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Abstract

An autonomous quadcopter system is proposed in this thesis, enabling a quadcopter
to perform autonomous missions starting and ending on a specified landing plat-
form.

A pose estimation algorithm is developed for estimating the quadcopter’s pose
in relation to a specified landing platform. It uses a multi-sensor Kalman Filter for
fusing measurements from a traditional computer vision method pose estimation, a
deep learning-based computer vision method for pose estimation, IMU data, baro-
metric pressure data and GPS measurements.

A PID-controller is used for low-level control of the quadcopter, providing ve-
locity commands to an on-board quadcopter controller based on the errors between
the estimated- and the desired pose.

A mission control system is proposed for high-level quadcopter control, used
for completing autonomous quadcopter missions. The control system is based on
a finite state machine approach, where a mission is constituted of sequential execu-
tion of actions defined by a set of states, where the states represent movement- and
camera actions.

The autonomous quadcopter system is applied to a Parrot AR.Drone 2.0 and is
tested extensively both in simulations and experimentally. GPS is only available in
simulations.

Encouraging results were seen in simulations where the quadcopter system accu-
rately estimated the quadcopter’s pose and used this pose for autonomous take-off
and landing missions and autonomous long-range missions.

Experimental results with the Parrot AR.Drone 2.0 demonstrated successful au-
tonomous take-off and landing mission on a landing platform, as well as being able
to hover above the landing platform. Autonomous hovering and landing were suc-
cessfully demonstrated on the landing platform mounted on the DNV GL ReVolt
marine vessel.

Experimental results were subject to more sensor noise, a longer communication
delay and more disturbances than simulation results making the quadcopter flight
response less stable than in simulations.
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The topic of this thesis is motivating to me because I have always been inter-
ested in automation. Automation has been on the mind of humans for thousands
of years. Humans learned to reduce labor by utilizing animal power for transport
and agriculture. Later humans learned to use water power for milling wheat into
flour, using wind for moving ships and harvesting energy from heat by inventing
the steam engine. Computers, robotics and artificial intelligence are modern tools
that can reduce the labor required by human beings. Automation using these tools
can free up time and capacity for people, such that they may continue innovating
and to have more time to spend on other things.

The goal of this project and subsequent thesis is to create and present a quad-
copter system with a sufficient level of autonomy to perform simple autonomous
missions. The project is part of a cooperation with DNV, who have an ongoing
project concerning an autonomous marine vessel called the ReVolt. Cooperation
between NTNU and DNV sparked the idea of the quadcopter system performing
autonomous missions starting and ending on the ReVolt.

My supervisor during this project has been Anastasios Lekkas. He has been sup-
portive of me the whole duration of the project and has been providing me with
invaluable feedback and guidance along the way.

The work in this thesis builds upon a basis of work by Thomas Sundvoll [1] who,
in his master thesis, proposed a computer vision pose- (position and orientation)
estimation system for quadcopters based on traditional computer vision techniques.
This thesis utilizes the following contributions from Thomas Sundvoll’s work:

• Setup of a computer simulation environment used extensively in the develop-
ment of this quadcopter system.

• A physical landing platform which is the start- and end-point for most experi-
ments performed in this thesis.

• A computer vision module based on traditional computer vision techniques
for detecting the landing platform using a camera mounted on a quadcopter.

• A PID controller for quadcopter control which provided the basis for the fur-
ther developed PID controlled presented in this thesis.

• A Moving Median Averaging filter for filtering sensor output.

This thesis also builds upon one of my previous projects, where I developed a
deep-learning based computer vision pose estimator [2] and combined that with
Sundvoll’s [1] pose estimator. The specific contributions from that project that are
used in this thesis are

• a dataset consisting of images of a landing platform captured from the simula-
tion environment, which in this thesis is used as basis for a further developed
dataset.

• a deep-learning based computer vision pose estimator for quadcopters which
was further improved and adapted in this thesis.

Anastasios Lekkas, and The Department of Engineering Cybernetics has gener-
ously provided me with
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• a 3D Model of ReVolt vessel used in simulations of the quadcopter

• access to the ReVolt vessel for experiments with the quadcopter system

• video documentation of the experimental quadcopter missions on the ReVolt
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years autonomous robots and artificial intelligence (AI) and have been used
in sectors such as surveillance, delivery, military, farming and security [5] [6]. New
milestones are being reached every year within the field of robotics development
and AI, which is laying the foundation for further innovation within the field of
autonomous robots.

Autonomous robots may offer several advantages compared to their manually
controlled counterparts and human personnel performing the same task. Admit-
tedly, many autonomous systems are not par with manually controlled systems. Au-
tonomous systems require a lot of research and development to overtake the skill of
humans. Nevertheless, more and more autonomous systems have reached that level,
showing that autonomous systems can have the capacity to outperform humans [7].
[8]. Manually controlled robots generally require trained operative personnel which
can be costly. Human personnel may require training to perform a task well, and
for certain applications there may be a lack of skilled operators. Human operators
may still be in the loop, supervising the autonomous systems. A well developed
autonomous robot system may:

• make it possible for human operators to supervise multiple autonomous sys-
tems, increasing the efficiency of the personnel

• be cheap to operate

• have the capacity of split-second reactions because of efficient computation
speed and may therefore be more safe and reliable than their human counter-
parts [9].

• have the capacity to operate 24 hours a day, seven days a week, much more
than any human capacity.

Quadcopters, also called drones, are a type of micro aerial vehicle (MAV) con-
sisting of four rotor blades mounted in an X-shape pattern. Drones have a frame
connecting the rotor blades and a body in the center of the frame. Quadcopters ben-
efit from being generally low-cost, easy to operate, and have impressive and delicate
maneuverability capabilities, including vertical take-off and landing.

Both professionals and hobbyist currently use quadcopters for video and photo
capture. In addition, they are used in the industry for inspection- and cleaning of
hard-to-reach- and dangerous locations, package delivery, automatic inspection mis-
sions, search missions for people lost at sea or in the mountains, and defence- and
military applications [10] [11] [12].
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1.2 Objectives and Contributions

This thesis aims to work towards an autonomous quadcopter system, able to per-
form simple missions without human intervention.

The contributions in this thesis are specifically

• Creating a dataset consisting of labeled images of a landing platform, contain-
ing images from both a simulated landing platform and a physical landing
platform, for use in supervised DNN training.

• Further development of a computer vision (CV) pose estimation algorithm
proposed initially by the author in a previous thesis [2].

• A sensor fusion algorithm based on a Kalman Filter approach for combining
pose estimates from multiple computer vision methods, as well as GPS data,
barometric pressure data, IMU- and magnetometer measurements.

• A mission control system for implementation- and execution of autonomous
quadcopter missions, including take-off, flight maneuvers, photo capture and
landing.

• An autonomous quadcopter system combining the sensor fusion pose estima-
tion system with the mission control system.

• Experiments with- and simulations of the autonomous quadcopter system to
test the robustness and performance of the quadcopter system. Experiments
were also performed by taking off from and landing on the DNV ReVolt marine
vessel.

1.3 Previous Work

The problem of autonomous control of quadcopters has been a topic of research that
has received much interest.

This work builds upon the foundation laid by the author’s project thesis, con-
ducted in 2020 [2]. The project thesis deals with the topic of position- and orienta-
tion estimation of quadcopters using a combination of traditional-based and deep
learning-based computer vision methods. A deep-learning based computer vision
method, proposed in the author’s project thesis, is used as a component of the au-
tonomous quadcopter system proposed in this master thesis.

This work also builds upon the foundation laid by Sundvoll [1], who proposed
a quadcopter pose-estimation algorithm using a traditional computer vision (TCV)
method. This TCV method is used as a component of the quadcopter system pro-
posed in this thesis. The pose estimate is a pose relative to the landing platform and
requires that the landing platform be visible in the camera frame to produce esti-
mates. This algorithm was tested using a quadcopter simulation and experimentally
with a Parrot AR.Drone 2.0. The algorithm produced precise- and accurate pose es-
timates for the quadcopter in the simulated environment. This approach, however,
lacked robustness as it failed to deliver estimates if the whole landing platform was
not in the camera frame. When applied real-world quadcopter system it was not
able to produce accurate estimates.

Much of the work on quadcopters presents computer-vision-based pose estima-
tion techniques due to encouraging results with such approaches and cameras being
cheap and lightweight, making them suitable for quadcopter applications. Some
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approaches in literature present traditional computer vision-based pose estimation
solutions, while others present deep learning-based methods.

Other approaches are proposed for pose estimation using TCV methods. A pop-
ular method uses predefined computer vision detectable markers called ArUCO
markers [13] [14]. The location, skewness, and orientation of these markers can be
used to calculate the pose of the camera relative to these markers. Approaches using
ArUCO markers has been shown in by Sani et al. and Carriera et al. to be sufficiently
precise to enable automated landing of quadcopters in small-scale simulations and
experiments.

Visual Simultaneous Localization and Mapping (vSLAM) [15] is a TCV method
that was used in [16] for estimating pose of micro aerial vehicle (MAV) in an in-
door landing scenario, by landing on target images on the floor. Pose estimation for
hovering and control of the AR.Drone has been performed using vSLAM [17].

Deep learning (DL) approaches to computer vision (CV) have become popular
due to recent research and improvements of DL methods. Bounding box predic-
tion algorithms such as YOLOv4 [18] are used for CV object tracking of a number
of different objects, and has been proven to be efficient and precise [19] [20]. Real-
time bounding box detection algorithms have applied to live data from quadcopter
camera [21]. Other DL-based methods such as reinforcement learning have been
applied for autonomous quadcopter control [22] using external camera video of the
quadcopter. A specialized DNN structures has been created for quadcopter flight in
different scenarios, including TrailNet [23]. TrailNet is a DNN for estimating quad-
copter pose relative to forest trails.

Sensor fusion, where sensor data from multiple sensors is combined into one
estimate, has been applied to pose estimation of quadcopters. Kalman Filter (KF)
sensor fusion produces smooth and precise pose estimates, verified by Brockers et
al. [24], and Sani et al. [13]. Both used a Kalman Filter for fusing visual data and
inertial IMU sensors for quadcopter pose estimates.

An Error State Kalman Filter (ESKF) has also been applied for mobile robot lo-
calization [25]. In that application it replaced the need for a complex dynamic model
in KF localization applications.

Zhang et al. demonstrated fusing a dynamic system model with a bounding box
detection algorithm using a Kalman Filter [19]. Their algorithm was applied to golf
ball tracking.

Alantise et al. applied an Extended Kalman filter to a small 4-wheeled robot to
fuse IMU data with visual data gathered by point matching between camera frames
[26]. GPS data, sonar- and inertial measurements were fused using a KF approach
for quadcopter control by Gustavsson [27].

Quadcopters performing autonomous missions require a mission control system
for navigating and controlling the quadcopter during the mission. A Finite State
Machine (FSM) approach has been used in the development of quadcopter mission
systems. Rabbath et al. [28] developed a mission system for payload delivery. Their
approach used multiple cooperative drones for delivering a payload. The quad-
copter mission control was implemented as a series of states that, when executed
sequentially, constitute a mission. Ghallabi et al. [29] implemented quadcopter con-
trol and navigation as an FSM, where the quadcopter states were hovering, altitude
control, path tracking or yaw control.

Several mission control systems have been developed for quadcopters. Luo et al.
[30] created a system for intelligent control and navigation of an indoor quadcopter
and performed a payload drop-off mission with a combination of manual control
and automatic landing. Haque et al. parcel developed a delivery quadcopter system
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where Google Maps’ pedestrian path planning software was used for path planning.
The drone was able to follow this path using GPS measurements [10]. Bernardini et
al. [12] propose a Searching and Tracking (SaT) system using the Parrot AR.Drone
2.0, with extensive planning capabilities, making decisions based on remaining bat-
tery capacity, position uncertainty metrics, and more. A return-to-home quadcopter
system is developed by Nguyen et al. [31], where the destination is set using GPS
coordinates captured during the start of a quadcopter mission.

1.4 Outline

This thesis is outlined such that theory essential for understanding the implemen-
tation and results is presented in Chapter 2. The experimental setup, software, and
how to replicate these experiments are outlined in Chapter 3. The methodology
and implementation of the quadcopter system are proposed in Chapter 4. Results
from both simulations and experiments are presented in Chapter 5 and discussed
in Chapter 6. The thesis is concluded in Chapter 7 in addition to a discussion of
possible future work for continuing this project.
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Chapter 2

Theory

2.1 Quadcopter Dynamics

A quadcopter is a 4-rotor aircraft with rotors mounted in a X-shaped pattern. An
illustration of a quadcopter is displayed in Figure 2.1. A separate motor powers each
rotor, and each rotor can be controlled individually. Quadcopter flight is controlled
by applying a variable voltage each engine. The propeller layout permits precise
control of speed, position and rotation making it possible to control the quadcopter
in 6 degrees of freedom (DoF) using only the four stationary motors.

The lift that is generated from each motor varies from aircraft to aircraft. From
literature, [32] it is known that the force generated by a propeller is linearly depen-
dent on the square of the angular velocity of the propeller. Thus, the force generated
by motor i, is defined as

Fi = bω2
i

for i = 0, .., 4, where b is a propeller-speed-to-lift constant which is dependent of
propeller size and shape.

The torque which each motor applies to the quadrotor is the force from the motor,
multiplied by the length of the arm from the motor to the center of mass (CoM) of
the quadcopter. Defining the length from quadrotor CoM to the motors as l, being
equal for all motors, then motor torque for motor i, τi is defined as

τi = Fil

for i = 0, .., 4.
The vector sum of all forces acting upon the quadcopter controls the acceleration

of a quadcopter. The force vector of the sum of all motor forces defines the direction
of the acceleration caused by the motors.

Assuming the motors are mounted an symmetrically around the center of the
quadcopter, then the force vector depends solely on the pitch and roll of the quad-
copter, pointing directly upwards when pitch and roll are zero. If the quadcopter
pitches forward, the force vector pitches forward as well. The vertical component
of the motor force vector provides lift, while the horizontal component of the force
vector provides a horizontal acceleration in the x-axis. The horizontal component of
the vector is equal to the sine of pitch multiplied by the sum of motor forces. Sim-
ilarly, if the quadcopter rolls, then the quadcopter will be subject to an acceleration
in the y-axis, equal to the sine of roll multiplied by the sum of motor forces. The lift
experienced by the quadcopter is equal to the upward component of the force vector
and is therefore equal to the force vector multiplied by the cosine of pitch and the
cosine of roll. In sum, quadcopter control is achieved by controlling pitch and roll
orientations while at the same time controlling the sum of all motor forces.
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Pitch is controlled by the force differential between motors 3 and 1 and roll is
controlled by the force differential between motors 4 and 2. Yaw is controlled by
torque in the yaw direction caused by spinning the motors, called τψ,i for motor i.
The rotors are mounted such that they are spinning in opposite directions. Yaw is
controlled by the yaw torque differential between the motor pairs 1, 3 and 2, 4.

The dynamic equations representing quadcopter movement based on motor force
and orientation are presented by Kim et al. [32] and are:

mẍ = −
4

∑
i=1

Fi sin θ

mÿ = −
4

∑
i=1

Fi sin φ cos θ

m(z̈− g) = −
4

∑
i=1

Fi cos φ cos θ

Ixxφ̈ + İxxφ̇ = τ4 − τ2

Iyy θ̈ + İyy θ̇ = τ1 − τ3

Izzψ̈ + İzzψ̇ = τψ,2 + τψ,4 − τψ,1 − τψ,3

where:

• ẍ, ÿ, z̈ are accelerations in body frame x-, y- and z-axis.

• θ is pitch angle-, φ is roll angle- and ψ is yaw angle of the quadcopter. These
angles are defined as the angles between the body frame axes to the inertial
frame axes.

• Ixx, Iyy, Izz are the moments of inertia of rotations around the x, y, and z axis in
the body frame respectively.

• τψ,i is the torque in yaw of rotor i around the CoM of the quadcopter due to
inertial forces of the spinning propellers.

