
NORWEGIAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

PROJECT THESIS

Perception system for pose estimation of
autonomous quadcopter

Author:
Peter Bull HOVE

Supervisor:
Anastasios LEKKAS

Tom Arne PEDERSEN

A thesis submitted in fulfillment of the requirements
for the degree of Masters in Cybernetics and Robotics

in the

Institute for Technical Cybernetics
Faculty of Information Technology and Electrical Engineering

https://www.zhaw.ch/en/university/
https://www.zhaw.ch/en/university/
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
https://www.ntnu.edu/itk
https://www.ntnu.edu/ie

2

December 22, 2020

3

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract
Faculty of Information Technology and Electrical Engineering

Masters in Cybernetics and Robotics

Perception system for pose estimation of autonomous quadcopter

by Peter Bull HOVE

A quadcopter is a flying vehicle with four propellers. Quadcopters are easy to
use, cheap to produce and versatile. They have gained a lot of popularity in the
recent years. Due to improvements with battery technology the use-cases for them
have increased together with longer possible air-time. In order to reduce labor cost
of human pilots controlling quadcopters for missions a lot of work is research is put
into creating autonomous quadcopters. The use-cases for autonomous quadcopters
are many as the cost of such operations can be minimal. In order for autonomous
quadcopters to make decisions and control themselves they require a well perform-
ing perception system.

This thesis builds upon the work performed by Thomas Sundvoll in his master
thesis [1].

In this thesis a pose estimation perception system is proposed. The pose estima-
tor estimates the position and orientation of the quadcopter in relation to a specific
landing platform. The pose estimator utilizes traditional computer vision techniques
in a combination with deep learning-based computer vision in order to estimate
quadcopter pose.

The pose estimator is tested in a simulated environment, where the quadcopter
is able to perform automated landing and stable hovering using the proposed pose
estimator. The pose estimator based on deep learning computer vision is tested in-
dependently, and the quadcopter is able to perform autonomous missions using this
pose estimator as well.

HTTPS://WWW.ZHAW.CH/EN/UNIVERSITY/
https://www.ntnu.edu/ie

5

Acknowledgements
I would like to thank the Norwegian University of Science and Technology for pro-
viding me with the opportunity to take my master’s degree in Cybernetics and
Robotics. I would also like to thank my supervisor, Anastasios Lekkas and my co-
supervisor Tom Arne Pedersen for providing me with excellent guidance and ad-
vice, but also patience and support while I was writing this thesis. I would not have
made it as far in this project without the support from my friend Thomas Sundvoll
whom also provided me with his time and advice.
I want to thank DNV-GL who provided a 3D model of the ReVolt vessel for use in
computer simulations, and thank Sindre Benjamin Remman for providing me with
PC with GPU for running experiments.

7

Contents

Abstract 3

Acknowledgements 5

Preface 15

1 Introduction 17
1.0.1 Background and Motivation . 17
1.0.2 Previous Work . 18
1.0.3 Objectives . 19
1.0.4 Outline . 20

2 Theory 21
2.1 Traditional Computer Vision . 21
2.2 Deep Neural Networks . 21

2.2.1 Fully Connected Neural Networks 22
2.2.2 Training a Deep Neural Network 23
2.2.3 Convolutional Neural Networks 25
2.2.4 Traditional Computer Vision Methods compared with Deep

Learning Methods . 26
2.3 Darknet . 27
2.4 YOLO . 28
2.5 Data Augmentation . 31
2.6 Robot Operating System . 33
2.7 CPU- and GPU processors . 34

3 Experimental Setup 35
3.1 Gazebo and ROS . 35
3.2 Experimental Components . 35

4 Methodology 39
4.1 Installation and setup of the Simulated Environment and ROS 39
4.2 Creating dataset . 39
4.3 Darknet object detector . 40

4.3.1 Training Darknet . 42
4.3.2 Darknet for Ros . 42

4.4 Darknet pose estimator . 43
4.4.1 Estimation of landing platform rotation 44
4.4.2 Estimation of landing platform center 44
4.4.3 Estimation of landing platform radius 45

4.5 Traditional Computer Vision Method for pose estimation 50
4.6 Combining computer vision methods 50
4.7 Experiment design . 51

8 Contents

4.7.1 Stationary hovering . 52
4.7.2 Autonomous Landing . 52

5 Results 53
5.1 Training of Darknet models . 53

5.1.1 YOLOv4-tiny . 53
5.1.2 YOLOv4 . 54
5.1.3 YOLO inference rate . 56

5.2 Simulation results on CPU . 58
5.2.1 Stationary hovering test with Darknet pose estimator on CPU. 58
5.2.2 Stationary hovering test with combined methods estimate on

CPU . 61
5.2.3 Automated Landing Using Darknet pose estimator on CPU . . 62
5.2.4 Automated landing with combined methods estimate on CPU . 65
5.2.5 CPU results discussion . 65

5.3 Simulation results with GPU . 67
5.3.1 Stationary hover test with Darknet pose estimator on GPU . . . 67
5.3.2 Stationary hover test with combined methods estimate on GPU 68
5.3.3 Automated Landing using Darknet pose estimator on GPU . . 72
5.3.4 Automated landing with combined methods estimate on GPU . 72
5.3.5 GPU discussion . 74

6 Conclusion 75
6.0.1 Future work . 75

A Appendix 77

Bibliography 79

9

List of Figures

2.1 The structure of a FCNN. The first and leftmost layer is for input data.
The last and rightmost layer is output layer. The layers in between are
the hidden layers. the lines between neurons are weights. Together
these neurons and weights compose a Deep Neural Network 24

2.2 Sigmoid, ReLU and Softmax activation functions. 24
2.3 An illustration of a convolutional map in a convolutional layer in a

CNN. 26
2.4 The general structure of a CNN, containing convolutional layers, pool-

ing layers and fully connected layers. Image collected from [22] 27
2.5 Image with YOLO bounding box predictions. Image collected from [23] 29
2.6 YOLOv4 and YOLOv4-tiny inference time and mAP, compared other

detection algorithms. 31
2.7 YOLOv3 object detection time on COCO dataset. Taken from [10] . . . 32
2.8 Darknet-53 structure used in YOLOv3. Figure taken from [10] 32

3.1 Parrot AR.Drone 2.0. Image collected from [32] 35
3.2 A model of the helipad that is used in the experiments. Image col-

lected from [1]. 36
3.3 The Gazebo simulated environment with the quadcopter and the Re-

Volt vesssel. Image collected from [1] . 37

4.1 Labeled image of the landing platform with bounding box labels of
the three classes; Helipad, H, and Arrow. 41

4.2 Calculating theta given center coordinates of bounding box for H (xh, yh)
and Arrow (xa, ya). 44

4.3 Calculating original size of H given angle of rotation θ and bounding
box size (wbb, hbb). 47

4.4 When the drone is close to the helipad, the whole helipad is not in the
picture. The bounding box of the Helipad does not enclose the whole
Helipad. Therefore an estimate of the size of the landing platform
using the bounding box of the H will give a more accurate estimate. . . 49

4.5 Moving median average filter, with a median filter size of 3 and av-
erage filter size of 3. xavg is the filtered output estimate that is passed
onto the Dead Reckoning Module . 51

5.1 YOLOv4-tiny inference on test images 54
5.3 1m Hover test on CPU, using YOLOv4-tiny at 256x256 resolution.

Darknet used for pose estimation. Figure shows position estimates
vs ground truth. 59

5.4 5m Hover test on CPU, using YOLOv4-tiny at 256x256 resolution.
Darknet used for pose estimation. Figure shows position estimates
vs ground truth. 60

10 List of Figures

5.5 1m Hover test on CPU, using YOLOv4-tiny at 128x128 resolution.
Darknet used for pose estimation. Figure shows pose estimates vs
ground truth. 61

5.6 1m Hover test on CPU, using YOLOv4-tiny at 128x128 resolution. Fil-
tered combination of methods used for pose estimation. Figure shows
position estimates from both methods vs ground truth. 62

5.7 1m Hover test on CPU, using YOLOv4-tiny at 128x128 resolution. Fil-
tered combination of methods used for pose estimation. Figure shows
filtered position estimates vs ground truth. 63

5.8 Landing test on CPU, using YOLOv4-tiny at 128x128 resolution. Dark-
net used for pose estimation. Figure shows pose estimate vs ground
truth. 64

5.9 Landing test on CPU, using YOLOv4-tiny at 128x128 resolution. Dark-
net used for pose estimation. Figure shows position estimates vs ground
truth. 64

5.10 Landing test on CPU, using YOLOv4-tiny at 128x128 resolution. Fil-
tered combination of methods used for pose estimation. Figure shows
plot of position estimate vs ground truth for both pose estimation
methods. 65

5.11 Landing test on CPU, using YOLOv4-tiny at 128x128 resolution. Fil-
tered combination of methods used for pose estimation. Figure shows
filtered pose estimates vs ground truth. 66

5.12 Landing test on CPU, using YOLOv4-tiny at 128x128 resolution. Fil-
tered combination of methods used for pose estimation. Figure shows
filtered position estimate vs ground truth. 66

5.13 Hover test, zr = 1m, using Darknet pose estimator on GPU. Filtered
output with filter sizes of 3 . 68

5.14 Hover test, zr = 5m, with Darknet pose estimator on GPU. Filtered
output with filter sizes of 3. 69

5.15 1m Hover test on GPU. Filtered combination of methods used for pose
estimation. Figure shows position estimates from both methods vs
ground truth. 70

5.16 1m Hover test on GPU. Filtered combination of methods used for pose
estimation. Figure shows filtered estimates vs ground truth. 70

5.17 5m Hover test on GPU. Filtered combination of methods used for pose
estimation. Figure shows position estimates from both methods vs
ground truth. 71

5.18 5m Hover test on GPU. Filtered combination of methods used for pose
estimation. Figure shows filtered estimates vs ground truth. 71

5.19 Automatic landing test on GPU. Darknet used for pose estimation.
Figure shows filtered estimates vs ground truth. 72

5.20 Automatic landing test on GPU. Combined methods used for pose
estimation. Figure shows estimates for both methods vs ground truth. 73

5.21 Automatic landing test on GPU. Combined methods used for pose
estimation. Figure shows filtered estimates vs ground truth. 73

11

List of Tables

5.1 Inference time results for different Darknet models while running the
Gazebo simulator . 58

A.1 Factors for scaling bounding box surrounding H to size of H by rota-
tion θ . 77

13

List of Abbreviations

UAV Unmanned Aerial Vehicle
mAP mean Average Precision
PID Proportional-Integrative-Derivative
MMA Moving Median Averaging
IMU Inertial Measurement Unit
DNN Deep Neural Network
CNN Convolutional Neural Network
DSL Deep Supervised Learning
FCNN Fully Connected Neural Network
YOLO You Only Look Once
CPU Central Processing Unit
GPU Graphics Processing Unit
FPS Frames Per Second
TCV Traditional Computer Vision
DL Deep Learning

15

Preface
This thesis is written in the fall of 2020 in Trondheim, at Norwegian University of
Science and Technology. It is written as a part of my master’s degree in Cybernetics
and Robotics. The work presented in this thesis builds upon the work of Thomas
Sundvoll, who in his master thesis proposed a pose estimator for a quadcopter using
traditional computer vision algorithms.

Automation has been on the mind of human beings for thousands of years. From
starting by using animal power for transport and agriculture, to using water power
for milling wheat into flour, and later inventing the steam engine. In the last 200
years electric machines have revolutionized the way humans work. Computers have
brought another another era of automation, and now we are in the automation era of
artificial intelligence. Automation frees up time and capacity for humans to do other
things, to continue innovation, to have a higher level overview, or to have more free
time. Automation enables scaling of work that was previously restricted by the limit
of human capacity and time.

The goal of this project thesis is create a robust position- and orientation (pose)
estimator for a autonomous quadcopter using computer vision. The pose estimate
is estimated pose in relation to a specific landing platform. This position estimate
is to be used for an autonomous landing mission, where the quadcopter will land
on the helipad autonomously. This work in this thesis will lay the foundation for
my master’s project which is to be written in the spring of 2021. The end goal of
this thesis and the subsequent master thesis is a fully autonomous takeoff-and-land
mission on the DNV GL ReVolt vessel in Trondheimsfjorden.

There are several contributions assisting in the development of this project thesis.
My supervisor for this project is Anastasios Lekkas, and my co-supervisor is Tom
Arne Pedersen from DNV GL, and they have been providing me with much-needed
insight and guidance during the project.

Thomas Sundvoll provided me with with material form his work as well as some
guidance in the beginning of the project. He also provided me with help in setting
up the ROS and Gazebo runtime environments.

The Department of Engineering Cybernetics has generously provided a Parrot
AR.Drone 2.0 as well as a Playstation 4 controller for controlling the Parrot AR.
They also provided an OptiPlex 7040 computer with an Intel Core i7-6700 CPU at
3.40GHz x 8 for running computer simulation experiments. DNV GL has provided
a 3D model of the ReVolt vessel for use in computer simulation environments.

The work in this thesis has been performed utilizing some open-source software,
as well as some free software tools:

• CVAT computer vision annotation tool

• Roboflow software for dataset handling and data augmentation

• Roboflow tutorials, as well as open-source deep learning scripts from Roboflow

• ROS and Gazebo by Open Robotics

• Google Colaboratory training GPUs.

• The open-source ROS packages ardrone_autonomy, tum_simulator and uuv_simulator

• The open-source ROS package "Darknet For Ros" by Leggedrobotics.

17

Chapter 1

Introduction

1.0.1 Background and Motivation

Autonomous robots and vehicles are currently a major area of research, with new
milestones being reached every year. Autonomous vehicles reduce human labour
cost, and may become safer and more reliable than their human-controlled counter-
parts.

Quadcopters are a type of aerial vehicles that has become popular in the re-
cent years. They are small and simple in design, but are reliable and maneuver-
able. Quadcopters are currently being used for inspection of hard-to-reach loca-
tions, cleaning of hard-to-reach locations, exploration of dangerous sites, as well as
picture-taking for photographers and film-production. Most of these applications
are done with a human pilot controlling these drones remotely. [2] Autonomous
control of these quadcopters greatly increases the number of use-cases for them.
This is because labor cost is reduced significantly by not requiring a human drone
pilot to control them.

The motivation for this project and subsequent thesis is the development of a
quadcopter capable of autonomous take-off and landing on a boat. Potential appli-
cations of such a drone include rudimentary search and rescue missions. Each year
many people are lost at sea, are taken by avalanches and are lost in the mountains.
Current search-and-rescue operations consist of many people, helicopters searching
with infrared cameras and search-and-rescue dogs in order to find the people who
are lost. Such operations are costly, and are therefore delayed until proven neces-
sary. Many lives could be saved if such searches were performed earlier. Because of
the high costs associated with such searches, they are only done when other options
are exhausted. Utilizing autonomous quadcopters that can perform such searches
would permit a cheaper operations, and therefore such operations may be used less
sparingly. Having multiple drones perform an organized search would also make
such a search more efficient.

Other operations unmanned quadcopters may perform are to deliver life-saving
medicine to people in remote areas quickly, autonomous inspection missions, au-
tonomous transportation of goods, and numerous other applications. Autonomous
drones are cutting edge technology, and a large amount of research is being put into
autonomous drones because of their usefulness.

For such autonomous drones to function well they require a good perception sys-
tem. Correct decisions require a good understanding of the world the autonomous
agent inhabits. A camera view is a good way to gather information about the sur-
rounding world because it collects much information in a single shot. A camera is a
general sensor that may be useful in all stages of the missions. Most aerial drones are
equipped with cameras. A well performing perception system is required to extract
useful information from the camera images.

18 Chapter 1. Introduction

1.0.2 Previous Work

There is much work that is previously done on computer vision perception sys-
tems for use for pose estimation and automatic control. Such computer vision tech-
niques use either a Deep Learning-based approach or a traditional computer vision
approach. Multiple approaches use computer vision techniques for autonomous
quadcopter control. Most computer vision systems for use with autonomous quad-
copters in literature are based on traditional computer vision techniques, although
some propose Deep Learning-based methods.

Thomas Sundvoll proposed a pose-estimation system for an autonomous drone
in an automated landing scenario with the AR.Drone 2.0 [1]. His work was based
on a traditional computer vision techniques for locating the landing platform in the
camera frame, and uses that information to calculate quadcopter pose. Experiments
with Sundvoll’s pose estimator show that the pose estimator estimates pose accu-
rately and consistently in the Gazebo simulation environment, with small error mar-
gins when compared to ground truth. The quadcopter is able to perform a successful
autonomous landing in the Gazebo simulation environment. Sundvoll’s pose esti-
mator requires tuning for the specific light and visual conditions, and when tested
with the physical AR.Drone 2.0 in a real-world experiment it was seen that it lacked
the robustness to be able to function well and reliably in visual conditions that were
different and more challenging than the simulated environment.

