
4.1 Results . 49

4.1.1 Frangi-Gabor Process . 49
4.1.2 U-Net Model A . 51
4.1.3 U-Net Model B . 51

4.2 Discussion . 55
4.2.1 Frangi-Gabor Process . 56
4.2.2 U-Net Models . 58
4.2.3 Deep Learning Studies in Medicine 68

5 Conclusions and Final Remarks 73
5.1 Conclusions and Guidelines . 73
5.2 Final Remarks . 74

vii

A Hyperspectral Imaging 83

B Extra Material 87

ix

Preface

This thesis is the result of knowledge and experience I have gained through-
out my education, and life in general, together with an exploratory approach
to problem solving. Starting out with a rather wide problem domain, namely
the “improvement in systemic sclerosis diagnostics”, I sought for problems that
I could solve with my background and experience, and found that I might be
able to contribute to the cause with the use of computer vision and data sci-
ence, topics I have come to enjoy greatly in the past few years. I started working
towards model development for semantic segmentation of wrinkles on dorsal
finger skin, since the amount and changing characteristics of wrinkles can be
linked to diagnostics and progression tracking in systemic sclerosis. The pre-
project preceding this thesis aimed at uncovering whether a deep learning ap-
proach was feasible for wrinkle segmentation at all. The results were promising,
and thus the development of deep learning based models using hyperspectral
imaging began early this year. Hyperspectral images for wrinkle segmentation
is interesting, since it takes on a spatiospectral approach to features of wrinkles,
and it is to the length of my knowledge currently unknown whether or not the
spectral features can enhance detection in this application.

Unfortunately, due to the COVID-19 pandemic, the hyperspectral imaging lab
was closed. The small hyperspectral dataset that was already collected through
a previous project featured too low resolution, and thus was not feasible for
model development. Infection control restrictions were strongly limiting alter-
native data collection, but I managed to gather a small high resolution dataset
based on ordinary images on a “friends and family” basis for alternative model
development. However, validity issues related to very scarce data quickly pre-
sented itself, resulting in any exploratory claims essentially being futile. With
no possibilities of collecting more data, it was decided to move the scope of
the thesis from a model development perspective, to a more explanatory and il-
lustrative perspective, highlighting both obvious issues and pitfalls in machine
learning model development, as well as less obvious (but still typical) issues,
such as aspects concerning annotation strategies, external validation, etc.

While the change of scope was indeed challenging and frustrating, I learned a
great deal from the experience, especially in terms of experimental science in
practice, and that sometimes one must quickly adjust to the changing circum-
stances, find new angles, and make the best out of what one has.

I would like to thank my supervisors Lise Lyngsnes Randeberg, who acted as
main scientific supervisor, and Adil Rasheed for guidance and feedback dur-
ing the project. Acknowledgements also goes to Berit H. J. Grandaunet MD,
PhD, for proofreading the medical contents on systemic sclerosis, participants
who contributed to the dataset on short notice, and those who was involved in

x

proofreading and gave comments on the final thesis.

Finally, I would like to thank my friends and family. Special thanks goes to my
roommates who keeps me from going insane during this pandemic.

Bendik Austnes
Trondheim, Norway
June 2021

xi

List of Figures

2.1.1 Image of the right hand of a healthy female. The proximal in-
terphalangeal (PIP) and distal interphalangeal (DIP) joints are
indicated in the figure. 6

2.1.2 Image of the right hand of a SSc patient. Notice that the skin
is very smooth from the PIP joint and outwards. Wrinkles are
diminishing in the same areas. Source: Maria Sieglinda von
Nudeldorf, published under licence CC BY-SA 4.0, via Wikime-
dia Commons. 7

2.3.1 The second order derivative of the 1-dimensional Gaussian en-
sembles the ideal wrinkle profile of the pixel intensity values
of a crossection perpendicular to the local wrinkle direction.
Ridges and valley are indicated in the figure. Figure adapted
from [1]. 9

2.3.2 Gabor kernel with ω = 0.1 and θ = π
2
. 10

2.3.3 Gabor filtered image. The desired lines we wish to segment is
separated from the background by dark ridges. 11

2.3.4 Dilation. A circular kernel is applied to an input image (blue
rectangle) with morphological dilation, resulting in the larger
light box with rounded corners. Figure adapted from Renato
Keshet (Wikimedia Commons) [2]. 12

2.3.5 Erosion. A circular kernel is applied to an input image (dark
rectangle) with morphological erosion, resulting in a smaller
light rectangle. Figure adapted from Renato Keshet (Wikimedia
Commons) [2]. 13

2.3.6 A square lattice grid (left) transformed by elastic distortion
(right). 14

2.3.7 A square lattice grid (left) transformed by grid distortion (right). 15

2.3.8 A square lattice grid subject to optical distortion when being
photographed through a wine glass. The ellipsoid-like reflec-
tions are specular reflections from the light source. 15

xii

2.4.1 The perceptron illustrated with three inputs xL−11i , input weights
wL1i, summation of inputs zL1 and activation aL1 . Furthermore,
the input weights wL+1

1i belonging to a potential next neuron is
shown by wL+1

1i . i ∈ {1, 2, 3}. The bias with its corresponding
weight is used to adjust the activation threshold. 17

2.4.2 A 3-layer multilayer perceptron. The input layer has no weights
and no activation, therefore it is not counted as a layer. For
each perceptron in the hidden layers and the output layer, the
ordering of inputs, weights, summation and activation are as
shown in fig. 2.4.1. 18

2.4.3 An autoencoder with 8-dimensional input and 2-dimensional
bottleneck. The leftmost part of the network is called the en-
coder, and the rightmost part of the network is called a decoder. 23

2.4.4 Illustration of the U-Net. Solid horizontal arrows are convolu-
tions or up-convolutions, downward pointing thick arrows are
max pooling, upward pointing thick solid arrows are up sam-
pling, horizontal stippled arrows are the copy, crop and con-
catenation paths for each level in the encoder/decoder. Illus-
tration adapted from the original paper [3]. The network takes
an input image, and outputs a segmentation map for each pixel
in the image containing the predicted class. 25

2.5.1 3-fold cross-validation. 30

2.5.2 Illustration of the idealized relationship between generaliza-
tion error and dataset size. A larger dataset typically yields
better generalization properties from the model. Note that the
numeric values of dataset size are for explainability purposes
only, and does not constitute a typical relationship between
datasets of those actual sizes and generalization error, since
this relationship is strongly dependent on the distribution of
the true population from where the data originates from. Fig-
ure adapted from Bjarne Grimstad [4]. 31

3.1.1 A preview of the Kumar dataset. 34

3.1.2 Manual annotation of the hyperspectral (HSI) dataset (appendix A)
in Pixelmator. The annotation process of the HiRes dataset is
equivalent. 35

3.1.3 The box used for obtaining homogeneous light condition and
fixed distance and angle to the hand. Note that this image was
taken months after data collection, and that at the time of data
collection, the interior painting of the box was not damaged. . . 35

3.1.4 The high resolution dataset after grayscaling. 36

xiii

3.1.5 Left image shows the manual masks output from the annotation
tool. The right image shows the manual masks smoothed by
anti-aliasing, thresholding and morphological closing. 38

3.1.6 Data augmentation of input images (left) and their correspond-
ing masks (right). (a) contrast histogram equalized and padded
input image, (b) elastic transform, (c) flipped elastic transform
with new seed, (d) grid distortion, (e) flipped grid distortion
with new seed, (f) optical distortion, (g) flipped optical dis-
tortion with new seed, (h) grid distortion followed by optical
distortion. 39

3.2.1 The Frangi-Gabor process including preprocessing stages. (a)
Original input image. (b) Grayscaled by axis removal. (c) Con-
trast histogram equalization and Gaussian blur. (d) Frangi fil-
tered (e) Gabor kernel with ω = 0.1 and θ = π

2
. (f) Gabor

filtering of the Frangi filtered image. (g) Frangi-Gabor masks
after hysteresis thresholding. 40

3.2.2 Original input image with the Frangi-Gabor masks overlayed. . 41

4.1.1 Frangi-Gabor process applied to the HiRes dataset. The left col-
umn shows the preprocessed input images, the middle column
shows the manual annotations, and the right column shows the
Frangi-Gabor annotations. 50

4.1.2 Model A test performance. The left column shows in prepro-
cessed and data augmented input images, the middle column
shows the manual annotation, and the right column shows pre-
dicted masks. 52

4.1.3 Model A predictive accuracy (DSC) on the tuning set during
training. 53

4.1.4 Model A cross-entropy loss during training. 53
4.1.5 Model B test performance. The left column shows in prepro-

cessed and data augmented input images, the middle column
shows the manual annotation, and the right column shows pre-
dicted masks. Each row corresponds to the training/validation
fold indicated numerically. 54

4.1.6 Model B predictive accuracy on the tuning set during training,
each fold denoted by separate colors. 55

4.1.7 Model B cross-entropy loss during training, each fold denoted
by a separate color. 56

4.2.1 FG masks compared to manual masks. Manual mask are blue,
FG masks overlapping with manual masks are green, and FG
masks non-overlapping with manual masks are red. 57

xiv

4.2.2 Intra-reproducibility on the HiRes dataset. Original masks on
which the models was train on (prior to post-processing) are
shown in blue, re-annotated masks for metric computation are
shown in violet, and overlapping masks from both annotation
sessions are shown in green. 66

A.0.1 Wavelength separation by diffraction grating (1) and prism (2).
Original figure by Cmglee, published under licence CC BY-SA
3.0, via Wikimedia Commons. Figure has been slightly modified. 84

A.0.2 A preview of the hyperspectral dataset. 85
A.0.3 Manual annotation of HSI dataset in Pixelmator. 86

B.0.1 Predicted wrinkles for six random samples from the Kumar test
set. (a) Original input images are shown in the left column. (b)
Predictions from the Frangi-Gabor algorithm are shown in the
right column. 88

B.0.2 U-Net model for HSI. Left column shows pseudo-color HSI in-
put images, middle column shows the manual masks, and the
right column shows predictions from the model. 89

xv

List of Tables

3.1.1 Parameters for elastic transforms. 38
3.1.2 Parameters for optical distortion. 40
3.4.1 Model A hyperparameters. 44
3.4.2 Model B hyperparameters. 45
3.5.1 Hardware used for Frangi-Gabor annotation and U-Net training

and inference. 45
3.5.2 Other hardware and equipment. 46
3.5.3 A subset of the software used in the project. 46
3.5.4 Relevant drivers. 46

4.1.1 Frangi-Gabor performance on the HiRes dataset. 49
4.1.2 Model A performance. JSI is not computed during evaluation of

the tuning set since it is undefined for empty predictions, which
may occur in early training steps. 51

4.1.3 Model B performance. Since Model B does not have a separate
test set, test performance is estimated by the mean µ of all val-
idation scores and standard deviation σ. 55

xvi

xvii

Nomenclature

Medical nomenclature

Crow’s feet area Refers to the wrinkled area that expands from the
outward corner of the eyes.

DIP Distal interphalangeal

Dorsal finger skin The skin located on the outward facing areas of the
finger.

Fibrosis The process in which connective tissue replaces nor-
mal parenchymal tissue to the extent where it is
leading to considerable tissue remodelling.

Incidence The proportion of persons developing a condition
during a time period.

Palpation The process in which the clinician uses her hand to
examine the patient’s body.

PIP Proximal interphalangeal

Prevalence The proportion of persons having a condition dur-
ing a time period.

RCT Randomized Controlled Trial

Rhytid Wrinkle

Sclerodactily Localized thickening and thightening of the skin.

SSc Systemic sclerosis

Vasculopaty A general term to describe any disease affecting
blood vessels.

xviii

Mathematical symbols

∗ Convolution operator

bcc Floor function. Outputs the the greatest integer less
than or equal to a real number c.

Z Set of Integers

H Hessian

∇ Gradient

� Hadamard product

σ Standard deviation

s Size of a Gaussian kernel

Technical nomenclature

(Image) Segmentation The process of partitioning and image into multiple
segments, e.g. wrinkle and non-wrinkle areas.

ANN Artificial Neural Network

CNN Convolutional Neural Network

DL Deep Learning

DSA Digital Subtraction Angiography. Method for visu-
alizing blood vessels.

DSC Dice Similarity Coefficient, Sørensen-Dice Coeffi-
cient

FCNN Fully-Connected Neural Network. Also called a dense
network.

FRF Frangi filter

GPU Graphics Processing Unit

HHF Hybrid Hessian Filter

HLT Hessian Line Tracking

xix

HSI Hyperspectral Imaging

i.i.d. Independently and identically distributed

JSI Jaccard Similarity Index

LOOCV Leave-One-Out Cross-Validation

ML Machine Learning

MR/MRI Magnetic Resonance/Magnetic Resonance Tomog-
raphy (Imaging)

PIECES Protocol Items for External Cohort Evaluation of a
deep learning System

RGB Red-Green-Blue. Usually refers to an image com-
posed of three color channels, one for each color.

SL Statistical Learning

SWIR Short wave infrared

TTS Train-Test-Split. Refers to holdout-set validation.

VNIR Visual and near-infrared

1

Chapter 1

Introduction

1.1 Motivation and Background

As many modern science and engineering problems are becoming ever more
complex, typically being nonlinear, high-dimensional, and multiscale in space
and time [5], classical model development can be cumbersome and time con-
suming. Sometimes, these systems might not be resolvable by methods based
on first-principles [5]. Thus, migration from classical approaches to machine
learning approaches can be both tempting and necessary.

With increasing computational power and availability of simple-to-use machine
learning (ML) frameworks, the end-users of ML are no longer only centered
around the computer science and statistics communities. Tools such as Im-

ageJ [6], which is a free software typically used in biology and medicine [7],
offers users in these disciplines easy access to various ML classifiers, e.g. for
segmentation tasks. Having new disciplines involved with ML can take these
methods to fields on which they have never been used before, potentially lead-
ing to new breakthroughs. However, as ease of use and access increases, so does
the risk of methods being used in questionable ways.

Many ML studies in medicine report performance comparable or better than
clinicians [8], however, many of them were found to be at high risk of bias
and deviated from existing reporting standards [9]. For medical research, the
structure and implementation of randomized controlled trials (RCT) are well
established, but no such standardized methods exist for ML and deep learning
(DL) studies. In particular, frequent lack of evaluation on external data, as well
as development on too narrow datasets, limit the medical utility for many of
the methods presented in research [8].

Well-designed methods and protocols are required in the fields of experimen-

2 Chapter 1. Introduction

tal science in order to achieve validity and uncover utility. As data acquisition
and analysis methods varies across fields, specific protocols must be designed,
aimed at leveraging benefits of the field to the maximum, while handling as-
sociated difficulties. Modern data-driven methods, such as ML/DL, are power-
ful [10], but lack of interpretability and sensitivity to biased data, as well as
mis-handling of data during development and validation, can result in false
scientific claims [8; 9].

1.2 Goals and Objectives

Goal This thesis aims at illustrating the impacts of data leakage, cross-validation,
external validation, and the process of manual annotation, in an explanatory and
illustrative fashion, striving towards increased understanding and intuition, in or-
der to assist inexperienced users of machine learning and deep learning methods at
achieving increased validity and uncover utility of these powerful methods in their
fields of study.

Most users within the field of statistics and data science will be well familiar
with the concepts explained and discussed in this thesis. However, from the
authors’ own experience from several university level machine learning courses,
many of the key topics discussed in this thesis are perhaps under-communicated
and/or neglected to short side-notes in the lectures. Thus, the target reader for
this thesis are inexperienced data analysts and ML users from outside the fields
of computer science, statistics, etc.

1.2.1 Objectives

First, the thesis takes the reader through the full development process of a
classical computer vision model for wrinkle segmentation. Performance is eval-
uated and compared to ML models, and it is shown that ease of use and ap-
parent better performance of the ML models, indeed makes migration from a
classical approach to a ML/DL approach tempting.

Then, different aspects on model development and assessment of the ML mod-
els are investigated in an explanatory and illustrative fashion.

Six objectives are proposed to reach the overall goal of the thesis. Each of the
objectives are coupled with guidelines presented in chapter 5, however, in order
to fulfill the illustrative qualities, the reader must also consult with the theory,
methods and discussion provided in the thesis.

Objective 1 Illustrate the potentially large impacts from data leakage, and how
easily data leakage can occur.

Chapter 1. Introduction 3

Objective 2 Illustrate the importance and benefits of using cross-validation.

Objective 3 Discuss external validation, and make the reader aware of the im-
portance having separate development cohorts and external validation cohorts.

Objective 4 Explain the benefits of having multiple annotators.

Objective 5 Illustrate important aspects of manual annotations in supervised
learning, and how they relate to model performance and validity.

Objective 6 Explain why failing to clearly state the details of the annotation
process can give irreproducible results.