• g is the gravitational constant,

• m is quadcopter mass

In order to simplify the dynamic model, the following control inputs are chosen:

u1 = F1 + F2 + F3 + F4

u2 = τ4 − τ2

u3 = τ1 − τ3

u4 = τψ,2 + τψ,4 − τψ,1 − τψ,3
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The moment of inertia is constant for quadcopter’s whose frame is fixed, meaning
that İxx = İyy = İzz = 0. By inserting the control inputs, and assuming the quad-
copter body to be a fixed frame, the quadcopter equations are reduced to

mẍ = −u1 sin θ

mÿ = −u1 sin φ cos θ

m(z̈− g) = −u1 cos φ cos θ

Ixxφ̈ = u2

Iyy θ̈ = u3

Izzψ̈ = u4

This dynamic model does not account for any flight aerodynamics other than
propeller thrust, such as drag or air pressure differentials caused by the spinning
rotor blades. These aerodynamic forces are presumed to be negligible at close to
hover, although while moving at higher speeds, this model will be less accurate.
Although the wind may be a significant disturbance when flying in an outdoor en-
vironment, it is not accounted for in this model. The experiments in this thesis do
not involve high-speed quadcopter maneuvers and are mostly performed in indoor
environments; therefore, the model is deemed adequate for this thesis.

2.1.1 Quadcopter Body Frame

Body frame coordinates are represented with axes fixed to elements of a mobile body,
contrary to coordinate frames represented by axes fixed to the earth. A number of
such fixed coordinate systems exists. Fossen presents [33] the following Earth-fixed
coordinate frames:

• ECI: Earth-Centered Inertial frame, which is an inertial frame where Newton’s
laws of motion apply.

• ECEF: Earth-Centered Earth-Fixed frame in which the axes are rotating with
the earth.

The origin of a body frame is located in the center of mass of the body [33] such that
the position of the body, expressed in body frame, is zero. Instead, one may represent
the location of the body relative to an external origin expressed using body frame
axes, resulting in a convenient representation of body frame position for quadcopter
control. This representation of position, expressed in body frame axes, is used for
the rest of this thesis and is called body frame position.

A figure displaying a quadcopter with body frame axes and orientations can be
seen in 2.1, where

• altitude is body frame z-axis.

• x-axis is defined as forward for the quadcopter, and y-axis is to the left for the
quadcopter.

• pitch, roll, and yaw are rotations about body frame y-, x- and z-axes respec-
tively.

The body frame axes of some quadcopters, including the AR.Drone 2.0, are ro-
tated 45 degrees in yaw compared to the body frame presented in Figure 2.1, such
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FIGURE 2.1: Quadcopter with body frame axes displayed.

that the x- and y-axes pass between two motors instead of crossing through the mo-
tors. The internal quadcopter control equations differ slightly with such a body
frame. However, the internal controller of the Ar.Drone 2.0 is regarded as a black
box in this thesis. Consequently, the navigation, pose estimation and control, which
are the focus of this thesis, are not affected by such a change.

2.2 Kalman Filter

The Kalman Filter is an algorithm for producing an estimate of a state and the uncer-
tainty of the estimate. It combines measurements over time, as well as prior knowl-
edge about the system dynamics, in order to produce a statistically optimal estimate
of the system state. Since it combines system dynamics with sensor measurements,
it is more robust to sensor failure than a system that relies solely on sensor measure-
ments for state estimation. It will often produce estimates at a higher frequency than
the output frequency of the sensors because it extrapolates knowledge about system
dynamics to predict the system state in between sensor measurements [34].

There exist multiple variations of Kalman Filters which are designed for different
applications. The Extended Kalman Filter (EKF) and the Unscented Kalman Filter
(UKF) are used for non-linear state estimation, and an Error-State Kalman Filter is
used for estimation of states in which a dynamic model of the system is not available
[35]. In this thesis, the standard (vanilla) Kalman Filter is used and is discussed
further in the section below.

2.2.1 Vanilla Kalman Filter

A discrete time linear system can be represented by the state space model:

xk+1 = Axk + Buk + wk (2.1)
yk = Cxk + vk (2.2)
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where k ∈N and k > 0. The vector yk is a measurement vector, which is the available
sensor output in the system, and xk is the state vector of the system. The vector uk
is a vector of control signals which are applied to the system. The dynamics of the
system are described by the system matrices A and B, while C is a measurement ma-
trix which represents the relationship between the state vector xk and yk, apart from
noise. The vectors wk and vk are process noise and measurement noise respectively.
They are assumed to be white noise, meaning that they are normally distributed
noise processes with zero-mean and stationary covariances Q and R, s.t. COV(wk)
= COV(w) = Q, and COV(vk) = COV(v) = R, where:;

wk ∼ N(0, Q) (2.3)
vk ∼ N(0, R) (2.4)

The Kalman Filter system is producing an estimate x̂ which is a statistically opti-
mal estimate of the true state x. It performs this estimate in two steps. The prediction
step, also called the time update step, is performed by using knowledge about the
discrete-time state-space system to propagate the current estimate forward in time.
Both the current estimate x̂k−1, and the current control signal uk−1 are inserted into
Equation (2.1) in order to predict the state in the next time step. Thus, the update
step is performed by:

x̂−k = Ax̂k−1 + Buk−1 (2.5)

where x̂−k is the a priori state estimate. The a priori state estimate is a state estimate
which has not been updated by sensor measurement.

Measurement updates of the a priori state estimates are performed when sensor
measurements are available. The difference between the sensor measurement yk is
and the measurement matrix, multiplied with the a priori state estimate x̂−k , is called
the innovation and is used for updating the estimate. The innovation is multiplied
with a Kalman Gain, Kk, and added to the a priori state estimate in order to produce
the a posteori state estimate x̂k. Thus the update step of the Kalman Filter is

x̂k = x̂−k + Kk(yk − Cx̂−k ) (2.6)

A priori estimation error and a posteori estimation errors are defined as

e−k = xk − x̂−k (2.7)
ek = xk − x̂k (2.8)

where a priori estimation error is estimation error before the estimation is updated
using sensor measurement, and a posteori estimation error is estimation error after
measurement update. Thus, these errors signify how far the estimate is from the
true state.

The covariances of the a priori- and a posteori estimation error are therefore

P−k = E[e−k , (e−k )
>] (2.9)

Pk = E[ek, e>k ] (2.10)

where P−k , Pk ∈ Rn×n
In order for the Kalman Filter to be a statistically optimal state estimator, the

update step of the Kalman Filter needs an optimal update rule, meaning that the
Kalman Gain is defined such that the covariance of the a posteori estimation error is
minimized. The Kalman Gain that satisfies these requirements is derived in theory
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FIGURE 2.2: Kalman Filter update and prediction. Prediction in-
creases variance, while updates reduce variance.

[35] to be

Kk = P−k C>(CP−k C> + R)−1 (2.11)

The estimation error covariances are predicted and updated as well. The predic-
tion rule is

P−k = APk−1A> + Q (2.12)

and updated according to the update rule

Pk = (I−KkC)P−k . (2.13)

A plot of the Kalman Filter update and prediction steps can be seen in Figure 2.2,
where a one-dimensional state estimate x is plotted versus the and uncertainty of
the estimate. A prediction may move the mean of the estimate and also increases the
uncertainty of the estimate. An update may move the mean and, at the same time,
decrease the uncertainty of the estimate.

In sum, the Kalman Filter is an optimal algorithm for combining knowledge
about the system dynamics and sensor input to produce a state estimate. However,
this requires an approximation of the system dynamics, which may not be trivial to
produce.

2.3 Computer Vision

Autonomous robots and computer systems require a mapping of the environment
they are supposed to operate. Good sensing- and perception systems are required
for autonomous systems to operate in the real world. Computer Vision (CV) is a
type of sensor system where cameras are used as sensors, and computer algorithms
process the images in order to extract the desired information from the images.

DL-based computer vision systems (DLCV) have dominated the field of com-
puter vision in recent years. However, traditional computer vision (TCV) systems
are still favored for specific applications of computer vision. Both TCV and DLCV
have unique strengths and weaknesses, and one should choose which one to use
depending on the specific application.
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2.3.1 Traditional Computer Vision

The field of digital image processing and computer vision has been dominated by
mostly TCV systems. These systems have been used for vision systems for robotic
applications, processing- and alterations of digital images, extracting information
from images, and locating objects and features in images.

The TCV algorithm used in this thesis is developed by Sundvoll [1]. It is in this
thesis used as part of a larger system without significant modifications. Therefore,
this section does not go deep into the theory behind TCV, instead presenting an
overview of the field.

TCV systems are primarily based on three steps. The first step is feature extrac-
tion, in which features of interest are extracted from the image. Features of interest
are primarily corners and edges and other pixel points which are contrasting the
surrounding pixels. These points of interest contain the most relevant information
in the image. Thus, reducing an image to solely the points of interest is used to keep
the most relevant structural information in an image while reducing the number of
pixels required to represent this information. Several different algorithms are avail-
able for feature extraction, such as Canny edge detector [36] and Harris edge- and
corner detector [37]. An illustration of edge detection using Canny edge detection
can be seen in Figure 2.3.

The next step of TCV systems is feature description. Feature description is the
process in which descriptors are assigned to each of the detected points of interest.
These descriptors are a matrix of values representing the points of interest and the
surrounding pixels. Such a descriptor is used to match similar points together, of-
ten for tracking objects across multiple image frames. Speeded-Up Robust Features
(SURF) [38] is a much-used feature detector and descriptor algorithm, which is fast
and robust, as well as being invariant to image translation and rotation.

The last step is defined as classification, where points of interest and descriptors
are used for the application’s intended purpose. Visual Simultaneous Localization
and Mapping (VSLAM) [39] is a TCV algorithm where points of interest are matched
between image frames in order to create a 3d-point cloud map of the environment,
as well as tracking the camera’s trajectory throughout the map. Stereo vision sys-
tems match feature points together in order to create a single view using multiple
cameras. In order to detect specified objects in images, the descriptors are compared
with descriptors of the objects being searched for.

2.3.2 Deep Learning-Based computer vision

Recent leaps in hardware processing technology, as well as much research and inter-
est in the field of DL, has caused many new milestones within the field to be reached.
The spread of DL-based technology has been increasing and therefore has also the
interest in DL-based computer vision increased. DL-based computer vision systems
are being used for facial recognition software [40], self-driving cars and other mobile
robot systems [41], industry inspection and quality control [42], and numerous other
applications.

DL is a branch of computer science based upon a network structure called Deep
Neural Networks (DNNs). By training these deep networks with input data labelled
with output values, the network can be trained to predict the desired output for the
correct input data. Deep Neural Networks consists of many nodes, also called neu-
rons, that are interconnected in a network. Each node contains one numerical value.
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FIGURE 2.3: Canny edge detector algorithm applied to a picture of a
dog. Color and fill information is removed, while edges are detected

and kept.

Nodes are separated into a structure called layers, and these layers are organized in
a serial pattern.

Fully Connected Neural Networks

In a Fully Connected Neural Network (FCNN), every node is connected to every
node in the previous- and the following layers. A graphical structure of an FCNN
can be seen in Figure 2.4. The first-, and leftmost layer of the network is the input
layer. Input data is input as the values of the nodes in the first layer. Then the
values are propagated through the network until it reaches the last layer, which is
the output layer. Neuron values are propagated through the connections between
the neurons. These connections are called weights and consist of a numerical value
as well. The value of a neuron is propagated to the connected neuron in the next
layer by multiplying the neuron value by the weight value. Thus, the value of a
neuron in an FCNN will be a weighted sum of the previous layer neuron values.
Additionally, an individual bias is added to every neuron.

The value of neuron j in layer k is defined as:

zk
j =

n

∑
i=0

wk
ija

k−1
i + bk

j (2.14)

ak
j = f (zk

j ) (2.15)

where wk
ij ∈ R is the weight connecting neuron i in layer k− 1 and neuron j in layer

k. ak−1
i ∈ R is the value of neuron i in layer k− 1, and bk

j ∈ R is the individual bias
for neuron j in layer k. f : R → R is an activation function which is used to get
neuron values contained within a desired range. These weights between the nodes
are what maps the network into to the output. Changing these weights will result
in a different output for the same input. The network model parameters is denoted
by θ, which is a matrix that contains all the weights and biases in the network, such
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FIGURE 2.4: Graphical structure of a small FCNN. Every node is con-
nected to every node in the previous- and next layer. Input data is
applied in the leftmost layer, and then propagated through the net-

work, to the last layer, which is the output values of the network.

that θ = [w0, w1, ..., wn, b], where wk is the weight matrix for layer k = 0, 1, ..., n and
b is the network biases.

The output of the network is the resulting values in the last- and rightmost layer.
The number of neurons in an FCNN can span from a couple thousand in small

networks to many million in large networks. The more complex the analysed data
structures, the more neurons are required in the network.

Training Neural Networks

In order for a DNN to be able to produce the desired output for a given input it
has to be trained. In supervised machine learning DNNs are trained by being pre-
sented with input data, and a corresponding desired output, called labeled data.
The labels are what the trainer desires the DNN to be able to predict for the given
data. When training begins the training data is propagated through input through
the network layers. Thus the network produces output values for the given input
values. This is called a forward pass. This output from the network is compared to
the desired output for the corresponding input data. An error metric is calculated,
called loss, which signifies how accurate the network was in predicting the desired
output value. The learning algorithm seeks to minimize loss. In order to do this it
modifies the weights and biases in the network in such a way that loss is reduced
for the given data. This loss is also called cost, and is denoted by C.

In order to minimize loss the training algorithm has to calculate the partial deriva-
tive of loss given input data, with respect to the model parameters. Then, using
a update rule, the network updates the current model parameters, and continues
training using the new model parameters. One such update rule is called gradient
descent minimization, and is commonly used. With gradient descent update rule
the model parameters is updated by

θnew = θ− α
δC(θ, zk)

δθ
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where zk ∈ R is a vector of the output of the last layer in the network and α ∈ R

is predefined learning rate which specifies how fast the network is to converge. The

partial derivative δC(θ,zk)
δθ is numerically difficult to calculate, and is instead approxi-

mated using a technique called backpropagation.
This training is performed over a large number of iterations, and loss is gradually

decreased over time. After training, the network is tested on another labeled data
set, called a test set, which has not been used for training. Using this test set, the
final accuracy of the trained model is determined.

For a DNN to achieve a high level of accuracy it requires a dataset which is of
high quality. The quality of a dataset is dependent on the number of data samples,
the precision of the labels, whether the labeled data is varied and whether the data
resembles the data which the final model is to be used on. Data augmentation is a
technique for augmenting and improving the quality of the dataset. Data augmenta-
tion is performed by duplicating parts of the data in order to increase the size of the
data set, and subjecting the data to modifications and distortions in order to increase
the variety of the data set, and to make the data more robust to changes in input
data.

Convolutional Neural Networks

When working with DNNs, an FCNN is not well suited to capture information in
images. Images are coded as a matrix of pixel values, where the location of the
pixels in relation to the others is an essential part of the information. In an FCNN,
the neurons in the first hidden layer are connected to every pixel in the input image.
A one-pixel translation of the pixels in an image will not alter the image information
much. However, it will significantly change how the image is propagated through
an FCNN because the pixels will be passed through different weights. Therefore an
FCNN does not capture all relative spatial information in images.

A Convolutional Neural Network (CNN) provides a solution to this and is, there-
fore, the preferred choice working with image data. A CNN consists of three differ-
ent types of layers; convolutional layers, pooling layers, and fully connected layers.

Convolutional layers are layers where data, represented as matrices, is subjected
to convolutional mappings. A convolutional mapping is an operation where data
values are combined with other adjacent values and passed on to the next layer. The
values are passed on to the next layer by taking the dot product of a moving grid in
the value matrix with a trained matrix of weights called a kernel. An example of a
convolution operation using an example data matrix A and kernel K can be seen in
Figure 2.5.

Pooling layers are a type of layers in a CNN used to reduce the dimension of
the value matrices without losing important data. A maxPool is the most commonly
used pooling technique, and a 2x2 maxPool layer will propagate the highest value
in a 2x2 grid onto the next layer, thus halving the matrix dimensions. An example
of a maxPool can be seen in Figure 2.6 where a 4x4 matrix is reduced to 2x2 using a
2x2 maxPool. Other pooling techniques are also used, such as minPool and average-
Pooling.

The structure of a CNN usually consists of a series of pairs of one convolutional
layer and one pooling layer. After a series of convolutional- and pooling pairs,
CNNs contain one or more fully connected layers.