A computer vision based pose estimation algorithm is presented in [3] and used
for autonomous landing of quadcopter. This pose estimator detects prespecified
ArUCO markers, which are similar to camera QR-codes. The ArUCO markers are
distinct, and have known location and orientation. The algorithm detects the ArUCO
markers in the camera frame, and calculates pose by mapping the ArUCO markers
in the camera frame to the known ArUCO marker pose. An automated landing
mission is performed by landing the quadcopter directly over a ArUCO marker.

A similar approach is proposed in [4]. The experiments tested with this ap-
proach were performed in the Gazebo simulation environment. Automatic landing
is achieved with the pose estimates.

Another approach [5] for pose estimation using traditional computer vision is by
combining pose estimates from object tracking with inertial measurement unit data
in an Extended Kalman Filter (EKF).

A pose estimation for automated landing of a quadcopter is proposed in [6]
where the quadcopter detects a known feature on the landing platform using the
openCV function findContours(). A white H is used as a distinct feature on the
landing platform. A pose estimate is calculated using position and orientation of
the detected H in camera frame. The quadcopter is able to use this pose esimate for
automated landing on the landing platform, as long as the H is visible, and the size
of the H is known.

J. Blom proposes a traditional computer vision based perception system for au-
tonomous landing on an unknown landing platform [7]. This computer vision ap-
proach assumes that the landing platform is square, with a textured surface, and
used a combination of traditional computer vision methods, such as Canny edge
detection as well as feature detection of the textured landing platform to locate the
corners of the landing platform and perform autonomous landing.

Visual Simultaneous Localization and Mapping (vSLAM) [8] is a method for
tracking features and matching features between frames. This is done to estimate

Chapter 1. Introduction 19

changes in pose, while at the same time creating a map of the surrounding environ-
ment. The approach is based on visual point cloud methods, and requires no prior
knowledge about the world. This is used for real-time navigation of robots.

A real-time indoor navigation system for quadcopters located in hallways is pro-
posed in [9]. This approach uses Canny edge detectors and Hough line transforms.
Navigation is achieved by steering towards a vanishing point, and performs well in
in hallways with good visual conditions.

Deep Learning-based computer vision techniques are also used extensively in
literature, and are also used for autonomous control of quadcopters.

YOLO (You Only Look Once) [10] is a bounding box prediction algorithm used
for real-time object detection. In [11] YOLOv3 and YOLOv4 bounding box predic-
tion algorithms are tested on KITTI image dataset, to recognize Car, Truck, Person
and Two-wheeler in a traffic scene, and is able to achieve high mAP. Bounding box
prediction algorithms are used in combination with quadcopters, and [12] presents
a system which performs real-time inference on images from camera located on a
quadcopter.

Imanberdiyev et al. proposes a Reinforcement Learning scheme for autonomous
quadcopter control [13] using TEXPLORE reinforcement learning framework.

In [14] autonomous navigation of quadcopter is achieved using a deep learning
pose estimator from camera input. The autonomous navigation is used for following
forest trails. The estimated pose from the DNN is relative pose when compared to
the trail, and this relative pose is used as feedback for control.

Bounding box prediction algorithms are used for real-time tracking of golf balls
in [15]. Golf balls are detected and the position of the golf balls are estimated using
bounding boxes around the golf balls. The position estimates are filtered using a
Kalman Filter in order to estimate a more accurate ball position. The algorithm is
tested using multiple bounding box classification models, and Faster R-CNN pro-
duced the best results.

A 6 dimensional object pose estimation scheme is proposed in [16], where the
position and orientation of objects are estimated. It works by using locating bound-
ing boxes enclosing the objects of interest, as well as using a separate network to
estimate the object orientation. The bounding box, together with the estimated ori-
entation, is used to estimate the object’s position.

1.0.3 Objectives

The objective of this thesis is to create a robust position and orientation (pose) esti-
mation system for a quadcopter using a combination of traditional computer vision
techniques and deep learning computer vision techniques. Many pose estimation al-
gorithms, using computer vision for autonomous control of quadcopters, are made,
some using TCV and some using a DNN approach. A pose estimation system which
combines DNN and TCV methods is proposed in this thesis and tested for use in
autonomous control of a quadcopter.

The estimates from the two computer vision techniques are to be combined to
create a single estimate. The estimate is to be robust, meaning that the estimator is
able to perform reliably and well in different lighting and challenging visual con-
ditions. The computer vision techniques are combined in order to get a strong and
robust computer vision estimate. Both methods have strengths and weaknesses. DN
methods can are fast and general, and the TCV methods can be accurate and precise.
By combining the techniques we are able to combine the strengths of the methods,
while compensating for the weaknesses of the methods.

20 Chapter 1. Introduction

This pose estimate is used for control during autonomous missions with the
quadcopter. The autonomous missions to be performed are stable hovering and auto-
mated landing.

The contributions in this thesis are specifically

• Creating a labeled dataset of a landing platform, and use that to train YOLO
object detectors to detect specific features of the landing platform.

• Creating an algorithm for calculating relative quadcopter pose in relation to
the landing platform by using results from the YOLO object detection algo-
rithm. The algorithm uses object detection bounding boxes size and location
in order to estimate quadcopter pose.

• Merging this estimated pose with pose estimates generated by a traditional
computer vision-based approach created by Thomas Sundvoll in his master
thesis [1].

• Testing the robustness of the combined pose estimates in a Gazebo simulated
environment by using the combined pose estimate for autonomous quadcopter
landing on a landing platform situated on a boat.

1.0.4 Outline

Chapter 2 presents the theory behind the computer vision techniques utilized in
this project. Chapter 3 presents the experimental setup and how to replicate this
experiment for future testing. Chapter 4 presents the methodology for this project
and how the computer vision pose estimators were implemented and combined in
order to create a combined robust estimate. Chapter 5 presents the results from the
experiments performed with the pose estimator, and discusses the results in light of
the objective. Chapter 6 concludes the work and results presented in this thesis, and
discusses possible future work on this topic.

21

Chapter 2

Theory

2.1 Traditional Computer Vision

Computer vision is a field of study where there has been much improvement in
the later years. Computer vision facilitates for autonomous robots and autonomous
vehicles by being a perception system which robots and autonomous vehicles can
use to perceive the world. Perception is key for well functioning autonomous sys-
tems, and computer vision is therefore important in the development of robots and
autonomous vehicles.

The domain of digital image processing has consisted of mostly traditional com-
puter vision algorithms, however in the later years it has been dominated by Deep
Learning (DL). There are benefits and drawbacks of both methods of computer vi-
sion. Even though DL computer vision has made numerous breakthroughs, it has
not yet made traditional computer vision techniques obsolete. [17]

Traditional computer vision techniques mainly consists of three parts. The first
part is feature detection, where the algorithm locates points of interest in the image.
Points of interest are corners, edges, and areas with high color contrast in relation
to the surrounding pixels. These are points that contain the most information in the
image. An image reduced to the points of interest will contain the main structures
and features of the image while being represented with much less information.

The next step is feature description, in which the algorithm creates a descriptor
for each of the located points of interest in the image. A descriptor is a descriptive
representation of a point and it’s surrounding pixels. Descriptors are used to locate
the same points in other images of the same scene. This is done by comparing de-
scriptors and matching points for which the descriptors match. The third and final
step is classification where the points of interest and descriptors are used for the
intended purpose of the algorithm.

Thus, traditional CV works by finds low-level features in an image, and performs
classification by matching these features together.

2.2 Deep Neural Networks

In the recent years Deep Neural Networks (DNNs) have made much progress within
image classification and detection [18] [19]. Real-Time object detection and classifi-
cation has become possible using algorithms such as YOLO [10] and Faster R-CNN
[20]. Deep Neural Networks consist of neurons. Neurons are nodes in a network,
where each neuron contains a single value. In most neural networks the value con-
tained in a neuron is a number between 0 and 1. The value in a neuron is calculated
as a function of its inputs. The value in a neuron is passed on to other neurons,

22 Chapter 2. Theory

where that value will be one of the inputs to the other neurons. Numerous neurons
are connected in a network of neurons.

Some of the neurons are input-neurons. Input data is passed in to a neural net-
work by setting the value in these input neurons equal to the input data. For exam-
ple, when passing image data into a neural network each pixel value of the image is
passed into a separate neuron, or multiple neurons if the image is in colors.

Some neurons in a neural network are output-neurons. These neurons do not
pass their values on to other neurons, but instead output the result of the neural net-
work. Thus, a neural network is a mapping from input values in the input neurons
to output values in the output neurons.

2.2.1 Fully Connected Neural Networks

A Fully Connected Neural Network (FCNN) is a type of DNN where neurons are
connected together in organized structures called layers. The structure of a FCNN is
illustrated in in Figure 2.1. Input data is passed into the first layer of the FCNN, and
the output is read from the last layer in the FCNN. A FCNN, as the name suggest,
is fully connected. This means that every single neuron of a layer in connected to all
the neurons of the previous and subsequent layers.

Neurons are connected with connections that are called weights. The value of a
neuron that is passed onto the next neuron is multiplied with the weight that con-
nects the two neurons. The resulting value of a neuron is therefore a weighted sum
of all neurons in the previous layer. An individual bias is also added to each neuron.
This result is put through an activation function f : R→ R in order to get the value
of a neuron in the desired range.

The output value ak
j of a neuron j in layer k is

zk
j =

n

∑
i=0

wk
ija

k−1
i + bk

j (2.1)

ak
j = f (zk

j) (2.2)

where wk
ij ∈ R is the weight connecting neuron i in layer k− 1 with neuron j in layer

k. bk
j ∈ R is the bias for neuron j in layer k. zk

j is the input value for the neuron and
ak

j ∈ R is neuron output value. f : R → R is an activation function, used to get the
neuron output value in the desired range.

The output values of all the neurons in layer k is therefore

zk = wkak−1 + bk (2.3)

ak = f (zk) (2.4)

where wk ∈ Rn×m is a matrix of weight connections from neurons in layer k− 1 to
layer k. ak−1 ∈ Rm is a vector of the output values from the previous layer, bk ∈ Rn

is a vector of bias values for the neurons in layer k.
zk ∈ Rn is a vector of neuron values in layer k before being passed through an

activation function, and ak ∈ is a vector of neuron values in layer k after being
passed through an activation function.

There are different activation functions that are commonly used in DNNs. The
most frequently used activation functions are; Sigmoid, ReLU and Softmax, as these
are known to produce well trained models.

2.2. Deep Neural Networks 23

The Sigmoid function is a function that squishes the output between 0 and 1. The
Sigmoid function is defined as

f (x) =
1

1 + e−x (2.5)

where x is the input value. Thus, f is defined: f : ∀ x f (x) ∈ (0, 1). A graphical
representation of the Sigmoid function can be seen in Figure 2.2.

The ReLU function a function which is equal to the input value for all positive
input, but is zero for all negative input. Thus, ReLU is written as

f (x) =

{
x, if x ≥ 0
0, otherwise

(2.6)

and an illustration of this can be seen in Figure 2.2
The Softmax function is an activation function that squishes the output between

0 and 1, and in a way that the sum of all output equals to one. The softmax is written
as

f (xj) =
exj

∑n
i=0 exi

(2.7)

An example of the softmax activation function can be seen in Figure 2.2. The Softmax
function is commonly used for the last layer of DNNs that perform classification.
This is because each output neuron is generally associated with detection of one
class. The value of the neuron associated with one detection is then a measurement
for the network’s confidence in that classification compared to the other possible
classifications. Thus, by forcing the sum of all output confidence to be 1 the output
confidence can be read as a confidence percentage.

2.2.2 Training a Deep Neural Network

In order for a DNN to learn, it has to be trained. In what is called supervised learn-
ing, a DNN model is presented with training data. The training data is labeled with
ground truth labels. These labels are what the trainer wants the DNN to be able to
predict.

Training works by three steps, a forward pass, calculating loss, and backpropa-
gating. A forward pass is by providing the DNN with an input in order to get the
DNNs predicted output. The input data is then propagated through the hidden lay-
ers, and the output value is read from the output neurons. A forward pass is how
the network is used for inference on data after the network is trained.

Loss is the error that the model makes when predicting. Loss is calculated as
the difference between the expected output and the actual output of the forward
pass. Different methods of calculating loss exists. These methods are called loss
functions. The most commonly used loss functions are Mean-Squared Error loss
and Logarithmic loss. The loss function is denoted by C.

Backpropagation is a technique for changing the model in order to reduce loss.
This is how the model is improved during training. The model parameter θ is de-
fined as the weights and biases of the model, s.t. θ = [W, b]. Backpropagation works
by calculating the partial derivative of loss with respect to the model parameters:

δC(θ, zk)

δθ

24 Chapter 2. Theory

FIGURE 2.1: The structure of a FCNN. The first and leftmost layer
is for input data. The last and rightmost layer is output layer. The
layers in between are the hidden layers. the lines between neurons
are weights. Together these neurons and weights compose a Deep

Neural Network

FIGURE 2.2: Sigmoid, ReLU and Softmax activation functions.

2.2. Deep Neural Networks 25

This partial derivative is a numerical representation of how changing the model
parameters changes loss, given the output of the network on the current data, zk.
The model is then updated according to an update rule. The update rule states how
to change the weights given the partial derivative of loss with respect to the model
parameter.

One update rule is called gradient descent. Using gradient descent the update
rule is such that the model parameter θ is reduced by the derivative of the loss func-
tion with respect to the the model parameters, scaled by a learning rate α. Thus,
gradient descent is the update law

θnew = θ − α
δC(θ, zk)

δθ
(2.8)

Learning consists of numerous forward passes and backpropagrations, repeated on
the training data. Generally input data is presented in batches, and the model per-
forms forward passes on all of the data. Total loss is calculated for the whole batch,
and the model is updated such that the total loss over the whole batch is reduced.
Training a model with batches makes training less prone to oscillate between trained
values, and the model is less influenced by outliers in the training data.

There exists many techniques for improving the training of a DNN. Dropout is a
technique where the model will temporarily remove randomly chosen weights dur-
ing the forward passes when training. This makes it so that the network will not
use the same neurons for every classification, but will force the model to train all
the neurons in the network. From experiments this has been seen to make neural
network models more general and robust. Momentum is a technique for use with the
model update law, in which the model updates will be a moving average of param-
eter updates. This results in parameter updates which are more smooth and in the
general direction of loss decrease. Batch normalization is a a technique that consists
of normalizing the input data to the model. This makes the model become faster to
train, and more stable. Weight Decay is a technique in which all the model param-
eters are reduced by a small factor each iteration according to a decay parameter v.
This prevents some neurons from having very large weight values, and thus dom-
inating the complete network. The result is a more general and well performing
network. Early stopping is a technique for stopping the model from becoming over-
fitted during training. This is done by stopping training if loss decrease has halted
during training.

2.2.3 Convolutional Neural Networks

When working with image data, a FCNN is not able to capture all the information in
the data. In an FCNN every neuron is connected to every neuron in the next layer.
For an image, where the input values are individual pixels, this makes it so that
all spacial information is lost. A Convolutional Neural Network (CNN) provides a
solution to this [21].

A CNN consists of three layer types; convolutional layers, pooling layers, and
fully connected layers. A convolutional layer is a layer which the values of neurons
are passed on to neurons in the next layer using a convolutional map. Such a map is
a moving local map which combines nearby neurons in a spatial grid to combine the
values into one neuron. Such maps extricate local features and qualities in the data.
These convolutional maps are trained in the same way that weights are trained in
FCNNs. An illustration of a convolutional map can be seen in Figure 2.3, where K is

26 Chapter 2. Theory

FIGURE 2.3: An illustration of a convolutional map in a convolutional
layer in a CNN.

the convolutional map, I is the image data, and I*K is the resulting output from the
convolutional layer.

A pooling layer is a layer where multiple neurons in the previous layer are com-
bined into one. Different pooling techniques exist, such as median-pooling, average-
pooling, and max-pooling. Max-pooling is the most commonly used pooling tech-
nique in CNNs. Pooling layers are used to reduce the dimension of the data, while
preserving the useful information. Pooling layers are usually situated in between
convolutional layers.

