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Abstract

First responders (FRs) in search-and-rescue missions frequently expose themselves to
unknown and dangerous environments. Thanks to the increasing capabilities of micro
areal vehicles (MAVs) and other mobile agent technologies, some of the risks FRs must
take in order to secure the well-being of others can now be mitigated. For example, it is
possible to deploy a swarm of MAVs into the environment and use them as beacons that
can facilitate the indoor localization of the FRs and others, and in this way, improve the
security of all parties involved in search-and-rescue missions.

This master’s thesis focuses on the example above and studies how multi-agent net-
works can be deployed into environments of unknown topology. More precisely, we
propose and study a novel potential field-based distributed high-level control law for de-
ploying mobile agents with an unknown range of communication and little environmental
awareness. Importantly, this control law considers incremental deployment in opposition
to existing literature that focuses instead on simultaneous deployment.

Initially, a distributed control law for incremental deployment within a 1-dimensional
obstacle-less environment is investigated and fully characterized. By modelling the con-
trol law as an attractive force towards the centre of mass of a virtual set of particles gener-
ated by agents already residing within the environment, conditions on the particle masses
and locations are found so that an increase in network size guarantees that the network
spans a larger portion of the environment.

Inspired by the approach taken for deployments in 1-dimensional environments, the
control law is expanded for incremental deployments within unknown 2-dimensional en-
vironments. The proposed distributed high-level control law consists of two parts: a)
a force resulting from an attractive potential field generated by agents already residing
within the environment, and b) a force resulting from a repulsive potential field generated
by sensor readings from range sensors mounted on the agent.

Simulations are performed in two different 2-dimensional environments. In a ten-by-
ten meter convex environment, simulations show that deploying sufficiently many agents
yields a network that spans a significant portion of the environment. In a non-convex
environment including two narrow passages, simulations show that, in most situations,
deploying sufficiently many agents yields a network spanning a significant portion of the
environment. However, in some situations, no agent manages to pass the narrow passages
yielding a network spanning only a fraction of the environment.

The results presented in this report show though that the proposed high-level control
law cannot yet be utilized in real-world situations as it lacks robustness. Furthermore, a
coverage metric and a deployment termination criterion depending only on information
available locally for an agent must be synthesized in order for the proposed approach to
be applicable and hopefully yield results that can directly reduce the dangers to which
FRs expose themselves.
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Sammendrag

Utrykkningspersonell i søk- og redningsoperasjoner utsetter seg ofte for ukjente og farlige
miljøer. Med den økende kapasiteten til mikrodroner og andre mobile robot-teknologier,
kan noen av risikoene utrykkningspersonell tar for å sikre andres velvære til dels elimi-
neres. For eksempel er det mulig å distribuere en sverm av mikrodroner i et miljø og
benytte dem som ankerpunkter som tilrettelegger for innendørs lokalisering av utrykk-
ningspersonell og andre, og på denne måten forbedre sikkerheten til alle involverte parter
i et søk-og-redningsoppdrag.

Denne masteroppgaven fokuserer på det nevnte eksemplet og studerer hvordan multi-
agent-nettverk kan distribueres i miljøer med ukjent topologi. Mer presist, foreslås og
studeres en ny potensialfeltbasert distribuert høynivå kontrollov for distribusjon av mo-
bile agenter med et ukjent kommunikasjonsområde og liten miljøbevissthet. Essensielt
for kontrolloven er at den tar for seg trinnvis distribusjon i motsetning til eksisterende
litteratur som fokuserer på parallel distribusjon.

Først undersøkes og karakteriseres en distribuert kontrollov for trinnvis distribusjon
av agenter i et 1-dimensjonalt hinderfritt miljø. Kontrolloven modelleres som en attraktiv
kraft mot massesenteret til et sett virtuelle partikler, generert av agenter som allerede
befinner seg i miljøet. Betingelser på de virituelle partiklenes på masse og posisjon utledes
slik at en økning i nettverksstørrelsen garanterer at nettverket dekker en større del av
miljøet.

Inspirert av tilnærmingen benyttet for distribusjon i 1-dimensjonale miljøer, utvides
kontrolloven for trinnvis distribusjon i ukjente 2-dimensjonale miljøer. Denne høynivå
distribuerte kontrolloven består av to deler: a) en kraft som resulterer fra et attraktivt po-
tensialfelt generert av agenter som allerede befinner seg i miljøet, og b) en kraft som skyl-
des et frastøtende potensialfelt generert av sensormålinger fra avstandssensorer montert
på agenten.

Simuleringer utføres i to ulike todimensjonale miljøer. I et ti-ganger-ti-meter konvekst
miljø viser simuleringer at distribusjon av tilstrekkelig mange agenter gir et nettverk som
spenner over en betydelig del av miljøet. I et ikke-konvekst miljø, bestående av blant an-
net to smale passasjer, viser simuleringer at distribusjon av tilstrekkelig mange agenter i
de fleste situasjoner gir et nettverk som spenner over en betydelig del av miljøet. Imidler-
tid oppstår det situasjoner hvor ingen agenter klarer å passere de smale passasjene, som
resulterer i et nettverk som bare spenner over en brøkdel av miljøet.

Resultatene som presenteres i denne avhandlingen viser at den foreslåtte høynivå kon-
trolloven, på dette stadiet, ikke kan anvendes i virkelige situasjoner da den mangler robust-
het. Videre må et mål på nettverks-dekning og et kriterium for avslutning av distribusjon,
basert utelukkende på informasjon tilgjengelig lokalt for en agent, utvikles for at den fore-
slåtte kontrolloven skal kunne benyttes og forhåpentligvis gi resultater som direkte kan
bidra til å redusere farene søk- og redningspersonell utsetter seg for.
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Chapter 1

Introduction

Natural- and man-made disasters are unexpected events that hit society, causing damage
to infrastructure and loss of lives. Globally, an average of 60000 lives is lost due to
natural disasters per year [1]. A first responder (FR) is one among those responsible for
going immediately to the scene of an accident or emergency to provide assistance [2]
and plays an integral role in the event of a disaster. They will typically be employed by
the emergency services such as the police, fire department, or health services and take it
upon themselves to secure the health of people, property, and the environment. Often this
includes sacrificing their own safety in order to secure that of others. The need for quick
action gives them no other choice.

Search-and-rescue (SAR) personnel, in particular, expose themselves to significant
risks. Burning buildings, collapsed or flooded caves and landslides, are just some ex-
amples of the rapid-changing hazardous environments in which SAR personnel can find
themselves. Often they initiate their mission without any knowledge of what is waiting
for them on the other side. Imagine a burning building. The local fire department has
just arrived. There is no time to spare, so the first firefighters enter to save the lives of
those inside before inspecting the floor plan. It might not even be valid as the roaring fire
continues to eat up the walls and support beams for the roof. Still, the firefighters enter
in order to rescue the people inside. If something is to happen to the entering firefighters,
there is no way to locate them, and the ones entering to save them still do not know what
is waiting for them inside.

Advancements in technology can be used to limit the dangers to which SAR personnel
expose themselves. With the increasing performance and decreasing cost of mobile robots
[3], and the ability to outfit them with whatever equipment one might think of, it is relevant
to think of how this might be used to allow for faster, more efficient, safer and possibly
cheaper SAR operations. Autonomous air- and ground vehicles, in particular, could profit
the perception and action capacities of FRs [4]. In addition, using disposable autonomous
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CHAPTER 1. INTRODUCTION

robots for tasks such as mapping unknown environments or identifying the locations of
victims could drastically improve the safety of FRs.

In the example stated above, mobile robots could be dispatched into the burning house
and continuously feed the firefighters with a real-time map of the environment. Robots
could also enter the building to set up an ad-hoc network, a dynamic and self-configuring
network formed by a collection of mobile nodes [5], used for locating FRs inside GNSS
denied environments. Alternatively, the collection of robots could supply information
about events happening, such as changes in the environment or the presence of poisonous
gasses.

The INGENIOUS project is an EU-funded project that has as its mission to develop
and test a next-generation integrated toolkit (NGIT) for collaborative response. The
toolkit is based on several components such as smart boots and uniforms, localization
tags, as well as different areal drones that will all enhance the perception capabilities of
the participants involved in a SAR mission [4]. Included in the toolkit are micro indoor
aerial drones (MINs).

The MINs are quadcopters characterized by their small size and limited payload. Due
to the limited payload, MINs cannot carry advanced sensors that could aid in precise
detection of the environment around them. Furthermore, they are equipped with ultra-
wideband modules/other radio modules allowing for MIN-to-MIN or MIN-to-Base com-
munication. The main objective of the MINs is to enter a dangerous GNSS denied en-
vironment of unknown layout and extent and create a connected ad-hoc mesh network
consisting of a base station and a collection of MINs. The MINs are to be used as beacons
for distributed localization of FRs within the environment.

Developing a distributed deployment scheme for micro-drones in order to provide
such a localization network is the task of this thesis. Although this work is motivated
by the INGENIOUS project, and the proposed deployment scheme is tailored to fit the
constraints imposed by the limited payload of the MINs, we focus here on the deployment
of a general multi-agent system.
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Chapter 2

Background

This chapter introduces the basic concepts upon which the contribution of this thesis is
built. In particular, Section 2.1 provides a definition of Mobile Wireless Sensor Net-
works, Section 2.2 introduces the concept of coverage, and in Section 2.3 the task of
self-deployment of mobile wireless sensor networks is briefly presented. In Section 2.4, a
literature review is presented. Here, previous work on the self-deployment and coverage
problem using mobile sensor networks, inspiring the approach taken in this thesis, is pre-
sented. In Section 2.5, the problem of target localization and methods for solving it in a
distributed manner are introduced for completeness. Section 2.6 presents the concept of
potential fields, upon which the deployment scheme presented in this thesis is built.

2.1 Mobile Wireless Sensor Networks

Wireless Sensor Networks (WSNs) consist of large numbers of sensor nodes deployed to
observe or detect certain phenomena that occur in a region of interest (ROI) [6]. In a mo-
bile WSN (M-WSN), in addition to sensing- and communication capabilities, nodes have
locomotive platforms allowing them to deploy/redeploy in order to increase the quality of
service (QoS) within the ROI.

2.2 Coverage

Maintenance of the QoS within an ROI using multi-robot systems is a paradigm in itself.
In [7], Gage defines coverage as "[...] the maintenance of a spatial relationship which
adapts to specific local conditions to optimize the performance of some function [...]".

3



2.3. SELF-DEPLOYMENT CHAPTER 2. BACKGROUND

Coverage is further partitioned into three disciplines: Blanket coverage, in which the
goal for the M-WSN is to reach a static configuration such that the total detection area is
maximized; Barrier coverage, where the goal is to reach a static configuration where the
probability of undetected penetration of the barrier set up by the wireless sensor nodes is
minimized; and Sweep coverage which is, in essence, equivalent to a moving barrier.

2.3 Self-deployment

Self-deployment is the task of enabling mobile sensor nodes to "[...] deploy themselves in
an environment without central coordination" [8]. Self-deployment is done in one of two
fashions: incrementally or concurrently. In incremental self-deployment, only a single
node deploys at any given time. When the currently deploying node has settled at some
location, the next one deploys. In concurrent self-deployment, all nodes are allowed to
re-position themselves at the same time.

2.4 Previous work on the deployment- and coverage
problem

Howard et.al. present in [9] an incremental self-deployment algorithm for M-WSNs with
the goal of achieving blanket coverage. The proposed algorithm assumes that the environ-
ment is static (unchanged during deployment) and not known a priori. The positions of
all nodes are assumed to be known in some global coordinate frame. Nodes are equipped
with an omnidirectional range sensor of known maximum range and a broadcast commu-
nication device enabling them to communicate with a base station, either directly or via
multi-hop communication through other nodes.

The proposed algorithm defines three different states for a node: waiting, meaning the
node has not yet deployed; active, meaning the node is currently deploying; and deployed,
meaning the drone has settled. The locations to which the active nodes should travel
are chosen by analyzing a reachability grid map of the environment generated by fusing
sensor data from the deployed nodes into a common map. The algorithm applies heuristics
in order to determine the cell in the reachability grid (goal location) that ensures that
(1) nodes deploy to the boundary between reachable and unreachable space, (2) nodes
cover the largest area of presently unknown space and (3) nodes are deployed to locations
ensuring line-of-sight visibility from at least one other node.

Simulations of the sequential deployment of 50 nodes are performed. The metrics
used to evaluate the performance of the algorithm are the elapsed time and coverage.

4
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Coverage is measured as the number of free cells (cells not containing obstacles while
being in the field of view of at least one node) in the occupancy grid multiplied by cell
size. The proposed algorithm yields results "close to those obtained using a greedy model-
based strategy" [9], in which the environment is known a priori.

In [10], Damer et.al. present the Backbone Dispersion Algorithm (BDA). The pro-
posed algorithm makes use of signal intensity in order to concurrently self-deploy a con-
nected M-WSN in an unknown environment. It is assumed that two moving nodes will
never lose contact with a stationary node simultaneously. The assumption is motivated by
the fact that the speed of communication between nodes is much greater than the maxi-
mum speed of the nodes [10]. Furthermore, it is assumed that nodes possess a sonar array
that provides ranges to obstacles and a communication device allowing for information
passing between nodes.

By four simple rules (see Table 2.1), BDA maintains and expands a set of static sensor
nodes ("backbone") over time. Nodes that are also backbone nodes are guaranteed never
to move.

Node in direct
contact with

Action Goal

0 nodes Random walk
Regain contact
with the backbone

≥ 2 nodes
≥ 1 backbone node

Random walk
Discover uncovered
areas

1 backbone node
Remain stationary until one
other node wanders into range

Stay in contact
with the backbone

≥ 1 node
0 backbone nodes

Join backbone and tell one
neighbour to join the backbone

Extend backbone to
an unexplored area

Table 2.1: Rules used in BDA. Table recreated from [10].

The random walk behaviour presented in Table 2.1 is defined as follows: For each
time step turn by (1) a random angle in the range of ±10◦ if the node does not detect
any obstacles; (2) a random angle in the range [120◦,240◦] if the node detects an obsta-
cle. Thus, obstacle avoidance is implemented by simply turning away from the detected
obstacle.

The authors conclude that the dispersion yielded by BDA is effective due to the fact
that for any pair of nodes that join the backbone, one of them is completely disconnected
from all nodes previously in the backbone.

Pac et al. present in [11] an adaptive, fluid dynamic-inspired approach as a scaleable,
robust solution to the problem of concurrent self-deployment of M-WSNs in unknown en-
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vironments, for the purpose of blanket coverage. Inspired by the diffusive, self-spreading
nature of compressible fluids, the M-WSN as a whole is modelled as a single fluid body.
Sensor nodes are modelled as infinitesimal fluid elements, and node velocity, pressure and
local density are defined as flow variables.

Nodes are assumed to be homogeneous, equipped with range sensors of known maxi-
mum range and a communication device allowing them to pass information to other nodes
within a pre-determined distance. Furthermore, it is assumed that nodes know their ve-
locity relative to a local or global frame and that they can determine both the relative
positions and velocities of other nodes within communication range.