1.3 Outline of the Report

The report comprises of the following sections and content: Chapter 1 gives mo-
tivation and background, goals and objectives. Chapter 2 gives an introduction
to the anatomy of the human hand, properties of human skin, previous meth-
ods on wrinkle analysis, methods in classical computer vision, an introduction
to deep learning, and theory on training and assessment strategies and related
topics. Chapter 3 gives the concrete method for devising three algorithms for
wrinkle segmentation; one based on classical computer vision, and two based
on deep learning based computer vision, where the two models are developed
using different training and assessment strategies. Chapter 4 presents the re-
sults, gives a discussion on theory, methods and results, and dissects the prop-
erties of the datasets, as well as the benefits of cross-validation, impacts on
manual annotations, and provides an outlook on the design of deep learning
studies in medicine. The report is concluded in chapter 5, and relevant guide-
lines are presented.

Hyperspectral imaging (HSI) and a HSI dataset are presented in appendix A.
Extra material supporting the thesis is given in appendix B.

Nomenclature is given on pp. xvii – xix, where technical abbreviations, mathe-
matical symbols, and a medical dictionary are included.

4 Chapter 1. Introduction

5

Chapter 2

Theory

In this section, a basic introduction to relevant human anatomy is given, as
well as previous work on wrinkle analysis, general filters and techniques in
classical computer vision, introduction to neural networks, and an introduction
to training and assessment strategies.

The following sections of this chapter were also presented in the pre-project;
2.2, 2.3.1, 2.3.2, 2.3.3, 2.3.4 (updated), 2.3.8, 2.4.1 (updated and extended),
2.4.2, 2.4.3, 2.4.4 (updated).

2.1 Human Skin and Basic Anatomy of the Hand

This section covers a very brief and basic introduction to human skin and the
anatomy of the hand. Also, a very brief introduction to a disease affecting the
wrinkles, systemic sclerosis (SSc), is given.

Human skin consists of three layers of tissue, from outermost to innermost; the
epidermis, the dermis and the subcutis. The dermis is a fibrous layer, consisting
mainly of collagen, that supports and strengthens the epidermis. A network of
elastic fibres in the dermis help keep the skin sufficiently tight. The epidermis
is the outermost layer of the skin. Epidermal cells are mostly forming in the
bottom part of the epidermis where they are in contact with the dermis, before
they gradually ascend to the surface and eventually die [11].

The visual appearance and color of the skin are partly due to blood in su-
perficial vessels (e.g. if a person blushes), but mainly due to melanin, a pig-
ment manufactured among the basal cells of the epidermis [11]. The in vivo
absorption spectrum of melanin is present in the whole visible range (400-
720 nm), and is exponentially increasing in the blue–violet wavelength range
(400-500 nm) [12].

6 Chapter 2. Theory

Figure 2.1.1: Image of the right hand of a healthy female. The proximal interpha-
langeal (PIP) and distal interphalangeal (DIP) joints are indicated in the
figure.

The human hand consists of several bones and joints, and with significant
variations in the structural and functional characteristics of the skin. The skin
of the palms are thicker and more rugged than that of the backs of the hands
and fingers [11]. The skin surrounding the proximal interphalangeal (PIP) and
distal interphalangeal (DIP) joints, indicated in fig. 2.1.1, need to be especially
flexible in order to not prevent smooth joint movement.

Systemic Sclerosis (SSc) is an autoimmune rheumatic disease with relatively
low incidence and prevalence. The disease is characterized by excessive pro-
duction and accumulation of collagen, vasculopathy and immunological abnor-
malties [13]. The accumulation of collagen, called fibrosis, can prohibit smooth
movement of joints due to decreased flexibility of skin surrounding the joint.
The origin of the disease is unknown [14]. The hand of a SSc patient is shown
in fig. 2.1.2. Note the low amount of wrinkles over the DIP joint in the figure
due to sclerodactily.

Chapter 2. Theory 7

Figure 2.1.2: Image of the right hand of a SSc patient. Notice that the skin is very
smooth from the PIP joint and outwards. Wrinkles are diminishing in
the same areas. Source: Maria Sieglinda von Nudeldorf, published under
licence CC BY-SA 4.0, via Wikimedia Commons.

2.2 Wrinkle Analysis: Previous Work

Wrinkle analysis typically refers to wrinkle segmentation. A typical application
is age estimation. Few methods exist. Frangi proposed a filter for enhancing
vessels [15]. The Frangi filter (FRF) uses second order derivatives for ridge
detection. A drawback of the FRF for forehead wrinkle detection is that it is
omni-directional; it segments both horizontal and vertical discontinuities as
wrinkles [1].

Cula et al. [16] developed a method for wrinkle detection by estimating the lo-
cal dominant direction of elongated spatial features in a neighborhood around
each pixel in the image. Then, a Gabor filter with a fitting frequency and the
angle set to match the local dominant direction around the current pixel was
used for post-filtering. The method was especially focused on the crow’s feet
area. In the original paper, images were captured using high quality photog-
raphy equipment in a controlled environment for the purpose of using those
images for wrinkle detection algorithms.

Hybrid Hessian Filtering (HHF) was first proposed by Ng et al. to enhance
the FRF for wrinkle analysis [1; 17]. Elbashir et al. [18] coined HHF to be
considered state-of-the-art in facial wrinkle assessment. [1] proposed a new
method, Hessian Line Tracking (HLT), for improving the HHF. The HLT is a
seed-based method; its end result is dependent on the number of start seeds
of the algorithm. If the number of start seeds are too low, the algorithm will
under-segmentate wrinkles, since not all wrinkles are reachable from the given
seeds. In the opposite condition, where the number of start seeds are too high,

8 Chapter 2. Theory

the algorithm will over-segmentate since start seeds may encounter significant
non-wrinkle discontinuity lines in the image.

The aforementioned methods all focus on 2D image data. A 2019 publication by
Decenciére et al. [19] is based on wrinkle segmentation by adopting a 3D point
cloud captured by fringe projection into 2D topographic maps, and applying
morphological openings and closing to the image. The openings and closing
are determined by assumed width, depth and directions of the wrinkles to be
detected. The results are promising for major wrinkles.

2.3 General Filters and Techniques

In this section we present general filters and techniques used in the project.
These methods are not made specifically for wrinkle analysis and segmenta-
tion.

2.3.1 Frangi Filter (FRF)

The Frangi filter (FRF) was originally intended for segmentation of vessels in
2D/3D images of various medical imaging modalities such as digital subtrac-
tion angiography (DSA), rotating X-ray and MRI in coronary angiography. The
algorithm searches for tubular-like geometric structures. For deriving the local
principal direction at a point x0 at scale s (the size of a Gaussian kernel), the
second order Taylor expansion in the neighborhood of x0, given by [20]

L(x0 + δx0, s) ≈ L(x0, s) + δxT0∇o,s + δxT0Hx0,aδx0 (2.3.1)

is used, where differentiation is defined as a convolution with derivatives of
Gaussians:

δ

δx
L(x, s) = sγL(x, s) ∗ δ

δx
G(x, s) (2.3.2)

where γ is a normalization constant and the D-dimensional Gaussian is defined
as

G(x, s) =
1(√

2πs2
)D e− ||x||22s (2.3.3)

Chapter 2. Theory 9

Crossectional distance across wrinkle

Pi
xe

l i
nt
en

sit
y
va

lu
es

Ridge Ridge

Valley

Figure 2.3.1: The second order derivative of the 1-dimensional Gaussian ensembles
the ideal wrinkle profile of the pixel intensity values of a crossection per-
pendicular to the local wrinkle direction. Ridges and valley are indicated
in the figure. Figure adapted from [1].

Thus, the Hessian is a matrix of second-order derivatives of Gaussian kernels.
These kernels are called probe kernels, and measure the contrast between re-
gions inside and outside the range (−s, s) [20]. When sweeping these probing
kernels over an image, the kernels will output a maximum value when they are
centered on over an area of values of similar shape as the probe kernel. The
eigenvalues of the Hessian give the direction of maximum curvature. Since the
Hessian is derived with various Gaussian kernel sizes, we record for which scale
the probing kernel gave the maximum output. Then the FRF uses this informa-
tion in order to give the direction along the smallest curvature, that is, along
the vessel (or wrinkle [1]), for the scale s of best fit.

Consider the FRF for wrinkle analysis: if we consider the cross section of a wrin-
kle perpendicular to the local wrinkle direction, we see that the pixel intensity
values ensemble the second order derivative of a 1-dimensional Gaussian kernel
with ridges and valley. This is shown in fig. 2.3.1.

2.3.2 Gabor Filter

The Gabor filter is a linear filter used for texture analysis. The filter is a Gaussian
kernel modulated by a sinusoidal plane wave [21]. It is used for extracting
textures with specific frequencies in specific directions. The filter is specified
by a frequency ω and a direction θ. When a Gabor filter is convoluted with
an image, the output will highlight geometric structures in the image with the
approximate frequency ω and approximate direction θ. A Gabor kernel with
ω = 0.1 and θ = π

2
is shown in fig. 2.3.2. We can also interpret the frequency

10 Chapter 2. Theory

Figure 2.3.2: Gabor kernel with ω = 0.1 and θ = π
2 .

parameter ω as a size metric. For a Gabor kernel with constant size, lower
frequency amounts to the extraction of larger geometric structures.

2.3.3 Hysteresis Thresholding

Hysteresis thresholding is a two-stage method. The algorithm takes two input
parameters: the strict threshold limit high and the slack threshold limit low. In
stage 1, the algorithm searches for all pixels that take values above high, and
adds them to the current segmented set. In stage 2, using all the pixels from
stage 1 as seeds, it searches for all other pixels that take values above low, and
that is connected to another pixel in the current segmented set.

This technique is very useful as a post-processing filter, if the previous filter
segmented values from the background by adding a ridge between the segments
and the background, i.e. the segments and the background take the same pixel
values.

Consider fig. 2.3.3. The hysteresis threshold algorithm will start at the brightest
points on the horizontal lines, and build the segmented set outwards into val-
ues that take the same value, or even take smaller values than the background.
This is possible as long as the desired lines are separated by dark ridges, which
prohibits the hysteresis algorithm of moving into the background. It is impor-
tant to note that for sufficiently low slack threshold values, the algorithm can
move out of the ridge boundaries if the ridges do not form a closed set around
the desired segments with either another ridge or the image boundaries.

Chapter 2. Theory 11

Figure 2.3.3: Gabor filtered image. The desired lines we wish to segment is separated
from the background by dark ridges.

2.3.4 Contrast Histogram Equalization

Contrast histogram equalization is the process of changing the pixel intensity
values in the image such that after the transform, each pixel intensity has the
same number of occurrences. The method is useful when the whole image takes
values of approximately the same brightness. By histogram equalization, the
global contrast of the image is usually increased [22].

The algorithm is often used as a step in the preprocessing, when the successive
algorithms depend on uniform contrast levels in the dataset [22].

2.3.5 Anti-Aliasing: Gaussian Blur

Gaussian blurring is a method for anti-aliasing images. The input image is anti-
aliased by convolving the image with a Gaussian kernel. Convolving a Gaussian
kernel on the image amounts to low-pass filtering the image, thus reducing the
image high-frequency components. The cut-off frequency is selected by adjust-
ing the size of the Gaussian kernel.

2.3.6 Morphological Transformations

Morphological transformations involves techniques for analysis and processing
of geometrical structures. It is based on set theory, lattice theory, topology and
random functions. There are two basic operators in morphology; dilation and
erosion. Then, combinations of dilation and erosion form morphological open-
ings and morphological closings. This section is based on [23].

Morphological transformations in its simplest nature takes a binary input image

12 Chapter 2. Theory

Figure 2.3.4: Dilation. A circular kernel is applied to an input image (blue rectan-
gle) with morphological dilation, resulting in the larger light box with
rounded corners. Figure adapted from Renato Keshet (Wikimedia Com-
mons) [2].

and a kernel. The input image is the image on which we wish to apply our
transform. The kernel decides the specifics on how the operator transforms the
image.

Dilation

Dilation takes in an input image and a kernel. The kernel may be of any shape,
but is shown in fig. 2.3.4 as a disk dilating a blue rectangle, resulting in a
larger light box with rounded corners. The basic operation of dilation is that the
kernel slides through the input image, limited by the kernel’s center of gravity as
indicated in the figure with red dots. Then any pixel which lies under the kernel
at any point gets the value of 1, while all other points remain unchanged.

The method is effective at filling holes in the foreground, for example pepper
noise or other discontinuities. It is also effective at re-joining broken elements;
e.g. if a line has a hole in it, creating two disjoint lines, the dilation can rejoin
the lines (if the kernel is large enough).

Erosion

Erosion is sometimes considered the opposite of dilation. A kernel slides through
the image. Then, a pixel is given the value of 1 only if all pixels under the kernel
in the original image have a value of 1, otherwise it is set to 0 (it is eroded).
Erosion is illustrated in fig. 2.3.5 where a blue rectangle is eroded by a circular
kernel, resulting in a smaller light rectangle.

Chapter 2. Theory 13

Figure 2.3.5: Erosion. A circular kernel is applied to an input image (dark rectangle)
with morphological erosion, resulting in a smaller light rectangle. Figure
adapted from Renato Keshet (Wikimedia Commons) [2].

Closing

A morphological closing is a dilation followed by erosion.

Dilation fills holes in the foreground and rejoins discontinuities. However, the
dilation results in the foreground dilating. Thus, erosion is applied with the
same kernel as that of the dilation, effectively trimming back the foreground
roughly to its original size, while still retaining the enhancements provided by
the dilation (filling holes and rejoining discontinuities).

Opening

A morphological opening is an erosion followed by dilation. It can be used for
noise removal, usually in the background.

2.3.7 Elastic-, Grid- and Optical Distortion

These image distortion transforms can be helpful during data augmentation
when dealing with non-rigid structures that have shape variations, which is
often the case in medical imaging [24].

Elastic Transforms

Elastic distortion was used by Simard et al. [25] to vastly expand the MNIST [26]
dataset. The idea was to apply transformations corresponding to random oscil-
lations of the hand muscles when writing numbers, damped by inertia. The
method involves computing a new target position for a point (x, y) wrt. the pre-
vious position. The new target position is denoted ∆x(x, y) and ∆y(x, y) for x
and y, respectively.

14 Chapter 2. Theory

Figure 2.3.6: A square lattice grid (left) transformed by elastic distortion (right).

The elastic distortion is created by first generaing random displacement fields
∆x(x, y) = rand(−1,+1) and ∆y(x, y) = rand(−1,+1), where rand(−1,+1)
is a random number in [−1, 1] drawn with a uniform distribution. The fields
are then convoluted with a Gaussian kernel of size s, where s is the standard
deviation (in pixels). Finally, the displacement field is normalized.

s (or σ which is frequently used in literature [25]) is called the elasticity co-
efficient. A small s gives completely random directions, while a large s gives a
displacement field close to affine1. However, intermediate values of s results in
what is called elastic distortions [25], in which lines and parallelism are slightly
preserved, making the output image number recognizable, with the desired ef-
fects of random oscillations of the hand muscles.

Grid Distortion

Grid distortion involves stretching and squeezing the input image along the
horizontal and vertical axes while maintaining image dimensions [24; 27]. Un-
fortunately, [24; 27] does not provide us with a well defined description of the
transform, and we were not able to find a clear description elsewhere. However,
fig. 2.3.7 gives us a good intuition on the behaviour of the transform.

Optical Distortion Transform

The optical distortion transform is used to emulate optical distortions. Optical
distortion is the situation in which physically straight lines are bended and de-
formed due to optical aberrations, making them appear curvy [28]. Figure 2.3.8

1Affine transformations are transformations that preserves lines and parallelism.

Chapter 2. Theory 15

Figure 2.3.7: A square lattice grid (left) transformed by grid distortion (right).

Figure 2.3.8: A square lattice grid subject to optical distortion when being pho-
tographed through a wine glass. The ellipsoid-like reflections are specu-
lar reflections from the light source.

shows how the square lattice grid being distorted when photographed through
a wine glass.

2.3.8 Sørensen-Dice Coefficient. Jaccard Similarity Index

The Sørensen-Dice coefficient (“Dice similarity coefficient (DSC)”, “Dice”) is
a similarity measure independently developed by Sørensen (1948) and Dice
(1945). The coefficient is defined as [29; 30]

16 Chapter 2. Theory

DSC =
2|A ∩B|
|A|+ |B|

(2.3.4)

where A and B are sets and |A| is the cardinality of the set.

The Sørensen-Dice coefficient is very similar to the Jaccard Similarity Index
(JSI), which is given by [31; 1]

JSI =
|A ∩B|
|A ∪B|

(2.3.5)

2.4 Artificial Neural Networks and Deep Learning

Modern computer vision is largely based on the application of artificial neural
networks (ANNs) and deep learning (DL). A special type of ANNs is called con-
volutional neural networks (CNNs). CNNs offer weight sharing, which reduces
the number of trainable parameters and thus decreases training time. Further-
more, CNNs offer the property of spatial invariance. This is a key property in
CNN based computer vision, since it allows the network to classify objects in-
dependently of its position in the input image.

In this section we give a short introduction to fully-connected neural networks
(FCNNs), CNNs and autoencoders. Finally, we introduce the U-Net, which is a
CNN autoencoder developed for image segmentation on medical images. The
content in this section is roughly based on Nielsen [32], Goodfellow [33] and
Ronnerberger [3].

2.4.1 Fully-Connected Neural Networks (FCNN)

The Fully-Connected Neural Network, also called a “dense” network, is the most
basic network type used in deep learning. It is built up by several nodes, or
perceptrons, inter-connected in a net-like structure.

