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Abstract

Traditionally, finding the global position of a vehicle is done using Global Navig-
ation Satellite System (GNSS). GNSS measurements are often gathered using
one or two antennae in communication with satellites, which may present a
safety problem should something happen to either the antennae or the satel-
lite communication, or if the vehicle should operate in a GNSS-denied environ-
ment. This thesis tests the precision and applicability of using fiducial markers
as constant and artificial landmarks with known global positions in order to im-
plement a visual Simultaneous Localisation and Mapping (SLAM) method for
Autonomous Surface Vehicles (ASVs) operating in urban canal environments.
This was performed by designing and implementing a Fiducial SLAM method
based on the Incremental Smoothing And Mapping (iSAM2) framework. A fi-
ducial pose factor and fiducial projection factor for adding fiducial markers to
factor graphs were designed and implemented for the Fiducial SLAM method.

The Fiducial SLAM method was tested on real data from experiments con-
ducted using the AprilTag fiducial markers, the corresponding detection al-
gorithm and the Norwegian University of Science and Technolog (NTNU)’s
autonomous ferrymilliAmpere. Testing themethod on the data gathered showed
that using only the fiducial markers, good estimates of the system pose could be
achieved. Testing also showed that if multiple cameras detect the samemarkers
at the same time, better estimates were achieved than if only a single camera
observed the fiducial markers. Extending the method further by including Iner-
tial Mesurement Unit (IMU) and infrequent GNSSmeasurements, the resulting
estimates were improved.
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Sammendrag

Tradisjonelt sett er Global Navigation Satellite System (GNSS) benyttet for
å finne den globale posisjonen til et kjøretøy. GNSS målinger innhentes ofte
ved hjelp av én eller to antenner som kommuniserer med satelitter. Dette kan
skape et sikkerhetsproblem dersom noe skulle skje med antennene, satellit-
tkommunikasjonen eller dersom kjøretøyet opererer i områder uten GNSS.
Denne rapporten tester presisjonen og anvendbarheten til AprilTag fiducial
markører som faste og kunstige landemerker med kjent posisjon for å imple-
mentere en visuell Simultaneous Localisation and Mapping (SLAM)-metode
for autonome overflatekjøretøy som opererer i ukjente kanaler. Dette ble testet
ved å designe og implementere en Fiducial SLAMmetode basert på Incremental
Smoothing And Mapping (iSAM2) rammeverket. En fiducial pose faktor og en
fiducial projection faktor for å legge til fiducial markører til i faktorgrafer ble
designet og implementert for Fiducial SLAM-metoden.

Fiducial SLAM metoden ble testet på ekte data fra eksperimenter utført
ved å bruke AprilTag fiducial markører, den tilhørende deteksjonsalgoritmen
og Norges teknisk-naturvitenskapelige universitet (NTNU)’s autonome ferge
milliAmpere. Testing av metoden på den innsamlede dataen viste at ved å kun
bruke fiducial markører, kunne gode estimater av systemets pose bli oppnådd.
Testingen viste også at dersom flere kameraer ser de samme markørene sam-
tidig ble det bedre estimater enn dersom kun ett kamera observerer fiducial
markørene. Ved å utvidemetoden videremed å inkluderer Inertial Mesurement
Unit (IMU) og lavfrekvente GNSS målinger, ble estimatene også forbedret.
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Chapter 1

Introduction

1.1 Motivation and Problem Description

Autonomous systems are increasingly common in everyday situations, andmany
large organisations such as Google, Tesla and BMW are working on autonom-
ous vehicles [9]. Autonomous Surface Vehicles (ASVs) are autonomous vehicles
operating on the surface of the water, initially developed in 1993 by MIT [45].
After this, ASVs have been continuously developed and applied to different set-
tings, such as autonomous ferries. Human errors are estimated to be the cause
of over 61% of the total number of ferry accidents, and over 75% of the total
number of fatalities, see Golden and Weisbrod [29]. Developing autonomous
ferries could therefore decrease the number of accidents and fatalities signific-
antly. Autonomous ferries have, like other autonomous vehicles, the possibility
of being more cost effective and more environmentally friendly than human
operated ferries [19]. Another benefit is that these ferries can be a cheaper al-
ternative to both building new bridges and using manned ferries [61].

At the Norwegian University of Science and Technolog (NTNU), autonom-
ous ferries are researched in the Autoferry project. The Autoferry project aims
at researching concepts and methods around the development of autonomous
passenger ferries for urban areas [2]. This includes developing a fully autonom-
ous ferry to transport passengers between Ravnkloa and Brattøra in Trondheim,
as a modern replacement for the previous rowingboat ferry Fløtmann, which
was in service in this area until 1965 [66]. NTNU’s autonomous ferry milli-
Ampere is the prototype for this project. The project will result in a fully elec-
tric ferry, able to transport passengers autonomously. MilliAmpere is described
further in Section 5.1.1.

For autonomous systems, like milliAmpere, to operate without any human
input, it is essential for the system to know its position. MilliAmpere uses a
Real Time Kinematics (RTK)-Global Navigation Satellite System (GNSS), which
can measure its position and heading with very good accuracy. However, this

1



2 M. E. Gerhardsen: Fiducial SLAM

method depends on the communication between the GNSS and the satellites.
If this communication is blocked, the ferry will have a poor idea of its own po-
sition. Therefore, a backup-system to this is useful, if not essential, to ensure
that milliAmpere can operate fully autonomously. One possible backup-system
could be a Simultaneous Localisation and Mapping (SLAM) system, as it can be
very accurate, multiple sensors can be used, and amap of the local environment
is created. The use of multiple sensors mean that if one sensor fails there are
others to take its place, and amore accurate understanding of the surroundings
can be created and used for other purposes than just estimating the position of
the ferry. Some aspects of SLAM for autonomous ferries have already been re-
searched based on milliAmpere, and Skjellaug [59], Ødven [48] and Dalhaug
[14] have explored lidar-based SLAM methods, while Fosso [25] explored in-
frared sensors.

One important aspect of SLAMmethods is that, unless GNSSmeasurements
are included explicitly in the method, the map and position estimates gener-
ated are relative the initial conditions. An underlying problem is that all global
information used for position estimation is done using sensors on the autonom-
ous system, which means that the entire map is defined relative the position of
the system. If part of the map was known globally prior to starting the SLAM
system, global information can be introduced to the SLAM method without
being defined relative the position of the system. Because the map usually con-
tains a large number of small map points, e.g. representing edges or corners in
the environment, it can be difficult to create a map with prior global informa-
tion.

Introducing artificial landmarks into the harbour environment can there-
fore be a potential solution, as the environment lacks naturally useful features
for a SLAM map and one can easily measure the GNSS position of an artifi-
cial landmark. The use of artificial landmarks to estimate positions is not new,
e.g. ultra wide-band localisation methods have been shown to be useful tools
for position estimation by Strohmeier et al. [63], and have also been used to
implement a SLAM method by Segura et al. [58]. A drawback with ultra wide-
band technology is that it needs electricity in order to operate, which is difficult
to operate with for harbour environments. In addition, the transmitted signals
may be blocked.

Other methods such as UcoSLAM by Muñoz-Salinas and Medina-Carnicer
[46] and TagSLAM by Pfrommer and Daniilidis [54] have been successful using
fiducial markers, which are 2D markers similar to QR-codes, as artificial land-
marks. These do not need any active input other than the initial placement, and
are detected using camera images. While both UcoSLAM and TagSLAM were
considered to be explored in this thesis, this was not done mainly because there
was an interest in creating a multi-sensor SLAM method for milliAmpere and
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the software would have to be modified to achieve this.

The purpose of this master thesis is to develop a SLAM system using fiducial
markers as easily detectable and GNSS-fixed landmarks for ASVs operating
in urban harbour environments. This is implemented using the Incremental
Smoothing and Mapping (iSAM)2 optimiser, so that this might easily be added
to a multi-sensor SLAM system, using the AprilTag fiducial marker. The SLAM
problem was formulated as a factor graph, and two different fiducial factors
were implemented. To test this method and the factors, data was gathered
using milliAmpere for multiple scenarios.

1.2 Report outline

The structure of this thesis will follow the structure outlined in this Section.
Chapter 2 will define the notation and the primary coordinate frames used in
this thesis. Chapter 3 will outline the background information andmathematics
necessary for the rest of the thesis, including some probability theory, SLAM, fi-
ducial markers and factor graphs. The primary contribution of this work, which
is the development of the Fiducial SLAM method, is described in Chapter 4.
Chapter 5 lists the hardware and software used in the experiments conducted
as part of this thesis, as well as discussing the specific implementation of the
Fiducial SLAMmethod. Chapter 6 describes the experiments conducted as part
of this thesis, and describes the datasets used to test the developed method,
while Chapter 7 shows the results of these experiment by applying the Fiducial
SLAM method to the different datasets. Chapter 8 and 9 contain the discussion
and conclusion for this thesis, as well as future work.





Chapter 2

Notation

There exists multiple well known and yet different notational conventions for
working with 3D geometry. In this chapter, the conventions used in this thesis
will be outlined. This is an important part of any project, as otherwise uncer-
tainty and mistakes may easily be introduced by mixing conventions.

2.1 Variables

In this section, the special notation for vectors, matrices, homogeneous coordin-
ates, and time dependence will be introduced.

2.1.1 Vectors

Vectors are collections of numbers which represent some n variables, where n
is called the dimension of the vector. In this thesis, vectors generally are rep-
resented as column vectors, unless otherwise stated. They are denoted using
lower case, boldface letters:

x=









x1
x2
...

xn









(2.1)

2.1.2 Matrices

Matrices can be thought of as a collection of m column vectors of dimensions
n. In this thesis they are denoted using upper case, boldface letters:

5
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A=





a1,1 . . . a1,m
... . . . ...

an,1 . . . an,m



 (2.2)

2.1.3 Homogeneous Coordinates

Homogeneous coordinates are extensions to a state, where an n dimensional
state is represented by an n+1 dimensional vector, see Equation (2.3). This al-
lows e.g. projective transformations to be easily represented as matrices. When
working explicitly with homogeneous coordinates, the vector notation will be
expanded using a tilde, to indicate that the final dimension represents projec-
tion. A vector can be transformed into homogeneous coordinates by adding an
extra value to the vector, defined as 1, see Equation (2.5). By dividing the vector
element-wise by xn+1 and removing element xn+1 from the vector, a homogen-
eous coordinate may be converted back to its original coordinate system. If the
elements within a homogeneous vector are divided by the last dimension, such
that xn = 1, the vector is denoted using a tilde, while the individual elements
are not.

x̃=
�

x̃1 x̃2 . . . x̃n x̃n+1
�> (2.3)

x̃=
�

x̃1
x̃n+1

x̃2
x̃n+1

. . . x̃n
x̃n+1

x̃n+1
x̃n+1

�>
(2.4)

x̃=
�

x1 x2 . . . xn 1
�> (2.5)

2.1.4 Time Dependence

As all these variables may be time dependent, variables may be denoted as
either continuous or discrete time dependent. Continuous time dependence is
denoted with round brackets and time defined as t, see Equation (2.6). Dis-
crete time dependence is denoted with square brackets and time defined as
k, see Equation (2.7). It is also sometimes useful to look at multiple time de-
pendent variables at the same time. This is only really applicable for discrete
time variables, so the set of variables in the range [ki , k j] are denoted as Equa-
tion (2.8).

x(t) (2.6)
x[k] (2.7)

x[ki : k j] (2.8)
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2.2 Coordinate Systems

A coordinate system, or coordinate frame, is a system in which geometric ob-
jects can be represented using base unit vectors. To indicate that a vector is
represented in a specific coordinate system C , a subscript is used, see Equa-
tion (2.9). In this thesis, 3D coordinate systems will be used, and will, for con-
sistency, follow the right hand rule. The right hand rule defines the orientation
of the cross product of two vectors. Given two vectors u and v, the orientation
of the cross product u×v will follow the right hand rule: place the index finger
in the direction of u and the middle finger in the direction of the v, then the
thumb will define the direction of u × v. A coordinate system which follows
the right hand rule, called a right handed coordinate system, is defined as one
where the right hand rule is fulfilled between all unit vectors of the coordinate
system. A few especially relevant coordinate systems will be quickly listed and
described bellow.

xC =
�

x0,C x1,C . . . xn−1,C
�> (2.9)

2.2.1 The North East Down Coordinate System

The North East Down (NED) coordinate system is defined as a local tangent
plane to the Earth, relative to a specific geographical position, defined by lat-
itide, longitude and altitude. The coordinate system is defined with the first
dimension pointing north, the second pointing east and the final axis pointing
down towards the centre of the Earth, see Equation (2.10). The NED nota-
tional convention will follow Fossen [24, pp. 16–19]. In this thesis, this will be
defined as the world coordinate system, and is defined relative the geographic
point Piren at latitude 63.4389029083◦, longitude 10.39908278◦ and altitude
39.923. The calculations converting from global to local NED coordinates are
done using software by Karney [41].

xNED =
�

north east down
�> (2.10)

2.2.2 The milliAmpere Body Frame

The milliAmpere body frame, also called the vessel center (V for short), or
simply the body frame, is defined by a black cross by the main hatch on mil-
liAmpere. The first axis points towards the front of milliAmpere, the second
points towards the starboard (right side) of milliAmpere, and the third axis
points downwards. The transforms from milliAmpere to the mounted sensors
relevant for this thesis are listed in Appendix A.1.
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2.2.3 The Camera Coordinate System

The camera coordinate system is denoted using the Open Computer Vision
(OpenCV) convention. Observing from the cameras point of view, the first axis
is defined to the right, the second is defined downwards and the third is defined
in the viewing direction. Conventionally these axes are called x , y, and z re-
spectively. However, when specifically working with pixel values, u and v will
be used instead of x and y respectively. Given an image, u starts at 0 in the top
left corner, and increments by one for each pixel moving horizontally to the
right, and v starts at 0 in the top left corner, and increments by one for each
pixel moving vertically down.

2.3 Transformations and Pose

When working with robotic systems, it is often useful to define multiple co-
ordinate systems, which makes the system more modular, and can be both
easier to understand and work with. As a simple example, consider a robot
with a GNSS using a camera to operate in a city. It would be useful to know
the global position of the robot, which might be expressed in the NED coordin-
ate system, but anything detected by the camera would be expressed in the
camera frame. To know the global position of what the camera detects, one
must transform the detection from the camera frame, to the global frame. See
Figure 2.1 for an example of how such a scene might look. While the detected
object may be defined as the point three metres in front of the camera, this is
not necessarily its position in NED.



Chapter 2: Notation 9

Figure 2.1: Example of a robotic system with multiple coordinate systems.
For the visualised coordinate systems: red represents the first axis, green rep-
resents the second axis and blue represents the third axis. Generated using
software from [34] and [18].



10 M. E. Gerhardsen: Fiducial SLAM

2.3.1 Transformations

Transformations between coordinate systems can be represented by a trans-
lation vector t and a rotation matrix R. Transforming a point from coordinate
system C1 to C2 is notationally defined as Equation (2.11). A variable which
transforms some state from one coordinate system to another is subscripted
with the original coordinate system and superscripted with the new coordin-
ate system.

xC2
= RC2

C1
xC1
+ tC2

C1
(2.11)

An n dimensional translation vector, t ∈ Rn, represents how an object can
be moved from one n dimensional coordinate system to another in terms of the
coordinate systems unit vectors.

An n dimensional rotation matrix, R ∈ Rn×n, represent how an object in
an n dimensional coordinate frame must be rotated to be transformed into an-
other coordinate frame. The rotation matrix is in the special orthogonal group
in 3D (SO(3)), as defined by Equation (2.12).

SO(3) =
�

R ∈ R3×3 | RR> = I,det(R) = 1
	

(2.12)

When thinking of rotations as a combination of rotations around the co-
ordinate system axes, one must keep in mind that the SO(3) group is not com-
mutative. Given the same angles to rotate around the three axes, different
results may arise when the rotation starts with one axis before another. The
rotation matrices around the three axes will follow the convention of Fossen
[24, pp. 16–19]. The rotation matrix around the first axis, roll (φ), is defined
as Equation (2.13), while the rotation matrix around the second axis, pitch
(θ), is defined as Equation (2.14), and the rotation matrix around the third
axis, yaw (ψ), is defined as Equation (2.15). Finally, a single rotation matrix
composing all three angles can be defined as Equation (2.16).
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R1(φ) =





1 0 0
0 cosφ − sinφ
0 sinφ cosφ



 (2.13)

R2(θ ) =





cosθ 0 sinθ
0 1 0

− sinθ 0 cosθ



 (2.14)

R3(ψ) =





cosψ − sinψ 0
sinψ cosψ 0

0 0 1



 (2.15)

R(φ,θ ,ψ) = R1(φ)R2(θ )R3(ψ) (2.16)

Homogeneous matrices are the standard for computing Equation (2.11)
using a single matrix multiplication, and to simplify composing multiple trans-
formations. This also means that 3D points are represented as homogeneous
vectors. For 3D coordinate systems, these transformations are defined by 4×4
matrices, representing both the rotation and translation between the coordin-
ate systems. This is why these transformations are denoted using the same
convention as the matrices in Equation (2.2). These matrices are in the special
Euclidean group in 3D (SE(3)), as defined by Equation (2.17) using the rota-
tion matrix R and translation vector t.