Dispersion of the deployed sensor nodes is caused by the dispersive nature of com-
pressible fluids, in which the fluid will conform with the outlines of its container [6]. In
order to preserve connectivity of the M-WSN, artificial viscosity termed damping viscos-
ity is applied to the reference velocity of sensor nodes.

Obstacle avoidance comes as an effect of the only boundary condition on inviscid fluid
flow [11]: fluid elements immediately close to a surface must have a velocity vector paral-
lel to the surface. The boundary condition causes sensor nodes to follow the boundaries of
the environment whenever a boundary is detected. In order to avoid clustering of sensor
nodes at the boundaries of the environment, fluid elements (sensor nodes) in the vicinity
of obstacles raise their temperature. An increase in temperature leads to an increase in lo-
cal pressure. Nearby fluid elements (sensor nodes) are repulsed due to the higher pressure
region generated along the obstacle’s surface, causing them to move away.

Deployment is performed by dynamically injecting new nodes into the environment
at some pre-determined initial locations. The dynamic injection of nodes is based on
the local density at the initial deployment location(s). When the previously deployed
sensor nodes spread and reach an equilibrium, new successors are placed at the initial
deployment location(s) in order to attain or preserve some pre-determined density level.
As pouring water into a half-full cup "rearranges" the fluid particles already present in the
cup, injecting new nodes affects the locations of the already deployed nodes.

Assuming that coverage in both sensor- and communication range is deterministic,
i.e. the disk with radius equal to the sensor-range is covered, it is concluded that coverage
and robustness come as an effect of the self-spreading nature of fluids. Through simu-
lators, the adaptive injection of new nodes is shown to provide effective deployment and
coverage in unknown dynamic environments.

Howard et.al. present in [12] a concurrent virtual potential field-based approach to the
blanket coverage problem in static but unknown environments. Their approach is inspired
by electrostatic potential in which equally charged particles exert repulsive forces on one
another. Sensor nodes are assumed to be equipped with omnidirectional range sensors of

6



CHAPTER 2. BACKGROUND2.4. PREVIOUS WORK ON THE DEPLOYMENT- AND COVERAGE PROBLEM

known maximum range. The range sensors are assumed to be able to distinguish between
obstacles and other nodes.

Modelling both obstacles and sensor nodes as positively charged particles, both
obstacle- and collision avoidance is attained due to the repulsive effect that equally
charged particles have on each other. Both node-on-node and obstacle-on-node forces
are dependent only on relative distances, making the presented approach suitable for on-
line local computation as no global localization is needed.

A simulated experiment is conducted in which the deployment is initiated with 100
sensor nodes placed in a dense configuration within a complex static environment. Results
show an initially rapid increase in both coverage and average node separation, followed
by a slower convergence to some constant value. At termination, the final configuration
attained by the simulated deployment of 100 nodes yields a tenfold increase in coverage
compared to the initial configuration. The authors conclude that "area coverage [...] can
emerge from a combination of purely local rules"[12].

As opposed to in [12] where only repulsive forces are used, Yu et al. present in [13]
a potential field-based concurrent deployment scheme, with the goal of blanket cover-
age, that utilizes a mix of attractive and repulsive forces. It is assumed that nodes are
homogeneous, equipped with communication devices and sensors of known sensing- and
communication range. The sensing area of a node is the disk centred at the position of
the node with radius determined by the sensor range. Furthermore, it is assumed that the
location of all nodes can be acquired (through GNSS or by other means).

In the virtual force approach presented in [13], each node is affected by three forces:
(1) a repulsive force exerted by obstacles; (2) an attractive force exerted by areas of in-
terest; and (3) a composite force exerted by adjacent nodes. The composite force is a
sum over node-to-adjacent-node forces, which may be repulsive or attractive based on
the inter-nodal distance. The “adjacent relationship” of nodes are defined using Delaunay
triangulation [14] of the nodes’ positions.

Simulations are performed in both a 100× 100 square meter environment and in an
unbounded environment. The results are compared to those obtained in [15], in which
Delaunay is not used. Starting from an initial random configuration, the mixed virtual
potential field-based approach using Delaunay triangulation yields "[...] better coverage
rate and faster convergence time [...] which proved that the proposed approach is an
effective node deployment algorithm".

Heo and Varshney present in [16] the Distributed Self-Spreading Algorithm: a dis-
tributed self-deployment algorithm for mobile sensors in known environments. Nodes are
assumed to possess ideal communication and sensing devices giving communication and
omnidirectional sensing within disks restricted by some maximum radius. Nodes are said

7



2.5. TARGET LOCALIZATION IN (M-)WSNS CHAPTER 2. BACKGROUND

to be neighbours if they are within communication range of each other.

The area of the region of interest (ROI) and the number of nodes to be deployed are
assumed known a priori, and are used as parameters to the proposed virtual force scheme.
Initiated in a random topology within the ROI, repulsive forces between neighbouring
nodes are used to disperse the WSN throughout the ROI.

Variation in magnitude of inter-nodal forces depends on two variables: it increases
with density factor and decreases with inter-nodal distance. The density factor is com-
puted as the ratio between local density (number of neighbours) and expected density
(average number of nodes needed to cover the ROI). In sparse areas, the density factor is
small, giving small inter-nodal forces. In dense regions, the opposite holds.

Four metrics are used to quantify the quality of the topology generated by the proposed
deployment scheme: coverage, the ratio of sensor-covered area to ROI area; uniformity,
the average standard deviation of the distances between nodes; time, time elapsed until
the WSN reaches a static topology; and distance, the average distance travelled by the
WSN. Through simulations, it is shown that the deployment scheme proposed by Heo
and Varshney "[...] successfully obtains a uniform distribution from an initial uneven dis-
tribution [...]"[16] and outperforms a simulated-annealing driven deployment algorithm
in all performance metrics.

2.5 Target localization in (M-)WSNs

Here, a brief definition of target localization is presented along with the different ap-
proaches for performing distributed target localization in WSNs. Although the objective
of this thesis does not include performing distributed localization, the work presented
here lays the groundwork for future development, and a brief presentation is made for
completeness.

The problem of target localization is that of inferring an estimate on the position of
a target using multiple noise polluted measurements [17]. Given a set of beacons, there
are several ways of inferring estimates of a target’s position depending on the type of
measurements made: Received Signal Strength (RSS), Bearing Only, Range Only, Time
of Arrival (TOA), Time Difference of Arrival (TDOA) or a combination of measurements
[18].

Performing distributed localization using TOA or TDOA measurements requires ac-
curate synchronization of the internal clocks of the nodes (beacons) used for localization.
In (M-)WSNs comprised of nodes with limited computational power, complex synchro-
nization schemes [19, 20] might be too expensive. For Bearing Only localization, relative
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CHAPTER 2. BACKGROUND 2.6. VIRTUAL POTENTIAL FIELDS

angle measurements from an antenna array are required [18] which may also be too ex-
pensive. RSS-based localization demands no extra data transmission and is relatively
inexpensive to implement [18]. Due to this, RSS-based localization is the most appropri-
ate scheme in (M-)WSNs comprised of low-cost nodes with limited computation power
and limited sensing capabilities, where energy usage is an issue.

2.6 Virtual potential fields

Virtual potential fields (VPFs) are commonly used in path-planning and cover-
age/exploration tasks by many researchers due to their elegance, simplicity, and safety
[21]. In a VPF scheme, mobile nodes are regarded as point particles under the influence
of a potential field.

A scalar potential field, U : NN −→ R≥0, relates a point in N-dimensional space to a
scalar energy level. The potential field produces a force on the particles affected by it. By
Equation (1.16) in [22], the force on a particle affected by a potential field relates to the
scalar potential field, U , by:

F =−∇U(x) (2.1)

where x =
[
x1 . . .xN

]T
∈RN is the position of a particle relative to some given origin and

∇ is the gradient operator:

∇U(x) =
[

∂

∂x1
U(x) . . . ∂

∂xN
U(x)

]T
:=

∂

∂x
U(x)

There are two distinct types of scalar potential fields: attractive and repulsive. An
attractive potential field defines a point of zero potential. The potential of a particle influ-
enced by an attractive potential field increases as its distance to the point of zero potential
increases. In literature, attractive potential fields are conventionally modelled as quadratic
functions of the distance from the point of zero potential [23]:

Uatt(x) = α‖x‖2

where α > 0 is some scaling factor and x is the position of a particle relative to the point
of zero potential. Figure 2.1 shows a depiction of a typical quadratic attractive potential
field and the force exerted on a particle affected by the potential field.

A repulsive potential field defines a point of maximum (possibly infinite) potential.
When a repulsive potential field influences a particle, the particle’s potential energy de-
creases as its distance to the point of maximum potential increases. Inspired by electro-
static potential fields, repulsive potential fields used for mobile robot control are com-
monly modelled as [12]:

Urep = β‖x‖−1

9
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Figure 2.1: An attractive potential field U = 1
2((x− x0)

2 +(y− y0)
2). Left: Potential as function

of position relative to the point of zero potential (at (x0,y0)). Right: Force on particle affected by
potential field as function of position relative to the point of zero potential.

where β > 0 is some scaling factor and x is the position of a particle relative to the point
of infinite potential.
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Figure 2.2: A repulsive potential field U = 1
2

(
(x− x0)

2 +(y− y0)
2
)−1/2. Left: Potential as func-

tion of position relative to the point of infinite potential (at (x0,y0)). The U-axis is clipped at 0.8.
Right: Force on particle affected by potential field as function of position relative to the point of
infinite potential.
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Chapter 3

System description

In this section, we introduce the platform upon which the contribution of this thesis is
built. In Section 3.1, we introduce the RSS-mapped offset distance: a quantity assumed
available to all nodes through communication. The reference frames used to relate sensor
data to nodal positions are presented in Section 3.2. In Section 3.3 and Section 3.4 the
properties of two types of sensor nodes: beacons and agents, are presented. A definition of
a generic environment is presented in Section 3.5. Lastly, the properties and functionality
of a range sensor are presented in Section 3.6.

3.1 Received signal strength offset distance

A signal travelling from one node to another experiences fast fading, shadowing, and
path-loss [24]. Many models, most commonly the path-loss model under log-normal
fading [18, 24, 25], have been proposed in order to predict the signal strength at a receiver
at a certain distance from a sender, taking into account the aforementioned phenomena.
Furthermore, Chitte and Dasgupta present in [26] a series of estimators of distance given
RSS measurements. As an accurate model of signal strength nor RSS-based distance
estimation falls within the scope of this thesis, all environmental effects on a signal are
ignored, and a simple and deterministic model is applied.

The strength of a signal sent from an entity j, received by an entity i is assumed to
be a descending function of the inter-entity distance di, j = ‖xi− x j‖, where xi,x j ∈ R2

denote the position of the receiving- and transmitting entity respectively. We assume that
there exists a map, ξi, j, that maps the RSS (Received Signal Strength) value at a receiver,
i, of a signal sent from an entity j, RSSi, j, to a distance. It is assumed that the map fulfills:

11
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∂ξi, j

∂RSSi, j
> 0,

∂RSSi, j

∂di, j
≤ 0 =⇒

∂ξi, j

∂di, j
=

∂ξi, j

∂RSSi, j

∂RSSi, j

∂di, j
≤ 0 (3.1)

where ξi, j ∈ R is called the RSS-mapped offset distance between entity i and j. The
assumption that increasing internodal distance has an inverse relationship with RSS value
is motivated by the standard path-loss model.

It is assumed that the RSS-mapped offset distance is non-negative and bounded above
by a constant ξ̄ . Formally:

0≤ ξi, j ≤ ξ̄ ∀ i, j

where ξ̄ is the maximum offset distance, achieved when the RSS at the receiver attains its
maximum value.

In addition, sender-receiver-symmetry is assumed, meaning the RSS-mapped offset
distance between an entity j relative to another entity i is assumed to be equal to the
RSS-mapped offset distance from entity i to j:

ξi, j = ξ j,i ∀ i, j

The final assumption made is that of receiver invariance. For two receiving entities, i
and j, and a transmitting entity, k, it is assumed:

xi = x j =⇒ ξi,k = ξ j,k ∀ i, j,k (3.2)

where xi,x j ∈ R2 denote the position of the two receiving entities.

In simulations, the following map conforming with (3.1) - (3.2) is used:

ξi, j =


ξ̄ ,di, j < dper f
ξ̄

2 +
ξ̄

2 cos
(

π
di, j−dper f

dnone−dper f

)
,dper f ≤ di, j ≤ dnone

0 ,di, j > dnone

(3.3)

where di, j is the de facto distance between the sending- and receiving entity.

Figure 3.1 shows a plot of the RSS-mapped offset distance defined in (3.3) as a func-
tion of the actual distance between two entities.

12
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dperf dnone

dij

0

ij

Figure 3.1: RSS-mapped offset (ξi, j) vs. actual distance (di, j) between two entities i and j.
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3.2. REFERENCE FRAMES CHAPTER 3. SYSTEM DESCRIPTION

3.2 Reference frames

It is convenient to represent motion/position/measurements relatively to different refer-
ence frames. Sensors usually retrieve data relative to some host, whereas the position of
an entity is usually represented relative to some fixed frame. Due to this, two reference
frames are defined. A depiction of the relation between these two frames is shown in
Figure 3.2.

3.2.1 The inertial NE frame

The East-North coordinate system, denoted by {n}= (xn,yn) with origin on ∈ R2 is con-
sidered inertial with its origin fixed at some point on the surface of the Earth. The xn-axis
points to Earth’s true east, and the yn-axis point to Earth’s true north. A superscript n is
used to define a vector expressed relative to the inertial NE frame.

3.2.2 The HOST frame

The HOST frame, denoted as {h} = (xh,yh), is a moving coordinate system with it’s
origin, oh ∈R2, fixed to the host, h, of interest. Assuming a host, h, has it’s nose pointing
in a direction ψh relative to the xn-axis (positive counter clockwise), the xh-axis points
in the direction defined by ψh and the yh-axis points in the direction ψh +

π

2 . A vector
defined relative to a HOST frame, {h}, is denoted with a superscript h.

3.2.3 Transformations between frames

To relate a HOST frame, {h}, to the NE frame, {n}, a displacement matrix, Tn
h ∈ SE(2)

is defined as [27]:

Tn
h =

[
Rn

h on
h

01×2 1

]
(3.4)

where 01×2 is a 1-by-2 matrix of all zeros, on
h is the origin of the HOST frame relative to

the NE frame, and Rn
h ∈ SO(2) is defined as [28]:

Rn
h = R(ψh) =

[
cos(ψh) −sin(ψh)

sin(ψh) cos(ψh)

]

where ψh is the orientation of the xh-axis relative to the xn-axis.

14
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For a vector, xh, relative to a HOST frame, its representation relative to the EN frame
is computed as [27]:

x̂n = Tn
hx̂h

where x̂n =
[
(xn)T 1

]T
and x̂h =

[
(xh)T 1

]T
are the homogeneous representations of

the vectors xn and xh respectively [27] and Tn
h is defined in (3.4). By abuse of notation,

the transformation of a vector xh represented in a HOST frame to its representation in the
EN frame will be denoted by:

xn = Tn
hxh

where the conversions between homogeneous representations of vectors are implicit.