The fundamental structure of a CNN is that input data is passed through mul-
tiple layers of both convolution and pooling. The result from this is then passed to
Fully Connected Neural Network (FCNN) in the end. This structure can be seen in
Figure 2.4. All spatial information is lost in the FCNN, however the FCNN connects
the large features extracted from the previous layers and puts them together in order
to produce the output values of the network.

CNNs have had huge success in image classification algorithms and all of the
leading image classification methods are CNNs.

2.2.4 Traditional Computer Vision Methods compared with Deep Learn-
ing Methods

Deep Learning Computer Vision methods have dominated the space of computer
vision in the last years, but there are still domains where Traditional Computer Vi-
sion (TCV) methods are favored. Both DL methods and traditional methods have
advantages and disadvantages. This means that one can choose what methods to
use depending what is best for the specific application [17].

TCV methods provide full transparency of implementation and function. This is
because TCV methods are based on known methods and can easily be analysed in
order to determine why the result was what it was.

DL methods on the other hand are often perceived as black-box functions. A
black-box function is a function which one provides input and receives output, but
one does not know how the model works. DL methods may utilize a neural network
consisting of millions of neurons, weights, biases and convolutional mappings. This
makes it very hard to analyse the decision process of the neural network, as there are
so many parameters. This black-box behaviour can be a safety risk, because it is hard

2.3. Darknet 27

FIGURE 2.4: The general structure of a CNN, containing convolu-
tional layers, pooling layers and fully connected layers. Image col-

lected from [22]

to determine whether it may fail or not. Such methods are therefore not acceptable
in all applications.

TCV methods may be easier to tune for specific applications. TCV methods have
fewer tuning parameters than the possibly millions of neurons in a DNN. TCV meth-
ods can be easier to improve iteratively. This is because in order to improve a DN
method one has to provide the model with more or better training data. An alterna-
tive to this is to test training of the DNN model with different parameters. Training
a DNN is time consuming, and iterative testing is therefore harder to do. Another
problem with DNN methods are that they require large datasets of training data
which needs to be labeled and specialized for each application. For a DNN model to
achieve high accuracy it requires that the dataset is of high quality. A high quality
dataset is a dataset which is properly- and precisely labeled, and contains data that
is sufficiently varied for the model to become general and robust. TCV methods do
not require datasets. Instead TCV methods require knowledge about the specific ap-
plication. Such methods must be programmed to fit the specific application, and the
reusability of such methods may be low.

DL methods may also achieve higher accuracy that TCV methods, especially
when considering of complex detection problems such as recognizing humans or
other complex structures in data. DNNs can be trained to be very general if pro-
vided with a large and varied dataset, and can thus be trained to be functional in a
large variety of visual conditions and situations. Varying visual conditions may be
challenging for TCV methods, as they need to be programmed for specific situations
and may require different tuning for different visual conditions.

2.3 Darknet

Darknet [23] is an Open-Source neural network framework written in C by Joseph
Redmon et. al.

28 Chapter 2. Theory

The Darknet framework makes it easy to switch between DNN methods. One
specifies the configuration file and the corresponding weight file when running clas-
sifications with the framework. A model structure is defined by a configuration file,
where the number of layers, what kinds of layers, and activation functions are spec-
ified. The trained model parameters are specified in a weight file. One can change
what model one wishes to run by changing the weight-file and the configuration-file,
which makes comparing different methods very efficient.

Multiple image classification algorithms builds upon the Darknet framework.
YOLO (You Only Look Once) is the most known and used, but there is also ResNet
and AlexNet. Other DNN algorithms builds upon Darknet, for example DarkGo,
which in a DNN algorithm for predicting the best moves in the board game Go.

2.4 YOLO

YOLO (You Only Look Once) is an image classification and bounding box predic-
tion algorithm. [24] That means that the YOLO algorithm will predict the existence
of certain classes of objects in an image and draw bounding boxes around the identi-
fied objects. The algorithm also predicts a confidence score for each prediction. The
confidence score is the confidence of the algorithm of it being correct in it’s predic-
tion, with 0 being not confident at all and 1 being completely confident. An image
with YOLO bounding boxes can be seen in Figure 2.5.

YOLO performs one inference on an image in order to predict the classes, bound-
ing boxes, and confidence scores. The name You Only Look Once comes from the
idea that YOLO only performs one forward pass through the network when pre-
sented with input data. Other prediction algorithms perform multiple inferences on
images in order to detect bounding boxes as well as class predictions. This is one of
the reasons that YOLO is a very efficient bounding box prediction network.

YOLO divides the picture into a grid of S x S cells, where S is a predetermined
scale. Each cell will then predict B number of bounding boxes, where B is a tunable
parameter. Each bounding box is represented by the coordinates of the center of
the box (x,y) as well as the width and height of the box (w,h). Each bounding box
predicted by each cell is centered in that cell. Each cell will then predict bounding
boxes to fit the image data, and predict how confident the cell is that that bounding
box is a correct class prediction. YOLO predicts class probabilities for each cell. As
some classes are more likely to appear in certain cells in the image than others YOLO
is able to use this information when performing predictions. The cell confidence
is multiplied with the class probability for that cell. The result after this is very
many bounding boxes, each which has a probability score associated with it. YOLO
removes all bounding boxes below a certain threshold specified by the user.

YOLO also applies Non-Max Suppression to the bounding boxes. This is a tech-
nique that is indented to suppresses multiple detections of the same object. YOLO
will predict an object for each cell in the grid, and if there is an object that spans mul-
tiple cells it may detect that same object multiple times with overlapping bounding
boxes. Non-Max Suppression chooses the box from the set of overlapping bounding
boxes with the highest probability score. The other boxes that predicted the same
object in the same section of the image will be suppressed, and not output as predic-
tions.

YOLOv3 [10] is the third iteration of YOLO, and was released in 2018. YOLOv3
is built on Darknet-53, meaning that it consists of 53 layers. 52 of the layers are
convolutional layers, while the last layer is a fully connected layer. The structure of

2.4. YOLO 29

FIGURE 2.5: Image with YOLO bounding box predictions. Image
collected from [23]

30 Chapter 2. Theory

Darknet-53 is shown in Figure 2.8. YOLOv3 is quite accurate, achieving mAP scores
that are on par with the best object classification algorithms. YOLOv3 detections are
faster than R-CNN and RetinaNet, as can be seen inFigure 2.7 where YOLOv3 was
was tested against other image classification algorithms on the COCO dataset [25].

YOLOv4 [26] is the fourth iteration of YOLO and was released in 2020. It is not
developed by the same people who developed YOLO, YOLOv2 and YOLOv3, but
has become the new standard for YOLO. This is because it is faster and more precise
that YOLOv3, and builds upon the same Darknet framework. YOLOv4 is fast and
can perform real-time inference at speeds up to 50FPS on a GPU2.6. This is very fast,
and is therefore very useful for real-time classification systems. YOLOv4 is built
on CSPDarknet-53. CSP stands for Cross-Stage-Partial and means that the layers
contains skip connections where some of the data will not be passed through all the
convolutional layers.

There exists tiny versions of the YOLO network as well. These are modeled to be
very efficient real-time detectors, for use in mobile- or embedded systems. YOLOv4-
tiny [27] is a tiny version of the YOLOv4 network, and YOLOv3-tiny is a tiny version
of the YOLOv3 network. The tiny versions have significantly smaller network sizes.
This makes for faster training- and inference times. As can be seen in Figure 2.6 there
is a significant increase in FPS from YOLOv4 to YOLOv4-tiny, with YOLOv4-tiny
reaching up to 375 FPS on a GPU compared to YOLOv4 reaching 50FPS. The smaller
network size comes at a cost. The YOLO-tiny networks are less accurate and precise,
with a lower mAP on average. They especially struggle to classify smaller objects, or
with low resolution images. They are convenient to use when the processing power
for inference is low and the need for faster inference trumps the need for higher
mAP.

YOLO output is a list of bounding boxes found in the input image. Each bound-
ing box is defined by 6 values:

• probability

• xmin

• ymin

• xmax

• ymax

• class

The bounding box encapsulating the classification is defined by the points (xmin,
ymin) and (xmax, ymax), where the bounding box is the square where these points
are opposite corners. The probability is the confidence score for the classification,
and the class specifies what object class the classification belongs to.

The main advantage of YOLO is that it is very fast and efficient, while achieving a
high mAP at the same time. This makes it one of the most used real-time object detec-
tion algorithms. Despite this, YOLO is known to have some weaknesses. YOLO has
a lower detection rate for small objects in the images. Another problem with YOLO
is that the predicted bounding boxes are not stationary around an object when per-
forming real-time detection. The bounding boxes tend to have small translational
shifts about the center of the object, making the bounding boxes ’jitter’ around the
objects [28]. These shifts happen because of multiple reasons, notably the non-max
suppression in YOLO. In YOLO, each cell in the image predicts bounding boxes, as

2.5. Data Augmentation 31

FIGURE 2.6: YOLOv4 and YOLOv4-tiny inference time and mAP,
compared other detection algorithms.

well as a confidence score. Adjacent cells that predict an object overlapping multiple
cells may have very similar confidence, and may switch between having the highest
confidence between frames. Each cell predicts a bounding box with center in that
cell. Non-max suppression suppresses all but the most confident cell. If the most
confident cell is not the same cell between frames, then the output bounding boxes
may shift translationally between frames, and result in a bounding box ’jitter’.

2.5 Data Augmentation

In Deep Supervised Learning a Deep Neural Network is trained to recognize pat-
terns in data. The model is trained by being exposed to a large number of data sam-
ples that is to be recognized. The data contains labels for the data pattern that is to be
recognized. The network tries to predict the labels given the data. The model learns
by backpropogating the errors that it makes and changing the model parameters in
order to become a more accurate model.

A Deep Neural Network only as good as the data it has been provided with. A
DNN that has been trained on more and better training data will yield a superior
model compared to one that has seen less training data. Generally, a model that is
trained on a balanced dataset gives a more accurate model. A balanced dataset is a
dataset that contains about the same number of labels for each class of patterns that
is to be recognized. Thus one of the challenges of training a good DNN model is to
gather a large enough dataset that is balanced, and of high quality.

Data Augmentation is a technique for generating more training data by aug-
menting the data that is already gathered. [29] Data augmentation is performed by
creating copies of the data and changing the data using pre-determined methods.
Thus, one can take a single data piece, copy it and change the copies. Applying
this to a dataset therefore results in a larger dataset. This makes it so that the ini-
tial dataset required to train a DNN model is less than what would otherwise be
required.

32 Chapter 2. Theory

FIGURE 2.7: YOLOv3 object detection time on COCO dataset. Taken
from [10]

FIGURE 2.8: Darknet-53 structure used in YOLOv3. Figure taken
from [10]

2.6. Robot Operating System 33

One example of data augmentation for image data is random rotation. This aug-
mentation technique creates new training images by rotating copies of the original
images a random number of degrees, within a specified range. This makes it so that
the DNN will learn to recognize the patterns in the images while being robust to
rotation. In many cases, the orientation of the pattern does not change what the pat-
tern is labeled as. A DNN that is being trained to differentiate between cats and dogs
should be able to differentiate the animals regardless of the rotation of the images.

Another augmentation technique for images is flipping the images along the
horizontal- or the vertical axis, called horizontal flip and vertical flip. This makes it so
the training image seems like a new instance for the model, and the trained model
will be more general with regards to flipped instances of the real class.

Other kinds of augmentations for image data are:

• Random skew

• Random noise

• Gaussian blur

• Color space augmentations, by transforming the colors in the image

• Randomly cropping parts of the image

• Translation, i.e. to shift the image in left, right, up or down.

• Combining multiple images into one

• Randomly erasing parts of the images

One wants to use augmentation techniques that are relevant to the specific ap-
plication for which the model is to be used. If the DNN is to be used in a situation
where it will be subject to much noise, then adding a random noise augmentation is
preferable. If the DNN is to be used in an image classification situation with variable
lighting conditions, then adding color space augmentations will be helpful.

2.6 Robot Operating System

Robot Operating System (ROS) is a free and open-source software framework for
programming robots, created by Open Robotics [30]. ROS is a collection of tools,
libraries and modules that simplifies the process of writing software for robotics.
One of the main advantages of ROS is that there is a huge ecosystem surrounding
ROS. There exists a community of active developers publishing open-source ROS
packages that are publicly available for free.

ROS is based on a modular system, with modules that are called nodes. Nodes
communicate by utilizing the messaging system of ROS, which is based on commu-
nication through messaging channels called topics. Nodes send messages over topics
by publishing. Publishing is a broadcasting way of communication. Other nodes may
subscribe to such topics, and by doing so they receive the messages when they are
published. Multiple nodes may subscribe to the same topics, and multiple nodes
may publish to the same topics.

A synchronous communication system also exists in ROS. This is called a service.
A node may utilize a service by requesting a message from another node.

Messages in ROS are standardised between programming languages. Since mes-
sages are standardized it means that different nodes may be written in different

34 Chapter 2. Theory

programming languages. Each node translates the subscribed message to a format
which fits the programming language of the node. This simplifies reuse of code
between projects and publicly available modules.

ROS is well integrated with a simulation environment called Gazebo, which is a
simulation environment specialized for development of robotics. ROS and Gazebo
has been used in extensively in previous work of development of autonomous quad-
copter systems [13] [7] [4].

2.7 CPU- and GPU processors

A central processing unit (CPU) is the main processor in a computer. It is able to
perform operations and calculations. These calculations is what makes a computer
program run. Modern-day CPUs are able to perform billions of operations per sec-
ond. The CPU usually has a small number of cores. A core is a separate processor
able to perform operations. Multiple cores means that there are separate units which
are able to operate in parallel. This makes operations more efficient. CPUs are fast
and versatile, and are able to perform many different complex operations.

A graphics processing unit (GPU) is a processing unit which consists of a large
number of cores. The number of cores in a GPUs is in the range between a couple
hundred to a couple thousand, depending on the GPU. These cores are less complex
than the cores in a CPU, and are only capable for performing simple operations. The
vast number of cores makes a GPU excel at parallel computing. For tasks which there
are many operations which are to be calculated in parallel GPUs perform better than
CPUs. Most notably among such tasks are graphical operations, hence the name
graphics processing unit. This is because when working with image data a large
number of pixels are to be processed at the same time, and may be processed in
parallel. The operations for processing these pixels are simple operations, so the
GPU is able to handle this faster than a CPU which has to process the operation
sequentially instead of in parallel.

When it comes to machine learning a GPU is much faster than a CPU. This is
because training of- and inference using a neural network consists of millions of
simple operations. These operations consist of calculating values for neurons in a
neural networks, backpropagating, and updating network parameter values. These
operations may be processed in parallel because of the linear structure of a neural
network. The modern day GPU have ignited the worldwide AI boom due to it fa-
cilitating for larger AI models than the CPU does. Modern GPUs is able to perform
neural network operations 50-500 times faster than modern CPUs. [31]

35

Chapter 3

Experimental Setup

3.1 Gazebo and ROS

The experiments in this thesis are performed in a simulation environment called
Gazebo. Gazebo is an open source 3D simulator for robotics development. Gazebo
provides a physics engine Gazebo 7.0.0 is used for these experiments.

Gazebo is well integrated with ROS. ROS Kinetic is used for communication
between modules, as well as communication with the simulated environment in
Gazebo. Camera output feed is published to a ROS topic which the control modules
subscribe to. Control signals are published to other ROS topics in order to control
the drone.

The experiments are run on Ubuntu 16.04.

3.2 Experimental Components

The quadcopter the experiment with performed on is the Parrot AR Drone 2.0. It
is produced by Parrot and was released in 2012. It is released as a programmable
drone for use with software development. [32] The Parrot AR. 2.0 is a quadcopter,
consisting of four propellers. Each propeller has a separate motor which can be
controlled independently. The drone can maneuver by applying larger force to some
of the propellers than others. Varying left and right motor force will create a torque
in roll direction, and the drone will roll. Varying the front and back motor force will
create a torque in pitch movement, and the drone will pitch. Varying diagonal rotor
speeds will cause a torque in yaw direction, and cause the drone to turn left or right.
An image of the Parrot AR. 2.0 can be seen in Figure 3.1

A simulated version of the AR.Drone 2.0 is available through the ROS package
/tum_simulator. This package contains an implementation of a gazebo simulation
model of the AR.Drone 2.0. The experiments in this thesis is performed using the

FIGURE 3.1: Parrot AR.Drone 2.0. Image collected from [32]

36 Chapter 3. Experimental Setup

FIGURE 3.2: A model of the helipad that is used in the experiments.
Image collected from [1].

simulated version of the AR. Drone 2.0 in Gazebo. The drone has a bottom facing
camera in order to perceive it’s surroundings.