SE(3) =

�

T=

�

R t
0> 1

�

∈ R4×4 | R ∈ SO(3), t ∈ R3

�

(2.17)

As described earlier in this section, part of the usefulness of transformations
is using multiple, modular transformations to e.g. express a point within an-
other coordinate system. Given two transforms, e.g. the transform from NED
to the robot, Trobot

NED , and the transform from the robot to the camera, Tcamera
robot ,

the transform directly from NED to the camera, Tcamera
NED , can be found as:

Tcamera
NED = Trobot

NED Tcamera
robot . (2.18)

2.3.2 Pose

Pose describes a state containing both the rotation and translation between
two coordinate system. Like with the transformations, notationally poses fol-
low the matrix notation defined in Equation (2.2), as these are also represented
as matrices. Poses are very closely related to the transformation matrices dis-
cussed above, though are more often used to describe a specific state rather
than the transform necessary to go from one coordinate system to another. Us-
ing the example illustrated in Figure 2.1, if one is interested in both the position
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and the rotation of the camera over time relative to NED, it can be simpler to
imagine this specifically as a state. Still, the difference between a pose and a
transformation is primarily due to convention. If one has the pose of a robot in
NED, X0

ned, and then the pose odometry, X1
0, describing the change in pose, one

may find X1
ned similarly to above as the composition Equation (2.19).

X1
ned = X1

0X0
ned (2.19)



Chapter 3

Background

This chapter outlines the background information for the work done in this
thesis.

3.1 Probability Theory

Probability theory is very useful for formulating and solving SLAM problems,
as it allows states and measurements to be defined with uncertainty. This un-
certainty often represent the inherent noise in measurements and states, as
defined by e.g. the inaccuracies in measuring devices. Another advantage is
that the more uncertain measurements and states can be weighted numerically
by the noise, which means that untrustworthy measurements are suppressed.
If a SLAM problem is formulated using probability theory, the problem can be
defined as finding the most likely state given the known conditions. In this
section, some background on relevant probability theory will be covered.

3.1.1 Bayes’ Formula

Bayes’ Formula (also known as Bayes’ theorem, Bayes’ rule, or Bayes’ law), is an
important equation in probability theory and in probabilistic SLAM methods
as it shows how knowledge of variables may be updated given new evidence.
As shown by Bar-Shalom et al. [3, pp. 47–48], this can be defined for events
(Equation (3.1)), variables or probability density functions (Equation (3.2)),
as well as between events and variables (Equation (3.3)).

P(A | B) =
P(B | A)P(A)

P(B)
(3.1)

p(x | y) =
p(y | x)p(x)

p(y)
(3.2)

P(A | x) =
p(x | A)P(A)

p(x)
(3.3)

13
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3.1.2 Maximum A Posteriori Estimator

As the name implies, the Maximum A Posteriori (MAP) estimator, see Bar-
Shalom et al. [3, p. 92], calculates the estimate of a state x̂ by maximising
the probability function of the state x given the measurements z, which can be
summarised mathematically in Equation (3.4). Using Bayes’ formula, this can
be rewritten as Equation (3.5), and defining the likelihood function l(x;z)∝
p(z | x), Equation (3.6). Therefore, the MAP estimate can be defined as the
maximisation of the product of the likelihood function and the prior probabil-
ity p(x).

x̂MAP = argmax
x

p(x | z) (3.4)

= argmax
x

p(z | x)p(x)
p(z)

(3.5)

= argmax
x

l(x;z)p(x) (3.6)

3.1.3 Multivariate Gaussian

The Gaussian distribution is one of the most commonly used probability distri-
butions, and as the states used in SLAM problems are almost always multivari-
ate, their probability distributions must also be described as multivariates. For
a vector state x, a multivariate Gaussian probability distribution for this state
can be defined by an expectation vector µ and a symmetric positive definite
covariance matrix P like Equation (3.7), as described by Brekke [7, pp. 41–
50].

N (x;µ,P) =
1

(2π)
n
2 |P|

1
2

exp
�

−
1
2
(x−µ)>P−1(x−µ)

�

(3.7)

The shape of the univariate Gaussian Probability Density Function (PDF)
is well known, and an example generated with µ = 0, P = 1, plotted for
x ∈ [µ − 3 ∗ P,µ + 3 ∗ P] can be seen in Figure 3.1. Like a univariate Gaus-
sian distribution, the peak of a multivariate Gaussian distribution is found at µ,
while P describes the spread of the distribution. However, as the multivariate
Gaussian describes a function Rn 7→ R, these distributions are often visualised
e.g. as probability ellipses, like in Figure 3.2. With multiple ellipses inside each
other, the probability distribution can be visualised and an idea of where the
weight of the distribution lies can be ascertained.

Because a large part of the multivariate Gaussian PDF is there to scale the
function, one usually only study the exponent, defined by the quadratic form
Equation (3.8). This defines the shape of the distribution, and as one is nor-
mally only interested in maximising a PDF, the scaling parameters are of less
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Figure 3.1: Univariate Gaussian distribution. Generated using the SciPy[36]
and the Matplotlib[34] Python-libraries.

Figure 3.2: Multivariate, two dimensional, Gaussian distribution, showing
probability ellipses. Image source[7, p. 42].

importance and can usually be discarded, often resulting in simpler calcula-
tions.

q(x) = (x−µ)>P−1(x−µ) (3.8)

One will sometimes also find the multivariate Gaussian represented in ca-
nonical form. This form is represented as Equation (3.8), where a is defined
by Equation (3.10), η is defined by Equation (3.11) and Λ is defined by Equa-
tion (3.12).
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N (x;η,Λ) = exp
�

a+η>x−
1
2

x>Λx
�

(3.9)

a= −
1
2

n ln2π− ln |Λ|+η>Λη (3.10)

η= Λµ (3.11)
Λ= P−1 (3.12)

3.2 Performance Measure

To measure the performance of the estimation methods given a set of errors,
the Root Mean Square Error (RMSE) and maximum Root Square Error (RSE)
methods will be used. The error plots shown in this work will also be the RSE,
which in essence will be an absolute value function as only the positive root
will be used. Defining Equation (3.13) as the error trajectory, the RMSE is
calculated as Equation (3.14), the RSE is calculated as Equation (3.15) and
the maximum RSE is calculated as Equation (3.16).

E= {e1,e2, . . . ,eN} (3.13)

eRMSE =

√

√

√

√

1
N

N
∑

i=1

e2
i (3.14)

ERSE =
¦q

(e2
1),
q

(e2
2), . . . ,

q

(e2
N )
©

(3.15)

emax RSE =max
ei

ERSE (3.16)

3.3 Odometry

Odometry can be defined as the estimation of the pose of a robotic system rel-
ative to the systems initial pose using data from available motion sensors [1].
Some of these sensors are Inertial Mesurement Units (IMUs), wheel encoders,
lidars, cameras and others. IMUs measure linear acceleration and rotational
rate, which are subject to certain errors, primarily biases and slow drift over
time in the biases. In addition, factors like temperature change and vibrations
will also affect the measurements [67, pp. 23–25]. IMUs are still very useful in
odometry as these errors can be modelled and estimated. Wheel encoders have
been very common for ground-based systems, though odometry methods based
on this sensor are prone to errors, primarily due to wheel slippage in slippery
or uneven terrain, which is difficult to estimate [22, 49]. Furthermore, this
sensor cannot be utilised on ASVs as it is constrained to systems with wheels.
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Lidars can be used in laser odometry, and camera sensors are used for Visual
Odometry (VO), which are generally more accurate than the previously dis-
cussed sensors. All these sensors are affected by noise to some degree, which
over time leads to drift in the estimated pose. Solving this is an integral part of
SLAM, where long-term tracking is performed with loop closure. This is further
discussed in Section 3.4.

3.4 Simultaneous Localisation and Mapping

SLAM has been an interesting and popular field of research for some time,
and has become an even more popular research field over the last decades,
as autonomous systems have become increasingly viable for general usage, see
Bimbraw [4]. For a robotic system to operate truly autonomously, knowledge
of the local environment and the system state can be very important. Relying
exclusively on external positioning systems like GNSS to get the system state
will make the system less autonomous and secure. This is primarily due to the
fact that GNSS systems are not always viable, and generally do not work in-
doors, under water or if the GNSS communication is otherwise obstructed or
jammed. Another problematic situation could be that the GNSS does not impli-
citly include information on the local surroundings of the robotic system, while
the construction of a map is an essential part of SLAM, and therefore could be
utilised for navigation as well.

SLAM can be defined as the combined creation of a map of the surroundings
of a robotic systems and the localisation of this system within this map [8]. To
allow the systems to operate autonomously, SLAM methods generally only util-
ise on-board sensors to estimate the robotic system’s pose relative to the map.
As the localisation side of SLAM often includes the estimation of other useful
states such as velocity or biases, calling it state estimationmay be more correct.
Therefore, the term localisation should be used when only discussing pose es-
timation, and state estimation for more general situations. The SLAM map is a
model of the robotic systems surroundings based on the data gathered by the
available sensors. The map is usually considered either unknown, and has to
be created from scratch, or has to build based on an initial map, which is either
incomplete or uncertain. The mapping side of SLAM therefore has to be able
to both initialise and update the map.

For a method to be considered a SLAM method, generally both the state
estimation and mapping must be present. Methods where an accurate and reli-
able GNSS system can be usedwould be simplified to amapping problem, as the
need for state estimation can be ignored. In surroundings with a known map,
the methods can be simplified to a localisation problem. Even though SLAM
methods solve both these problems, different SLAMmethods are designed with
different situations and goals in mind, and therefore different methods often
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focus more on either the localisation side or the mapping side of SLAM.

Generally, SLAM methods are divided into two subcategories, full SLAM
and online SLAM. Using x as the state of the robotic system, x[1: k] as all
states up to time k, z[1: k] as the combined system measurements and ac-
tuations, and m as the map. Then full SLAM can be defined as Equation (3.17)
and online SLAM can be defined as Equation (3.18). Full SLAM will estimate
both the map and all states x[1: k], that is the full trajectory through the map.
Online SLAM aims to only estimate the current state x[k], and is usually es-
timated by recursively updating the state for each iteration. This has been the
standard solution for using SLAM in real time, as full SLAMmethods have been
too computationally complex to work in real time systems. However, methods
utilising the sparsity inherit to SLAM systems now allow full SLAM methods to
be usable in real time as well.

p(x[1: k],m | z[1: k]) (3.17)

p(x[k],m | z[1: k]) =

∫

. . .

∫

p(x[1: k],m | z[1: k])dx[1] . . . dx[k− 1] (3.18)

SLAMmethods are usually divided into two separate components, the front-
end and the back-end. The front-end is responsible for using raw sensor data
for feature detection and data association, where both short-term and long-
term data association is performed. Short-term data association refers to fea-
ture tracking, and long-term data association refers to the detection of loop
closure. The back-end performs the state and map estimation using data from
the front-end, and potentially from other sensors. The results from the back-
end optimisation can then be sent back to the front-end for the data association.
One important reason why the distinction between front-end and back-end ex-
ist, is that they are easily parallelised. This is particularly important as the
front-end usually is a lot faster than the back-end, and needs to handle sys-
tem measurements in real time, while the optimisation in the back-end usually
takesmore computation time. See Figure 3.3 for an illustration of this structure.

The long-term data association performed in the front-end is loop closure,
and is the primary defining feature differentiating SLAM from odometry meth-
ods like VO. The idea of loop closure is to correct the small errors built up
in the odometry method by recognising previously visited areas and applying
this newly discovered constraint to the map and state. The errors which may
have been built up between leaving and revisiting this area are recalculated.
This means that a more accurate topological map of the explored environment
can be constructed compared to the results of an odometry-based method, as
illustrated in Figure 3.4.
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Figure 3.3: Illustration of a generic SLAM method divided into front-end and
back-end. Image source [8].

Figure 3.4: Illustration of map constructed by odometry to the left and map
constructed by SLAM to the right. The left map is unable to recognise pre-
viously visited areas, and therefore drift in measurements may results in the
offset illustrated near both areas A and B. The right map is able to recognise
previously visited areas with loop closure, resulting in the topology of the sur-
roundings being more accurately mapped. Image source [8].

3.5 Camera Geometry

Some details regarding camera geometry and mathematics will be described
here in this section, and is primarily based on Hartley and Zisserman [32]
and Corke [13]. A camera model can be defined as the projection function
Equation (3.19), where the projection function π : R3→ I projects a 3D point
to a valid pixel, where I ⊂ R2 is the set of all valid pixels, xc is a 3D point
defined in the camera coordinate system and u ∈ I is a pixel.

u=

�

u
v

�

= π(xc) (3.19)

The inverse function of projection is called backprojection, and is defined as
Equation (3.20). Using the pixel u and corresponding depth d, the original 3D
point can be calculated.
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xc =





xc
yc
zc



= π−1(u, d) (3.20)

All projections in this thesis will be done with the pinhole model, which is
a simple and useful model. Note that homogeneous coordinates, which were
introduced in Section 2.1.3, are used here, and that to obtain the actual pixel
value, the two first elements of ũ must be divided by the third. The pinhole
model can be defined using Equation (3.21).

K, defined by Equation (3.22), is called the camera calibration matrix, and
contains the internal camera parameters. These are individual for each camera,
andmust be estimated using amethod such as the one implemented inMATLAB
and described by Corke [13, pp. 335–336]. αu,v denotes the focal length of
the camera in terms of pixels in the u and v direction. u0 and v0 denotes the
principal point in the u and v directions, and s is the skew parameters, and is
primarily added for completeness as this parameter is often zero.

ũ= KPx̃c (3.21)

K=





αu s u0
0 αv v0
0 0 1



 (3.22)

P=





1 0 0 0
0 1 0 0
0 0 1 0



 (3.23)

3.6 Fiducial Markers

A fiducial marker is an object placed within the field of view of a camera system
which gives additional context to images produced. One simple example could
be placing a ruler next to something you’re taking a picture of, such that one
can find the size of the object using only the information from the ruler in the
picture. This can further be extended to introduce more context to images. By
introducing a fiducial marker at a known location, the camera system can add
positional context to the scene.

Some of the initial usages of fiducial markers were as aids to Augmented
Reality (AR) systems. Generally, the purpose of AR systems is to use visual com-
puting techniques to introduce artificial objects into a real scene, as captured
by e.g. a camera, often in real time. Kato and Billinghurst [42] describes an
AR system designed conferencing system, allowing a user to interact with a
predefined white board, which is shared with the other users attending the
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conference. As the white board acts as a fiducial marker within the conference
context, it is easier to share the board with the rest of the conference in an inter-
active manner for the other attendees. Rekimoto [55] describes an AR system
which, aided by 2D matrix codes, allows for accurate estimates of positions of
real objects within the AR system. These systems both utilise fiducial markers
to improve the interactivity between the two AR systems and the users.

3.6.1 ArUco

Multiple fiducial markers have been developed and used for different purposes.
One interesting type is the ArUco, or UcoTag, which was developed as part
of the ArUco project by Garrido-Jurado et al. [26]. This fiducial marker was
generated by mixed integer linear programming to maximise the diversity of
the markers, see Garrido-Jurado et al. [27]. The detector algorithm for these
markers, see Romero-Ramirez et al. [57], is developed to be both fast and
accurate at detecting the fiducial markers, and is also capable of detecting a
number of other fiducial marker types, making it a versatile detector to base a
project upon. This marker also has a history of being used in SLAM systems,
as it was included in the UcoSLAM method by Muñoz-Salinas and Medina-
Carnicer [46]. UcoSLAM worked by fusing natural keypoint features with the
artificial markers placed around the system operating area, and aimed to solve
a number of problems with monocular visual SLAM methods.