The Perceptron

The perceptron, also called a node or a neuron, is the fundamental building
block of the FCNN. It is illustrated in fig. 2.4.1 with three inputs and three
outputs in layer L, however, the perceptron itself is independent of the number
of inputs and outputs.

Chapter 2. Theory 17

Figure 2.4.1: The perceptron illustrated with three inputs xL−11i , input weights wL1i,
summation of inputs zL1 and activation aL1 . Furthermore, the input
weights wL+1

1i belonging to a potential next neuron is shown by wL+1
1i .

i ∈ {1, 2, 3}. The bias with its corresponding weight is used to adjust the
activation threshold.

The perceptron performs two essential tasks; the summation of input values
with input weights, and passing the result through an activation function.

The summation of input values with input weights are given by

zL1 =
nL−1∑
i=0

(
xL−1i wL1i

)
+ bL1w

L
b1 (2.4.1)

where i ∈ [1, nL−1] denotes the number of input nodes from layer L− 1 to layer
L. Each input value is multiplied with a corresponding weight wL1i. Finally, a
bias is multiplied with its corresponding weight to control the activation thresh-
old.

Then zL1 is passed through a non-linear activation function. The activa-
tion function determines the activation of the perceptron. Several activation
functions exist, for example the sigmoid aL(zL) = 1/(1 + e−Z

L
), the tangens

hyperbolicus aL(zL) = tanh zL and the rectified linear unit (ReLU) aL(zL) =
max (0, zL). The sigmoid and the tanh activation functions are commonly called
“squashing functions”, since they take any values in R and squeeze them into
a smaller range. The ReLU on the other hand just makes sure the perceptron is
not activated for negative zL values, thus introducing an activation threshold
that needs to be overcome in order to activate the neuron.

Multilayer Perceptron (MLP)

When two or more perceptrons are inter-connected in series, we have a multi-
layer perceptron. This is what is commonly referred to as a FCNN or a dense

18 Chapter 2. Theory

Figure 2.4.2: A 3-layer multilayer perceptron. The input layer has no weights and no
activation, therefore it is not counted as a layer. For each perceptron in
the hidden layers and the output layer, the ordering of inputs, weights,
summation and activation are as shown in fig. 2.4.1.

neural network. An example of a 3-layer MLP is shown in fig. 2.4.2. The input
layer has no weight and no activation function, therefore it is not counted as a
layer. For each perceptron in the hidden layers and the output layer, the order-
ing of inputs, weight, summation and activation are as shown in fig. 2.4.1.

If we input values at the input layer, the values will be multiplied with the
weights between the input layer and the next hidden layer. Then, in the per-
ceptrons in the hidden layer, the inputs are summed and passed through an
activation function, and output to the next hidden layer. The same happens in
the output layer, although the output layer typically has an activation function
that is very specific to the output we want. For example, if we are trying to
predict a value that can take any number, we cannot use a sigmoid activation
function in the output layer since this would limit our predictions to values in
range [0, 1].

When training the network, the basic idea is that we start off with a network
with randomly initialized weights. The first sample will thus output something
completely random. Then the output is compared to a label, the “ground truth”,
through a cost function. The cost function outputs the loss based on how far
from the label we predicted. Then we compute a gradient for updating our
weights in order to minimize the loss on the next run.

Cost Function and Loss

The cost function is a function in which we input our labels y and predictions ŷ,
and determine the loss. The loss is thus a measure of “how far” our predictions
are from the truth. Several cost functions exist, and they can be tailored to fit
very specific problems [34; 35].

A typical cost function is given by the Mean Squared Error (MSE). It is given
as [32]

C(w) =
1

2N

N∑
n=1

(yn − ŷ)2 (2.4.2)

Chapter 2. Theory 19

where N is the number of training samples, and we divide by 2 so that we can
remove that constant when we differentiate later.

If we look at one single training sample, we can write the cost function as

Cn(w) =
1

2
(yn − ŷ)2 (2.4.3)

Forward Pass

The forward pass is the process of inputting values to our network, and pro-
cessing the values as they propagate through the network. For each layer l we
compute the input of the node by

zl = W lal−1 + bl (2.4.4)

where al−1 is the activations from the previous layer l − 1, W l is the weight
matrix for inputs at layer l and bl is a column vector of biases for the nodes in
layer l.

Backpropagation

The backpropagation, commonly shortened to “backprop”, is the process in
which we after a forward pass go backwards in the network to find the gradient
for minimizing the loss from our cost function. We now show the backprop al-
gorithm on the network shown in fig. 2.4.2 with ReLU activations in the hidden
layers and linear activation in the output layer. The backprop algorithm consists
of four steps outlined by Nielsen [32]:

Compute error δL for layer L (the last layer)

δL = ∇aC � f ′(zL) (2.4.5)

where � denotes the Hadamard product, and the gradient for one training
sample is given by (omitting superscript n from eq. (2.4.3))

∇aC =
∂C

∂aLj
= −(y − ŷ) = −(y − aL) (2.4.6)

where the latter equality states ŷ = aL since we have linear output activation.
Expanding eq. (2.4.5) for our network we get

δ3 = −(y − a3)� f ′(z3) (2.4.7)

20 Chapter 2. Theory

Use δl to compute error in next layer in backwards order The equation is
given as follows:

δl = [(wl+1)T δl+1]� f ′(zl) (2.4.8)

Bias. The gradient wrt. the bias of node j in layer l is given by [32]

∂C

∂blj
= δlj =⇒ ∂C

∂bl
= δl (2.4.9)

where we prefer to use the latter expression since it is denser and we do not
need to worry about specific nodes j, as this will be resolved directly by matrix
algebra.

Each weight The gradient for updating each weight is given by

∂C

∂wl
= δl(al−1)T (2.4.10)

where the right hand side denotes the outer product of δl and al−1.

Weight and Bias Update The final step in the learning algorithm is to update
the weight and bias values. The update rule is given by

θk+1 = θk − η
∂C

∂θk
(2.4.11)

where η is the learning rate controlling how far we move in the gradient direc-
tion, and θk+1 is the weights and biases for the next cycle.

Capacity, overfitting and underfitting

The capacity of a model roughly refers to the model’s ability to fit a wide variety
of functions [33]. While a model with low capacity may struggle to fit a function
to the training set (underfitting), a model with high capacity is more prone
to overfitting, since it may memorize a mapping from input to output in the
training set instead of finding general structures. Very high capacity models can
perform perfectly in the training set. Strongly overfitted models are likely to
perform worse on data outside the training set due to the noise utilized to fit
the training set [8].

Increasing model capacity generally amounts to increasing the number of inter-
nal model parameters, i.e. increasing the number of hidden layers or percep-
trons in each layer.

Chapter 2. Theory 21

Regularization

Regularization refers to all measures taken to avoid overfitting [33]. Several
approaches exist. Two examples of widely used methods, are the dropout algo-
rithm and Lp-regularization.

The dropout algorithm is a simple, yet powerful algorithm. For each training
step, randomly pick n = bpNc perceptrons where N is the total number of
perceptrons in the network and p is the proportion of perceptrons we want to
pick. Then for all the n perceptrons chosen, set their corresponding weights
to zero. This effectively removes these perceptrons from the network. We can
look at a large network as a multiple of several smaller networks. Hence, as all
these smaller networks are learning features of the input data, the combination
of all these predictions may lead to overfitting. When weights are set to zero,
the remaining perceptrons can be viewed as a “thinned” version of the original
network [36].

It has been shown that dropout improves the performance of neural networks
on supervised learning tasks in several disciplines, including computer vision
and speech recognition [36].

Another example of a regularization technique is Lp-regularization, p integer.
Lp-regularization is done by penalizing the cost function by the Lp-norm of the
weights. Typically, the L1-norm (taxicab norm) or L2-norm (Euclidean norm)
are used. While L1-regularization typically yields sparse weight matrices, L2-
regularization yields smaller weight values.

2.4.2 Convolutional Neural Networks (CNN)

A convolutional neural network (CNN) is a special type of a neural network. It is
commonly used in computer vision. At the very bottom, the CNN is comparable
to the MLP; it has weights, activation functions, cost functions etc. However,
a major difference occurs in the topology of the network as well as the way it
uses weight sharing. It is spatially invariant to the location of objects.

Consider the 4× 4 greyscale image represented in matrix form

X =

1 3 1 6
2 4 1 3
6 5 5 2
1 3 1 4

 (2.4.12)

We want to pass this image through a CNN. For simplicity, we use the convolu-
tional kernel

22 Chapter 2. Theory

WL =

[
0 1
1 0

]
(2.4.13)

which is denoted W since the convolutional kernel contains the weights of the
network. CNNs have several parameters, among them we have the stride and
padding. Stride is the number of pixels we move our kernel during one step
in the convolution. The padding adds zeros to the borders of the image. In
the forward pass, we convolve the input with the convolutional kernel and
have stride=1 and padding=0, and for simplicity, we apply the ReLU activation
function (which has no effect on this data)

aL = X ∗WL−1 (2.4.14)

=

1 3 1 6
2 4 1 3
6 5 5 2
1 3 1 4

 ∗ [0 1
1 0

]
=

 5 5 7
14 6 8
6 8 3

 (2.4.15)

Note that the image dimensions after the convolution is reduced from 4 × 4 to
3× 3.

Further downscaling of the data can be performed by applying pooling func-
tions, such as the max pooling algorithm (MaxPool2D). The MaxPool2D is speci-
fied with a certain size, for example 2× 2. If such a pooling scheme is applied,
the pooling kernel will slide over the image, and for each step it extracts the
largest value from the input data within the kernel at current position. This is
illustrated below with unit stride and zero padding:

zL = MaxPool

 5 5 7
14 6 8
6 8 3

 =

[
14 8
14 8

]
(2.4.16)

Hence, the CNN is effective at reducing the input data dimensions, which is
necessary, since images typically consists 1000s of data points. Moreover, the
max pooling is a way of providing spatial invariance to the CNN, since it extract
the largest value within an area regardless of where in that area that value is
located. Other types of pooling also exists, such as average pooling.

As previously mentioned, the kernels contain the weights in the CNN, thus as
training proceeds in a similar manner to that of the MLP, the kernels change.

Chapter 2. Theory 23

Figure 2.4.3: An autoencoder with 8-dimensional input and 2-dimensional bottleneck.
The leftmost part of the network is called the encoder, and the rightmost
part of the network is called a decoder.

For CNNs applied on image data, some of the kernels typically obtain similar
structures of commonly known filters used in classical computer vision, such
as Gaussian blur, Gabor filters etc. Hence we can regain the properties from
classical computer vision into our CNN. Other kernels may take on other values,
more specific to the data we are training on, which can enhance classification
and prediciton properties compared to a classical approach.

2.4.3 Autoencoders

The autoencoder is a type of neural network that is used to learn a sparse
representation of the input data and reconstruct the reduced dimension data
back to our original data. An illustration of a basic autoencoder that inputs 8-
dimensional data, passes it through a 2-dimensional bottleneck and then tries
to reconstruct the 8-dimensional data from the 2-dimensional sparse represen-
tation is shown in fig. 2.4.3.

A CNN autoencoder has a similar structure, except that the encoder and de-
coder are switched out with a CNN instead of a FCNN. The leftmost part of the
autoencoder is called the encoder, and the rightmost part is called the decoder.
The autoencoder typically have identical but flipped architecture in the encoder
and decoder parts.

24 Chapter 2. Theory

2.4.4 U-Net: Convolutional Networks for Biomedical Image
Segmentation

The U-Net [3] is a CNN autoencoder developed for segmentation of the mem-
brane in the Drosophilia first instar larva ventral nerve cord (VNC). It won the
ISBI cell tracking challenge 2015.

The architecture of the U-Net is illustrated in fig. 2.4.4 and consists of a con-
tracting path moving downwards (encoder) and an expanding path moving
upwards (decoder). The encoder consists of repeated applications of two 3× 3
convolutions, followed by the ReLU activation function and a 2 × 2 max pool-
ing operation with stride=2 for downsampling [3]. At each downsampling
step, the number of feature channels (filters/kernels) are doubled. Similarly,
in the decoder, the U-Net maintains a similar structure, however, the convo-
lutions are replaced with up-convolutions and max pooling is changed with
up sampling operations. At the final layer, a 1 × 1 convolution is used to map
the 64-component feature channels to the number of classes (membrane vs.
non-membrane, etc) [3]. At each convolution in the decoder, the feature map
is copied and concatenated with the feature map after the corresponding up-
sampling stage in the decoder. The network uses unpadded convolutions, hence
the feature map dimensions of after the convolution and the corresponding up-
sampling no longer matches. The U-Net simply crops the larger dimension to
make it fit [3]. The original paper claim that this technique is effective for pre-
cise spatial localization of points in the image.

The original paper used the cross entropy loss function, since it provides the
ability for multi-label classification. The batch size was set at 1 sample. Their
input data consisted of 30 samples of 512×512 32-bit grayscale clinically anno-
tated images. Data augmentation, the process of transforming copies of images
in the dataset (making random crops, rotations, elastic distortions etc) was used
to extend the dataset. The network was trained on a Nvidia Titan GPU (6 GB)
for 10 hours [3].

2.5 Training and Assessment Strategies

In this section, we give the overall goals of proper model assessment, as well as
how different training and assessment strategies influence the expected perfor-
mance and feasibility in obtaining good estimates of the true generalization er-
ror. First, an introductory section gives a basic understanding of important ter-
minology. Then, two popular training and assessment strategies are presented.
Finally, a short introduction to the Curse of Dimensionality is given to enhance
our perspective on dataset sizes.

Chapter 2. Theory 25

Figure 2.4.4: Illustration of the U-Net. Solid horizontal arrows are convolutions or
up-convolutions, downward pointing thick arrows are max pooling, up-
ward pointing thick solid arrows are up sampling, horizontal stippled
arrows are the copy, crop and concatenation paths for each level in the
encoder/decoder. Illustration adapted from the original paper [3]. The
network takes an input image, and outputs a segmentation map for each
pixel in the image containing the predicted class.

2.5.1 Assessment of Machine Learning Models in a Nutshell

A machine learning (ML) model contains internal model parameters which
needs to be estimated to give a final model. In case of a neural network (NN),
weights and biases are adjusted by the backpropagation algorithm as shown in
section 2.4.1. This process is called training. For each training cycle, the model
is subject to a new set of data, and the parameters are adjusted to improve
model performance.

The goal of a ML model is to generalize from the samples it was exposed to dur-
ing training, to real-world data. In case of the cat/dog classification problem,
featured in Kaggle’s Dogs vs. Cats dataset [37], we want the model to general-
ize the overall fundamental structures of cats and dogs. If the model generalizes
well, the model will be good at distinguishing between the two animals, even
if it is exposed to a an input image that it has never seen before.

Several metrics exists for measuring the performance of models. Accuracy is
typically used in classification problems, where a score of 1 is given in case of
a correct classification, and 0 otherwise. Hence, the average accuracy over a
set of samples is given by the number of correct classifications divided by the

26 Chapter 2. Theory

number of samples it was tested on [33]. In segmentation problems, other met-
rics, such as the Jaccard similarity index (JSI) of the Sørensen-Dice coefficient
(DSC) is commonly used [3; 16]. The error, or error rate, is some form of error
measurement measuring how good a prediction is. The error metric could be as
simple as 1− accuracy for classification problems, or a more complicated error
metric involving a special loss function l(y, ŷ), specially chosen for the current
problem. In this section, the exact error metric is not important, and we let E
denote some error metric that is relevant for a given problem.

When a model is created, we want to know how well it generalizes to the data in
a population. The generalization error Egen denotes the true error of the model
if it is exposed to all samples in a population. Finding the true generalization
error is often infeasible – in case of the cat/dog classification problem, this
translates into testing the model on every single cat and dog that exists. This
is obviously an impossible task to achieve. However, we aim at estimating Egen
by other methods. The typical estimation technique involves testing the model
on a sufficiently large well-balanced and unbiased test dataset [33]. The data
samples in the test set must be independently and identically distributed (i.i.d.)
randomly drawn from the true distribution. The error on the test set is denoted
Etest, and we expect that Egen ≈ Etest.

The test set should be sufficiently large, well-balanced and unbiased. In case of
the cat/dog classification problem, this essentially means that the test set must
include a sufficiently large number of different breeds, images must be taken
in various situations, and of course, the proportions of cats and dogs must be
equal. The number of samples required is strongly dependent on the variation
in the population. For a cat/dog classification problem, a rather large test set
is required since there exists several thousand different breeds of both cats
and dogs. On the other hand, if we are working on data with a more narrow
distribution, a smaller number of samples in the test set may suffice.

At this point, we need to make a few notes on model behaviour on previously
unseen data, before we continue our introduction on estimation of generaliza-
tion error. Some model parameters, typically known as hyperparameters, are
parameters that we do not want the learning algorithm to optimize. An ex-
ample of such parameters, are parameters that control model capacity. If the
learning algorithm is allowed to optimize on capacity parameters, e.g. number
of hidden layers in a NN, it will always choose values that give maximum model
capacity [33], resulting in overfitting.