Bounding box (BB) classification algorithms are based on the CNN structure. BB-
classification algorithms detect whether certain classes are present in an input image
while also predicting the location of these classes. An example of an output image
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FIGURE 2.5: An example of a convolution operation, with a 3x3 con-
volution filter K
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FIGURE 2.6: 2x2 MaxPool function, where the dimensions of a matrix
are reduced by stripping away non-max values within a grid. Here a
2x2 maxPool function is applied to a 4x4 matrix, and the resulting ma-
trix consists of the largest values within the respective colored grids.

from a bounding box prediction algorithm is seen in Figure 2.7, which is output from
a YOLO bounding box prediction algorithm. BB-prediction algorithms are used for
surveillance applications, item detection and localization and pose estimation for
autonomous control. There are multiple different kinds of bounding box prediction
algorithms including YOLOv3 [43] and YOLOv4 [18], Faster R-CNN [44], Efficient-
Det [45].

Other computer vision techniques that use a CNN structure are image segmen-
tation [46] and direct methods. Direct methods use an end-to-end DNN from input
image to desired output, which is being developed for autonomous automobile con-
trol [47] [48].

YOLO

You Only Look Once (YOLO) [43] is a real-time bounding box (BB) prediction algo-
rithm created by Redmon et al. It is a fast algorithm compared to comparable pre-
diction algorithms while at the same time achieving a high mean average precision
(mAP). The inference times and corresponding mAP of YOLOv3 and YOLOv4 com-
pared to other BB-prediction algorithms can be seen in Figure 2.8. Because YOLO
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FIGURE 2.7: Image with bounding boxes predicted by YOLO. Im-
age collected from [49]. Three classes are identified; dog, bicycle and
truck, and bounding boxes are drawn around the predicted location

of the classes.
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FIGURE 2.8: Inference times and corresponding mean-average-
precision compared between different bounding box detection algo-
rithms, while being tested on the MS COCO dataset [50]. Image col-

lected from [18]

can achieve both a high inference rate and a high mAP, it is one of the most used
real-time bounding box prediction algorithms.

There exists multiple versions of YOLO, as well as multiple iterations of these
models. YOLOv4 is the most recent update to YOLO, although an unofficial YOLOv5
has been released by Glenn Jocher [51]. YOLO-tiny [52] is a scaled-down version of
the YOLO network, which has a higher inference rate at the cost of a lower mAP.
Scaled YOLO [53] is a YOLO version that can be scaled up and down, depending on
preferences between high mAP or high inference rate.

The YOLO algorithms are known to have some weaknesses. YOLO is known
to struggle with the detection of small objects [20]. Another weakness of the YOLO
algorithms is that bounding boxes tend to have both small translational shifts as well
as minor changes in bounding box aspect ratio between frames making the boxes
seem to ’jitter’ [54].

The output from YOLO is a list of bounding boxes that are detected in a given
image frame. If no objects are detected in the image frame, then an empty list is
output. A bounding box is a data type that consists of:

• coordinates: xmin, ymin, xmax, ymax

• bounding box probability

• object class
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FIGURE 2.9: NMS removes overlapping bounding boxes of the same
class

where xmin, ymin, xmax, ymax defines the bounding box location in the camera
frame. Probability is a confidence score for the algorithm, which signifies how confi-
dent the algorithm is in the prediction. Class is the type of object that the algorithm
predicts the object to be.

YOLO can achieve a high inference rate because it performs one inference on an
image in order to predict both bounding box location as well as the class type and
confidence score, hence the name You Only Look Once. YOLO performs a forward
pass through the network by dividing the picture into a grid of S x S cells, where S
is predetermined. Every cell in the grid will predict a number of bounding boxes,
between 3 and 5, centered in the cell. Each bounding box will find an object and
encapsulate it. These bounding boxes have different pre-set aspect ratios in order to
detect objects with different shapes.

YOLO predicts objects of different scales by performing forward pass multiple
times in parallel at different scales, thus using different numbers for S. A large num-
ber for S will result in the image being divided into a large number of cells. These
cells will then predict bounding boxes, but A confidence score is predicted for every
bounding box prediction.

Every frame spawns a large number of bounding box predictions, as every cell
produces multiple bounding boxes. In order to reduce this to the relevant matches,
YOLO performs two filtering techniques. A confidence threshold is applied to all
the bounding boxes, which removes all bounding boxes with low confidence scores.
This threshold is a user-tunable number between zero and one. YOLO also per-
forms Non-Max-Suppression (NMS), which removes duplicate bounding boxes for
the same object in an image. It removes bounding boxes located in an area occupied
by a bounding box of the same class and a higher confidence score. An example of
NMS is shown in Figure 2.9 where NMS removes overlapping bounding boxes of
the same class.

YOLO is based on a CNN structure called Darknet [43] by Redmon et al. YOLOv3
is based on a is a CNN backbone structure called Darknet-53 with 53 layers. The dif-
ferent YOLO versions are modifications of the same Darknet structure, where the
Tiny-YOLO versions have fewer- and smaller layers to increase inference frequency,
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and the scaled-up versions have more- and larger layers to achieve a higher mAP.
YOLOv5 is not based on a Darknet structure.

2.3.3 Comparing DLCV and TCV methods

DL-based computer vision techniques (DLCV) and traditional computer vision (TCV)
techniques are different in implementation and use. DLCV has in recent years pushed
the limits for what is possible to do with computer vision. However, Walsh et al. ar-
gue that DL has not made TCV techniques obsolete [55].

A DLCV system is created by training a DL model with a dataset of images.
Such a training dataset is required to be sufficiently large and of high enough qual-
ity for the model to achieve the desired level of accuracy. Such a dataset may not be
available and may be costly or difficult to generate. In recent years public datasets
such as Microsoft COCO [50] have made it possible to pre-train the models on pub-
lic datasets and subsequently performing transfer learning by continuing training
on a specific dataset. Data augmentation techniques[56] are techniques for making
datasets larger and improving the quality of the datasets. Such methods have made
it easier and less expensive to generate proper datasets for DLCV. TCV methods do
not require datasets for training and may therefore be the method of choice if no
dataset is available.

Training DLCV models does not require expert knowledge about the specific
computer vision problem, rather general knowledge about training DLCV models.
Therefore such implementations can be simple to implement and improve, as long as
proper datasets are available. TCV methods, however, do require expert knowledge
about the specific computer vision problem. Implementing such solutions requires
that the creator is skilled in extracting the useful information from the images and
processing that knowledge into usable output, which may be time-consuming if the
CV problem is complex.

DLCV methods can not be better than the dataset it is trained on, as it is not
able to learn to predict the output better than what it has been trained to do. It
can also be challenging to perform iterative improvements of DLCV models, as the
requirements for improving such models are improved datasets or further training
with changes in model parameters. Due to the black-box nature of DL methods, it
is not trivial to know what backbone changes result in improved models. Thus im-
provements may require training a number of different models, and then to choose
the best one. Training DL models is time consuming and requires large computing
powers. When a TCV method is created it may be easier tweak the final model than
it is to tweak a DL model. A TCV model does not require a new training period, nor
a new dataset, meaning that iterative improvement may be easier.

DLCV methods, when run on a Graphical Processing Unit (GPU), are able to
process images very quickly, with achieving inference rates in the hundreds of hertz.
This may be possible on simple TCV tasks as well, however TCV is generally slower
for complex CV tasks.

TCV may be quite easy to implement and sufficient for simple CV tasks, but may
prove insufficient when applied to more complex tasks, such as facial recognition
and product inspection. TCV still dominates in areas such as visual Simultaneous
Localization and Mapping (vSLAM) [39]. DLCV methods excel is extracting infor-
mation from complex data structures, and classifying them. DLCV solutions such as
TrackNet [57] are able to perform object tracking by performing object tracking over
time by using input from multiple image frames at the same time. Implementing
such solutions using TCV methods would be extremely complex.
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DL solutions are generally regarded black box solutions, meaning that the inner
processes of the solutions are either unknown or not understood. Thus, it is viewed
as a black box in which one inputs data and receives an output while not know-
ing how the solution produced that output. Consequently, one cannot guarantee
how the solution will perform in the future, which may cause a safety verification
problem. Solutions to the black box problem of AI are being developed, such as ex-
plainable AI solutions [58] which may be imperative for wide-scale adoption of AI
solutions. TCV solutions are not black box solutions. They are programmed explic-
itly, and the output is therefore predictable and can be understood from the given
input.

2.4 Inertial Measurement Unit

An inertial measurement unit (IMU) is a sensor that measures specific force- as well
as angular velocity experienced by the sensor [59]. When placed on a body, it will
measure the specific force and the angular velocity of the body, represented in the
body frame.

An IMU measures the specific force using a 3-axis accelerometer, which measures
acceleration and measures angular velocity using a 3-axis gyroscope. Together, these
sensors compose a 6-DoF IMU. There also exists IMUs that utilize a magnetometer
in order to measure the orientation of the body.

The measured specific force on the bodyf̃b and the measured angular velocity on
the body ω̃b are given by the equations:

f̃b = fb + bb
f + n f (2.16)

ω̃b = ωb + bb
ω + nω (2.17)

where f̃b is measured specific force in the body frame, fb is true specific force ex-
perienced by the body and bb

f and n f are sensor bias and noise for accelerometer

measurements. Likewise for the gyroscope measurements, ω̃b is measured angu-
lar velocity, ωb is true angular velocity experienced by the object and bb

ω andnω are
gyroscope bias and noise.

IMUs generally have a high sampling rate. Consumer-grade IMUs generally
have a sampling rate in the range of 100-1000Hz, while higher-grade IMUs may
have sampling rates of 10kHz and more.

Consumer-grade IMUs generally have significant measurement noise and biases.
Due to these measurement errors in the system, an inertial navigation system based
upon the integration of IMU measurements may become significantly inaccurate
within seconds. Such a system will therefore require frequent corrections using other
sensors. Despite this, such an INS system may be a useful component in combination
with other sensors.

2.5 Finite State Machine

A Finite State Machine (FSM) is a programming technique for developing programs
that are to perform different actions at different points in time [60]. An FSM is de-
fined by a set of finite pre-defined and discrete states. While running, the program
will at any time be in one of the states and can change from one state to another in
response to certain conditions being met or in response to some inputs.
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State 1 State 2Transition 2-1

Start

End

Transition 1-2Transition 1-2

FIGURE 2.10: A two sate state-machine

While in a state, an FSM will perform the specified functionality for that state
while also checking for conditions that should trigger a state change. Each state
can transition to some other states, and each state can have different conditions for
transitioning.

The states and transitions of an FSM can be represented as a graph, where the
states are nodes in the graph, and the transitions between the states are the edges
of the graph. A graphical representation of an example state machine consisting of
two states is displayed in Figure 2.10. The black circles represent the start and end
state. The controller for an object like a toaster could be implemented with such a
two-state FSM, where the states are IDLE and TOASTING, and transitions occurring
when a button is pressed and when a toasting timer is finished.

FSMs are used in robotics development, control systems and embedded systems
and can also be used for control of systems that are to perform a number of actions
sequentially. Desired actions are then represented as separate states, and switch-
ing to the next state is triggered by conditions signifying that the current action is
completed.
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Chapter 3

Experimental Setup and
Environment

3.1 Parrot AR Drone 2.0

The Parrot AR.Drone 2.0 is a quadcopter produced by the French company Parrot in
2010. The AR.Drone 2.0 is a low-cost commercially available quadcopter.

An indoor hull is available for the quadcopter, which provides a protective shield
around the propellers. This hull makes the drone capable of surviving small bumps
and crashes into walls and furniture, thus facilitating iterative testing during devel-
opment. Other quadcopters are known to be less resilient to crashes, breaking upon
impact. The indoor hull increases drag and makes the quadcopter less resilient to
wind disturbance. Wind and high-speed flight where drag is significant is usually
not a factor indoors, and therefore the indoor hull is used when performing indoor
experiments. For outdoors use, the force of wind is significant and therefore the in-
door hull can be replaced with an outdoor hull, which does not have the protective
shields. The drone weighs 420g with the protective hull and 380g with the outdoor
hull. The drone is 59x59cm equipped with the indoor hull. A figure showing the
Parrot AR.Drone 2.0 with both indoor- and outdoor hulls can be seen in Figure 3.1.

The battery capacity of the AR.Drone is quite limited, enabling about twelve
minutes of flight time on a full charge. Twelve minutes of flight time is sufficient for
the experiments performed in this thesis.

The technology behind the AR.Drone 2.0 is not up-to-date with the current state-
of-the-art quadcopters on the market. Quadcopter technology has advanced in the
recent decade, and it may therefore be argued that development and research using
this drone is less fruitful than using more recent and updated drones. Naturally,
newer drones on the market are equipped with better sensors, have more stable on-
board control algorithms, and faster- and more accurate communication systems.

(A) Outdoor hull (B) Indoor hull

FIGURE 3.1: The Parrot Ar.Drone 2.0 with outdoor- and indoor hulls.
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Although the AR.Drone is lacking in these aspects, it does provide the following
advantages for research and development of quadcopter systems:

• There exist open-source drivers for communication with- and control of the
AR.Drone

• There exists open-source computer simulation systems featuring the AR.Drone,
facilitating for extensive testing of the quadcopter system.

• It is cheap and easy to replace if it breaks during testing.

• It features a protective foam shield in order to be resilient to collisions.

• Several studies have been performed using the AR.Drone, and therefore it is
simple to perform a comparative analysis of the performance of the quadcopter
system.

Consequently, the AR.Drone 2.0 was selected for the development of the quadcopter
system in this thesis. Future research and further iterations of this system should be
carried out using up-to-date quadcopter systems.

There is a significant delay in communication with the Parrot AR.Drone 2.0. This
communication delay is tested and discussed by Engel. et al. [17], where they es-
timate the delay from control signals are sent from the control device and until the
AR.Drone starts performing the control actions to be 60ms. Engel et al. also estimate
there is a 130ms delay from sensor information is received by the AR.Drone and un-
til it is received by the control device. Adding control device processing time, the
total delay in a feedback control loop may surpass 200ms.

3.1.1 Sensors

The AR.Drone is equipped with multiple sensors for state estimation. These include
a barometric pressure sensor for the estimation of altitude. The drone does not trans-
late the barinetric data into altitude, rather sending raw pressure readings in Pascal.

Furthermore, the AR.Drone 2.0 is equipped with two cameras, a front-facing
camera and a bottom facing camera. The front-facing camera is able to output video
at two user-selectable levels of resolution: 720p (1280x720) and 360p (640x360) at
30fps. The bottom-facing camera of the AR.Drone captures video at a resolution of
240p (320x240) at 60 fps. This resolution is then scaled up so that the resolution of
the output video is 360p. Both cameras are rolling shutter, meaning that the images
may be severely distorted when the quadcopter is moving [61].Thus, there is a sig-
nificant amount of motion blur from the bottom facing camera when the quadcopter
pitches or rolls.

The AR.Drone 2.0 also features a 200Hz IMU which consists of a 3-axis accelerom-
eter as well as a 3-axis gyroscope. It also contains a 3-DOF magnetometer with an
accuracy of 6 degrees, as reported in the documentation [62]. These components to-
gether make the drone good at providing pitch and roll estimates. These estimates
do not seem to drift over time, making the quadcopter able to stay controlled in the
air for a substantial amount of time. Engel et al. report that that the AR.Drone on-
board estimates of yaw of the were subject to drift at a rate of about 60 degrees per
minute.

It is possible to mount an external GPS sensor, called a Flight Recorder, on the
AR.Drone 2.0. A flight recorder is not available for the experiments in this thesis. It
is, however, available in simulations.
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3.1.2 Communication

The drone can be user-controlled by smartphone using the official Parrot AR.Drone
app. Computer control is possible by using a ROS driver called ardrone_autonomy
by AutonomyLab [63].

The quadcopter communicates by setting up an ad-hoc Wi-Fi network to which
the control device connects. Communication is then performed by the quadcopter
and control device sending messages over this Wi-Fi network. This communication
is streamlined over four different channels. These are called:

• Navdata channel

• Video Feed channel

• Command channel

• Control channel

The Navdata channel is a channel where the quadcopter sends all navigation data,
including battery percentage, barometer and IMU sensor readings, estimates of quad-
copter orientation and current internal quadcopter state. Output from the quad-
copter cameras is sent over the Video Feed channels. This is restricted to video
output from only one of the cameras simultaneously. The command channel is for
the control device to specify flight commands. The control channel is for changing
quadcopter settings, such as toggling which camera provides the video feed.

3.1.3 Control

The Parrot AR.Drone 2.0 is equipped with an on-board low-level flight controller.
This controller uses the IMU and gyroscope to control the drone in order to execute
external flight commands. Flight commands are sent as desired velocities in the
three linear directions and desired velocity in yaw. For control, only higher-level
velocity input is required. The quadcopter can execute these commands by having
an on-board estimation of attitude using the IMU and the magnetometer [61]. The
on-board control system is not open-source and is therefore treated in this thesis as
a black box system.

