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Abstract

The main purpose of this thesis is to study the Dilithium signature scheme pro-
posed for the American National Institute of Standards and Technology’s (NIST)
Post-Quantum Cryptography Standardization process. In order to understand
the scheme, one section is devoted to develop the necessary theory about lattices
and their hard problems. We then examine identification schemes and signa-
ture schemes more generally. Afther presenting Luybashevsky and Dilithium
as schemes, in addition to their security, we discus the improvements made to
Dilithium compared to Lyubashevsky.
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Sammendrag

Hovedform̊alet med denne oppgaven er å studere signatursystemet Dilithium, som
ble foresl̊att til det amerikanske National Institute of Standards and Technology
(NIST) sin “Post-Quantum Cryptography Standardization” prosess. For å forst̊a
systemet er ett kapittel satt av til å utlese den nødvendige teorien for gittere og
tilhørende vanskelige problemer. Vi ser s̊a p̊a den generelle struktureringen av
identifikasjonssystemer og signatursystemer. Etter å ha presentert Fiat-Shamir,
Luybashevsky og Dilithium som signaturer, i tillegg til deres sikkerhet, stud-
erer vi forbedringene som er gjort med Dilithium sammenlignet med de tidligere
systemene.
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CRH Collision Resistant Hash.

CUR Computational Unique Response.

CVP Closest vector problem.

ID-Scheme Identification schemes.

NIST National Institute of Standards and Technology.

RO Random Oracle.

ROM Random Oracle Model.

SHA Secure Hash Algorithm.

SIS Shortest integer solution.
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SUF-CMA Strong unforgeability under chosen message
attack.

SVP Shortest vector problem.

UF-NMA unforgeability under no-message attack.

vk verification key.
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XOF extendable-output function.
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1 Introduction

Modern crypto systems are mostly based on the hardness of factoring large num-
bers and discreet logarithms [10, 28, 30]. These problems are considered near
impossible to solve using modern computers, when the numbers in use becomes
very large. Therefore we considered the systems based on these problems to be
safe. However, in 1994 Peter Shor [32] presented an algorithm for quantum com-
puters that would factor large numbers much faster than the algorithms for our
normal computers. Concretely, Gidney and Eker̊a [15] has improved upon Shor
and constructed algorithms that uses estimates of twenty million qubits to factor
2048 RSA integers. This presented a problem; our modern crypto systems will
be useless, provided we are able to produce strong enough quantum computers.

But what is a quantum computer? A quantum computer uses qubits instead
of normal bits, used by regular computers. These qubits can, as normal bits,
be represented as 0 or 1, but also be a superposition of both. This allows us
in some cases to create algorithms, such as Shor’s algorithm for factoring large
numbers, that are more efficient than regular algorithms on normal computers.
These algorithms can again be implemented to reduce the overall time of larger
computations.

How strong are quantum computers today, and are they of any real threat to
us? IBM possesses, at this point in time, quantum computers of 27-qubits, and
by their own scale a 64 quantum “volume” computer. This scale for measuring
the power of a quantum computer considers multiple factors, such as the number
of qubits and quantum noise, to compute the efficiency of the computer. The
method uses many different test algorithms for benchmarking. Dash et al. [9]
used a 5- and 16-qubit quantum computer to factor 4088459 and 966887 in 2018.
These consist of not very large primes and are certainly not near the size of
primes used in RSA, so cryptography-braking quantum computers are still some
time away.

Even though quantum computers are not breaking all our systems today, the
threat is still looming and we still have a wish for the safest usable crypto sys-
tems possible. So how do we protect ourselves from this threat? One option is
to increase the size of the primes used to generate the private and public keys
in RSA, as done by Bernstein et al. [4], but having a public key the size of 1
terabyte is rather ludicrous. Other options would be to build systems based on
other problems that are not easily solved by normal nor quantum computers.
Some examples of such systems are hash-based, code-based, lattice-based and
multivariate cryptography.
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In 2016, the American National Institute of Standards and Technology’s (NIST)
announced a Post-Quantum Cryptography Standardization process. NIST aim
with this process to find and standardize quantum safe cryptography systems
[2]. July 22, 2020 the candidates for the third round was announced and there
are seven main candidates and eight alternative candidates. For signatures their
three main candidates are:

• CRYSTALS-DILITHIUM

• FALCON

• Rainbow

and their three alternative candidates are:

• GeMSS

• Picnic

• SPHINCS+

So far, NIST view Dilithium [11] and Falcon [14] to be the most promising signa-
ture schemes out of the candidates. Both of these signature schemes base their
security on the hardness of lattice problems. Rainbow [33] is a multivariate cryp-
tosystem and was first constructed roughly fifteen years ago.

In this thesis we will study Dilithium as a cryptosystem. We start by looking at
the underlying lattice structures and problems in section 2. This understanding
make it possible for us to construct systems that are secure against quantum
computers. As Dilithium is a signature scheme, we will present what signatures
are and what security properties they have in section 3. In section 4 we are going
to present our signature schemes, Lyubashevsky and Dilithium, whom are both
quantum safe. Lastly, in section 5, we will discuss the differences of these schemes
and how they build upon one another to arrive at a secure and efficient signature
scheme suitable for standardisation.

2



2 Preliminary

2.1 Lattices

When discussing cryptographic systems that are secure against quantum comput-
ers we have many options, including, but not limited to, lattice-based systems,
isogeny-based systems and multivariant-based systems. The most promising to
date are lattice-based crypto systems. There are many and complex reasons for
this, but we are not going to focus on them. In this section we will describe
what lattices are and why they are secure for our use. The definitions in this
section are standardised and we follow Gjøsteen, Lyubashevsky and Laarhoven
et al. [16, 17, 22, 25].

Definition 2.1 Let Rn be the n-dimensional vector space over R and let B =
{v1, ..., vn} be a basis for Rn. A lattice Λ in Rn generated by B is

ΛB =
{ n∑
i=1

aivi | ai ∈ Z , vi ∈ B
}

We see that a lattice is a subgroup of Rn, where its elements are integer linear
combinations of a basis in Rn. As Zn is a subgroup of Rn there are also lattices
that are subgroups of Zn. There exist many different types of lattices, some more
interesting than others.

Definition 2.2 An integer lattice ΛB is such that Λ ⊆ Zn. In particular,
B = {v1, ..., vn} ⊆ Zn.

Definition 2.3 Given a vector v = (v1, ..., vn), we define rot(v) = (vn, v1, ..., vn−1)
to be the rotational shift of v. A cyclic lattice is a lattice Λ where ∀v ∈ Λ →
rot(v) ∈ Λ.

Examples of cyclic lattices are Zn and any lattice corresponding to an ideal
of R[x]/〈xn + 1〉. We often think of polynomials and vectors as “the same”.
What we mean by this is that we have a mapping from F[x]/〈f(x)〉, with f(x)
is a polynomial in F[x] of degree n, into Fn. This is done using the following
isomorphism:
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M : F[x]/〈f(x)〉 → Fn

v0 + v1x+ v2x
2 + ...+ vn−1x

n−1 7→ (v0, v1, ..., vn−1)

A lattices corresponding to an ideal I in a quotient ring F[x]/〈f(x)〉 is thus the
lattice whose elements can be mapped to the polynomials in the ideal I by our
isomorphism M above. We will often talk about vectors and polynomials in-
terchangeably. When we do so, we are simply using this isomorphism without
necessarily mentioning it.

Definition 2.4 Let f(x) ∈ Z[x] be a monic polynomial of degree n and let I be
an ideal in the quotient ring Z[x]/〈f(x)〉. An ideal lattice is a cyclic lattice
Λ(I) ⊆ Zn such that its basis is B = {g(x) mod f(x) | g(x) ∈ I} for some monic
polynomial f(x) and ideal I as above.

This type of lattice is of specific interest to us, as it is exceptionally nice for the
purpose of quantum safe cryptography. Particularly the lattices corresponding
to ideals of Z[x]/〈x+ 1〉 and Zp[x]/〈x+ 1〉, for some prime p, is a uniquely good
lattice [25]. Therefore we will denote these rings as R and Rp, respectively, for
the duration of this text.

Definition 2.5 Let pZn = {pv | v ∈ Zn}, we say that a lattice Λ is p-ary if
pZn ⊆ Λ ⊆ Zn.

Definition 2.6 Given some matrix M ∈ Fn×mp we construct lattices using the
matrix such that

Λp(M) = {u ∈ Zn | ∃a, aM ≡ u(mod p)}
Λ⊥p (M) = {u ∈ Zn |Mu ≡ 0(mod p)}

We know that if a lattice Λ is p-ary then there exist matrixes M and M′ such
that Λ = Λp(M) and Λ = Λ⊥p (M′).

4



2.2 Lattice Problems

Now that we have looked at what lattices are, we want to know what property,
or rather problems, they have that makes them suitable for our use in cryptog-
raphy. We will not yet show why these problems make lattices suitable, but we
will present the problems.

To express the problems we need a notation for the length of a vector. The length
of a vector is determined by its norm, denoted ||v||. We are mostly focusing on
the infinity norm, but will use other norms occasionally. This we will be distin-
guished by ||v||∞ or ||v||g when relevant. We will also denote the shortest vector
in a lattice Λ by λ(Λ).