The first time a model is evaluated on the test set, the test set gives an unbiased
estimate of the generalization error. However, if we test the model, and then
adjust the model to improve performance, Etest is no longer unbiased, since it
has been indirectly used in selecting model parameters. The situation can be
viewed as an “outer” training loop – the inner training loop being the training

Chapter 2. Theory 27

cycle where the internal model parameters are being estimated, and the outer
training loop being the developer adjusting hyperparameters and network ar-
chitecture based on test results. Hence, the test set has indirectly become part
of the training set. This situation is called data snooping or data leakage. And
since adjustments are being made to improve performance of the model, not
only is Etest biased, but it grows ever more optimistic2 for each outer training
loop cycle we perform.

Still, we need to be able to adjust model behaviour during development. Since
the model is fitted to the training data, we cannot make design decisions based
on Etrain, since this metric underestimates the generalization error (Etrain is
optimistic). The solution is to create a tuning3 set of data samples that the
learning algorithm does not observe [33].

The tuning set is an extract of the dataset on which we do not train the model
directly, but we use it to evaluate model performance on unseen data. Thinking
back to the outer training loop, this is where the tuning set comes into play. It is
a set which is disjoint from the training set, so the model has not seen the data
before, and thus it cannot create a mapping from input to output on this data.
However, since we are making adjustments to the model based on the tuning
results, the tuning error Etune will be optimistic, but usually not as optimistic as
Etrain [33].

Thus, we expect the errors from evaluating with the different sets to have ap-
proximately the following relationship:

Etrain ≤ Etune ≤ Etest ≈ Egen (2.5.1)

Similarly, in terms of a generic performance metric P , where larger is better,
we would expect

Ptrain ≥ Ptune ≥ Ptest ≈ Pgen (2.5.2)

However, this is not a rule, and one may very well encounter situations where
for example Etune ≥ Etest, and this would not necessarily be a problem. The
problem first arises when we have done things that invalidate our estimates of
Egen. In the next few sections we give methods for best practice when assessing
ML models.

2A metric is optimistic if the estimation is biased towards better performance.
3In this thesis, we favor the term tuning over validation to avoid naming ambiguity when

cross-validation is introduced.

28 Chapter 2. Theory

2.5.2 Holdout-Set Validation: Train-Test Split (TTS)

A training and assessment strategy frequently promoted by introductory courses
on ML in university, as well as typical ML internet resources, such as medium.com
and towardsdatascience.com, is the train-test-split (TTS). The method has
many names; holdout-set validation, independent validation test set, and so
on [38; 39; 40]. The main characteristic of the method is that the dataset is
divided into two disjoint sets; a training set and a test set. Typically suggested
train/test split fractions are 70/30% [5] respectively, or somewhere in that re-
gion. The training set is then used to estimate internal model parameters, and
the test set is used to test model performance on unseen data, in order to pro-
vide an estimate of the true generalization error Egen.

The test set is assumed to be i.i.d. drawn from the true population on which
we want to make predictions. Hence, the test set has to be sufficiently large in
order to capture the variation of the population, and subsequently be useful for
estimating Egen.

The amount of samples necessary to obtain a sufficiently large test set are de-
pendent on the variation in the true population. For example, in case of the cat/-
dog classification problem, a rather large test set is required to capture the true
variation of the population, due to the existence of 1000s of breeds of both cats
and dogs. Furthermore, the test set should ideally be well-balanced wrt. classes
(e.g. the proportion of cats and dogs should be equal). Re-sampling techniques
exist for artificial balancing, but they will not be presented here.

2.5.3 Development Cohort and External Validation Cohort

Development Cohort. Internal Validation.

The development cohort refers to the dataset on which a model is developed.
It may be primary data collected by the research team, or secondary data made
available to the research team, or public data. During model development, the
training, tuning and test set are all subsets of the development cohort. Thus,
internal validation refers to model evaluation on the test set contained within
the development cohort [8].

External Validation Cohort

External cohorts differ non-randomly from the development cohort [8]. The
subjects in the external cohorts are often within a similar population as that of
the development cohort, since the model is after all developed for a particular
case. However, they must be external to the development cohort in some mat-
ter. For example, this can be achieved by collecting the external cohort from a

Chapter 2. Theory 29

different hospital, or letting the development cohort have one stage of cancer
while the external cohort has another stage of the same cancer, using different
acquisition equipment (e.g. different camera and light setups), etc. [8].

2.5.4 k-Fold Cross-Validation

For small datasets, it may be very hard, and sometimes impossible, to obtain a
test set with an identical distribution to that of the true population; in order to
increase the similarity of the distribution, a bigger portion of the dataset can be
held out for testing. But this can subsequently lead to the training set loosing
its similarity to the true distribution. Thus, for small datasets, withholding data
from training can be wasteful and leading to a less effective prediction model
than it otherwise could be [41]. Furthermore, a small test set implies statistical
uncertainty in the estimated generalization error [33]. Increasing the test set,
results in decreasing the training set; hence it increases the expected generaliza-
tion error. Thus, we are standing in the crossroads between achieving minimum
expected generalization error (having a large train set), and being able to es-
timate the generalization error (having a large test set) [41]. We cannot have
both, since the sets are disjoint.

In order to improve efficacy of a model developed on a small dataset, while
still retaining the possibility of estimating generalization error, various types of
cross-validation can be used. In this section, we will be concerned with k-fold
cross-validation.

A typical k-fold cross-validation works as follows: consider fig. 2.5.1. We first
divide the dataset into k subsets of equal size. With k = 3, the method is called
3-fold cross-validation. Then, one subset is selected as validation fold, and the
two remaining subsets are merged together to form a training fold. This se-
lection procedure continues until all k = 3 subsets have acted as validation
sets.

The model is trained and validated k times, each time with a new training fold
and validation fold. The cross-validation error Eval,cv can be reported as the
average of all k validation errors [33],

Eval,cv =
1

k

k∑
i=1

Ei
val (2.5.3)

where Ei
val is the validation error at fold i.

If k-fold cross-validation is used without a separate test set, then Eval,cv can
be used to estimate generalization error Egen [33], if and only if no model

30 Chapter 2. Theory

Figure 2.5.1: 3-fold cross-validation.

adjustments was made based on validation results. If adjustments have been
made, Eval,cv is biased (and usually optimistic).

Choosing k

Choosing the number of training folds k is largely dependent on the size of the
dataset. Goodfellow [33] states that expected generalization error can never
increase as the number of training samples increases, and that the expected
generalization error decreases asymptotically until it reaches the Bayes error,
or until the model saturates due to capacity restrictions, whichever comes first.
This situation is illustrated idealized in fig. 2.5.2. Please note that the numeric
values of dataset size in the figure are for explanatory purposes only, and do
not constitute a general relationship between generalization error and those
specific dataset sizes. In terms of k-fold cross-validation, each training fold can
be viewed as to be its own dataset, and so the relationship between generaliza-
tion error and training fold size follows the same idealized relationship as given
in the figure.

Chapter 2. Theory 31

Figure 2.5.2: Illustration of the idealized relationship between generalization error
and dataset size. A larger dataset typically yields better generalization
properties from the model. Note that the numeric values of dataset size
are for explainability purposes only, and does not constitute a typical
relationship between datasets of those actual sizes and generalization
error, since this relationship is strongly dependent on the distribution of
the true population from where the data originates from. Figure adapted
from Bjarne Grimstad [4].

Example 1. Suppose your full training set contains n = 1000 samples. If you
choose k = 5 folds, each subset contain n

k
= 200 samples, yielding a training

fold of n(k−1)
k

= 800 samples. From fig. 2.5.2 we see that the generalization
error when training on 1000 samples vs. training on 800 samples are approxi-
mately the same. Thus, for this dataset, k = 5 may very well be an appropriate
value.

Example 2. Now, suppose your full training set contains only n = 200 samples.
If you choose k = 5 folds, each subset contains n

k
= 40 samples, yielding a

training fold of n(k−1)
k

= 160 samples. From fig. 2.5.2 we see that the general-
ization error when training on 200 samples vs. training on 160 samples varies
quite a bit. Thus, for this dataset, k = 5 may retain too much data from the
algorithm. In order to increase the amount of available training data, we can
increase k. With k = 10, the training folds contain 180 samples, which gives
lower generalization error.

Leave-One-Out Cross-Validation (LOOCV)

In the most extreme version of k-fold cross-validation, we let k = n, where n is
the size of the dataset. This is called Leave-One-Out Cross-Validation (LOOCV).
This method minimizes expected generalization error wrt. fig. 2.5.2.

32 Chapter 2. Theory

The price of increasing k in order to minimize expected generalization error is
increased computational costs. The model needs to be trained k times. Thus, in
the case where LOOCV is used, we need to train our model once for each sam-
ple in the dataset. For a large dataset, this strategy may be completely infeasible
– and unnecessary. However, for small datasets, this may very well be a neces-
sary price to pay in order to minimize generalization error while maximizing
efficacy.

2.5.5 The Curse of Dimensionality

The curse of dimensionality is the name of the phenomena where machine
learning problems become exceedingly difficult as the number of dimensions
in the data increases [33]. We will present this phenomena with a simple ex-
ample. Consider the cat/dog classification problem. First, assume that we have
converted our dataset into grayscale images of cats and dogs. With this setup,
the ML algorithm does not need to take color into consideration when learning
features, thus it will focus on spatial structures from the get-go. However, if we
change to a colored dataset, the algorithm also takes this into consideration.
Since cats and dogs can take on “any” color, the algorithm now needs to learn
whether or not color has anything to do with the final classification or not. At
the same time, it has to learn spatial features. Thus, adding the color feature to
our cat/dog classification problem significantly increases the amount of train-
ing samples required from the algorithm to learn the fundamental structures
between the two animals.

Adding features also impact the balance in the dataset. With a colored cat/dog
dataset, we need to make sure that the dataset is balanced wrt. color, otherwise
the ML algorithm may overestimate certain categories based on occurrence fre-
quency, e.g. if there are a lot of black cats, and not many black dogs, the algo-
rithm might learn that black is a fundamental structure of a cat, which we know
it is not.

33

Chapter 3

Methods and Setup

This section introduces the methods, models, and setup used in our devel-
opment and assessment of models for semantic wrinkle segmentation. First,
two datasets are presented. Then, a method based on classical computer vision
methods which we name the Frangi-Gabor process is given. Next, we present
the U-Net CNN autoencoder, immediately followed by two U-Net models fea-
turing different training and assessment strategies.

Relevant hardware, software, drivers, as well as ethical consideration and spe-
cial COVID-19 considerations are given in section 3.5.

3.1 Datasets

3.1.1 The Kumar Dataset

The dataset used in the initial development of the Frangi-Gabor process and
semi-supervised learning with U-Net is the Finger Knuckle Skin dataset by Ajay
Kumar [42]. It will hereafter be referred to as the “Kumar dataset”.

The Kumar dataset consists of middle finger dorsal skin images of 503 individ-
uals, where each individual were photographed either 4 or 5 times with short
time intervals in between (seconds to minutes), yielding a total of 2515 sam-
ples. Some individuals were also photographed after a longer time period (4–7
years). These images was not used in this project. For each sample, the prox-
imal interphalangeal (PIP) and distal interphalangeal (DIP) joint finger dorsal
skin (see fig. 2.1.1) have been sorted into separate folders of image dimensions
160 × 180 px. One PIP image from each individual was extracted. The partic-
ipants in this dataset are mainly staff and students at Hong Kong Polytechnic
University and IIT Delhi Campus, thus 88% of the participants are below the
age of 30. The gender distribution is unknown. Furthermore, the majority of the

34 Chapter 3. Methods and Setup

Figure 3.1.1: A preview of the Kumar dataset.

participants are medium dark or dark skinned. A preview of the Kumar dataset
is shown in fig. 3.1.1.

3.1.2 High Resolution Dataset (HiRes Dataset)

High resolution images of 12 individuals was collected. The individuals in this
dataset are assumed to be healthy – a quick examination by palpation was
performed as well as a self declaration from the participants confirming they
did not have any known medical conditions. The number of participants were
limited by the ongoing covid-19 pandemic.

The average birth year of the participants was µbirthyear = 1996.7 with standard
deviation σbirthyear = 2.9. The youngest participant was born in 2000 and the
eldest participant was born in 1991. The male/female ratio was 0.67.

A custom made box for taking the images in homogeneous light conditions,
as well as maintaining fixed distance and angle from the camera to the partici-
pant’s hand, was used during data collection. The box is shown in fig. 3.1.3. The
box was spray painted white on the inside to increase uniform lighting condi-
tions. Furthermore, a hole in the box from where the camera would see through
a “selfie ring” (see table 3.5.2) for minimization of shadows in the wrinkles was
made.

The camera used was the back-side camera of a Samsung Galaxy S9 smart-

Chapter 3. Methods and Setup 35

Figure 3.1.2: Manual annotation of the hyperspectral (HSI) dataset (appendix A) in
Pixelmator. The annotation process of the HiRes dataset is equivalent.

Figure 3.1.3: The box used for obtaining homogeneous light condition and fixed dis-
tance and angle to the hand. Note that this image was taken months
after data collection, and that at the time of data collection, the interior
painting of the box was not damaged.

36 Chapter 3. Methods and Setup

Figure 3.1.4: The high resolution dataset after grayscaling.

phone. The images captured were in 4:3 aspect ratio, 4032×3024 px and stored
in JPEG format.

The images were then transferred to an Apple iPad Air 4, where the middle
finger PIP joint was cropped. The software Pixelmator 2.6.3 [43] was used for
manual annotation on an iPad, see fig. 3.1.2. A single image was loaded into the
software. Then, a new layer was added. Using the Paint/Pixel tool, wrinkles
were traced to the best of the author’s abilities. When all the wrinkles were
traced, the Fill tool was used to overlay each trace with white color. Then, a
new black layer was added, and the white traces were moved to the front. An
Apple Pencil 2 was used for drawing.

During annotation, one participant was disqualified since the close up image
showed abnormally dry skin to the point in which it impaired accurate wrinkle
annotation. Furthermore, in a retrospective review of annotation quality, two
participants were disqualified since those two samples exhibited a lot of tiny
wrinkles with low contrast levels, prohibiting accurate annotation. Thus, the
final HiRes dataset consists of only 9 manually annotated images. The final
mask layers had dimensions 414× 483 px.

The HiRes dataset is shown in fig. 3.1.4.

Chapter 3. Methods and Setup 37

Preprocessing and Data Augmentation

Grayscaling and contrast histogram equalization

In order to minimize the effect of different skin pigmentation levels in the algo-
rithm performance, the HiRes dataset is subject to grayscaling by axis removal,
leaving only the red color channel. We use the red color channel since it is
less dependent on varying skin pigmentation (melanin), which strongly effects
the reflectance spectrum for shorter wavelengths (e.g. blue and green, see sec-
tion 2.1). This was also suggested by Cula et al. [16; 17]. Then, the images are
subject to contrast histogram equalization. This method gives homogeneous
contrast levels across skin pigmentation levels when the image is confined to a
particular region [17].

Padding

Each input image is mirrored such that the resulting image width w and height
h is divisible by 2k where k in an integer. Given input dimensions of 414×483 px,
the desired output dimensions are 512 × 512 px (k = 9). This is necessary in
order for the U-Net to predict masks with the same dimensions as the input
images, providing lossless1 calculation of the Dice coefficient.

Smoothing the manual masks

From Pixelmator we get staircase shaped masks, especially visible in curves.
To counteract on this effect, the masks are subjected to anti-aliasing by Gaus-
sian blur (s = 5), thresholded (threshold limit=128), and transformed by a
morphological closing (kernel size 5× 5). This processing smooths the staircase
shapes and makes natural connections between neighboring masks, yielding a
better annotation by qualitative evaluation. The result is shown in fig. 3.1.5.

Data augmentation

The augmented dataset is created separately from the PyTorch Dataloader

pipeline using Albumentations [27] and stored on the disk. We use the fol-
lowing transformations for data augmentation:

• Elastic transforms

• Grid distortions

• Optical distortions

• Grid distortion followed by optical distortion

1If input and output dimensions does not match, a resizing technique using methods such
as nearest neighbors, bi-linear scaling etc. must be used, hence reallocating a possible loss from
the interior of the U-Net algorithm, to the exterior.

38 Chapter 3. Methods and Setup

Figure 3.1.5: Left image shows the manual masks output from the annotation tool. The
right image shows the manual masks smoothed by anti-aliasing, thresh-
olding and morphological closing.

Table 3.1.1: Parameters for elastic transforms.

Parameter Value

Alpha 120
Sigma 6
Alpha affine 3.6

In addition to the above given transformations, horizontal flip is applied to
input images. Furthermore, each transformation is applied 10 times with a new
random seed each time. The parameters for elastic transform and optical distor-
tion are given in table 3.1.1 and table 3.1.2 respectively. No parameter input is
given in the documentation [27] for grid distortion, hence the parameters are
unknown and left as-is. However, fig. 2.3.7 shows a square lattice grid being
transformed by the exact same grid transform as the one we use here.

The preprocessed input image and masks, as well as their augmentations are
shown in fig. 3.1.6.