The AR.Drone will attempt to hover stationary in the air if it loses connection
with the control device or does not receive any velocity commands.

3.2 Landing platform

The experiments of this thesis involve the Parrot AR.Drone 2.0 taking off from-, hov-
ering over-, and landing on a specified landing platform. This landing platform was
designed and constructed by Sundvoll [1]. The landing platform is a green circu-
lar platform. It features a large capital H, which is easily recognizable and typical
for helicopter landing platforms. The landing platform also features an orange cir-
cle outside of the H and an orange arrow to specify the orientation of the landing
platform.

The features of the landing platform are designed to be distinct and easily de-
tectable for a computer vision system. The colors of the landing platform are con-
trasting colors, with the orange circle and -arrow contrasting the green background.
In addition, the white H is in contrast to the green background, thus making the
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(A) Computer model (B) Physical version

FIGURE 3.2: The quadcopter landing platform

features distinct and easy to recognize from above, making it easier for a computer
vision algorithm to locate the landing platform in the image.

One might argue that an even more distinct landing platform design could have
been chosen. For example, such a design could include additional larger features
or blinking lights to more easily detect the platform for a computer vision system.
While this is true, the design of this landing platform is meant to be visually pleas-
ing to human beings while at the same time being detectable for a computer vision
system. Moreover, a design that mimics the design of traditional helicopter landing
platforms makes it evident to the uninformed observer that the platform is a landing
platform. Ultimately, the design of the helipad is proven to be sufficiently distinct for
computer vision systems to detect it [1] [2], while at the same time having a visually
pleasing design.

The physical landing platform has a radius of 40cm, sufficient for hosting the
AR.Drone 2.0. The white H is located in the center of the platform and spans 1/3
of the platform radius on the long side of the H and 1/4 of the platform on the
short side. The orange circle, where the arrow is located, has a radius of 25 cm. A
computer model of the landing platform can be seen in Figure 3.2a, and the physical
landing platform can be seen in Figure 3.2b.

3.3 Robot Operating System

The Robot Operating System (ROS) is an operating system for programming robots.
It is free and open-source, and is created by Open Robotics. It is extensively used in
robotics development [64].

ROS, rather than offering a graphical user interface, offers a well-structured com-
munication structure for development.

ROS is designed for modular implementation of software. This means that the
functionality of the program is split into separate independent modules. Each mod-
ule should contain everything that is required in order to execute one part of the
system functionality.

ROS modules are called nodes. Nodes communicate by sending messages and
receiving messages from other nodes. Such messages are sent over ROS communi-
cation channels called topics. Nodes may publish information to topics, and they
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FIGURE 3.3: An example of a ROS structural network, with nodes
and topics, publishers and subscribers.

may subscribe to topics, thereby receiving information that has been published to
those topics.

It is possible to visualize the data flow in a ROS program as a communication
graph of a ROS program, using arrows between nodes and topics to show data flow
direction. An example of a ROS communication graph can be seen in Figure 3.3
where nodes are represented as circles and topics are squares.

Control of hardware is possible through ROS by implementing hardware drivers
as ROS nodes. These ROS nodes may subscribe to topics for control signals and
publish sensor messages to topics for sensor data.

There are several advantages with ROS-based application development. The
modular structure makes iterative development and testing simple. ROS is open-
source, and there is much available open-source code and hardware drivers avail-
able for use. Due to the modular nature of development with ROS, it encourages
re-use and sharing of code. ROS offers development in several languages, but ROS
messages are standardized between languages, meaning that different modules in
the same application can be written in different languages. Another advantage of
ROS is that due to the modular nature of the program, one can easily change sensor
modules for data reading modules. Therefore, the program can be tested on dummy
data just as easily as being tested with real sensor data.

Nodes in ROS are launched using the command line in terminal. It is possible to
create .launch files in ROS, which are files written in .xlm, which contain informa-
tion about launching ROS nodes. Therefore, one can write one .launch file that will
launch a large number of ROS nodes using one terminal command. Creating sepa-
rate .launch files for separate experiments and settings can run different experiments
and tests simply and efficiently.

3.4 Gazebo Simulation Environment

Some of the quadcopter system performance tests are carried out in in a simulation
environment called Gazebo, using Gazebo version 7.0.0. Gazebo is a computer sim-
ulation system for robotics development. It is developed by Open Robotics, and
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FIGURE 3.4: The Parrot AR.Drone 2.0, landing platform and ReVolt-
ship in the Gazebo simulation environment. The camera view from
the bottom facing camera can be seen in the top left of the simulation.

is open-source. Gazebo provides a robust physics engine as well as high-quality
graphics and is integrated for use with ROS.

A simulation of the Parrot AR.Drone 2.0 is available in the ROS package tum_simulator,
for use Gazebo. It approximates the physical response of the real AR.Drone 2.0, and
features the same cameras and IMU as the physical quadcopter.

A 3D model of the landing platform, created by Sundvoll [1] is located upon a
computer model of the ReVolt marine vessel, provided by DNV. Sundvoll combined
these computer models with a simulated ocean model in order to create a marine
simulation environment. An image of the simulation environment can be seen in
Figure 3.4. The drone’s bottom facing camera view is displayed in the top left of the
simulation.
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Chapter 4

Methodology

This chapter proposes a system for autonomous quadcopter control, including per-
ception, filtering, mission navigation and control. The system aims to meet the ob-
jective of the thesis, to work towards an autonomous quadcopter system capable of
performing simple missions without human intervention.

4.1 Defining coordinate Frames

The quadcopter system is to navigate relative to the stationary landing platform.
Two coordinate frames are introduced for this task, one being the quadcopter body
frame, which is defined as presented in Section 2.1.1. This coordinate frame is called
body frame for the rest of this thesis.

The second coordinate frame has origin in the center of the landing platform,
with axes fixed to the elements of the platform. Thus, this is a body frame for the
landing platform. However, since the landing platform is stationary, this landing
platform body frame is called the world frame in this thesis.

The world frame is defined by:

• (0,0,0) being located in the center of the landing platform.

• z-axis: is pointing directly upwards

• y-axis: is pointing opposite of the orange arrow on the landing platform

• x-axis: is perpendicular to both z-axis and y-axis.

Quadcopter body frame yaw rotation is defined as zero when the orange arrow
on the landing platform is pointing to the right in the camera view.

A rotation matrix Rb
w(φ, θ, ψ) is used for transforming world frame coordinates

to body frame coordinates, such that

xb = Rb
w(φ, θ, ψ)xw (4.1)

where

Rb
w(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ) (4.2)

where Rz(ψ), Ry(θ), Rx(φ) are rotation matrices for rotations about the axis’ z, y and
x respectively.

The world-to-body coordinate transformation can be approximated to rotation
about the z-axis yaw, assuming that the pitch and roll movements of the quadcopter
are small. This approximation is possible because of small angle approximation,
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where for any small angle α it follows that

α ≈ 0⇒
{

sin α ≈ 0
cos α ≈ 1

(4.3)

Utilizing this, the rotation matrix is approximated to

Rb
w(φ, θ, ψ) ≈ Rz(ψ) (4.4)

Thus, by using this approximation of the rotation matrix, the world-to-body rotation
is reduced to

xb = Rb
w(ψ)x

w (4.5)

where

Rb
w(ψ) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (4.6)

is a rotation about the z-axis. The inverse of the world-to-body rotation matrix is a
body-to-world rotation matrix such as

Rw
b (ψ) = (Rb

w(ψ))
−1 (4.7)

=

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (4.8)

4.2 System Architecture

The system architecture is displayed in Figure 4.1. The system is constructed of 6
components:

• Quadcopter

• Mission Control

• PID Control

• Kalman Filter

• TCV

• DNN CV.

This system can use a computer-simulated quadcopter or the physical quadcopter.
Mission Control is the guidance and navigation system for the quadcopter. It

receives the current body frame pose estimate x̂ as input and produces the current
world frame desired pose xr for the quadcopter.

PID-control is the quadcopter pose controller, receiving the desired quadcopter
pose from Mission Control, and produces velocity references vr to which the on-
board controller of the quadcopter follows in order to reach the desired pose.

The Kalman Filter fuses sensor measurements to produce one quadcopter pose.
A Kalman Filter was chosen for sensor fusion because
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FIGURE 4.1: System Architecture

• It is more robust to sensor failure because it both fuses pose measurements and
predicts the pose simultaneously.

• It dynamically adapts to missing- or infrequent sensor measurements by up-
dating the current estimate based on the current uncertainty of the estimate

• It can easily be expanded to include more sensors.

• It can easily be adapted for use with another quadcopter.

The Kalman Filter receives IMU data yIMU , pressure data ybarom and computer vision
pose estimates x̂tcv and x̂dnn, and produces the current body frame pose estimate of
the quadcopter x̂.

Two different computer vision models are processing images concurrently and
are modeled as two independent sensors:

• DNN CV: A Deep Neural Network-based computer vision model, adapted
from an earlier thesis by the author [2].

• TCV: A Traditional Computer Vision-based computer vision model,

Both computer vision models receive images from the drone’s bottom facing camera
as input and produce body frame pose estimates relative to the landing platform.

4.3 Computer Vision Pose Estimation

The author proposed, in an earlier thesis, a CV pose estimation algorithm by com-
bining two computer vision methods [2]. The two methods are:

• Pose estimation method by TCV methods by T. Sundvoll [1].
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• Pose estimation method using DNN CV methods created by the author [2],

Both methods require detecting the circular landing platform to produce a posi-
tion estimate, and both require detecting the orange arrow to estimate yaw orienta-
tion.

The TCV method is created by Sundvoll [1]. Color segmentations, Canny edge
detector [36] and Harris corner detection [37] are used to identify the circular landing
platform, the H and the arrow. The center, radius, and yaw of the landing platform
are calculated based on these features’ location and size.

The DNN CV method proposed by Hove in [2] estimates the center and radius of
the landing platform by using the location and sizes of YOLO bounding boxes [43].
The DNN is trained to detect three classes:

• Helipad

• H

• Arrow

Helipad is the complete landing platform, H is the white H in the center of the landing
platform, and arrow is the orange triangle. A model image of the landing platform
with labels for the three classes can be seen in Figure 4.2. The center of the landing
platform is found by calculating the center of a bounding box of a detected Helipad.
The radius of the landing platform in pixel coordinates is found by half of the longest
side-length of a bounding box surrounding the Helipad.

Both methods estimate the pose of the quadcopter by first detecting the landing
platform in the camera frame of the bottom facing camera of the quadcopter. Subse-
quently, the position is calculated by knowing the size- and location of the landing
platform in the camera frame and transforming that to body frame coordinates based
on known camera intrinsics of the AR.Drone bottom facing camera, as well as the
real size of the landing platform. The quadcopter orientation is calculated as the
angle between a vector connecting the orange arrow on the landing platform and
the center of the landing platform and a horizontal vector. Yaw angle on the landing
platform is illustrated in Figure 4.3, where (xa, ya) is the center of the bounding box
encapsulating Arrow, and (xh, yh) is the center of the bounding box encapsulating
Helipad. Further elaboration on the implementation of the DNN CV algorithm is
presented in [2], and the implementation of the TCV algorithm is presented in [1].

The TCV method and the DNN CV method are processing the images indepen-
dently and concurrently. Combining computer vision methods may result in a com-
puter vision system that is more robust and accurate than each method indepen-
dently.

The TCV method proposed by Sundvoll [1] and the DNN CV method proposed
by the author [2] is based upon the assumptions that the landing platform is per-
fectly horizontally oriented. and that the quadcopter pitch and roll are zero. These
assumptions are close to accurate in windless conditions and when quadcopter con-
trol is sufficiently slow to avoid large pitch and roll movements. Simulation results
from [2] and [1] seem to verify these assumptions.

The DNN CV method is further developed in this thesis by:

• being trained on a larger dataset, achieving a higher mAP

• being trained on a dataset consisting of images of the physical landing plat-
form
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FIGURE 4.2: The landing platform with bounding boxes encapsulat-
ing the three classes; Helipad, H and Arrow.

• fixing bugs that were causing yaw estimation errors reported in [2].

• Misdetection checks and filtering

Building Datasets

The DNN CV algorithm proposed by the author in [2] is based on a trained YOLOv4
algorithm detecting the landing platform. For training, the algorithm requires a
dataset that contains images of landing platforms, labeled with the classes Helipad,
H and Arrow.

The author collected a dataset with 1083 images of the simulated landing plat-
form for a project thesis [2]. The YOLOv4 model proposed in the project thesis was
trained with that dataset and achieved a mAP of 86.9%. That project thesis dataset
formed the basis for a further developed dataset used for training a YOLOv4 model
in this thesis.

The experiments in this thesis are performed in two different visual environ-
ments; a simulation environment and an indoor environment. Two different datasets
are created in order to train one model for each environment.

The Simulation dataset, called SimSet, consists solely of images of the landing
platform from the simulations, at altitudes between 0.5m and 20m. The images are
captured with the AR.Drone’s bottom-facing camera by manually controlling the
quadcopter over the landing platform in the simulation.

The Real-World dataset, called RealSet, consists of images of the physical landing
platform. These images are captured by manually controlling the quadcopter 0.5 to
2.5m over the landing platform while capturing video at 5 fps using the AR.Drone’s
bottom facing camera. In order to make the dataset as general as possible, the video
is captured with three different backgrounds:

• indoor with a wood floor background and indoor light conditions.

• outdoor with a grass background, in sunny conditions.

• outdoor with a wood floor background, in sunny conditions.
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FIGURE 4.3: Calculating yaw as the angle between a flat line in the
camera frame and the straight line between the centers of the Helipad

and the Arrow.
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FIGURE 4.4: The labeling process in cvat.

The SimSet consists of 2182 images, including the initial 1083. The RealSet con-
sists of 1321 images.

The two datasets are labeled using an online labeling tool called cvat [65]. The
images are labeled by manually drawing bounding boxes around the classes in the
images, specifying which class each box belongs to. An image of the labeling process
can be seen in Figure 4.4.

YOLO requires images to be square, with side lengths are pixel multiples of 32.
Higher resolution images result in more accurate but significantly slower detection.
The image resolutions that was chosen for the datasets in this thesis were 416x416,
where sufficient detail is present in the image for accurate detections. At the same
time, the inference speed is sufficiently high for real-time control. The bottom-facing
camera of the AR.Drone 2.0 is 320x240, so any higher resolution than that does not
increase detection accuracy.

The datasets are partitioned into training sets, validation sets, and test sets, re-
quired to assess the DNN training. The training sets are used to train the model,
while the validation sets are datasets that the model uses to evaluate performance
during training. The test sets are datasets that have not been seen during training
and can therefore be used to test the final model performance. The training set con-
sists of 70% of the images, while the validation set and the test set consists of 20%
and 10%, respectively.

Data augmentation is performed in order to increase the size of the datasets fur-
ther, as well as to make the model more general robust. Augmentation is performed
using an online data augmentation tool called Roboflow [4]. A table showing all
augmentations that are performed on the datasets can be seen in Section 4.3.1. Aug-
mentation is only performed on the training set, so after augmentation, the training
set contains 88% of the images, the validation set contains 8% of the images, and the
testing set contains 4% of the images in the dataset.

The augmentations that are performed on the SimSet are chosen to provide the
best performance in simulations. The simulation environment is a stable visual en-
vironment, where the lighting or background behind the landing platform never
changed, and thus no color augmentations are chosen. The augmentations that are
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(A) SimSet (B) MirrorSet (C) RealSet

FIGURE 4.5: An image from each of the three datasets.

chosen for the SimSet are image rotations and image flipping in order for the algo-
rithm to be invariant to yaw rotation. The SimSet is augmented to be 5229 images.

The RealSet is augmented by image flipping as well as image shear, grayscale
and exposure. The RealSet is augmented to be 3171 images.

A third dataset is created by resizing RealSet in a different way, called mirror
edges, which resize the images to 416x416 by mirroring the edges, so the image be-
comes square and subsequently scaling the resolution. Edge mirroring causes some
images to contain multiple elements of the same classes and the model may get more
training detecting the classes this way. However, the mirroring may mirror the mid-
dle of the landing platform, resulting in the mirrored image containing two side-by-
side half landing platforms, which looks like one landing platform. The mirroring
may cause the YOLO detection algorithm to struggle because the mirrored landing
platform should be detected as two separate landing platforms. The MirrorSet does
not accurately represent the final detection scenario, and the model may not perform
well on the test set. Whether the increased number of detection cases caused by the
mirroring will make up for the different training images will be seen after training.