3.6.2 AprilTag

AprilTag is a specialised fiducial marker designed by Olson [51] and improved
further by Wang and Olson [68]. These markers work similarly to a QR code,
because they are easily distinguishable from the natural features in the sur-
rounding environment and are also able to encode data. Despite having some
similar properties, the QR codes and AprilTags are designed with different pur-
poses in mind. The AprilTag software can be found on the AprilRobotics github
page1, see Olson [50].

QR codes usually encode a URL, so that one can use the camera on your
phone to read the QR code and get the encoded URL. As QR codes are designed
to be utilised by people, a larger amount of data can be encoded. This is be-
cause the process is simplified by only decoding one QR code at a time, and the
camera must be placed within a specific view of the QR code before it can be
successfully decoded. AprilTags are designed as visual aids to autonomous sys-
tems, and are therefore designed with this purpose in mind. Multiple AprilTags
can be within the same image, and while the camera does have to be within
certain views of the markers, these restrictions are less severe than those for
QR codes. The coding system used is a modified lexicode which generates a set

1See https://github.com/AprilRobotics

https://github.com/AprilRobotics
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of binary codewords, where each codeword can be interpreted as the physical
AprilTag marker, see Figure 3.5 as an example.

Figure 3.5: AprilTag family 16h5, marker with id 0.

The AprilTag Coding System

As the lexicode system can be parametrised by the number of bits, n, of the
codeword and the minimum Hamming distance, d, between each codeword,
AprilTags are divided into several distinct instances, referred to as families. A
useful property of the lexicode is that it can detect d/2 bit errors and correct
up to b(d − 1)/2c bit errors. The marker illustrated in Figure 3.5 is a part of
the 16h5 family, which indicates that each codeword is defined by 16 bits,
where each codeword in the family has a minimum Hamming distance of 5. A
codeword c in a family of bit size n and hamming distance d can be defined
as Equation (3.24). The Hamming distance, given two codewords 0cn,d and
1cn,d can be defined as Equation (3.26) and gives a measure of the difference
between the codewords. This means that similar codewords have a small Ham-
ming distance, like 0000 and 0001 have a Hamming distance of 1. Because the
codeword size is defined as 16 bits, this family would originally be defined as
the binary numbers [0, 216−1], but because it is defined with a minimum Ham-
ming distance, a large number of these codewords are not allowed in the family
because they are too similar. The families are further reduced by also removing
the codewords which, if interpreted as a marker and rotated (90, 180 and 270
degrees), also fall below the minimum Hamming distance relative to the rest
of the family. The final guarantee for each family is that they are geometrically
complex enough to decrease the chance that the pattern may be one which can
occur naturally.
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cn,d = {cn
0 , cn

1 , . . . , cn
d−1}, (3.24)

where cn
i ∈ {0,1} (3.25)

h(0cn,d , 1cn,d) =
d−1
∑

i=0

hi(0cn
i , 1cn

i ), (3.26)

where hi(0cn
i , 1cn

i ) =

¨

0, if 0cn
i = 1cn

i

1, otherwise
(3.27)

The families can have vastly different design, and some of the different
types can be seen in Figure 3.6. Several different families which have already
proved useful in different situations have been generated by the April robotics
lab, and are released on their github page2. While these standard families are
implemented in the AprilTag source code, onemay generate new families based
on different properties and add the new families to the source code3. This
makes the AprilTag software very flexible for handling specific situations where
particular properties are useful. On the AprilTag user guide page4, some of the
interesting properties of the standard families are noted, and are also listed
here. The examples listed can be seen in Figure 3.6.

1. The tag52h13 contains nearly 50000 different patterns, and is the go-to
family where large numbers of markers are necessary.

2. The circular AprilTag like tagCircle49h12 and tagCircle21h7 maximise
the use of space on circular circular objects.

3. The tagCustom48h12 family includes an unused square within itself, al-
lowing a smaller marker to be placed within recursively. This allows the
detector to e.g. observe one marker at a great distance and one close up.

4. The Tag36h11 family is compatible with the ArUcO detector.

2See https://github.com/AprilRobotics/apriltag-imgs
3See https://github.com/AprilRobotics/apriltag-generation
4See https://github.com/AprilRobotics/apriltag/wiki/AprilTag-User-Guide

https://github.com/AprilRobotics/apriltag-imgs
https://github.com/AprilRobotics/apriltag-generation
https://github.com/AprilRobotics/apriltag/wiki/AprilTag-User-Guide
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Figure 3.6: Multiple AprilTag families, with the family name written below
each. Image source [50].

The AprilTag Detector

The AprilTag detector attempts to find all possible AprilTags of a specified
family in a given gray-scale image. The method implemented by Olson [51]
will be described shortly here. Initially, the algorithm deals with the detection
of line segments. The gradient direction and magnitude are computed for all
pixels, and then clustered using a method similar to the graph-based method
described by Felzenszwalb and Huttenlocher [21]. This part of the detection
algorithm is both the slowest and the most susceptible to noise. The detector
therefore relies heavily on the coding system described in Section 3.6.2 to en-
sure a low false detection rate. This part of the algorithm results in a set of
directed line segments.

The next part consists of using the directed line segments to detect four-
sided shapes, called quads. This is done using a depth-first search with a depth
of four. Initially, all line segments are considered. Then, all lines which are both
close enough to the previous line and follow a counter-clockwise order, are con-
sidered. This pattern continues until a depth of four is reached and a potential
quad is detected.

Then the 3 × 3 matrix which projects 2D homogeneous points from the
AprilTag coordinate system to the 2D image coordinate system, called the ho-
mography matrix, is estimated using the Direct Linear Transform (DLT) al-
gorithm as described by Hartley and Zisserman [32, pp. 88–93]. This is finally
used to read the bits from the detected tag. If a codeword in the AprilTag fam-
ily matches the read bits, this quad can be approved as a valid detection. This
detection contains the following data:
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• id: The integer id number of the detected AprilTag marker.
• centre: The pixel coordinates of the centre of the marker.
• points: A list of pixel coordinates, defined in this order: left bottom, right
bottom, right top, left top.

• hamming: How many error bits were corrected.
• decision_margin: The average difference between the intensity of a data
bit versus the decision threshold.

3.7 Infinitesimal Plane-Based Pose Estimation

The problem of estimating a 3D pose from a set of 2D points is called Perspective-
n-Point (PnP), see Szeliski [65, pp. 669–670]. Several different methods for
solving this problem have been developed based on the structure of the prob-
lem and the number of points used. We get four detected 2D points from a
fiducial marker, and we know also something of the structure of these points.
We know that they lay on a flat surface, and the problem can be solved using
the Infinitesimal Plane-based Pose Estimation (IPPE) method, as described by
Collins and Bartoli [11]. The method estimates the pose by using the trans-
form about an infinitesimally small region on the surface of the marker, which
is what the name of the method is derived from.

As we also know the distance between the corners, we can add scale to the
pose estimate and thus estimate the relative pose between the camera frame
and the fiducial frame. The fiducial frame is defined in the center of the marker
with the axes defined as illustrated in Figure 3.7. There, the camera is placed
in the fiducial frame as calculated by the IPPE PnP algorithm.
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Figure 3.7: Visualisation of the coordinate frame used for solving PnP us-
ing the IPPE method. The AprilTag marker is defined by the four red crosses,
the detected corners of the marker. The coordinate frame is, when facing the
marker, defined with a positive z axis out of the marker towards the observer, x
to the right and y up. The IPPE method then calculates the pose of the camera
within this frame with a z axis pointing out the front of the camera, y down
and x to the right.

3.8 Factor Graphs

Factor graphs are a group of graphical, probabilistic models which provide
useful abstractions for modelling many different problems, though for solv-
ing SLAM problems it is especially interesting, see Dellaert and Kaess [17].
Other similar structures, like Bayesian networks and Markov random fields are
well known in problems of statistical modelling andmachine learning, see Yang
[69] and Suh [64]. The graphical nature of these models allows an easier way
of visualising the designed model, and lends itself well to writing modular sys-
tems. A factor graph is defined as a bipartite graph F = (U ,V,E), that is a graph
defined with two different types of nodes. These are the factors φi ∈ U and
the variables x j ∈ V, with the edges ei j ∈ E between factor nodes and variable
nodes. A visual example of a factor graph can be seen in Figure 3.8, where the
black nodes represent a factor, the lines represent the edges and the labeled
nodes represent the unknown states. The factors can e.g. represent odometry,
measurements and priors, while for the variables, x i represents a system state
(like the robot state) and li represents a landmark.
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Figure 3.8: Example of a factor graph showing factors, variables and edges.
The black dots represent factors and the white circles represent variables.
These are the two nodes in the bipartite graph. The lines connecting the factors
and variables are the edges. Image taken from [17, p. 12].

Factor graphs are currently the de facto standard for formulating SLAM
problems. One of the reasons is because it is easily translated to the front-end
/ back-end tasks as described in Section 3.4. The front-end then represents
the construction of the graph by connecting variables with factors based on
sensor measurements. Then the back-end represents the optimisation of the
graph and calculates the most likely values of the variables in the graph given
the factors. Due to the structure of factor graphs, they are easily factorised and
can be evaluated for any given value by evaluating every factor and multiplying
the results, given that the measurements are assumed independent. The optim-
isation problem defined over these factors is a MAP problem, as discussed in
Section 3.1.2. This problem can then be solved using nonlinear optimisation
methods like Gauss-Newton, Levenberg-Marquardt, Powell’s Dogleg, or other
nonlinear optimisation methods.

As the graph optimisation is sensor agnostic, factor graphs are well suited
to solve sensor fusion problems. This is because it is simple to introduce new
sensors to the graph in the form of new variables and factors. These can be
added to the original graph without much, if any, alteration in the original
graph. As shown by Chiu et al. [10], the use of multi-sensor factor graphs can
provide satisfactory navigation solutions using multiple sensors. The expansion
of the graph, see Figure 3.9, shows that the underlying structure can remain
the same and the primary object may be to estimate the current robot state x4,
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while additional sensors only give more information to help the optimisation
method solving the graph.

Figure 3.9: Example of multi-sensor factor graphs. The top graph is construc-
ted using IMU, GPS and lidar. The bottom graph is further expanded by adding
camera and barometer sensors. Image taken from [10, p. 12].

3.8.1 Factor Graph Implementations

Multiple different libraries for creating and optimising factor graphs have been
implemented, and are in many cases open-source. They are often implemen-
ted using C++, as the speed and efficiency is essential for using factor graph
solvers for online SLAM problems. Exceptions do exist, such as Caesar.jl for the
Julia programming language, and bindings to other popular languages like Py-
thon and MATLAB are also available for some libraries.

3.8.2 Georgia Tech Smoothing and Mapping

The Georgia Tech Smoothing and Mapping (GTSAM) toolbox is also an open-
source C++ implementation for creating and solving factor graphs, developed
by Dellaert [18] and Georgia Institute of Technology. As the name suggests,
GTSAM implements smoothing and mapping using factor graphs. It is primar-
ily based on Bayesian networks rather than using sparse matrices directly as
many SLAM systems have used in the past, and exploits the sparsity in factor
graphs for efficiency. State-of-the-art solvers for SLAM problems such as iSAM,
see Kaess et al. [37] and iSAM2, see Kaess et al. [39, 40], are implemented
in the library. GTSAM is also used as the back-end for many new and efficient
SLAM methods, such as TagSLAM, see Pfrommer and Daniilidis [54]. GTSAM
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also comes with wrappers for both Python and MATLAB.

3.8.3 SLAM++

The SLAM++ library is an open-source library implementing factor graphs,
written in C++ to especially benefit from the incremental nature of online
SLAM problems, developed by Ila et al. [35]. It is especially interesting as it
differs from several other implementations as it preforms all matrix operations
by blocks. This leads to very fast matrix manipulation and arithmetic opera-
tions.

3.8.4 g2o

The g2o library is also an open-source C++ library for optimising nonlinear
graph-based error functions developed by Kümmerle et al. [43]. The library has
been designed to be general and therefore be easily extensible to a wide range
of problems. Solutions to several different variants of SLAM problems are also
included in the library. It also utilises the sparsity inherent to factor graphs,
making it an efficient library. It has a long history of being used in other state-
of-the-art SLAM systems, as e.g. ORB-SLAM (ORB-SLAM) by Mur-Artal et al.
[47] and LSD-SLAM by Engel et al. [20] use g2o for their back-end. The library
has bindings to both Python and .NET, though they are not officially supported.

3.8.5 Caesar

Caesar.jl is an open-source library for factor graph optimisation written in the
Julia programming language, see Contributors and Packages [12]. The library
focuses primarily on problems related to SLAM, but is written to be very extend-
able and suitable to many different problems, as it also allows non-Gaussian
and multimodal probability distributions to be worked on. This library is very
new, and looks to solve many issues which have arisen in previous SLAM solu-
tions like solving under-defined systems, inference with non-Gaussian meas-
urements and more, and because the Julia language itself also seems to be an
interesting direction for robotics in the future.

3.9 Lie Theory

A Lie group is defined as a smooth manifold which satisfies the group axioms,
which can be considered as smooth topological surfaces, which are especially
useful in robotics because SE(3) and SO(3) are not trivially differentiable, see
Solà et al. [62]. This means that for both groups, representation of uncertainty,
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Figure 3.10: A manifoldM and the vector space TXM tangent at the point X ,
and a convenient side-cut. The velocity element Ẋ = ∂X/∂ t, does not belong
to the manifold M, but to the tangent space TXM. Image and caption source
[62, p. 2].

incrementing and differentiating states within these groups is more difficult
than a state representing only the position of a system, which can be illus-
trated using Equations (3.28) to (3.33). These operations can however still be
performed using Lie algebra because SO(3) and SE(3) are Lie groups.

R ∈ SO(3) (3.28)
δR ∈ R3×3 (3.29)

R+δR 6∈ SO(3) (3.30)

T ∈ SE(3) (3.31)
δT ∈ T4×4 (3.32)

T+δT 6∈ SE(3) (3.33)

The concepts of a smooth manifold and a group necessitates some further
description. A smooth, or differentiable, manifold is a topological space which
locally behaves like a linear space. One may visualise this using Figure 3.10,
which illustrates a manifoldM and a tangent space TXM defined at X , though
SE(3) and SO(3) obviously inhabit spaces of greater dimensions than can be
visualised here. In this tangent space, a state can evolve, and here the perturb-
ations which were impossible in Equations (3.28) to (3.33) can be performed
within the tangent space.

A group (G, ◦) with set G and a composition operation ◦, where X ,Y,Z ∈ G,
has to satisfy the axioms described by Equations (3.34) to (3.37). Using the
definitions Equation (2.12) of SO(3) and Equation (2.17) of SE(3), it can be
observed that the axioms listed below hold for both groups.
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Closure under ◦ : X ◦Y ∈ G (3.34)
Identity E : E ◦X = X ◦ E = X (3.35)

Inverse X−1 : X−1 ◦X = E (3.36)
Associativity : (X ◦Y) ◦Z = X ◦ (Y ◦Z) (3.37)

To allow Lie groups to transform elements for other sets, the group action
X · v can be defined, given a Lie group M and a set V, of X ∈M on v ∈ V as
Equation (3.38). For a group action, ·, to be valid it must satisfy the axioms
defined by Equations (3.39) and (3.40).

· : M× V → V; (X · v) (3.38)

Identity : E · v = v (3.39)
Compatibility : (X ◦Y) · v = X · (Y · v) (3.40)

The tangent space at the identity of a Lie group M is called the Lie algebra
of the group, and is defined as Equation (3.41). This defines a vector space of
elements τ∧ ∈m, where (·)∧ is called the hat operator and is defined as Equa-
tion (3.42), where the Ei values are called the generators of m. This essentially
maps a matrix to a vector. The inverse operator (·)∨ is called the vee operator
and is defined as Equation (3.43), where the ei values are the vectors of the
base of Rm, that is ei = E∧i . As it defines the inverse to the hat operator, this
essentially maps a vector to a matrix.

m¬ TEM (3.41)

Hat : Rm→m; τ→ τ∧ =
m
∑

i=0

τi Ei (3.42)

Vee : m→ Rm; τ∧→ (τ∧)∨ = τ=
m
∑

i=0

τiei (3.43)

Transforming elements of the Lie algebra to elements of the manifold, the
exponential map is used. The exponential map is defined using Equation (3.44).
The inverse transform is done with the logarithmic map, which is defined using
Equation (3.45). As it is often more convenient, vectorised versions of the ex-
ponential and logarithmic maps are also listed in Equations (3.46) and (3.47).
Using the Exp and Log operations, perturbations on the manifold can now be
represented as tangent space vectors, and then transformed back on the man-
ifold.