2.2.1 Shortest Vector Problem

Definition 2.7 The shortest vector problem (SVP) for a lattice Λ is to find
a nonzero vector x ∈ Λ such that ∀ nonzero y ∈ Λ ||x|| ≤ ||y||.

It is worth noticing that SVP asks for a shortest vector and not the shortest
vector. This means there could be several vectors with the same shortest norm.
For instance the lattice with {(0, 1), (1, 0)} as its basis has both the vector (0, 1)
and (1, 0) as its shortest nonzero vectors. This is easy to see as both vectors have
the norm equal to 1.

There are more than one way to formulate this problem. The above definition
define the problem of finding an absolute shortest nonzero vector. However we
may also want to find a vector whose length is merely shorter then γ times the
length of the shortest vector. This problem is called γ-approximate SVP.

Definition 2.8 The γ-approximate shortest vector problem (SVPγ) for a
lattice Λ is to find a nonzero vector x ∈ Λ such that ∀ nonzero y ∈ Λ ||x|| ≤ γ||y||.

We know how to solve these problems for general or “good” lattices. Looking
back at our previous example, finding a shortest vector was extremely easy as
the basis is very nice. A well known algorithm for finding short vectors in lattices
is the LLL-algorithm, developed by Lenstra, Lenstra and Lovász [23]. The algo-
rithm takes in a basis and puts out a LLL-basis. This basis will then contain a
short vector, and solve SVPγ , but γ grows exponentially by the dimension of the
lattice. This algorithm can thus be used to solve SVP for lattices with a so-called
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“good” basis. However as the basis gets increasingly worse the algorithm gets
less efficient. It has been shown by Ajtai [1] that solving SVP is NP-hard and
later likewise by Khot [20] for the approximate SVP.

Definition 2.9 Given a basis of Λ and an approximation factor γ > 1, the
Shortest Independent Vector Problem (SIVPγ) is to find a linearly inde-
pendent set {y1, ..., yd} such that maxi ||yi|| ≤ γλd(Λ).

Blömer and Seifert [7] showed that SIVPγ is NP-hard.

2.2.2 Closest Vector Problem

Definition 2.10 The closest vector problem (CVP) for a lattice Λ and a
vector z ∈ Rn is to find a nonzero vector x ∈ Λ such that ∀ nonzero y ∈ Λ
||z− x|| ≤ ||z− y||.

If we want to we can formulate SVP as a CVP simply by setting our vector
z ∈ Rn to be the origin. Similarly to SVP, we don’t have to define the problem
to find the absolute closest vector. We can also construct the problem to merely
find the closest one within a given radius, by expanding the problem to a CVPγ
problem.

Definition 2.11 The γ-approximate closest vector problem (CVPγ) for
a lattice Λ and a vector z ∈ Rn is to find a nonzero vector x ∈ Λ such that
∀ nonzero y ∈ Λ ||z− x|| ≤ γ||z− y||.

Because of the similarities between SVP and CVP, solving CVP would also give
us a solution for SVP. One approach for solving CVP has been to round every
element of the vector to match the nearest lattice vector. However this is not an
especially satisfying method if our lattice is not constructed with a very “good”
basis.

2.2.3 Short Integer Solution

Definition 2.12 The Short integer solution (SIS) for Λ(M) of a given n×m
matrix M ← Zn×mp is finding a nonzero vector x ∈ Zm such that Mx = 0 and

6



||x|| ≤ β.

SIS is a problem related to lattices that are constructed by matrices. Here we
wish to find a vector such that our matrix times this vector computes to the zero-
vector, while also having a norm smaller than β. The smaller β is the harder
this problem gets. Therefore we often wish to put a lower restriction on β, so
as to not make the problem impossible. Lyubashevsky [25] restrict this param-
eter by β ≤

√
mpn/m, and denote the problem with the parameters by SISn,m,q,β .

2.2.4 Learning With Error

Definition 2.13 Given n, q, χ and any number (m) of independent samples from
As,χ, the Learning With Errors (LWEn,m,qχ) problem is to find s.

Not all the problems related to lattices are as similar to each other at first sight,
but they are all connected to each other. Laarhoven, Pol and Werger [22] present
a figure to visualise the connections between the problems. We have taken in-
spiration from them and construct a similar figure with the lattice problems
presented in this subsection in Figure 1.

CV Pγ SV Pγ SIV Pγ SISn,m,q,β LWEn,m,q,blχ
[18] [19] [26]

[34]

[27]

Figure 1: Reduction of Lattice Problems

2.3 Hash Functions

We will now have a look at some different types of hash functions, before con-
necting the security to our lattices. Cryptographic hash functions are binary
functions designed to provide collision resistance and preimage resistance, among
other properties. These functions take bit-strings, called messages, as input, and
output what we call hash values. We start by looking at unstructured hash func-
tions and then move on to structured hash functions.

7



2.3.1 Unstructured hash function

Secure hash algorithm also known as SHA, are groups of cryptographic hash func-
tions that have been certified for use in cryptographic systems by NIST. These
kinds of hash functions are constructed to appear completely random, and should
not have any internal structures. This makes it near impossible to compute in-
terchangeably between messages and hash values. There are three main classes
of SHA, namely SHA1, SHA2 and SHA3. SHA3 is the most recent class and
all six functions are based on KECCAK [6], the winner of NISTs cryptographic
hash algorithm competition [8]. The six functions are categorised into two types
of functions, hash functions and extendable-output functions.

Hash functions are constructed to be collision resistant and appear like a ran-
dom one to one function. These functions go from some large domain to a fixed
smaller domain. Within crypto, the main purpose of these functions are to hide
big messages by making them small and appear completely random, while mak-
ing sure it is near impossible to find a collision. Often they are described as
collision resistant hash or CRH for short. The four hash functions in SHA3 are
SHA3-224, SHA3-256, SHA3-384 and SHA3-512

Contrary to hash functions, extendable-output functions, XOF, does not have a
fixed output size and the output is mostly extended, hence the name. Except
for this, XOF are constructed mostly simular to the other hash functions and
thus also have the same demands for randomness and to be unstructured. The
first two extendable-output functions, standardised by NIST [31], are SHAKE-
128 and SHAKE-256.

Given a message µ, we can use KECCAK to present the SHA3 hash functions as
follows:

SHA3-224(µ) = KECCAK[448](µ||01, 224);

SHA3-256(µ) = KECCAK[512](µ||01, 256);

SHA3-384(µ) = KECCAK[768](µ||01, 384);

SHA3-512(µ) = KECCAK[1024](µ||01, 512).

We can also present the XOF of SHA3 still using the KECCAK algorithm with
d as its declared output size.

SHAKE128(µ, d) = KECCAK[256](µ||1111, d);

SHAKE256(µ, d) = KECCAK[256](µ||1111, d).

8



Function Output Size Collision Preimage 2and Preimage

SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512

SHAKE128 d min(d/2,128) ≤min(d,128) min(d,128)
SHAKE256 d min(d/2,256) ≤min(d,256) min(d,256)

Table 1: Security strength of SHA3[31]

As we can see both, hash functions and XOF are constructed very similarly, and
one can make an XOF into a hash function by simply choosing its output size
to match that of the hash functions. The security properties for the functions
in SHA3 is inherent from KECCAK and the sponge constructions, which was
proven by Bertoni et al. [5, 6]. The interested reader may have a look at these,
but as it is not the main focus of this thesis we are not going into details here.
The security strengths of the functions can however be seen in Table 1.

2.3.2 Structured hash function

Sometimes we want random seeming functions with a bit more structure. This is
so that we may compute interchangeably between the message and the hash value.
Recall that R is given by the ring Z[x]/〈xn+1〉 and likewise Rp by Zp[x]/〈xn+1〉.

Definition 2.14 Given any integer m and let D ⊆ S, we define a hash func-
tion family H(S,D,m) to be the set of maps from Dm to S such that

H(S,D,m) = {ha | a ∈ Sm} where for any z ∈ Dm, ha(z) = a · z

It is easy to see that these hash functions have a linear structure. This might
seem as though it would weaken their security, but we will prove that, when con-
structed properly, they are secure for our intended use. An important property,
as mentioned above, of hash functions is the collision resistance.

9



Definition 2.15 Given h ∈ H(S,D,m), the collision problem, Col(h), asks
to find two elements z, z’ ∈ D such that h(z) = h(z’)

When D is a restricted domain in R it can be shown that solving the collision
problem for hash function families is as hard as solving the SVPγ for any (xn+1)-
cyclic lattice. Thus finding a collision in a hash function family for Rp will give us
a solution to the SVPγ for an ideal lattice ⊆ Rp. We will prove this statement by
the propositions in this section. Our proofs follow the proof by Lyubashevsky and
Micciancio [24]. Before stating our propositions, we will present some algorithms,
namely AL, CollFind and RAL.

AL takes Λ(I),m, γ and g as input:

(1) s = ||g||∞
16dm

√
n log(n)

≥ 16dmn log2(n)λ(Λ)
16dm

√
n log(n)

≥
√
n log(n)λ(I)

(2) for i = 1 to m
(2.1) generate a uniformly random coset of I/〈g〉 and let vi be a poly-

nomial in I/〈g〉.
(2.2) generate yi ∈ Rn such that yi has distribution ρs/s

n and
consider yi as a polynomial in R[x].