The AR. Drone 2.0 comes with a low-level autopilot. This autopilot controls the
propellers, and follows reference points that it is fed, but it is also possible to feed
control actuation commands directly. Parrot has made available a Software Devel-
opment Kit which makes it easy for developers to develop their own applications for
controlling the drone. The open-source ROS package /ardrone_autonomy is a ROS
driver for the AR.Drone 2.0, and is used for communication with the AR. Drone 2.0.
[33]

In the experiments the AR. Drone 2.0 performs a landing mission on a landing
platform. The drone uses the bottom facing camera to locate the helipad in order
to perform the landing mission. A simulated version of the landing platform is
included in the gazebo simulator, and an illustration of the landing platform can
be seen in Figure 3.2.

The helipad is located on a simulated version of the DNV GL ReVolt vessel. Re-
Volt is an innovative ship designed by DNV GL, as a project to create an unmanned,
zero-emission surface vessel. DNV GL has manufactured a 1:20 scale model of
the ReVolt in order to test the autonomous capabilities. The landing platform is
mounted on top of the ReVolt model for this experiment. A simulated 3D model of
the ReVolt with the helipad is modeled in the gazebo simulation. The 3D model of
the ReVolt is provided by DNV GL. An image of the simulated environment with
the quadcopter, landing platform and the model of the ReVolt vessel can be seen in
Figure 3.3.

The simulations were performed on different computers, one with a CPU pro-
cessor and another which also had a a GPU processor. The CPU experiments were
performed on an OptiPlex 7040 with an Intel R© CoreTM i7-6700 CPU @ 3.40GHz 8.
The simulations performed on a GPU were performed on the GTX Ti GPU.

3.2. Experimental Components 37

FIGURE 3.3: The Gazebo simulated environment with the quadcopter
and the ReVolt vesssel. Image collected from [1]

39

Chapter 4

Methodology

4.1 Installation and setup of the Simulated Environment and
ROS

Ubuntu 16.04 was required in order to install the correct version of ROS and Kinetic,
and was therefore downloaded and installed on an OptiPlex 7040 computer. Ros
Kinetic was installed, together with Gazebo 7.0.0. In order to set up the 3D simula-
tion environment in Gazebo, 3D models of the simulated objects were collected and
added to the simulation environment. DNV GL provided a 3D model of the ReVolt
model ship, and Thomas Sundvoll provided a 3D model of the landing platform.
These were added to the simulated environment, as well as a simulated ocean from
uuv_simulator. Thus, the simulation environment contained the relevant models
and objects.

The TCV pose estimation module and other modules from [34] was run in the
simulated environment as ROS nodes, and thus the system collected from [1] were
able to be run.

In order to develop this system further, multiple new ROS nodes, topics and
launch files were created.

Migration of the system to a newer version of ROS, Gazebo, Ubuntu and Python
3 was attempted. Python 2 stopped being maintained at 1.1.2020, and therefore
it is desirable to develop the platform on the more recent and updated version of
Python. Package conflicts made this attempt unsuccessful because the ROS package
/ardrone_autonomy is not updated since 2014, and is not integrated with versions
of ROS more recent than ROS Kinetic.

4.2 Creating dataset

In order for a Darknet object detector to be able to locate the landing platform on an
image it has to be trained. Supervised learning of a Darknet object detector model
requires a dataset which of relevant images with proper labels. Thus, a dataset of
of labeled images of the landing scenario is required. The dataset needs to be of
sufficient size and quality for the pose estimation algorithm to perform well.

The images in the dataset were gathered from the simulator Gazebo. The im-
ages were collected using the output from the simulated AR.Drone’s bottom facing
camera. 1083 still images were taken and saved from different altitudes, angles and
positions. The images were taken by manually flying the drone using keyboard
commands and saving the current camera output as an image when specified using
keyboard commands.

The images were labeled using CVAT [35]. CVAT is a free, online computer vision
annotation tool for labeling of images required for training DNNs. Labeling consists

40 Chapter 4. Methodology

of drawing a bounding box around each object that is to be recognized. Each box is
then given a specified label of which class it belongs to. The images in this dataset
were labeled with bounding boxes of three classes; Helipad, H, and Arrow. The
Helipad label is for the complete landing platform, encompassing the whole green
circle. The H label is for the white H on the helipad. The Arrow label is for the
orange triangle in the circle outside the H. A labeled image of the landing platform
with the three labels can be seen in Figure 4.1.

The images in the dataset auto-oriented and resized to a proper YOLO format of
416x416 pixels, by scaling down the image and adding black edges to the top and
bottom. This was preferable to stretching the image to fit the square format, because
with black edged the original shapes of the circles and the H are preserved. Darknet
scales input images this way in before inference, and it is desirable that the model is
trained on data which is as close to the real data as possible.

The images were then subject to data augmentation, using data augmentation
software from Roboflow. [36]. The augmentatinos that were applied were:

• 90 degree rotation

• ± 10 degree rotation

• ± 2 degrees of shear

These are augmentations that well reflect the visual conditions that the quadcopter
will encounter during the landing mission. It is desirable that the computer vision
system is invariant to rotation, so that the quadcopter is able to recognize the landing
platform regardless of yaw rotation. If the quadcopter rolls or pitches, then the im-
age of the landing platform will be slightly distorted, and the landing platform will
not appear as a perfect circle. Therefore the images were subject to random shear to
train the model to be invariant to this.

By augmentation these 1083 images were increased to 2599 images. These im-
ages were then split into three sets, one training set, one validation set, and one
testing set. The training set consisted of 2274 images, while the validation and test-
ing set consisted of 217 and 108 images respectively. The training set is for training
the model. The validation set is for testing the model during training, and logging
training results. The version of the model that performed best on the validation is
chosen to be the final model. The test set is for testing the final model. The test
set is data which the model has never seen during training. Thus the results from
inference on the test set is a good score for a model’s classification accuracy.

The dataset is a quite balanced. Every landing platform contains one element
of each class. Each image contains only one landing platform. Some of the images
do not contain the complete landing platform, so in some cases the Arrow or the H
is not in the image. The vast majority of the images contains all three classes. The
dataset is therefore well balanced, although contains come fewer elements of the
class Arrow.

4.3 Darknet object detector

In order to estimate the pose of the quadcopter relative to the landing platform the
system needs to locate the landing platform in the camera image. The quadcopter
uses the bottom facing camera for capturing images. Locating the landing platform
in the images is done by a Darknet object detection model. The Darknet models
YOLOv4 and YOLOv4-tiny are used. The YOLO models outputs bounding boxes

4.3. Darknet object detector 41

FIGURE 4.1: Labeled image of the landing platform with bounding
box labels of the three classes; Helipad, H, and Arrow.

42 Chapter 4. Methodology

surrounding specific parts of the landing platform. The size and location of these
bounding boxes can be used to estimate the center and radius of the landing plat-
form in camera pixels.

4.3.1 Training Darknet

The Darknet models are trained in order to recognize parts of the landing platform.
The models are trained by using supervised training. This works by providing the
Darknet models with a labeled dataset. The model will be trained to classify the
images according to the provided labels. The dataset the models are trained on
contains 3 classes of objects. The classes are Helipad, Arrow, and H.

Two Darknet models are trained; YOLOv4 and YOLOv4-tiny. The YOLOv4
model and YOLOv4-tiny model are trained by transfer learning with using pre-
trained weights as initial weights. The initial weights are weights released for YOLOv4
and YOLOv4-tiny by AlexeyAB [37], creator of YOLOv4 and YOLOv4-tiny. The ini-
tial weights are trained on the COCO dataset [25].

The models are trained on free GPUs provided by Google using their Google
Colab Notebooks [38]. Open-source notebooks for training YOLOv4 and YOLOv4-
tiny on Google Colab, provided by Roboflow [39] [36], are modified and used for
training of the models. The labeled dataset is uploaded to the respective notebook.
Thus training the models are done using the Google Colab cloud service.

After training the resulting weight files are downloaded and used with the Dark-
net algorithm.

4.3.2 Darknet for Ros

In order to incorporate Darknet into the quadcopter system Darknet for ROS is used.
Darknet for ROS is a ROS package by Legged Robotics [40]. This package is a pack-
age for performing inference on images using Darknet classification models. Model
configuration files for YOLOv4 and YOLOv4-tiny are added to the Darknet for ROS
module, as well as the trained weights for the models into the Darknet for ROS mod-
ule. By specifying which model configuration file and weight file is to be read in a
ROS launch file, one can easily switch between Darknet models, image resolutions
and model weights.

Darknet for ROS is set to subscribe to the ROS topic /ardrone/bottom/image_raw.
Darknet for ROS automatically does inference on images as they are published,
based on what model and weight that are specified. Darknet for ROS then pub-
lishes the detected bounding boxes to the topic /darknet_ros/bounding_boxes. The
bounding boxes are published as a custom ROS message type; Bounding_Boxes. This
message contains a list of the ROS message type Bounding_Box. Bounding_Box is a
custom ROS message type which contains the following information

• confidence

• xmin

• xmax

• ymin

• ymax

• class id

4.4. Darknet pose estimator 43

• class_name

The ROS topic /ardrone/bottom/image_raw has a queue size of 1. This ensures that
the current image on the topic is overwritten when a new image is published. Thus,
Darknet will always start inference on the most recently published image.

4.4 Darknet pose estimator

In order to estimate pose of the quadcopter the algorithm first need to locate the
landing platform in the camera frame. YOLO outputs bounding boxes surrounding
the classified Helipad, H and Arrow in the image. This bounding box output is used
to estimate the center position and radius of the landing platform in camera pixels.

Using a camera pixels to world coordinate transform, adapted from Thomas
Sundvoll’s coordinate transform in his master thesis [34], pixel values for landing
platform center and radius can be transformed into quadcopter pose. This trans-
formation utilizes known dimensions of the landing platform, camera intrisincs and
camera geometry. This transformation is based on the assumptions that the quad-
copter is hovering flat in the air. This is an assumption that the rotation in pitch and
roll are zero. The coordinate transform is also is based on the assumptions that the
landing platform is oriented flat on the ground, and thereby parallel with the hov-
ering quadcopter. Thus, by locating the landing platform center and radius in the
camera frame a pose estimate for the quadcopter can be calculated. The code for the
coordinate transform can be seen in Listing 13.

1 def transform_pixel_position_to_world_coordinates(center_px , r_px):
2 focal_length = 374.67
3 real_radius = 390
4 x_0 = IMG_HEIGHT /2.0
5 y_0 = IMG_WIDTH /2.0
6 d_x = x_0 - center_px [0]
7 d_y = y_0 - center_px [1]
8 est_z = real_radius*focal_length / r_px
9 est_x = -((est_z * d_x / focal_length) + camera_offset_x)

10 est_y = -(est_z * d_y / focal_length)
11 est_z += camera_offset_z
12 return (est_x ,est_y ,est_z)

LISTING 4.1: Coordinate transform from camera frame coordinates
to world coordinates. Adapted from [34].

The assumption that the quadcopter is hovering flat in the air is an assumption
that is never perfectly satisfied. In order for the quadcopter to move in x- and y-axis
it has to roll and pitch. The quadcopter is constantly experiencing small perturba-
tions in roll and pitch. The control signals sent to the drone are sufficiently slow such
that the roll and pitch movements for the quadcopter to move are small. This makes
it so that the assumptions are not violated too much. If there was wind while run-
ning the tests the error margin from the assumptions would be greater. The wind
would apply a force, pushing the quadcopter in a direction, and the quadcopter
would have to roll or pitch in order to hover still in the air. The assumption that
the landing platform is parallel to the quadcopter is an assumption that holds well
in the simulated environment. In the simulated environment the DNV-GL ReVolt
vessel is not moving at all. When testing with the real ship there might be waves
and wind which causes the ReVolt vessel-, and therefore the landing platform, to
roll and pitch.

44 Chapter 4. Methodology

FIGURE 4.2: Calculating theta given center coordinates of bounding
box for H (xh, yh) and Arrow (xa, ya).

The YOLO object detection algorithm may predict that there is more that one
instance of a single class in the image. The pose estimator will apply non-max sup-
pression on the bounding boxes, by removing all but the most probable bounding
box, such that only one bounding box is used for every class.

4.4.1 Estimation of landing platform rotation

The rotation of the lading platform, θ, is defined as can be seen in Figure 4.2. Zero
rotation is defined as when the orange arrow points directly to the right in the cam-
era frame, and a line from the arrow to the center of the landing platform is parallel
to the x-axis in the camera frame. Yaw can be estimated by calculating the center of
an Arrow bounding box as well as the center of the landing platform. The rotation
is found as the atan2 of the difference between the centers of the bounding boxes in
x and y direction. Thus, theta is estimated as

θ = atan2(ya − yc, xa − xc) (4.1)

where (xa, ya) are center coordinates of bounding box encompassing the Arrow, and
(xc, yc) are estimated center coordinates of the landing platform

4.4.2 Estimation of landing platform center

The center of the landing platform in located in the center of a perfect bounding
box encompassing the Helipad class, as well as in the center of a perfect bounding
box encompassing the H. Thus the center of the landing platform can be estimated
by finding the center of a bounding box which is drawn around the Helipad or the

4.4. Darknet pose estimator 45

H. The center of a bounding box (x̄bb, ȳbb) is found in pixel coordinates, given a
bounding box coordinates, is found by

(wbb, hbb) = (xmax − xmin, ymax − ymin)

(x̄bb, ȳbb) = (xmin + 0.5w, ymin + 0.5h)

where xmax, xmin, ymax, ymin are pixel coordinates for the bounding box. wbb and hbb
are width and height of the bounding box.

When running the Darknet object classifier the bounding boxes will not be per-
fectly aligned with the ground truth object. Nor is there a guarantee that the whole
of the H or the Helipad are in the image, as can be seen in Figure 4.4. Thus the center
of the bounding boxes will be an estimate of the center and may not align with the
ground truth center.

If the camera view is taken from an altitude that is so close that is has does not
contain the full Helipad, then it is preferable to use the center of a H bounding box to
estimate the center, as long as such a bounding box is found. This is because the H is
smaller than the Helipad while being located in the center of the helipad, such that
the center of the bounding box encompassing the H will be closer to the ground truth
center than a Helipad bounding box. If the camera view contains both the full H and
the full Helipad, both the centers of the bounding boxes will approximate the ground
truth center. If the quadcopter is far away from the landing platform the center of the
landing platform is estimated as the center of the bounding box of the Helipad. This
is because from far away the H and the Helipad looks very similar, and the Darknet
algorithm may wrongly classify the Helipad as the H. When the quadcopter is close
to the landing platform, then the Arrow is most likely detected. This is not the
case when the quadcopter is far away, as YOLO is known to struggle with detecting
small objects. Therefore if the Arrow and the H is detected by the algorithm, then
the center is estimated as the center of the H bounding box. Otherwise the center is
estimated as the center of the Helipad bounding box.

4.4.3 Estimation of landing platform radius

Bounding boxes of the Helipad and H can be used in order to estimate the radius
of the landing platform in the camera frame. The side-lengths of a bounding box
surrounding the Helipad is used as an an estimate of the diameter of the landing
platform. In the case that the bounding box is not square, the longest side of the
bounding box is used as the best estimate for the diameter. This may happen when
the quadcopter is so close to the helipad that the camera view does not encompass
the whole helipad, or if the YOLO bounding box is not perfect over ground truth.
Thus the radius of the landing platform, given a Helipad bounding box is calculated
as

(wbb, Helipad, hbb, Helipad) = (xHelipadmax
− xHelipadmin

, yHelipadmax
− yHelipadmin

) (4.2)

rLP =
1
2
·max(wbb, Helipad, hbb, Helipad) (4.3)

It is preferable to use a bounding box of the H for estimating the radius of the Heli-
pad given that the quadcopter is close to the landing platform. This is because if the
quadcopter is very close to the landing platform, then the camera view will be com-
pletely filled with an image of the lading platform. A Helipad bounding box will in
that instance cover the entire camera view, and the radius of the landing platform,

46 Chapter 4. Methodology

estimated using that bounding box, will be estimated to be the complete camera
view, and may not predict it to be larger. Thus, when the landing platform fills the
camera view the quadcopter would not be able to predict the radius accurately. The
H is smaller than the Helipad, and is located in the center of the landing platform.
Therefore, an estimate of the radius of the landing platform given a H bounding box
will be more accurate than an estimate given the Helipad when the camera view
is very close. This is because the H is smaller and is more likely to be contained
completely in the camera view than the Helipad. An example of this can be seen in
Figure 4.4.