+

ψh

xh

yh

xn

yn

oh

Figure 3.2: Example of a host frame, {h}, and the inertial frame {n}. oh denotes the position of
a host, h, relative to the NE-frame, and ψh denotes the orientation (positive counter-clockwise) of
the the host relative to the xn-axis.

3.3 Beacon

A beacon, defined by an index i, is an entity equipped with a communication device
allowing it to communicate with other entities. The position of a beacon i, xn

i , is constant
in the inertial EN frame. In general, the position of a beacon will be denoted without a
superscript n as it usually relates to quantities also expressed relative to the inertial EN
frame. Although not explicitly defined by the 2D position vector of a beacon, it is assumed
that beacons are at all times located at ground level.

A beacon i has a neighbour set as defined as:

Nb(i) = { j ∈B \{i} : ξi, j ≥ ξN > 0} (3.5)

where B is the set of all beacons in existence, ξi, j is the RSS-mapped offset distance
between beacon i and beacon j, and ξN is the neighbour threshold. Note that only the
RSS-mapped offset distance to another beacon, j, determines whether or not j is con-
sidered a neighbour of beacon i. Thus there are no constraints on the de facto distance
between neighbouring beacons.

15
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A beacon i is said to cover the area, ci, defined by:

ci = {x j : ξi, j ≥ ξN } (3.6)

where x j is the position of an entity with communication capabilities. It is noteworthy that
the coverage supplied by a beacon depends on the unknown RSS-mapped offset distance
and is hence itself an unknown region.

3.4 Agent

An agent, defined by an index i, is a robot equipped with a set of four range sensors (see
section 3.6) and a communication device allowing it to communicate with other entities.
Furthermore, an agent is equipped with a locomotive platform (in the case of this thesis,
the locomotive platform is a set of propellers), allowing it to reposition itself.

The position of agent i, represented in the inertial EN (East-North) frame, is denoted
by xn

i , and its orientation relative to the inertial x-axis (positive counter-clockwise) is
denoted by ψi. In general, the position of an agent will be denoted without a superscript
n as it usually relates to quantities also expressed relative to the inertial EN frame. In
calculations including vectors expressed in different frames, the superscript n is added for
clarity Although not explicitly stated in the 2D position vector of an agent, it is assumed
that it at all times flies at some altitude above ground level, preventing it from colliding
into beacons.

The neighbour set of an agent i is defined as:

Na(i) = { j ∈B : ξi, j > ξN > 0} (3.7)

where B is the set of all beacons, ξi, j is the RSS-mapped offset distance between agent i
and beacon j, and ξN is the neighbour threshold. As for beacons, there are no constraints
on the de facto distance between an agent and its neighbours. It is assumed that an agent
can learn the position of all its neighbours through direct communication.

It is noteworthy that an agent i’s neighbour set does not include beacons, j, that satisfy
ξi, j = ξN as opposed to the neighbour set of beacons (3.5). Thus, for an agent, i, and a
beacon, j:

xi = x j =⇒ Na(i)⊆Nb( j) (3.8)

Note that an agent guaranteed not to move at any time in the future possesses all of
the properties of a beacon, except for a more strict neighbour set. Hence, agents that are
guaranteed never to move are re-instantiated as beacons, and their index is added to the
set of beacons, B.
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3.4.1 Dynamic model

An agent, i, is assumed to have single-integrator positional dynamics:

ẋi = ui (3.9)

where ui ∈ R2 is the control input. Assuming single-integrator dynamics simplifies the
derivation of a high-level control law [29], and is based on the assumption that there are
lower-level controllers in place that cancel any inherent dynamics and enforce (3.9) [30].

3.5 Environment

An obstacle O, defined by its boundary ∂O restricts the movement of entities, as it is
impossible for an entity to travel through the boundary of an obstacle. Formally:

x /∈ O

where x is the position of an entity. The boundary of an obstacle may or may not enclose
a subset of R2.

An environment E is defined as a set of obstacles:

E = {O1 . . .ONO} (3.10)

where NO denotes the number of obstacles in the environment.

3.6 Range sensor

A range sensor with maximum sensing range Rs is a device capable of measuring the
distance to obstacles. Assuming a range sensor is placed at xn

rs in the inertial EN frame
with orientation ψrs relative to the x-axis of the inertial frame, it returns the measured
range, r, to the nearest visible obstacle according to:

r =

{
minλ∈R λ ,R 6= /0

Rs ,otherwise

where
R = {0≤ λ ≤ Rs : xn

rs +λR(ψrs)ex ∈ ∂O,O ∈ E}

where ex =
[
1 0

]T
denotes the unit x-vector, E is as defined in (3.10) and R(·) ∈ SO(2)

is the two dimensional rotation matrix [28].
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A range sensor is usually mounted on a host. Denoting the position (mounting point)
of a range sensor in the HOST frame by xh

rs, the position of the sensor in the inertial frame
is defined as:

xn
rs = Tn

hxh
rs = R(ψh)xh

rs +xn
h

where Tn
h is as defined in (3.4), ψh is the orientation of the xh-axis relative to the inertial

xn-axis and xn
h is the position of the host relative to the inertial EN frame.

Furthermore, denoting a range sensor’s orientation relative to the host’s xh-axis by
ψrs,h its orientation relative to the inertial xn-axis is:

ψrs = ψh +ψrs,h

xh

yh

ψh

x
h
rs

ψrs,h
r

x
n
h

xn

yn

Figure 3.3: Range sensor setup. The range sensor placed at xh
rs in the HOST frame returns the

measured range, r, to the obstacle (grey).
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Chapter 4

Objective and novelty

The objective of this thesis is to develop high-level control laws for incrementally dis-
persing mobile nodes into an unknown environment, using only local information, with
the ultimate goal of providing a (1-)connected ad-hoc localization network. The initial
deployment of mobile robots has not been fully addressed in literature, and only a small
number of studies assessing its relevance have been conducted [31]. In particular, the
problem of incremental self-deployment using only local information has to our knowl-
edge, not been previously addressed, posing an extra challenge as the deployment strategy
presented here must be developed with little aid from literature.

In literature, it is often assumed that nodes possess omnidirectional sensors or cam-
eras, allowing them to accurately detect and measure the area around them [9, 10, 11, 12,
13, 15]. As discussed in Chapter 3, agents/beacons only possess sensors allowing them to
measure the distance to obstacles in four directions, meaning area measurements are not
readily available for an agent/beacon. This reduced assumption on the sensor capabilities
of nodes contributes to the novelty of the findings in this thesis.

Furthermore, it is assumed that beacons can localize an entity if it can communicate
with said entity. For this reason, a beacon is said to cover the area within which it is
able to communicate with other entities. The fact that the coverage is decided by the
RSS-mapped offset distance, an unknown function of inter-nodal distance, contributes to
the novelty of the approach presented in this thesis, as the coverage itself is an unknown
quantity.

Accurate position estimation can be a difficult task in GNSS denied environments.
Incrementally deploying nodes allows the deploying node to use positional data received
from already deployed nodes when estimating its position, yielding more accurate po-
sition estimates. Although position estimation in GNSS denied environments is not ad-
dressed in this thesis, the incremental nature of the deployment scheme presented here
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will allow deploying nodes to benefit from positional data from nodes already residing
within the environment.

Summarizing, we formulate briefly the overarching objective of this thesis:

Main objective Construct and analyse a high-level control law that deploys a set of
mobile nodes with an unknown range of communication and four range sensors incre-
mentally into an unknown environment, subject to the constraint that the set of deployed
nodes should be dispersed within the environment so as to cover the largest area possi-
ble. The deployed network should, moreover, at all times form a (1-)connected network,
so that information from any node can be acquired at a base station through (multi-hop)
communication.
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Chapter 5

Method

In this section, the iterative manner in which a potential field used for incremental self-
deployment within unknown two-dimensional environments is presented. An attractive
potential field approach is adapted in order to generate virtual inter-nodal (beacon-to-
agent) forces. Applying an attractive potential field for inter-nodal forces is motivated by
the fact that it can be synthesized in terms of only relative positions, a quantity available
to all agents through single-hop communication with neighbouring beacons (see Sec-
tion 3.4). A repulsive potential field depending only on range measurements from the
four range sensors of an agent, used for obstacle avoidance, is also presented.

Seen as the incremental deployment of mobile agents with the aim of area coverage of
unknown environments, where the coverage itself is an unknown quantity (see (3.6)), has
not yet been addressed in litterateur, we take a step back and initially address the problem
in its simplest form, i.e. the 1-dimensional case: Construct a high-level control law for
incrementally deploying agents along an obstacle-free line, ensuring (1-)connectivity of
the resulting network of beacons, and that the deploying agent explores a previously unex-
plored portion of the line. In the 1-dimensional case, it is possible to define exploration in
terms of quantities available to the deploying agent. Hence, in Section 5.2, a neighbour-
induced potential field for sequential deployment along a line, guaranteeing exploration,
is presented.

Then, a potential field concerned with fulfilling the objective defined in Chapter 4 is
presented. In unknown 2D space, defining the essence of exploration using only informa-
tion available to the deployed beacons/agents has proved to be a difficult task. As agents
are only equipped with four range sensors, area measurements are not readily available,
causing a definition of exploration in terms of sensor area coverage to be inconceivable.
Furthermore, as the coverage supplied by a beacon depends on the unknown RSS-mapped
offset distance and is thus itself an unknown quantity, no definition of exploration in terms
of communication coverage is available at this stage. Defining exploration in terms of
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quantities available to the agents has been attempted but has not proven fruitful. For this
reason, we present in Section 5.3 the potential field used for exploring unknown 2D en-
vironments. However, we do not state a definition nor proof that the deploying agent
explores previously unexplored areas.

The proposed field used for self-deployment in unknown 2D-environments depends
on information received from neighbouring beacons and range measurements from four
range sensors. The potential field produces a force that guides the deploying agent to
possibly un-explored areas and away from obstacles. Furthermore, the relative angles of
neighbouring beacons and local knowledge of the environment are used to heuristically
decide the most favourable direction in which succeeding agents should be guided.

5.1 General assumptions

Throughout this section, it is assumed that a network of beacons, B, has already been
deployed. It is assumed that at least one beacon has been deployed such that:

{0} ⊆B

where beacon 0 is called the base station and is located at x0 = 0.

Furthermore, it is assumed that the indices of beacons correspond to the order in which
they were deployed, such that for two indices i, j ∈B, the beacon with the largest index
was the last to be deployed.

A force, Fi, generated by a potential field Ui is assumed to affect an agent, i, according
to the single integrator dynamics described in Section 3.4.1. When a deploying agent, i,
arrives at its equilibrium, xeq

i (Fi = 0 ⇐⇒ xi = xeq
i ), it lands and is re-instantiated as a

beacon. Its index, i, is added to the set of beacons, B. It is assumed that all beacons
except for the base, 0, reached their location by courtesy of the force produced by the
potential field Ui.

It is assumed that the RSS-mapped offset distance, ξi, j, for an agent i relative to a bea-
con j can be acquired through direct communication at regular intervals, and is assumed
to be constant between updates such that ∂ξi, j

∂xi
= 0 between updates.
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5.2 Neighbour induced exploration in 1D environments

For ease of the reader, we restate here the problem addressed in this section:

Construct a high-level control law for incrementally deploying agents along an
obstacle-free line, ensuring (1-)connectivity of the resulting network of beacons, and that
the deploying agent explores a previously unexplored portion of the line.

Incrementally exploring a line is defined as filling the line with beacons positioned
on the line progressively further away from the base station at x0 = 0. In the following
section, the iterative process, in which a potential field that ensures that the deploying
agent explores a previously unexplored portion of the line, and ensuring connectivity of
the network, is presented.

A line, l, parametrized by the direction vector v of unit magnitude (‖v‖= 1) is defined
as:

l(v) = {x ∈ R2 : x = γv,γ ≥ 0}

Thus, a line with parameter v contains all points in Euclidean space that lies in the direc-
tion v from the origin.

5.2.1 Assumptions

It is assumed that the beacon set, B, contains all indices between 0 and i− 1 upon the
deployment of agent i:

B = {0 . . . i−1}

and that the deployed beacons all lie on the line defined by v:

x j = γ jv ∀ j ∈B

where x j is the position of beacon j, and γ j is the distance between beacon j and the
origin.

Furthermore, it is assumed that the base station is located at the origin, i.e. x0 = 0 ⇐⇒
γ0 = 0, and that beacons are positioned along l in order defined by their indices, meaning:

j > k ⇐⇒ γ j− γk > 0 ∀ j,k ∈B (5.1)

It is also assumed that the deployed beacons form a connected network in the sense
that |Nb( j)| ≥ 1 ∀ j ∈B.
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5.2.2 Exploration

As previously stated, the objective of the potential field affecting the deploying agent is
to ensure that it explores a line. Formally an agent i is said to explore the line l with
parameter v iff:

xeq
i = γiv,γi− γ j > 0 ∀ j ∈B (5.2)

where xeq
i denotes the equilibrium point imposed on agent i by the potential field affecting

it.

Taking into account the assumption that beacons are placed progressively further away
from the base station (5.1), (5.2) can be restated as:

xeq
i = γiv,γi− γi−1 > 0

5.2.3 Local exploration

Local exploration is defined as an agent moving beyond (further from the base station)
than all its neighbours. For and agent i with neighbour set Na(i), the agent is said to
explore locally iff:

xeq
i = γiv,γi− γ j > 0 ∀ j ∈Na(i)

Defining m as the maximum beacon index in the neighbour set of agent i, i.e.:

m = max
j∈Na(i)

j

and taking into account the assumption that beacons have been deployed progressively
further away from the base station (5.1), the condition for local exploration can be restated
as:

xeq
i = γiv,γi− γm > 0, m = max

j∈Na(i)
j

5.2.4 Synthesizing a potential field that ensures local exploration
along a line

For an agent i with a single beacon as its neighbour, Na(i) = { j}, the potential field:

Ui =
1
2
‖xi− (x j +ξi, jv)‖2 (5.3)

induces a force in the agent according to:

Fi =−
(
xi− (x j +ξi, jv)

)
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where Fi =− ∂

∂xi
Ui by (2.1) and the assumption that RSS-mapped offset distance is con-

stant between updates is used.

Computing the equilibrium point of agent i when under the influence of the potential
field in (5.3) yields:

Fi|xi=xeq
i
= 0 ⇐⇒ xeq

i = x j +vξi, j = (γ j +ξi, j)v (5.4)

where the assumption that x j = γ jv is used. Thus, for an agent, i, with only one neigh-
bouring beacon, j, the potential field in (5.3) ensures that the agent explores locally due
to the fact that:

γi− γ j = γ j +ξi, j− γ j > ξN > 0

where j = m is the maximum beacon index in the neighbour set of agent i, and ξN > 0 is
the neighbour threshold (3.7).

From (5.4) it can be seen that the equilibrium point imposed on agent i by its neighbour
j lies at the location of beacon j, perturbed in the direction of v by the RSS-mapped offset
distance between the two entities. Seen as the RSS-mapped offset varies positively with
RSS value, which in turn varies inversely with de-facto distance, the equilibrium point
imposed on agent i by its neighbour j moves further from beacon j as the inter-nodal
distance decreases and vice-versa. Hence, agent i will settle some unknown distance
away from beacon j where the trade-off between inter-nodal distance and RSS value is in
equilibrium.