32 M. E. Gerhardsen: Fiducial SLAM

exp : m→M; X = exp (τ∧) (3.44)
log : M→m; τ∧ = log (X ) (3.45)

Exp : Rm→M; X = Exp(τ) = exp (τ∧) (3.46)
Log : M→ Rm; τ= Log(X ) = log (X )∨ (3.47)

3.9.1 Differentiation on Lie Groups

Using the above theory, differentiation on Lie groups can be defined. For simpli-
city, some useful results are noted here from Solà et al. [62] and Haavardsholm
[30]. The chain rule can also be defined for manifolds:

Z = g(Y) = g( f (X )) (3.48)
∂Z
∂X
=
∂ g(Y)
∂ Y

∂ f (X )
∂X

(3.49)

The cross product matrix can be defined as:

[t]× =





0 −t3 t2
t3 0 −t1
t2 t1 0



 , t ∈ R3 (3.50)

The following will be special cases for the SE(3) group. The Adjoint is
defined as:

Ad(X) =

�

R [t]×R
0 R

�

∈ R6×6 (3.51)

The derivative of the inverse function:

f (X) = X−1 (3.52)
∂ f (X)
∂ X

= −AdX (3.53)

The derivative for composition:

f (X,Y) = XY (3.54)
∂ f (X,Y)
∂ X

= Ad−1
Y (3.55)

∂ f (X,Y)
∂ Y

= I6×6 (3.56)
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To simplify the equation, the function Rot(X) : SE(3)→ SO(3) extracts the
rotational part of the pose. The derivative for group action:

f (X,y) = X · y, X ∈ SE(3),y ∈ R3 (3.57)
∂ f (X, t)
∂ X

=
�

Rot(X) −Rot(X) [y]×
�

(3.58)

∂ f (X, t)
∂ y

= Rot(X) (3.59)

3.10 Incremental Smoothing And Mapping

The iSAM algorithm, as described by Kaess et al. [37], is an approach to solving
SLAM based on fast incremental matrix factorisation. In the iSAM algorithm,
the complete problem is solved for each batch, which can lead to unnecessary
calculations being performed because local changes to the problem usually
don’t affect far-away parts of the system. iSAM2 is a new version of this al-
gorithm, where an important distinction is that iSAM2 does not use the batch
relinearisation presented by Kaess et al. [37] and uses the Bayes tree data
structure. iSAM2, as described by Kaess et al. [39, 40], is then an incremental,
graph-based algorithm, written for solving SLAM problems by utilising the ad-
vantages of the sparse nature of SLAM problems defined by factor graphs. The
algorithm uses the Bayes tree data structure, incremental reordering and fluid
relinearisation, which eliminates the need for the batch relinearisation per-
formed in the iSAM algorithm.

3.10.1 The Bayes Tree

The Bayes tree data structure was originally developed by Kaess et al. [38]. It
is very similar to clique trees, see Blair and Peyton [5], though is directed and
similar to the Bayes net, see Pearl [53], which encodes factored probability
densities. This data structure provides a better understanding of batch matrix
factorisation for probability densities. Updates to matrix factorisation can be
done by editing the Bayes tree and combined with iSAM2, this provides an ef-
ficient sparse, nonlinear incremental optimiser. Factor graphs can be converted
into chordal Bayes nets by using variable elimination, see Figure 3.12 for a visu-
alisation of this process. The resulting Bayes net can be converted to a Bayes
tree by discovering the cliques. The Bayes tree for the graph seen in Figure 3.11
is visualised in Figure 3.12.
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Figure 3.11: Top: The factor graph and associated Jacobian matrix A for a
small SLAM example. The robot is located at successive poses x1, x2, and x3,
and observes the landmarks l1 and l2. x1 has an absolute measurement as
well. Bottom: The chordal Bayes net and the associated square root informa-
tion matrix R resulting from eliminating the factor graph with the elimination
ordering l1, l2, x1, x2, and x3. The root of the net is the last variable to be
eliminated, x3, and is therefore shaded darker than the other nodes. Image
and caption taken from [38].

Figure 3.12: The Bayes tree and associated square root information matrix R
describing the clique structure in the Bayes net from Figure 3.11. A Bayes tree
is similar to a clique tree, but captures the formal equivalences between sparse
linear algebra and inferences in graphical models better. Image and caption
taken from [38].

3.10.2 Incremental Inference

Incremental inference, such as adding new measurements, can be done with
a simple edit of the Bayes tree. This is done by reinterpreting the top of the
Bayes tree as a factor graph, adding this to the new factors and performing
the elimination again. This can then be reattached to the subtrees, which will
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remain unaffected. An example of this process is visualised in Figure 3.13.

Figure 3.13: An update has been added to the Bayes tree from Figure 3.12. Top
right: A factor connecting x1 and x3 as been added. Top left: The affected parts
of the tree have been highlighted. Bottom left: The factor graph generated for
the relevant part of the tree. Bottom right: The resulting Bayes tree, created
from the chordal Bayes net, with the unmodified right subtree from the original
tree. Image and caption isnpired by [38], and created with BioRender.com.

3.10.3 Incremental Reordering

When eliminating variables as described in Section 3.10.1, the ordering is es-
sential for efficiency. An optimal ordering will minimise the fill-in, that is the
additional entries in the square root information matrix created during the
elimination process. Fill-in in Bayes trees translate to larger clique sizes, which
increase computation time, and unless the Bayes net already is chordal, fill-in
cannot be avoided. As finding the optimal ordering is an NP-hard problem, the
Column Approximate Minimum Degree (COLAMD) algorithm by Davis et al.
[15] can provide near-optimal orderings. This algorithm was used for the ori-
ginal iSAM. However, it was found by Kaess et al. [38] that the variables could
be reordered at every incremental update. Then the reordering could be per-
formed only for the affected variables, and a constrained implementation of
the COLAMD algorithm was used.
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3.10.4 Fluid Relinearisation

With fluid relinearisation, the validity of the linearisation point for each vari-
able is kept track of, and is only relinearised when necessary. When relinear-
ising a variable, the information relevant to this variable must be removed from
the Bayes tree, and is replaced by relinearising the corresponding nonlinear
factors. The relinearised cliques also have to take into account the marginal
factors from the subtrees, which must be passed up the tree. These factors can
also be cached, so that these results can be reused and computation time can
be saved.

3.11 Preintegration

The purpose of preintegration is to combine a larger number of IMU measure-
ments between two poses into a single odometry constraint, as initially pro-
posed by Lupton and Sukkarieh [44]. Because IMUs produce data at a much
greater rate than other sensors, it is not feasible to add the individual measure-
ments to the optimisation problem. Instead, the preintegration method integ-
rates the IMU measurements between two time steps, producing one odometry
constraint. This was continued by Forster et al. [23], where preintegration was
extended to the SO(3) group and defined as a factor graph problem.

An IMU consists of an accelerometer and a gyroscope, which generate ac-
celeration measurements and rotation rate measurements, with respect to the
inertial frame. These measurements are affected by a slowly varying bias b, and
additive white noise η, denoted with the superscript a for the accelerometer
and g for the gyroscope. Defining the true acceleration as aW [k] ∈ R3, the ac-
celerometer measurement as az

B[k] ∈ R
3, the true rotation rate as ωW [k] ∈ R3,

the gyroscope measurement as ωz
W [k] ∈ R

3, the gravitational acceleration vec-
tor as gW . B is the sensor body frame, and W the world frame. The pose of the
sensor body frame in the world frame is denoted as the rotation RW ∈ SO(3)
and tW . The measurement equations are then:

ωz
W [k] =ωW [k] + bg[k] +ηg[k] (3.60)

aW [k] = R>W [k](a
z
W [k]− gW ) + bg[k] +ηg[k] (3.61)

To estimate the system motion from these measurements, this kinematic
model defines the evolution of the pose and velocity:

ṘW [k] = RW [k]ω
∧
W [k] (3.62)

v̇W [k] = aW [k] (3.63)
ṫW [k] = vW [k] (3.64)
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Then the state at a time k+∆k can be calculated by integration:

RW [k+∆k] = RW [k]Exp
�

∫ k+∆k

k
ωW (τ)dτ

�

(3.65)

vW [k+∆k] = vW [k] +

∫ k+∆k

k
aW (τ)dτ (3.66)

tW [k+∆k] = tW [k] +

∫ k+∆k

k
vW (τ)dτ+

∫ ∫ k+∆k

k
aW (τ)dτ

2 (3.67)

Assuming aW and ωW constant for the time interval [k : k+∆k], the integ-
ration above is trivial. Then inserting for Equations (3.60) and (3.61):

RW [k+∆k] = RW [k]Exp
�

(ωz
W [k]− bg[k]−ηg[k])∆k

�

(3.68)
vW [k+∆k] = vW [k] + gW∆k+RW [k](a

z
W − bg[k]−ηg[k])∆k (3.69)

tW [k+∆k] = tW [k] + vW [k]∆k+
1
2

gW∆k2 (3.70)

+
1
2

RW [k](a
z
W − bg[k]−ηg[k])∆k2

Using these equations, the full motion combining IMU measurements on
the time range [: j] can be calculated as:
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This can also be defined without the initial state, so that only the relative
motion is calculated, which is the goal of preintegration. Note that this implies
that the biases, ba and bg , are constant in the time range [i : j].





Chapter 4

Fiducial SLAM

The primary contribution of this thesis was a factor graph-based framework
implementing an fiducial marker based full SLAM method for use in a canal
environment by the autonomous ferry milliAmpere. It is important to create a
factor graph-based framework for the fiducial SLAM method, as it could easily
be extended in the future to a multi-sensor SLAM system using factors such
as VO, lidar-based laser odometry and GNSS. As discussed in Section 3.8, a
system utilising its full sensor capabilities is generally the most beneficial for
the system, and factor graphs are a simple way of integrating multiple sensors.
For milliAmpere to have the best idea of both its own position and knowledge of
its surroundings, a tailored SLAMmethod utilising the full sensor capabilities of
the ferry would be safe, as sensor measurements can simply not be added to the
graph if the sensor is malfunctioning. Furthermore, unreliable measurements
can be modelled with high noise and reliable measurements with low noise,
which will weigh the corresponding measurements in during the optimisation.

4.1 System Overview

The general structure of the method will be discussed in this section, with focus
on how the different parts communicate. The Fiducial Map was loaded from
a predefined set of fiducial markers, and defined the current map of the indi-
vidual fiducial markers and their location in the world coordinates. For each
camera used, an instance of the Independent Camera Thread was executed
separately. All detections produced by all cameras were combined after this,
and were sent to the Graph Creation, where one Fiducial factor was created for
each detection. These factors were inserted into a subgraph, connecting the
current system pose to all detections for all cameras. Finally, the subgraph was
inserted into the iSAM2 back-end. Any other sensor measurements were added
to the optimiser. At a fixed rate, the back-end optimisation algorithm was ex-
ecuted and the result was sent to the Fiducial Map to update it. This structure
is visualised in Figure 4.1.
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Figure 4.1: The full Fiducial SLAM system, divided into the Fiducial SLAM
front-end, iSAM2 back-end optimiser, and some other possible front-end
nodes. The Fiducial Map is initialised by the prior information of the fiducial
marker pose in the world coordinate frame. The Independent Camera Thread
processes each image from the camera system in separate threads, and finally
merges the detections. A Fiducial Factor is created for each detection, then in-
serted into a subgraph in the Graph Creation. The subgraph is inserted into
the iSAM2 back-end optimiser, together with data from any other potential
sensors. The result of the optimisation is used to update the Fiducial Map.
Generated using the Graphviz tool.

4.2 Independent Camera Thread

As the name suggest, this part of the algorithm was responsible for processing
the images coming from the camera system, and could be done independently
of any other camera in a multi-camera system. The pre-processing was primar-
ily to prepare the image for the detection algorithm, by e.g. converting the
image to gray scale. Next, the detection algorithm was applied to the image.
The primary data fields detected were defined by Equations (4.1) and (4.2),
in other words the detected fiducial markers unique ID within the number of
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possible fiducial markers, and the four detected pixel corners. Note that there
were usually more data fields connected to each detection, though these were
not used in this method, and were therefore not noted here.

The resulting detections were passed through a conditional removal step.
There, the detected marker ID was checked against the fiducial map, and any
detection not in the map were discarded. Then, any detection where the detec-
ted corners were closer than a set threshold of the image size were removed.
Finally, any detection where the corners were outside an ellipsis defined in the
centre of the image, with semi-major and -minor axes defined as a specified
fraction of the image width and height, were removed.

ID ∈ F , F = {x ⊂ N|x ≤ Num. Fiducial markers} (4.1)

corners ∈ I4, I =
�

i ⊂ R2

�

�

�

�

i ∈
��

0
0

�

,

�

image width
image height

���

(4.2)

4.3 Fiducial Map

The fiducial map was a collection of all active fiducial markers, mapping the fi-
ducial ID to prior information about the relevant marker. The prior information
stored for each fiducial ID was the side length of the fiducial marker, the pose
of the marker in world coordinates with corresponding Gaussian noise and the
positions of the fiducial corners in world coordinates with corresponding Gaus-
sian noise.

This map was used to conditionally remove any detection of markers that
were not supposed to be there, and was used to give prior and constraining
information to the creation of the fiducial factors. These topics were discussed
further in Section 4.2 and Section 4.4.1 respectively.

While the map was supposed to already be accurate based on the prior
information, the data was regularly updated by the back-end, to ensure that
the information was up to date and reflects the estimated uncertainty.

4.4 Graph Creation

The graph creation process was split into two steps, the creation of a fiducial
factor for each detected marker and the combination of all these factors as a
subgraph for the current system pose.
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4.4.1 Fiducial Factor

In this thesis, fiducial markers were introduced as static and dependable land-
marks. The fiducial SLAMmethod that was developed used prior information of
the side length of the used fiducial markers and their pose in world coordinates.
This could be achieved in multiple ways, and to investigate two different ap-
proaches, two separate factors were developed in this thesis. In order to define
a new factor for a factor graph, the measurement and error functions must be
defined, which was done for each factor. As a result of using factor graphs, the
two methods were added to a graph trivially as a subgraph, and were visu-
alised the same way. They also need the same parameters to be defined, the
detected corners, the side length of the fiducial marker, the camera calibration
parameters and the prior information from the map.

Pose Factor

One method of adding a fiducial marker to a factor graph, was to add it as
a pose LW ∈ SE(3) in the world coordinate system W. At the creation of the
factor graph, the known fiducial markers were added to the graph as prior pose
factors with preferably small Gaussian noise models. This factor structure was
illustrated in Figure 4.2a. When the fiducial marker was detected, the IPPE
PnP method discussed in Section 3.7 was used on the detected corner points.
Scaled by the side length of the marker, this method calculated the transform
between the camera frame and the fiducial frame. This provided the measure-
ment ZC ∈ SE(3) in the camera coordinate system C of the fiducial marker pose.
Given a known transform TC

B from the body coordinate system B to the cam-
era coordinate system, and the body pose XW , a measurement function was
defined as:

h(XW ,LW ,TC
B) = (T

C
BXW)

−1LW (4.3)

Using the results from Section 3.9.1, the Jacobians of Equation (4.3) were
calculated as:

∂ h(XW ,LW ,TC
B)

∂ XW
= −(Ad((TC

BXW)
−1))−1Ad(TC

BXW) (4.4)

∂ h(XW ,LW ,TC
B)

∂ LW
= I6×6 (4.5)

The error function was then defined as:

e(ZC ,XW ,LW ,TC
B) = Log(h(XW ,LW ,TC

B)
−1ZC) (4.6)

This transform was added to the factor graph connecting the current pose
and the marker pose with a predefined Gaussian measurement noise model:
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(a) (b)

Figure 4.2: Figure 4.2a: A prior pose factor with a specified noise for the fidu-
cial marker. Figure 4.2b: A connection between the detected fiducial marker
and a state Xn is added as a factor. Both generated using the Graphviz tool.

N (ZC ,Σ) (4.7)
Σ ∈ R6×6 (4.8)

Where the covariance matrix Σ represents the uncertainty in the estimated
pose measurement, and is a tuneable parameter.