3.2 The Frangi-Gabor Process

The Frangi-Gabor process is a process in which we use methods from clas-
sical computer vision for wrinkle segmentation. The process was initially de-

Chapter 3. Methods and Setup 39

Figure 3.1.6: Data augmentation of input images (left) and their corresponding masks
(right). (a) contrast histogram equalized and padded input image, (b)
elastic transform, (c) flipped elastic transform with new seed, (d) grid
distortion, (e) flipped grid distortion with new seed, (f) optical distor-
tion, (g) flipped optical distortion with new seed, (h) grid distortion fol-
lowed by optical distortion.

40 Chapter 3. Methods and Setup

Table 3.1.2: Parameters for optical distortion.

Parameter Value

Distort limit 2
Shift limit 0.5

(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.2.1: The Frangi-Gabor process including preprocessing stages. (a) Original
input image. (b) Grayscaled by axis removal. (c) Contrast histogram
equalization and Gaussian blur. (d) Frangi filtered (e) Gabor kernel with
ω = 0.1 and θ = π

2 . (f) Gabor filtering of the Frangi filtered image. (g)
Frangi-Gabor masks after hysteresis thresholding.

veloped on the Kumar dataset during the pre-project. However, the current
implementation is updated. This section explains the preprocessing, filtering
and parametrization of the algorithms used. The full process is visualized in
fig. 3.2.1. A sample from the dataset with wrinkle masks overlayed is shown in
fig. 3.2.2.

3.2.1 Preprocessing

Grayscaling and contrast histogram equalization similar to that of section 3.1.2
are applied inline in the FG pipeline.

Chapter 3. Methods and Setup 41

Figure 3.2.2: Original input image with the Frangi-Gabor masks overlayed.

3.2.2 Frangi Filtering (FRF)

The preprocessed images were then filtered with a Gaussian kernel of size s = 3.
The output is shown in fig. 3.2.1(c). Gaussian filtering prior to the application
of the FRF (section 2.3.1) is important as to avoid noise in the FRF output.
The Gaussian filter effectively removes small textures, hair etc. Then the FRF
was applied with sFRF = 1. The value of sFRF = 1, the size of the Gaussian
kernel used in the filter, was chosen by qualitative assessment of the filter per-
formance.

3.2.3 Gabor Filtering

The FRF is omni-directional, but we only want horizontal ridgelike structural
features in our output, since vertical features are prone to be noise. By applying
a Gabor filter (section 2.3.2) with ω = 0.1 and θ = π

2
, we effectively remove

vertical features. The frequency parameter ω can be viewed as a spatial size
parameter. The value of ω was chosen based on qualitative evaluation. θ, the
direction of the filter, is measured relative to the vertical axis of the image.
Hence, for filtering horizontal structures, a value of θ = π

2
+ πk where k is

42 Chapter 3. Methods and Setup

an integer, is required. After filtering, the remaining structures have a direction
not smaller than approximately ±50◦ with respect to the vertical axis. ω impacts
the slack around the directionality chosen by θ. In general, lower ω gives larger
directional slack.

3.2.4 Hysteresis Thresholding

The final step of the Frangi-Gabor annotation process is the thresholding pro-
cedure. We employ hysteresis thresholding (section 2.3.3) with high=71 and
low=5. The values refer to pixel intensity values. The quality of the output
masks, and thus the tuning of the parameters were evaluated qualitatively.

3.3 The U-Net Process

The U-Net is a neural network architecture for semantic segmentation. It can
be considered to be a CNN autoencoder. In our application, we want to train
the network to learn a sparse representation of wrinkles.

In this section, we give the overall structure of the U-Net implementation, train-
ing setup and inference.

3.3.1 Implementation

The U-Net is implemented in Python using the PyTorch framework for deep
learning based on [3; 44], with a slight modification to the originally pub-
lished network architecture, as given in section 2.4.4. In our network, the
double convolutions have padding=1, whereas the original architecture has
padding=0.

3.3.2 Preprocessing and Data Augmentation

All preprocessing and data augmentation are done prior to training. This saves
resources in terms of available computing power during training, compared to
on-demand preprocessing in the training pipeline. The details of the prepro-
cessing and data augmentation are given in section 3.1.2.

3.3.3 Training

We use the Adam optimizer with learning rate scheduler ReduceLROnPlateau.
ReduceLROnPlateau is used to reduce the learning rate when the network pa-
rameters lies on a plateau in the loss landscape. This is because these points

Chapter 3. Methods and Setup 43

might be saddle points, in which we do not wish to make large weight ad-
justments, since this can lead us to sub-optimal solutions. The loss function
is binary cross-entropy (implemented with BCEWithLogitsLoss, which is more
numerically stable compared to BCELoss with preceding sigmoid layer) since
we only classify two classes; wrinkle and non-wrinkle. Training progression is
recorded with tensorboard and performance is measured with the Dice coeffi-
cient.

3.3.4 Inference

Inference is the prediction of wrinkle masks on an input image. The U-Net
model and the trained weights are loaded onto GPU memory. The input image
is forward passed through the network, and the output is a binary greyscale
image with segmentation masks.

3.4 U-Net Models

In this section, we present two models having equivalent hyperparameters and
architecture, but they are trained and tested using different assessment strate-
gies.

3.4.1 Model A: Supervised Learning on the HiRes Dataset
with Train-Test Split Assessment Strategy

This model features supervised learning with manually annotated masks Y on
the high resolution (HiRes) dataset X. Furthermore, it follows a typical train-
test split assessment strategy.

Training

We use Adam optimizer with hyperparameters as given in table 3.4.1. The 9 sam-
ple dataset is data augmented into 639 samples. Then, a test set of 20% is
uniformly sampled from the augmented samples, giving a total training set of
511 samples and test set of 128 samples. The train set is further split into a train
and tuning set (10%), giving ntrain = 460, ntune = 51 and ntest = 128.

Estimating Generalized Predictive Accuracy

The generalization error Egen can be estimated by computing the test error over
the test set,

44 Chapter 3. Methods and Setup

Table 3.4.1: Model A hyperparameters.

Hyperparameter Value

Epochs 20
Batch size 2
Learning rate 0.0001

Egen ≈ Etest (3.4.1)

In this project, we are more concerned about the generalized predictive accu-
racy. Using the Dice coefficient (DSC) as a measure of predictive accuracy, gen-
eralized predictive accuracy DSCgen is estimated by computing the DSC over
the test set,

DSCgen ≈ DSCtest (3.4.2)

and similarily with the Jaccard Similarity index (JSI).

3.4.2 Model B: Supervised Learning on the HiRes Dataset
with Leave-One-Out Cross-Validation Assessment Strat-
egy

This model features supervised learning with manually annotated masks Y on
the high resolution (HiRes) dataset X. Furthermore, it follows a Leave-One-Out
Cross-Validation (LOOCV) assessment strategy.

Training

We use Adam optimizer with hyperparameters as given in table 3.4.2. The 9 sam-
ple dataset is divided into 9 folds; each training fold containing 8 samples and
the corresponding test fold containing only one sample. Then, each training
and validation fold are augmented separately, yielding 71 augmented samples
for each original sample. Additionally, a 10% tuning set is extracted from each
training fold for tracking training performance. Thus, each fold has ntrain = 512,
ntune = 56 and nval = 71.

Chapter 3. Methods and Setup 45

Table 3.4.2: Model B hyperparameters.

Hyperparameter Value

Epochs 20
Batch size 2
Learning rate 0.0001

Table 3.5.1: Hardware used for Frangi-Gabor annotation and U-Net training and infer-
ence.

Component Type

Processor AMD Ryzen 3700X
Memory 32GB DDR4 3600MHz
GPU Nvidia GTX 1070 8GB
Storage 500 GB M.2 NVMe 2200/2000 MB/s R/W

Estimating Generalized Predictive Accuracy

The model is trained k = 9 times, each time with a new training fold. Using
the Dice coefficient (DSC) as a measure of predictive accuracy, generalized pre-
dictive accuracy DSCgen is estimated by cross-validation predictive accuracy
DSCCV

val , which is computed by averaging DSCi
val over all training folds,

DSCgen ≈ DSCCV
val =

1

k

k∑
i=1

DSCi
val (3.4.3)

where DSCi
val is the predictive accuracy over training fold i.

An equivalent estimation is carried our for the Jaccard Similarity Index (JSI).

3.5 Setup

This section lists the hardware and software used in the project.

3.5.1 Hardware

The hardware specification of the computer is shown in table 3.5.1. Photogra-
phy equipment, and other equipment used is listed in table 3.5.2.

46 Chapter 3. Methods and Setup

Table 3.5.2: Other hardware and equipment.

Component Type

Camera Samsung Galaxy S9, back-side camera
Light source Celly Selfie Flash Light Pro White
Face masks IIR (EN 14683:2019)
Nitrile gloves PPE Cat. III (ISO 374-1:2016/Type B, ISO 374-5:2016)

Table 3.5.3: A subset of the software used in the project.

Software Type/Version

Operating system Ubuntu 20.04.1 LTS 64-bit, GNOME v3.36.3
Python v3.8.5
PyTorch v1.6.0
Anaconda v4.8.3
matplotlib v3.3.2
NumPy v1.19.2
Pandas v1.1.3
Pillow (PIL) v8.0.0
scikit-learn v0.23.2
SciPy v1.5.2
torchvision v0.7.0
OpenCV v4.2.0
Spectral Python (SPy) v0.21

3.5.2 Software

A subset of the software used, including the operating system, is given in ta-
ble 3.5.3. Relevant drivers are given in table 3.5.4.

Table 3.5.4: Relevant drivers.

Drivers Version

Nvidia driver 450.66
CUDA v11.0
cuDNN v7.6.5

Chapter 3. Methods and Setup 47

3.5.3 COVID-19 Considerations on Data Collection

The collection of samples were performed in the same student housing where
the author lives, on a “friends and family” basis, as to ensure that data collec-
tion did not increase the risk of COVID-19 infection among participants and
the examiner. During examination and collection, both the participant and the
examiner wore face masks. The examiner wore nitrile gloves. See table 3.5.2
for type details. The participants used an 83% alcoholic hand disinfectant prior
and posterior to the examination and data collection. The number of eligible
participants were limited by infection control restrictions.

3.5.4 Ethical Considerations

Participants were given written and spoken information on the project, how
their data would be managed, and they were showed examples of how their
data would be presented in the thesis.

All participants are above the age of 18, and enrolled in/or having finished
higher education study programmes at the Norwegian University of Science
and Technology (NTNU).

Together with the hand image, information about gender and year of birth were
collected. Participants have the right to revoke their data consent at any time,
without having to give any reason. Thus, in order to enable for deletion of data,
the name of each participant was recorded and stored in a separate location
from the raw data, according to applicable privacy regulation and laws.

48 Chapter 3. Methods and Setup

49

Chapter 4

Results and Discussion

This chapter presents the results and discussion. First, results are presented in
a point-wise manner for each model in section 4.1. In section 4.2, we discuss
the performance and behaviour of each model, primarily focusing on the devel-
opment cohort. Finally, section 4.2.3, take an outlook towards the development
and assessment process for deep learning studies in the medical field.

4.1 Results

4.1.1 Frangi-Gabor Process

Predictive Accuracy and Qualitative Performance

The Frangi-Gabor (FG) process was applied to the HiRes dataset. Figure 4.1.1
shows the preprocessed input images in the left column, manual annotations in
the middle column, and the right column shows the FG output.

The FG performance was quantitatively evaluated with the Dice coefficient
(DSC) and Jaccard Similarity Index (JSI). The results are given in table 4.1.1.

Computational Performance

The FG annotation process, including loading of an RGB image, preprocessing,
filtering, postprocessing and saving the mask as a PNG file takes approximately

Table 4.1.1: Frangi-Gabor performance on the HiRes dataset.

DSC JSI

Test 0.30 0.18

50 Chapter 4. Results and Discussion

Figure 4.1.1: Frangi-Gabor process applied to the HiRes dataset. The left column
shows the preprocessed input images, the middle column shows the
manual annotations, and the right column shows the Frangi-Gabor an-
notations.

Chapter 4. Results and Discussion 51

Table 4.1.2: Model A performance. JSI is not computed during evaluation of the tuning
set since it is undefined for empty predictions, which may occur in early
training steps.

DSC JSI

Tuning 0.81 –
Test 0.82 0.69

292 ms per image (3.42 images/second).

4.1.2 U-Net Model A

Predictive Accuracy and Qualitative Performance

Figure 4.1.2 shows Model A qualitative performance on the test set. The left
column shows in preprocessed and data augmented input images, the middle
column shows the manual annotation, and the right column shows Model A
predicted masks. The predicted masks does indeed look very similar to those of
the manual annotation.

DSC and JSI performance on the tuning and test set are given in table 4.1.2.
Similarity metrics suggest good predictive accuracy of this model.

Computational Performance: Training

Figure 4.1.3 shows predictive accuracy (DSC) on the tuning set during training.
Figure 4.1.4 shows cross-entropy loss during training. Training the model takes
29 minutes.

Computational Performance: Inference

Inference on each image takes about 65 ms after the dataset have been loaded
to GPU memory. This is not including preprocessing time; preprocessing is ap-
plied in a separate process and takes about 85 ms per image. Thus, the total
inference time can be seen as about 150 ms.

4.1.3 U-Net Model B

Predictive Accuracy and Qualitative Performance

Figure 4.1.5 shows Model B performance on each validation fold. The left col-
umn shows in preprocessed and data augmented input images, the middle
column shows the manual annotation, and the right column shows predicted

52 Chapter 4. Results and Discussion

Figure 4.1.2: Model A test performance. The left column shows in preprocessed and
data augmented input images, the middle column shows the manual an-
notation, and the right column shows predicted masks.

Chapter 4. Results and Discussion 53

Figure 4.1.3: Model A predictive accuracy (DSC) on the tuning set during training.

Figure 4.1.4: Model A cross-entropy loss during training.

masks. DSC and JSI on each validation fold are given in table 4.1.3, where the
test score is estimated by averaging the validation score from each fold.

Computational Performance: Training

Figure 4.1.3 shows predictive accuracy on the tuning set during training. Fig-
ure 4.1.4 shows cross-entropy loss during training. Each fold is denoted by a
separate color.

Training time of each fold is approximately 31 minutes. Hence, the total train-
ing time for all k = 9 folds is about 4 hours and 39 minutes. Additionally,
validation of each fold takes about 5 seconds (15.39 images/second, 65 ms/im-
age).

54 Chapter 4. Results and Discussion

Figure 4.1.5: Model B test performance. The left column shows in preprocessed and
data augmented input images, the middle column shows the manual an-
notation, and the right column shows predicted masks. Each row corre-
sponds to the training/validation fold indicated numerically.

Chapter 4. Results and Discussion 55

Table 4.1.3: Model B performance. Since Model B does not have a separate test set,
test performance is estimated by the mean µ of all validation scores and
standard deviation σ.

DSC JSI

Validation 1 0.50 0.33
Validation 2 0.49 0.33
Validation 3 0.41 0.26
Validation 4 0.43 0.27
Validation 5 0.32 0.19
Validation 6 0.42 0.26
Validation 7 0.51 0.34
Validation 8 0.50 0.33
Validation 9 0.34 0.23
Test µ± σ 0.44± 0.07 0.28± 0.05

Figure 4.1.6: Model B predictive accuracy on the tuning set during training, each fold
denoted by separate colors.

Computational Performance: Inference

Inference on each image takes about 65 ms after the dataset have been loaded
to GPU memory. This is not including preprocessing time; preprocessing is ap-
plied in a separate process and takes about 85 ms per image. Thus, the total
inference time can be seen as about 150 ms.

4.2 Discussion

In this section, we will first discuss the performance of the Frangi-Gabor (FG)
process based on the results in the previous section. This will give motivation

56 Chapter 4. Results and Discussion

Figure 4.1.7: Model B cross-entropy loss during training, each fold denoted by a sepa-
rate color.

for why one would consider migration to a ML method. Then, Model A is in-
troduced, first with a discussion regarding its performance as we see it with its
current training and assessment strategy; then, we will highlight problems and
suspicions with the model, which leads us over to Model B. Model B is then pre-
sented, first with a discussion on performance, and then compared to Model A
and the FG. Moreover, we discuss cross-validation compared to TTS, as well as
other important aspects of supervised learning, such as confidence in ground
truth and the manual annotation process. Finally, we take on a broader view on
the development and assessment process of deep learning models for medical
applications.

4.2.1 Frangi-Gabor Process

FG delivered a predictive accuracy of DSC=0.30/JSI=0.18 on the HiRes dataset.
The similarity measures are not very high, suggesting that the algorithm is
strongly under-performing wrt. to the manual annotations. Consider fig. 4.2.1,
where manually annotated masks are labeled blue, correct predictions from FG
are labeled green and mis-predictions from FG are labeled red. Note that the
FG masks are slightly shifted upwards from the manual masks. Also notice the
staircase shape of the manual masks, where the FG predicts a smooth curve.
This is especially visible in the lower right annotations. Both of these exam-
ples decrease DSC/JSI. Nevertheless, FG is still only able to make predictions
on horizontal (±50◦) wrinkles, thus it will always under-perform to a certain
degree compared to the manual annotations.