An image from each of the three datasets is displayed in Figure 4.5.
All three datasets are pretty balanced. Each landing platform contains one type

of each class. Some images do not contain the Arrow because the camera view does
not contain the complete landing platform, but not a sufficient amount to cause
dataset imbalance problems.

Training YOLOv4 CV Models

A YOLOv4 model is trained for each of the three datasets. Training is performed us-
ing Google Colaboratory’s free GPU [66], using a YOLOv4 training script provided
by Roboflow [4] [67]. A table of training data, training parameters and final mAP for
the three datasets can is presented in Section 4.3.1.

Training a model for the SimSet is performed using transfer learning with initial
weights being the officially released YOLOv4 ConvNet weights from [68]. Train-
ing of the MirrorSet and RealSet is performed using transfer learning using a fully
trained SimSet model. Transfer learning reduces the number of training images re-
quired, which is helpful since the gathered datasets are small. Transfer learning from
the SimSet model should be effective since the simulated landing platform is quite
similar in shape, size and color to the physical landing platform. In addition, Re-
alSet and MirrorSet consist of only 3171 images, which is quite low to train a model
without transfer learning.



4.3. Computer Vision Pose Estimation 37

Training is stopped when mAP plateaus to avoid overfitting. The training pa-
rameters used for training and the final mAP of the models are displayed in Sec-
tion 4.3.1.

The final mAP of the RealSet model is 98.11% which is quite high. The mAP of
the MirrorSet not as good, reaching mAP of 93.56%, and the RealSet model is there-
fore chosen for the DNN CV. By analyzing output images from the model trained on
the MirrorSet, the model was prone to detect multiple overlaying bounding boxes
over the same objects in the image and sometimes detect the objects as multiple
smaller objects instead of one large object. The mirroring created problems because
it resulted in a dataset that was not similar to the test set resulting in a model unable
to produce accurate detections.

The mAP of the SimSet was 89.46%, quite a bit less than the mAP of the RealSet.
The lower mAP of the SimSet may be surprising, as the visual environment of the
SimSet is stable and less varying than the RealSet. The main challenge with SimSet
was detecting the Arrow and the H. Many of the images in the SimSet were taken
from a very high altitude, causing the landing platform to be very small in the im-
ages. Subsequently, the Arrow and the H, which are smaller parts of the landing
platform, were tiny. Kumar B. reports in [5] that YOLO struggles to detect small
objects, and these training results seem to reflect those results. RealSet consists of
images captured from between 0.5m and 2.5m in altitude and are similar to the ac-
tual experimental images.

4.3.1 Computer Vision Processing Delay

The computer vision algorithms are computationally demanding. The DNN CV al-
gorithm runs on the GPU and CPU of the computer and performs inference at 45-50
fps at an image resolution of 416x416. The TCV algorithm produces estimates at
a rate of 10-12 fps. When running both of these computer vision algorithms con-
currently, there is a computer power bottleneck. When running the CV methods
concurrently, the TCV algorithm performs inference at 5-6 fps and the DNN CV at
22-26 fps. These results can be seen in Table 4.1. A decrease in estimate frequency is
not desirable. The resulting estimation frequency is arguably sufficient for real-time
pose estimation because the quadcopter system is slow to react. The combined esti-
mation frequency is between 27-31 fps, which is quite a lot higher than the original
pose estimation frequency of the TCV algorithm.

A more demanding problem with the decreased estimation frequency with the
TCV algorithm is the time delay between when the computer receives an image
and when the TCV produces an estimate from that image. That time delay, called
a processing delay, is equal to 1

fcv
, where fcv is the inference frequency of the CV

method. The processing delay for the TCV algorithm, while running the DNN algo-
rithm concurrently, is calculated to be between 166ms to 200ms. Such a delay can be
quite significant while running a real-time control system. For the DNN CV algo-
rithm, the processing delay is between 38 ms and 45ms. The total control loop delay
is the sum of both processing delay and communication delay. Communication de-
lay is reported in Chapter 3 to be approximately 130ms for the real quadcopter and
negligible in the simulations.
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Running Separately Running Concurrently
DnnCV 45-50 fps 22-26 fps
TCV 10-12 fps 5-6 fps
Total 45-50 fps or 10-12 fps 27-31 fps

TABLE 4.1: CV inference frequencies. Running both computer vision
algorithms concurrently reduces frequencies

SimSet MirrorSet RealSet
Number of Images:
Augmented to:

2182
5229

1321
3171

1321
3171

Augmentations:
Resize by:
Horizontal flip:
Vertical flip:
± 15 deg rotations:
± 90 deg rotations:
± 2 deg shear:
Grayscale:
Exposure:

Black edges
Yes
Yes
Yes
Yes
No
No
No

Mirror edges
Yes
No
No
No
Yes
25% of images
± 25%

Center crop
Yes
No
No
No
Yes
25% of images
± 25%

Transfer Learning
from:

YOLOv4 ConvNet
weights by [68]

SimSet SimSet

Training Parameters:
Batch size:
Img size:
Momentum:
Weight decay:
Learning rate:

64
416x416
0.949
0.0005
0.001

64
416x416
0.949
0.0005
0.001

64
416x416
0.949
0.0005
0.001

Num training Epochs: 9000 8000 4000
Final mAP:
Helipad:
H:
Arrow:

Total:

98.25%
90.71%
79.42%

89.46%

93.26%
90.91%
93.26%

93.56%

98.69%
96.29%
99.36%

98.11%

TABLE 4.2: YOLOv4 training on the three different datasets and the
resulting mAP
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4.4 Sensor fusion using Kalman Filter

The internal state space of this Kalman Filter implementation is defined to be

xk := (xk, yk, zk, φk, θk, ψk, ẋk, ẏk, żk) ∈ R9 (4.9)

where

• the subscript k signifies the value of the respective state at time-step k

• x,y and z are linear coordinates of the drone position in body frame in relation
to the landing platform, represented in metres.

• φ, θ and ψ are roll-, pitch- and yaw angle of the quadcopter, representing ro-
tations around body coordinate axis’ x,y and z respectively. The angles φ and
θ are estimated solely by the quadcopter’s on-board angle estimation system,
and are not filtered further in this implementation.

• ẋ, ẏ and ż are velocities of the drone in the linear in relation to the landing
platform, represented in metres per second.

The state-space does not include any angular velocities as these provide little
value in this pose estimation system.

4.4.1 Prediction

Prediction is performed by propagating the current linear velocities one time step
into the future. The prediction is implemented asxk+1

yk+1
zk+1

 =

xk
yk
zk

+ δt

ẋk
ẏk
żk

 (4.10)

where δt is the time in seconds since the last prediction.
The error covariance is predicted by

Pk+1 = Pk + Q (4.11)

where Q � 0 ∈ R9 and is prediction uncertainty. Thus, the error covariance is
increasing for every prediction. The value of Q is set to be

Q :=

10−3I3x3 03x3 03x3
03x3 10−3I3x3 03x3
03x3 03x3 10−2I3x3

 . (4.12)

4.4.2 Update

The quadcopter pose is updated by measurements from the following sensors

• DNN CV

• TCV

• IMU

• Barometer
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• GPS (in simulations only)

The sensor uncertainty parameters are displayed Table 4.3, and the individual
sensors updates are presented below.

DNN CV and TCV

Both CV pose estimation systems produce estimates of linear position x, y and z, and
yaw angle ψ.

The output matrix for the computer vision systems, Ccv, is therefore defined as

Ccv :=


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

 . (4.13)

Barometer

The barometer on the AR.Drone outputs a pressure Pk in Pascal. Pressure at sea
level is approximately linearly decreasing with altitude, at a rate of about 11.3 Pas-
cal/m [69]. Pressure is dependent on temperature, weather conditions and absolute
altitude above sea level. By capturing the baseline pressure P0 during takeoff, the
altitude is calculated as

yBarom :=
P0 − Pk

11.3
(4.14)

The barometer provides altitude measurements and the output matrix for this
sensor is therefore

CBarom :=
[
0 0 1 0 0 0 0 0 0

]
(4.15)

GPS

A GPS is not available for the physical AR.Drone, but is available in simulations.
GPS signals are created by adding mock sensor noise ρ to the ground truth position
of the drone.

GPS measurements are published at a rate of 2 Hz, and the GPS noise is zero
mean and has a standard deviation of 5 cm. Thus the mock GPS data is created by

ygps := xgt
xyz + ρ (4.16)

where xlin is the ground truth position of the quadcopter and ρ ∈ R3 is generated

normally distributed sensor noise such that ρ ∼ N (0, σ) where σ =

0.05
0.05
0.05

.

The GPS provides position measurements and the output matrix for this sensor
is therefore

Cgps :=
[
I3 03x6

]
(4.17)

IMU and Magnetometer

The Kalman Filter state space includes linear velocities and performs position pre-
dictions based on these velocities. Velocity is predicted using acceleration data from
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the accelerometer in the IMU. The accelerometer measures the specific force on the
body as well as the acceleration of gravity. The acceleration of gravity is an accel-
eration vector with a magnitude of 9.81 and a direction pointing down towards the
center of the earth.

The accelerometer is fixed to the quadcopter body frame axis. If the quadcopter
is laying flat, meaning that pitch an roll are zero, then all the force of gravity is
measured by the z-component of the accelerometer. If the quadcopter is pitched or
rolled, then the force of gravity is measured as

g(φ, θ) := 9.81

 − sin(θ)
cos(θ) sin(φ)
cos(θ) cos(θ)

 (4.18)

In order to find the specific force of the quadcopter one will have to estimate the
gravity vector, and subtract it from the accelerometer data.

The estimated gravity vector at time-step k is therefore calculated by inserting
the estimated roll and pitch, θ̂ and φ̂, into Equation (4.18). The resulting estimated
gravity vector is therefore

ĝ(φ̂k, θ̂k) = 9.81

 − sin(θ̂k)
cos(θ̂k) sin(φ̂k)
cos(θ̂k) cos(θ̂k)

 (4.19)

This estimated gravity vector is subtracted from the acceleration data from the IMU
to find the specific force of the quadcopter

ak = aIMU,k − ĝk(φ̂, θ̂) (4.20)
(4.21)

This acceleration is then used to predict the current velocity:

vk = vk−1 + δtak (4.22)

Roll and pitch are estimated by using the on-board estimates from the AR.Drone

φ̂k = φ̂AR,k (4.23)

θ̂k = θ̂AR,k (4.24)

where φ̂AR,k and θ̂AR,k are the AR.Drone’s on-board estimate for roll and pitch re-
spectively, at time-step k.

Yaw is updated using the AR.Drone on-board estimate for yaw, ψ̂AR,k. In order
to compensate for magnetometer drift, yaw is updated as the difference between
the previous yaw measurement from the AR.Drone and the current. Therefore, a
constant bias in yaw measurements from the AR.Drone will not conflict with yaw
updates from the computer vision algorithms. Yaw is therefore updated as

ψ̂k = ψ̂k−1 + (ψ̂AR,k − ψ̂AR,k−1) (4.25)
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Velocity Updates Using Differentiated Position Measurements

Velocity is predicted using IMU acceleration measurements. Uncertainty of velocity
estimate increases over time without updates since velocity is predicted using inte-
grated sensor measurements. Sensor noise and bias will be integrated and results in
an inaccurate velocity estimate.

Velocity updates are implemented in order to deal with uncertain velocity esti-
mates. Velocity updates are based on differentiating the position estimates from the
sensors. Differentiating position estimates is done by capturing the time difference
δt between the current and last sensor update from a specific sensor. Velocity is cal-
culated as the measured position difference divided by the δt. Thus, for a sensor i
providing a measurement at time step k velocity is updated using

yvel :=
yi

k − yi
prev

δt
(4.26)

The sensor noise for velocity measurements is assumed higher than the sensor
noise for the specific sensor. It is known from literature that differentiating increases
high-frequency noise. Therefore velocity updates uncertainty for all sensors i =
0, 1, ..., n is set 10 times that of the sensor, such that

Ri,vel = 10Ri (4.27)

By using v =
[
ẋ ẏ ż

]> the velocity update is implemented as

vk|k = vk|k−1 + Kvel,k(yvel − vk|k−1) (4.28)

where Kvel,k is Kalman gain calculated for velocity updates, using the sensor uncer-
tainty for velocity and the components of the error covariance matrix P relating to
the velocity states.

4.4.3 Pre-Filtering

Sensor misdetections may severely impact the system’s stability because the Kalman
Filter does not remove any misdetections from the sensors. While some of the sen-
sors are generally quite precise, they can have occasional misdetections, updating
the pose estimate with a far away measurement from the current estimated position.

A discarding filter is applied to measurements in order to discard misdetections.
CV measurements measuring a pose outside of the visual range of the landing plat-
form cannot be correct and are therefore discarded. Estimates that deviate more
than 2 meters from the current estimated position are also discarded, as long as the
current estimate uncertainty is low.

In order to further remove misdetections and remove unwanted oscillations, a
Moving Median Averaging (MMA) filter, developed by Sundvoll [1], is applied.

By specifying an averaging filter size A, and a median filter size M, the total size
of the filter is A + M + 1, named T. The median filter outputs a list of the A median
measurements from last T measurements, and the averaging filter outputs one esti-
mate, which is the average of the median estimates. A more in-depth presentation
of the filter is found in [1].

A separate MMA filter is created for the TCV algorithm, DNN CV algorithm and
the barometer. M and A are chosen independently for the sensors depending on the
amount of sensor noise and misdetections. The GPS measurements are infrequent
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KF Sensor Uncertainty Parameters
TCV Rtcv = 0.012I4x4
DNN CV RdnnCV = 0.012I4x4
Barometer Rbarom = 12

GPS Rgps = 0.052I3x3

TABLE 4.3: Sensor uncertainties parameters used in the Kalman Fil-
ter. Found through a combination of noise analysis and experimental

tuning

Simulation (M,A) Experimental (M,A)
TCV: (1,1) (5,5)
DNN CV: (1,1) (5,5)
Barometer: (1,1) (200,200)

TABLE 4.4: Median filter Size M and Averaging filter size A for the
sensors in simulations and experiments.

and sufficiently accurate such that a filter is be of little value. The IMU data are not
filtered using an MMA filter. Instead, unreasonably high accelerations are discarded.

The simulated sensors are less noisy and produce significantly less misdetections
than in the experiments, and subsequently the filter sizes in the experiments are
chosen to be higher. The MMA filter sizes are displayed in Table 4.4. While the
barometer filter sizes may seem high, with an update frequency of 200Hz the filter
averages data over one second in time, which is found to be acceptable for altitude
control.

4.5 Mission Control System

Mission Control is implemented as a Finite State Machine (FSM). The states defined
for the FSM are chosen to be general states that can be combined to constitute several
different autonomous quadcopter missions.

The FSM states are:

• INIT: Quadcopter sensor calibration, assert that system is ready.

• TAKEOFF: Quadcopter takeoff and start PID-control.

• HOVER: Hover at stationary setpoint for specified duration.

• LANDING: Perform automatic landing on landing platform.

• MOVING: Move quadcopter to specified setpoint.

• PHOTOTWIRL: Perform four 90 degree yaw rotations, and capture photo af-
ter each completed rotation.

• IDLE: Quadcopter stationary on the ground, no process running.

• ERROR: Error state. Perform slow descent for safe quadcopter retrieval.

Mission Control navigates by sending pose setpoints xr to the PID-controller and
by sending camera-, landing-, and takeoff commands to the drone. Mission Control
continuously checks whether the quadcopter has reached the desired setpoint, sub-
sequently proceeding to the next state.
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4.5.1 Safety and error-handling

The ERROR state is for safety and quadcopter retrieval in case the mission fails.
Mission Control will switch to the ERROR state if 90 seconds have passed without
any state switches, which is a duration that is deemed sufficient for the experiments
that are performed in this thesis.

Additionally, Mission Control will switch to the error state if the pose estimates
for the quadcopter are outside a specified box of operations. The box of operations
is a specified operational area where the quadcopter is allowed to perform, imple-
mented to be within 15m from the landing platform and within 7m over the landing
platform. If the quadcopter estimates its position to be outside of this volume, the
Mission Control switches to the ERROR state.