Projection Factor

The other method of adding a fiducial marker to a factor graph, was to add
the four corners as points in the world coordinate system. This system was
slightly more complicated than the pose factor-method, as the four corners
must all be added to the factor graph and the physical constraints must be
added between these corners. Unlike the method discussed in Section 4.4.1,
where the side length and geometric properties of the marker were used in
the IPPE PnP method, it was necessary to encode this information in the graph
when using the corners individually. This information included constraining
the distance between the corners as defined by the side lengths and diagonals
of the physical fiducial marker. That is, the side lengths and diagonals of the
marker constrained the distance the points can be from each other. Defining
the corner points in the world coordinate system as lN ,i ∈ R3 and d as the side
length, this constraint was defined as the Euclidean norm between the relevant
corners:
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c(lN ,i , lN , j) =




lN ,i − lN , j






2 (4.9)

constraints=
¨

c(lN ,i , lN , j) =
p

2d if i, j ∈ {{0,2} , {1,3}}
c(lN ,i , lN , j) = d if i, j ∈ {{0,1} , {1,2} , {2,3} , {3,0}}

(4.10)

This was done using factors with constrained noise models, in other words
there was no uncertainty associated with these factors. While this may be tech-
nically wrong, as the marker can be deformed slightly e.g. by wind, this cap-
tured the assumption that the markers were fixed and static objects in the
graph. A prior value was only added to one corner, allowing the entire marker
subgraph to be defined relative to this corner. This structure was visualised in
Figure 4.3, with Figure 4.3a visualising the internal structure of this factor and
Figure 4.3b visualising how the four measured corners were connected to the
state. Note that as each corner was a separate variable in the graph, where N
was the id and i ∈ {0,1, 2,3} was the corner number. These were defined as
discussed in Section 3.6.2.

For each detection, themeasurement was defined as ZN =
�

zN ,0,zN ,1,zN ,2,zN ,3
	

,
where zN

i ∈ R
2, N was the fiducial marker ID and i was the detected corner.

The corresponding world points were then defined as LN =
�

lN ,0, lN ,1, lN ,2, lN ,3
	

,
where lN ,i ∈ R3. Given a known transform TC

B from the body coordinate sys-
tem B to the camera coordinate system, the body pose XW , and the projection
function defined in Equation (3.19), a measurement function was defined as:

h(XW , lN ,i
W ,TC

B) = π
�

(TC
BXW)

−1lN ,i
W

�

(4.11)

As the π(p) projection function will depend on the camera model used, a
generic Jacobian ∂ π(p)

∂ p = Π(p) was defined. To simplify the calculations, the
function Rot(X) : SE(3) → SO(3) extracted the rotational part of the pose.
Then, using the results from Section 3.9.1, the following Jacobians were cal-
culated:

∂ h(XW , lN ,i
W ,TC

B)

∂ XW
= −Π

�
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The error function was then defined as:
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e(ZN ,XW ,LN ,TC
B) =

3
∑

i=0

�

h(XW , lN ,i
W ,TC

B)− zN ,i
�2

(4.14)

This factor was then added to the factor graph, connecting the current pose
to the four detected corners with a predefined Gaussian measurement noise
model:

N (zN ,i ,Σi) (4.15)
Σi ∈ R2×2 (4.16)

Where Σi is a tuneable parameter, representing the pixel uncertainty for
each detected corner.
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(a)

(b) s
Figure 4.3: Figure 4.3a: The structure of a fiducial marker as defined in the
graph. The lines between the corners are constraints which ensure that the
corners are one side length / diagonal away from each other, as defined by the
physical marker size. Figure 4.3b: The reprojection factors between a state Xn
and the four corners lN ,i of a fiducial marker. Note that the subgraph structure
shown in Figure 4.3a still exists within this graph, but is hidden to simplify the
visualisation. Both generated using the Graphviz tool.

4.4.2 Fiducial Subgraph

Within a single image, multiple fiducial markers can be detected, and can be
added to the graph independently of each other, connecting the camera to
multiple known landmarks. This can also be done using multiple cameras, as
long as the camera frame given in the systems body frame is given. With these
constant transforms, the fiducial factors can be transformed to the body frame,
making it possible to merge detections from several cameras, and giving the
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final pose estimate in the body frame. An example of the graph structure one
may get is shown in Figure 4.4. This completed subgraph is then sent to the
back-end to be inserted into the iSAM2 optimiser.

Figure 4.4: An example graph connecting the current system pose to two
AprilTag markers through multiple cameras. Generated using the Graphviz
tool.

4.5 Back-end

The back-end contained the iSAM2 optimiser, which was executed in a separ-
ate thread, and ran the optimisation algorithm at a fixed rate. In between these
optimisations, the back-end collected the data from the fiducial subgraph, and
any other sensor used. This allowed the subgraph created in Section 4.4.2 to
be inserted into the Bayes Tree as described in Section 3.10. As the optimisa-
tion was only executed at specific intervals, the iSAM2 update algorithm was
executed multiple times after a subgraph was inserted, improving the estimate.
The number of times this algorithm was executed after the subgraph was in-
serted was a changeable parameter, and could be changed e.g. if the optimiser
should run faster, and accurate estimates were not necessary. If there were no
other sensors involved, the graph was essentially unconnected, see Figure 4.5.
While the graph was technically connected through the fiducial markers, there
were no constraints on the motion between the system states.

The graph could be connected by using odometry from other sensor meas-
urements than the detected fiducial markers, see Figure 4.6a. This could be
any form of odometry, such as VO from another visual SLAM system, integrated
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Figure 4.5: An unconnected graph, where each successive pose X is connec-
ted to the fiducial markers observed at that pose, while not being connected
together between each other. Generated using the Graphviz tool.

IMU measurements, lidar odometry, or predictions from motion models. The
system could also include other factors than simple odometry, such as GNSS.
See Figure 4.6b for an example of such a graph. The measurements don’t have
to be synchronised, because as long as they were connected by odometry the
entire graph will be optimised by the back-end. In cases where the GNSS was
either deactivated or very slow, the back-end could use only the IMU and fi-
ducial factors, and then insert the GNSS measurements when they arrived,
connecting it between two fiducial factors using the IMU odometry between
the measurements.
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(a)

(b)

Figure 4.6: Figure 4.6a: A connected graph, where each successive pose X is
connected to the fiducial markers observed at that pose, and being connected
together between each other by odometry. Generated using the Graphviz tool.
Figure 4.6b: Connected graph, where each successive pose X is connected by
odometry, here specifically the IMU measurements between the poses are in-
tegrated up. Furthermore, GNSS measurements are also added, which can be
done at either the same time as a fiducial marker is added, like at X1, or as a
standalone subgraph, like at X3. Generated using the Graphviz tool.





Chapter 5

Hardware and Software

5.1 Hardware

This section describes the hardware used for the experiments conducted in this
work.

5.1.1 milliAmpere

MilliAmpere is a prototype for an autonomous ferry created as part of NTNU’s
Autoferry project. This project is focused on creating an electric, autonomous
ferry for urban environments. The ferry is planned to operate in the canal
between Ravnkloa and Fosenkaia, see Figure 5.1, which will result in a 110m
trajectory between the two docks. This will allow cyclists and pedestrians to
easily cross the canal, while being less obtrusive than a bridge. The ferry itself
is around 5m× 2.8 m and around 3 m high.

The ferry in operation can be seen in Figure 5.2. The ferry is designed to
dock with both the front and back, so that it doesn’t need to turn when fol-
lowing the proposed path of Figure 5.1, allowing passengers both on foot and
bike to board the ferry. Most of the sensors, like the 360 EO-IR Sensor Rig,
lidar, radar and GNSS antennae are placed on top of the enclosed room in the
middle of the ferry.

During the spring of 2021, a new, full scale prototype was tested in the
water [31]. This ferry, creatively named milliAmpere 2, is about double the
length and width of the original described above, and will be able to carry up
to 12 passengers. See Figure 5.3 for an image of milliAmpere 2 in the water.
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Figure 5.1: Planned operating path of milliAmpere. Illustration by Egil Eide.

Figure 5.2: Image of milliAmpere gathering data. Operated byMartin Græsdal
and Martin Eek Gerhardsen. Image by Thomas Hellum.
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Figure 5.3: Image of milliAmpere 2 being tested in the water. Image source
[31].

5.1.2 AprilTag Markers

The markers used in this thesis were produced by Skipnes Kommunikasjon as
patterns on aluminium plates. The full markers were 1.5m× 1.5m, while the
size of the pattern, that is the distance between the corners of the AprilTag
pattern, was 1.135 m× 1.135 m. This size was chosen as this would allow the
markers to be detectable from up to 50m away, which would cover around half
the canal. Then the markers could be placed on either side of the canal, pos-
sibly giving milliAmpere full coverage in its operating area.

Due to a printing error both markers produced were essentially inverted
from the pattern sent to printing. The original pattern for one of the markers,
Tag36h11 with id 0, can be seen in Figure 5.4a. The corresponding printed
marker can be seen in Figure 5.4b. While the image colours can be inverted in
software, this can still pose some problems. One of the primary problems this
can cause is due to how the border is only partially inverted. To ensure that
the marker stands out from the surroundings, there is supposed to be a border
around the marker itself, which is completely white and the size of one bit
(that is, one square) in the pattern. Because of the way the pattern was sent to
printing, only the section cut from the original sent to Skipnes Kommunikasjon
was inverted, while the outside was kept white, resulting in the uneven border
seen in Figure 5.4b. The border was therefore smaller, and not of uniform size.
It is highly unlikely that this will have any major effects, but it will most likely
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decrease the detection probability for the markers. Another possible problem
lies in using other detectors and algorithms on this test data, as it might be
more difficult to invert the images before running the detector.
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(a)

(b)

Figure 5.4: Figure 5.4a: The original Tag36h11 marker, id 0. Figure 5.4b:
The produced Tag36h11 marker, id 0. The colours are inverted and the border
outside the pattern is smaller than it should be.
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5.1.3 360 EO-IR Sensor Rig

The 360 EO-IR Sensor Rig is the camera sensor system used to gather the data-
sets for this project. It consists of five Electro-Optical (EO) and five Infra-Red
(IR) cameras, fixed with 72◦ angles between (see Figure 5.5), a camera syn-
chronisation interface, and an NVIDIA TX2 Carrier. The EO cameras are FLIR
BlackFly 2, each with an image resolution of 2448x2048, while the IR cam-
eras are FLIR Boson 640, each with an image resolution of 640x512. Each EO
camera has a theoretical maximum data rate of around 450M bit/s, each IR
camera has a theoretical maximum data rate of 480M bit/s, while the max-
imum data rate between the NVIDIA TX2 Carrier and a secondary processing
computer is 1Gbit/s. However, as the maximum frame rate of the IR cameras
is 9 fps, the actual maximum data rate will be 30M bit/s. This should leave
the EO cameras a theoretical maximum frame rate of slightly more than 4 for
each camera at the maximum image resolution. The relevant transforms for
the cameras are listed in Appendix A.1. As the transforms between the milli-
Ampere vessel centre and the IR cameras were given by the 360 EO-IR Sensor
Rig documentation, the transforms between the vessel centre and the EO cam-
eras were calculated by composing the transform to the IR cameras with the
measured transform between the IR and EO cameras. This was difficult to do
properly, as the components in the 360 EO-IR Sensor Rig were mounted close
to each other. The EO cameras were also mounted at an angle, pointing slightly
down compared to the IR cameras, which was difficult to measure accurately.

In the experiments conducted in this thesis, the image resolution was set
to 1224x1024 by only using the centre of the larger image. This ensured a
reasonable data rate which allowed the data to be recorded on an external
laptop.



Chapter 5: Hardware and Software 57

Figure 5.5: The 360 EO-IR Sensor Rig, with its five EO and five IR cameras.

5.1.4 Global Navigation Satellite System

The GNSS receiver mounted on milliAmpere is a Hemisphere Vector VS330,
supporting RTK GNSS, allowing the accuracy of the position measurement to
be improved from ±0.30 m to ±0.01 m. Using two antennae and an internal
gyro, it is also possible to measure the heading with an accuracy of ±0.05◦.
The receiver communicates using a Satel Radio Link mounted under the roof
of milliAmpere. The update rate of the receiver is specified as 20 Hz.

For the measurement of the position of the AprilTag markers, a Spatial Dual
GNSS aided Inertial Navigation System (INS) was utilised. The antennae were
fixed in place on a wooden plank with 0.5 m between. With RTK, the accuracy
of the position measurement can be improved from ±1.2 m to ±0.008m. The
heading could also be estimated with an accuracy of ±0.1◦ because the device
used two antennae, and finally, the update rate of the INS was specified to
20Hz.
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5.1.5 Inertial Measurement Unit

The IMU used on milliAmpere is an Xsens MTI-G-710. This is an INS with a
GNSS-receiver, magnetometer and barometer as well as the IMU,which provides
acceleration and angular velocities in the body frame. It has an update rate of
100Hz.

5.2 Software

This section describes the primary software used for this project.

5.2.1 Robot Operating System

Robot Operating System (ROS) is an open source collection of software mod-
ules, libraries and tools for robot systems. It is a modular middleware that al-
lows separating different parts of the system into individual nodes, and stand-
ardising the communication between these nodes. ROS also comes with a lot
of useful tools like rosbag, which allows for easy recording of data in a ROS-
friendly format, and rviz, which allows for easy visualisation of the ROS data.

5.2.2 EO Camera Driver

The EO cameras are interfaced using the FLIR Spinnaker Software Develop-
ment Kit, and are further extended to work as a ROS module. An external cam-
era synchronisation interface is connected to the cameras, and software for
extracting and integrating hardware triggered images was written during the
summer of 2020 and expanded upon during the spring of 2021. The hardware
triggering was not working for all the cameras until the spring of 2021, see
Gerhardsen [28], when a hardware problem was fixed by Maritime Robotics.
The hardware triggering was then tested and confirmed to work, but because
the hardware triggering circuit needed an input from the GNSS, one had to
choose between using the hardware triggering mode for the cameras or using
the INS mentioned in Section 5.1.5 during experiments. As this would both be
used for the IMU data and as an INS to estimate a ground truth to compare
results with, it was decided not to use the hardware triggering mode.

This does however lead to the driver running suboptimally, as the images
were not necessarily synchronised, nor were the timestamp as precise as they
could’ve been. The non-hardware triggered method continuously waits for new
images produced by the cameras in one thread, loads them into memory, and
then at specified intervals publishes them to the ROS environment from another
thread. Potentially, this can cause problems if the time it takes for an image to
be either produced by the camera or be read by the driver added with the time
it takes to publish the image to ROS doesn’t fit within the specified frame rate.
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This would lead to the driver publishing the same image multiple times. To
avoid both reading from the camera and publishing to ROS at the same time,
and thus corrupting the data, these processes were locked by a mutex during
these operations. This method was tested, and produced images without any
of the possible problems listed, and was therefore still able to produce useful
images.

5.2.3 AprilTag Detection Algorithm

The AprilTag detection algorithm described by Olson [51] and improved by
Wang and Olson [68] was utilised. This algorithm takes in a gray scale image
and detects all AprilTags of a specified family within this image, and outputs all
detections. See Section 3.6.2 for more information on the markers and detector
specifically.

5.2.4 The Open Computer Vision Library

The OpenCV library is an open-source library for computer vision, see Bradski
[6]. This project was initially started in 1999 to create a free, easy and useful
library for computer vision problems, and has been continuously worked on
since then and has therefore been a popular tool in many other computer vision
projects since its creation. OpenCV is primarily written in C/C++ for efficiency,
and has wrappers for other programming languages, such Python. This has
also contributed to the popularity of the library, as the Python programming
language is considered more beginner friendly than C/C++. Many standard
computer vision tools and algorithms are already implemented in OpenCV, one
being the IPPE PnP algorithm discussed in Section 3.7.

5.2.5 AprilTag Fiducial SLAM

The Fiducial SLAM method described in Chapter 4 was implemented in the
C++ programming language. The Independent Camera Thread, Fiducial Map,
Graph Creation and Back-end modules were implemented as separate nodes in
the ROS framework, and using the same framework for intermodular commu-
nication. In the Independent Camera Thread, the AprilTag detector was used.
A ROS synchronisation scheme was used to synchronise the detections from
images taken at the same time, which was sent to the Graph Creation module.
Both the fiducial pose factor and the fiducial projection factor were implemen-
ted using the GTSAM library and connected to the current system pose. The
Independent Camera Thread and the Graph Creation modules are both able to
extract information from the Fiducial Map to complete their respective tasks.

Fourmethods were implemented here, the unconnected fiducial pose factor,
the connected fiducial pose factor, the unconnected fiducial projection factor
and the connected fiducial projection factor. The method is unconnected if it
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only relies on the fiducial factor for pose estimation, and there were no factors
constraining the relative motion between the incremental poses. This is illus-
trated in Section 4.4 by Figure 4.5. The method is connected if there are factors
other than the fiducial factor connecting the incremental poses. In this case, the
poses were connected using preintegration of the IMU measurements between
the poses, using the preintegrator and corresponding factors implemented in
GTSAM. Preintegration was described in detail in Section 3.11. As this method
was supposed to emulate a more realistic implementation of a mulitsensor
SLAMmethod, a GNSS measurement was added to the graph every 10 seconds
to emulate a slow, but reliable GNSS. This is also illustrated in Section 4.4 by
Figure 4.6b.