FG is a process consisting of a pipeline with several well-defined steps, such
as color and contrast modifications, anti-aliasing, various filters and thresh-
olding techniques. Having a well-defined model such as this is good for inter-

Chapter 4. Results and Discussion 57

Figure 4.2.1: FG masks compared to manual masks. Manual mask are blue, FG
masks overlapping with manual masks are green, and FG masks non-
overlapping with manual masks are red.

pretability: we know that the algorithm finds wrinkles by probing a second-
order derivative of a Gaussian kernel of size s, which we call a probing kernel,
over the image. If we change input image dimensions, we can adjust the prob-
ing kernel size s and the Gabor frequency ω to fit better with new spatial sizes
of wrinkles. Over- and under-estimation of wrinkles can be adjusted by tuning
the hysteresis threshold parameters. Even the directionality of the algorithm
can be changed by adjusting θ.

A drawback of the FG process, is that due to its transparency and interpretabil-
ity, the behaviour of the algorithm is very strict and limiting, imposing rather
hard cut-offs on spatial sizes and direction of wrinkles. By e.g. removing the
Gabor filter, thus allowing for omni-directional predictions, we were not able to
find parameters that gave any decent predictions on the Kumar dataset at all.
Slight modifications to the hysteresis threshold limits also significantly worsens
predictions.

It is probably possible to increase FG performance. For example, we informally

58 Chapter 4. Results and Discussion

note that we believe that introducing a contrast histogram equalization step be-
tween Gabor filtering and hysteresis thresholding would increase performance
by extending and strengthening the dark ridges (section 2.3.3) produced by the
Gabor filter, thus enabling for relaxation of the hysteresis parameters.

In terms of computational performance, the FG delivers acceptable results. Keep
in mind that the FG implementation in this project is on a prototype level,
hence it is probably possible to increase computational speed further. From
the pre-project to the current implementation, computational time per image
was shortened by 40%1 just by optimizing how the algorithm loads data in the
pipeline. With the current speed of 292 ms per image in the HiRes dataset, the
process is fast when considering one by one predictions, however, FG delivers
about twice the inference time compared to the U-Net models. Anyway, the
speed offered in the current implementation would be acceptable for one-by-
one analysis in a clinical setting.

Looking towards a more flexible model

The strictness of the FG process, as well as the difficulties involved with method
development, motivated our search towards a more flexible and easy-to-use
model. A natural step was looking towards deep learning based computer vision
models, which have shown remarkable results within a range of applications in
the past recent years [10]. The U-Net is a well-known model for semantic seg-
mentation. It won the 2015 ISBI cell tracking challenge, while being trained
on only 30 samples of original data (which was later augmented) of the cell
membrane of the Drosophila ventral nerve cord (VNC). In the microscopy im-
ages, the cell membrane have some similarities to wrinkles. Thus, trying out the
U-Net for our wrinkle segmentation problems seemed to be worth a try.

4.2.2 U-Net Models

Model A

Model A was trained on a strongly augmented dataset, using a typical train-test
split (TTS) training and assessment strategy. Each of the 9 samples from the
original dataset were augmented into 70 transformed samples, giving a total
dataset size of nAdataset = 639, including the original samples. Withholding 20%
for the test set, and 10% of the remaining data for tuning, gave nAtrain = 460,
nAtune = 51 and nAtest = 128.

By qualitative evaluation of the predicted masks compared to the manual masks
in fig. 4.1.2, it looks like the model works really well. We see that the predicted

1A reduction from 100 ms to 60 ms inference time on the Kumar dataset.

Chapter 4. Results and Discussion 59

masks are similar to the manual masks both in the general structure of wrin-
kles, but also in the details. This is backed up by relatively high similarity scores
(DSC=0.82, JSI=0.69) on the test set as given in table 4.1.2. Also, the tuning
score and test score of Model A are in close proximity (DSC=0.01 difference).
These test scores are comparable to earlier results on wrinkle detection, where
test results typically lie in the JSI=60-90% range [1; 16; 18; 17]. However,
the Cula et al. method performed in the sub-20% JSI range when evaluated
on the Ng et al. setup [17]. Cula et al. emphasized the importance of high
quality input to their algorithm; they used a polarized light imaging system to
separate between skin surface spatial geometric structures and subsurface skin
features like color variations. Thus, the employment of the Cula et al. method
on images not captured and preprocessed in the same or a comparable manner
seems futile. Furthermore, different annotation methods impacts the accuracy
and behaviour of the resulting model [30]. We note that even though meth-
ods are presented to achieve relatively high performance, the score can change
drastically when evaluated on other setups. Hence, the performance of existing
methods are uncertain since they have not been evaluated using the same setup
and data.

With the uncertainty regarding typical performance of wrinkle segmentation
methods in mind, it is important to investigate on the high test scores of Model A
further. First, we must dissect the properties of the data we are working on, and
the handling of the data during development.

Limitations on the development cohort

The development cohort was sampled from a young, healthy, wealthy, highly
educated and primarily light skinned population. We included methods aimed
at mitigating the effects of different skin pigmentation; The combination of
using only the red color channel, since it is the least affected by melanin (sec-
tion 2.1), as well as contrast histogram equalization, which is effective at achiev-
ing homogeneous contrast levels across skin pigmentation levels when the im-
age is confined to a particular region [17], was qualitatively evaluated on the
Kumar dataset to be effective. Nevertheless, it is important to note that no quan-
titative tests have been conducted to verify this claim. Furthermore, by manual
inspection we see that most of the participants have the same macro-structures2

of the wrinkles: relatively long valleys, loosely forming an elliptic shape around
the joint, with few major vertical wrinkles. Looking at the 503 sample Kumar
dataset [42], it does not take long time before we realize that there are other
typical macro-structures which we do not have in our dataset. There are also

2Macro-structures refers to the major visual characteristics of the wrinkle sample, e.g. if
wrinkles are fine-masked, long valleys etc.

60 Chapter 4. Results and Discussion

probably a vast range of variation in micro-structures3 that we have not cap-
tured to a sufficient extent. The fact that the PIP/DIP dorsal finger skin has
been researched in conjunction with biometrics [42], is a statement in itself on
the individual uniqueness, and hence the variety across individuals in the data
we are using.

Handling of data during model development

The HiRes dataset was augmented into 639 samples, which was further split
into a train, tuning and test set, by drawing randomly with a uniform distri-
bution. The model was trained on the train set, hyperparameters were tuned
on the tuning set, and finally, the model was evaluated on the test set. This
may have introduced a data leakage between the three sets. Since the data was
augmented before splitting into separate sets, in particular before setting aside
the test set, we have ended up in the situation where the train, tuning and
test set all contain samples which originates from one another. The significance,
and potential negative impacts from this data leakage, depend on the quality
of data augmentation. Successful data augmentation by applying smaller trans-
formations on the inputs while maintaining their relationship with the target
output can increase generalization [8]. However, if the augmentations are too
insignificant, the augmented data is essentially the same as the original data,
yielding data leakage. Opposite, if the augmentations are too strong, the rela-
tionship between inputs and target outputs are occluded, thus resulting in bad
performance [8].

In order to evaluate the quality of data augmentation, hereby the amount of po-
tential data leakage, and subsequently uncover more knowledge concerning the
estimated generalized performance of the model, we need to look for another
training and assessment strategy.

In this new strategy, we impose that the train and test set must be completely
disjoint. That is, they need to be disjoint also wrt. the origin of the data, not
only individual (possibly augmented) samples. In Model A, we used 20% of
the available data for testing. If we want to have a test set of approximately
the same size while splitting prior to augmentation, this would require us to
extract two samples (giving a 22% test set). But how to select which samples
to use for testing? One way could be to randomly draw samples using a uni-
form distribution. Indeed, for a sufficiently large dataset, this would give us an
unbiased selection of samples in the test set. However, it is crucial that the test
set resembles the distribution of the population on which we want to obtain

3Micro-structures refers to the small local variations around wrinkles, that are not easily
visible for human interpretation. It could be variations in the ridge-valley formations, whether
the ridges are smooth or uneven in the longitudinal direction, etc.

Chapter 4. Results and Discussion 61

a performance estimate. Extracting only two samples from a total of 9 avail-
able samples, is probably not a good strategy. For example, what would happen
if we choose sample (5) and (9) (see fig. 4.1.5) for our test set – two sam-
ples that differ significantly from the other samples? It would probably give
an under-estimation of model performance on the development cohort. Con-
versely, if we choose two of the other samples, which features more frequent
macro-structures, we might over-estimate model performance.

Another important problem arising when extracting 22% of such a small dataset
for testing, is that it takes away data containing features that are not present in
other samples, which could have been used for estimating model parameters.
Hence, removing the data from the training algorithm unables the model to
adjust for the features found in these samples, effectively decreasing actual
model performance.

We are in the crossroads between achieving maximum model performance
(having a large training set), and achieving the best possible estimate of model
performance (having a large test set).

Squeezing the data almost dry

A solution is changing from a TTS training and assessment strategy, to a cross-
validation strategy. Many variations of cross-validation techniques exist [45],
however we will be concerned with the k-fold cross-validation.

The first task is to find an appropriate k. From section 2.5.4 we know that the
expected generalization error is decreasing as the training set increases. The
expected generalization error decreases towards the Bayes error in an asymp-
totic fashion, or until the model saturates, whichever comes first [33]. This is
the minimum expected error we can achieve with our model and dataset. For
a sufficiently large dataset, we might reach minimum expected error before we
have used the entire dataset; for example, for a certain dataset we might only
need 80% of the data for training in order to obtain optimal expected perfor-
mance. On small datasets however, we might find ourselves in a situation where
the expected generalization error is ever decreasing for every new sample we
include in the training set. In this case, we need to include as many samples as
possible.

A special type of k-fold cross-validation, where k = n (n being the size of the
entire dataset) is called Leave-One-Out Cross-Validation (LOOCV). This method
minimizes expected generalization error wrt. fig. 2.5.2, as Mosteller and Tukey
comments: “Suppose that we set aside one individual case, optimize for what is
left, then test on the set-aside case. Repeating this for every case squeezes the data
almost dry. (...) When practical, this approach is attractive” [46; 38]. An em-
pirical study by Martens and Dardenne [40] investigated different methods of

62 Chapter 4. Results and Discussion

using small datasets in data-driven models, where small datasets were simu-
lated by randomly extracting 40–120 samples from a true dataset of size 922.
The extracted data were used for both training, and estimating predictive pre-
cision, while the remaining data (802–882 samples) were used as a control test
set, to evaluate the estimates from the extract. The results showed that TTS was
wasteful in that the true predictive performance was much lower, and showed
greater variability, than when LOOCV was used. Furthermore, it was found that
estimated generalization error of LOOCV was only slightly optimistic.

Model B

Model B is essentially the same CNN autoencoder as that of Model A. It has the
same hyperparameters and network architecture. The only difference between
the two models are the training and assessment strategies employed, where
Model B uses LOOCV instead of TTS.

In Model B, each fold were augmented independently and separately from one
another, resulting in 9 folds where each fold contained nBtrain = 512, nBtune = 56
and nBval = 71. Then the model was trained and evaluated on each validation
fold k = 9 times, once for each of the original data samples. The tuning set nBtune
was used to track performance during training.

Major wrinkles are in most cases successfully predicted by the model. By com-
paring manual masks and predicted masks, we are generally able to see that
they are indeed masks belonging to the same input sample. However, the model
is having difficulties in predicting special cases; consider validation fold (5) and
(9). In validation fold (5), the model is asked to make predictions on an image
which is very different from what it has seen before (note the fine-masked wrin-
kles). From the Kumar dataset, we know that this is a common type of macro-
structures, however the HiRes dataset only contains one such sample. Thus, this
sample has a completely different distribution compared to the other samples
in the dataset, significantly decreasing predictive accuracy. Validation fold (5)
has the lowest similarity measure (DSC=0.32, JSI=0.19) across all folds. Val-
idation fold (9) is also very different from the other samples, as this sample
contains dark hair. In this case, the model mis-classifies hair as wrinkles. Fur-
thermore, it is unable to give good wrinkle predictions for the horizontal wrin-
kles located underneath the hair. Suddenly having hair in the validation sample
is a broad change from the corresponding training fold, leaving the training
fold and validation fold with unequal distributions. This validation fold has the
second lowest similarity score (DSC=0.34, JSI=0.23) across all folds.

Note that Model A, which has images with hair in both the training and test set,
does not mis-classify significantly on hair.

The generalized predictive accuracy of Model B was estimated by taking the av-

Chapter 4. Results and Discussion 63

erage of the predictive accuracy for each validation foldDSCi
val, givingDSCgen,B =

0.44±0.07 (µ±σ), see table 4.1.3. We immediately make three remarks; (i) the
estimated performance is much lower than that of Model A, with an estimated
reduction of −0.38± 0.07 DSC, (ii) the estimated performance is generally low,
and (iii) there is relatively large variability in the estimated performance of
each fold (σ = 0.07).

(i) by cross-validation, estimated predictive accuracy drops by more than 46%
compared to TTS. As expected, we see that the cross-validated results are
less optimistic. This aligns well with the conclusions from Martens and Dard-
enne [40], and the reflections from Mosteller, Tukey and Stone [46; 38]. How-
ever, the enormous drop in predictive accuracy cannot be explained solely by
the introduction of cross-validation. A more likely reason for this result is that
the data leakage between the train and test set that we previously noted in
Model A, is indeed significant. This shows that the data augmentation we per-
formed was insufficient in adequately introducing new variance in the dataset,
resulting in Model A being strongly overfitted. The result also highlights why
the test set should be completely disjoint from the training set, also in terms of
the origins of the data.

The LOOCV trains the model on every available data sample while validating
the model on data completely disjoint from training data. Hence, this method
optimizes expected generalized performance, while still enabling us to give an
unbiased estimate of generalized performance. The estimate is unbiased as long
a the model is never adjusted based on validation scores.

The second remark (ii), the fact that Model B is not a very accurate model, is
not very surprising. High capacity models trained on small datasets are prone
to overfitting, which in turn yields bad generalized performance [33; 8]. In-
creasing the training data however, typically enables the model to find more
general patterns. In case more training data is not possible to obtain, other
methods exist to help the model generalize better. Such methods are called reg-
ularization techniques (section 2.4.1). Neither of the two U-Net models have
embedded regularization techniques that apply to weights (e.g. dropout, Lp-
regularization, etc). We see from the results that data augmentation as a reg-
ularization technique alone was not sufficient. Remark (iii) on the variability
shown in the validation scores, with scores in range [0.32, 0.51] and σ = 0.07,
further implies that the dataset is indeed too small, otherwise we would expect
less variation across validation folds. Thus, in this situation, we believe that
it is absolutely necessary to include a larger dataset to capture more natural
variation.

The amount of data required to produce a good model for wrinkle segmenta-
tion is not easy to predict. We previously commented on the vast variation in
demographics, macro- and micro-structures in the true population, hence the

64 Chapter 4. Results and Discussion

number of features involved with wrinkle segmentation are large. Therefore,
accounting for the curse of dimensionality suggests that we need a rather large
amount of data in order to produce a viable model.

Interpretability vs. efficacy

It is worthwhile to make a quick comparison between Model B and the Frangi-
Gabor (FG) process. Model B achieves 0.14 ± 0.07 DSC better estimated pre-
dictive accuracy compared to FG. Qualitative results shown in figures 4.1.1
and 4.1.5 show that Model B predictions give a more accurate reproduction of
the true wrinkle masks, compared to FG. Two important characteristics of the
FG process are responsible for this: (i) it is predicting wrinkles mostly in the hor-
izontal direction (±50◦) and (ii) it can only predict major wrinkles. Model B is
omni-directional, and has no hard cut-off with regards to spatial wrinkle size, or
directions. Immediately, these results show the motivation and temptation for
migrating from a classical approach to a ML approach. However, even though
we have employed cross-validation to minimize generalization error, and we
have no data leakage, the small development cohort used in Model B leaves us
critical and inconclusive wrt. performance on new unseen data. This suspicion
is increased due to relatively high variability of the performance across valida-
tion folds as previously noted. An advantage with the FG compared to Model B,
is that we actually know how it operates, and we know that it works provided
correct inputs. Considering its embedded limitations, the FG performed well
on the Kumar test set (88 samples), as shown in fig. B.0.1 (b) in appendix B.
Thus, both increased interpretability, and the more extensive testing, give us
increased confidence regarding the operation of the FG on unseen data.

Confidence in the ground truth

An important part in any supervised learning project, is the confidence in the
ground truth, which in our case amounts to the quality of the manual masks Y .
As far as the algorithm is concerned, Y is the ground truth, assuming that every
pixel in the mask is perfectly annotated. However, this is seldom true [47; 30].
Human annotators, as well as algorithmic annotators, make errors. Thus, we
must assume a confidence level below 100% on the proposed ground truth
masks Y . The level of ground truth confidence is important in the evaluation of
model performance; e.g. if the ground truth confidence is just 95%, then we can
never claim that the model performs better than this, even if it performs with a
100% accuracy upon testing. Moreover, the mask quality have implications on
the actual model performance.