When the quadcopter is far away from the landing platform, the Darknet detec-
tor may detect the whole landing platform as the H, so an estimate of the radius
given the bounding box encompassing the Helipad will give a more accurate esti-
mate. Thus the same logic is used as for estimating center; that if both the Arrow
and the H is detected by the algorithm, then the radius is estimated using the H
bounding box. Otherwise the radius is estimated using the Helipad bounding box.

The diameter of the helipad is known to be 0.80m, and the width and length of the
H, (wH, hH), are known to be 0.266m and 0.177m [34]. Thus the relationship between
the radius of the landing platform and the height of the H is rLP = 3

2 hH. From
experiments it is seen that the YOLO algorithm draws H bounding boxes that are
slightly larger than the H. From experiments it is found that the proper relationship
between the radius of the landing platform and the maximum of H bounding box
side lengths is 2.65. Thus, the radius of the landing platform, given a H bounding
box, is found by

(wbb, H, hbb, H) = (xHmax − xHmin , yHmax − yHmin) (4.4)

rLP =
2.65

2
·max(wbb, H, hbb, H) (4.5)

If the quadcopter is not aligned with the landing platform, the side image of
the H will be rotated, meaning that the sides of the H are not parallel to the sides
of the camera view. In that case the H bounding box will be larger than the H.
An illustration of this can be seen in Figure 4.3, where the height and width of the
bounding box are larger than the height and width of the H. By knowing the angle
of rotation θ, the known aspect ratio of the H, and the bounding box size (w, h), the
height and width of the H in the image (wH, hH) can be calculated.

The relationship between the width and height of the bounding box (wbb, hbb)
and the width and height of the H (w, h) is found to be

[
wbb
hbb

]
=

[
sin(θ) cos(θ)
cos(θ) sin(θ)

] [
w
h

]
(4.6)

(4.7)

Solving for (w, h) , by inverting the matrix, this becomes[
w
h

]
=

1
sin2(θ)− cos2(θ)

[
sin(θ) −cos(θ)
−cos(θ) sin(θ)

] [
wbb
hbb

]
(4.8)

This matrix inverse does not exists for certain values of θ. It does not exist when
θ = k π

2 for any odd integer k, as the determinant of the matrix becomes zero. This
makes it impossible to calculate (w, h) explicitly for all values of θ.

4.4. Darknet pose estimator 47

FIGURE 4.3: Calculating original size of H given angle of rotation θ
and bounding box size (wbb, hbb).

48 Chapter 4. Methodology

The dimensions of the H are known. The height and length of the H are hH =
0.226m and wH = 0.177m respectively. Thus, the relationship between the side-
lengths of the H is such that hH = 3

2 · wH. Therefore one can calculate the expected
bounding box size (wbb, hbb) for the given rotation θ and the known aspect ratio by[

wbb
hbb

]
=

[
cos(θ) sin(θ)
sin(θ) cos(θ)

] [
2
3

]
(4.9)

Dividing the results, wbb and hbb , by w = 2 and h = 3 respectively one gets the
corresponding factors (kw, kh) for scaling the H bounding box to the size of the H.
Table with notable scaling values can be found in Appendix A. Thus the radius of
the landing platform given a H bounding box and angle of rotation θ is found by

(wbb, H, hbb, H) = (xHmax − xHmin , yHmax − yHmin) (4.10)

kw =
1
2
(2cos(θ) + 3sin(θ)) (4.11)

kh =
1
3
(3sin(θ) + 2cos(θ)) (4.12)

(wbb, H, hbb, H) = (wbb, H · kw, hbb, H · kh) (4.13)

rLP =
2.65

2
·max(wbb, H, hbb, H) (4.14)

The complete algorithm for estimating center and radius of the landing platform
given bounding boxes is given in algorithm 1

Algorithm 1: Estimating center and radius of the helipad in camera pixel
coordinates from YOLO bounding box output

Input: list of bounding boxes for matches
Output: estimated center (x, y) and radius r of Helipad in camera pixel
coordinates.

if matches contains H and matches contains Arrow then
θ ← estimate_rotation(Hbb, Arrowbb);
(wH, hh)← downscale_H_by_rotation(wH, hh, θ);
r ← 0.5 · 2.65 ·max(wH, hH)
x, y← (xH, yH);

else if matches contains Helipad then
x, y← (xHelipad, yHelipad);
r ← 0.5 ·max(wHelipad, hHelipad);

else
return None

end

In the case that the model struggles to recognize the arrow at all, then an alter-
native algorithm is proposed in order to make automated landing possible. This
alternative method is relevant for when running the results with YOLOv4-tiny. This
YOLO model is known to struggle to recognize small objects, and may therefore
struggle to classify the arrow. This alternative algorithm will estimate the center
and radius of the helipad using the bounding box of the H as long as it is available.
This is because when the quadcopter is close to the landing platform an estimate
using the bounding box of the Helipad may be very inaccurate. Since YOLOv4-tiny
may struggle the recognize the arrow at any heights, the algorithm is chosen to be

4.4. Darknet pose estimator 49

FIGURE 4.4: When the drone is close to the helipad, the whole heli-
pad is not in the picture. The bounding box of the Helipad does not
enclose the whole Helipad. Therefore an estimate of the size of the
landing platform using the bounding box of the H will give a more

accurate estimate.

algorithm 2 when running YOLOv4-tiny.

Algorithm 2: Estimating center and radius of the helipad in camera pixel
coordinates from YOLO bounding box output

Input: list of bounding boxes for matches
Output: estimated center (x, y) and radius r of Helipad in camera pixel
coordinates.

if matches contains H then
if matches contains Arrow then

x, y← (xH, yH);
θ ← estimate_rotation(Hbb, Arrowbb);
(wH, hh)← downscale_H_by_rotation(wH, hh, θ);
r ← 0.5 · 2.65 ·max(wH, hh)

else
x, y← (xH, yH);
r ← 0.5 · 2.65 ·max(wH, hH)

end
else if matches contains Helipad then

x, y← (xHelipad, yHelipad);
r ← 0.5 ·max(wHelipad, hHelipad);

else
return None

end

50 Chapter 4. Methodology

4.5 Traditional Computer Vision Method for pose estimation

A pose estimator using traditional computer vision methods is also used for pose
estimation in this thesis. This pose estimator is taken from Thomas Sundvoll’s mas-
ter thesis about pose estimation for autonomous quadcopter flight [1]. Sundvoll’s
pose estimator is based on locating certain elements of the landing platform using
traditional computer vision methods.

The input image is first subject to multiple color segmentations, isolating out
green pixels, orange pixels and white pixels as three different images. These colors
are colors that are present on the landing platform, and therefore segmenting out
these colors reduces unnecessary information in the image. Harris Corner detection
and Canny Edge detection are used to isolate aspects of the landing platform, such
as the round circles, the corners of the H, and the orange triangle which is the arrow.

By utilizing known aspects of the landing platform, these isolated aspects that
are found can be used to locate the center and radius of the landing platform in
pixel values. The rotation of the landing platform can also be determined using
the location of the arrow compared to the center of the landing platform. The pixel
values of the center and radius of the landing platform is transformed into world
coordinate position using a coordinate transform using camera geometry, in order
to get an estimation of quadcopter position. The estimated rotation is combined with
this position estimate, thus producing an estimate of quadcopter pose.

4.6 Combining computer vision methods

The results from [1] show that the traditional computer vision pose estimator is quite
reliable in the simulated environment. It is efficient on CPU, and is able to detect
pose from multiple altitudes. This technique requires tuning by finding proper color
segmentation thresholds that match the colors of the landing platform as they appear
to the camera. However, with the proper tuning the estimator is quite good. The
need for proper tuning makes this computer vision system less robust to changes in
the visual environment, and may fail if the conditions are different than what it is
tuned for.

The Darknet pose estimator can be trained to be general and quite invariant to
changes in visual conditions if it is trained on a dataset which contains data from
multiple- and challenging visual conditions.

A combination of the two computer vision techniques may prove to be a more
robust pose estimator than either of the techniques independently. The two pose es-
timators are based on different computer vision principles, and might handle chal-
lenging visual conditions differently. In the scenario where one method fails to de-
tect the landing platform and therefore fails to estimate the current quadcopter pose
the other algorithm might detect the platform and be able to estimate the current
pose.

Both method provide an estimates for pose, on the form (x, y, z, 0, 0, θ). Roll and
pitch are estimated to be zero at all times. This is an underlying assumption for both
estimators, and is required for the current pixel-to-world coordinate transform.

The estimates from the two methods are not synchronized in time. The estimates
are output from the methods as soon as they are estimated. The estimates put into
and filtered by a filter for fusing the estimates. The estimates from both methods
are passed through the same filter. This filter is a moving median averaging filter
(MMA-filter). This filter is a combination of a moving median filter and a moving

4.7. Experiment design 51

FIGURE 4.5: Moving median average filter, with a median filter size
of 3 and average filter size of 3. xavg is the filtered output estimate

that is passed onto the Dead Reckoning Module

average filter. The moving median filter outputs the median of the last M estimated
values. Such a filter filters out value spikes of the estimates. The output from this
moving median filter is put into a moving average filter. This moving average filter
averages the last N outputs from the moving median filter. This filter suppresses
high frequency noise by smoothing out the estimates. An illustration of a MMA
filter with size M = N = 3 can be seen in Figure 4.5.

The estimates from both computer vision pose estimator methods are generated
concurrently and passed through this filter. Thus the output will be based on a
filtered combination of the two pose estimation methods.

4.7 Experiment design

In order for the combined pose estimator to be a robust pose estimator then both the
TCV pose estimator and the Darknet pose estimator need to be able to estimate pose
reliably. The TCV pose estimator presented by Sundvoll [1] works reliably and well
in the simulated environment. Therefore the experiments need to be designed such
that the following is tested

• Whether the DL pose estimator is sufficiently robust, fast and accurate for use
in autonomous missions

• Whether the combined pose estimator is sufficiently robust, fast and accurate
for use in autonomous missions.

• Whether the combined pose estimator is sufficiently robust to perform well in
challenging visual conditions.

In order to test this the quadcopter will perform autonomous missions utilizing
the pose estimator algorithms presented in this thesis. The pose estimates will be
connected as feedback to the controller which controls the quadcopter motors.

Autonomous missions are implemented as a series of reference points for a con-
troller controlling the quadcopter pose. The quadcopter controller is a PID con-
troller, which works by comparing the estimated pose of the quadcopter to a refer-
ence point. The PID controller seeks to control the quadcopter towards the reference
point. The PID controlled calculates an error between the current pose and the ref-
erence point, called proportional error ep. It also calculates the integral of the error,
eI as well as the derivative of the error ed. Control actuation is calculated as a sum of
these errors, scaled by respective scaling factors found through experimentation.

When estimated pose is within an error margin of the setpoint, the next setpoint
in the mission is applied as reference to the controller. The error margin used in the
experiments is ±0.01m.

52 Chapter 4. Methodology

The estimated pose from the computer vision pose estimator can be compared
to ground truth quadcopter pose which is available from the gazebo simulator. By
comparing the estimated pose to ground truth the accuracy of the pose estimates can
be assessed.

The mission experiments that are tested with the pose estimator are

• Stationary hovering 1m above the platform

• Stationary hovering 5m above the platform

• Autonomous landing on the platform

4.7.1 Stationary hovering

A hovering mission is performed by applying one setpoint to the controller. The
controller will attempt to control the quadcopter towards this point, and stay there.
The result is that the quadcopter will attempt to hover stationary in the air at the
given setpoint.

It is important that the hovering point is a point where the landing platform is
within the camera view of the quadcopter. Otherwise the quadcopter will not be able
to estimate the current pose using the proposed computer vision pose estimator.

This experiment test whether the pose estimator is sufficiently accurate for real-
time control of the quadcopter. The stationary hovering test will be performed from
an altitude of 1m and 5m.

Performing the stationary hovering mission tests whether the quadcopter pose
estimator is accurate and reliable for use in real-time control of the quadcopter. Per-
forming the stationary hovering test at 5m challenges the robustness of the pose
estimator in a more challenging scenario. The landing platform shrinks in the cam-
era view as the quadcopter gains altitude. Detecting features in a smaller object may
be more challenging for the computer vision algorithm, and therefore this is a test of
the robustness of the pose estimator in a more challenging visual environment.

4.7.2 Autonomous Landing

In order to perform automated landing, the quadcopter controller is fed a series of
reference points.

The quadcopter can initiate the landing mission at different initial poses, as long
as the pose estimator is able to estimate the current pose. When the automated
landing mission is initiated the controller will control the quadcopter to the first
setpoint, which is (x = 0, y = 0, z = 2.0). This entails stationary hovering 2m above
the platform.

When the pose estimates reaches an estimate which is within the error margin
of this setpoint, the controller switches the next setpoint, which is (x = 0, y =
0, z = 0.20) which means hovering 0.20m above the platform. When this setpoint is
reached the drone will turn off the motors, and drop down to the landing platform
in order to complete the landing mission.

An autonomous landing mission is a test of whether the pose estimator is suffi-
ciently robust in order to be used for the quadcopter performing autonomous mis-
sions. Pose estimates during a landing mission need to be frequent and accurate for
the landing mission to be successful. This mission also tests whether the pose esti-
mator is able to accurately predict the quadcopter pose when the quadcopter is close
to the landing platform.

53

Chapter 5

Results

5.1 Training of Darknet models

The YOLOv4 model and YOLOv4-tiny model are trained on the dataset. The mod-
els are trained by transfer learning, using pre-trained weights. The initial weights
that are used for transfer learning are the official YOLOv4 and YOLOv4tiny weights
trained on the COCO dataset [37]. The model is trained to recognize the three
classes, Helipad, H, and Arrow, using the dataset collected from the Gazebo simu-
lator. The dataset consists of 1083 images, that are augmented into 2599 images.

These images are resized to a proper YOLO format of 416x416, by squaring the
images with black borders on the top and bottom, to make the image square, and
scaling down the resolution. Darknet performs this resizing and scaling before in-
ference on all images. This is therefore done on the dataset used for training.

5.1.1 YOLOv4-tiny

The YOLOv4-tiny model is trained on the dataset with the following parameters:

• Decay: 0.005

• Momentum: 0.9

• Batch size: 64

• Learning rate: 0.00261

• No. of Batches in training: 6000

• Image resolution: 416x416

After being trained using these parameters the YOLOv4-tiny model achieved a
mAP of 78.5 % on the test set. This is quite low, and does not point towards a robust
model. YOLOv4-tiny is a very small DNN model, and is not created for being the
most accurate. The main advantage of YOLOv4-tiny is quick inference times. In ??
it is seen that YOLOv4-tiny has significantly lower mAP-, but has higher FPS than
the other models.

The simulator environment is an unchanging environment. The images in the
training set is therefore quite similar to the images in the test set. Because of this the
model is expected to perform well on the test set, and be proficient at identifying
the classes. The dataset the model was trained with is quite small however. A small
model such as YOLOv4-tiny requires less data when training than a larger model
such as YOLOv4. This is because it has fewer neurons and layers that need to be
trained. Despite this, the dataset is small, and this may be one of the reasons for the
low mAP.

54 Chapter 5. Results

(A) A successful inference
(B) Close up inference. Bounding boxes mis-

aligned.

(C) Does not recognize the arrow (D) Does not recognize the H, nor the Arrow

FIGURE 5.1: YOLOv4-tiny inference on test images

Figure 5.1 shows output images after inference using a trained YOLOv4-tiny
model on images in the test set. A successful inference is shown in Figure 5.1a where
the model is able to classify the different classes well. Figure 5.1b is an example of in-
ference where the quadcopter is close to the landing platform. The bounding boxes
are not well aligned with ground truth. Figure 5.1c the model does not recognize
the Arrow. YOLOv4-tiny is known to struggle with classifying small objects, and
thus it struggles to classify the Arrow. From a high altitude the model is not able to
recognize either the Arrow, nor the H, as can be seen in Figure 5.1d.

5.1.2 YOLOv4

The YOLOv4 model was trained on the dataset with the following parameters:

• Decay: 0.005

• Momentum: 0.95

5.1. Training of Darknet models 55

• Batch size: 64

• Learning rate: 0.001

• No. of Batches in training: 6000

• Image resolution: 416x416

The resulting mAP of the YOLOv4 model on the test data is 86.9 %. This is not
very high, and a robust model is expected to achieve a higher mAP. The simulator
setting is a visual environment that is quite stable, and the images in the test set
is very similar to the images the model is trained on. The dataset is quite small,
and YOLOv4 is a large model, consisting of 52 convolutional layers and one fully
connected layer. A large model requires a proportionally large dataset for training.
Although transfer learning using pre-trained weights decreases the required number
of images in a dataset when training, the size of the dataset on lower end. Increasing
the number of images in the dataset would most likely have increased the mAP of
the trained model.