Directly extending the field in (5.3) to the more general case, in which agent i has an
arbitrary number of neighbours, yields:

Ui =
1
2 ∑

j∈Na(i)
‖xi− (x j +ξi, jv)‖2 (5.5)

Computing the force on agent i by applying (2.1) yields:

Fi =−
∂

∂xi
Ui =− ∑

j∈Na(i)
xi− (x j +ξi, jv)

The equilibrium point for agent i is thus:

Fi|xi=xeq
i
= 0 ⇐⇒ xeq

i =
1

|Na(i)| ∑
j∈Na(i)

(x j +ξi, jv)

=
1

|Na(i)| ∑
j∈Na(i)

(γ j +ξi, j)v

such that:
γi =

1
|Na(i)| ∑

j∈Na(i)
(γ j +ξi, j)
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where |Na(i)| is the number of neighbours of agent i.

The local exploration condition demands

γi− γm > 0 ⇐⇒ ∑
j∈Na(i)

(γ j +ξi, j)−|Na(i)|γm

= ∑
j∈Na(i)\{m}

(γ j− γm)+ ∑
j∈Na(i)

ξi, j > 0
(5.6)

As it is assumed that the beacon of largest index, m, is also positioned furthest away
from the base station, every term in the first sum in (5.6) is known to be negative. Since
there is no known relation between the values of ξi, j and the distance between agent i’s
neighbours, it is impossible to conclude that the local exploration condition holds for the
potential field defined in (5.5).

In order to secure local exploration along the line l with parameter v, a final change is
made to the potential field in (5.5), resulting in the following potential field:

Ui =
1
2 ∑

j∈Na(i)
κi‖xi−αi(x j +ξi, jv)‖2, αi,κi > 0 (5.7)

Computing the equilibrium of agent i under (5.7) yields:

Fi|xi=xeq
i
= 0 ⇐⇒ xeq

i =
1

∑ j∈Na(i)κ j
∑

i∈Na(i)
κ jα j(x j +ξi, jv)

=
1

∑ j∈Na(i)κ j
∑

i∈Na(i)
κ jα j(γ j +ξi, j)v

=⇒ γi =
1

∑ j∈Na(i)κ j
∑

i∈Na(i)
κ jα j(γ j +ξi, j)

(5.8)

The equilibrium point for an agent i, defined in (5.8), can be viewed as the center of mass
of a set of point masses where the particle of mass κ j is located at p j = α j(γ j + ξi, j)v.
Thus, increasing α j moves the point p j further from the origin in the direction defined by
v.

Using the equilibrium point in (5.8), the local exploration condition demands:

γi− γm > 0 ⇐⇒ (γi− γm) ∑
j∈Na(i)

κ j = ∑
i∈Na(i)

κ jα j(γ j +ξi, j)− γm ∑
j∈Na(i)

κ j

= ∑
i∈Na(i)\{m}

κ jα jγ j + ∑
i∈Na(i)

κ jα jξi, j + γm

(
κmαm− ∑

j∈Na(i)
κ j

)
> 0

(5.9)

where the first term is non-negative by (5.1) and the fact that the gains αi and κi are both
positive. The second term is positive due to ξi, j > ξN ∀ j ∈Na(i) and m ∈Na(i) =⇒
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Na(i) 6= /0. For m = 0 we have:

(γi− γ0) ∑
j∈Na(i)

κ j = κ0α0ξi,0 > 0 ∀ α0,κ0 > 0 ⇐⇒ γi− γ0 > 0

For m > 0 ⇐⇒ γm > 0 we have:

(γi− γm) ∑
j∈Na(i)

κ j > γm

(
κmαm− ∑

j∈Na(i)
κ j

)
where the inequality arises due to the sum of the first two terms in (5.9) being positive.
Thus:

κmαm− ∑
j∈Na(i)

κ j ≥ 0 =⇒ (γi− γm) ∑
j∈Na(i)

κ j > 0 ⇐⇒ γi− γm > 0 (5.10)

Seen as κ j > 0 ∀ j ∈B, Na(i) ⊆B = {0 . . . i− 1} and m = max j∈Na(i) j we have
that:

∑
j∈Na(i)

κ j ≤
m

∑
j=0

κ j = κm +
m−1

∑
j=0

κ j (5.11)

Applying (5.11) to (5.10) yields a condition on gains αm and κm that ensures that the
deploying agent, i, explores locally:

αm,κm > 0, κm(αm−1)−
m−1

∑
j=0

κ j ≥ 0 =⇒ γi− γm > 0 (5.12)

It is noteworthy that the gains αm and κm can be static and only decided by the in-
dex of the neighbouring beacon, m. As agent m lands and re-instantiates as a beacon, it
can calculate its gains αm and κm satisfying (5.12), and thus always guarantee that any
succeeding agent whose largest neighbour index is m will explore locally.

5.2.5 Proof of global exploration

We denote by xi−1 the position of the previously deployed beacon, i−1. By the assump-
tion that beacons are positioned along the line in order by their index, beacon i− 1 was
positioned furthest from the base, i.e. γi−1 > γ j ∀ j ∈B \{i−1}, upon deploying agent i.

The path taken by the deploying agent, i, can be partitioned into two phases. In the first
phase, the previously deployed beacon, i− 1, is not a neighbour of the deploying agent,
i. In order to simplify the reasoning, assume that beacon i− 1 has not been deployed,
i.e. B = {0 . . . i−2}. Due to the receiver invariance property (3.2), and the fact that the
equilibrium point induced by the potential field (5.8) depends only on properties of an
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agent’s neighbours, deploying agent i with B = {0 . . . i−2} would place it’s equilibrium
at xeq

i = xi−1. Furthermore, the path taken by agent i would match exactly the path taken
by beacon i−1.

In phase two, the deploying agent, i, has followed the exact path taken by beacon i−1
until it encounters beacon i−1, i.e. i−1 ∈Na(i). Since i−1 = max j∈B j, we must have
i−1 = max j∈Na(i) j. Due to the potential field (5.7) guaranteeing local exploration, it can
be concluded that γi > γi−1. Thus the potential field in (5.7) guarantees global exploration.

After the deployment of agent i, the agent is re-instantiated as a beacon and added to
the beacon set (B = {0 . . . i}). As agent i reached its position by virtue of the potential
field defined in (5.7), the location of agent i is now either at the equilibrium point defined
in (5.8) or at some unknown location where the agents neighbour set became empty,
causing the force affecting the agent to vanish. Such a situation might occur due to gains
α j,κ j j ∈Na(i) placing the center of mass, xeq

i , of the virtual set of particles to which
the deploying agent is gravitated towards by the potential field at a location such that
xi = xeq

i =⇒ ξi, j ≤ ξN ∀ j ∈B ⇐⇒ Na(i) = /0.

In case agent i arrived at the equilibrium point defined in (5.8), (3.8) dictates that
the network is still connected after the deployment of agent i due to the network being
connected before deploying agent i and beacon i having at least one neighbour.

If agent i halted deployment due to its neighbour set being empty, by (3.9) it stopped
instantaneously as its neighbour set emptied out. Thus, by (3.7) we must have:

∃ j ∈B = {0 . . . i−1} : ξi, j = ξN =⇒ Nb(i) 6= /0

meaning beacon i has at least one neighbour. By the same argument as before, the network
of beacons is still connected after deploying agent i.
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5.3 Exploration in unknown 2D environments

For ease of the reader, we restate here the problem addressed in this section:

Construct a high-level control law that deploys a set of mobile nodes with an unknown
range of communication and four range sensors incrementally into an unknown environ-
ment, subject to the constraint that the set of deployed nodes should be dispersed within
the environment so as to cover the largest area possible. The deployed network should,
moreover, at all times form a (1-)connected network, so that information from any node
can be acquired at a base station through (multi-hop) communication.

Although exploration along a line can be guaranteed with the neighbour-induced po-
tential field defined in (5.7), it is not suitable for exploration in unknown 2D environments.
In unknown 2D environments, corners might need to be passed or avoided. With the pro-
posed potential field in (5.7), the equilibrium point for any single agent lies on the line
connecting all previously deployed beacons, clearly making it impossible for the deploy-
ing agent to avoid getting stuck in or pass a corner. Due to this, inspiration is taken from
the proposed line-exploring potential field, but modifications are made to make it better
suited for unknown 2D environments.

5.3.1 Neighbour-induced potential field

For an agent i, the potential induced in i by its neighbouring beacons is defined as:

Ui,n =
1
2 ∑

j∈Na(i)
κi, j‖xi− (x j +ξi, jv j)‖2 (5.13)

where Na(i) is the neighbour set of agent i, xi is the position of agent i, x j is the position
of agent i’s neighbouring beacon j, ξi, j is the RSS-mapped offset distance between i and
j, and v j is the exploration vector of beacon j (see Section 5.3.4). The agent relative
gains, κi, j, are defined as:

κi, j =
κ j

∑ j′∈Na(i)κ j′
(5.14)

where the beacon gains, κ j = f ( j)> 0, are static and determined only by the index of the
neighbouring beacon, j.

The force on an agent, i, generated by the potential field created by its neighbours is
found by applying (2.1) to (5.13):

Fi,n =−
∂

∂xi
Ui,n =− ∑

j∈Na(i)
κi, j(xi− (x j +ξi, jv j))
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5.3.2 Selecting beacon gains

Beacon gains κ j are chosen based on the notion that for two consecutive neighbour sets
of an agent i, Na,1(i) and Na,2(i), containing consecutively deployed beacons such that
Na,1(i) = { j, j+1},Na,2(i) = { j+1, j+2}, the difference in contribution from beacon
j versus j+1 should equal the difference in contribution from beacon j+1 versus j+2:[

κi, j+1−κi, j

]∣∣∣
Na(i)=Na,1(i)

=
[
κi, j+2−κi, j+1

]∣∣∣
Na(i)=Na,2(i)

(5.15)

Expanding (5.15) yields:
κ j+1−κ j

κ j+1 +κ j
=

κ j+2−κ j+1

κ j+2 +κ j+1
⇐⇒ κ

2
j+1−κ jκ j+2 = 0 (5.16)

Choosing beacons gains according to:

κ j = t j, t > 0 (5.17)

Yields a valid solution to (5.16):

κ
2
j+1−κ jκ j+2 =

(
t j+1

)2

− t jt( j+2) = t2( j+1)− t2 j+2 = 0

where t > 0 is named the gain factor, and is common for all agents.

With the choice of beacon gains as in (5.17), an agent i has its equilibrium at:

Fi,n|xi=xeq
i
= 0 ⇐⇒ − ∑

j∈Na(i)
κi, j(xi− (x j +ξi, jv j)) = 0

⇐⇒ ∑
j∈Na(i)

κi, jxi = ∑
j∈Na(i)

κi, j(x j +ξi, jv j)

⇐⇒ xeq
i = ∑

j∈Na(i)
κi, j(x j +ξi, jv j)

where it is used that agent relative gains are normalized so that ∑ j∈Na(i)κi, j = 1. Thus, the
equilibrium point of agent i can be viewed as the center of mass of the system of virtual
particles located at p j = x j +ξi, jv j with masses m j = κi, j.

Seen as the most recently deployed neighbour of agent i is the beacon of highest index,
the gain factor, t, is chosen as a value greater than one:

t > 1

Thus, the centre of mass of the system of particles consisting of agent i’s neighbours
is moved in the direction of the virtual particle defined by its most recently deployed
neighbour.

By (5.13) and (5.14), choosing beacon gains as in (5.17) with gain factor t > 1 yields
the following neighbour-induced potential for an agent i:

Ui,n =
1
2

(
∑

j∈Na(i)
t j
)−1

∑
j∈Na(i)

t j‖xi− (x j +ξi, jv j)‖2, t > 1 (5.18)

30



CHAPTER 5. METHOD 5.3. EXPLORATION IN UNKNOWN 2D ENVIRONMENTS

5.3.3 Sensing the environment

In litterateur, agents are often assumed to be equipped with omnidirectional range sen-
sors such that an agent is always able to determine the shortest distance and direction
to surrounding obstacle [9, 11, 12, 32]. In this thesis, however, agents are assumed to
be equipped with only four range-sensors capable of measuring the range to obstacles in
orthogonal/anti-parallel directions. Due to this, an alternative scheme for detecting the
range and proximity to obstacles is presented.

It is assumed that an agent, i, is equipped with 4 range sensors (Section 3.6), rs j, j =
1 . . .4 mounted in the center of origin in the agent’s HOST frame at equally spaced angles
ψrs j,i =

π

2 j. All range sensors are assumed to have the same maximum sensing range
Rs. In order to attain the proximity and direction to obstacles surrounding an agent, the
obstacle avoidance vector vi,o is defined as:

vi,o =
4

∑
j=1

r jR(ψrs j)ex =
4

∑
j=1

r j (5.19)

where r j is the range measurement made by rs j, ψrs j = ψi +ψrs j,i is the orientation of
range sensor rs j relative to the inertial x-axis and ψi is the orientation of the agent on
which the range sensors are mounted.

Computing the magnitude of the obstacle avoidance vector yields:

‖vi,o‖=
∥∥∥ 4

∑
j=1

r jR(ψrs j)ex

∥∥∥= ∥∥∥ 2

∑
j=1

(r j− r j+2)R(ψrs j)ex

∥∥∥
=
∥∥∥(r1− r3)R(ψrs1)ex +(r2− r4)R(ψrs2)ex

∥∥∥
=

∥∥∥∥∥
[

r1− r3

r2− r4

]∥∥∥∥∥=
√
(r1− r3)2 +(r2− r4)2

where it is used that ψrs j+2 = π +ψrs j , j = 1,2 and R(ψrs1)ex ⊥ R(ψrs2)ex.

Figure 5.1 shows the resulting obstacle avoidance vector, vo, for an agent where a
single range sensor senses an obstacle. As shown in the figure, the measured range equals
the minimum distance between the agent and the obstacle if and only if the range sensor
making the measurement has its axis perpendicular to the obstacle’s surface.

The direction and magnitude of the obstacle avoidance vector are decided by the asym-
metry in range measurements. We will refer to the magnitude of the obstacle avoidance
vector as the level of asymmetry in the environment. When there is no asymmetry in
range measurements (ri = ri+2, i = 1,2), as depicted in Figure 5.2, the obstacle avoid-
ance vector has a magnitude of zero. When there is asymmetry in range measurements
(∃ i ∈ {1,2} : ri 6= ri+1), the obstacle avoidance vector has non-zero magnitude, and is
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said to be pointing in the direction leading away from the sensed virtual wall. As depicted
in Figure 5.3, when placed in a right corner, the obstacle avoidance vector points in the
direction leading away from the virtual wall intersecting both sensed walls at an angle of
45 degrees.

Rs

r3

r2

r4

vo
r1

Figure 5.1: Range measurement vectors, r j, j = 1 . . .4 and resulting obstacle avoidance vector,
vo, for an agent obstructed by a wall.

Rs

r3

r2

r4

r1

Figure 5.2: Range measurement vectors, r j, j = 1 . . .4 and resulting obstacle avoidance vector,
vo = 0, for an agent obstructed by two walls equidistant from the agent.