Estimating ground truth confidence is often a matter of calculating the agree-
ment of ground truth across annotators. Specifically, inter- and intra-reproducibility

Chapter 4. Results and Discussion 65

are metrics of interest [30]. The inter-reproducibility is a measure of the agree-
ment between different annotators. Ng et al. [17] (HHF) calculated the average
inter-reproducibility between three programmers annotating the center-line of
wrinkles in the Bosphorus dataset [48] to be 0.93 JSI. In a later article also by
Ng et al. [1], proposing the Hessian Line Tracking (HLT) for wrinkle detection,
the same annotation process was carried out, however this time, two of the an-
notators were computer scientists and the third annotator was an “experienced
beauty therapist”. In this trial, the inter-reproducibility between annotators was
0.94 JSI. Cula et al. found the inter-reproducibility between annotators to be
above 88% [16]. In our project, there is only one annotator, thus no estimate
on the inter-reproducibility can be calculated.

The intra-reproducibility measures the agreement between multiple annotations
performed by the same annotator. Ng et al. [1] estimated the intra-reproducibility
by letting the annotators first annotate the whole dataset on day one. Then
the next day, they annotated 30% of the dataset again. The average intra-
reproducibility was calculated to be 0.79 JSI.

The intra-reproducibility on our dataset was calculated to be 0.38 JSI/0.55 DSC
by re-annotating 1/3 of the dataset two months after the first annotation ses-
sion. This is significantly lower than that of the previously noted intra-reproducibility
results. It is not straightforward to investigate the discrepancy between our re-
sults, and the results of Ng et al., since the articles we are comparing to do not
provide full details on the annotation process. Nevertheless, we will comment
on our results. Consider fig. 4.2.2. We see that the main structures of the wrin-
kles are commonly annotated across annotation sessions, however both sessions
include details which are not present in the other. Also note the staircase-shaped
curves, where discrepancy increases between sessions. Finally, we note that in
some cases, annotations are separated by only one pixel width, thus the an-
notator was able to identify the wrinkles, however the low precision of the
annotation tool impacted the ability to create overlapping segments.

The estimates of inter- and intra-reproducibility illustrate that manual wrin-
kle annotation is a difficult perceptual task with low consistency within the
same annotator. This was also noted by [1; 17]. Eramian et al. [30] investi-
gates different types of annotation methods (point-wise, stroke-wise etc.) in
semi-automatic segmentation algorithms4. While the focus of the article is not
directly relevant to our problem in particular, they provide some general re-
marks that we would like to reproduce:

• The type of annotation method impacts the accuracy of the model.

4Segmentation algorithms in which an annotator provides loose annotations (e.g. just mark-
ing a single point on an object), and then the algorithm annotates the rest.

66 Chapter 4. Results and Discussion

Figure 4.2.2: Intra-reproducibility on the HiRes dataset. Original masks on which the
models was train on (prior to post-processing) are shown in blue, re-
annotated masks for metric computation are shown in violet, and over-
lapping masks from both annotation sessions are shown in green.

• Time pressure impacts the workload5 for annotators.

• The annotator experiences more mental and physical demand, and frus-
tration when asked to use a more detailed annotation type (e.g. changing
from point-wise to stroke-wise annotation). The annotator also puts in
more effort in the latter annotation type.

• Annotator fatigue is cumulative over time and over annotation samples.

• The quality of the images themselves will potentially have an unintended
impact on the performance of annotators, and subsequently the perfor-
mance of the trained model.

• Images with objects to be segmented that are particularly dendritic (shapes
with thin protrusions) will lead to targeting problems.

• Various contrast levels may impact the annotators’ ability to correctly
identify regions of interest.

• Images with a larger number of regions of interest (“more objects”) in-
creases the amount of wrong annotations.

Several of the above remarks are relevant in terms of manual wrinkle anno-

5Eramian uses the term workload as an aggregated measure of annotator confidence, fa-
tigue, throughput and DSC accuracy.

Chapter 4. Results and Discussion 67

tation both in our project. We use an annotation method where we annotate
pixel-wise the valleys ridge-to-ridge. The fact that our annotations were per-
formed under time pressure (see Preface), may have lead to high experienced
workload. We can confirm from our experience during the annotation process
that it was indeed frustrating and demanding. Lack of experience with the an-
notation tool lead to more frustration, and the annotator experienced signif-
icant neck pain during the annotation of the final samples. The images were
not preprocessed before annotation. Low contrast levels thus resulted in per-
ceptual difficulties in the annotation process; the annotator recalls that there
was a feeling that the “wrinkles disappeared in front of my eyes” during anno-
tation immediately after beginning to annotate a new wrinkle. When the masks
were drawn, the annotator experienced that “the brain lost its ability to con-
textually perceive the continued location of the wrinkles”. The annotation tool
(Pixelmator) was unable to create smooth curves – instead it created staircase
shaped curves (see fig. 3.1.5). In terms of achievable annotation accuracy, this
is obviously negative. But this may also have a negative impact on annotator
performance, as the confidence in the annotations decrease as the tool unables
for precise annotation. Over the course of several annotations, this might have
the undesirable effect in the annotator starting to put in less effort in being
precise, since the tool anyway inflicts low precision, thus resulting in a double-
negative impact on the overall annotation quality, and subsequently on model
performance.

Mask quality impacts on model performance

With intra-reproducibility of only 0.38 JSI/0.55 DSC on our dataset, confidence
in the ground truth is very low. Essentially, this means that the annotator does
not agree with himself in the exact location of wrinkles. This uncertainty prop-
agates into the algorithm during training, since the apparent features denoting
a wrinkle is not very definite.

Post-processing of manual masks

Due to the difficulties involved with manual annotation, and especially the
staircase-shaped curves imposed by the annotation tool, we performed post-
processing of the manual masks in order to smooth the curves. Qualitatively
evaluated, the process involving anti-aliasing, thresholding and morphological
closings were effective at smoothing the curves, however the processed curves
were sometimes still slightly staircase-shaped. More aggressive processing was
not possible, since this resulted in excessive amounts of large clusters in wrin-
kle junctions, due to the morphological closing’s re-joining characteristics on
disjoint structures in close proximity.

68 Chapter 4. Results and Discussion

Computational feasibility

Training Model A takes about 29 minutes, while each training fold of Model B
takes about 31 minutes. The latter model uses 11% more samples in each train-
ing cycle, with increased computational time of about 7%. However, Model B is
trained 9 times, giving a total training time of 4 h 39 m. Both models train rel-
atively quick compared to the original U-Net publication, where the model was
trained for 10 hours [3]. Ronneberger et al. [3] did not use cross-validation,
thus comparing Model A with the original U-Net shows that the former trains
in about 1/20 of the time of the original network. The reason is that Model A
saturates quicker since the amount of data is smaller and more noisy. Ron-
neberger et al. had 30 original samples which was augmented using some of
the same techniques as those of ours. Furthermore, their dataset consisting of
professionally annotated images of the Drosophila ventral nerve cord (VNC)
features more accurate masks.

Inference time of 150 ms on each image for both Model A and B is acceptable
for use in a clinical setting where one by one analysis is performed. The U-Net
models are about twice as fast as FG, which has an inference time of 292 ms
per image.

4.2.3 Deep Learning Studies in Medicine

In this section, we look up and take on a broader view on the development
and assessment process of deep learning models for medical applications. We
view some of our findings in light of recent approaches aimed at achieving
more stringent development and assessment practices for deep learning studies
in medical research. The discussion is also relevant for non-medical applica-
tions.

Designing deep learning studies for medical research

For medical research, the structure and implementation of randomized con-
trolled trials (RCT) are well established. RCTs are aimed at reducing bias in
experimental trials. Eligible participants are randomly allocated to groups, typ-
ically one group receiving some form of new treatment, and one group being
the control group, receiving traditional treatment or placebo [49]. The trials
are typically conducted in a blinded fashion [50]; in a single-blinded trial, the
participants do not know whether or not they receive the actual new treatment
or not. It is used to reduce the risk of errors, as participants can produce false
results if they know they receive actual treatment. In a double-blinded trial,
neither the participants nor the clinicians know who are under (new) treat-
ment, and who are receiving standard treatment or placebo. This method is

Chapter 4. Results and Discussion 69

stronger than a single-blinded trial, since it removes the observer bias, that
is, conscious and unconscious bias the clinician might impose on the results
based on their own beliefs in the treatment on trial. Interventional6 RCTs must
be prospectively registered [51; 52], giving information on ethical considera-
tions, analysis procedure, number of participants, expected study power and
significance, etc. Observational studies does not require registration, but it is
highly recommended by best practice. Among the benefits of prospective reg-
istration and results submission are increased motivation to fulfill ethical obli-
gations, reduce publication bias7, more efficient allocation of research funds,
public records of basic study results in a standardized format, thus facilitating
systematic reviews.

Many ML studies in medicine report performance comparable or better than
clinicians [8], however many of them were found to be at high risk of bias
and deviated from existing reporting standards [9; 8], resulting in potentially
misleading results and claims [9; 54]. While the use of RCTs are readily used
in medicine, no such methods exist specifically for ML and deep learning (DL)
studies. In particular, frequent lack of evaluation on external data (see sec-
tion 2.5.3) as well as development on too narrow datasets limits the medical
utility for many of the methods presented in research [8]. While RCTs can very
well be used for assessing safety and efficacy of DL systems [54], the fact that
many DL studies are retrospective and observational promotes the need for
custom protocols more adjusted to the needs for DL research on medical appli-
cations [8].

Kleppe et al. [8] proposes a (non-exhaustive) list of items considered suitable
for such protocols. The protocol, termed Protocol Items for External Cohort Eval-
uation of a deep learning System (PIECES) (see [8], BOX 3) is inspired by the
RCT structure, but aims at also capturing the retrospective and observational
characteristics of many DL studies. We will discuss some of the PIECES items in
the following sections.

PIECES recommends prospective registration of the study protocol similar to
that of the RCT, using reduced publication bias as their main argument. Publi-
cation bias can limit progression in a field, since negative results, e.g. a certain
network architecture for semantic segmentation performed poorly, are not re-
ported, resulting in other research groups may try the same architecture later,
unknowing of the fact that previous results are poor. Thus, preregistration
might yield more rapid identification of promising systems, and thus increase
progression in the field [8]. Another benefit of prospective registration, is that
it facilitates thorough study design and planning. This can have very positive ef-

6Interventional studies are studies that involves the use of medication or procedures.
7Publication bias is the situation in which studies with “negative” results (wrt. to their

a priori hypothesis) remain unpublished [53].

70 Chapter 4. Results and Discussion

fects on a research project, in that potential issues and pitfalls which may arise
can be identified ahead, and thus adjusted for. This thesis originally aimed at
taking an exploratory approach to wrinkle segmentation on hyperspectral im-
ages. Thus, the results could have been used to design larger and more thor-
ough studies, aiming at revealing true utility, in which the design could have
been aided by prospective registration.

PIECES recommends external validation. The origin of the external cohort, an
explanation to why it is regarded as external to the development cohort (see
section 2.5.3), as well as precise criteria for inclusion and exclusion of par-
ticipants/samples, together with a clear statement of the medical setting and
target population that the external cohort represents, should be included in
reports. In section 4.2, we primarily discussed internal validation within the
development cohort, and how to optimize data utilization, wrt. both optimal
performance and feasibility of error calculation. However, it is interesting to
draw some lines between our efforts concerning internal validation, and that
of external validation. External validation offers protection from data leakage,
and it also offers a test on the robustness of the model; there might be certain
features in the development cohort, for example systematic biases induced by
acquisition equipment, that we cannot test for by internal validation. In case of
our dataset, external validation could unravel biases introduced by the narrow
development cohort, featuring mainly young, healthy and light skinned indi-
viduals with similar macro-structures. Moreover, with external validation it is
easier to identify problems related to models utilizing unintentional and possi-
bly false features [8]. Narla et al. [55] found that their model was more prone
to classify skin lesions as malignant if there was a ruler besides the lesion. The
reason was that that in their development cohort, lesions with rulers were in
fact more likely to be malignant. The ruler is an example of a false feature – it
obviously has nothing to do with whether the lesion is malignant or benign. As
well as being a false feature, it is an example of a systematic bias that can occur
within a cohort.

The implications of such false features and systematic biases, can be significant.
For example, if at Hospital A, it is common practice to place rulers besides
lesions if the clinician suspects cancer, and vice versa, but at Hospital B no
rulers are used, the end model will probably under-estimate malignant lesions
at Hospital B. At Hospital A on the other hand, the model will be guided by the
clinician (in both directions). In the most tragic event, this false feature may be
fatal. Thus, the importance of external validation should be evident.

PIECES further recommends to specify the acquisition of input data. This in-
cludes noting the expertise of any humans involved in the process, for example
that a pathologist annotated the regions of interests in slide images [8]. In sec-
tion 4.2 we discussed confidence in the ground truth, factors that impacted

Chapter 4. Results and Discussion 71

human annotators, and subsequently the impacts of annotations on final model
performance. Thus, additionally to what is already specified in the PIECES pro-
tocol, we recommend to clearly describe the annotation process, and preferably
also include analysis of inter- and intra-reproducibility, as well as qualitative
analysis on the overall quality of manual annotations.

72 Chapter 4. Results and Discussion

73

Chapter 5

Conclusions and Final Remarks

5.1 Conclusions and Guidelines

The development of the Frangi-Gabor model was cumbersome, and it had the
lowest performance in this thesis. Compared to various segmentation models,
where one only needs to annotate masks and then train the model, we con-
clude that it is indeed tempting to move from a classical approach to a ML ap-
proach.

In the U-Net models, the dataset was strongly augmented to extend the num-
ber of training samples and introduce new variance. In Model A, the data was
augmented and then divided into training, tuning and test sets. In Model B,
featuring cross-validation, data augmentation was performed posterior to fold
division. This uncovered huge discrepancy in the performance estimates be-
tween the two models, confirming severe overfitting, data leakage and poor data
augmentation in Model A. Furthermore, it was found that the performance es-
timates of each fold of Model B was subject to great variability, suggesting
that significant differences in the data distribution across training- and vali-
dation folds are present. Hence, we conclude that the dataset is too small, even
for cross-validation. The insight gained by cross-validation into properties of
the dataset wrt. data distribution can be important. We present the following
guidelines:

Guideline 1 Divide into train, tuning and test set prior to data augmentation to
avoid data leakage.

Guideline 2 If practical, use cross-validation.

Additionally to the use of cross-validation, and in accordance with the PIECES
recommendations, external validation should be used.

74 Chapter 5. Conclusions and Final Remarks

Guideline 3 Use external validation.

The quality of manual annotations are important to the final model perfor-
mance. The model can never claim better performance than the confidence one
has in what is presented as ground truth to the algorithm. The confidence is
typically calculated based on the inter- and intra-reproducibility of annotations.
Furthermore, the annotation process is important to the quality of annotations.
Poor annotations propagate as noise into the DL model and worsens perfor-
mance. The PIECES protocol recommends to note the expertise of any human
involved in the data acquisition process, for example that a pathologist anno-
tated the regions of interest in slide images. We agree to the PIECES recommen-
dation, but additionally, we recommend the following guidelines (guidelines
4–6):

Guideline 4 Always use multiple annotators in order to calculate inter- and
intra-reproducibility.

Guideline 5 The annotation process must be designed carefully, and the an-
notation tools chosen likewise. The annotator must be sufficiently instructed
into how annotations should be constructed. Make sure that the tools work as
intended and do not put unnecessary restrictions on the annotator; minor nig-
gles add to cumulative fatigue, and may propagate into the model resulting in
decreased performance.

Guideline 6 Clearly describe the annotation process, in terms of equipment,
software, expertise, whether or not the annotators could interact with exper-
imenters during the annotation session, whether the room was quiet or not,
whether or not the annotations were performed under time pressure or not,
etc. Not clearly describing the annotation process can give irreproducible re-
sults.

5.2 Final Remarks

In this thesis, we walked through the full development process of a classical
computer vision method, which in the end performed worse than the easier
to use ML models. However, the ML model development was not a walk in
the park: scarce data forced us to take on the methods of cross-validation to
increase available training data, while still retaining the possibility of calculat-
ing unbiased estimates of generalization error. Cross-validation further showed
that the impact of data leakage and poor data augmentation were significant.
Moreover, the great variability across validation folds, suggests that the dataset
was too small even for cross-validation.

Furthermore, we saw and discussed issues related to manual annotation, and

Chapter 5. Conclusions and Final Remarks 75

how one must take care in designing the annotation process, and we also dis-
cussed the importance of being transparent when reporting the process in order
to avoid irreproducible results.

Guidelines coupled to each of the objectives proposed in section 1.2 were pre-
sented to assist developers in achieving increased validity and uncover validity
in their machine learning studies.

The discussion, illustrations and final guidelines presented thus concludes this
thesis, thereby realizing all the objectives, as well as the overall goal.

76 Chapter 5. Conclusions and Final Remarks

77

Bibliography

[1] Ng C, Yap MH, Costen N, Li B. Wrinkle Detection Using Hessian Line
Tracking. IEEE Access. 2015;3:1079–1088.

[2] Keshet, Renato. User:Renatokeshet;. (accessed: 12.06.2021). Available
from: https://en.wikipedia.org/wiki/User:Renatokeshet.

[3] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for
Biomedical Image Segmentation; 2015.