The Back-end module used the iSAM2 method for optimisation, implemen-
ted in GTSAM. When given a fiducial subgraph, this was inserted into the op-
timiser. At a fixed rate, the optimiser was executed and the result used to up-
date the Fiducial Map. Once the systemwas shut down, the result was extracted
from the optimiser and stored for future analysis.



Chapter 6

Experiments

This chapter will discuss the planning, preparations, and execution of the ex-
periments, as well as the gathering and post-processing of the data. The data
was gathered using milliAmpere, the prototype for NTNU’s autonomous ferry
described in Section 5.1.1. These experiments were conducted nearmilliAmpere’s
planned operating area, near Ravnkloa and Fosenkaia in Trondheim. The area
is illustrated in Figure 6.11, see OpenStreetMap contributors [52].

Figure 6.1: Map of the logging area near Ravnkola and Fosenkaia.

The new experiments conducted in this thesis were necessary, as there were
essentially no relevant datasets available. As part of the specialisation project
by Gerhardsen [28], datasets for similar scenarios as described in Section 6.2
were recorded. However, they were virtually unusable for the purposes of this
thesis, as multiple problems with the datasets arose while working with them

1https://www.openstreetmap.org/#map=18/63.43478/10.39440
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during the specialisation project. The primary problems are described in the
specialisation project, though are quickly summarised here:

• EO-camera: The cameras ran on different and slow frame rates, and often
didn’t produce images for long stretches of time.

• AprilTag GNSS measurements: The logging method relied on data from
a noise-prone mobile phone and also didn’t take into account the orient-
ation of the tag.

• AprilTag family: The AprilTag family used was the Tag16h5 family, which
turned out to have such a high false detection rate that using the detec-
tions was very difficult.

These problems were taken into account when preparing for these exper-
iments. The image size for the EO cameras was decreased, the GNSS meas-
urements of the AprilTag markers were done using an RTK-GNSS and another
AprilTag family was used.

6.1 Planning

The planning of the experiments was done in cooperationwith Kristian Auestad,
Martin Græsdal, and Thomas Hellum, who were also interested in using mil-
liAmpere to gather data for their work. Therefore, milliAmpere was booked
between the 12th and 16th of April. The cooperation was also mutually benefi-
cial, as multiple people were necessary for operating milliAmpere, in addition
to ensuring that the sensors are working correctly and the data is being recor-
ded properly.

6.1.1 AprilTag Markers

The AprilTag fiducial markers were chosen for these experiments. As discussed
in the introduction to Chapter 6, the AprilTag family used previously lead to an
excessive amount of false detections, which were difficult to deal with. In these
experiments, the Tag36h11 family was used instead. This is considered the
standard AprilTag family, as it has relatively many different possible patterns,
has a high Hamming distance, and is compatible with the ArUcO detector. The
size of the AprilTag family means that it can be useful in many situations, while
the Hamming distance ensures that there will be limited amounts of false de-
tections.

The AprilTag markers were fastened to the outside of the railing near the
edge of the canal by Ravnkloa, and the positions recorded with the INS de-
scribed in Section 5.1.4. The estimated pose for each AprilTag marker can be
seen in Appendix A.2. This position was chosen because it allows a number of
different scenarios to be tested, such as viewing only one marker at a time,
viewing both, and using multiple cameras to view the markers. The specific
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scenarios used to gather data for this thesis will be discussed further in Sec-
tion 6.2. The markers can be seen in Figure 6.2, where they are close enough
to the canal to be observed by the EO cameras on the 360 EO-IR Sensor Rig
and not be obstructed by any specific objects like cars, docked boats, or poles.

Figure 6.2: The AprilTag (Tag36h11 family) markers used in this thesis. The
AprilTag marker on the right had id 0 and the marker on the left had id 1.

6.1.2 Data Recording

The sensors used in these experiments were, in addition to the IMU, GNSS, and
the 360 EO-IR Sensor Rig, as discussed in ??, a stereo camera system mounted
to the roof of milliAmpere and the lidar mounted to milliAmpere. They are not
described further here as they are not relevant for this thesis, however this data
could still be useful for future works.

The EO and IR data from the 360 EO-IR Sensor Rig was recorded on one
laptop, together with the lidar data. The stereo camera data was recorded on a
second laptop. This resulted in two rosbags of data for each scenario. The IMU
and GNSSmeasurements were recorded in a rosbag by the milliAmpere control
system, lasting from the moment the ferry control system is started to when it is
turned off. The data was split for multiple reasons, primarily because amount
of data generated by the different camera systems was to large for a single
laptop to handle, and because the primary control computer on milliAmpere
should not be used for any other purpose than controlling the ferry.

6.2 Scenarios

In this section, the different scenarios for gathering data are described. A varied
collection of datasets handling different distances, multiple cameras in view
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of the markers, and different number of detectable AprilTag markers in the
camera scene were recorded.

6.2.1 Scenario 1

In this scenario, milliAmpere was positioned close to the AprilTag markers,
facing the shore and the markers. Because milliAmpere was very close to the
harbour, the cameras could only observe one marker initially, though both were
quickly within view of the cameras. The ferry then reversed across the canal to
the opposite side, stopped and returned towards the initial position. By minim-
ising the amount of change to the orientation, a simpler scenario was created
for testing where one may e.g. use a single camera for a proof-of-concept. The
relatively straight motion also makes it simpler to test the AprilTag detection
algorithm in a controlled environment, where the distance from the ferry to
the markers should be the primary reason for not detecting a marker in view of
the camera. The path taken, along with the position of the AprilTag markers,
can be seen in Figure 6.3.

Figure 6.3: Map of milliAmpere’s path for scenario 1. Generated from the
onboard INS. The points represent the position of the AprilTag markers, and
are labeled with the correct id. Note that the arrows show the direction of
milliAmpere’s movement and not its orientation.
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6.2.2 Scenario 2

For scenario 2, milliAmpere was positioned north-east of the markers, up the
canal, facing the shore and not directly observing themarkers. Then, still facing
the shore, milliAmpere moved down the canal, passing the markers. The ferry
was again positioned relatively close to the shore. Similarly to the scenario de-
scribed in Section 6.2.1, there were very little major change to the orientation
of the ferry during this scenario, creating a simple scenario for testing. In this
case, the short range detection capabilities of the AprilTag detection algorithm
and the 360 EO-IR Sensor Rig cameras could be tested when approaching from
the side. The path can be seen in Figure 6.4, together with the position of the
AprilTag markers.

Figure 6.4: Map of milliAmpere’s path for scenario 2. Generated from the
onboard INS. The points represent the position of the AprilTag markers, and
are labeled with the correct id. Note that the arrows show the direction of
milliAmpere’s movement and not its orientation.

6.2.3 Scenario 3

In scenario 3, milliAmpere was positioned south-west in the canal, facing the
shore similarly to scenario 2. MilliAmpere then moved north-east up the canal
facing the AprilTag markers, tough with a considerably greater distance to the
markers, as milliAmpere was around half way across the canal. As the primary
difference here was distance to the marker, the usability of the method at a
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reasonable working range can be tested. As this was the greatest distance from
either side of the canal, this was the greatest distance the markers should still
work at, as in real operations one should place multiple markers on both sides
of the canal. This path can be seen in Figure 6.5.

Figure 6.5: Map of milliAmpere’s path for scenario 3. Generated from the
onboard INS. The points represent the position of the AprilTag markers, and
are labeled with the correct id. Note that the arrows show the direction of
milliAmpere’s movement and not its orientation.

6.2.4 Scenario 4

For scenario 4, milliAmpere was positioned north-east in the canal, facing the
shore similarly to both scenario 2 and 3. Then milliAmpere moved south-west
down the canal, facing the AprilTag markers, although the distance to the
markers again was increased significantly. The ferry moved close to the harbour
banks on the opposite side of where the markers were placed, which allowed
testing at the extremes of the distances one would expect milliAmpere to meet
when working in real situations. The path can be seen in Figure 6.6.
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Figure 6.6: Map of milliAmpere’s path for scenario 4. Generated from the
onboard INS. The points represent the position of the AprilTag markers, and
are labeled with the correct id. Note that the arrows show the direction of
milliAmpere’s movement and not its orientation.

6.2.5 Scenario 5

The final scenario, scenario 5, was conducted as a more realistic alternative to
the scenarios described above, as well as serving as a more traditional dataset
for general SLAM problems. The ferry started to the west of the markers, well
outside their range and moved towards them. When close, milliAmpere turned
north to the other side of the canal, turned west and moved south-west down
the canal. Then, milliAmpere turned north towards the initial position, such
that the path has a similar shape to the number 8. The full path can be seen in
Figure 6.7.

In terms of AprilTags specifically, this is an interesting scenario as the ferry
initially has no way of observing the markers, and the systems ability to handle
long stretches without the markers can be tested. However, the data would also
be useful for other situations, and can be especially useful for testing multi
sensor SLAM methods for milliAmpere.
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Figure 6.7: Map of milliAmpere’s path for scenario 5. Generated from the
onboard INS. The points represent the position of the AprilTag markers, and
are labeled with the correct id. Note that the arrows show the direction of
milliAmpere’s movement and not its orientation.

6.3 Pre-processing

As noted in Section 6.1.2, the data was recorded in multiple different rosbags.
To simplify future work with the data, these separate rosbags were merged for
each scenario.

To merge the relevant data into a single rosbag for each scenario, the three
relevant rosbags are all opened in software. Then, based on which has the latest
start time and the earliest end time, the data in this range was merged into a
single rosbag containing all the data recorded. As all the computers utilised
in these experiments were connected to the internet through milliAmpere, the
timestamps were accurate enough that nothing was done with this potential
problem.

Some changes were done to the data before it was recorded in the new ros-
bag. As all EO data was stored in a compressed form, these images were stored
in a more user friendly manner. Because the ROS standard states that image
data should be published on one topic, and camera calibration data should be
published on another, the calibration topic was also added during this process.
This was done because the original topics were not always synchronised with
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the image data, and by redoing this, synchronisation was ensured. However,
this was only done for the data from the 360 EO-IR Sensor Rig, as the ste-
reo camera data calibration was not available during this process. Otherwise,
nothing was changed about the data.





Chapter 7

Results

In this chapter, the results of using the Fiducial SLAM method discussed in
Chapter 4 on the experimental data discussed in Chapter 6 is presented. To
evaluate the methods tested, the equations presented in Section 3.2 were used.
The performance measures RMSE, Equation (3.14), and maximum RSE, Equa-
tion (3.16), will be used in estimates where at least one marker was detected.
To inspect the influence of using multiple cameras, performance measures were
calculated for cases where multiple cameras were used for estimation, as well
as for cases where a single camera was used for estimation.

For each scenario described in Section 6.2, the results of using the fidu-
cial pose factor described in Section 4.4.1 and the fiducial projection factor
described in Section 4.4.1 were tested. Both factors were tested using an un-
connected and a connected graph, where the preintegration method described
in Section 3.11 was used to connect the graph, and a GNSS measurement was
added around every 10 seconds to emulate a reasonable GNSS. Note that the
Fiducial SLAM method calculates the estimated pose of milliAmpere in 6 de-
grees of freedom, though to save space only the 2D pose is shown in the figures,
that is the first and second translational axes, and the third rotational axis of
the NED coordinate system. The first translational axis is the North axis, the
second is the East axis, and the third rotational axis is the yaw axis. As milli-
Ampere is an ASV, these axes are the most important.

7.1 Scenario 1

This section presents the results of the fiducial SLAM method for scenario 1,
which was described in Section 6.2.1. In this scenario, milliAmpere moved
away from the fiducial markers, facing them. The number and frequency of de-
tections decrease noticeably in the time range between 640 and 680 seconds,
when milliAmpere is the furthest away from the markers. Because multiple
cameras detect the markers only in the beginning of the scenario, the perform-
ancemeasures for this case will essentially be a performancemeasure for where

71
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milliAmpere is very close to the markers.

7.1.1 Unconnected Fiducial Pose Factor

The estimated 2D pose of milliAmpere is shown together with the ground truth
values in Figure 7.1, and the number of detections at the given time instance.
The RSE for the same values is shown in Figure 7.2. The performance meas-
ures are listed in Table 7.1. As can be noted from the table, the RMSE is low
for the orientation, being under 8◦ for all angles, for all detections, and for
multiple camera detections and single camera detection. North RMSE is also
overall the lowest positional measure. This is the primary axis of motion in this
scenario, and is correlated with the distance to the markers, as milliAmpere
is first moving north, away from the markers, then back south towards them.
The maximum RSE is low for the first axis rotations, and is lower for the mul-
tiple camera detections than the single camera detections. This is most likely
because the multiple camera detections correspond to the time milliAmpere is
very close to the markers. For detections at greater distances, the error is much
higher, see Figure 7.2 at e.g. 675 seconds.

Figure 7.1: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.2: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.1.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.1: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 2.2 5.9 3.4 4.3 1.8 5.9
2. axis [◦] 6.6 29 0.57 1.0 7.2 29
3. axis [◦] 7.2 35 5.4 7.0 7.5 35
1. axis [m] 2.1 24 1.4 1.6 2.2 24
2. axis [m] 4.5 20 1.5 2.6 4.9 20
3. axis [m] 5.0 20 6.4 6.5 4.7 20
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7.1.2 Connected Fiducial Pose Factor

The estimated 2D pose of milliAmpere is plotted with the ground truth in Fig-
ure 7.3, together with the number of detections used at that time instance. The
RSE calculated between the estimated and ground truth 2D pose is shown in
Figure 7.4. It can be observed that the error is smaller than for the unconnec-
ted fiducial pose factor method both while the system is able to observe the
markers, as well as in the time range between 640 and 680 seconds where
there were very few detections. The improvement shown in that time range
can most likely be put down to the inclusion of accurate and infrequent GNSS
measurements, which can be observed where the error plots bounce back close
to zero.

The performance measures are listed in Table 7.2. For the rotation, the
RMSE is slightly better for the first axis, and slightly worse for the second axis
when compared to the unconnected method in Section 7.1.1. The third axis is
better for all detections and single camera detections, but is distinctly worse for
the multi camera detections, both compared to the unconnected method and
compared to the performance measures for all detections and single camera
detections. As can also be observed for the yaw RSE at the multiple camera
detections in Figure 7.4, there seems to be a significant offset in the error.
Looking at the maximum RSE measures, the same trend is observed for the
first and third axis, while the second axis is slightly better compared to the
unconnected method. For the translation, both the RMSE and the maximum
RSE is better for all axes.
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Figure 7.3: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.

Table 7.2: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 1.4 4.6 1.6 2.5 1.4 4.6
2. axis [◦] 10 27 19 27 7.8 17
3. axis [◦] 4.1 12 9.0 12 2.3 4.0
1. axis [m] 0.36 1.6 0.39 0.64 0.35 1.6
2. axis [m] 0.54 2.1 0.66 0.96 0.51 2.1
3. axis [m] 1.2 3.9 2.6 3.9 0.56 3.3
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Figure 7.4: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.3.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.
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7.1.3 Unconnected Fiducial Projection Factor

The estimated 2D pose of milliAmpere is visualised together with the ground
truth in Figure 7.5, while the RSE of the estimate and the ground truth is shown
in Figure 7.6. The performance measures for both the rotation and translation
of the RSE between the estimated and ground truth 3D pose for milliAmpere
are presented in Table 7.3. With the exception of both the rotation and transla-
tion of the second axis, the performance measures are generally better than the
measures using the fiducial pose factor described in Section 7.1.1. The max-
imum RSE is also generally lower for the projection factor as well.

Figure 7.5: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.6: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.5.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.3: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 1.4 4.0 2.3 3.1 1.2 4.0
2. axis [◦] 7.2 15 1.4 2.2 7.8 15
3. axis [◦] 6.3 25 6.8 8.3 6.2 25
1. axis [m] 2.7 19 0.39 0.68 2.9 19
2. axis [m] 4.1 12 2.7 5.2 4.3 12
3. axis [m] 8.4 23 6.0 6.5 8.8 23



Chapter 7: Results 79

7.1.4 Connected Fiducial Projection Factor

The estimated 2D pose of milliAmpere is visualised together with the ground
truth in Figure 7.7, while the RSE of the estimate and the ground truth is shown
in Figure 7.8. For the multi camera detections, the offset observed for the con-
nected fiducial pose factor method is still observable, especially for the yaw.
The error for North and East are also greater here compared to the connected
fiducial pose factor. The performance measures are listed in Table 7.4. Com-
paring these results to the results for the unconnected fiducial projection factor
method, the results are better for all measures, which was to be expected after
noting the improvement using a connected over an unconnected method as
discussed in Section 7.1.2. However, these results are generally worse than the
connected fiducial pose factor method. Comparing the RSE plots in Figure 7.8
and Figure 7.4 might give the impression that the connected fiducial projection
factor outperforms the connected fiducial pose factor. However the largest er-
ror values in the connected fiducial pose factor are concentrated around time
ranges with few detections, and are therefore less reliable. This results in the
performance measures for the connected fiducial pose factor method outper-
forming the connected fiducial projection factor.