Rs

r3

r2

vo

Figure 5.3: Range measurement vectors, r j, j = 1 . . .4 (r1 = r4 = 0) and resulting obstacle avoid-
ance vector, vo, for an agent obstructed by two walls.
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5.3.4 Selecting exploration vectors

As in the potential field used for exploring a line (5.7), the exploration vectors, v j, in
(5.13) defines a direction in which the equilibrium point imposed by a single neighbour,
j, is perturbed away from the location, x j, of that neighbour. The exploration vectors are
static for all beacons and defined upon the event that an agent has deployed and re-instates
as a beacon.

When an agent, i, has landed and has just been re-instantiated as a beacon, it computes
its exploration vector, vi, based on the notion that agents that are yet to be deployed should
be guided to the region of most open/unoccupied space. We denote by i the index of the
beacon that has just landed and present in the following section how beacon i computes
its exploration vector, vi.

It is assumed that beacon i has neighbours Nb(i) placed at x j =
[
x j y j

]T
, j ∈Nb(i),

and an obstacle avoidance vector, vi,o, as defined in (5.19). Using the position of beacon
i’s neighbours relative to beacon i and the obstacle avoidance vector of beacon i, the unit
circle is partitioned into a set of sectors. A threshold value, τo, is used to define a level
of asymmetry that can be sensed before agent i should guide other agents in the direction
leading away from the sensed (virtual) wall.

We define the angle of the line connecting a beacon i to a beacon j, measured at
beacon i relative to the xn-axis as:

θi, j = arctan2(y j− yi,x j− xi)

where arctan2 is the arc-tangent function that takes into account the signs of its arguments
and returns the angle as a value in the range [0,2π) in the correct quadrant and xi =[
xi yi

]T
is the position of beacon i.

We define Ai as a set of angles:

Ai =

{
{θi, j, j ∈Nb(i)} ,‖vi,o‖< τo

{θi, j, j ∈Nb(i)}∪{∠vi,o− π

2 ,∠vi,o +
π

2} ,‖vi,o‖ ≥ τo
(5.20)

where ∠(·) returns the angle of its argument relative to the inertial xn-axis. Thus, Ai

contains the direction from beacon i to all its neighbours. In addition, depending on the
magnitude of the obstacle avoidance vector, two additional angles perpendicular to vi,o

might or might not be added to Ai. The reason for this will be explained in time.

A sector, Sk, is defined as a 2-tuple according to:

Sk = {θk,start ,θk,end}
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where θk,start < θk,end denotes the starting and ending angle of the sector respectively. We
say that a sector Sk contains an angle, θ , and denote it by θ ∈ Sk iff:

θk,start ≤ θ ≤ θk,end

Using the set of angles, Ai, as defined in (5.20), the unit circle surrounding beacon
i is partitioned into a set of sectors, denoted by Si. It is assumed that Ai is sorted so
that a j+1 > a j ∀ j = 1 . . . |Ai|− 1 where a j denotes the j’th element in Ai. Furthermore
it is assumed that a j ∈ [0,2π) ∀ j = 1 . . . |Ai|, and by some abuse of notation we let
a|Ai|+1 = a1 + 2π , where a1 is the first, and thus the smallest element in Ai. Using this,
the unit circle surrounding beacon i is partitioned:

Si = {S j, j = 1 . . . |Ai|}

where
S j = {a j,a j+1}

denotes the j’th circle sector containing all angles between a j and a j+1.

A greedy heuristic is used for choosing the sector, Si, to which beacon i should guide
succeeding agents. In the case that the magnitude of vi,o does not exceed the threshold τo,
the sector of largest arc length is chosen. In the case that the magnitude of vi,o does exceed
the threshold τo, sectors laying in the same half-plane as the sensed (virtual) obstacle
relative to beacon i are not chosen. Thus, the exploration sector of beacon i is defined as:

Si,exp =

{
argmaxSk∈Si

Lk, ‖vi,o‖< τo

argmaxSk∈Si
Lk s.t. θ̄θθ

T
k vi,o > 0, ‖vi,o‖ ≥ τo

(5.21)

where Lk = θk,end − θk,start and θ̄k = 1
2(θk,end + θk,start) denote the arc length and the

orientation of the internal angle bisector [33] of the k’th circle sector respectively. θ̄θθ k =[
cos(θ̄k) sin(θ̄k)

]T
is the unit vector in the direction of the internal angle bisector of

the k’th sector. The constraint applied when ‖vi,o‖ ≥ τo ensures that the selected sector
contains only directions leading away from the sensed obstacle seen as the direction of
vi,o is always perpendicular to the surface of a sensed (virtual) wall. Visual examples of
how a beacon partitions the unit circle around it and chooses its exploration sector are
provided in Figure 5.4 and Figure 5.5.

Assume now that a beacon i has only one neighbour, j, and denote by θi, j the direction
of the vector from beacon i to j relative to the inertial xn-axis. Assume also that ‖vi,o‖≥ τo

such that the constrained optimization is performed in (5.21) when finding beacon i’s
exploration sector. Now, if Ai = {θi, j} is used such that Si = {S1}= {{θi, j,θi, j +2π}},
the only possible sector beacon i could possibly choose would have an internal bisector
angle of θ̄1 =

1
2(θi, j +2π +θi, j) = θi, j +π . If beacon j is positioned so that θ̄θθ

T
1 vi,o ≤ 0,

the constrained optimization problem in (5.21) has no feasible solution.
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The problem of encountering a situation where (5.21) has no feasible solution is solved
by including the two angles perpendicular to the obstacle avoidance vector in beacon i’s
set of sector constraining angles, Ai. We define the two angles perpendicular to vi,o as
θ± = ∠vi,o± π

2 . Without loss of generality assume that, post wrapping the angles to the
range [0,2π), we have θ− < ∠vi,o < θ+.

In the trivial case, θ− and θ+ are consecutive elements in Ai such that ∃ Sk ∈Si : Sk =

{θ−,θ+} with internal angle bisector:

θ̄k =
1
2
(θ++θ−) =

1
2
(∠vi,o +

π

2
+∠vi,o−

π

2
) = ∠vi,o

Thus, θ̄θθ k ‖ vi,o =⇒ θ̄θθ
T
k vi,o > 0 and (5.21) has at least one feasible solution.

In the general case, there might exist angles, θa,θb ∈Ai satisfying θ− < θa ≤ θb < θ+

such that:
{S−,S+}= {{θ−,θa},{θb,θ+}} ⊆Si

Computing the orientations of the internal angle bisectors of the sectors S− and S+ yields:

θ̄− =
1
2
(θa +θ−)> θ−

θ̄+ =
1
2
(θ++θb)< θ+

Thus:

∠vi,o− θ̄− < ∠vi,o− (∠vi,o−
π

2
) =

π

2
=⇒ θ̄θθ

T
−vi,o > 0

θ̄+−∠vi,o < (∠vi,o +
π

2
)−∠vi,o =

π

2
=⇒ θ̄θθ

T
+vi,o > 0

meaning (5.21) has at least two feasible solutions.
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θ4,1

S2

1

2

3

Figure 5.4: Beacon 4 with Nb(4) = {1,2,3} senses no asymmetry in the environment (‖v4,o‖ =
0) and chooses its exploration sector, S4,exp, as the sector with largest arc length, S3.

1

2

3

S2 = S4,exp

� v4,o −
π

2

Figure 5.5: Beacon 4 with Nb(4) = {1,2,3} senses sufficient asymmetry in the environment
(‖v4,o‖> τo). Sector S4 and S5 do not fulfill the constraint in (5.21) and are disregarded. Beacon
4 chooses its exploration sector, S4,exp, as the sector within the half-plane define by the obstacle
avoidance vector with largest arc length, S2.
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Algorithm 1 implements the scheme for selecting beacon i’s exploration sector where
the ’wrapAngle’-routine takes as argument an angle and returns a corresponding angle
in the interval [0,2π). It is noteworthy that all sectors pass the ’if’-check on line 15 of
Algorithm 1, and are accepted as valid sectors, if the magnitude of the obstacle avoidance
vector is sufficiently small. If the magnitude of the obstacle avoidance vector exceeds the
threshold τo, the set of angles is updated on line 8 and 9, and only sectors fulfilling the
contraint in (5.21) are accepted as valid sectors.

Algorithm 1 Computing the exploration sector for a beacon, i
1: procedure GETEXPLORATIONSECTOR(

vi,o: obstacle avoidance vector for beacon i,
Nb(i): neighbour set of beacon i)

2: angles← [], initiate angles array as empty list
3: valid_sectors← [], initiate array of valid sectors as empty list
4: for j ∈Nb(i) do
5: angles← wrapAngle(atan2(y j− yi,x j− xi))

6: end for
7: if ‖vi,o‖ ≥ τo then
8: angles← wrapAngle(∠(vi,o)+

π

2 )

9: angles← wrapAngle(∠(vi,o)− π

2 )

10: end if
11: sort(angles), sort angles in ascending order (in place)
12: angles← angles[1]+2π

13: for k← 1 to length(angles)−1 do
14: θ̄k← 1/2(angles[k+1]+angles[k])
15: if ‖vi,o‖< τo or

[
cos(θ̄k) sin(θ̄k)

]
vi,o > 0 then

16: Lk← angles[k+1]−angles[k]
17: valid_sectors← sector with internal bisector angle θ̄k and arc length Lk

18: end if
19: end for
20: return argmaxS∈valid_sectors S.L
21: end procedure

Given the exploration sector, Si,exp of beacon i, we denote by θ̄θθ i,exp and Li,exp the unit
vector in the direction of the internal angle bisector and arc length of Si,exp respectively.
The exploration vector of beacon i is chosen as:

vi = R(r)θ̄θθ i,exp, r ∼U (−Li,exp/4,Li,exp/4) (5.22)

where R(·) ∈ SO(2) is the two dimensional rotation matrix [28] and r is a uniformly
distributed random variable. A continuous random variable has a uniform distribution on
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the interval [rmin,rmax] if its probability density function is given by [34]:

f (x) =

{
1

rmax−rmin
, rmin ≤ x≤ rmax

0, otherwise

Applying the random rotation, r, within the exploration sector of beacon i when com-
puting beacon i’s exploration vector is motivated by the fact that applying a random rota-
tion might prevent agents from deploying in a straight line and instead explore the plane,
as illustrated by a simple example:

Assume that beacon 1 has deployed and landed with the base station (beacon 0) as
its only neighbour such that x1 = x0 +ξ1,0v0. By Algorithm 1, beacon 1 would compute
its exploration sector as S1,exp = {∠(x0− x1),∠(x0− x1) + 2π}. Ignoring the random
component in (5.22), computing the exploration vector for beacon 1 yields:

θ̄1,exp =
1
2
(∠(x0−x1)+∠(x0−x1)+2π) = ∠(x0−x1)+π

=⇒ v1 = θ̄θθ 1,exp =

[
cos(∠(x0−x1)+π)

sin(∠(x0−x1)+π)

]
=− x0−x1

‖x0−x1‖

=−
x0− (x0 +ξ1,0v0)

‖x0− (x0 +ξ1,0v0)‖
=

ξ1,0v0

‖ξ1,0v0‖
= v0

where it is used that ξ1,0 > 0.

Thus, beacon 1 would induce other agents to explore along the line between itself and
beacon 0. If more agents were to be deployed, following the same scheme for choosing
their exploration vectors, all agents would land on the line defined by v0. Performing mul-
tilateration/position estimation using beacons positioned on a line is not possible [35]. If
the deployed beacons are to be used to support the navigation of the deploying agent by
multilateration, they must not be positioned along a line. They should form a sparse con-
figuration, and we enforce this by applying the random rotation, R(r), when computing
the exploration vector of a beacon.

Choosing the random component in (5.22) as a uniformly distributed random variable
in the range ±Li,exp/4 is motivated by the fact that it guarantees that agents affected by
only one beacon, i, will have their equilibrium point, when under the influence of the
potential field in (5.13), somewhere within the exploration sector of beacon i. For an
agent j with beacon i as its only neighbour, the potential field defined in (5.13) yields an
equilibrium point for agent j at:

xeq
j = xi +ξ j,ivi = xi +ξ j,iR(r)θ̄θθ i,exp

where vi = R(r)θ̄θθ i,exp as per (5.22). This gives the angle of agent j, when at its equilib-
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0

1

0

Figure 5.6: A beacon, 1, with one neighbour, 0. Beacon 1’s exploration sector spans the entire unit
circle. The green sub-sectors contain all directions in which beacon 1 might choose it’s exploration
vector when r ∼U (−Li,exp/2.Li,exp/2) (left) and r ∼U (−Li,exp/4.Li,exp/4) (right).

rium, relative to beacon i:

∠(xeq
j −xi) = ∠

(
xi +ξ j,iR(r)θ̄θθ i,exp−xi

)
= θ̄i,exp + r ∈ Si,exp ∀ |r| ≤ Li,exp/2

(5.23)

where Si,exp is the exploration sector of beacon i. Since the random component, r, is
bounded by |r| ≤ Li,exp/4 < Li,exp/2, agent j has its equilibrium within the exploration
sector of beacon j.

By (5.23), it is clear that the range within which r is distributed could be chosen less
conservatively and would still yield equilibrium points for agents within the exploration
sector of the beacon. Increasing the bounds to ±Li,exp/2 would, however, allow for the
possibility of guiding agents directly towards neighbouring beacons as illustrated in Fig-
ure 5.6. This is not satisfactory as it might cause agents to cluster. Selecting the bounds
on r as±Li,exp/4 is thus a trade-off between inducing agents to explore the plane while at
the same time avoiding clustering.
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5.3.5 Obstacle-induced potential field

In potential field approaches, the direction and the shortest distance to an obstacle are
usually retrieved by omnidirectional range sensors and are used to compute a repelling
force causing the agent to move away from the obstacles [12, 32]. As agents are assumed
to be equipped with only four range sensors, there is no guarantee that the measured range
to an obstacle equals the minimum distance between the agent and the obstacle. Hence,
we present here a potential field-based obstacle repelling approach inspired by [32], but
tailored to fit agents possessing only four range sensors.

Given the four range sensors of an agent, rs j, j = 1 . . .4, returning corresponding
measurements r j, j = 1 . . .4, the range induced potential from the j’th range sensor is
defined as:

Ui,rs j = κo

(
ln
(Rs

r j

)
−

Rs− r j

Rs

)
(5.24)

where κo≥ 0 is a parameter deciding the strength of the potential field, Rs is the maximum
sensing range for all range sensors and r j ∈ [0,Rs] is the measurement returned by the j’th
range sensor of agent i.

The force induced in an agent, i, by its j’th range sensor is found by applying (2.1) to
the obstacle induced potential field in (5.24):

Fi,rs j =−
∂Ui,rs j

∂xn
i

=−
∂Ui,rs j

∂ r j
·

∂‖r j‖
∂xn

i

=−
∂Ui,rs j

∂ r j
·

∂‖r j‖
∂r j

·
∂r j

∂xn
i

=−κo

(
1
r j
− 1

Rs

)
r j

r j

where ‖r j‖= r j by (5.19) and it is used that r j can be written as:

r j = on
j − (xn

i +R(ψi)xi
rs j
) (5.25)

where on
j is the point on an obstacle sensed by range sensor rs j, xn

i and ψi are the position
and orientation of agent i relative to the inertial EN frame respectively, and xi

rs j
is the

position of range sensor rs j with respect to agent i’s HOST frame. Differentiation of
(5.25) yields:

∂r j

∂xn
i
=−I2×2

where I2×2 is the identity matrix.