4.6 PID-Control

A PID- (proportional, integral, derivative) controller calculates control inputs for the
quadcopter. As can be seen in Figure 4.1 the PID-controller of the system receives
two inputs, xr ∈ R6 and x̂ ∈ R6. xr is the world frame desired pose for the quad-
copter, called reference pose, which is the output from the Mission Planning System.
x̂ is the estimated quadcopter pose received from the Kalman Filter. The output
from the PID-controller is vr ∈ R4, which is the desired quadcopter velocity in the
three linear axes as well as angular velocity in yaw. The on-board controller of the
AR.Drone controls the quadcopter motors to reach this velocity reference.

The PID-controller is a modified version of a PID-controller implemented by
Sundvoll in his master project [1]. The alterations performed on Sundvoll’s PID-
controller are:

• an implementation of movement slicing, a technique proposed by Sani et al. [13].

• changed PID-controller to body frame coordinates instead of world frame co-
ordinates, required for missions involving yaw rotations.

• tuning of control parameters

The PID-controller calculates the output velocity as a function of the quadcopter
pose error. The error is the difference between the pose reference and the estimated
pose. The estimated pose is represented in body frame, while the reference pose is
represented in world frame. The reference pose is transformed to body frame by

xb
r = Rb

wxr (4.29)

where R is the world-to-body transformation matrix. The body frame reference pose
is updated continuously using the most recent estimated quadcopter yaw.

The pose error e is defined as

e := xb
r − x̂ e ∈ R6 (4.30)

The velocity control vector vr does not have any components relating to pitch or
roll. In order for the components of the error state to match the components of the
control signals a new error state is defined; e? ∈ R4, which is a subset of the states
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Simulation Parameters Experiment Parameters

Kp

x: 0.7
y: 0.7
z: 0.7

ψ: 0.02

x: 0.1
y: 0.1
z: 0.1
ψ: 0.0

Kd

x: 0.5
y: 0.5
z: 0.5
ψ: 0.0

x: 0.0
y: 0.0
z: 0.1
ψ: 0.0

Ki

x: 0.01
y: 0.01
z: 0.001
ψ: 0.0

x: 0.001
y: 0.001
z: 0.001
ψ: 0.0

TABLE 4.5: PID-control parameters for in simulations and experi-
ments. Found through experimental adaption of the parameters used

by Sundvoll [1].

in e, such that

e? :=


xe
ye
ze
ψe

 (4.31)

where xe, ye, ze, ψe are error components of e in the respective dimensions.
Control parameter vectors Kp, Kd, Ki ∈ R4 are defined, corresponding to proportional-

, derivative- and integrative control parameters respectively. The elements of each
control parameter vector are control parameters corresponding to errors in the x-, y-
and z- axes and yaw rotation. The control parameters are displayed in Table 4.5. The
experimental control parameters are significantly lower than in control parameters
for simulations because maneuvers with the physical quadcopter lead to instability.

In a discrete time system, the integral error at time-step k, e?i,k, is calculated as the
sum of all errors up to the current time-step, such that

e?i,k =
k

∑
j=0

e?j (4.32)

and the derivative error ė? is calculated as the difference between the errors in the
two most recent time-steps, divided by the duration between the time-steps, hence

ė?k =
1
δt
(e?k − e?k−1) (4.33)

(4.34)

where δt is the duration of time between time-steps.
By combining this, the reference velocity at time-step k is calculated by

vr,k = Kpe?k + Kdė?k + Kie?i,k. (4.35)
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4.6.1 Movement Slicing

Sani et al. report that a standard PID-controller is not sufficient for stable control
of the AR.Drone 2.0 with their implementation, where the drone tends to overshoot
the target. This overshoot may be caused by time delay in communication with the
AR.Drone. Sani et al. also suggest that the drone’s inertia and control delay in the in-
ternal controller on the AR.Drone 2.0 are factors that contribute to the unsatisfactory
results with the standard PID-controller. In response to this they propose a solution
called movement slicing [13].

Movement slicing is a control technique that involves splitting control into time
slots, where some of the time slots are moving slots, where the PID-controller con-
trols the quadcopter, and halting slots, where the quadcopter halts. Movement slic-
ing reduces the adverse effects of overshooting due to communication- and control
delays.

Movement slicing is applied to the PID-controller, with moving slots and halting
slots of 2 and 2 seconds. During the halting slots, the PID-controller does not apply
any control signals to the quadcopter, and halts error integration as well. The on-
board controller then controls the drone’s velocity to zero. Admittedly, such a tech-
nique will invariably result in a slow quadcopter response because the quadcopter
is standing still for a significant amount of time. Movement slicing is not deemed
necessary in simulations, where communication delays are negligible. However, it
is used during experiments with the physical quadcopter because it significantly
improves control stability.

4.7 Adjustments To Enable Real-World Experiments

It is seen during experimental testing with the quadcopter that the position predic-
tions using integrated accelerometer data from the IMU are severely inaccurate to
the degree of causing instability and quadcopter crashes. Therefore the IMU ac-
celerometer measurements and subsequent position predictions are discarded dur-
ing the real-world experiments. The failure of the IMU may be due to gravity vector
compensation. The specific force is calculated by removing an estimated gravity
vector based on estimated pitch and roll. If the estimates for pitch and roll are inac-
curate, the compensation of the gravity vector will result in inaccurate acceleration
data.

Because of the lack of a GPS and the inaccurate IMU measurements, the system
is dependent on frequent computer vision estimates for estimation of quadcopter
position in x and y. Computer vision estimates are not reliable when the quadcopter
is very close to the landing platform, found from testing to be below 0.5m in alti-
tude. The current landing procedure involves multiple descending setpoints over
the landing platform, which the quadcopter is to pass through in a slow and con-
trolled manner. Since positional measurements are not available when low above
the landing platform, the quadcopter may not notice if it starts drifting away from
the platform. To deal with drifting while landing, the automatic landing is simplified
to be a steady descent until the quadcopter hits the ground. This descent is quick, so
the quadcopter does not drift during landing.

Yaw control is disregarded in the experiments. During experimental testing, it is
seen that yaw maneuvers cause the quadcopter to gain altitude and started drifting.
Accurate position control is deemed more important than accurate yaw orientation.
Even small control parameters for yaw reduce the overall stability of the quadcopter
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system. Yaw control is therefore disregarded, thus reducing the control problem
from 4 to 3 degrees of freedom.
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Chapter 5

Results

A system for autonomous quadcopter control is proposed the previous chapter. In
order to assess and validate the performance of the system a number of experiments
and simulations are performed. This chapter presents experiments and simulations
used to test the system as well as the results from the experiments and simulations.

5.1 Design of Simulation Tests and Experiments

In order to test the performance of the autonomous quadcopter the quadcopter sys-
tem is subjected to several performance tests. These tests are intended to measure
the performance and robustness of the quadcopter autopilot. Tests are performed in
both the simulation environment and with the physical quadcopter.

Five tests are designed, three of which are simulated and two with the physical
AR.Drone. An overview- and the specifications of the tests are seen in Table 5.1. A
further presentation of the tests follows in the sections below.

5.1.1 HoverMission

HoverMission is a test in which the drone performs automatic hovering at a setpoint
located 1.5 meters directly above the landing platform with zero yaw. The objective
of HoverMission is to test

• the accuracy of the pose estimation system in simulations.

• whether the control system can provide sufficiently accurate control of the
quadcopter using pose estimates as input in simulations.

5.1.2 LandingMission

The LandingMission is a test in which the drone performs an automatic landing op-
eration on the landing platform. An automatic landing operation is an integral part
of an autonomous quadcopter mission, and a robust automatic landing is therefore
required for a safe and reliable autonomous system. The initial position of the quad-
copter is 2.0m, 2.0m and 5.0m in x,y and z respectively and oriented -90 degrees in
yaw. This mission consists of two steps; Move to 1.5m centered above the landing
platform, then perform an automatic landing operation.

Pose estimates during a landing scenario are challenging since the CV algorithms
are less valuable when very close to the landing platform. The landing platform
fills the entire camera view, and the current implementation of the algorithms is not
accurate close to the landing platform.

GPS is not used for this test to demonstrate that the pose estimation is suffi-
ciently accurate to perform automatic landing without the use of GPS. The physical
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Name: Environment: Initial pose: Mission state squence:

HoverMission Simulation
Manually controlled
to ∼ [0,0,1.5,0,0,0]

1. Hover

LandingMission Simulation [2,2,5,0,0,-90]

1. Move to [0,0,1.5,0,0,0]
2. Hover (5 sec)
3. Automated Landing
4. Idle

PhotoMission Simulation [0,0,0,0,0,0]

1. Init
2. Takeoff
3. Move to [10,0,5,0,0,0]
4. Phototwirl
5. Move to [10,10,5,0,0,0]
6. Phototwirl
7. Move to [0,0,5,0,0,0]
8. Automated Landing
9. Idle

Hover and Land
1. Indoor
2. DNV ReVolt

Manually controlled
to ∼ [0,0,1.5,0,0,0]

1. Hover
2. Automated Landing

RealMission Indoor [0,0,0,0,0,0]

1. Init
2. Takeoff
3. Hover (5 sec)
4. Automated Landing
5. Idle

TABLE 5.1: Mission experiments and simulations. Quadcopter pose
expressed as [x,y,z,ψ,θ,φ].
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AR.Drone 2.0 is not equipped with a GPS, and therefore it is interesting to demon-
strate the system in simulations without the GPS in order to perform fair compar-
isons. Quadcopter may also be required to operate in GPS-denied environments.

Without a GPS, the landing platform must be in the camera view to get x and y
estimate updates. Position predictions are performed with integrated accelerometer
data. Predictions based on integration of data are unreliable after a while without
updates from other sensors. Therefore, with no GPS, the system is vulnerable if the
landing platform is outside of the camera view, as it has no other sensors than the
IMU to navigate.

5.1.3 PhotoMission

PhotoMission is a long-range mission that is performed in simulations. The drone is
initialized on the landing platform, instructed to fly to a setpoint, and then instructed
to perform a 360-degree spin while capturing four images of the area using the front-
facing camera. Then it is controlled to move to another location before returning to
the landing platform by performing an automatic landing. The quadcopter performs
the whole mission without any human intervention. Such a mission can be used for
search- and rescue operations and common inspection missions. The exact setpoints
are displayed in Table 5.1.

This mission is constructed to test the long-range capability of the quadcopter
system and test the capabilities of the quadcopter system when outside of the visual
range of the landing platform. Testing the long-range capabilities of the quadcopter
system is interesting because that is a test of the quadcopter performance without
CV updates. The position is then estimated using GPS, IMU and barometer. Yaw
rotation is using magnetometer and gyroscope. The magnetometer is subject to neg-
ligible drift in the simulations, producing very accurate yaw measurements. An ac-
curate magnetometer is important because the quadcopter is navigating in body co-
ordinates. If yaw estimates are off, the quadcopter may move in the wrong direction
to reach the desired position. While the GPS provides accurate position measure-
ments regardless of any error in yaw estimates, the quadcopter relies on knowing
which direction it is facing to move in the right direction. Reported magnetometer
drift [17] with the physical drone may pose a significant problem during long-range
experiments.

While the simulated quadcopter does have a GPS, a robust computer vision sys-
tem is still necessary for a robust landing mechanism. The computer vision system
is producing pose estimates that are more precise than the GPS measurements, as
seen in Table 5.2. Therefore, the computer vision system should be active during
long-range missions as long as the missions start and end on the landing platform.

5.1.4 Hover and Land

A Hover and Land mission is performed by the physical AR.Drone 2.0 in an indoor
environment. The controller is activated after manually controlling the AR.Drone to
a position about 1.5m above the landing platform. After 75 seconds of autonomous
hovering, Mission Control initiates an automatic landing on the landing platform.

The objective of this experiment is to

• determine whether the pose estimation algorithm is sufficiently accurate for
use in real-time control of the quadcopter
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• test the capability of the control system, and whether the quadcopter can attain
stable hovering

• test the capability of the automatic landing procedure

This experiment is also performed with the landing platform mounted on the
DNV ReVolt.

5.1.5 RealMission

The quadcopter performs an experiment called RealMission in which the quad-
copter executes a complete autonomous mission, including takeoff, hovering and
landing. The mission is performed in an indoor environment with the drone start-
ing on the landing platform.

This experiment aims to test whether the quadcopter system is capable of per-
forming an autonomous mission, providing a proof of concept of the mission capa-
bilities of the quadcopter system.

5.1.6 Accuracy Measures and Error Metrics

Some accuracy measures and error metrics are defined to assess the system’s perfor-
mance appropriately.

Simulation Accuracy Measures

Ground truth measurements are available for quadcopter simulations. Because of
this it is possible to calculate the measurement error of the state estimation algo-
rithm.

ek = xgt
k − x̂k (5.1)

The estimation error of position can be represented by the Euclidean distance
between the ground truth position and the estimated position, which is calculated
by

ep,k :=
√
(x̂k − xgt

k )2 + (ŷk − ygt
k )2 + (ẑk − zgt

k )2. (5.2)

The pose estimation algorithm proposed in this thesis does not estimate roll or
pitch other than reading the on-board estimates from the AR.Drone. Accordingly,
the estimates of orientation discussed henceforth are limited to estimates of quad-
copter yaw. The orientation error is defined to be

eo,k := ψ
gt
k − ψ̂k (5.3)

Round-mean-square error (RMSE) is used for measuring the difference between
the estimate and the ground truth over the complete mission. RMSE is calculated by

eRMSE :=

√
1
n

n

∑
k=0

e>k ek (5.4)

Experiment Accuracy Measures

Ground truth measurements are not available when performing experiments using
the physical quadcopter. Therefore it is not possible to calculate the estimation error.
Other success measures are used instead for determining mission success.
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(A) Quadcopter successfully hovering above
the landing platform.

(B) Photo captured using the quadcopter’s
front-facing camera during PhotoMission.

FIGURE 5.1: Images from the simulations

Sensor RMSE (m) Mean (m) Std. dev (m)
DNN CV 0.04207 0.0137 0.0200
TCV 0.0409 -0.0167 0.0166
GPS 0.0887 -0.0049 0.0510
IMU 0.2196 -0.0624 0.1144
Barometer 0.0395 0.03948 0.0017
Final Estimate 0.0396 0.0083 0.0213

TABLE 5.2: Euclidean error RMSE, as well as mean and standard de-
viation position error. Data captured during simulation of HoverMis-

sion, and is expressed in metres.

The measurement criteria for these experiments are defined to be:

• test completion without crashes

• oscillatory behaviour

• whether pose estimates correspond to observed quadcopter response.

These are determined by visual inspection of the quadcopter during missions and
inspection of the filtered pose estimates after mission completion.

5.2 Simulation Results

5.2.1 HoverMission

An image of the drone hovering above the landing platform located on a model
of the DNV ReVolt ship is seen in Figure 5.1a. The ground truth pose and pose
estimates from a 40-second HoverMission are displayed in Figure 5.2, where the esti-
mated pose and the ground truth pose are expressed in body frame coordinates.

In order to determine the accuracy- and precision of the pose estimation sys-
tem, one may contrast the estimate versus the ground truth in Figure 5.2. A table
of RMSE, mean, and standard deviation of Euclidean distance error can be seen in
Table 5.2 and likewise for yaw error in Table 5.3. The Euclidean distance errors for
the individual sensors are displayed in Figure 5.3
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FIGURE 5.2: The filtered estimates versus ground truth from simulat-
ing HoverMission, expressed in body frame coordinates.

Estimate RMSE (deg) Mean (deg) Std. dev (deg)
DNN CV 1.3049 -0.7123 1.0933
TCV 1.6748 0.2843 1.6505
IMU 0.7260 -0.7257 0.0227
Final Estimate 0.9414 -0.2074 0.9182

TABLE 5.3: Yaw estimate errors RMSE, Mean and Std. deviation for
different sensors and final estimate, expressed in degrees. Data cap-

tured during simulation of HoverMission.
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(A) DNN CV errors (B) TCV error

(C) IMU error (D) GPS error

(E) Barometer error (F) Filtered estimate error

FIGURE 5.3: Euclidean estimation errors while simulating HoverMis-
sion.
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FIGURE 5.4: Quadcopter landing trajectory while simulating Land-
ingMission.

5.2.2 LandingMission

The LandingMission is simulated ten times to test the system’s robustness and reli-
ability, and the quadcopter managed to land successfully on the landing platform
all ten times. The landing trajectory for a LandingMission that was completed suc-
cessfully is seen in Figure 5.4, which is the test case that is further discussed and
analyzed in this thesis.

Ground truth state versus state estimates during the LandingMission can be seen
in Figure 5.5.