Figure 7.7: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.8: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.7.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.4: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 1.8 5.7 3.5 5.7 1.3 4.3
2. axis [◦] 15 27 14 27 15 18
3. axis [◦] 5.0 12 9.7 12 3.6 6.8
1. axis [m] 0.7 1.8 0.98 1.5 0.64 1.8
2. axis [m] 0.6 2.6 1.2 2.6 0.41 2.5
3. axis [m] 1.5 3.7 2.5 3.7 1.3 3.0
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7.2 Scenario 2

This section presents the results of applying the fiducial SLAMmethod on scen-
ario 2, which was described in Section 7.2. In this scenario, milliAmpere is very
close to the markers, and is moving parallel to both the markers and the canal.
For the majority of the scenario, at least one marker is within view. There are
also two major time ranges, between 840 and 855 seconds and between 865
and 885 seconds, where multiple cameras are used to detect the markers.

7.2.1 Unconnected Fiducial Pose Factor

The estimated and ground truth 2D pose of milliAmpere for the unconnec-
ted fiducial pose factor is shown in Figure 7.9, with the RSE between the two
shown in Figure 7.10. In the RSE plot, two major increases in the error can
be observed. The first can be seen in the time range 830 and 840 seconds,
which corresponds with a change from a single camera observing the markers
to multiple cameras observing the markers. This spike continues while there
are several rapid changes between multiple cameras detecting the markers
and a single camera detecting the markers. The second spike is in the time
range between 880 and 900 seconds, and will be discussed in depth later. The
performance measures are listed in Table 7.5. The RMSE is lower for where
multiple cameras detect the markers compared to where only a single camera
detects the markers.

In the time range between 880 and 900, there was a significant change in
the North position of milliAmpere which can be observed in both Figure 7.9
and Figure 7.10. From the visualisation of the detections, it was also observed
that only one camera detects the markers, namely the front left camera. The
images from this camera right before, at, and after the event were captured
in Figure 7.11, respectively. It can be observed that the AprilTag marker with
id 0 is well within view, while the marker with id 1 is further away, still the
corner detections seem good for all images. Furthermore, it can be observed
that the three images are essentially equivalent in Figure 7.11, and that the
detected corners are visualised in the same areas, meaning that the detections
themselves did not produce the observed error spike.

The result from the IPPE PnP method is therefore explored and compared
with the predicted relative transform between the camera frame and the AprilTag
fiducial markers. The predicted transform was calculated using the estimated
pose of milliAmpere and the estimated pose of the fiducial markers from the
fiducial map. These results can be observed in Table 7.6, where for each image
number the pose of milliAmpere, the camera to marker transform (meas) and
the predicted camera to marker transform (pred) can be observed. It can be
observed that when comparing meas and pred for # img 336, the differences
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Figure 7.9: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.

are minor, though the marker with id 1 is worse than id 0, as it is further away
from the camera. However, for id 1 in # 337, the difference is significantly
different for both the second and third axis angles. The cause of this problem
could not be found, though it was noted in [11] that the IPPE PnP method can,
as other PnP methods, return multiple possible transforms for one set of inputs.
However, the algorithm implemented in OpenCV and used in this thesis only
produced one possible solution. As the factor graph was unconnected here, and
the pose implementation of the fiducial factor was used, the transform was ad-
ded to the graph weight by the same measurement noise as the transform for
the other AprilTag marker in this image. This also meant that this problem did
not persist in the estimation after this event, as can be seen from pose for #
img 338 in Table 7.6, the pose estimate for milliAmpere was back to a value
similar to the pose at # img 336.
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Figure 7.10: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.9.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.5: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 11 21 7.2 13 14 21
2. axis [◦] 2.0 5.9 1.5 3.8 2.2 5.9
3. axis [◦] 4.0 27 3.5 12 4.3 27
1. axis [m] 0.84 9.3 0.7 1.9 0.94 9.3
2. axis [m] 2.5 8.2 2.0 5.0 2.8 8.2
3. axis [m] 3.1 6.5 1.7 4.1 3.9 6.5
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Figure 7.11: Image from the front left EO camera, zoomed in to highlight the
AprilTagmarkers and detected corner points. Image taken before (# img 336),
at (# img 337) and after (# img 338) the error spike event. The detected
corners are visualised for all detected AprilTag markers. The marker at the
right side of the images has id 0, and the marker at the left side of the images
has id 1. Note that the corners are visualised as 4 ∗ id+ i, where i = 0 is the
lower left corner, i = 1 is the lower right corner, i = 2 is the upper right corner
and i = 3 is the upper left corner.
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Table 7.6: Data for image numbers (# img) 336 to 338. pose is the pose of
milliAmpere estimated at that image number, given in the NED frame. meas
is the estimated pose of the given AprilTag id using the IPPE PnP method,
given in the camera frame. pred is the predicted pose of the given AprilTag id
based on the predicted milliAmpere pose and the predicted AprilTag marker
pose, given in the camera frame. The axes given in degrees [◦] are the angles
around the given axis, while the axes given in metres [m] are the translations
along the given axis, all within the coordinate systems described here.

# img axis 1. [◦] 2. [◦] 3. [◦] 1. [m] 2. [m] 3. [m]
336 pose -13.39 -0.86 159.29 -458.49 -239.48 -7.65

id 0 meas -133.57 65.78 39.51 7.97 -3.20 17.42
pred -132.93 65.78 39.81 7.95 -3.17 17.30

id 1 meas -150.75 61.23 29.98 2.83 -6.66 29.89
pred -131.24 64.08 43.91 3.32 -6.52 29.71

337 pose -12.51 -4.62 -172.65 -446.11 -232.70 -8.13
id 0 meas -133.21 65.89 39.55 7.97 -3.21 17.51

pred -140.10 63.97 35.94 8.00 -3.29 17.56
id 1 meas -158.01 -55.39 -14.43 2.87 -6.68 30.08

pred -138.29 62.50 40.24 2.81 -6.58 29.76
338 pose -13.42 -2.21 158.79 -458.65 -239.71 -8.00

id 0 meas -133.09 65.87 39.69 7.97 -3.22 17.62
pred -156.17 39.26 12.76 12.25 -3.61 18.06

id 1 meas -146.71 62.68 31.81 2.88 -6.64 30.05
pred -156.36 38.42 15.70 1.70 -5.67 26.51
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7.2.2 Connected Fiducial Pose Factor

The estimated and ground truth 2D pose for milliAmpere based upon the con-
nected fiducial pose factor are shown in Figure 7.12, with the RSE shown in Fig-
ure 7.13. One detail of note in these plots is that the error spike event discussed
above is smoothed out with this method. While the same faulty pose measure-
ment happens, the method is better able to handle it, as the motion between
the poses are constrained by the preintegration. The performance measures
are listed in Table 7.7, and the performance measures are generally improved
compared to the unconnected fiducial pose factor method.

Figure 7.12: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.13: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.12.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.7: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 6.2 11 5.0 8.6 7.1 11
2. axis [◦] 5.4 8.8 4.9 7.6 5.9 8.8
3. axis [◦] 4.1 9.3 3.4 6.5 4.6 9.3
1. axis [m] 0.24 0.69 0.25 0.58 0.24 0.69
2. axis [m] 0.69 2.2 0.52 2.0 0.81 2.2
3. axis [m] 0.2 0.66 0.18 0.64 0.21 0.66
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7.2.3 Unconnected Fiducial Projection Factor

The estimated and ground truth 2D pose can be seen in Figure 7.14 and the
RSE plot can be seen in Figure 7.15, and it can be seen that the error explodes
at the final point before crashing. It can initially be noted that the unconnec-
ted fiducial projection factor for this scenario was pretty unstable, as it kept
crashing instantly once multiple cameras were used. The performance meas-
ures calculated for this method are listed in Table 7.8. However, the results for
the detections by multiple cameras are not very useful because the crashing
significantly increases the error. The results for the single cameras show that
the method is reasonable, even though it is worse than the unconnected fiducial
pose factor.

Figure 7.14: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.15: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.14.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.8: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 13 14 11 11 13 14
2. axis [◦] 13 55 55 55 10 12
3. axis [◦] 12 72 72 72 5.9 8.7
1. axis [m] 8.2× 103 5.7× 104 5.7× 104 5.7× 104 2.8 3.2
2. axis [m] 3.3× 103 2.3× 104 2.3× 104 2.3× 104 7.5 8.0
3. axis [m] 5.1× 103 3.6× 104 3.6× 104 3.6× 104 7.0 7.3
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7.2.4 Connected Fiducial Projection Factor

The estimated and ground truth 2D pose ofmilliAmpere is shown in Figure 7.16,
and the RSE is shown in Figure 7.17. When connecting the graph, the method
was able to get past the area which caused the crash for the unconnected fi-
ducial projection factor method, though as can be observed from the figures,
there’s still some larger errors early in the scenario. The performance measures
are listed in Table 7.9. They were generally worse than both the connected and
unconnected fiducial pose methods tested on this scenario, and were similar
when comparing the measures over all detections to those over multiple cam-
eras and single camera detection situations.

Figure 7.16: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.17: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.16.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.9: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 14 22 9.0 18 17 22
2. axis [◦] 20 37 25 37 15 22
3. axis [◦] 5.5 16 5.3 12 5.7 16
1. axis [m] 1.2 4.7 1.1 4.6 1.3 4.7
2. axis [m] 1.3 3.7 0.84 3.3 1.5 3.7
3. axis [m] 2.2 4.5 2.2 4.5 2.1 4.5
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7.3 Scenario 3

This section presents the results of applying the fiducial SLAM method to scen-
ario 3, described in Section 6.2.3. Scenario 3 was similar to scenario 2, mil-
liAmpere was moving diagonally north-east up the canal facing the markers,
around half way across the canal. This distance was the primary difficulty for
the fiducial SLAM method to handle for this scenario, as there are few de-
tections. The scenario can be divided into two separate time ranges, the first
between 180 and 220 seconds, where primarily only one camera observed the
markers at the same time, and the frequency of detection was not very con-
sistent. The second time range would be between 260 and 290 seconds, where
multiple cameras detect the markers simultaneously. Here, the frequency of the
detections was also more consistent compared to the first time range.

7.3.1 Unconnected Fiducial Pose Factor

The estimated and ground truth 2D pose for milliAmpere using the unconnec-
ted fiducial pose factor method is shown in Figure 7.18, with the RSE shown
in Figure 7.19. As can be observed, the estimate was not very consistent, and
included several error spikes for some of the detections, particularly for the first
time range. Error spikes were still observed for the second time range, where
the markers were detected by multiple cameras, though the error values were
lower here than the first time range. In the plots one can also observe some
offsets, especially for the last part of the second time range, where the error
stabilise somewhat around a constant offset value. The performance measures
are listed in Table 7.10. As observed above, the cases where multiple cameras
were used for detection performed the best. The second axis, east, had the
highest errors over all, with some of the errors in the first time range being
over 50 m.



Chapter 7: Results 93

Figure 7.18: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.

Table 7.10: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 9.4 16 11 16 7.0 15
2. axis [◦] 3.3 16 2.7 7.3 4.0 16
3. axis [◦] 21 100 11 44 30 100
1. axis [m] 2.5 13 2.4 13 2.6 11
2. axis [m] 14 69 8.3 30 20 69
3. axis [m] 4.8 9.1 4.8 7.4 4.8 9.1
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Figure 7.19: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.18.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.
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7.3.2 Connected Fiducial Pose Factor

The estimated and ground truth 2D pose for milliAmpere can be seen in Fig-
ure 7.20, and the RSE between these in Figure 7.21. The error spikes noted for
the previous method introduced instability to this method, though the errors
were smaller, especially for the the east axis. In Table 7.11, the performance
measures are listed. These are overall improved from the unconnected fiducial
pose method, especially for the third axis rotation and second axis translation.

Figure 7.20: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.21: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.20.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.11: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 5.3 14 6.0 11 3.8 14
2. axis [◦] 4.9 9.9 5.8 9.9 3.1 8.2
3. axis [◦] 5.3 14 5.5 8.4 4.9 14
1. axis [m] 1.1 6.1 0.6 1.6 1.6 6.1
2. axis [m] 1.9 7.2 1.4 3.3 2.5 7.2
3. axis [m] 0.92 6.5 1.1 6.5 0.46 0.84
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7.3.3 Unconnected Fiducial Projection Factor

The estimated and ground truth 2D pose are shown in Figure 7.22, and the RSE
is shown in Figure 7.23. Similarly to testing the unconnected fiducial projection
factor method for scenario 2 in Section 7.2.3, this method crashed. In this
case, once the first fiducial marker was introduced, the method was unable to
estimate the pose. The detection which caused the crash is also the same which
caused a 50 m RSE for the East axis in Section 7.3.1, indicating that this is an
unreliable measurement. The performance measures are listed in Table 7.12,
tough only contain the details for the detection which caused the method to
crash.

Figure 7.22: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.



98 M. E. Gerhardsen: Fiducial SLAM

Figure 7.23: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.22.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.12: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 28 28 0.0 0.0 28 28
2. axis [◦] 8.1 8.1 0.0 0.0 8.1 8.1
3. axis [◦] 7.0 7.0 0.0 0.0 7.0 7.0
1. axis [m] 1.9 1.9 0.0 0.0 1.9 1.9
2. axis [m] 200 200 0.0 0.0 200 200
3. axis [m] 110 110 0.0 0.0 110 110
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7.3.4 Connected Fiducial Projection Factor

The estimated and ground truth pose for milliAmpere are shown in Figure 7.24,
and the RSE is shown in Figure 7.25. This method was able to complete most
of the first time range, though crashed at the end. It can be observed that there
was some instability in the middle of the first time range, where the input went
from infrequent to frequent detections. The method crashed for a pose where
multiple cameras detected the markers, which is especially noticeable in the
listed performance measures, see Table 7.13, where both the performance for
all estimates and specifically for the estimates using multiple cameras were
very large due to the crash. However, the performance where a single camera
was utilised for estimation was very small, especially for the translation, which
outperforms the connected fiducial pose factor method for the North and East
axes.

Figure 7.24: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.25: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.24.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.13: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 16 150 61 150 8.4 17
2. axis [◦] 21 40 26 40 20 25
3. axis [◦] 10 100 42 100 3.8 7.6
1. axis [m] 2× 103 2.1× 104 8.5× 103 2.1× 104 0.45 1.1
2. axis [m] 84 8.9× 103 3.6× 103 8.9× 103 1.6 5.2
3. axis [m] 74 7.8× 103 3.2× 103 7.8× 103 0.87 2.4
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7.4 Scenario 4

There are no results shown for this scenario, as no detections were added to
the back-end. As noted in Section 6.2.4, in this scenario, milliAmpere is too far
away from the AprilTag markers. However, this is still a significant result, as it
shows both that the detector is reliable and that the conditional removal steps
are working as intended and does not add false or unreliable fiducial markers
into the back-end. Furthermore, this also implies that the markers were close
to the correct size for the operating area, as they can be detected in scenario
3, where milliAmpere is operating around the centre of the canal.

7.5 Scenario 5

Scenario 5 was created as a larger dataset for general SLAM methods, where
a significant portion of the trajectory takes the ferry near the fiducial markers.
The orientation of the ferry is also not as controlled as in the other scenarios,
which means that several of the cameras of the 360 EO-IR Sensor Rig must
be used to detect all the possible fiducial markers in this dataset. Most of the
detections were in the time range between 625 and 670 seconds, though some
infrequent detections appeared until around 700 seconds. The scenario itself
was described in Section 6.2.5.

7.5.1 Unconnected Fiducial Pose Factor

The estimated and ground truth for the 2D pose can be seen in Figure 7.26, and
the RSE between these can be seen in Figure 7.27. The performance measures
are listed in Table 7.14. These show that the method obtained decent results,
especially for the estimates usingmultiple cameras, though the other weremost
likely influenced by some of the poorer detections at the end of the primary
detection time range for this scenario.
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Figure 7.26: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.