(2.3) let wi be the unique polynomial in R[x] with degree less than
n and coefficients in the range [0, p) such that
p(vi + yi) = gwi in Rn/〈pg〉.

(2.4) ai = [wi] mod p, here [wi] rounds each coefficient to the closest
integer.

(3) output a,w and y

CollFind takes g,a,w and y as input:
(1) calls an oracle C(a1, ...am) that outputs α and β such that

||α||f , ||β||f ≤ d and
∑
aiαi =

∑
aiβi

(2) for i = 1 to m
(2.1) zi = αi − βi such that ||zi||f ≤ 2d and

∑
aizi ≡ 0 in Rp

(3) output z

RAL takes Λ(I), g,w,y and z as input:

(1) l =

(∑(
g(wi−[wi])

p − yi
)
zi

)
mod(xn + 1)

(2) output l

10



Proposition 2.1 Let Λ(I) be an ideal lattice, where I is an ideal in Rp, with

m > log p
log 2d , p ≥ 4dmn1.5 log(n), γ = 16dmn log2(n) and D = {y ∈ Rp | ||y||∞ ≤

d} for some d. When the algorithm AL takes in Λ(I) together with Rp and the
parameters above it puts out a vector a, of polynomials ai, such that ai are sta-
tistically close to uniformly and independently random distributed.

Proof Before using the algorithm AL we need a g ∈ I, I ideal of Rp, such that
g 6= 0 and ||g||f ≥ γλ(I), where f = xn+ 1. We know that I has finite dimension
as Rp has finite dimension and we set D = {k ∈ Rp | ||k||f < d}. In addition we
assume that g is of less degree than n and thus we know that ||g||f = ||g||∞. We
then run AL with Λ(λ),m, γ and g as its input.

Since we generated I/〈g〉 to be a uniformly random coset, vi is then in a uniformly
random coset. Let us assume that yi is also from a uniformly random coset, then
vi + yi will also be. Then the distribution of p(vi + yi) is from a uniformly ran-
dom coset of R/〈pg〉. A basis for 〈pg〉 can be of the form pg, pgx, ..., pgxn−1,
thus an element in Rn/〈pg〉 can be presented as α0pg, α1pgx, ..., αn−1pgx

n−1 =
p(α0g, α1gx, ..., αn−1gx

n−1) for some αi ∈ [0, 1). We can write wi = pα0 +pα1x+
...+pαn−1x

n−1 and since p(vi+yi) is in a uniformly random coset it follows that
wi is uniform over [0, p). This makes the coefficients in [wi] uniform over the
integers modulo p.

However, since we only assumed that yi is from a uniformly random coset,
we are not done. The distribution of yi is ρs/s

n and so by our choice of s
we have that ∆(ρs/s

n + I, U(Rn/I)) ≤ ε/2. Using equation 1 and 2 [24] to-
gether with the fact that ai’s are functions of yi and independent we get that
∆((a1, ..., am), U(Zn×mp )) ≤ mε/2. This means that our ai is statistically close
to uniform, and this is good enough.

�

Having a vector constructed by the algorithm AL from Proposition 2.1 we can
construct a hash function from H(R,D,m). Having this hash we can now use
our algorithm CollFind to find a collision in our hash. The algorithm uses an
oracle to find polynomials α1, ..., αm, β1, ..., βm such that ||α||f , ||β||f ≤ d and∑
aiαi =

∑
aiβi. Then it sets zi = αi − βi and output z1, ..., zm such that

||zi||f ≤ 2d and
∑
ziai ≡ 0 in R. We now want to show that having a collision

in our hash, we can use this to solve SVPγ .
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Proposition 2.2 Let a,w and y be the output from AL(m, γ, g) and let h ∈
H(R,D,m) be constructed using a. If we have a collision in h, given by CollFind,
then algorithm RAL gives us a solution for SVPγ(Λ(I)) for every (xn + 1)-cyclic
lattice Λ(I).

Proof Assuming we have all the output from the algorithm AL, and the collision
from our algorithm CollFind we use algorithm RAL and get

l =

(∑(
g(wi − [wi])

p
− yi

)
zi

)
mod(xn + 1)

To make sure that l is indeed a solution we need to show three things; that l ∈ I,
that ||l||f ≤ ||g||∞/2 and that l 6= 0. We will separate these into three lemmas
to keep our head in the game while proving them. Our proposition then follows
directly from these three lemmas.

Lemma 2.1 l ∈ I.

Proof (∑(
g(wi − [wi])

p
− yi

)
zi

)
=
∑

(vi + yi + gki − gai/p− yi)zi

=
∑

(vi + gki)zi −
g
∑
aizi
p

We know that vi ∈ I and g ∈ I, therefore vi + gki ∈ I and it then follows that∑
(vi + gki)zi ∈ I.

∑
aizi ≡ 0 mod p, thus

∑
aizi
p ∈ Z[x] and g

∑
aizi
p ∈ I. Thus

we have shown that l ∈ I.
�

Lemma 2.2 ||l||f ≤ ||g||∞/2.

Proof We start by looking at the infinity norm of l

12



||l||∞ =

∣∣∣∣∣∣∣∣∑(
g(wi − [wi])

p
− yi

)
zi

∣∣∣∣∣∣∣∣
∞

≤
∑∣∣∣∣∣∣∣∣(g(wi − [wi])

p

)
zi

∣∣∣∣∣∣∣∣
∞

+
∑
||yizi||∞

We have separated the norm into two sums and will look closer at these sepa-
rately. We start with the first sum.

∣∣∣∣∣∣∣∣(g(wi − [wi])

p

)
zi

∣∣∣∣∣∣∣∣
∞
≤ 1

p
||g(wi − [wi])||∞||zi||1

Assuming that the coefficients in wi are uniformly distributed in [0, p) indepen-
dently, the coalitions in wi − [wi] are uniformly distributed in [−1/2, 1/2]. Since
wi are independent from g, we get from Lemma E.2 [24] that

||g(wi − [wi])|| ≤ ω(
√
nlog(n))||g||

with probability negligible close to 1. We have already argued that the coefficients
in wi are statistically close to uniform over [0, pn), and the inequality therefore
still holds after removing our assumption about wi. Thus

∑∣∣∣∣∣∣∣∣(g(wi − [wi])

p

)
zi

∣∣∣∣∣∣∣∣
∞
<
||g||∞

4E

follows from our choice of p.

For the second sum, our approach will be slightly different. We start by wanting
to show that the following probability is very small.

Pr[||yizi||∞ > ||zi||∞s
√
nlogn

∣∣ (a1, ..., am), (z1, ..., zm)]
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This is to argue that the probability that ||yizi||∞ < ||g||∞
4E is negligible close to

1. We know that for any coset of Rn/I, for instant y′i + I, the distribution of ai
is the same regardless of yi and vice versa. The yi’s are thus also independent of
z1, ..., zm, since z is a function of a, and we get the following probability

Pr[yi | yi ∈ y′i + I] =
ρs(yi)

ρs(y′i + I)
=
ρs,−y′i(yi − y

′
i)

ρs,−y′i(I)

Using this probability together with Lemma 2.7 [24] we get

Pryi∼ρs/sn
[
||yizi||∞ > ||zi||∞s

√
nlog(n)

∣∣ yi ∈ y′i + I
]

= Pr(yi−y′i)∼DI,s,−y′
i

[
||((yi − y′i)− (−y′i))zi||∞ ≥ ||zi||∞s

√
nlog(n)

]
= n−ω(1)

This probability is for each i independently, and summing up all the probabilities
gives us

Pr

[∑
||yizi||∞ ≥ 2dms

√
nlog(n)

]
= n−ω(1)

We see with probability negligible close to 1 that

||l||∞ <
||g||∞

4E
+
||g||∞

4E
=
||g||∞

2E

and know by the constructed l that it has degree less than 3(n− 1), thus

||l||f ≤ E||l||∞ ≤
||g||∞

2
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We see that we almost always get an l that is the smallest vector in our lattice. �

Lemma 2.3 l 6= 0

Proof It is good enough that the probability that l = 0 is very small. Assuming
without loss of generality that z1 is non-zero, then l = 0 if and only if

y1z1 =

m∑
i=1

g(wi − [wi])zi
p

−
m∑
i=2

yizi

We know that given a coset of Rn/I, then y1 is independent from ai, zi and yi>1.
We want the bound of the probability to be as follows

Pry1∼ρs/sn

[
y1z1 =

m∑
i=1

g(wi − [wi])zi
p

−
m∑
i=2

yizi

∣∣∣∣ y1 ∈ y′1 + I

]

If z1y1 = c, then y1 can only be one value for each given z1, because z1, z1x, .., z1x
n−1

are linearly independent. From equation 5 [24] it follows that

Pry1∼ρs/sn [y1 | y1 ∈ y′1 + I] =
ρs(y1)

ρs(y′1 + I)
=
ρs,−y′i(yi − y

′
i)

ρs,−y′i(I)

This is the probability that given x ∼ DI,s,−y′1 we have x = y1 − y′1. It then
follows from lemma 2.5 [24] that we have the probability Ω(1) for l 6= 0, which is
small enough.