Combining the potential from all range sensors of an agent yields the total potential
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induced in an agent due to the environment:

Ui,o = κo

4

∑
j=1

ln
(Rs

r j

)
−

Rs− r j

Rs
(5.26)

This yields the force exerted on an agent, i, by the environment as:

Fi,o =−κo

4

∑
i=1

(
1
r j
− 1

Rs

)
r j

r j
(5.27)

Plots of the potential and force induced in an agent, i, by its range sensor rs j are
shown in Figure 5.7 and Figure 5.8 respectively. It is noteworthy that the force induced
by a range sensor is directed in the opposite direction of the range measurement and that
the force grows in magnitude as the measured range decreases.

0 Rs

rj

0

2

4

6

8

U
i,r

s j
/

o

Figure 5.7: Potential Ui,rsk induced by a range sensor, rs j, in an agent i. The potential tends to
infinity as the measured range tends to zero.
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Figure 5.8: Magnitude and direction of the force Fi,rsk induced by a range sensor, rs j, on an agent
i. As seen in the polar plot, the direction of the force is in the opposite direction of the sensor
measurement (r j), and the magnitude of the force tends to infinity as the measured range tends to
zero, and is zero when the measured range equals the maximum sensing range, Rs.
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5.3.6 Potential field for exploration of unknown 2D environments

The neighbour- and obstacle induced potential fields presented in Section 5.3.1 and Sec-
tion 5.3.5 are combined to give a net potential for an agent i:

Ui =Ui,n +Ui,o

where Ui,n is the neighbour induced potential as defined in (5.13) and Ui,o is the obstacle
induced potential as defined in (5.26).

The combined potential field generates a reactive force in an agent i according to:

Fi =

{
Fi,n +Fi,o, Na(i) 6= /0

0, otherwise
(5.28)

where Fi,n is the force on agent i due to its neighbours as defined in (5.18) and Fi,o is the
force in agent i due to obstacles surrounding it as defined in (5.27).

The condition on the neighbour set of the agent being non-empty in (5.28) is added in
order to ensure that obstacle-induced forces do not cause the agent to settle at a position
rendering the network of beacons disconnected: assume that the network of beacons is
connected before deploying agent i. If there is no net force on the agent and the neighbour
set of the agent is non-empty, the agent will stop moving, re-instantiate as a beacon, and
the connectivity of the network will be preserved by (3.8). If there is no net force on the
agent due to its neighbour set being empty, the net force vanished the very instant the
agent lost its last neighbour, and by (3.9) the agent stopped instantly. We denote by j
the last neighbour agent i had before its neighbour set emptied out. The instant agent i’s
neighbour set became empty, by the definition of the neighbour set of an agent (3.7) we
must have:

ξi, j = ξN

where ξN is the neighbour threshold. Upon re-instantiating agent i as a beacon, by def-
inition (3.5), the neighbour set of beacon i contains beacon j. Thus beacon i has at least
one neighbour, and the network is still connected.

In practical applications, the locomotive platform of an agent sets a bound on the speed
at which the agent can move. The virtual force, Fi, induced in an agent might demand a
velocity beyond the capabilities of the locomotive platform of the agent. For this reason,
the net force on an agent i is saturated so that:

ui =

{
Fi ,‖Fi‖ ≤ vmax
vmax
‖Fi‖Fi ,‖Fi‖> vmax

where ui is the velocity of agent i under (3.9) and vmax is the maximum velocity at which
the locomotive platform of the agent can operate.
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Chapter 6

Simulating deployment in unknown
2D-environments

As previously stated, agents are incrementally deployed from the location of a base sta-
tion into an unknown environment. The process of detecting that a new agent should be
deployed is controlled by the base station upon receiving a message from the previously
deployed agent. The deployment of a new agent is handled by the deploying agent entirely
as only local information is used during self-deployment.

Algorithm 2 shows the logic used at the base station when deploying a pre-determined
number of agents into an unknown environment. Algorithm 3 shows the logic used inter-
nally by an agent as it self-deploys into an unknown environment. It is noteworthy that
an agent might land due to a lack of neighbours, as captured by the ’if’-check on line 9
in Algorithm 3. Forces produced by the obstacles surrounding an agent might cause it to
lose contact with all beacons.

In Section 6.1, two metrics used to evaluate the performance of the deployments gen-
erated by the proposed approach are presented. In section Section 6.2 results obtained by
deploying agents into two different environments are shown. The results are generated by
a custom simulator implementing Algorithms 1 to 3 in the C++ programming language.
The simulator is available at [36].
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Algorithm 2 Deploying agents into an unknown environment
1: procedure DEPLOYAGENTS(

vo: exploration vector pointing to the interior of the unknown environment,
xo: position of the base station,
N: number of agents to deploy)

2: for i← 1 to N do
3: Tell agent i to self-deploy using Algorithm 3
4: while message that agent i has landed has not been received do
5: wait
6: end while
7: end for
8: end procedure

Algorithm 3 Procedure used by an agent, i, to self deploy in an unknown environment
1: procedure AGENTSELFDEPLOY(x0: position of base station)
2: xi← x0, self-deploy agent i starting from base station
3: while True do
4: broadcast signal and measure ξi, j from all received signals
5: Na(i)← compute neighbour set using (3.7)
6: Fi← compute total force using (5.28)
7: if Fi = 0 then
8: break while, land due to zero net force
9: else if |Na(i)|= 0 then

10: break while, land due to lack of neighbours
11: end if
12: ẋi←saturate(Fi,vmax), apply saturated force as control input
13: end while
14: ẋi = 0, land
15: re-instantiate agent i as beacon such that |Nb(i)|> 0
16: vi← compute exploration vector using Algorithm 1
17: broadcast signal that agent i has landed
18: end procedure
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6.1 Metrics

As the information available to the deployed beacons is minimal, a suitable metric must be
applied to evaluate the performance of the deployed WSN. The only information stored
locally at a beacon is its position and range measurements from its four range sensors.
Furthermore, it is able to communicate with its neighbours and is hence able to retrieve
their positions and range measurements. In this section, two performance metrics are
presented. One of which is dependant only on data available locally to agents/beacons
and hence may be applied in real-world situations. The other metric depends on infor-
mation assumed unavailable to agents and is only fitting for evaluating performance in a
simulation environment.

6.1.1 Uniformity

Heo and Varshney propose in [16] uniformity as a metric for evaluating the quality of
the topology of a distributed sensor network. Uniformity is defined as the average local
standard deviation of the distances between nodes:

U =
1
|B| ∑i∈B

Ui

Ui =

√
1

|Nb(i)| ∑
j∈Nb(i)

(‖xi−x j‖− d̄i)2

d̄i =
1

|Nb(i)| ∑
j∈Nb(i)

‖xi−x j‖

where | · | takes as argument a set and returns the size of its argument, B is the set con-
taining indices of all beacons in the network and Nb(i) is the neighbour set of beacon i.
In the calculation of beacon i’s local uniformity, Ui, only information available locally to
beacon i is used. This makes uniformity a suitable metric in a distributed system.

In a network with a smaller value of uniformity, beacons are more uniformly dis-
tributed. In a uniformly distributed WSN, energy is spent evenly throughout the WSN.
This causes the energy consumption per communication as well as the expected lifetime
of each beacon to be "almost the same" [16], resulting in increased system lifetime.
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6.1.2 Covered area within the ROI

Although the area of an unknown ROI is indeed unknown, and the signal strength at a
certain distance is unpredictable in real-world applications, it is possible to determine the
area covered by the deployed WSN in a simulation environment.

Given a neighbour threshold, ξN , and the model of the RSS-mapped offset distance
as defined in (3.3), the communication range of beacons can be decided:

ξN =
ξ̄

2
+

ξ̄

2
cos
(

π
Rc−dper f

dnone−dper f

)
⇐⇒ Rc =

dnone−dper f

π
cos−1

(2ξN − ξ̄

ξ̄

)
+dper f

(6.2)

where Rc is the beacon communication range and it is assumed that 0 < ξN < ξ̄ .

Now, for a WSN comprised of beacons i ∈B, the set of points covered by the WSN
can be computed as:

CB =
⋃

i∈B
ci

where ci defined in (3.6) is the circle centered at beacon i’s position xi with radius Rc.

Given an environment, E, with No > 1 obstacles, an outer outer boundary ∂O1 within
which we wish to cover area and obstacles O2 . . .ONo , the ROI can be defined as:

ROI = O1 \
No⋃
i=2

Oi

As in [16], coverage is defined as the ratio of the area covered by the WSN within the
ROI and the entire area of the ROI:

C =
Area(CB ∩ROI)

Area(ROI)

where the Area(·) function returns the area of a finite set of points.
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6.2 Results

The proposed deployment scheme is tested in two different environments of different

shape and size. The initial beacon (base station), 0, is always located at x0 =
[
0 0

]T
with

an exploration vector, v0, oriented at 45◦ relative to the inertial xn-axis. The properties
of the environments in which the deployment scheme is tested are summarized in table
Section 6.2. For simplicity, we assume an agent i is always aligned with the inertial xn-
axis so that ψi = 0. This is motivated by the ability of a quadcopter to fly in any direction
irrespective of its horizontal rotation.

Name Area Description
Ten-by-ten 100 m2 10-by-10 meter square
Stripa 616 m2 10-by-64 meter hallway with two narrow passages

Table 6.1: Environment properties

Parameter values that remain unchanged through all simulations are summarized in
Table 6.2.

Parameter Value Description
κo 0.1 Obstacle potential gain
τo 1 [m] Exploration vector obstacle avoidance threshold
Rs 2 [m] Maximum range sensor range
vmax 4 [m/s] Maximum velocity
t 1.5 Gain factor
ξN 0.5 [m] RSS-mapped neighbour threshold distance

Table 6.2: Parameters used in all simulations

6.2.1 Ten-by-ten

Simulations are performed in the Ten-by-ten environment in order to attain results compa-
rable to those in [16]. In [16], a communication range of Rc = 4 meters and a sensor range
of Rs = 2 meters is used during simulation. Hence, parameters for the RSS-mapped offset
distance function are chosen so that ξi, j = ξN ⇐⇒ ‖xi− x j‖ = 4, and the maximum
range for all range sensors is set to Rs = 2.

Table 6.3 contains a summary of the parameters used in the RSS-mapped offset dis-
tance function in order to achieve a communication range of 4 meters. The parameters
are varied in order to investigate the behaviour of the deployment under different condi-
tions. One hundred deployments are performed for each combination of parameters in
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order to investigate the effect of the random component used when choosing a beacon’s
exploration vector (5.22).

Combination name ξ̄ dper f dnone

Higher-max 20 2 ∼ 4.225
High-max 10 2 ∼ 4.335
Medium-max 5 2 ∼ 4.515
Low-max 1 2 6

Table 6.3: Parameters for the RSS-mapped offset distance function in (3.3).

Uniformity, coverage and sample distributions are shown in Figures 6.1 to 6.3, Fig-
ures 6.4 to 6.6, Figures 6.7 to 6.9 and Figures 6.10 to 6.12 when Higher-max, High-max,
Medium-max and Low-max parameters are used in the RSS-mapped offset distance func-
tion.
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Figure 6.1: Average (blue dot), maximum (upper bar), and minimum (lower bar) uniformity
versus the number of deployed beacons over 100 runs in the Ten-by-ten environment with Higher-
max RSS-mapped offset distance function parameters.
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Figure 6.2: Average (blue dot), maximum (upper bar), and minimum (lower bar) coverage versus
the number of deployed beacons over 100 runs in the Ten-by-ten environment with Higher-max
RSS-mapped offset distance function parameters.
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Figure 6.3: Sample configurations after (a) 10, (b) 30, (c) 40 and (d) 50 deployed beacons us-
ing Higher-max parameters in the RSS-mapped offset distance function. Exploration vectors are
represented as black lines.
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Figure 6.4: Average (blue dot), maximum (upper bar), and minimum (lower bar) uniformity
versus the number of deployed beacons over 100 runs in the Ten-by-ten environment with High-
max RSS-mapped offset distance function parameters..
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Figure 6.5: Average (blue dot), maximum (upper bar), and minimum (lower bar) coverage versus
the number of deployed beacons over 100 runs in the Ten-by-ten environment with High-max
RSS-mapped offset distance function parameters.
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Figure 6.6: Sample configurations after (a) 10, (b) 30, (c) 40 and (d) 50 deployed beacons with
High-max RSS-mapped offset distance function parameters. Exploration vectors are represented
as black lines.
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Figure 6.7: Average (blue dot), maximum (upper bar), and minimum (lower bar) uniformity ver-
sus the number of deployed beacons over 100 runs in the Ten-by-ten environment with Medium-
max RSS-mapped offset distance function parameters.
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Figure 6.8: Average (blue dot), maximum (upper bar), and minimum (lower bar) coverage versus
the number of deployed beacons over 100 runs in the Ten-by-ten environment with Medium-max
RSS-mapped offset distance function parameters.
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Figure 6.9: Sample configurations after (a) 10, (b) 30, (c) 40 and (d) 50 deployed beacons with
Medium-max RSS-mapped offset distance function parameters. Exploration vectors are repre-
sented as black lines.
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Figure 6.10: Average (blue dot), maximum (upper bar), and minimum (lower bar) uniformity
versus the number of deployed beacons over 100 runs in the Ten-by-ten environment with Low-
max RSS-mapped offset distance function parameters.
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Figure 6.11: Average (blue dot), maximum (upper bar), and minimum (lower bar) coverage versus
the number of deployed beacons over 100 runs in the Ten-by-ten environment with Low-max RSS-
mapped offset distance function parameters.
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Figure 6.12: Sample configurations after (a) 10, (b) 30, (c) 40 and (d) 50 deployed beacons with
Low-max RSS-mapped offset distance function parameters. Exploration vectors are represented
as black lines.
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6.2.2 Stripa

Simulations in the Stripa environment are performed in order to evaluate the performance
of the proposed deployment scheme in a more complex environment. Stripa is chosen
as it is a well-known part of the NTNU Gløshaugen campus and allows evaluation of the
deployment scheme in a more realistic and non-convex environment. As seen in the layout
of the environment in Figure 6.13, there are two narrow passages that must be passed in
order to enter new sections of the environment.
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x [m]

0
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y 
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]

Figure 6.13: The Stripa environment

In the Stripa environment, only Higher-max parameters are used for the RSS-mapped
offset distance function (3.3) as these were the values that yielded the fastest coverage (in
terms of network size) in the Ten-by-ten environment. For ease of the reader the parameter
values are summarized in Table 6.4.

Combination name ξ̄ dper f dnone

Higher-max 20 2 4.225

Table 6.4: Parameters for the RSS-mapped offset distance function in (3.3).