Table 7.14: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 8.2 28 6.0 12 9.2 28
2. axis [◦] 9.0 21 5.9 13 10 21
3. axis [◦] 12 100 4.3 9.4 15 100
1. axis [m] 6.3 56 1.6 3.0 7.7 56
2. axis [m] 5.7 45 2.0 4.9 6.9 45
3. axis [m] 6.1 18 4.1 6.5 6.9 18
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Figure 7.27: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.26.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.
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7.5.2 Connected Fiducial Pose Factor

The estimated and ground truth for the 2D pose is shown in Figure 7.28, and
the RSE between these is shown in Figure 7.29. No major error spikes can
be observed for this method, unlike in the unconnected fiducial pose factor
method. The method was not always stable, as the error increased especially
around the start and end of the primary time range for this scenario. The per-
formance measures are listed in Table 7.15, which are all improved from the
unconnected fiducial pose factor method.

Figure 7.28: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.29: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.28.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.15: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 9.4 14 10 14 8.9 14
2. axis [◦] 3.7 7.8 5.0 7.8 2.7 7.2
3. axis [◦] 4.3 9.0 3.7 6.0 4.7 9.0
1. axis [m] 0.75 2.4 0.64 1.4 0.81 2.4
2. axis [m] 0.97 3.1 0.61 1.6 1.1 3.1
3. axis [m] 0.61 1.3 0.81 1.3 0.47 1.2
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7.5.3 Unconnected Fiducial Projection Factor

The unconnected fiducial projection factor method crashed again for this scen-
ario. However, the estimated and ground truth 2D pose is shown in Figure 7.30,
the RSE is shown in Figure 7.31, and the performance measures are listed in
Table 7.16.

Figure 7.30: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.31: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.30.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.16: Measures of the overall performance of the fiducial SLAM method
using RMSE (Mean) andmaximumRSE (Max). All: Estimates where any cam-
era detects any fiducial marker. Multi: Estimates where multiple cameras de-
tected any fiducial marker. Single: Estimates where only a single camera de-
tected any fiducial marker. Given for all three rotational and translational axes
for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 2.0 2.0 0.0 0.0 2.0 2.0
2. axis [◦] 27 27 0.0 0.0 27 27
3. axis [◦] 5.3 5.3 0.0 0.0 5.3 5.3
1. axis [m] 220 220 0.0 0.0 220 220
2. axis [m] 36 36 0.0 0.0 36 36
3. axis [m] 97 97 0.0 0.0 97 97
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7.5.4 Connected Fiducial Projection Factor

The estimated and ground truth 2D pose can be observed in Figure 7.32,
and the RSE can be seen in Figure 7.33. Similar error spikes to those ob-
served for the connected fiducial pose factor method can be seen in these fig-
ures. These error spikes seem similar to those observed for the connected pose
factor method, though the error appeared greater for the connected projection
factor method. The performance measures are listed in Table 7.17, which were
slightly outperformed by the connected fiducial pose factor. Especially the max-
imum RSE values were worse compared to the connected fiducial pose factor
method.

Figure 7.32: Left axis. Orange line: The North, East and Yaw estimate by the
Fiducial SLAMmethod. Blue line: Ground truth. Right axis, red and green bars:
The number of detections for each time step. Green means only one camera
observes any marker, red means multiple cameras observe any marker. Time
is given in Unix epoch time.
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Figure 7.33: Left axis, blue line: The North, East and Yaw error, difference
between the estimated and ground truth trajectories shown in Figure 7.32.
Right axis, red and green bars: The number of detections for each time step.
Green means only one camera observes any marker, red means multiple cam-
eras observe any marker. Time is given in Unix epoch time.

Table 7.17:Measures of the overall performance of the fiducial SLAMmethod.
All: (Mean) values when looking at estimates where any camera detects any
fiducial marker. Multi: RMSE (Mean) and max RSE (Max) values when look-
ing at estimates where multiple cameras detected any fiducial marker. Single:
RMSE (Mean) and max RSE (Max) values when looking at estimates where
only a single camera detected any fiducial marker. Given for all three rotational
and translational axes for the error pose, given in the NED coordinate system.

All Multi Single
Mean Max Mean Max Mean Max

1. axis [◦] 15 30 17 30 13 24
2. axis [◦] 18 27 19 27 17 24
3. axis [◦] 5.9 12 6.4 12 5.7 12
1. axis [m] 0.84 3.6 0.44 1.4 0.99 3.6
2. axis [m] 1.2 4.3 0.92 2.0 1.4 4.3
3. axis [m] 1.7 3.3 1.9 3.3 1.5 3.0





Chapter 8

Discussion

Two different methods for adding fiducial markers to a factor graph were im-
plemented and tested in this thesis, namely the fiducial pose factor and the fi-
ducial projection factor. The fiducial projection factor might be the most logical
to implement when first attempting to use fiducial markers in factor graphs,
as it uses the detected corner pixels directly in the factor graph. This method
allows the measurement uncertainty to be defined as pixel uncertainty, which
directly connects to the sensor and allows an intuitive approach to tuning the
factor. This factor was nontrivial to implement, as multiple pixels and world
points would have to be connected for each measurement, and the fiducial
marker geometry had to be implemented and constrained by the factor.

The factor was also more unstable than the fiducial pose factor, as the un-
connected fiducial projection factor method crashed early for both scenario 2, 3
and 5. The crashes seemed to coincide with a large error in the initial estimate.
As there are more variables and constraints involved in this method compared
to the pose fiducial factor, the large initial error caused problems for this factor.
While the large initial error was linked to the crashes in scenario 3 and 5, scen-
ario 2 started with the fiducial markers in view, and was able to estimate the
pose initially. However, the method crashed once multiple cameras were used
for the estimation.

As can be observed from multiple of the scenarios and methods, certain
detections introduced offsets in the error plots. This indicates that while the
method can accurately estimate the pose of the ferry, the transform from body
frame to the camera frames were offset, at least for some of the cameras. Be-
cause these transforms were measured by hand, and not estimated using op-
timisation methods, it was very likely that they were inaccurate, and the as-
sumption that they were constant was wrong.

Compared to the fiducial projection factor, the fiducial pose factor was both
more robust and simpler to implement. It relied upon a known and proven IPPE
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PnP method to add the detected fiducial marker to the factor graph as a pose.
The methods testing this factor also never ended up crashing the program. This
was most likely because it is simpler for the iSAM2 backend to handle one well-
defined pose factor compared to multiple pixel and world coordinate corners,
and even in Section 7.2.1 where the method fails, a pose is estimated even
though the measured pose doesn’t make sense. While the IPPE PnP method
might handle badly defined corners, or simply not return a pose, the measured
corner pixels of the fiducial projection factor are inserted directly into the back-
end with none of the elements which makes the IPPE PnP method robust.

This method had the disadvantage of defining a constant Gaussian meas-
urement noise for all measured poses by the IPPE PnP method. This is not an
accurate model for this measurement, as the detected corner points are projec-
ted onto the image. The projection involves normalising the point by the depth
distance from the camera, then discretising the point to a pixel. Because of this
process, the uncertainty of the pose measurement should scale with distance
to the fiducial marker. As this was not implemented, this method was less reli-
able at a distance compared to the fiducial projection factor, which used pixel
uncertainty for each detected corner.

Similarly to the fiducial projection factor methods, error offsets were ob-
served for the fiducial pose factor methods, which again suggests that the cam-
era transforms were incorrect. As noted above for the fiducial pose factor, these
methods were more robust primarily because the pose representation allowed
the offsets to not influence the estimation as much.

The use of multiple sensors, as tested in the connected fiducial pose and pro-
jection methods, resulted in better overall performance. As the motion between
the estimated poses was constrained by motion models, the errors were sig-
nificantly smaller, especially when combined with infrequent GNSS measure-
ments. However, this also caused some instability, especially as the incorrect
camera transforms meant that the fiducial marker detection measurements
would be added to the optimiser incorrectly relative the vessel centre. As de-
scribed above, these incorrect offsets caused the measurements to be inconsist-
ent between the cameras, leading to the instabilities observed.

The 360 EO-IR Sensor Rig used to record the image data in the experi-
ments had several problems, which impacted the results to some degree. It
obtained 360◦ vision by using five individual cameras, all connected to a sep-
arate embedded system which used GNSS signals to trigger the cameras at the
same time and timestamp them accurately. However, the cable necessary for
this was plugged in to the onboard INS to provide a ground truth for the data-
sets. Therefore, a software synchronised method was used, which can result in
time delays of up to 0.1 seconds, which can also cause offset measurements,
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which may worsen some of the effects discussed above.

The camera calibration parameters were used by both the fiducial pose
factor and the fiducial projection factor. These parameters are unique for all
cameras, and were therefore estimated prior to the experiments in a lab setting
using a rigid, A4-sized calibration checkerboard. Preferably, these parameters
should be estimated in the same conditions as the data gathered, e.g. right
before the data was gathered and at a similar distance to the objects being in-
teracted with. As the lab environment used for estimating the parameters and
the harbour environments used to gather data were very different, the calib-
ration parameters used in this thesis were not as accurate as they should have
been. However, the calibration process was difficult to execute for a few reas-
ons. To handle to the distances between milliAmpere and the fiducial markers,
the calibration should be done at the same distance, however this would mean
a larger calibration checkerboard would have to be used, which would be more
difficult to handle. Because all five cameras used were mounted on the roof of
milliAmpere, it would also be difficult to move and rotate either the checker-
board or milliAmpere to fully cover the cameras’ fields of view.





Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, a Fiducial SLAM method was developed based on the iSAM2
framework. Two factors, the fiducial pose factor and fiducial projection factor,
were implemented and tested to use detected fiducial markers to connect the
current system pose to the GNSS position of the markers. Testing on real data
showed that both could be accuratemethods for adding external global position
data to a SLAM system. The fiducial pose factor, using the IPPE PnP method to
estimate the transformation between the camera frame and the fiducial marker
frame, was shown to generally be more accurate and stable than the fiducial
projection factor. It was further shown that including other sensors, such as
constraining the relative motion of the system using preintegration and slow
and accurate GNSS measurements further improved the method.

The datasets where gathered using NTNU’s autonomous ferry milliAmpere
and used to test the accuracy of the Fiducial SLAM method. These datasets
were primarily generated with a focus on the AprilTag fiducial markers placed
near the canal, although scenario 5 represented a more general scenario. These
datasets can be interesting for other methods, especially methods for ASVs
operating in urban environments, and should be robust to the challenges one
may face in these environments.

9.2 Future Work

There are many different ways of improving upon and taking the work done in
this thesis further. One important way would be to improve the camera trans-
forms used in this thesis, which can be done in several ways. The estimation
of these transforms is a difficult task, especially as the cameras are mounted
facing different directions. Another possibility is to estimate the camera pose
online as part of the optimisation problem. Then this transform is assumed un-
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known, which can be modelled in the factor graph.

Another interesting way of improving this work, would be to introduce
other sensor information to the factor graph. As can be seen by introducing
IMU and GNSS measurements in the factor graph in this work and by Skjel-
laug [59], the introduction of other measurements to a factor graph is both
easy and improves the accuracy of the method. It would therefore be interest-
ing to combine other sensors and methods to the same iSAM2 back-end, e.g.
including the laser odometry described by Skjellaug et al. [60] or a VOmethod.
The datasets gathered are very useful to test other methods which should be
robust to the challenges faced for urban ASVs.

One possible advantage of using artificial landmarks in amulti-sensor SLAM
system, is that they could be detected bymultiple sensors, such as both the lidar
and the cameras. The detection of fiducial markers using lidar has been shown
to work by Huang et al. [33], which would be interesting to explore. Merging
detections by camera and lidar could be done using factor graphs, and con-
necting these factors to common landmarks should increase the accuracy of
the method further.

In this thesis, the detected fiducial markers were added directly to the back-
end with some preprocessing done to remove obvious noise. A more robust
front-end could be developed, where the measurements must be consistent
between each other and the previous system pose, e.g. based on the RANdom
SAmple Consensus (RANSAC) algorithm, see Szeliski [65, p. 491]. This could
also possibly be done by using the IPPE PnP method in the front-end, to es-
timate the current pose and give an initial estimate to the back-end, which
could use the fidcial projection factor. Another possible way to ensure that the
measurements are consistent could be to optimise the current subgraph before
sending it to the back-end, using an optimisation method such as Levenberg-
Marquardt, and removing improbable measurements from the graph sent to
the back-end. It would also most likely improve the system to introduce a sim-
ilar front-end to the UcoSLAMmethod by Muñoz-Salinas and Medina-Carnicer
[46], and using natural features together with the fiducial markers, and only
use certain keyframes for the back-end optimisation. A more thorough system
like this could ensure that the larger error spikes observed especially for the
unconnected implementations of the Fiducial SLAM method.

Exploring different fiducial markers would also be interesting, as there are
many different systems and variations in existence. The ArUcO and AprilTag
fiducial markers have been discussed in this thesis, though many other markers
and detectors have been implemented, such as TopoTag by Yu et al. [70] and
ChromaTag by DeGol et al. [16] are interesting fiducial marker systems. There
are also AprilTag families which could be interesting to explore, some of which
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were noted in Section 3.6.2. For autonomous ferries, the tagCustom38h12 fam-
ily is especially interesting, as it can be defined recursively. This means that
from a distance, the large marker will be detected and can cover a large area
further away from the docking area of the ferry. Once the ferry arrives near the
docking area, the camera might be positioned such that the marker is too large
for the camera. However, as this marker can be defined recursively, another
marker can be placed in its centre, so that near the docking area, a smaller
marker can be used to assist the docking process. Autonomous docking is an
important and difficult research topic, and fiducial markers can be very useful
tools for this.

It would also be interesting to introduce some form for online camera cal-
ibration method to the system, or use the datasets described here for this pur-
pose. The use of the AprilTag fiducial markers for camera calibration was done
by Richardson et al. [56], though in this case multiple markers placed on the
same board, similar to a standard calibration checkerboard, was used. How-
ever, as the fiducial marker size is known, calibration methods could still be
explored using the markers online. In the GTSAM library, the camera calib-
ration can be added as an unknown variable and optimised for, so that the
camera calibration could be a part of the general optimisation problem for a
large multi-sensor SLAM method.

Multiple other factor graph libraries were described in Section 3.8.1. Ex-
ploring the use of some of these would be interesting, especially to compare
the speed and accuracy of these methods compared to the GTSAM library. Be-
cause ASVs usually are not as limited by computing power as e.g. drones, the
libraries could be explored in order to find the most suitable and accurate lib-
rary.
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Appendix A

Additional Material

A.1 Sensor Transformations

The relevant sensor transforms relative the vessel center body frame (here defined
as V) on milliAmpere are listed here. The transform to the GNSS antenna
is defined as Equation (A.1). The transform to the IMU is defined as Equa-
tion (A.2). The transforms to each EO camera on the 360 EO-IR Sensor Rig is
defined as Equations (A.3) to (A.7).

TGPS
V =







0 0 0 0
0 0 0 0.975
0 0 0 −2.33
0 0 0 1






(A.1)

TIMU
V =







0 0 0 0
0 0 0 0.20
0 0 0 −1.65
0 0 0 1






(A.2)
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TEO_F
V =







0 0 0 0.2
0 0 0 0
0 0 0 −2.68
0 0 0 1






(A.3)

TEO_FR
V =







0.309016994 −0.951056516 0 0.0618034
0.951056516 0.309016994 0 0.1902113

0 0 0 −2.68
0 0 0 1






(A.4)

TEO_RR
V =







−0.809016994 −0.587785252 0 −0.1618034
0.587785252 −0.809016994 0 0.11755705

0 0 0 −2.68
0 0 0 1






(A.5)

TEO_RL
V =







−0.809016994 0.587785252 0 −0.1618034
−0.587785252 −0.809016994 0 −0.11755705

0 0 0 −2.68
0 0 0 1






(A.6)

TEO_FL
V =







0.309016994 0.951056516 0 0.0618034
−0.951056516 0.309016994 0 −0.1902113

0 0 0 −2.68
0 0 0 1






(A.7)

A.2 Global Fiducial Marker Transformations

In this section, the NED poses of the AprilTag fiducial markers used in the
experiments conducted in this thesis are listed.

TTag0
NED =







−0.408789768 0.070084281 0.909933579 −465.33
−0.912191686 −0.062225018 −0.405011575 −220.43
0.028235688 −0.995598433 0.089367249 −9.92

0 0 0 1






(A.8)

TTag1
NED =







−0.408274781 0.020445789 0.912630085 −459.44
−0.910122951 −0.086464549 −0.405216109 −208.11
0.070625186 −0.996045105 0.053909477 −10.08

0 0 0 1






(A.9)