�

Together, Proposition 2.1 and 2.2 proves that if we have a collision finder for
a hash function, we get a solver for ideal SVPγ . It is worth noting that our
algorithm from Proposition 2.1 only gives us the a we want most of the time.
However, this is fine, since it also runs in polynomial time, and if it fails we can
simply run it again. It is fairly easy to show that it runs in polynomial time,
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thus we won’t be bothering to do it in this text. The specially interested reader
can have a look in the original proof [24]. It follows from this proof that since we
believe it is very hard to solve SVP we can then conclude that it is equally hard
to find a collision in our hash. This is great since this gives us a way to construct
hash functions with our desired structures to use in quantum safe crypto systems.
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3 Identification Scheme and Signatures

Before we start to look at some actual schemes we want to know what their pur-
pose is and what security criteria we put on them. In this section we will therefore
introduce the concept of identification schemes, abbreviated ID-Scheme, and sig-
nature schemes. The main purpose of such schemes is for one to be able to
prove once identity or in some way to sign a message. We are going to discuss
how ID-schemes and signatures are constructed and what properties they have
to deem them secure. It is natural to start with ID-schemes, as signatures often
are constructed with an ID-scheme in mind.

3.1 What is an Identification-Scheme?

An ID-scheme consists of two parts, a key-generator algorithm and an interac-
tive protocol. The latter is between a prover, often called Peggy, and a verifyer,
often called Victor. The key-generator algorithm generates a key par, sk and vk,
that gets distributed to Peggy and Victor, respectively. Although Peggy is not
necessarily signing anything we are going to call her key the signature key, or
sk for short. We will call Victors key the verification key, or vk, as Victors goal
is to verify. Upon receiving the keys, Peggy and Victor can run the interactive
protocol between themselves.

The interactive protocol starts by having Peggy pick a random value, send it to
Victor, then wait for a challeng from him. Victor selects a random challenge and
sends it back to Peggy upon receiving her random value. These two values are
both random and independent. Upon receiving the challenge Peggy computes
a new value based on her sk and the two random values. This computation is
done so that she can prove to Victor that she does indeed know the sk without
revealing it to him. Lastly, Victor finishes the interaction by uses his vk, the
random values and Peggys answer to determine if he believes that Peggy knows
sk. He then accepts or rejects her based on whether or not he believes her. We
say that our identification protocol was successful if Victor accepts Peggy.

To give a more visual idea of the interactive protocol of an ID-scheme we have
included an illustration of a sigma protocol in Figure 2. In this figure we have
denoted the different values being sent back and forth by α, β and γ. The specific
computations of these values varies from scheme to scheme and we will look at
specific ID-scheme in the next section.
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Peggy (sk) Victor (vk)

Accept/Reject

α

β

γ

Figure 2: Sigma Protocol

3.1.1 Completeness

As much as we want a interactive protocol to succeed between two honest parties,
this is not always the case, nor do we need our protocol to succeed every time.
We just need the probability of acceptance to be higher than the probability of
rejection when both parties are honest.

Definition 3.1 If Peggy has sk, having completeness means Victor rejects with
negligible probability.

If a protocol does not have completeness it is to no use for us, as it will not prove
anything. Therefore completeness is our first goal in constructing an ID-scheme.
Having completeness does however only confirm Peggys ability to convince Victor
to accept. It does not make sure a dishonest Peggy can not convince Victor of
the same. Nor does it make sure Victor does not learn any information of sk.

3.1.2 Soundness

In a perfect world we would not have to take precautions to avoid any malicious
third parties. But if the world had been perfect to begin with, Peggy would
probably not have to prove herself to Victor in the first place. In the real world
however, there are plenty of malicious people that want to interfere with us. Such
a malicious person could for example pretend to be Peggy herself.
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Definition 3.2 A cheating Peggy, denoted P ∗, is an interactive algorithm with
access to vk, it runs the protocol with Victor such that Victor eventually termi-
nates.

When we say that Peggy is dishonest, malicious or cheating, we mean that she
does not have access to the sk. If she does not know sk she should not be able
to run a successful identification protocol with Victor.

Definition 3.3 P ∗ can observe conversations between P and V and from this
gets a view. This view consists of all the parameters sent between P and V .
Then P ∗ tries to run the protocol with V and we call the probability of success
for soundness error

Pr[V → 1|P ∗] = ε

We say the protocol has soundness if ε is negligible in our protocol.

Knowing this probability gives us the opportunity to make our schemes secure
enough for our purposes. Optimally we want our ID-scheme to never accept a
malicious party, however we see that in practice that this is both nearly impos-
sible and unnecessary. Having the probability that an dishonest Peggy getting
accepted, ε, low will make our protocol secure enough.

3.1.3 Zero-Knowledge

A malicious party may also try to get some insight on the sk from a honest Peggy.
In this case the malicious party will take the role of a dishonest or cheating Victor.

Definition 3.4 A cheating Victor, V ∗, is an interactive algorithm that takes
in the verification key, interact with Peggy and eventually terminates with some
output.

After our interactive algorithm has run the protocol with a honest Peggy it will
be left with all the parameters that Peggy sent him. We call this collection of
parameters a view. The view is interesting to us as it tells us what information
the cheating Victor has gained.
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Definition 3.5 A simulator for Victor is an algorithm that when being fed the
verification key eventually terminates with some output or a special symbol ⊥.
The probability that it outputs ⊥ is independent from the verification key.

The simulator will as our interactive algorithm be left with a view. To deter-
mined the security of our scheme we want to compare the view of our dishonest
Victor and our simulated Victor.

Definition 3.6 We say that we have Zero-Knowledge (ZK) if the view from
the dishonest Victor and the view from the simulator are the same.

We call it zero-knowledge because we want Victor to gain precisely zero knowl-
edge about Peggys sk. If the dishonest Victor cannot gain any more information
than the simulated Victor, and we have constructed our protocol right, Victor,
dishonest or not, should not learn anything about sk, from the view.

3.1.4 Witness Indistinguishability

Often in ID-schemes it is possible to construct multiple sk for a single vk. This
may sound like it would cause some big problems, however, often it is not so.
We do have to keep it in mind when constructing ID-schemes, though. Feige and
Shamir [12] define the notion of witness indestinguishability (WI) as

Definition 3.7 A ID-scheme is witness indistinguishable over R if for any V ∗,
any large enough input µ and any two signature keys sk, sk′ for a verification
key vk, the views generated by running V ∗(P (µ, sk), vk) and V ∗(P (µ, sk′), vk)
are indistinguishable for V ∗.

As with ZK, WI is about Victor’s view, but here we do not need to include a
simulator. In ZK we want to make sure that Victor does not learn anything from
the response, whereas in WI we want Victor to not be able to see any difference
between two sk corresponding to the same pk. If we make sure that our system
does not leak any information about which sk we use, it will look as though there
is only one sk for each vk and we need not worry much.
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3.1.5 Abort

Occasionally in an ID-scheme we stumble upon the problem that Peggy can not
produce a response using Victors challenge, or that by doing so the response
gives out more information than is wanted. To deal with this kind of problem,
Peggy can simply send a new commitment and ask for a different challenge. This
procedure is called an abort.

If Peggy aborts the procedure many times in a row this might make Victor sus-
picious. However an honest Peggy does not need to abort a suspicious amount
of times, so this is of very little concern to us.

A nice consequence about using aborting in our schemes is that we are more
free to choose the size of our final response. Although having to ask for a new
challenge is time consuming, so for ID-schemes this is not such a big advantage.
However further development of ID-schemes have great benefits from a shorter
response, as we will see later. Having shorter responses makes it both more effi-
cient to compute and to send.

A greater benefit of being able to abort is that it gives us a chance to know for
sure that the view does not reveal any unwanted information. The information
we do not want to be revealed is ether our sk or which sk to the vk we have used.
Having the ability to make sure this information does not leak makes aborting a
great tool for securing ZK and WI for our ID-scheme.

3.2 What is a Signature?

Definition 3.8 A signature scheme is made up of three polynomial-time al-
gorithm (G,S, V ), the key generator algorithm G, the signature algorithm S and
the verification algorithm V . These algorithm are such that for every par (sk, vk)
generated by G and a n-bit message µ, the following probability

Pr[V (vk, µ, S(sk, µ)) = 1] = 1

holds.

Our three algorithms in a signature scheme are key generator algorithm, signature
algorithm and verification algorithm. The key generator G produces two keys,
namely the signature key, sk, and the verification key, vk. These keys then gets
distributed to Peggy and Victor respectively. Peggy and Victor are then ready to
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run the signature and the verification algorithms to sign and verify, respectively.

Peggy with her sk, use the signature algorithm, S, to sign her message µ. Hav-
ing her signature she can then send it to Victor for him to verify. Victor uses
the verification algorithm, V , on vk from G and the signature from Peggy, and
accepts or reject, depending on the outcome.

We know that the completeness in our signature follows from the ID-scheme that
we built our signature on. Therefore we know that when both Peggy and Victor
are honest the signature will succeed. In general when we use a signature scheme
that is built upon an ID-scheme, the security from the ID-scheme follows over
to the signature. Therefor we can trust that our signature has soundness and
zero-knowledge. However, we now get some new problems. What if there is a
third party that wants to forge a signature on a message?