100 deployments of 100 agents are performed. Figure 6.14 and Figure 6.15 show the
average, maximum and minimum uniformity and coverage versus number of deployed
beacons over the 100 deployments, respectively. Figures 6.16 to 6.19 show the configu-
ration, coverage- and uniformity trajectories of the worst- and best performing (in terms
of coverage) deployments after 20 deployed beacons. Figures 6.20 to 6.23 show the con-
figuration, coverage- and uniformity trajectories of the worst- and best performing (in
terms of coverage) deployments after 50 deployed beacons. Figures 6.24 to 6.27 show the
configuration, coverage- and uniformity trajectories of the worst- and best performing (in
terms of coverage) deployments after 100 deployed beacons.
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Figure 6.14: Average (blue dot), maximum (upper bar), and minimum (lower bar) uniformity
versus the number of deployed beacons over 100 runs in the Stripa environment with Higher-max
RSS-mapped offset distance function parameters.
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Figure 6.15: Average (blue dot), maximum (upper bar), and minimum (lower bar) coverage versus
the number of deployed beacons over 100 runs in the Stripa environment with Higher-max RSS-
mapped offset distance function parameters.
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Figure 6.16: Configuration giving highest coverage after 20 deployed beacons in the Stripa envi-
ronment. Exploration vectors are represented as black lines.
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Figure 6.17: Coverage- and uniformity trajectory of deployment yielding highest coverage after
20 deployed beacons in the Stripa environment.
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Figure 6.18: Configuration giving lowest coverage 20 deployed beacons in the Stripa environ-
ment. Exploration vectors are represented as black lines.

60



CHAPTER 6. SIMULATING DEPLOYMENT IN UNKNOWN 2D-ENVIRONMENTS 6.2. RESULTS

0 2 4 6 8 10 12 14 16 18 20
| | (number of deployed beacons)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

C 
(c

ov
er

ed
 ra

tio
 o

f R
OI

)

(a) Coverage

0 2 4 6 8 10 12 14 16 18 20
| | (number of deployed beacons)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
 (u

ni
fo

rm
ity

)

(b) Uniformity

Figure 6.19: Coverage- and uniformity trajectory of deployment yielding lowest coverage 20
deployed beacons.
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Figure 6.20: Configuration giving highest coverage after 50 deployed beacons in the Stripa envi-
ronment. Exploration vectors are represented as black lines.
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Figure 6.21: Coverage- and uniformity trajectory of deployment yielding highest coverage after
50 deployed beacons in the Stripa environment.
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Figure 6.22: Configuration giving lowest coverage 50 deployed beacons in the Stripa environ-
ment. Exploration vectors are represented as black lines.
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Figure 6.23: Coverage- and uniformity trajectory of deployment yielding lowest coverage 50
deployed beacons in the Stripa environment.
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Figure 6.24: Configuration giving highest coverage after 100 deployed beacons in the Stripa
environment. Exploration vectors are represented as black lines.
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Figure 6.25: Coverage- and uniformity trajectory of deployment yielding highest coverage after
100 deployed beacons in the Stripa environment.
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Figure 6.26: Configuration giving lowest coverage 100 deployed beacons in the Stripa environ-
ment. Exploration vectors are represented as black lines.
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Figure 6.27: Coverage- and uniformity trajectory of deployment yielding lowest coverage 100
deployed beacons in the Stripa environment.

63



Chapter 7

Discussion

We discuss here the results obtained in Section 6.2. The discussion is partitioned into two
sections where each section is dedicated to deployments within one specific environment.

7.1 Ten-by-ten

Simulations were performed in the Ten-by-ten environment in order to attain results com-
parable to those in [16] where the Distributed Self-Spreading Algorithm is used for dis-
tributed multi-agent deployment in a square ten-by-ten meter environment. The param-
eters of the RSS-mapped offset distance function (see Table 6.3) defined in (3.3) where
chosen so that the communication range of beacons equals that used in [16].

We initially compare the results obtained with the proposed deployment scheme to
those obtained by DSSA in Section 7.1.1. As coverage in [16] is defined as sensor cov-
erage, whereas the focus of this thesis is communication coverage, a comparison of the
coverage metrics for the two deployment schemes is omitted.

In Section 7.1.2, the effects of the parameters used in the RSS-mapped distance func-
tion (3.3) are evaluated.
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7.1.1 Comparing with the Distributed Self-Spreading Algorithm
(DSSA)

The results obtained in [16] are shown in Figure 7.1.

Figure 7.1: Average uniformity (y-axis) vs. network size (x-axis) over 100 runs of the Distributed
Self-Spreading Algorithm [16] in the Ten-by-ten environment. For all network sizes, an initial
random deployment is assumed yielding the uniformity marked in red. Uniformity at completion
of the Distributed Self-Spreading Algorithm is marked in black. Source [16].

Comparing the uniformity trajectories in Figure 6.1, Figure 6.4, Figure 6.7 and Fig-
ure 6.10 to that in Figure 7.1, it is clear that the Distributed Self-Spreading algorithm
(DSSA) vastly outperforms the proposed deployment scheme for large network sizes and
for all RSS-mapped distance function parameters. The uniformity of configurations gen-
erated by the Distributed Self-Spreading Algorithm has a marginally inverse relationship
with network size, whereas the proposed deployment scheme yields an increase in unifor-
mity with increasing network size.

The opposing relationship between network size and uniformity for DSSA versus the
presented scheme arises due to two inherent differences. In DSSA, network nodes exert
repulsive forces on each other and are allowed to re-position concurrently. The magni-
tudes of the repulsive forces increase with decreasing inter-nodal distance and increase
with increasing density. Thus, low uniformity is an emergent property of DSSA as nodes
residing in areas of higher density repel neighbouring nodes, thus lowering the density
within its area, causing the densities over all sections of the ROI to converge to the same
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average value. Furthermore, as the magnitude of the force depends inversely with inter-
nodal distance, a node with some neighbours closer to itself than others will be repelled
from its closest neighbours leading to it being increasingly equidistant from all its neigh-
bours, resulting in decreasing local uniformity.

Conversely, the proposed deployment scheme is incremental and attractive in nature.
Deploying agents are attracted towards the centre of mass of the virtual set of particles
created by its neighbours. The masses and locations of the virtual particles are not chosen
with the goal of achieving low uniformity. Rather they are chosen so that the deploying
agent should be guided to possibly unexplored space. Thus, the centre of mass towards
which the deploying agent is attracted might lie at a location causing the agent’s and any
surrounding beacons’ local uniformity to take on large values. Furthermore, due to the
incremental nature of the proposed approach, nodes only re-position themselves once,
and they do so one at a time. Thus there is no way for the network to reconfigure itself in
a situation where beacons detect large values of local uniformity.

The choice of exploration direction and obstacle-induced forces play important roles
in contributing to the increasing relationship between network size and uniformity of
the proposed deployment scheme. These dependencies are made especially clear under
Higher-max, High-max and Medium-max RSS-mapped distance parameters. As seen in
Figure 6.3, Figure 6.6 and Figure 6.9, clustering occurs near walls as the network size
increases. As the exploration direction of a beacon is chosen so that succeeding agents
are directed away from previously deployed beacons (see Section 5.3.4), agents are to a
larger extent guided towards walls as the interior of the environment is populated with
beacons. As environment boundaries indirectly induce repelling forces in agents through
range sensor measurements, an agent might settle closer to a deployed beacon than the
rest of the neighbours of said beacon if the agent detects walls (see beacon 8 and 9 in
Figure 6.3 (a)). As the deployed beacons cannot react, in the sense of re-positioning, to
agents settling nearby, the local uniformity of beacons increases leading to an increase in
uniformity.

The choice of agent-relative gains also plays a role in contributing to increased uni-
formity with increasing network size. In Figure 6.3, it is noticeable that in some cases,
beacons of higher index are positioned close to beacons of lower index. Beacons 15, 31
and 48 in Figure 6.3 (d) exhibit such behaviour. This is caused by an agent choosing agent-
relative gains as an exponential function of beacon index. Thus, the neighbour induced
force from a beacon of smaller index is largely ignored when an agent has a neighbour of
(much) higher index, causing the equilibrium point of that agent to be decided largely by
its higher-index neighbours. In case this equilibrium is nearby a beacon of small index,
clustering occurs, leading to increased uniformity.
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7.1.2 Effect of RSS-mapped offset distance parameters

Parameter combinations used during deployment in the Ten-by-ten environment are
summed up in Table 7.1, and the coverage- and uniformity metrics for different parameter
values used in the RSS-mapped offset distance function are summarized in Figure 7.2.

Parameter combination name ξ̄ dper f dnone

Higher-max 20 2 ∼ 4.225
High-max 10 2 ∼ 4.335
Medium-max 5 2 ∼ 4.515
Low-max 1 2 6

Table 7.1: Parameters for the RSS-mapped offset distance function in (3.3).
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Figure 7.2: Average coverage and uniformity over 100 runs vs. network size for each parameter
combination in Table 7.1 used in the RSS-mapped offset distance function (3.3) in the Ten-by-ten
environment.

As seen in Figure 7.2, the average coverage is significantly lower for all network sizes
when Low-max parameters are used in the RSS-mapped offset distance function than for
any other parameter combination. Furthermore, the average uniformity is significantly
higher. This is due to the fact that the maximum offset distance, ξ̄ , determines the max-
imum distance from a beacon to the equilibrium point the beacon imposes on an agent
having that beacon as its only neighbour. Thus, when Low-max parameters are applied,
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the maximum distance between a beacon and the equilibrium point it imposes on an agent
with that beacon as its only neighbour is one meter as opposed to 5, 10 and 20 meters for
the other parameter combinations. Indeed, the actual distance between the landing loca-
tion of an agent with one neighbouring beacon and that beacon is defined purely by ξ̄ iff.
ξ̄ ≤ dper f . This, in effect, causes beacons to reach more dense configurations (see Fig-
ure 6.12), and thus lower coverage under Low-max RSS-mapped offset distance function
parameters than for any other parameter combination.

Furthermore, as seen in Figure 6.12, beacons are in general positioned along a clear
path under Low-max parameters, leading to high local uniformity. Low local uniformity
is achieved if all neighbours of a beacon are approximately equidistant from the bea-
con computing its local uniformity (and zero if all neighbours are equidistant from that
beacon). Under Low-max parameters, the proposed deployment scheme generates con-
figurations in which the neighbours of any given beacon lie progressively further away
from that beacon, leading to high local uniformity. As this is the case for all beacons, a
high value of overall uniformity is reached under Low-max RSS-mapped offset distance
parameters.

For the Higher-, High- and Medium-max parameters, Figure 7.2 shows that the config-
urations generated by the proposed deployment scheme yield almost equal performance
in terms of uniformity and coverage. This is largely due to the model of the RSS-mapped
distance in (3.3). Although the maximum RSS-mapped offset distance, ξ̄ , sets a maxi-
mum bound to how far the equilibrium point imposed on an agent can be from the beacon
imposing the equilibrium point at any given time, the distance from the beacon to the
landing location of the agent fulfils di, j = ξi, j, where di, j is the distance between the agent
and the beacon and ξi, j is the RSS-mapped offset distance. Iteratively solving di, j = ξi, j

where ξi, j is defined as in (3.3) for Higher-, High- and Medium-max parameters yields
the distances from a beacon to the landing location of an agent with only one neighbour
presented in Table 7.2.

Parameter
comb. name

Maximum RSS-mapped
offset distance (ξ̄ )

Distance from beacon, j, to
equilibrium of an agent under

(5.18) with Na(i) = { j}
Higher-max 20 [m] 3.60 [m]
High-max 10 [m] 3.41 [m]
Medium-max 5 [m] 3.07 [m]

Table 7.2: Distance from beacon to landing location of agent with only one neighbour for different
parameter combinations applied to the RSS-mapped distance function (3.3).

From Table 7.2 it is evident that a higher maximum RSS-mapped value yields equilib-
rium points for agents placed further away from its neighbouring beacons than for a lower
maximum value. However, this difference is small for Higher- and High-max parameter
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combinations and is reflected in the coverage plot in Figure 7.2 where complete coverage
(C = 1) is reached with a slightly smaller network size under Higher-max- versus High-
max parameters. The distance between an agent’s landing location and a neighbouring
beacon under Medium-max parameters (3.07 [m]) is significantly smaller than for the
other two parameter combinations, yielding slower convergence to complete coverage as
seen in Figure 7.2.

For smaller network sizes, configurations generated under Medium-max RSS-mapped
distance function parameters yield significantly larger average uniformity than configura-
tions generated under Higher- and High-max RSS-mapped distance function parameters
as seen in Figure 7.2. This might be caused by beacons residing closer to other beacons
under Medium-max RSS-mapped distance function parameters, giving more beacons with
more than one neighbour. The greater inter-beacon distances generated under Higher-
and High-max parameter combinations (as per Table 7.2 and Figure 6.3, Figure 6.6 vs
Figure 6.9) might cause more beacons to have only a single neighbour. As the local uni-
formity is zero for beacons with only a single neighbour, they make no contribution to the
overall uniformity resulting in a lower overall uniformity value.

Although configurations generated by the proposed approach when applying the Low-
max parametrization to the RSS-mapped offset distance function yield much slower cov-
erage than with other parametrizations, the fact that increasing network size (i.e. deploy-
ing more agents) on average increases coverage (see Figure 7.2) is a promising result
in itself. For mobile agents equipped with weak communication units, i.e. low signal
strength over short distances, securing short distances between beacons might be needed.
Thus a low value can be assigned to the maximum RSS-mapped offset distance in order
to ensure that agents settle nearby deployed beacons while at the same time increasing
coverage.
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7.2 Stripa

Simulations were performed in the Stripa environment in order to evaluate the perfor-
mance of the proposed deployment scheme in a more complex environment in which
narrow passages must be traversed in order to explore and cover new regions. In this en-
vironment, only Higher-max parameters were used in the RSS-mapped distance function
as it lead to fastest coverage in the Ten-by-ten environment.

In Section 7.2.1, the overall performance of the configurations generated by the pro-
posed deployment scheme in the Stripa environment is assessed. Then, situations in
which the proposed deployment scheme yield unsatisfactory coverage are discussed in
Section 7.2.2 and Section 7.2.3.

7.2.1 General performance

As seen in Figure 6.15, the average coverage over 100 deployments is increasing steadily
as the size of the deployed network increases, even in the more trying Stripa environment.
The maximum- and minimum coverage trajectories do not exhibit the same steadily in-
creasing trend. Both trajectories show a step-like behaviour in which the coverage remains
unchanged over certain intervals of network size. For certain deployments, increasing the
network size by one (i.e. deploying one more agent) does not increase coverage due to the
deploying agent landing nearby beacons that already cover the surrounding area. As the
network has increased sufficiently in size, however, the deploying agent might be guided
to a region of space where no beacons are located. Thus, as the deploying agent settles
and re-instantiates as a beacon, it covers the previously un-covered area surrounding it,
leading to a sudden increase in coverage.

In the most favourable cases, complete coverage (C≈ 1) is reached at a network size of
70 beacons. In some cases, however, coverage of only 0.39 is reached after deploying 100
agents. This discrepancy points to the proposed deployment scheme lacking robustness,
as deploying networks of the same size into the same unknown environment might lead
to highly different coverage.