[4] Grimstad B. TTK28, Lecture notes, ’5. Hyper-parameters and validation
sets’; 2020.

[5] Brunton SL, Kutz JN. Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems and Control. Cambridge University Press;
2019.

[6] ImageJ. Image Processing and Analysis in Java;. (accessed: 31.05.2021).
Available from: https://imagej.nih.gov/ij/.

[7] iBiology com. Bioimage Analysis;. (accessed: 31.05.2021). Available
from: https://www.ibiology.org/techniques/bioimage-analysis/.

[8] Kleppe A, Skrede OJ, De Raedt S, Liestøl K, Kerr DJ, Danielsen HE.
Designing deep learning studies in cancer diagnostics [Journal Article].
Nature Reviews Cancer. 2021;21(3):199–211. Available from: https:

//doi.org/10.1038/s41568-020-00327-9.

[9] Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H,
et al. Artificial intelligence versus clinicians: systematic review of design,
reporting standards, and claims of deep learning studies. BMJ. 2020;368.
Available from: https://www.bmj.com/content/368/bmj.m689.

[10] Singh, Ranjeet. Recent advances in modern computer vision;. (ac-
cessed: 06.06.2021). Available from: https://towardsdatascience.

com/recent-advances-in-modern-computer-vision-56801edab980.

78 Bibliography

[11] Montagna, William and Ebling, F John. Human Skin in Encyclopedia
Britannica;. (accessed: 01.06.2021). Available from: https://www.

britannica.com/science/human-skin.

[12] Kollias N, Baqer AH. Absorption Mechanisms of Human Melanin
in the Visible, 400–720nm. Journal of Investigative Dermatology.
1987;89(4):384–388. Available from: https://www.sciencedirect.

com/science/article/pii/S0022202X87909675.

[13] Furue M, Mitoma C, Mitoma H, Tsuji G, Chiba T, Nakahara T, et al.
Pathogenesis of systemic sclerosis - current concept and emerging treat-
ments. Immunologic Research. 2017;65(4):790–797. Available from:
https://doi.org/10.1007/s12026-017-8926-y.

[14] Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L.
Cutaneous Manifestations of Scleroderma and Scleroderma-Like Disor-
ders: a Comprehensive Review. Clinical Reviews in Allergy & Immunol-
ogy. 2017;53:306–336. Available from: https://doi.org/10.1007/

s12016-017-8625-4.

[15] Frangi AF. Three-Dimensional Model-Based Analysis of Vascular and Car-
diac Images;. Available from: https://dspace.library.uu.nl/handle/
1874/377.

[16] Cula GO, Bargo PR, Nkengne A, Kollias N. Assessing facial wrinkles:
automatic detection and quantification. Skin Research and Technol-
ogy. 2013;19(1):e243–e251. Available from: https://onlinelibrary.

wiley.com/doi/abs/10.1111/j.1600-0846.2012.00635.x.

[17] Ng C, Yap MH, Costen N, Li B. Automatic Wrinkle Detection Using Hybrid
Hessian Filter. Cremers D, Reid I, Saito H, Yang MH (eds) Computer Vision
– ACCV 2014 ACCV 2014 Lecture Notes in Computer Science Springer,
Cham. 2015;9005.

[18] Elbashir RM, Yap MH. Evaluation of Automatic Facial Wrinkle Detection
Algorithm. Journal of Imaging;6(4). Available from: https://doi.org/
10.3390/jimaging6040017.

[19] Decenciére E, Belhedi A, Koudoro S, Flament F, François G, Rubert V,
et al. A 2.5D Approach to Skin Wrinkles Segmentation. Image Analysis &
Stereology;38(1). Available from: https://www.ias-iss.org/ojs/IAS/
article/view/1925/1096.

[20] Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel en-
hancement filtering. In: Wells WM, Colchester A, Delp S, editors. Medi-
cal Image Computing and Computer-Assisted Intervention — MICCAI’98.
Berlin, Heidelberg: Springer Berlin Heidelberg; 1998. p. 130–137.

Bibliography 79

[21] SciKit-Learn. skimage.filters.gabor;. (accessed: 08.12.2020). Available
from: https://scikit-image.org/docs/dev/api/skimage.filters.

html#skimage.filters.gabor.

[22] OpenCV. Histogram Equalization;. (accessed: 11.12.2020). Avail-
able from: https://docs.opencv.org/master/d5/daf/tutorial_py_

histogram_equalization.html.

[23] OpenCV. OpenCV: Morphological Transformations;. (accessed:
03.06.2021). Available from: https://docs.opencv.org/master/

d9/d61/tutorial_py_morphological_ops.html.

[24] Buslaev A, Parinov A, Khvedchenya E, Iglovikov V, Kalinin A. Albumenta-
tions: fast and flexible image augmentations; 2018.

[25] Simard PY, Steinkraus D, Platt JC. Best practices for convolutional neural
networks applied to visual document analysis. In: Seventh International
Conference on Document Analysis and Recognition, 2003. Proceedings.;
2003. p. 958–963.

[26] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied
to document recognition. Proceedings of the IEEE. 1998;86(11):2278–
2324.

[27] Albumentations ai. Albumentations: fast and flexible image augmenta-
tions;. (accessed: 06.04.2021). Available from: http://albumentations.
ai/.

[28] Mansurov, Nasim. What is Lens Distortion?;. (accessed: 30.05.2021).
Available from: https://photographylife.com/what-is-distortion.

[29] MathWorks. dice;. (accessed: 09.12.2020). Available from: https://se.
mathworks.com/help/images/ref/dice.html.

[30] Eramian M, Power C, Rau S, Khandelwal P. Benchmarking Human Perfor-
mance in Semi-Automated Image Segmentation. Interacting with Com-
puters. 2020 08;32(3):233–245. Available from: https://doi.org/10.
1093/iwcomp/iwaa017.

[31] MathWorks. jaccard;. (accessed: 09.12.2020). Available from: https:

//se.mathworks.com/help/images/ref/jaccard.html.

[32] Nielsen M. Neural Networks and Deep Learning. Determination Press;
2015. http://neuralnetworksanddeeplearning.com/.

[33] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.
http://www.deeplearningbook.org.

80 Bibliography

[34] Vaddireddy H, Rasheed A, Staples AE, San O. Feature engineering and
symbolic regression methods for detecting hidden physics from sparse
sensor observation data. Physics of Fluids. 2020;32(1):015113. Avail-
able from: https://doi.org/10.1063/1.5136351.

[35] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations. Journal of Com-
putational Physics. 2019;378:686 – 707. Available from: http://www.

sciencedirect.com/science/article/pii/S0021999118307125.

[36] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J
Mach Learn Res. 2014 Jan;15(1):1929–1958.

[37] Microsoft Research/Kaggle. Dogs vs. Cats;. (accessed: 19.05.2021). Avail-
able from: https://www.kaggle.com/c/dogs-vs-cats.

[38] Stone M. Cross-Validatory Choice and Assessment of Statistical Predic-
tions. Journal of the Royal Statistical Society: Series B (Methodological).
1974;36(2):111–133. Available from: https://rss.onlinelibrary.

wiley.com/doi/abs/10.1111/j.2517-6161.1974.tb00994.x.

[39] Breiman L. Statistical Modeling: The Two Cultures (with comments and
a rejoinder by the author). Statistical Science. 2001;16(3):199 – 231.
Available from: https://doi.org/10.1214/ss/1009213726.

[40] Martens HA, Dardenne P. Validation and verification of regression
in small data sets. Chemometrics and Intelligent Laboratory Systems.
1998;44(1):99–121. Available from: https://www.sciencedirect.com/
science/article/pii/S0169743998001671.

[41] Browne MW. Cross-Validation Methods. Journal of Mathematical Psychol-
ogy. 2000;44(1):108–132. Available from: https://www.sciencedirect.
com/science/article/pii/S0022249699912798.

[42] Kumar A. Importance of Being Unique From Finger Dorsal Patterns: Ex-
ploring Minor Finger Knuckle Patterns in Verifying Human Identities. IEEE
Transactions on Information Forensics and Security. 2014;9(8):1288–
1298.

[43] Pixelmator. Pixelmator for iOS;. (accessed: 15.04.2021). Available from:
https://www.pixelmator.com/ios/.

[44] Milesial. Pytorch-UNet;. (accessed: 13.12.2020). Available from: https:
//github.com/milesial/Pytorch-UNet.

Bibliography 81

[45] Arlot S, Celisse A. A survey of cross-validation procedures for model
selection. Statistics Surveys. 2010;4(none):40 – 79. Available from:
https://doi.org/10.1214/09-SS054.

[46] Mosteller F, Tukey JW. Data analysis, including statistics. Handbook of
social psychology. 1968;2:80–203.

[47] Bearman A, Russakovsky O, Ferrari V, Fei-Fei L. What’s the Point: Seman-
tic Segmentation with Point Supervision. In: Leibe B, Matas J, Sebe N,
Welling M, editors. Computer Vision – ECCV 2016. Cham: Springer Inter-
national Publishing; 2016. p. 549–565.

[48] Savran A, Sankur B, Taha Bilge M. Comparative evaluation of 3D
vs. 2D modality for automatic detection of facial action units. Pat-
tern Recognition. 2012;45(2):767–782. Available from: https://www.

sciencedirect.com/science/article/pii/S0031320311003104.

[49] Bartle, Elinor. Importance of Randomized Control Trials;. (accessed:
08.06.2021). Available from: https://www.uib.no/en/cih/114638/

importance-randomized-control-trials.

[50] BiopharmaInstitute. What Is The Difference Between Single Blind
And Double Blind Clinical Trials?;. (accessed: 08.06.2021).
Available from: https://www.biopharmainstitute.com/faq/

what-is-the-difference-between-single-blind-and-double-blind-clinical-trials.

[51] JMIR. Does my trial (RCT) have to be reg-
istered?;. (accessed: 08.06.2021). Available
from: https://support.jmir.org/hc/en-us/articles/

115001389307-Does-my-trial-RCT-have-to-be-registered-.

[52] U S NIH. How to register your study;. (accessed: 08.06.2021). Available
from: https://clinicaltrials.gov/ct2/manage-recs/how-register.

[53] Sun J, Freeman BD, Natanson C. Chapter 22 - Meta-analysis of Clin-
ical Trials. In: Gallin JI, Ognibene FP, Johnson LL, editors. Principles
and Practice of Clinical Research (Fourth Edition). fourth edition ed.
Boston: Academic Press; 2018. p. 317–327. Available from: https://www.
sciencedirect.com/science/article/pii/B9780128499054000228.

[54] Harvey H, Oakden-Rayner L. Guidance for Interventional Trials
Involving Artificial Intelligence. Radiology: Artificial Intelligence.
2020;2(6):e200228. Available from: https://doi.org/10.1148/ryai.

2020200228.

82 Bibliography

[55] Narla A, Kuprel B, Sarin K, Novoa R, Ko J. Automated Classifica-
tion of Skin Lesions: From Pixels to Practice. Journal of Investigative
Dermatology. 2018;138(10):2108–2110. Available from: https://www.
sciencedirect.com/science/article/pii/S0022202X18322930.

[56] Randeberg LL. Hyperspectral characterization of tissue in the SWIR spec-
tral range: a road to new insight? . In: Alfano RR, Demos SG, Seddon
AB, editors. Optical Biopsy XVII: Toward Real-Time Spectroscopic Imag-
ing and Diagnosis. vol. 10873. International Society for Optics and Pho-
tonics. SPIE; 2019. p. 125 – 140. Available from: https://doi.org/10.
1117/12.2504297.

[57] Paluchowski LA, Milanic M, Bjorgan A, Grandaunet B, Dhainaut A, D
MHM, et al. Identification of inflammation sites in arthritic joints us-
ing hyperspectral imaging. In: Farkas DL, Nicolau DV, Leif RC, editors.
Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues
XII. vol. 8947. International Society for Optics and Photonics. SPIE; 2014.
p. 60 – 66. Available from: https://doi.org/10.1117/12.2040499.

[58] Vasefi F, MacKinnon N, Farkas DL. Chapter 16 - Hyperspectral and
Multispectral Imaging in Dermatology. In: Hamblin MR, Avci P, Gupta
GK, editors. Imaging in Dermatology. Boston: Academic Press; 2016. p.
187 – 201. Available from: http://www.sciencedirect.com/science/

article/pii/B9780128028384000169.

[59] Austnes B. kidneb7/hyperspectral-image-cropper;. A simple Python
tool based on OpenCV and Spectral Python for cropping datacubes of
hyperspectral images. Available from: https://github.com/kidneb7/

hyperspectral-image-cropper.

83

Appendix A

Hyperspectral Imaging

Hyperspectral Cameras

Hyperspectral imaging (HSI) is an imaging technique where we are sampling
wavelengths at much denser intervals compared to that of ordinary imaging,
where we only sample three wavelengths. Thus, with HSI we obtain the full
spectrum of the scene within the range in question. Hyperspectral cameras are
often specialized equipment specifically ordered for the problem they are in-
tended to solve, hence hyperspectral cameras exist with a wide range of spec-
tral bands, everything from 10s – 1000s of spectral bands in various wavelength
segments.

In medicine, HSI has for example been used for characterization of tissue in
the short wave infrared (SWIR) range (950-2500 nm) [56] and identification
of inflammation sites in arthritic joints in the visual and near-infrared (VNIR)
and SWIR range (400-1700 nm) [57].

For separating wavelengths, optical components such as prisms and diffraction
grating are used [58]. When light is passed through these components, the var-
ious wavelengths are bended differently. This is illustrated in fig. A.0.1. The
separated wavelengths are then pointed at a photosensitive chip, and the inten-
sity of each wavelength is determined and recorded.

Some hyperspectral cameras are line scan cameras [58]. Hence, instead of hav-
ing a 2D image sensor, they scan one line in the scene and then physically move
a short distance for the next line scan. Capturing an image can therefore be a
time consuming process.

84 Appendix A. Hyperspectral Imaging

Figure A.0.1: Wavelength separation by diffraction grating (1) and prism (2). Original
figure by Cmglee, published under licence CC BY-SA 3.0, via Wikimedia
Commons. Figure has been slightly modified.

HSI Dataset

Hyperspectral images of the hands of 29 healthy individuals were collected by
St. Olavs Hospital. The middle finger PIP joint area from each individual was
extracted using our own custom tool, which is available from GitHub [59]. It
is important that all images in the dataset maintain the same dimensions. By
scanning through all cropped segments, we found the minimum widths and
heights in the dataset. Following, each cropped sample were cropped again
to match a specific aspect ratio of 0.89 (W/H) within the maximum limits of
widths and heights. The specific aspect ratio is the same aspect ratio as of that
from the Kumar dataset. After processing, each middle finger PIP sample had
the dimensions 77 × 86 px. A preview of the hyperspectral dataset is shown in
fig. A.0.2.

Using cropping for achieving homogeneous dimensions was chosen to avoid
distorting spatial and/or spectral features in the original images.

We chose not to include the PIP segments of the index finger, ring finger or little

Appendix A. Hyperspectral Imaging 85

Figure A.0.2: A preview of the hyperspectral dataset.

finger, since this would force the dimensions of the cropped dataset to be even
smaller.

The software Pixelmator 2.6.3 [43] was used for manual annotation on an
Apple iPad Air 4. A single image was loaded into the software. Then, a new
layer was added. Using the Paint/Pixel tool, wrinkles were traced to the best
of the author’s abilities. When all the wrinkles were traced, the Fill tool was
used to overlay each trace with white color. Then, a new black layer was added,
and the white traces were moved to the front. An Apple Pencil 2 was used for
drawing. Figure A.0.3 shows the manual annotation in progress.

A preview of the HSI dataset is given in fig. A.0.2 where the images have been
converted to RGB by band 180.

86 Appendix A. Hyperspectral Imaging

Figure A.0.3: Manual annotation of HSI dataset in Pixelmator.

87

Appendix B

Extra Material

This appendix lists extra material supporting the material in the thesis.

Frangi-Gabor Extended Results

Frangi-Gabor performance on 6 random samples from the Kumar test set are
shown in fig. B.0.1.

U-Net Model on Manually Annotated HSI

The U-Net was modified to take hyperspectral images as inputs. RMSprop opti-
mizer, batch size=1, LR=0.0001, epochs=100.

The best 3 predictions with a U-Net model on the HSI test set are shown in
fig. B.0.2.

88 Appendix B. Extra Material

Figure B.0.1: Predicted wrinkles for six random samples from the Kumar test set. (a)
Original input images are shown in the left column. (b) Predictions from
the Frangi-Gabor algorithm are shown in the right column.

Appendix B. Extra Material 89

Figure B.0.2: U-Net model for HSI. Left column shows pseudo-color HSI input images,
middle column shows the manual masks, and the right column shows
predictions from the model.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Bendik Austnes
Increasing Validity and U

ncovering U
tility in M

achine Learning Studies

Bendik Austnes

Increasing Validity and Uncovering
Utility in Machine Learning Studies

An Illustrative Approach to Essential Concepts
and Procedures in Model Development and
Assessment

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed
Co-supervisor: Lise Lyngsnes Randeberg

June 2021

M
as

te
r’s

 th
es

is