3.2.1 Unforgeable

Definition 3.9 A signature scheme (G,S, V ) is unforgeable if for every polynomial-
time forger F , after seeing the public key and the signatures for j messages of its
choosing, {(µ1, S(sk, µ1)), ..., (µj , S(sk, µj))}, the probability that F can produce
a signature µ, S(sk, µ), such that µ 6= µi ∀i and V (vk, µ, S(sk, µ) = 1, is negligi-
ble.

We say that a signature is unforgeable if no forger F can forge a signature on
a new message. In addition we can get another layer of security by adding the
notion of strongly unforgable. This means that in addition to not being able to
forge a new message the forger should not be able to forge a signature to a mes-
sage they already have seen the signature to.

3.2.2 Random Oracle Model

Often when working with signatures we want to use hash functions. To provide
proof of security on such signatures we need to be able to simulate the hash
functions in some way. In order to so we need some strong assumptions, Fiat,
Shamir, Bellare and Rogaway [3, 13] suggests to use a random function to sim-
ulate hashes. This has led to the random oracle model or ROM for short. The
model simulate hashes as oracles that when queried to puts out random answers.
The oracles also keep track of old queries so it can answer the same if a query
is repeated. If we have a hash in our signature scheme with no weaknesses a
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security proof the model will ensure that the signature is secure.

3.2.3 Forking Lemma

The oracle replay attack is an attack where the attacker replays the attack using
a different oracle, obtaining two different signature to one message. This opens a
opportunity to break underlying security properties for our schemes. We follow
Pointcheval and Regev [29] when proving the following theorem. But first we
need to state a well known lemma in order to prove our nest theorem.

Lemma 3.1 If W ⊂ X × Y , such that Pr[W (x, y)] = ε, there exists an Ω ⊂ X
such that

• Pr[z ∈ Ω] ≥ ε/2

• whenever a ∈ Ω, Pr[W (a, y)] ≥ ε/2

Theorem 1 (Forking Lemma) Let A be a probabilistic polynomial time turing
machine which only get the verification key as its input. If A can, with non-
negligible probability, find a valid signature (z, c) for a message µ, then A with
another oracle can replay and, with non-negligible probability, find a new valid
signature for µ such that (z, c) 6= (z′, c′).

Proof Having a probabilistic polynomial time turing machine A we assume A is a
no message attacker with a random type ω. A will then run an attack by sending
Q queries, q1, ..., qQ with Q a polynomial, to a random oracle, RO1. In return the
random oracle replies with ρ1, ..., ρQ respectively. These responses correspond to
our random oracle RO1 and querying to a different, ROi i 6= 1, would result
in different responses. A can now, with non-negligible probability, make a ran-
dom choose of ω, ρ1, ..., ρQ and output a valid signature (µ, z, c). There is only
a negligible probability that µ does not get queried, because of the randomness
of our RF , thus µ is on of the qi’s with non-negligible probability, lets call it qβ .
Because β is in between 1 and q(n), we know there exists a polynomial P such
that the probability of success over ω, ρ1, ..., ρQ with qβ is 1/P (n).

We can use Lemma 3.2.3 together with our β and get a subset Ωβ of “good”
ω’s. An ω from this subset gives us a probability of success greater than 1/2P (n)
ω, ρ1, ..., ρQ with qβ . We use Lemma 3.2.3 again with β and ω to get a subsetQβ,ω
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of “good” (ρ1, ..., ρβ−1)’s. Now the attacker have probability 1/4P (n) of success
with an attack over ρβ , ..., ρQ. Having now β, ω, ρ1, ..., ρβ−1 we use two random
oracles, RO1 and RO2, to obtain ρβ , ..., ρQ and ρ′β , ..., ρ

′
Q and get a non-negligible

probability of finding two signatures (µ, z, c) and (µ, z′, c′) with (z, c) 6= (z′, c′).
�

We have now proven that if we can, with non-negligible probability, find a valid
signature we can find an other valid signature, also with non-negligible probabil-
ity. Forking lemma can be a problem, but we have already used it when discussing
ID-schemes and hence also already discussed ways to work against it. As long as
we make sure the underlying ID-scheme to our signatures are WI and ZK we are
safe from this lemma.

3.2.4 Sign with Abort

As with ID-schemes we want to include the notion of aborting in our signatures.
This time it is a lot easier as we do not have to ask for a new challenge each time
we abort. Now we merely need to compute a new challenge ourselves and Victor
do not need to know how many times we tried to sign before we arrived at a
suitable signature. Likewise, to the ID-schemer, the reason for wanting to abort
is to have more control on the signatures we send out. When aborting we have
the opportunity to make sure that our signature does not reveal any unwanted
information, thus helping with WI and ZK requirement.

Simultaneously aborting make sure that the size of our signature is small. Whereas
the effects of having a short signature is lost in an ID-scheme if we have to abort,
this is not the case with signature schemes. Because we only need to run the pro-
tocol again, our self aborting has very little effect on the efficiency of the scheme,
but having a short signature is certainly beneficial.
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4 Going from ID-Schemes to Signatures

In this section we will present three different signature schemes, namley Fiat-
Shamir, Luybashevsky and Dilithium. Fiat-Shamir is not a quantum safe crypto
system, but it presents a very interesting method for transforming ID-schemes
into signature schemes. This method is commonly known as the Fiat-Shamir
method, and is used in both Luybashevsky and Dilithium, who are both quan-
tum safe. We will therefore start by presenting Fiat-Shamir, and then move on
to Luybashevsky and Dilithium.

4.1 Fiat-Shamir

Fiat-Shamir is a method for convert an interactive proof of knowledge, or ID-
schemes as we know them, to a signature scheme. The method was created by
Fiat and Shamir in 1986 [13], and uses hash functions to simulate a random chal-
lenge Victor creates in the ID-scheme. This way, Peggy does not need to have
more than one interaction with Victor to prove herself to him. As we are mostly
interested in the method and not the scheme in itself we will not bother to look
closer at the security of this scheme.

4.1.1 ID-Scheme

To describe how the method works we first need an ID-scheme to work out from.
The example we are using is the original from [13]. Below we present the two
parts of an ID-scheme, namely key generation and interactive protocol.

The key generator algorithm produces a signature key by taking I and using it
with our random function. The output from the function is then set as the veri-
fication key, and the square root of its inverses as the signature key. Both vk and
sk consist of k random values from [0, n), where n is the product of two primes.

When the keys are distributed between Peggy and Victor, they can run the in-
teractive protocol by having Peggy picking t random values. She square each
of them and send them all to Victor. Victor respond to Peggys commitment
by sending a matrix back. Peggy can then compute her response using her key,
commitment and the matrix from Victor and then send the final result to Victor.
Lastly Victor uses his key, the commitment and his matrix to conclude wheather
or not he trust Peggy.
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Key generation:
(1) for i = 0 to k

(1.1) set vi to f(I, i)
(1.2) set si to be the square root of v−1

i

(2) set vk = (v1, ..., vk), sk = (s1, ..., sk)

Interactive protocol:
(1) for j = 0 to t

(1.2) Peggy pick rj at random from [0, n)
(1.2) Peggy sends xj = r2

j to Victor
(2) Victor sends a random binary k × t matrix C to Peggy
(3) for j = 0 to t

(3.1) Peggy sends yj = rj
∏

Cij=1 si mod(n) to Victor

(4) if ∀i ∈ [0, t] xj = y2
j

∏
Cij=1 vi mod(n) Victor accept, else Victor reject

This ID-scheme has the structure of the sigma protocol, and we see that here
α = (x1, .., xt), β = c and γ = (y1, ..., yt).

4.1.2 Signature Scheme

Fiat and Shamir uses a function, F , that is indistinguishable from a truly ran-
dom function for Peggy to create a challenge for themselves. The scheme of Fiat
and Shamir is illustrated in Figure 3 and consist of three algorithms. The key
generation algorithm is as in the ID-scheme.

We separate the interactive protocol in to two algorithms in the signature. Here
point 1-3 is contained in the signature algorithm, run by Peggy, and point 4 is
set as the verification algorithm, run by Victor. In the signature algorithm all
the previous points done by Peggy is as before. However, point 2 was previously
done by Victor, but will now be computed by Peggy using a function to simulate
the randomness and unpredictability from Victor. The function used has to be
sufficiently hard to find inverses with or else the signature looses its security. This
results in Peggy sending µ, I,C, y as her signature.

The verification algorithm is now consists of point 4. It computes the challenge
itself, and then compeers the result to the two matrices. If they are the same
Victor accept Peggys signature, otherwise he rejects her.