Figure 5.2 shows examples of inference from the trained YOLOv4 model on test
images. The results are quite a lot better than the inference results using YOLOv4-
tiny. YOLOv4 is significantly better at detecting small objects than YOLOv4-tiny and
is able to recognize the Arrow and the H from high above, where YOLOv4-tiny is not
(5.1d, 5.2b). This is significant, as the Arrow is quite a small object, and the Helipad
and the H becomes small when the quadcopter is high above the landing platform.
Thus the YOLOv4 model is more robust than YOLOv4-tiny, as the larger model is
able to classify the objects of interest from further away than the smaller model.
Classifying the Arrow is required in order to estimate the rotation, and YOLOv4
is therefore more capable of estimating rotation when far away from the landing
platform than YOLOv4-tiny.

YOLOv4 detected some of the classes multiple times (5.2c). This is not desirable,
and may be one of the reasons for the low mAP. The model is trained to recognize
the Helipad and the H from many different altitudes. Therefore the model is trained
to detect the classes at varying sizes. A problem with this is that the white H is part
of the Helipad class and the parts of the Helipad class is the H. The model struggles
to identify whether the landing platform is a large H or the H is a small landing
Helipad. Training the model on a larger dataset may to reduce such errors. The
model was generally more confident in the correct predictions than the incorrectly
classified bounding boxes when there was double detections. The most confident
bounding box for each class is chosen as the proper prediction, so in most cases if
YOLOv4 predicts one class multiple times the most accurate prediction is selected.

YOLOv4 is more precise with the bounding box placements than YOLOv4-tiny.
In Figure 5.1b the bounding boxes are misaligned with the objects in the image, while
in Figure 5.2d and 5.2a the placement of the bounding boxes is more precise.

When running the YOLOv4 model on the simulator in real-time, hovering 1m
above the helipad, the model predicts the bounding boxes with confidences in a
range between

• Helipad: 99-100% confidence

• H: 85-95% confidence

• Arrow: 40-65% confidence

56 Chapter 5. Results

(A) Successful detection of part of Helipad.
(B) YOLOv4 detecting all classes from far

away. Double detection of H.

(C) Double detection of H and Helipad. (D) Detecting all classes well.

FIGURE 5.2: YOLOv4 inference on test images.

The model is less confident in the p-redictions of the Arrow than the H, and less
confident in the predictions of the H than the Helipad. YOLO is better at classifying
larger objects than small ones, and this can be seen in the results as well. The Arrow
may also be hard for the model to classify as it has to be distinguished from the
orange circle surrounding the H. The orange circle is the same color as the Arrow,
and this may therefore make classification of the Arrow difficult. The other two
classes are distinctive in the image, being of a distinctive color and having distinctive
shapes, and may therefore be easier to classify than the Arrow.

5.1.3 YOLO inference rate

The inference rate for the Darknet pose estimator while running the experiments can
be seen in Table 5.1. These inference rates were achieved on a OptiPlex 7040 with an
Intel R© CoreTM i7-6700 CPU @ 3.40GHz 8, while the Gazebo simulator environment
is running.

5.1. Training of Darknet models 57

The YOLOv4 model has a very low inference rate when running on a CPU. The
inference frequencies, at different resolutions, are all below 0.3 Hz. This is too slow
to be used as pose estimate for real-time control of the quadcopter. With an inference
rate of 0.3 Hz the pose estimates would be published less frequently than once every
3 seconds, which is not enough for controlling the quadcopter.

YOLOv4-tiny is significantly faster than it’s larger counterpart, but is still slow
on the CPU. Using images at a resolution of 256x256 pixels as input YOLOv4-tiny
produces estimates at 0.5 Hz. This is very slow for a system like the quadcopter. The
estimates are delayed as well. That means that the pose estimates are an estimate
of where the quadcopter was when the inference started. With an inference time of

1
0.5Hz = 2s that means that the pose estimate is an estimate of where the quadcopter
was 2 seconds earlier. This may cause the system to be unstable. A control command
that is based on a pose estimate that is 2 seconds old may not be the correct command
for the current environment. The quadcopter has fast dynamics, and may move a
lot in a second or two. Using a pose estimates with such a delay may cause the
quadcopter to become unstable.

The YOLOv4-tiny model at a very low resolution of 128x128 manages to pro-
duce pose estimates at a frequency of about 2.3 Hz. This is still quite low, but is
significantly faster than the other results on CPU.

The problem with reducing the resolution in order to get a higher inference rate
is that the model will lose predictive capabilities. If the resolution is very low, such
as at 256x256 or 128x128, the model may struggle to recognize the smallest features.
This is because the will be blurry and small features will be hard to detect. There
is therefore a trade-off when reducing the resolution, that the inference speed goes
up, while the predictive capabilities goes down. The mAP results from training the
models was results based on a resolution of 416x416. That mAP was in the lower
end of what is desired for the model to have, so it is not desirable to reduce the
resolution. However, when running on CPU the inference rate of a resolution of
416x416 is way too low for any real-time application of quadcopter control, as the
frequency is about 0.2 Hz.

Li et al. presents in [41] an optimized version of YOLOv4 containing 74% less
parameters. Fewer parameters in a DNN model results in faster inference times,
as less calculations have to be performed during inference. This reduction in pa-
rameters did not decrease the precision of the optimized model, which achieved a
precision increase of 2.6% compared to the original YOLOv4 model. Therefore, us-
ing this proposed model, instead of the original YOLOv4 model, may be an option
if GPU is not available.

Running the DNN on a GPU the inference rate is much higher than when run-
ning on a CPU. This can be seen in Table 5.1. These inference rates were achieved
when running the experiment on a GTX Ti GPU, while the Gazebo simulator is run-
ning at the same time. These inference rates are very high. The model was able to
produce estimates at about 190 Hz using the fastest model at the lowest resolution.
The most accurate model, YOLOv4, on the highest resolution 416x416, achieved over
50FPS. This is faster than the estimation rate of the TCV pose estimator, which pro-
duces pose estimates at a rate of 5 - 10Hz. Autonomous missions using the TCV pose
estimator [1], were completed successfully. Therefore 50 Hz is more than enough for
real-time control of the quadcopter.

Because inference times were so good with the GPU images with a higher reso-
lution may be tested in order to gain better predictive capabilities for the model.

It is preferable to run YOLO inference on a GPU when performing real-time con-
trol of a quadcopter because of the increase in inference rate. When using a CPU

58 Chapter 5. Results

Model Processor Resolution Hz
YOLOv4 CPU 416x416 < 0.1 Hz

YOLOv4-tiny CPU 416x416 ∼0.2 Hz
YOLOv4 CPU 256x256 < 0.1 Hz

YOLOv4-tiny CPU 256x256 ∼ 0.5 Hz
YOLOv4 CPU 128x128 ∼ 0.3 Hz

YOLOv4-tiny CPU 128x128 ∼ 2.3 Hz
YOLOv4 GPU 416x416 ∼ 50 Hz

YOLOv4-tiny GPU 416x416 ∼ 100 Hz
YOLOv4 GPU 256x256 ∼ 140 Hz

YOLOv4-tiny GPU 256x256 ∼ 170 Hz
YOLOv4 GPU 128x128 ∼ 150 Hz

YOLOv4-tiny GPU 128x128 ∼ 190 Hz

TABLE 5.1: Inference time results for different Darknet models while
running the Gazebo simulator

the worst performing model, YOLOv4-tiny, on the lowest resolution, was the only
model which was able to perform inference at a rate that was above 2 Hz. On a GPU
it is possible to use the best model with higher resolution images.

5.2 Simulation results on CPU

It is interesting to analyze the results from running the experiments on a CPU be-
cause a GPU may not be available while experimenting with the physical quad-
copter. It is key to understand the limits of a CPU for operations like this, and
whether a GPU is strictly necessary for real-time detection of the landing platform,
or whether it is feasible to perform such missions with CPU processors.

The alternative algorithm for estimating center and radius is used, the algo-
rithm 2, when running the results on CPU, as the YOLOv4-tiny model at the lowest
resolutions struggles to classify the arrow. YOLOv4-tiny is the model that were able
to produce estimates at a rate that is t to run the experiments. Therefore the method
of estimating center and radius was chosen to be algorithm 2 when running on the
CPU.

5.2.1 Stationary hovering test with Darknet pose estimator on CPU.

The stationary hovering test are performed by setting a reference point for the quad-
copter controller, and letting that be constant during the test. The hover tests are
performed with at reference point (x = −0.10m, y = 0.0m, z = zr), where zr = 1m
or zr = 5m. The stationary hovering experiments are tested with different pose esti-
mator systems at different resolutions.

The Darknet pose estimator is used for pose estimation, with the model YOLOv4-
tiny, with image resolution of 256x256. This model achieves a pose estimation fre-
quency of 0.5 Hz on the CPU. This is very low. Because of the low pose estimation
frequency the median filter size is set to be 1 and the averaging filter size is set to
be 1. This is because filtering creates a delay in the system, as the newest estimates
are filtered together with older estimates. This is not desirable when the estimate
frequency is so low.

5.2. Simulation results on CPU 59

FIGURE 5.3: 1m Hover test on CPU, using YOLOv4-tiny at 256x256
resolution. Darknet used for pose estimation. Figure shows position

estimates vs ground truth.

The estimated variables x, y, z, θ for this are plotted versus ground truth values
in Figure 5.3. The quadcopter experienced large oscillations in altitude, which can
be seen as the ground truth line in the z-axis. The oscillations were increasing in
amplitude, and the quadcopter crashed into the landing platform 30 seconds into the
test. Thus, the system did not manage to hover in a stable position using this pose
estimator. The pose estimates are not sufficiently accurate in order for the controller
to stabilize the quadcopter. The estimates do approximate the ground truth values
quite well, however they are delayed about 2 seconds in time. A system may be able
to handle a feedback delay as long as the feedback delay is significantly shorter than
the response time for the system. The feedback delay is significant in relation to how
quickly the state of the system changes. Therefore the quadcopter was not able to
use this pose feedback to achieve stability.

Performing the stationary hovering test with zr = 5m the quadcopter performed
slightly better than when hovering closer to the platform. The pose estimates and
ground truth during this test can be seen in Figure 5.4. The quadcopter started os-
cillating in altitude. The oscillations had an amplitude of about 1.5m, which is quite
significant. The quadcopter controller was not able to stop the oscillations because
of the feedback delay in the pose estimates. The oscillations in altitude are slightly
increasing in size, and if the hover test was run for longer amount of time the oscilla-
tions might get large enough to crash in the water or the landing platform, although
this has not been tested. The

While there is a feedback delay, the estimates x- and y-axis the were able to
track the ground truth sufficiently in order to achieve stability in x- and y-axis. The
quadcopter does not move far away from the reference points of x = −0.10m and
y = 0.0m. The controller gains for errors in x- and y-axis are low, and therefore the
quadcopter reacts slowly to position errors in x- and y-axis. This makes it so that the
feedback delay is less significant, and the quadcopter controller is able to stabilize
the quadcopter close to the reference points.

The model was not able to recognize the Arrow from that distance, and thus did
not estimate the yaw.

60 Chapter 5. Results

FIGURE 5.4: 5m Hover test on CPU, using YOLOv4-tiny at 256x256
resolution. Darknet used for pose estimation. Figure shows position

estimates vs ground truth.

The long time delay seems to matter less when the quadcopter is further away
from the landing platform. This may be because the landing platform moves more
slowly in the camera frame when the quadcopter is further away. When hovering at
5m there is more room for error than with hovering at 1m, because the quadcopter
can more further while the landing platform stays in the camera frame. When hov-
ering at 1m the quadcopter does not have to move far away before the helipad is out
of the frame, while at 5m it has to move a lot further away. This makes it so that the
quadcopter has more time to recover from a bad trajectory. This might be the reason
that the quadcopter performed slightly better while hovering at zr = 5m crashing
sooner when hovering at zr = 1m.

By reducing image resolution to 128x128 YOLOv4-tiny achieves significantly
shorter inference time, producing pose estimates at about 2.3Hz. The stationary hov-
ering test is zr = 1m using YOLOv4-tiny with a resolution of 128x128. The estimated
pose and ground truth during test can be seen in Figure 5.5.

The increased inference frequency with the lower image resolutions results in
pose estimates that track the ground truth closer than compared with the previous
tests. Using these estimates as feedback the quadcopter is able to stabilize itself
around the reference point. Deviations from the reference points in x- and y- axis
are at most 10cm, and the estimated position for x and y tracks the ground truth
with maximum errors of 2cm during the test. The estimated position in z tracks the
ground truth sufficiently well in order for the quadcopter to hover at the reference
point.

The problem with reducing the resolution to such a low resolution is that the
model is less accurate in the classifications. YOLOv4-tiny is already a small object
classification network that struggles with recognizing small objects. By reducing the
resolution the model struggles even more. At 1m, YOLOv4-tiny at 128x128 was not
able to recognize the Arrow, and thus did not estimate the yaw. It had no problem
with recognizing the Helipad and the H from that height, and was able to achieve
stable hovering.

The stationary hovering test was performed with zr = 5m with YOLOv4-tiny

5.2. Simulation results on CPU 61

FIGURE 5.5: 1m Hover test on CPU, using YOLOv4-tiny at 128x128
resolution. Darknet used for pose estimation. Figure shows pose es-

timates vs ground truth.

with 128x128 resolution. The results were not impressive. The classification model
was not able to recognize the Helipad, nor any of the other classes, and thus was not
able to produce any pose estimates.

The model did not recognize the landing platform from that altitude because it
is a very small model, and the input images were of very low resolution. Thus, the
model on such a resolution is not a very robust model, as it was not able to handle
pose estimation from an altitude of 5m.

The hovering test was not performed using the YOLOv4 algorithm with a CPU
processor This is because the inference frequency for that model is too slow for real-
time control of the quadcopter, even at the lowest resolution 128x128 (5.1). YOLOv4
is better than YOLOv4-tiny at recognizing small and medium-sized objects, and has
a higher mAP overall. Therefore it would be preferable to be able to use that model
of the tiny model. YOLOv4 would be able to recognize the landing platform from
a greater height than it’s smaller counterpart, as well as locating the Arrow which
YOLOv4-tiny struggles with. Locating the arrow would facilitate for a more accurate
pose estimate as well as making it possible to estimate yaw. On a CPU that was not
feasible when the inference was so slow.

5.2.2 Stationary hovering test with combined methods estimate on CPU

Both the DL pose estimator and the TCV pose estimator estimate the quadcopter
pose concurrently. A combined estimate is created by feeding estimates from both
estimation methods into a moving median averaging filter, using a median filter size
of 3 and averaging filter size of 3. The output from this filter is the combined esti-
mate. This combined estimate is used as pose estimate for the quadcopter. Using
the combined methods as pose feedback the stationary hovering test is performed
with zr = 1m. For this test the YOLOv4-tiny with a resolution of 128x128 was used.
The estimated pose can be seen in Figure 5.7 where the combined estimate is plot-
ted against the quadcopter’s ground truth pose during the test. The filtered output

62 Chapter 5. Results

FIGURE 5.6: 1m Hover test on CPU, using YOLOv4-tiny at 128x128
resolution. Filtered combination of methods used for pose estimation.
Figure shows position estimates from both methods vs ground truth.

tracks ground truth quite well, and the quadcopter is able to utilize this pose esti-
mate in order to hover in a stable manner around the reference point.

In Figure 5.6 the estimates from the different methods are plotted versus ground
truth. The TCV estimates are published at a frequency that is higher than the esti-
mates from the DL method. The TCV method publishes estimates at a frequency of
about 5-10 Hz, depending on whether the YOLO method is running concurrently
or not. Using the moving median averaging filter the Darknet estimates will there-
fore mostly filtered out by the median filter. This happens because the TCV method
outputs many similar estimates at a high frequency, and thus the median filter will
filter out the DL estimates. By comparing Figure 5.7 and Figure 5.6 one can see that
the filtered output is similar to the TCV estimates, although more smooth. That is a
disadvantage of using a median filter, that the fastest method is prioritized. When
running on a GPU the DL estimates are published at a frequency which is much
higher than the TCV methods. (5.1). Thus if running on a GPU the Darknet pose
estimator would be significantly faster that the TCV estimator, which is estimating
pose at about 10 Hz, and the median filter would filter out the TCV estimates. A
solution for this is to restrict the fastest method to a maximum pose estimation rate.
This would make the filtered estimate become a mix of the two results. This is not a
feasible solution when the update frequency of the slowest method is so low.