5.2.3 PhotoMission

The ground truth flight trajectory of a successful PhotoMission, as well as the esti-
mated flight trajectory, can be seen in Figure 5.6. The quadcopter captured a pho-
tography during the PhotoMission, which is displayed in Figure 5.1b. By studying
the ground truth trajectory in Figure 5.6 one can see that the quadcopter managed to
complete the mission, managing to move to the desired setpoints as well as return-
ing to the landing platform with automatic landing.
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FIGURE 5.5: State estimates while simulating LandingMission.

A simulation of another mission is displayed in Figure 5.7, where the quadcopter
performs a hexagonal flight maneuver in order to demonstrate that the Mission Con-
trol FSM can be used to create many different missions.

5.3 Experimental Results

The experiments are performed in both an indoor environment. An image of the
quadcopter hovering in the indoor environment is displayed in Figure 5.9a. The
experiments are also performed with the landing platform mounted on the DNV
ReVolt vessel in a warehouse environment which can be seen in Figure 5.11.

5.3.1 Indoor experiments

The physical AR.Drone is not equipped with a GPS. Thus, the system requires the
landing platform to be in the camera view for position updates, other than altitude
measurements from the barometer.

The system used in experiments is altered compared to the system used in sim-
ulations, addressed in Section 4.7, in order to maximize performance. Even though
the systems used for experimental testing and simulation testing are different, the
results can arguably be compared and contrasted. The results can be compared be-
cause the alterations removed features such as yaw control, IMU integration and
GPS, while not adding any other features. Therefore the systems can be compared
on the parts that remain the same.

A Hover and Land mission is performed in an indoor environment. During the
Hover and Land mission the quadcopter is applied a setpoint 1.5m above the center
of the landing platform, at x = 0m, y = 0m and z = 1.5m. After 75 seconds of
hovering the drone is to perform an automatic landing on the landing platform. The
estimates from the experiment, ending with an automatic landing, can be seen in
Figure 5.8. An image of the quadcopter hovering during the experiment can be seen



58 Chapter 5. Results

FIGURE 5.6: Simulation of PhotoMission. Successful completion of
mission with landing on platform. Large spikes in estimates appear

when landing platform is moving out and in of camera view.
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FIGURE 5.7: The quadcopter system is able to perform complex flight
maneuvers autonomously in simulations, here demonstrated by com-

pleting a hexagonal flight pattern in 3d space.
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in Figure 5.9a and an image of the quadcopter successfully landed on the landing
platform can be seen in Figure 5.9b.

An RealMission experiment where the quadcopter takes off, hovers and lands is
successfully completed, and the results of this mission can be seen in Figure 5.10.
The quadcopter is initialized on the landing platform, taking off and trying to hover
centered over the landing platform at an setpoint of 1.5m. The drone hovers for
at minimum of 5 seconds before initiating automatic landing when it is sufficiently
close to the setpoint.

5.3.2 Experiments On The DNV ReVolt

A Hover and Land mission is also performed on the DNV ReVolt autonomous marine
vessel. The ReVolt vessel is mounted on a car trailer. Images of the landing platform
mounted on the deck of ReVolt can be seen in Figure 5.11.

The experiment is performed in an open space in a warehouse that is partially
shielded from the wind. The autonomous quadcopter system manages to perform
hovering over the landing platform and automatic landing. The automatic landing
is initiated by Mission Control when the position estimates are sufficiently close to
the desired reference point over the landing platform. The quadcopter landed on
the landing platform, deeming the mission a success.

The position estimate of the quadcopter during the mission is presented in Fig-
ure 5.12. These estimates correspond well with the observed flight trajectory of the
quadcopter.

This experiment is also attempted in an outdoor environment by moving the Re-
Volt outside. Slight wind gusts caused the quadcopter to repeatedly swerve out of
control and lose track of the landing platform. Consequently, the mission is unsuc-
cessful. In sum, it is seen that the quadcopter does not manage either stable hovering
or automatic landing in slightly windy conditions.
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FIGURE 5.8: Estimates during indoor Hover and Land mission
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(A) The quadcopter hovering indoors over the landing platform

(B) Quadcopter successfully landed after Hover and Land
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FIGURE 5.10: Estimates from indoor RealMission, where quadcopter
performs autonomous takeoff, hovering and landing on the landing

platform

FIGURE 5.11: The DNV ReVolt with the landing platform mounted
on the deck
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FIGURE 5.12: Position estimates during Hover and Land on the DNV
ReVolt
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Chapter 6

Discussion

Several results were presented in the previous chapter and are discussed in this
chapter. The simulation results are first discussed, where the capacity of the system
is tested in an environment with few limitations. Subsequently, the experimental
results are discussed and contrasted with the simulation results.

6.1 Discussion of Simulation Results

Results from three different simulation missions were presented in Chapter 5, and
are discussed based on the individual missions that were performed. The results
from HoverMission provide the basis for a discussion of the pose estimation and sta-
bility. The LandingMission provide the basis for a discussion of the landing capability
of the system. Results from PhotoMission provide the basis for a discussion of pose
estimates without computer vision and the system’s capacity for long-range mis-
sions.

6.1.1 HoverMission

By analyzing the filtered estimate in Figure 5.2 and contrasting that to the ground
truth pose one can see that:

• The estimate is close to the ground truth in both the x- and y-axis, oscillating
around the ground truth line, with a maximum estimation error of about 4cm
and 2.5cm, respectively. The error in the x- and y-axis seem to be zero mean.

• The estimate is close to the ground truth in both the x- and y-axis, oscillating
around the ground truth line, with a maximum estimation error of about 4cm
and 2.5cm, respectively. The error in the x- and y-axis seem to be zero mean.

• The altitude estimate is slightly above the ground truth altitude, seeming to
correspond to the 4cm bias of the barometer

• That the yaw estimate is close to the ground truth line

By examining the ground truth pose of the quadcopter in Figure 5.2 one can
analyze the ability of the quadcopter system to hover at the desired setpoint:

• the quadcopter manages to hover in the air the whole duration of the test. The
stability of the system has been further demonstrated by successfully perform-
ing a 30-minute HoverMission without any crashes or significant oscillations
occurring.

• there are some oscillations in the x- and y-axis, with a maximum amplitude of
just below 7.5 cm, seen in the x-axis of fig. 5.2 about 6 seconds into the mission.
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• there are some oscillations in the z- axis, with an amplitude of about 5cm.

• the ground truth altitude is slightly below the reference point of 1.5m. This is
due to an error in altitude estimation and not due to faulty control.

• there are some oscillations in yaw, with a maximum amplitude of about 3 de-
grees.

In sum, it is seen that the quadcopter system is able to hover close to the reference
point, having some oscillations in all axes as well as a constant bias in altitude.

Arguably, these oscillations are small, being a few centimeters from the desired
reference point. Comparing the amplitudes of these oscillations to the scale of the
quadcopter and landing platform, as well as being 1.5m over the landing platform,
yields that the errors are sufficiently small to be of minor significance to the success
of the test.

One of the assumptions for the Kalman Filter is that the sensor noise is white,
having zero mean and a constant power spectral density. The middle column of
Table 5.2 and Table 5.3 represents the mean sensor value for all the sensors during
the mission. The assumption of zero mean should be considered fulfilled for the
DNN CV error, TCV error and GPS error, as the mean Euclidean errors are close to
zero for these sensors.

The mean barometer error is 4cm (5.2), and the standard deviation of the mea-
surements is minimal, being 0.002 cm. By inspecting the plot for the barometer error
Figure 5.3e one can see that it is oscillating about a point at about 4cm, suggesting
that the barometer, within the time frame of the experiment, suffers from a stable
bias.

A non-zero mean results in a non-optimal Kalman Filter. A non-optimal KF
means that the sensor updates are not statistically optimal to minimize estimation
error covariance.

The IMU predictions have significant mean error and RMSE, as well as standard
deviation. This data is based on unaided IMU predictions. The strength of IMU
predictions is that they are high frequency and able to provide a smooth and accu-
rate estimate in combination with other sensors. The problem with predictions is
that prediction errors grow with time. The IMU predictions, with no updates for
40 seconds will have a non-zero mean and have a high RMSE. This is verified in
Table 4.1. Nevertheless, the IMU predictions provide more certainty to the model
when combined with sensor updates than sensor updates alone.

The mean GPS error is tiny, below 0.5cm. The GPS data is created as a normal dis-
tribution of the previously known ground truth drone data, with a std. distribution
of 5cm, and therefore it is expected to be close to zero-mean.

In sum, the HoverMission demonstrates that the pose estimation system is suffi-
ciently accurate for quadcopter missions in the simulator. All the sensors provide
close to accurate measurements. The KF fuses the sensor measurements to produce
one estimate that is more accurate and precise. The mean of the final estimate is very
close to zero, at 0.83cm with a standard deviation of 2.13cm.

The control system is well-tuned and able to control the quadcopter to the de-
sired position using the pose estimate as feedback. Despite a few low-amplitude
oscillations, the quadcopter control is deemed sufficiently stable and accurate.

6.1.2 LandingMission

There are quite large pose estimate error spikes at the start of the mission. The esti-
mated position jumps from close to ground truth, to a value about one meter above
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and below the ground truth, in a short time span and large positive and negative pre-
diction errors, called "spikes" in the prediction error graph Figure 5.5. The x̂ spikes
down roughly 1 meter and ŷ spikes up about 1 meter.

These spikes occur when the quadcopter performs sudden pitch and roll ma-
neuvers. The quadcopter performs these maneuvers in order to gain speed to move
towards the landing platform. Pitch and roll maneuvers cause the affect the camera
angle, causing a perception of the landing platform moving in the camera image.
Thus, the estimates may change due to pitch and roll movements because the CV al-
gorithms estimate position based on the location of the platform in the camera frame.
One of the assumptions for the DNN CV algorithm, presented in Section 4.3, is that
the quadcopter pitch and roll are zero. Therefore, pitch and roll maneuvers makes
CV estimate errors larger since the assumption of the pose estimates is violated.

In order to reduce the pitch and roll maneuvers one could apply velocity refer-
ences as smoothly increasing references instead of the currently implemented step-
functions. Smoothly increasing velocity references would cause the internal con-
troller of the AR.Drone to increase the velocity gradually, resulting in small pitch
and roll maneuvers. However, the pitch and roll maneuvers would be drawn out
in time, such that the estimation errors caused by these maneuvers would be drawn
out in time as well. Therefore, it is not certain that such a change would provide a
better flight response.

The quadcopter was able to move towards the landing platform even though x
and y estimates were off during the start of the landing mission. The estimation
error spikes were brief, and the inertia of the quadcopter is sufficiently high so that
the drone flight path was not affected before had reliable data to work with.

The automatic landing was completed in a controlled manner. The duration of
the whole mission was just short of 30 seconds.

The simulated LandingMission demonstrates the robustness of the system to pro-
vide accurate pose estimates and navigate in a controlled manner in order for the
quadcopter to execute an automatic landing without GPS in a simulation environ-
ment.

The simulation demonstrated a robustness in the system since the prediction er-
ror spikes did not seriously affect the drone flight characteristics.

6.1.3 PhotoMission

By analyzing the pose estimates during simulation of PhotoMission against the ground
truth data, displayed in Figure 5.6, one can see that there are significant pose esti-
mation spikes at two points during the mission. These deviations occur when the
landing platform is moving in and out of view of the bottom facing camera. This
happens when the quadcopter is flying away from the landing platform during the
beginning of the mission, and when the quadcopter is coming back to the landing
platform towards the end of the mission.

These spikes occur because there is a transition face where only a small frac-
tion of the landing platform is seen in the camera frame when the landing platform
is moving out and in the camera view. Therefore, the bounding box that is sub-
sequently drawn around the landing platform by the DNN CV algorithm is small.
The DNN CV algorithm uses the size of this bounding box to estimate the size of
the entire landing platform, thus estimating the size of the landing platform to be
very small in the camera frame. This results in the DNN CV algorithm estimating
that the quadcopter is located high above the landing platform, producing pose es-
timates that are way off in altitude. This effect can be seen both in the case when the
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LP is entering and exiting the camera frame and in both Figure 5.6 and Figure 5.7.
Further refinement of the DNN CV pose estimation algorithm is required in order to
fix such errors.

GPS measurements compensate for these errors, pulling estimates down and
more close to the ground truth pose, demonstrating that a combination of sensors
is an effective way of compensating for sensor failure. As a result, the quadcopter is
able to continue moving in the correct direction until the landing platform is com-
pletely outside the camera view.

Comparing the ground truth position of the quadcopter with the estimated posi-
tion in Figure 5.6 one can see that the estimate is oscillating around the ground truth
line. This is due to the system is being updated using GPS measurements, which
have a standard deviation of 5cm in three axis. The GPS measurements are there-
fore quite imprecise. A Kalman Filter tuning with less uncertainty in predictions
would have reduced the oscillatory effect on the estimate. However, the GPS mea-
surements are infrequent, at 2 Hz. The predictions have become quite uncertain after
0.5s, so the GPS measurements update the estimate to a large degree. Nevertheless,
the current tuning provides a good quadcopter response as seen by the ground truth
line.

This mission is built as a set of pre-defined flight commands, which the quad-
copter performs. The same Mission Control framework can be used to construct
different missions. Another long-range mission in which the quadcopter completes
a hexagonal flight pattern demonstrates this. The flight trajectory for this mission
can be seen in Figure 5.7.

6.2 Discussion of Experimental Results

Two Hover and Land missions are performed, one in an indoor environment and the
other with the landing platform mounted on the DNV ReVolt. RealMission is per-
formed in an indoor environment. Yaw control is disregarded for these experiments,
the IMU measurements are discarded, and the physical drone is not equipped with
a GPS.

These results provide the base for discussing the limitations with the physical
quadcopter, and the challenges with experiments compared to simulations.

6.2.1 Hover and Land

In Figure 5.8 one can see that the quadcopter manages to hover over the landing
platform for 75 seconds before it performs an automatic landing procedure. The
quadcopter lands on the landing platform, with the final position seen in Figure 5.9b.

The quadcopter response during the experimental Hover and Land suffer from
oscillations than the response observed in the simulated HoverMission. In Figure 5.8
one can see that the quadcopter experienced oscillations in x and y that reached a
maximum amplitude of about 0.5m. The estimated position correlates well with
visual observation of the quadcopter during the mission.

The amplitude of the oscillations are higher than acceptable, significantly affect-
ing the stability and execution of the mission.

The cause for this deviation from the simulation in the practical experiment must
be analysed and identified. Two possible causal factors may be sensor noise, or more
likely, the control delay with the AR.Drone.
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Control Delay and Drone Inertia

There is a significant delay in the control loop between the ground station computer
and the AR.Drone. The communication delay is reported to be 130ms and the DNN
CV has a 38-45ms processing delay. The sum of the two delays results in a control
delay of about 170ms.

In addition to the control delay, there is a significant amount of delay before on-
board controller manages to reach the velocities specified by the PID-controller. The
drone has a significant amount of inertia and is slow to start- and stop moving. The
motors spinning the propellers also have a control delay, where they require time to
change the rate of spin. In sum, these delays are making the drone react slowly to
velocity commands.

The drone inertia is deemed during testing to be a cause of instability. The quad-
copter is prone to move past the landing platform, which causes oscillations.

Movement slicing is important for dealing with the control delay and drone in-
ertia. Movement slicing was used with moving slots and halting slots of 2- and 2
seconds and reduced the problem of the drone overshooting the center of the land-
ing platform.

DNN CV Pose Estimator

The DNN CV algorithm is able to provide frequent position estimates over the
course of the mission. The DNN CV is the most significant sensor in this experi-
ment. The physical quadcopter is not equipped with a GPS, the IMU is discarded,
and the TCV algorithm does not produce many estimates. Thus, the pose estimate
is mostly based on DNN CV measurements.

The pose estimate, being based mostly from DNN CV measurements, is suffi-
ciently accurate to enable autonomous hovering and landing. These results signify
that the DNN CV measurements are sufficiently accurate to be used for quadcopter
control.

During the Hover and Land mission, about 50 seconds into the test, some DNN
CV measurements are discarded. This is seen by the flat estimation line for x and
y in Figure 5.8. The measurements were discarded in the pre-filter due to estimat-
ing the quadcopter to be over higher than the maximum allowed limit, set to be the
altitude of the ceiling at 2.20m. When the measurements are discarded the Kalman
Filter does not update the state estimate using the measurement because the mea-
surements are deemed inaccurate. Thus, the discarding filter is demonstrated to be
capable of discarding inaccurate measurements. The DNN CV algorithm recovers a
few seconds later, and the KF updates the estimate accordingly. Therefore, it is seen
that the DNN CV fails occasionally, however on the course of the whole mission, it
performed well enough for the mission to succeed.