To show that the signature has completeness we only need to show that
F (µ, x1, ..., xt) = F (µ, z − 1, ..., zt), this is easy to see by the following equation.
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zi = y2
i

∏
eij

vj = r2
i

∏
eij

s2
jvj = xi

Algorithm: Key Generator

Input: I
1 for j = 1, ..., k do
2 vj = f(I, j);

3 sj ← square root of v−1
1 mod(n);

4 Return sk = (s1, ..., sk), vk = (v1, ..., vk)

Algorithm: Signature

Input: µ, sk
1 for i = 0, ..., t do
2 ri ← [0, n);
3 xi = r2

i mod(n);

4 F (µ, x1, ..., xt)→ string of bits β;
5 C← k × t-matrix of the first kt bits from β;
6 for i = 0, ..., t do
7 yi = ri

∏
Cij=1 sj mod(n);

8 Return (µ,C, y)

Algorithm: Verification

Input: µ, vk,C, y
1 for j = 1, ..., k do
2 vj = f(I, j);

3 for i = 0, ..., t do
4 zi = y2

i

∏
Cij=1 vj mod(n);

5 F (µ, z1, ..., zt)→ string of bits β′;
6 C′ ← k × t-matrix of the first kt bits from β′;
7 if C = C′ then
8 Accept

9 else
10 Reject

Figure 3: Fiat-Shamir
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4.2 Lyubashevsky

Lyubashevsky [25] presents a signature scheme using the Fiat-Shamir method
for going from an ID-scheme to a signature using a function to simulate Victors
randomness to create a random challenge. We go from an ID-scheme presented
below to the signature scheme presented in Figure 4. We will also use a hash
function from our hash function family H(R,D,m) that will provide the security
in this scheme, also agings quantum computers.

4.2.1 ID-Scheme

The key generation is done by setting the signature key to be a random value and
the hash from H(R,D,m). Then the verification key is made to fit the signature
key by setting it to be the hash of the random value, using the same hash, and
the hash itself.

We have four stages in the interactive protocol. In the first, Peggy chooses m ran-
dom values and hashes them before sending them to Victor as her commitment.
Victor simultaneously chooses a random value and sends them as his challenge.
Peggy then computes her response in point 3, if it is within her preferred range
she sends her signature over to Victor. Otherwise abort and she starts the pro-
tocol from point 1 again. Lastly Victor either accept or reject Peggy based on
whether the equation in point 4 is correct or not.

Key generation.
(1) sk = (s← Dm

s , h← H(R,D,m))
(2) vk = (h(s), h← H(R,D,m))

Interactive protocol:
(1) y← Dm

y , Peggy set Y = h(y) and sends Y to Victor
(2) c← Dc, Victor sends c to Peggy
(3) z = sc+ y

(3.1) if z ∈ Gm Peggy send z to Victor
(3.2) else Peggy aborts and runs the protocol again.

(4) Victor accepts if h(z) = Sc+ Y and z ∈ Gm, else he rejects
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Parameter Definition Sample Instantiations

n integer that is a power of 2 512 512 512 1024
m any integer 4 5 8 8
σ any integer 127 2047 2047 2047

κ integer s.t. 2κ
(
n
κ

)
≥ 2160 24 24 24 21

p integer ≈ (2σ + 1)m2−
128
n 231.7 259.8 295.8 295.9

R Zp[x]/〈xn + 1〉
D {g ∈ R | ||g||∞ ≤ nmσκ}
Ds {g ∈ R | ||g||∞ ≤ σ}
Dc {g ∈ R | ||g||1 ≤ κ}
Dy {g ∈ R | ||g||∞ ≤ nmσκ}
G {g ∈ R | ||g||∞ ≤ nmσκ− σκ}

Table 2: Table of Parameters for Lyubashevskys.

4.2.2 Signature Scheme

In the signature the key generation is the same as the in ID-scheme. The interac-
tive protocol, however, gets split up into the signature and verification algorithm.
Here, like with Fiat-Shamir, point 1-3 in the interactive protocol is put into the
signature algorithm and point 4 in the verification algorithm.

Point 1 and 3 are the same in the algorithm as in the protocol. Point 2 is changed
as it is no longer Victor that constructs the challenge, but Peggy doing it for her-
self. This is done by using the Fiat-Shamir method and having Peggy using a
random oracle, RO. The random oracle takes the hash of commitment and the
message as input, and outputs randomness to simulate the challenge we normally
would get from Victor. Peggy is then able to use this randomness as her chal-
lenge, computes her signature, and sends µ, z, c to Victor.

The verification algorithm is set to be point 4 from the protocol with some ad-
justments. We now want the challenge Peggy computed to be the same as the
output from the random oracle when setting h(z) − Sc and the message as its
input. If this is correct, Victor accepts, otherwise he rejects.

It is easy to see that if we have an honest Peggy she will be accepted because of
the linearity of our hash functions, as shown below.

h(z)− Sc = h(sc+ y)− h(s)c = h(s)c+ h(y)− h(s)c = h(y)
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Algorithm: Key Generator

1 sk : h← H(R,D,m), s← Dm
s ;

2 vk : h← H(R,D,m), S ← h(s);

Algorithm: Signature

Input: µ, sk
1 y← Dm

y ;

2 c← RO(h(y), µ);
3 z← sc+ y;
4 if z 6∈ Gm then
5 run again;

6 Return (µ, z, c)

Algorithm: Verification

Input: µ, z, c, vk
1 if z ∈ Gm and c = RO(h(z)− Sc, µ) then
2 Accept;

3 else
4 Reject;

Figure 4: Lyubashevskys
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Similarly to the way that completeness follows from the ID-schemes, the signa-
tures ZK security follows from the ID-scheme. The protocol may need to run a
few times to make sure z ∈ Gm, but this is acceptable, and Lyubashevsky [25]
state that we will have a usable z in under 3 attempts, with the parameters given
in Table 2. This is very acceptable.

4.2.3 Security

Now we prove that the probability that a random forger can forge a signature
for some message is negligible. This should hold, whether or not, the forger has
seen a signature for the message before. The following theorem shows that this
signature scheme is strongly unforgeable.

Theorem 2 If the signature scheme in Figure 4 with the parameters in Table
2 is not strongly unforgeable, then there is a polynomial-time algorithm that can
solve SVPγ(Λ(I)) for γ = Õ(n2) for every lattice Λ(I) corresponding to an ideal
in the ring Z[x]/〈xn + 1〉.

We will draft the proof: if we do not have strong unforgeability there exists a
forger F that can forge a signature to some message. If this is the case, we have
an F that is able to, without knowing sk, get a valid z for some random c and µ.
In other words, F is able to find

RO(h(z)− Sc) = RO(h(z′)− Sc′)
⇒

h(z)− Sc = h(z′)− Sc′

⇒
h(z− z′) = S(c− c′)

This means that F has access to a way of finding a collision in our hash function h.
We have already shown, in Proposition 2.1 and 2.2, that having a collision in our
hash function from our hash function family give us a way to solve SVPγ(Λ(I)),
where I is an ideal in Rp.
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The security for the scheme then follows from the fact that we believe it is very
hard to solve SVPγ(Λ(I)), especially when working with ideal lattices. It thus
follows from our theorem that this signature scheme is strongly unforgeble.

�

4.3 Dilithium

As with Lyubasheavskys scheme, our new scheme Dilithium is also based on
the Fiat-Sahmir method. We can thus find similarities between the two schemes.
Dilithium is one of the contestants for NISTs call for post-quantum cryptographic
standards and created by Ducas et al. [11].

4.3.1 ID-Scheme

Before we look at the actual signature scheme we want to know the underlying
ID-scheme, just as we did with Fiat-Shamir and Luybashevsky. This ID-scheme
is, like the other ID-schemes, a sigma protocol.

The key generator algorithm starts by choosing some random values to use in
computing the keys. There are three functions defined outside of the scheme
used to compute the parameters for the keys: ExpandA and CRH. Both are
based on hash functions, which we will explain in more detail in the next section
when discussing why they help upgrade the scheme. Power2round is an easy
function described in Figure 6. After using all the functions to further randomise
and construct suitable variables we end up with the verification key ρ, t1 and the
signature key ρ,K, tr, s1, s2, t2.

The interactive protocol starts by having both Peggy and Victor compute A using
ExpandA before it continues on as a normal sigma protocol. Peggy then masks
over her message with that hash based function CRH. Using another hash based
function, she constructs a random value and feeds Ay to the function HighBits,
described in Figure 6, getting her commitment w1, before sending it off. Victor
chooses a random challenge and sends it to Peggy. The final response from Peggy
now consists of two elements z and h, where z = y+cs1 and h is computed using
the MakeHint function. Peggy checks if these are up to her standards before
sending them to Victor. If the elements are not within her preferred range she
aborts and starts over again. Lastly, Victor uses the functions CRH and Use-
Hint to compute the values necessary to verify Peggy and either accepts or rejects.
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Key generation:
(1) ρ← {0, 1}256

(2) K ← {0, 1}526

(3) (s1, s2)← Dl
µ ×Dk

µ

(4) A ∈ Rk×lq = ExpandA(ρ)
(5) t = As1 + s2

(6) (t1, t2) = Power2round(t, d)
(7) tr ∈ {0, 1}384 = CRH(ρ||t1)
(8) pk = (ρ, t1) and sk = (ρ,K, tr, s1, s2, t2)

Interactive protocol:
(1) A ∈ Rk×lq = ExpandA(ρ) is computed by both Peggy and Victor
(2) Peggy set κ = 0 and compute:

(2.1) m ∈ {0, 1}384 = CRH(tr||µ)
(2.2) y ∈ Dt

γ1−1 = ExpandMask(K||m||κ)
(2.3) w = Ay
(2.4) w1 = Highbits(w, 2γ2) and sends w1 as her commitment

(3) Victor chooses c at random as his challenge and sends it to Peggy
(4) Peggy sets (z,h) = ⊥ and compute:

(4.1) z = y + cs1

(4.2) (r1, r2) = Decompose(w− cs2, 2γ2)
(4.3) If ||z||∞ ≥ γ1 − β or ||r2||∞ ≥ γ2 − β or r1 6= w1 Peggy aborts

and starts again from (2) with κ = κ+ 1
(4.4) h = MakeHint(−ct2,w− cs2 + ct2, 2γ−2)
(4.5) If ||ct2||∞ ≥ γ2 or the number of 1’s in h is greater than ω Peggy

aborts and starts again from (2) with κ = κ+ 1
(4.6) Peggy sends (z,h) to Victor

(5) Victor sets m ∈ {0, 1}384 = CRH(CRH(ρ||t1)||µ) and
w′1 = UseHint(h,Az− ct1 · 2d, 2γ2)

(5.1) If ||z||∞ < γ1 − β and c = H(µ||w′1) and number of 1’s in h is
less than ω, Victor accepts Peggy, otherwise he rejects

4.3.2 Signature Scheme

The three algorithms that make up our scheme are illustrated in Figure 5 with
some additional functions used in the scheme illustrated in Figure 6. First of is
the key generation algorithm which is done the same way as in the key generation
for our ID-scheme. The two keys pk = (ρ, t1) and sk = (ρ,K, tr, s1, s2, t2) are
then distributed to Peggy and Victor respectively.
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Next we split the interactive protocol into the signature algorithm and verifica-
tion algorithm. The signature algorithm consists of point 1-4. All points except
3 is done in the same way as in the interactive protocol. In point 3, however,
Peggy uses a hash often referred to as an “inside-out” version of the Fisher-Yates
shuffle. This hash takes in Peggys already hash message and her commitment
and hashes these to a random element on the ball B60. Peggy is able to complete
her signature as in the interactive protocol with this variable and sends off z,h
and c as her signature to Victor.

The verification algorithm now consists of point 1 and 5 from the interactive
protocol. As in the interactive protocol we need Victor to have accses to the
matrix A, therefore we have him compute it for himself. Having this, Victor
then accepts or rejects Peggy on the same bases as in the interactive protocol.
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Algorithm: Key Generator

1 ρ← {0, 1}256;
2 K ← {0, 1}526;
3 (s1, s2)← Dl

µ ×Dk
µ;

4 A ∈ Rk×lq = ExpandA(ρ);
5 t = As1 + s2;
6 (t1, t2) = Power2round(t, d);
7 tr ∈ {0, 1}384 = CRH(ρ||t1);
8 Return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t2))

Algorithm: Signature

Input: (sk, µ)
1 A ∈ Rk×lq = ExpandA(ρ);

2 m ∈ {0, 1}384 = CRH(tr||µ);
3 κ = 0;
4 (z,h) = ⊥;
5 while (z,h) = ⊥ do
6 y ∈ Dt

γ1−1 = ExpandMask(K||m||κ);
7 w = Ay;
8 w1 = HighBits(w, 2γ2);
9 c = H(m||w1);

10 z = y + cs1;
11 (r1, r2) = Decompose(w− cs2, 2γ2);
12 if ||z||∞ ≥ γ1 − β or ||r2||∞ ≥ γ2 − β or r1 6= w1 then
13 (z,h) = ⊥;
14 κ = κ+ 1;

15 else
16 h = MakeHint(−ct2,w− cs2 + ct2, 2γ−2);
17 if ||ct2||∞ ≥ γ2 or the number of 1’s in h is greater than ω then
18 (z,h) = ⊥;
19 κ = κ+ 1;

20 Return σ = (z,h, c)

Algorithm: Verification

Input: (pk, µ, σ)
1 A ∈ Rk×lq = ExpandA(ρ);

2 m ∈ {0, 1}384 = CRH(CRH(ρ||t1)||µ);
3 w′1 = UseHint(h,Az− ct1 · 2d, 2γ2);
4 if ||z||∞ < γ1 − β and c = H(µ||w′1) and number of 1’s in h is less than

ω then
5 Return Accept

6 else
7 Return Reject

Figure 5: Dilithium
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Algorithm: Power2round

Input: r, d
1 r = r mod(q);
2 r1 = r mod(2d);
3 r2 = (r − r1)/2d;
4 Return (r1, r2)

Algorithm: Decompose

Input: r, α
1 r = r mod(q);
2 r1 = r mod(α);
3 if r − r1 = q − 1 then
4 r2 = 0;
5 r1 = r1 − 1;

6 else
7 r2 = (r − r1)/α;

8 Return (r1, r2)

Algorithm: HighBits

Input: r, α
1 (r1, r2) = Decompose(r, α);
2 Return r2

Algorithm: LowBits

Input: r, α
1 (r1, r2) = Decompose(r, α);
2 Return r1

Algorithm: MakeHint

Input: z, r, α
1 r1 = HighBits(r, α);
2 v1 = HighBits(r + z, α);
3 if r1 6= v1 then
4 Return True
5 else
6 Return False

Algorithm: UseHint

Input: h, r, α
1 m = (q − 1)/α;
2 (r1, r2) = Decompose(r, α);
3 if h = 1 and r1 > 0 then
4 Return (r2 + 1) mod(m)

5 else if h = 1 and r1 ≤ 0 then
6 Return (r2 − 1) mod(m)

7 else
8 Return r2

Figure 6: Helping Algorithms
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These helping functions are created to extract ”high order“ and ”low order“ bits,
to make us able to recover high order bits without having to store them. This
is done by making a 1-bit hint to help us compute the high order bits, and thus
recover them. The following two lemmas give some properties to these helping
function which are crucial for the security and completeness of the signature. We
will therefore proceed to prove them.

Lemma 4.1 Suppose q and α are positive integers satisfying q > 2α, q ≡ 1
mod(α) and α even. Let r and z be vectors of elements in Rq where ||z||∞ ≤
α/2, and let h,h′ be vectors of bits. Then the HighBits, MakeHint and UseHint
algorithm satisfy the following properties:

1. UseHint(MakeHint(z, r, α), r, α)=HighBits(r + z, α)

2. Let v=UseHint(h, r, α), then ||r− v · α||∞ ≤ α+ 1. If the number of 1’s in
h is ω, then all except at most ω coefficients of r−v ·α will have magnitude
at most α/2 after centered reduction modulo q.

3. If UseHint(h, r, α) =UseHint(h′, r, α), for any h,h′, then h = h′.

Proof(1) Decompose(r, α output two integer r1, r2, with ||r1||∞ ≤ α/2 and 0 <
r2 < (q − 1)/α. If we put v=HighBits(r + z, α) then either v = r2, v = r2 + 1
or v = r2 − 1, since ||z||∞ ≤ α/2. If v = r2 MakeHint outputs 0 and if v 6= r2

MakeHint outputs 1. UseHint then outputs r2, r2 + 1 or r2− 1 depending on the
hint if gets from MakeHint. If UseHint gets 0 it outputs r2, if it receives 1 it
outputs r2 ± 1 depending on whether or not r1 is greater than 0. We then see
that UseHint(MakeHint(z, r, α), r, α)=HighBits(r + z, α).

Proof(2) UseHint produces three cases and we will go through than with (r1, r2) =
Decompose(r, α).

1. (h = 0): We have v = r2 then

r − v · α = r2 · α+ r1 − r2 · α = r1

Which by definition hash absolute value α/2.

2. (h = 1 and r1 > 0): We have v = r2 + 1−κ · (q− 1)/α with κ = 0 or κ = 1,
then

r − v · α = r2 · α+ r1 − (r2 + 1− κ · (q − 1)/α) · α
= −α+ r1 + κ · (q − 1)

and the latter has magnitude ≤ α.
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3. (h = 0 and r1 ≤ 0): Now we have v = r2 − 1 + κ · (q − 1)/α with κ = 0 or
κ = 1, then

r − v · α = r2 · α+ r1 − (r2 − 1 + κ · (q − 1)/α) · α
= α+ r1 − κ · (q − 1)

which has magnitude ≤ α+ 1.

Proof(3) Start by setting h 6= h′, and we get UseHint(0, r, α) = r2 and
UseHint(1, r, α) = r2 ± 1 mod((q − 1)/α). We know that (q − 1)/α ≥ 2 and thus
r2 6= r2 ± 1 mod((q − 1)/α).

�

Lemma 4.2 If ||s||∞ ≤ β and ||LowBits(r, α)||∞ < α/2− β, then

HighBits(r, α) = HighBits(r + s.α).

Proof ||LowBits(r, α)||∞ < α/2−β we have that r = r2 ·α+ r1 with −α/2 +β <
r1 ≤ α/2+β. Then we get that r+s = r2 ·α+(r1 +s) with −α/2 < r1 +s ≤ α/2
which gives us that r + s = r1s mod(α) and thus

(r + s)− (s + s mod(α)) = r2 · α = r− (r mod(α))

Which completes the proof.