5.2.3 Automated Landing Using Darknet pose estimator on CPU

An automated landing mission is performed using the Darknet pose estimator on
a CPU. The initial pose of the quadcopter mission is hovering at zr = 1m. The
quadcopter is fed setpoints of zr = 2.0m and zr = 0.20m, and a signal to turn motors
off when it reaches the final setpoint. xr = 0.0m and yr = 0.0m for the complete
mission. This test is performed using a moving median filter size of 1 and averaging
filter size of 1. Thus, filtering is turned off for this test. This is done because filtering
over multiple measurements introduces a delay in the estimate. When the update
frequency of the estimates is low, more accurate estimates are achieved by removing

5.2. Simulation results on CPU 63

FIGURE 5.7: 1m Hover test on CPU, using YOLOv4-tiny at 128x128
resolution. Filtered combination of methods used for pose estimation.

Figure shows filtered position estimates vs ground truth.

the filter. The mission was performed on the YOLOv4-tiny on a 128x128 resolution,
which was seen to be the best pose estimation model for real-time control on the
CPU.

The estimated pose versus ground truth for this test is plotted in Figure 5.8. The
quadcopter successfully managed to complete the autonomous landing mission us-
ing the Darknet pose estimator. The pose estimation algorithm struggles to estimate
pose correctly when the quadcopter is very close to the landing platform. This hap-
pens when the altitude is below 0.5m. When the quadcopter is so close, the landing
platform covers the complete camera view. If the camera image consists of only the
green part of the platform, then the algorithm will struggle to estimate the correct
center of the landing platform. The Darknet network will classify the complete cam-
era view as Helipad. Predicting the center of the landing platform to be in the center
of this bounding box results in the center of the landing platform to be estimated to
be in the center of the camera view. This may not be the correct center. Therefore
the model will struggle when the quadcopter is below a certain altitude. This will
be less of a problem if the H is located in the camera view, as the H will then be used
to predict the center. It did mange to track the y and z estimates well until the end,
but struggled to estimate x well. It is not unexpected that the algorithm struggles
to estimate pose when hovering so close to the platform given the implementation.
A possible solution for this is to train the model to recognize smaller parts of the
landing platform, such that it may locate those when the quadcopter is close, and
thereby be able to estimate the correct center and radius.

A 3D plot of estimated pose is plotted versus ground truth during the automated
landing mission and can be seen in Figure 5.9. The largest errors in the pose estimate
appear when the quadcopter is very close to the landing platform as well as after it
has landed.

The algorithm was not able to identify the Arrow and therefore did not estimate
yaw rotation.

64 Chapter 5. Results

FIGURE 5.8: Landing test on CPU, using YOLOv4-tiny at 128x128
resolution. Darknet used for pose estimation. Figure shows pose es-

timate vs ground truth.

FIGURE 5.9: Landing test on CPU, using YOLOv4-tiny at 128x128
resolution. Darknet used for pose estimation. Figure shows position

estimates vs ground truth.

5.2. Simulation results on CPU 65

FIGURE 5.10: Landing test on CPU, using YOLOv4-tiny at 128x128
resolution. Filtered combination of methods used for pose estimation.
Figure shows plot of position estimate vs ground truth for both pose

estimation methods.

5.2.4 Automated landing with combined methods estimate on CPU

The automated landing test is performed using the combined methods on CPU. The
Darknet pose estimator model that was used was YOLOv4-tiny with image reso-
lution of 128x128. The filtered combined pose estimate during the test can be seen
in Figure 5.11 and a 3D plot of estimated pose versus ground truth can be seen in
Figure 5.12. The pose estimates from the two estimators during the landing scenario
are presented in Figure 5.10.

The combined estimates are closer to the ground truth than the estimates from
the Darknet estimator alone, as can be seen when comparing 3D plots for the two
landing missions; Figure 5.12 and Figure 5.9. The Darknet estimator struggled with
accurate pose estimates when the quadcopter was close to the landing platform.
The TCV estimator does not do this, and is accurate even when very close. The
TCV module compensates for the estimation errors from Darknet, and the resulting
estimate is closer to the ground truth.

5.2.5 CPU results discussion

The combined estimate is sufficiently accurate in order to perform an automated
landing mission in the simulated environment. Despite this, the estimation errors
are quite significant for the Darknet pose estimator. This could make the landing
mission fail in a more challenging landing scenario. The Darknet model YOLOv4-
tiny on a resolution of 128x128 is not robust, will therefore not be good at detecting
the landing platform in a challenging visual environment. Because of large esti-
mation errors when close to the platform, and the low detection capabilities of the
Darknet module when run on CPU, the combined model is less robust than the TCV
pose estimator. The TCV module produces more accurate estimates than the com-
bined module, and adding the YOLOv4-tiny detector does not add robustness to the
model.

66 Chapter 5. Results

FIGURE 5.11: Landing test on CPU, using YOLOv4-tiny at 128x128
resolution. Filtered combination of methods used for pose estimation.

Figure shows filtered pose estimates vs ground truth.

FIGURE 5.12: Landing test on CPU, using YOLOv4-tiny at 128x128
resolution. Filtered combination of methods used for pose estimation.

Figure shows filtered position estimate vs ground truth.

5.3. Simulation results with GPU 67

5.3 Simulation results with GPU

When running the experiments on a GPU the Darknet pose estimator achieved an
inference rate that was much faster than on the CPU. This is important, as delay in
the estimates have been shown to be quite detrimental for estimation accuracy and
quadcopter control. The only model that was able to produce estimates at a sufficient
frequency was YOLOv4-tiny at the lowest resolution, which struggled to classify the
Arrow, as well as not classifying the Helipad when hovering at 5m. Therefore it is
preferable to use a GPU when running these experiments. When using a GPU the
pose estimator achieves sufficient pose estimation frequency with all the models that
were tested. The model with the highest mAP, YOLOv4 at the resolution 416x416, is
used for all the tests processed on a GPU.

5.3.1 Stationary hover test with Darknet pose estimator on GPU

The stationary hover test is performed using the Darknet pose estimator on GPU.
The altitude reference point is zr = 1.0m, and reference points for x and y are xr =
−0.10m and yr = 0.0m. The initial altitude for this test was 1.4m, as can be seen in
the plot of pose estimates during the hover test Figure 5.13. The high inference rate,
as well as the more accurate YOLO model, results in estimates that align with the
ground truth quite well. The estimates for x and y are very close to the ground truth.

There is no notable delay in the estimates. The estimates are quite oscillatory.
This might be because of bounding box jitter, where the sizes and locations of the
bounding boxes are not constant between frames, instead jumping back and forth
slightly. One solution for this might be to increase the filter sizes in order to smooth
out the estimates. These estimates are filtered using a median filter size of 3 and an
averaging filter size of 3. The deviations from the ground truth in the x- and y-axis
are at most a 3 cm when performing the test.

The model struggles to estimate yaw correctly. This is most likely because of an
error in the code, where the yaw estimate was predicted to be zero if the Arrow was
not detected. Therefore the filter averages these results, making the estimated yaw
to be quite oscillatory and lower than the ground truth yaw. A way to fix this is
to estimate yaw to be the previously estimated yaw if a current estimate of yaw is
not available. A fix for this was not tested due to lacking GPU resources for testing.
Further investigation may need to be done of why the yaw estimate is incorrect.

There estimates in the z-axis have a varying deviation from the ground truth. A
possible explanation for this is that the model failed to estimate yaw correctly, and
therefore did not scale down the bounding box of the H as it was supposed to. If the
H is rotated the bounding box surrounding the H will be larger than the H. When
the Arrow is detected, the bounding box of the H is used for radius estimation. If
the Arrow is detected, but yaw is not estimated correctly, then the H will be scaled
improperly. The radius estimate of the landing platform is based on the size of the
H if the Arrow is detected. Estimating the radius of the landing platform using
an improperly scaled bounding box of the H will give an incorrect estimate of the
landing platform radius, and therefore the subsequent z estimate will be incorrect.

When using the same model and performing the stationary hover test with zr =
5m the quadcopter managed to stay quite stable in the air. The estimated pose versus
ground truth can be seen in Figure 5.14. The estimates in x- and y-axis are quite
oscillatory, which may be due to bounding box jitter. A way to fix this could be to
increase the filter sizes in order to smooth the filtered signal further. Having a large
filter size increases estimation lag, and may therefore be undesirable if the estimation

68 Chapter 5. Results

FIGURE 5.13: Hover test, zr = 1m, using Darknet pose estimator on
GPU. Filtered output with filter sizes of 3

frequency is low. The estimator error is quite low in x- and y-axis. While hovering
at 5m the estimates are within ± 20 cm of the ground truth within the whole test
duration. This is sufficiently low given the large distance from the quadcopter to the
landing platform, and the quadcopter is able to perform stable hovering at 5m.

The estimates in the z-axis are quite oscillatory as well, and the estimates oscil-
late with an amplitude of about 80cm while hovering at 5m. This is quite significant.
The oscillations in the estimates are of a high frequency compared to the quadcopter
dynamics, and it does not affect control too much. These oscillations may happen
because the bounding box drawn around the helipad varies slightly in size. A fix
for this could be to increase the filter sizes. The quadcopter managed to hover at
an altitude of around 5m, although having some low frequency oscillations in alti-
tude. The estimates of quadcopter altitude are slightly below the ground truth line.
This may happen if the bounding box surrounding the platform is larger than the
platform. This can happen if the YOLO detection are not perfectly precise. If that
happens, the resulting estimate of helipad radius in pixels will be too large, result-
ing in the algorithm estimating that the quadcopter is closer to the landing platform
than it actually is. A solution for this is to find, through experimentation, how much
larger the bounding boxes are than the landing platform, and compensate for this
when estimating the radius.

The algorithm was not able to detect the Arrow from an altitude of 5m, and
therefore did not estimate yaw.

5.3.2 Stationary hover test with combined methods estimate on GPU

When using combined estimates the update frequency of the Darknet pose estima-
tor is capped at 10 Hz. This is done in order to make the filtered output be the best
combination of both methods. If the Darknet estimator produce estimates at a fre-
quency that is much higher than the TCV based estimator then the moving median
averaging filter will remove most of the TCV estimates in favor of the majority of
estimates, which come from the Darknet estimator.

5.3. Simulation results with GPU 69

FIGURE 5.14: Hover test, zr = 5m, with Darknet pose estimator on
GPU. Filtered output with filter sizes of 3.

The hover test is performed at zr = 1m using the combined pose estimator, with
Darknet on GPU. The estimated pose from both methods can be seen in Figure 5.15
and the combined estimate can be seen in Figure 5.16. The Darknet pose estimator
struggles to estimate rotation correctly, however the TCV estimator is able to track
rotation well. Further investigation is required to find the cause of this problem.
Positional estimates are close to the ground truth. The resulting filtered estimate
tracks the ground truth well.

There is a constant deviation in the estimate of quadcopter altitude, making the
quadcopter hover above the reference point of 1m. Both the TCV estimator and the
Darknet estimator estimates the altitude to be slightly lower than the ground truth
altitude, and thus the resulting combined estimate is too low as well. The Darknet
pose estimator may estimate the altitude to be lower than the ground truth altitude if
the bounding boxes used for estimating altitude is too large. Similar problems were
experienced by Xu et. al. [42] when using YOLOv4 for detection of objects from
a high altitude using UAV based aerial images, where the bounding boxes were
detected at wrong size and shape.

The quadcopter is able to perform the 1m hover test well using combined esti-
mates as feedback on GPU.

The stationary hover test at zr = 5m is performed using the combined estimate
processed on GPU. The filtered pose estimate for this test can be seen in Figure 5.18
and the estimates from both methods can be seen in Figure 5.17. Neither of the esti-
mates are able to estimate the rotation reliably from that altitude. The TCV estimates
track the ground truth close in x- and y- axis, while the Darknet estimates are quite
oscillatory around the ground truth, and offset by a couple centimeters in the x-axis.
Both methods are able to estimate the altitude quite well, although the Darknet esti-
mates are more oscillatory.

From an altitude of 5m the estimates from both methods are quite good, and the
combined filtered estimates track the ground truth quite well. The quadcopter man-
ages to perform the 5m hover test successfully using the filtered combines estimates
as pose estimates. Thus the combined filter is sufficiently robust to perform reliable
pose estimates from an altitude of 5m in the simulated environment.

70 Chapter 5. Results

FIGURE 5.15: 1m Hover test on GPU. Filtered combination of meth-
ods used for pose estimation. Figure shows position estimates from

both methods vs ground truth.

FIGURE 5.16: 1m Hover test on GPU. Filtered combination of meth-
ods used for pose estimation. Figure shows filtered estimates vs

ground truth.

5.3. Simulation results with GPU 71

FIGURE 5.17: 5m Hover test on GPU. Filtered combination of meth-
ods used for pose estimation. Figure shows position estimates from

both methods vs ground truth.

FIGURE 5.18: 5m Hover test on GPU. Filtered combination of meth-
ods used for pose estimation. Figure shows filtered estimates vs

ground truth.

72 Chapter 5. Results

FIGURE 5.19: Automatic landing test on GPU. Darknet used for pose
estimation. Figure shows filtered estimates vs ground truth.

5.3.3 Automated Landing using Darknet pose estimator on GPU

The quadcopter is able to perform a successful automated landing mission using
the Darknet pose estimator on GPU as can be seen in Figure 5.19. It is still evident
that the Darknet estimator struggles to estimate rotation. This does not impact the
automated landing mission to a high degree. The increased update frequency, as
compared to running the test on CPU, enables the position estimates to track the
ground truth closer. As the quadcopter comes closer to the landing platform the
estimates deviate from the ground truth.

5.3.4 Automated landing with combined methods estimate on GPU

An automated landing test is performed with combined methods estimate on a GPU
processor. The filtered estimate while running this test can be seen in Figure 5.21,
while the estimates from the individual methods can be seen in Figure 5.20.

The quadcopter is able to perform a successful landing mission using the com-
bined pose estimate as pose feedback. Both methods are tracking the ground truth
quite well, although the Darknet estimates deviate when the quadcopter gets too
close to the landing platform. This makes the combined estimate deviates as well.
The scale of the deviations in the filtered estimate is less than the deviations in the
Darknet estimates. This is because they are combined with the estimates from the
TCV module which do not deviate. The TCV estimates track the ground truth quite
well during the whole mission, and is able to track the yaw better than the Darknet
estimates.

The combined pose estimates are sufficiently close to the ground truth in order
successfully perform an automated landing mission, although the deviations from
the ground truth when the quadcopter is close to the landing platform could pose a
problem in a more challenging landing environment.

5.3. Simulation results with GPU 73

FIGURE 5.20: Automatic landing test on GPU. Combined methods
used for pose estimation. Figure shows estimates for both methods

vs ground truth.

FIGURE 5.21: Automatic landing test on GPU. Combined methods
used for pose estimation. Figure shows filtered estimates vs ground

truth.

74 Chapter 5. Results

5.3.5 GPU discussion

The combined computer vision pose estimator, when run on GPU, is accurate- and
robust enough in order for the quadcopter to successfully perform the autonomous
missions.

The TCV pose estimator is a pose estimator which is very accurate and well
tuned for the simulation environment. Thus it is able to estimate pose accurately,
with low estimation errors. The Darknet pose estimator was seen to be able to es-
timate pose reliably, although the estimation errors were generally larger than the
estimated errors using the TCV module. This was especially evident when the quad-
copter was close to the landing platform, and for estimates of yaw.

The TCV module requires tuning for individual lighting conditions. It struggled
to estimate pose correctly when tested with the physical quadcopter and landing
platform [1]. The robustness of the combined model may therefore be better than
the robustness of each model individually. This is because the two computer vision
modules use different computer vision techniques for detection of the landing plat-
form, and where one may fail the other may detect the landing platform. Thus the
combined pose estimator may be more robust. The Darknet module do not require
specific tuning for individual visual conditions, and may therefore supplement the
TCV module by being a more general estimator with a higher detection rate. For
the Darknet module to be robust in changing visual conditions it must be provided
with a Dataset which contains images of the landing platform in changing visual
conditions.