The average uniformity depicted in Figure 6.14 shows that the network configurations
generated by the proposed deployment scheme in the Stripa environment increase in uni-
formity and thus become less uniformly distributed as network size increases. As was the
case in the Ten-by-ten environment, this average increase in uniformity can be attributed
to obstacle-induced forces and the choice of agent-relative gains leading to beacons of
high index demanding that agents settle nearby beacons of lower index, both causing
unbalanced configurations.
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7.2.2 Static exploration vectors and agent-relative gains causing in-
effective coverage

As the exploration vectors are the driving factor in inducing agents to move towards and
settle within previously unexplored areas, a "badly" chosen exploration vector can have a
major impact on the coverage reached by a network.

Figure 6.18 shows a situation where the exploration vector chosen by a single bea-
con has a lasting negative impact on the configuration, and thus the coverage reached
by the network as a whole. In Figure 6.18, the exploration vector chosen by beacon 7
is based solely on it’s knowledge of the position of beacon 6. Beacon 6 is beacon 7’s
only neighbour, and beacon 7 does not sense sufficient asymmetry in the environment in
order to adjust its exploration vector to compensate for the nearby wall. Thus, beacon 7
selects its exploration vector as a vector pointing away from beacon 6 and rotated by an
angle between ±π

2 (due to beacon 7’s exploration sector being the entire unit circle). As
depicted Figure 6.18, beacon 7’s exploration vector points in a direction such that when
agent 8 deploys, it is guided towards the nearby wall and thus, upon encountering the
wall, towards the direction of beacon 0. This renders beacon 8 at a position such that its
largest exploration sector resides within the hull of the previously deployed beacons. In
turn, beacon 8 guides beacon 9 towards already covered area, beacon 9 guides beacon 10
towards already covered area and so on.

In Figure 6.22 and Figure 6.23 (a), it is clear that the heuristic applied when selecting
exploration directions, alongside the ever increasing beacon gains, can lead to situations
in which drastically increasing network size might not lead to increased coverage. For
clarity, Figure 7.3 and Figure 7.4 show configurations for the deployment depicted in
Figure 6.22 at network sizes of 18 and 30 beacons respectively.

As depicted in Figure 7.3, the network consisting of the initial 18 beacons covers al-
most the entire first section of the Stripa environment. Using the greedy heuristic, beacon
17’s exploration vector points in a direction within the surrounding sector of most free
space. Intuitively and necessarily, an increase in coverage would only be achieved if new
beacons reached the next section of the environment. However, due to the exploration
vectors being static for all beacons, and the beacon gains being increasing functions of
beacon index causing the equilibrium point of an agent to be determined largely by its
higher-index neighbours, the succeeding beacons do not reach the next section of the
environment.

As seen in Figure 7.4, deploying 10 more agents yields no increase in coverage as the
heuristic applied when selecting exploration vectors fails to generate exploration vectors
leading agents towards previously unexplored space.
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Figure 7.3: Configuration reached during deployment depicted in Figure 6.22 at a network size of
18 beacons. Green disks show area covered by each beacon. Communication radius is computed
using (6.2).
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Figure 7.4: Configuration reached during deployment depicted in Figure 6.22 at a network size of
30 beacons. Green disks show area covered by each beacon. Communication radius is computed
using (6.2).
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7.2.3 Walls hindering exploration

Figure 6.26 shows the configuration of the 100−beacon network yielding lowest coverage
of all the one hundred deployed networks of size 100. Although the network size is large
enough to cover the entire environment, one single event sparked a chain of events leading
to all beacons settling within the first sector of the environment.

For clarity, the configuration in Figure 6.26 is shown in Figure 7.5 with only the initial
20 beacons included. As the figure shows, the exploration vector of beacon 18 points in
the direction of the narrow hallway leading to the second sector of the Stripa environment.
However, agent 19 does not explore the hallway and reaches an equilibrium point within
the first section of the environment.
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Figure 7.5: Configuration reached during deployment depicted in Figure 6.26 at a network size
of 20 beacons.

The RSS-mapped offset distance between an agent and a beacon depends inversely on
the distance between the agent and the beacon. This causes the location p j = x j + ξi, jv j

of the virtual particle created by a beacon j to move progressively further away from the
beacon as the distance between the agent and the beacon decreases and vice versa.

In the situation depicted in Figure 7.5, the RSS-mapped offset distance between agent
19 and beacon 18 causes p18 to be located behind the wall at x = 19 meters for all suf-
ficiently large values of ξ18,19. Thus, as agent 18 moves towards beacon 19, the centre
of mass of the virtual set of particles to which the agent gravitates moves further in the
direction defined by v18, and is also located behind the wall at x = 19 meters. As the
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neighbour induced force leads the agent directly towards the virtual centre of mass, the
agent eventually settles near the wall, far away from the neighbour induced equilibrium,
due to the obstacle-induced force counteracting movement into the wall.

Post-deployment, beacon 19 computes its exploration vector by greedy heuristic, tak-
ing into account the wall at x = 19 meters. As shown in Figure 7.5 the exploration vector
of beacon 19 points towards the interior of the first section of the Stripa environment,
causing subsequent agents to be guided in that direction, yielding little increase in overall
coverage.

74



Chapter 8

Future work

Coverage metric based on local information As of now, no local metric for coverage
is defined. Uniformity captures only the topology of the deployed network but does not
consider the environment in which the network resides. Hence, uniformity is not a suitable
metric for measuring how the network performs in terms of covering an area.

In simulations, coverage was computed as the fraction of the area of the union of the
communication disks of all beacons and the area of the region of interest. In real-world
applications, however, there exists no clear communication disk as environmental effects
alter the range at which a certain RSS can be achieved. Furthermore, the area of the
unknown environment cannot be known a priori.

Finding a coverage metric using only information available to beacons, i.e. range
measurements and the positions of neighbours, is a task that has yet to be completed and
should be investigated.

Termination criterion In all simulations, a pre-determined number of agents were de-
ployed. In real-world situations, when the area to be covered is truly unknown, the number
of beacons needed to cover the area can not be known a priori. Due to this, agents should
be progressively deployed into the environment until some termination criterion has been
fulfilled.

A termination criterion must be defined before the proposed deployment approach
can be applied in real-world situations and will most likely be some condition on the local
coverage metric, which is also yet to be defined.
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Adjusting beacon exploration vectors and gains upon clustering Through simula-
tions, it became evident that the static exploration vectors and beacon gains in some sit-
uations lead to large networks clustering, and thus covering only a fraction of the region
of interest. Re-adjusting beacon gains and exploration vectors upon detecting clustering
might prevent this from happening and should be investigated further.

Re-adjusting beacon gains and exploration vectors would demand some form of coor-
dination, as exploration vectors would have to be chosen so that succeeding agents would
be guided towards the perimeter of the covered area.

Wall following when settling far from neighbour-induced equilibrium As discussed
in Section 7.2.3, the RSS-mapped offset distance can cause agents to diverge from the path
taken by previously deployed beacons prematurely and thus encounter obstacles when
gravitated towards the neighbour-induced equilibrium. This can cause agents to settle far
away from their neighbour-induced equilibrium point leading to poor coverage.

Detecting that an agent settles far from its neighbour induced equilibrium and initiate
some sort of wall following might prevent situations where obstacles hinder exploration
and lead to lacklustre coverage and should be investigated.

Realistic model of signal strength In this thesis, the RSS-mapped distance function
did not take into account environmental effects on RSS. In real-world situations, RSS
can drop significantly due to diffraction, reflection and refraction if the sender and the
receiver are not within line-of-sight [37]. In the future, RSS could be modelled by the
log-normal path-loss model [18], and this should be used as input to the RSS-mapped
distance function.

Collision avoidance If the proposed approach is to be applied to ground-travelling
robots, some sort of collision avoidance must be implemented. For the purposes of this
thesis, it was assumed that beacons resided at ground level and that the deploying agents
flew at some altitude above ground level, thus avoiding collisions altogether, and no ex-
plicit collision avoidance was needed. For ground-travelling robots, however, the pro-
posed approach must be extended to take into account that the deploying agent might
collide into beacons already residing within the environment.

Include heading in simulations Throughout simulations, agents were assumed to have
a heading aligned with the inertial xn-axis. This is valid for quadcopters but is not suitable
for wing-based or ground-travelling agents. In the future, a heading term should be added
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to the dynamics of the agents and its effect on general behaviour, and especially on the
obstacle induced field, should be investigated.
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Conclusion

This thesis proposed a novel potential field-based distributed high-level control law whose
objective is to make a set of mobile agents incrementally self-deploy into an environment
of unknown topology and extent, with the final purpose of forming a connected network
that spans the environment, and this without using centralized forms of control or infor-
mation.

The novelty of the approach taken here arises from the fact that, to our knowledge,
the problem of sequentially self-deploying a wireless sensor network within an unknown
environment without centralized information has not been addressed before. The mobile
agents are assumed to possess only four range sensor returning the distance to nearby ob-
stacles in their respective directions. Thus, mobile agents are incapable of measuring the
area around them, contributing to the novelty of the presented approach. Furthermore, a
known inter-agent communication range is commonly assumed when performing deploy-
ment/area coverage. This assumption is removed, further contributing to the novelty of
the proposed approach.

Due to the novelty of the objective itself, incremental deployment within an obstacle-
less 1-dimensional environment was initially considered. Basing the approach on poten-
tial fields, a distributed control law, modelled as an attractive force towards the centre of
mass of a virtual set of point masses generated by agents already within the environment,
was synthesized. We proved that, for certain point-mass locations and masses, increasing
the network size by deploying more agents guarantees an increase in network coverage.

Inspired by the field used for deployments in a 1D environment, a potential field-
based control law for incremental deployment within unknown 2D environments was
synthesized. The potential field used for the self-deployment of agents is a combination
of a neighbour-induced attractive potential field used for exploration and a range sensor-
induced repulsive potential field used for obstacle avoidance. As in 1D, the neighbour-
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induced potential field affecting the deploying agent is generated by static agents already
residing within the environment and is attractive towards the centre of mass of a collection
of virtual point masses. The point mass locations are decided by the locations of the static
agents already within the environment perturbed by an amount decided by an artificial
function depending on the signal strength between the static agents and the deploying
agent. Point masses are perturbed in the direction defined by the "exploration vector"
of static agents. A greedy heuristic was used for selecting the exploration vector of a
deployed agent so that succeeding agents were guided towards possibly un-explored areas.

Two performance metrics were used in order to assess the performance of the deployed
networks. Uniformity was used in order to assess to what extent the deployed network
exhibited clustering. Furthermore, it was deemed especially fitting due to it being depen-
dant only on information available locally to each agent. Coverage was used in order to
assess the performance of the deployed networks in terms of providing communication
service within the environment. However, this metric was deemed applicable only in a
simulation environment as it depends on information not available to agents in real-world
scenarios.

Simulations were performed in two different environments. In a convex ten-by-ten
meter environment, the parameters of a synthesized signal-strength to distance offset func-
tion were varied in order to emulate deployments of agents with different communication
capabilities. For all parametrizations of the synthesized signal-strength to distance offset
function, self-deploying agents within the ten-by-ten meter environment yielded satisfac-
tory coverage.

Simulations in the Ten-by-ten environment showed that configurations generated us-
ing agents of weaker communication capabilities exhibited more clustering behaviour and
gave smaller coverage than configurations generated using agents of stronger communi-
cation capabilities for all network sizes. This was caused by the weaker communication
platforms yielding smaller signal strength to distance offsets, causing agents to settle in
more compact configurations. Hence, a larger network comprised of agents with weak
communication capabilities had to be deployed in order to achieve satisfactory coverage
than in situations where agents possessed stronger communication platforms. Further-
more, the incremental nature of the proposed deployment scheme caused the deployed
networks to exhibit a higher degree of uniformity compared to network configurations
generated by the Distributed Self-Spreading Algorithm [16]. This was caused by the in-
ability of previously deployed (static) agents to re-position themselves.

In a non-convex environment modelled after a well-known section of the NTNU
Gløshaugen campus, the proposed deployment scheme again yielded, on average, sat-
isfactory coverage for large networks comprised of agents with high-performing commu-
nication platforms. Some deployments, however, yielded large networks covering only a
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small portion of the environment.

In certain situations, due to the fact that the exploration vector of a static agent remains
static after initial computation and that the location of the centre of mass towards which
the deploying agent gravitate is decided largely by its neighbour of largest index, de-
ploying agents were guided towards already well-covered areas. In situations where one
section of the environment was well covered, and the location of the most recently de-
ployed agent was not in the vicinity of the border between covered and uncovered space,
deploying agents gravitated towards already well-covered sections causing a snowball
effect in which a vast increase in network size yielded little to no increase in coverage.

Furthermore, a large maximum distance offset in some situations caused the deploy-
ing agent to prematurely diverge too far from the path taken by its predecessor. If the
deploying agent had followed the exact path of its predecessor before following a tra-
jectory along its exploration vector, new areas would have been covered. However, the
distance offset and exploration vector of the deploying agent’s predecessor in some situ-
ations placed the centre of mass towards which the deploying agent gravitated far from
the deploying agent’s predecessor, and indeed behind a wall. As the neighbour induced
force guided the deploying agent directly towards the centre of mass, obstacle encounters
sometimes lead the agent to fail in exploring uncovered areas.

The results presented here show that, in both of the tested environments, deploying a
sufficient amount of agents using the proposed high-level control law yielded satisfactory
coverage in most situations. However, as the deployment scheme lacks robustness, it
can not yet be applied in real-world scenarios. In the future, the problem of narrow
hallways/passages causing agents not to explore un-covered areas should be addressed.
Furthermore, a coverage metric depending only on information available locally to an
agent must be synthesized along with a termination criterion deciding when to halt the
deployment of new agents.

80



81



Bibliography

[1] Hannah Ritchie and Max Roser. Natural disasters. Our World in Data, 2014.
https://ourworldindata.org/natural-disasters.

[2] Merriam-Webster Merriam-Webster.com Dictionary. First responder.

[3] M. Elbanhawi, A. Mohamed, R. Clothier, J.L. Palmer, M. Simic, and S. Watkins. Enabling technolo-
gies for autonomous mav operations. Progress in Aerospace Sciences, 91:27–52, 2017.

[4] Claudio Paliotta, Klaus Ening, and Sigurd Mørkved Albrektsen. Micro indoor-drones (mins) for
localization of first responders. In Proceedings of the 18th ISCRAM, Blacksburg, VA, USA, 2021.

[5] Mrunal Gavhale and Pranay D. Saraf. Survey on algorithms for efficient cluster formation and cluster
head selection in manet. Procedia Computer Science, 78:477–482, 2016. 1st International Conference
on Information Security & Privacy 2015.

[6] Shaimaa M. Mohamed, Haitham S. Hamza, and Iman Aly Saroit. Coverage in mobile wireless sensor
networks (m-wsn): A survey. Computer Communications, 110:133–150, 2017.

[7] Douglas Gage. Command control for many-robot systems. 10, 11 1991.

[8] Levent Bayındır. A review of swarm robotics tasks. Neurocomputing, 172:292–321, 2016.
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