When the quadcopter is close to the landing platform, below 1m in altitude, the
landing platform covers its entire vertical camera view and much of the horizontal.
Therefore, the algorithm fails to accurately predict the position in the x-axis or the
quadcopter altitude if the quadcopter is close to the landing platform. Thus, the
DNN CV should only be used in the ranges of operation where it is effective. DNN
CV measurements are discarded when the quadcopter is below 1m.
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TCV Pose Estimator

The TCV algorithm is unable to produce many estimates. The estimates from the
TCV algorithm are displayed in Figure 5.8 where the scattered red lines and dots are
the points in time where the TCV algorithm managed to produce estimates.

The TCV algorithm, proposed by Sundvoll [1], was created for the simulation
environment and subsequently adapted for use in the real world, and may not be
well-developed for real-world conditions.

The physical landing platform is similar to the simulated landing platform in
simulations, although there are some differences. The TCV algorithm performs a
color segmentation at the start of the inference on the image. Suppose the specified
colors for the color segmentation do not match the color that the landing platform
appears to have in the camera view. In that case, the algorithm will not provide
any estimates. Therefore it is essential to have an appropriate tuning suitable for the
visual conditions where the TCV algorithm is used.

The TCV algorithm is based on detecting specific features and points of the land-
ing platform, namely the ellipse, corners on the white H and the corners of the Ar-
row. Admittedly, there is quite a lot of motion blur in the camera feed from the
AR.Drone when the drone is moving. Motion blur may make the detection of such
features more challenging as the features are blurred and lines and segments are less
distinct. Using a quadcopter with a higher resolution camera and a camera gimbal
could solve this problem.

Motion blur may reduce the usefulness of a TCV algorithm based on detecting
details in the camera image. Nevertheless, the TCV algorithm proved to be more
precise than the DNN CV algorithm in simulations, demonstrating that it can be
precise.

The TCV algorithm produced misdetections at 17 seconds into the test, estimat-
ing the quadcopter to be 3m over the landing platform. Further analysis of the TCV
algorithm is required to find the cause of these misdetections.

Further development of the TCV algorithm is required to be able to replicate the
promising results in simulations.

Barometric Altitude Measurements

By contrasting the barometric altitude estimates in Figure 5.8 with the altitude es-
timates by the DNN CV algorithm, it seems that the estimates differ slightly. The
difference between the altitude estimates from the two algorithms are generally less
than 0.5m. The pressure sensor generally measures the altitude to be less than mea-
sured by the DNN CV algorithm. Visual observations confirmed that the quadcopter
was hovering at 1.5m to 1.8m, thus in the range that is mostly measured by the DNN
CV algorithm.

The barometric altitude sensor is not precise, varying over the course of the mis-
sion. The estimates do not always match the visually observed altitude of the quad-
copter. The pressure at sea level is typically about 100,000 pascal, and decreasing
with about 11.3 pascal for every meter in altitude. Every meter in altitude is there-
fore calculated by a 0.01% change in pressure. Such a small change may be difficult
for a low-cost sensor such as the pressure sensor on the AR.Drone 2.0 to measure pre-
cisely. The Kalman Filter pressure sensor noise parameter is high compared to that
of the DNN CV algorithm. Thus, the filtered estimate is closer to the measurement
from the DNN CV algorithm than the measurement barometric pressure sensor.
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The pressure measurements are filtered using an MMA filter before they update
the Kalman Filter. The averaging filter size is 200, and the median filter size is 200,
resulting in a total filter size of 401. That means that the last 401 pressure measure-
ments are stored in the filter. The middle 200 measurements in the filter are aver-
aged, which results in one pressure output. Such a large filter is necessary in order
to increase precision. The pressure sensor sends measurements at a rate of 200 Hz.
The filter, therefore, contains pressure data from the last 2 seconds. Such filtering
introduces a time delay in the measurements. Swift altitude changes are therefore
subject to a delay before being measured by the filtered barometer. Nevertheless,
this filter is necessary for the noisy pressure sensor, resulting in an improved sensor
performance.

When the quadcopter is sufficiently low, the CV measurements are not accu-
rate and are therefore discarded. The cutoff threshold for the DNN CV algorithm
is 1m, and the cutoff threshold is 0.4m for the TCV algorithm. The TCV algorithm
is not able to produce any significant amount of estimates during this experiment,
and therefore, below 1m the only altitude measurements available are barometric
measurements. The barometer, therefore, is essential for the quadcopter takeoff and
landing.

At the end of the mission in Figure 5.8 the altitude measurements correspond
with visual observations of the quadcopter flight, estimating the quadcopter altitude
to decrease during landing, ending around zero. The estimates are slightly dipping
below zero when the quadcopter reaches the ground, and the propellers are still
spinning.

A barometer is not fit for the purpose of measuring small altitude changes. The
measured air pressure is dependent on wind, temperature, the pressure created by
the quadcopter propellers and quadcopter velocity. Small altitude changes result
in tiny changes in air pressure, and it might therefore be within the measurement
uncertainty of the barometer. A sonar is a sensor more fit for such an application as
low-altitude autonomous quadcopter flight. A barometer may be a good sensor in
combination with others for estimating altitude during high-altitude flight, as sonars
and computer vision sensors may be less reliable at high altitudes.

6.2.2 RealMission

The x estimate in Figure 5.10 is flat and mostly stationary at x̂ = 0.06m.
The quadcopter is not stationary in x-axis, as the estimate suggests. The estimate

is not changing since at the quadcopter’s altitude the camera was unable to view the
entire landing platform. Thus DNN CV algorithm was inaccurate. The DNN CV
algorithm estimates quadcopter position based on the location of a bounding box
surrounding the landing platform in the camera frame. Since the landing platform
is covering the entire camera frame in the x-axis, the quadcopter is unable to estimate
the position accurately.

The altitude estimate of the DNN CV is also faulty, estimating a higher than
accurate altitude. From visual observations during the mission, it was observed that
the drone was hovering around 1m above the landing platform, which corresponds
well to the barometer measurements seen in Figure 5.10. The altitude estimates of
the DNN CV algorithm are not accurate unless the quadcopter is sufficiently high
above the landing platform.

The barometer accurately measured the altitude to be about 1m. However, the
Kalman Filter trusts the DNN CV estimates more than the barometer measurements
because they are tuned to be less noisy. Thus, the quadcopter did not move higher
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up because the filtered estimate followed the faulty DNN CV measurements. This
displays a fault in the system and requires further investigation.

The system may require tuning which makes the system less biased to the DNN
CV sensor. The altitude limit for when to use DNN CV measurements could be
increased since it does not accurately measure quadcopter position when close to
the landing platform.

During the start of the mission, one can see that the barometric measurements
and the filtered altitude estimate dip below zero. Such negative altitude measure-
ments have been observed repeatedly when the propellers are spinning while the
quadcopter is on the ground. The spinning propellers increase the atmospheric pres-
sure, reflected in the negative altitude measurements. During takeoff, the propellers
start to spin for a few seconds before reaching a sufficient speed for flying.

During both takeoff and landing, the quadcopter is too close to the landing plat-
form for the DNN CV algorithm to be accurate. Therefore the altitude estimates are
dependant solely on the barometer data. This can be seen by the fact that the yellow
line representing barometric data perfectly overlaps the blue altitude estimate line
in Figure 5.10 during the start and end of the mission.

The system demonstrates that it can perform complete autonomous missions,
including takeoff and landing.

6.2.3 Experiments on the DNV ReVolt marine vessel

The Hover and Land experiment is performed on the DNV ReVolt vessel in an open
warehouse environment. The quadcopter manages both hovering and landing on
the platform mounted on the ReVolt vessel.

The pose estimates displayed in Figure 5.12 are similar to the results from the
indoor Hover and Land experiment. The TCV algorithm is not able to produce esti-
mates consistently. Pose estimates are based mostly on DNN CV measurements and
barometer measurements.

The DNN CV algorithm occasionally classifies the whole ReVolt ship as the H
because the ship is white and straight, similar to part of the H. The H is not used for
pose estimation, so the incorrect classifications do not cause any problems. However,
in order to fix the DNN CV classifying the ReVolt as H the RealSet dataset can be
increased by adding labeled images of the landing platform mounted on the ReVolt.
The DNN CV algorithm can thus be trained to detect the difference between the H
and the ReVolt.

The success of the ReVolt experiment provides a foundation for future marine
quadcopter missions. The quadcopter system demonstrated that it could land on a
marine vessel. However, marine use-cases present some yet unmet challenges for
this system. The current system is not designed for a moving landing platform and
will have trouble hovering and landing over the platform if the ship was moving
at any significant speed. The CV algorithms assume that the landing platform is
oriented horizontally. This assumption will not hold if there are a significant amount
of waves making the ship heave, roll and pitch. If the assumptions do not hold, then
the CV pose estimations will not be accurate.

The current quadcopter system is not able to handle any significant amount of
wind. Robustness to wind is required for marine operations, which often are ex-
posed to severe amounts of wind and weather. Therefore, further development of
the system is required before marine operations are possible.
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6.3 Comparison Between Results From Simulations and Ex-
periments

Simulation results demonstrated that the system is capable of fully autonomous
long-range quadcopter missions. The quadcopter control system is well-tuned for
an efficient response. The pose estimation algorithm is estimates pose accurately.

In the simulated environment, some assumptions hold true:

• There is no wind or any external disturbances.

• There is negligible communication delay between the quadcopter and the com-
puter.

• Visual conditions are stable, with no glare or change in brightness, and there is
negligible motion blur from the simulated camera.

These assumptions do not hold when performing experiments with the real quad-
copter. There is, however, negligible wind in indoor experiments. Experiments per-
formed outdoors may result in the quadcopter being subject to large amounts of
wind. A communication delay negatively affects the controllability of the system
[70]. Unstable- and challenging visual conditions, as well as significant motion blur,
make the problem of detecting the landing platform using computer vision more
challenging. Increased sensor noise is a limiting factor as well. These limitations
negatively impact the performance of the quadcopter system. The simulations are
therefore expected to provide superior results compared with the experiments.

The simulation missions tested the capacity of what the system could perform
in an environment with few limitations. The results in simulations met the objec-
tive of the thesis, demonstrating to be a system capable of autonomous quadcopter
missions.

Experiments tested the robustness of the system and the capacity of the system
given the limitations of hardware. The experimental results with the AR.Drone 2.0
demonstrated that the system is robust enough to perform autonomous missions
without human intervention. The system met the objective of the thesis, demon-
strating to be capable of autonomous missions.

The simulations could be extended to include limitations such as wind, chal-
lenging visual conditions, sensor noise and communication delays. Further analysis
of the different limitations could be used to determine the impact of the individual
limitations. Such analysis is outside the scope of this thesis.

Arguably, the system applied to a modern state-of-the-art quadcopter with up-
to-date sensors and communications may be subject to few of the limitations ob-
served by experiments with the AR.Drone 2.0. The simulation environment, which
also has less limitations, may therefore resemble experiments using a more up-to-
date quadcopter that is equipped with more precise sensors and on-board process-
ing. Simulation results may therefore be replicated in the real-world by applying the
system to an up-to-date quadcopter.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The objective of this thesis was to work towards an autonomous quadcopter system,
able to perform missions without human supervention. As a result, an autonomous
quadcopter system was presented, and several simulations and experiments were
performed to evaluate the system’s performance.

The proposed quadcopter system was based on pose estimation by a combina-
tion of many sensors, including computer vision, IMU, barometric pressure data and
GPS data. The pose estimates were input to the control system which consisted of a
Mission Planner and a PID-controller.

The quadcopter system demonstrated in simulations to be able to achieve au-
tonomous quadcopter missions, consequently meeting the aim of the thesis. The
missions that were demonstrated were:

• stable hovering

• successful automatic landing

• successful autonomous long-range missions using GPS, capturing images and
passing through specified setpoints.

The simulation environment was an environment with no external disturbances,
little sensor noise and a low communication delay. Simulation results therefore
demonstrated the capacity of the system to perform missions without significant
limitations.

The physical experiments proved to be more challenging than simulations, with
increased sensor noise, significant communication delay and external disturbances,
which were limiting the capacity of the system. Nevertheless, the autonomous quad-
copter system managed autonomous missions, fulfilling the original objective of cre-
ating a system able to perform basic autonomous missions without human interven-
tion.

• successful hovering in an indoor environment

• successful automatic landing mission

• successful autonomous takeoff- hover and landing mission

• successful missions with the landing platform mounted on the DNV ReVolt.

If the quadcopter loses track of the landing platform, it has no GPS to guide it back
to the landing platform. Equipping the quadcopter with a GPS is outside the scope
of this thesis. Hence, the quadcopter was able to perform autonomous missions but
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lacks the robustness required for a reliable autonomous system. The lacking robust-
ness is argued to be due to limitations with the quadcopter used for experiments,
and an up-to-date quadcopter could possibly replicate the results seen in simula-
tions.

7.2 Future work

Though promising results demonstrated in simulations and experiments, there is ad-
mittedly a need for further development of this system before it is sufficiently robust
to meet the requirements of present-day use-cases for autonomous quadcopters.

In order to develop this system further, one may investigate the performance
bottlenecks of this system. The current system is:

• vulnerable to even small amounts of wind, causing instability.

• lacking sensors such as GPS and sonar and has unreliable sensor measure-
ments from other sensors

• lacking in robust control due to significant control delays

• dependent on ground station computer

• vulnerable due to lacking error handling and adaptive planning in the mission
planning stem.

• vulnerable to computer vision misdetections

Accordingly, some further work is proposed in this section to improve the system to
deal with these deficiencies and vulnerabilities in the system.

Experiments using a more up-to-date quadcopter with GPS sensor

An issue that degraded the experimental results was the communication delay be-
tween the AR.Drone and the ground-station computer. Significant control delay can
hamper precise control and may even cause instability. Some modern-day quad-
copters have significantly lower communication delays than the AR.Drone. A lower
communication delay improve stability. As better quadcopters become available on
the market, with more on-board processing power, the entire control system could
be moved on-board, significantly reducing control delay.

Modern-day quadcopters have more precise on-board controllers than the AR.Drone
2.0, and may be equipped with additional sensors like a sonar altimeter and GPS,
higher quality IMUs that are more reliable and a camera with higher resolution for
a more robust computer vision system.

A GPS is necessary for the system to be sufficiently reliable for real-world use-
cases because the computer vision system is required to have the landing platform
in the bottom facing camera frame to provide pose estimates. GPS measurements
are thus required for precise pose estimates when outside of the visual range of the
landing platform. Simulations displayed the capacity of the quadcopter system with
GPS.

It would therefore be interesting to test the quadcopter system on a modern-day
quadcopter in order to see if the results from simulations could be replicated in the
real-world.
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Further improve the Mission Planner algorithm

The current implementation of the mission planner is a sequential machine that tran-
sitions to the next state. Basic error handling is implemented. Possible improve-
ments to the current mission planning system include performing actions based on
the uncertainty of pose estimates as well as implementing battery control, such as
proposed by Bernardini et al. [12]. In addition, an adaptive mission planner could
be implemented to decide which actions to perform, whether a task is impossible
to complete or whether tasks should be performed in a different order than initially
proposed.

Further improvement of the error handling system of the mission planner algo-
rithm is required for the system to be fault-tolerant, reducing the requirement for
supervision. The currently implemented error handling system is programmed to
perform a safe descent if any errors were detected. While such an approach may be
sufficient for the experiments performed in this thesis, such an implementation will
not be acceptable if the drone is operating over water or in other areas where no safe
descent paths are available.

Development for Marine Operations

For further development of marine operations with the DNV ReVolt the system re-
quires further development. Marine Operations present some unmet challenges for
the system. The system requires to be able to tolerate wind, be able to tolerate land-
ing on a moving ship, and be able to estimate pose in relation to a ship that is rolling
and pitching in the waves.

In addition, the quadcopter might need to receive the location of the ReVolt ves-
sel in order to detect the ship if it is not located in the computer vision camera frame.

7.3 Final Note

The author is inspired by the fact that this project will be continued in a future mas-
ter thesis provided by the Institute of Electrical Engineering at NTNU and by the
supervisor for this thesis, Anastasios Lekkas.

The author hopes this thesis lays the foundation for further development of au-
tonomous quadcopter systems that are precise, robust and reliable.
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