The combined pose estimator was able to accurate and reliably estimate the pose
of the quadcopter. It was seen to be robust in the simulator environment. Further
testing on visual conditions that are more challenging is required to determine the
limits of the robustness of the model.

75

Chapter 6

Conclusion

The objective for this thesis was to create a robust pose estimation computer vision
system for an autonomous quadcopter using a combination of traditional- and deep
learning computer vision techniques. A pose estimator using deep learning was
created and tested. That pose estimator was also tested in combination with an
established pose estimator based on traditional computer vision techniques.

The results show that it is possible to create a reliable pose estimation algorithm
using a deep learning approach. The pose estimates based on a deep learning ap-
proach were sufficient for both stable hovering and automated landing missions.
The deep learning pose estimator had both weaknesses and strengths. It was able
to produce pose estimates at a higher frequency when run on a GPU than the pose
estimator based on traditional computer vision. This is not the case when run on a
CPU, as the DL-based pose estimate frequency on a CPU was very low. Although
successful autonomous missions achieved, while running the pose estimator on a
CPU, these was only successful with the DL-model with the lowest detection accu-
racy of those that were tested. Results showed therefore that a is GPU is necessary
in order to have a robust real-time pose estimator using a deep learning approach.
The pose estimates were quite oscillatory using the deep learning approach, and
it struggled to estimate the yaw rotation correctly. The oscillations were generally
quite small, and the quadcopter was able to complete the autonomous missions us-
ing this pose estimator. The deep learning based estimator struggled to estimate the
quadcopter pose when the quadcopter was very close to the landing platform and
the large features of the landing platform were not distinguishable in the camera
frame. This was not a sufficient enough problem to hinder the automated landing
from succeeding, but may be a problem in a more challenging landing scenario.

The combined computer vision system is not yet tested in more challenging vi-
sual conditions than the computer simulator. The simulator system is an environ-
ment in which both the computer vision methods are quite proficient at estimating
the quadcopter pose. Therefore the level of robustness for the combined pose esti-
mator is not tested. Further testing is required in order to determine the robustness
of the combined computer vision system.

6.0.1 Future work

The results in this thesis are encouraging as a step on the path to creating a quad-
copter capable of autonomous takeoff-and-landing missions.

Although it has much potential, the deep learning pose estimator requires some
refinement. The pose estimator struggled to estimate yaw rotation correctly. An in-
vestigation of this problem is required. The DL algorithm can be trained on a larger
data, with images from more challenging visual conditions in order to make the pose
estimates more robust. The deep learning pose estimator also struggled to estimate

76 Chapter 6. Conclusion

pose when the quadcopter was very close to the landing platform, so there is an op-
tion to train the network to recognize smaller parts of the landing platform in order
to be able to produce a decent pose estimate during landing missions. The model
can also be trained to recognize the ReVolt vessel and use that for pose estimation.
That vessel is quite a large object, and will therefore be easier to locate. The orien-
tation of the ReVolt be utilized for estimation of rotation as well. The ship is larger
than the small arrow on the landing platform, so yaw estimates should be easier to
estimate using the orientation of the ReVolt vessel.

Further refinement of the filter for combining the methods may be investigated.
The DL pose estimator struggled when the quadcopter was close to the landing plat-
form, something the TCV pose estimator did not. Therefore a filter which combines
the methods based on their strengths and weaknesses may be implemented. Cur-
rently the quadcopter relies solely on visual data for pose estimation. An Extended
Kalman filter can be used for a robust pose estimation by fusing together data from
the quadcopter IMU sensors together with visual pose estimation in order to predict
pose [3]. This can reduce spikes in pose estimates, and make the quadcopter more
robust by being less reliant on constant detection of the landing platform. .

The pose estimator should be tested on the physical AR. Drone 2.0 with the real
landing platform and the physical ReVolt vessel. It should also be tested in differ-
ent visual conditions in order to determine the robustness of the method. The DL
method should be trained on a dataset consisting of images of the physical landing
platform in an outside environment in order to be functional in an outside environ-
ment as well.

Other sensors can be added to the quadcopter as well. A GPS sensor can be used
and fused together with the other pose estimates in order to create a more robust
pose estimate. GPS data can also be used for the quadcopter to localize the ship if
the ship is outside the quadcopter’s visual range. GPS opens for the possibility that
the quadcopter may perform autonomous missions outside the visual range of the
landing platform.

77

Appendix A

Appendix

θ (scalew, scaleh) θ (scalew, scaleh)
0 (1.0, 1.0) 45 (0.566, 0.849)
5 (0.887, 0.948) 50 (0.558, 0.867)

10 (0.803, 0.909) 55 (0.555, 0.893)
15 (0.738, 0.878) 60 (0.556, 0.928)
20 (0.688, 0.856) 65 (0.561, 0.974)
25 (0.649, 0.842) 70 (0.571, 1.033)
30 (0.619, 0.834) 75 (0.586, 1.108)
35 (0.595, 0.832) 80 (0.606, 1.205)
40 (0.578, 0.837) 85 (0.632, 1.331)
45 (0.566, 0.849) 90 (0.667, 1.5)

TABLE A.1: Factors for scaling bounding box surrounding H to size
of H by rotation θ

79

Bibliography

[1] Thomas Sundvoll. A Camera-based Perception System for Autonomous Quadcopter
Landing on a Marine Vessel. 2020.

[2] Future Of Drones Drone technology uses and applications. https://www.businessinsider.
com/drone-technology-uses-applications?r=US&IR=T. Accessed: 2020-10-
20.

[3] Mohammad Fattahi Sani, Maryam Shoaran, and G. Karimian. “Automatic land-
ing of a low-cost quadrotor using monocular vision and Kalman filter in GPS-
denied environments”. In: Turkish Journal of Electrical Engineering and Computer
Sciences 27 (2019), pp. 1821–1838.

[4] Tiago Gomes Carreira. “Quadcopter Automatic Landing on a Docking Sta-
tion”. In: 2013.

[5] Mary B. Alatise and Gerhard P. Hancke. “Pose Estimation of a Mobile Robot
Based on Fusion of IMU Data and Vision Data Using an Extended Kalman
Filter”. In: Sensors 17.10 (2017). ISSN: 1424-8220. DOI: 10.3390/s17102164. URL:
https://www.mdpi.com/1424-8220/17/10/2164.

[6] Malik Demirhan and C. Premachandra. “Development of an Automated Camera-
Based Drone Landing System”. In: IEEE Access 8 (2020), pp. 202111–202121.

[7] J. Blom. “Onboard Visual Control of a Quadcopter MAV Performing a Landing
Task on an Unknown Platform”. In: 2019.

[8] N. Karlsson et al. “The vSLAM Algorithm for Robust Localization and Map-
ping”. In: Proceedings of the 2005 IEEE International Conference on Robotics and
Automation. 2005, pp. 24–29. DOI: 10.1109/ROBOT.2005.1570091.

[9] A. Garcia, E. Mattison, and K. Ghose. “High-speed vision-based autonomous
indoor navigation of a quadcopter”. In: 2015 International Conference on Un-
manned Aircraft Systems (ICUAS). 2015, pp. 338–347. DOI: 10.1109/ICUAS.
2015.7152308.

[10] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018.
arXiv: 1804.02767 [cs.CV].

[11] C. Kumar B., R. Punitha, and Mohana. “YOLOv3 and YOLOv4: Multiple Ob-
ject Detection for Surveillance Applications”. In: 2020 Third International Con-
ference on Smart Systems and Inventive Technology (ICSSIT). 2020, pp. 1316–1321.
DOI: 10.1109/ICSSIT48917.2020.9214094.

[12] W. Budiharto et al. “Fast Object Detection for Quadcopter Drone Using Deep
Learning”. In: 2018 3rd International Conference on Computer and Communication
Systems (ICCCS). 2018, pp. 192–195. DOI: 10.1109/CCOMS.2018.8463284.

[13] N. Imanberdiyev et al. “Autonomous navigation of UAV by using real-time
model-based reinforcement learning”. In: 2016 14th International Conference on
Control, Automation, Robotics and Vision (ICARCV). 2016, pp. 1–6. DOI: 10.1109/
ICARCV.2016.7838739.

https://www.businessinsider.com/drone-technology-uses-applications?r=US&IR=T
https://www.businessinsider.com/drone-technology-uses-applications?r=US&IR=T
https://doi.org/10.3390/s17102164
https://www.mdpi.com/1424-8220/17/10/2164
https://doi.org/10.1109/ROBOT.2005.1570091
https://doi.org/10.1109/ICUAS.2015.7152308
https://doi.org/10.1109/ICUAS.2015.7152308
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/ICSSIT48917.2020.9214094
https://doi.org/10.1109/CCOMS.2018.8463284
https://doi.org/10.1109/ICARCV.2016.7838739
https://doi.org/10.1109/ICARCV.2016.7838739

80 Bibliography

[14] N. Smolyanskiy et al. “Toward low-flying autonomous MAV trail navigation
using deep neural networks for environmental awareness”. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2017, pp. 4241–
4247. DOI: 10.1109/IROS.2017.8206285.

[15] Tianxiao Zhang et al. Efficient Golf Ball Detection and Tracking Based on Convolu-
tional Neural Networks and Kalman Filter. 2020. arXiv: 2012.09393 [cs.CV].

[16] Jin Liu and Sheng He. “6D Object Pose Estimation Based on 2D Bounding
Box”. In: CoRR abs/1901.09366 (2019). arXiv: 1901.09366. URL: http://arxiv.
org/abs/1901.09366.

[17] Joseph Walsh et al. “Deep Learning vs. Traditional Computer Vision”. In: Apr.
2019. ISBN: 978-981-13-6209-5. DOI: 10.1007/978-3-030-17795-9_10.

[18] Juan Du. “Understanding of Object Detection Based on CNN Family and YOLO”.
In: (2018).

[19] Michael A. Nielsen. Neural Networks And Deep Learning. 2015.

[20] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks. 2016. arXiv: 1506.01497 [cs.CV].

[21] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Net-
works. 2015. arXiv: 1511.08458 [cs.NE].

[22] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Net-
works. 2015. arXiv: 1511.08458 [cs.NE].

[23] Joseph Redmon el. al. Darknet, A neural network framework. https://github.
com/pjreddie/darknet. 2018.

[24] Kapoor Mittal Vaidya. “Object Detection and Classification Using Yolo”. In:
International Journal of Scientific Research & Engineering Trends 5 (2019).

[25] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2015. arXiv:
1405.0312 [cs.CV].

[26] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934 [cs.CV].

[27] Zicong Jiang et al. Real-time object detection method based on improved YOLOv4-
tiny. 2020. arXiv: 2011.04244 [cs.CV].

[28] Sanjeev Suresh Donovang Fung Prerna Dhareshwar. Recurrent CNNs for Bound-
ing Box stability in Object Detection. http://cs230.stanford.edu/projects_
winter_2019/reports/15812427.pdf. 2018.

[29] Khoshgoftaar Shorten C. “A survey on Image Data Augmentation for Deep
Learning”. In: Journal Of Big Data 6 (2019).

[30] Smart Quigley Gerkey. “Programming Robots with ROS. A practical introduc-
tion to the robot operating system”. In: (2015).

[31] Kevin Krewell. Difference between CPU and GPU. https://blogs.nvidia.com/
blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/.
2009.

[32] S. Piskorski et al. “A.R.Drone Deveoper Guide”. In: (2012).

[33] ardrone_autonomy. https://ardrone-autonomy.readthedocs.io/en/latest/.
Accessed: 2020-12-05.

https://doi.org/10.1109/IROS.2017.8206285
https://arxiv.org/abs/2012.09393
https://arxiv.org/abs/1901.09366
http://arxiv.org/abs/1901.09366
http://arxiv.org/abs/1901.09366
https://doi.org/10.1007/978-3-030-17795-9_10
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2011.04244
http://cs230.stanford.edu/projects_winter_2019/reports/15812427.pdf
http://cs230.stanford.edu/projects_winter_2019/reports/15812427.pdf
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://ardrone-autonomy.readthedocs.io/en/latest/

Bibliography 81

[34] Thomas Sundvoll. A Camera-based Perception System for Autonomous Quadcopter
Landing on a Marine Vessel. https://github.com/mrSundvoll/master_project.
2019.

[35] cvat.org: a computer vision annotation tool. https://cvat.org. Accessed: 2020-
10-20.

[36] A dataset analysis and augmentation tool. https://roboflow.com/. Accessed:
2020-10-20.

[37] AlexeyAB. YOLOv4 - Neural Network for Object Detection. https://github.
com/AlexeyAB/darknet. 2020.

[38] google. Google Colab: Providing free GPUs for online training of. https://colab.
research.google.com/.

[39] Josep Nelson. Roboflow Model Library: Free open-source Google Colab notebooks for
training of DNN models. https://models.roboflow.com/.

[40] Marko Bjelonic. YOLO ROS: Real-Time Object Detection for ROS. https : / /
github.com/leggedrobotics/darknet_ros. 2016–2018.

[41] Y. Li et al. “A Deep Learning-Based Hybrid Framework for Object Detection
and Recognition in Autonomous Driving”. In: IEEE Access 8 (2020), pp. 194228–
194239. DOI: 10.1109/ACCESS.2020.3033289.

[42] H. Xu et al. “Performance Comparison of Small Object Detection Algorithms
of UAV based Aerial Images”. In: 2020 19th International Symposium on Dis-
tributed Computing and Applications for Business Engineering and Science (DCABES).
2020, pp. 16–19. DOI: 10.1109/DCABES50732.2020.00014.

[43] The ReVolt Vessel by DNV-GL. https://www.dnvgl.com/technology-innovation/
revolt/index.html. Accessed: 2020-10-20.

[44] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv:
1512.03385 [cs.CV].

[45] YOLOv5 by Ultralytics. https://towardsdatascience.com/how-to-create-
an-end-to-end-object-detector-using-yolov5-35fbb1a02810. Accessed:
2020-10-22.

[46] Marko Bjelonic. Enabling YOLOv4 to run with darknet-ros: Modified version of
leggedrobotics: darknet-for-ros. https://github.com/tom13133/darknet_ros.
2017–2020.

https://github.com/mrSundvoll/master_project
https://cvat.org
https://roboflow.com/
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://colab.research.google.com/
https://colab.research.google.com/
https://models.roboflow.com/
https://github.com/leggedrobotics/darknet_ros
https://github.com/leggedrobotics/darknet_ros
https://doi.org/10.1109/ACCESS.2020.3033289
https://doi.org/10.1109/DCABES50732.2020.00014
 https://www.dnvgl.com/technology-innovation/revolt/index.html
 https://www.dnvgl.com/technology-innovation/revolt/index.html
https://arxiv.org/abs/1512.03385
https://towardsdatascience.com/how-to-create-an-end-to-end-object-detector-using-yolov5-35fbb1a02810
https://towardsdatascience.com/how-to-create-an-end-to-end-object-detector-using-yolov5-35fbb1a02810
https://github.com/tom13133/darknet_ros

	Abstract
	Acknowledgements
	Preface
	Introduction
	Background and Motivation
	Previous Work
	Objectives
	Outline

	Theory
	Traditional Computer Vision
	Deep Neural Networks
	Fully Connected Neural Networks
	Training a Deep Neural Network
	Convolutional Neural Networks
	Traditional Computer Vision Methods compared with Deep Learning Methods

	Darknet
	YOLO
	Data Augmentation
	Robot Operating System
	CPU- and GPU processors

	Experimental Setup
	Gazebo and ROS
	Experimental Components

	Methodology
	Installation and setup of the Simulated Environment and ROS
	Creating dataset
	Darknet object detector
	Training Darknet
	Darknet for Ros

	Darknet pose estimator
	Estimation of landing platform rotation
	Estimation of landing platform center
	Estimation of landing platform radius

	Traditional Computer Vision Method for pose estimation
	Combining computer vision methods
	Experiment design
	Stationary hovering
	Autonomous Landing

	Results
	Training of Darknet models
	YOLOv4-tiny
	YOLOv4
	YOLO inference rate

	Simulation results on CPU
	Stationary hovering test with Darknet pose estimator on CPU.
	Stationary hovering test with combined methods estimate on CPU
	Automated Landing Using Darknet pose estimator on CPU
	Automated landing with combined methods estimate on CPU
	CPU results discussion

	Simulation results with GPU
	Stationary hover test with Darknet pose estimator on GPU
	Stationary hover test with combined methods estimate on GPU
	Automated Landing using Darknet pose estimator on GPU
	Automated landing with combined methods estimate on GPU
	GPU discussion

	Conclusion
	Future work

	Appendix
	Bibliography