�

4.3.3 Security

It is worth noting that there are a lot of set parameters in our algorithms. Ducas
et al. [11] present some suggested input for these parameters with different levels
of security. We present these suggested parameters in Table 3.
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Parameter Sample Instantiations
weak medium recommended very high

q 8380417 8380417 8380417 8380417
d 14 14 14 14

wight of c 60 60 60 60
γ1 = (q − 1)/16 523776 523776 523776 523776
γ2 = γ1/2 261888 261888 261888 261888

k 3 4 5 6
l 2 3 4 5
η 7 6 5 3
β 375 325 275 175
ω 64 80 96 120

Table 3: Table of Parameters for Dilithium.

To prove the security for our signature we first need to prove a proposition and
two lemmas, all following the structures of Theorem 3.2, Lemma 4.9 and Lemma
4.10 in [21]. In order to present the proposition we need to simplify our signature.
The simplification only strips the scheme down to focus on the security, and the
security from the simplified signature easily follows over to Dilithium. The signing
algorithm and verification algorithm will be as in Figure 7.

Proposition 4.1 Given an ID-scheme with εzk-perfect naHVZK and α bits of
min entropy. For a SUF-CMA quantum adversary A issuing at most QH queries
to the quantom random oracle QRO and QS to the signature oracle Sing, there
exists a UF-NMA quantum adversary B and a CUR quantum adveraty C, where
A, B and C are all in polynomial time, such that

AdvSUF−CMA1

SIG (A) ≤ AdvUF−NMA
SIG (B) + 2−α+1 +AdvCURID (C) + κmQS · εzk

Proof To prove this we need to look at three games which are described in Figure
8, 9 and 10. In the first game, lets call it Game1 described in Figure 8, the signing
oracle uses a perfect random function to derive its randomness. Our adversary
does not have access to these functions. Only one signature query is allowed in
this game and thus we get that

Pr[GameA1 ⇒ 1] = AdvSUF−CMA1

SIG (A)
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Algorithm: Signature

Input: sk, µ
1 κ = 0;
2 while Z = ⊥ and κ ≤ κm do
3 κ = κ+ 1;
4 (W,St)← P1(sk);
5 c = H(W ||µ);
6 Z ← P2(sk,W, c, St);

7 if Z = ⊥ then
8 Return σ = ⊥
9 Return σ′ = (c, Z)

Algorithm: Verification

Input: pk, µ, σ′

1 σ = (W,Z) ∈WSet× ZSet;
2 c = H(W ||µ);
3 Return V (pk,W, c, Z) ∈ {0, 1}

Figure 7: Simplified Signature (SIG)

The second game, Game2 illustrated in Figure 9, uses a naHVZK signature algo-
rithm to sign M and the quantum random oracle, QRO, is patched accordingly.
When querying query M we want to do this with an integer κM between 1 and
κm such that (W, c, Z) = Sim(pk;RF (M ||κ)) and Z 6= ⊥. If this is not possible
we set κM = ⊥, and end up with the following computations

(WM , cM , ZM ) = GetTrans(M) =

{
Sim(pk;RF (M ||κM )) 1 ≤ κM ≤ κm
(⊥,⊥,⊥) κM = ⊥

The signature for M is then

σM = (WM , ZM )

We want to be sure that σM is a valid signature on M , this is done by patching
our QRO such that QRO(W ||M) = cm if and only if W = WM . The properties
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Algorithm: Game1

1 (pk, sk)← IGen(par;

2 (µ∗, σ∗)← A|H〉,Sign1(pk);
3 σ∗ = (W ∗, Z∗);
4 c∗ = RO(W ∗||µ∗);
5 if µ∗ 6∈ M and V (pk,W ∗, c∗, z∗) then
6 Return accept

7 else
8 Return reject

Algorithm: Sign1

Input: µ
1 if µ ∈M then
2 Return ⊥
3 M =M∪ µ;
4 (Wµ, cµ, zµ) = GetTrans(µ);
5 Return σµ = (Wµ,Zµ)

Algorithm: GetTrans

Input: µ
1 κ = 0;
2 while Zµ = ⊥ and κ ≤ κm do
3 κ = κ+ 1;
4 (Wµ, St) = P1(sk; RF(0||µ||κ));
5 cµ = RO(Wµ||µ);
6 Zµ = P2(sk,Wµ, cµ, St; RF(1||µ||κ));

7 if Zµ = ⊥ then
8 (Wµ, cµ, Zµ) = (⊥,⊥,⊥)

9 Return (Wµ, cµ, Zµ)

Figure 8: Game1
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Algorithm: Game2

1 (pk, sk)← IGen(par;

2 (µ∗, σ∗)← A|H〉,Sign1(pk);
3 σ∗ = (W ∗, Z∗);
4 c∗ = QRO(W ∗||µ∗);
5 if µ∗ 6∈ M and V (pk,W ∗, c∗, z∗) then
6 Return accept

7 else
8 Return reject

Algorithm: Sign1

Input: µ
1 if µ ∈M then
2 Return ⊥
3 M =M∪ µ;
4 (Wµ, cµ, zµ) = GetTrans(µ);
5 Return σµ = (Wµ,Zµ)

Algorithm: QRO

Input: W,µ
1 (Wµ, cµ, Zµ) = GetTrans(µ);
2 if W = Wµ then
3 Return c = cµ

4 else
5 Return c = RO(w||µ)

Algorithm: GetTrans

Input: µ
1 κ = 0;
2 while Zµ = ⊥ and κ ≤ κm do
3 κ = κ+ 1;
4 (Wµ, cµ, Zµ) = Sim(pk; RF(µ||κ));

5 if Zµ = ⊥ then
6 (Wµ, cµ, Zµ) = (⊥,⊥,⊥)

7 Retunr (Wµ, cµ, Zµ)

Figure 9: Game2
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from naHVZK also gives us that the statistical distance from σM given our sim-
ulation is at most κmεzk from a signature given by Game1. This together gives
us the observation

|Pr[GameA2 ⇒ 1]− Pr[GameA1 ⇒ 1]| ≤ κmQS · εzk

Lastly we have Game3, illustrated in Figure 10, which only differs from Game2 if
WM∗ = W ∗, (M∗, σ∗) 6∈ M and V (pk,W ∗, c∗, Z∗) = 1. We now have two cases
we need to consider, namely (M∗, ·) 6∈ M and (M∗, ·) ∈M. In the first case, our
adversary has not yet queried a signature and it has α bits of min-entropy, this
gives us Pr[WM∗ = W ∗] and thus

|Pr[GameA3 ⇒ 1]− Pr[GameA2 ⇒ 1]| ≤ 2−α+1

The other case is that our adversary has obtained a signature σM∗ on a message
M∗ and submits a correct forgery σ∗ = (W ∗, Z∗) that satisfy W ∗ = WM∗ and
Z∗ 6= ZM∗ . The probability for this is bounded by the advantage of a CUR
adversary C. Hence we have that

|Pr[GameA3 ⇒ 1]− Pr[GameA2 ⇒ 1]| ≤ AdvCURID (C)

Combining these two cases gives us

|Pr[GameA3 ⇒ 1]− Pr[GameA2 ⇒ 1]| ≤ AdvCURID (C) + 2−α+1

Consider an UF-NMA adversary B perfectly simulating A’s view in Game3, while
using RO′ to simulate RO and a 2κmQH -wise hash function to perfectly simulate
RF . If (M∗, σ∗) is a valid forgery in Game3, then it also so for our adversary B,
and we get

Pr[GameA3 ⇒ 1] = AdvUF−NMA
SIG (B)
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Algorithm: Game3

1 (pk, sk)← IGen(par;

2 (µ∗, σ∗)← A|H〉,Sign1(pk);
3 σ∗ = (W ∗, Z∗);
4 c∗ = QRO(W ∗||µ∗);
5 if c∗ 6= RO(W ∗||M∗) then
6 Return reject

7 else
8 if µ∗ 6∈ M and V (pk,W ∗, c∗, z∗) then
9 Return accept

10 else
11 Return reject

Algorithm: Sign1

Input: µ
1 if µ ∈M then
2 Return ⊥
3 M =M∪ µ;
4 (Wµ, cµ, zµ) = GetTrans(µ);
5 Return σµ = (Wµ,Zµ)

Algorithm: QRO

Input: W ||µ
1 (Wµ, cµ, Zµ) = GetTrans(µ);
2 if W = Wµ then
3 Return c = cµ
4 else
5 Return c = RO(w||µ)

Algorithm: GetTrans

Input: µ
1 κ = 0;
2 while Zµ = ⊥ and κ ≤ κm do
3 κ = κ+ 1;
4 (Wµ, cµ, Zµ) = Sim(pk; RF(µ||κ));

5 if Zµ = ⊥ then
6 (Wµ, cµ, Zµ) = (⊥,⊥,⊥)

7 Retunr (Wµ, cµ, Zµ)

Figure 10: Game3
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Now we can put all of these equations together and we see that

AdvSUF−CMA1

SIG (A) ≤ AdvUF−NMA
SIG (B) + 2−α+1 + advCURID (C) + κmQS · εzk

�

Lemma 4.3 If (w1, c, (z,h)) and (w1, c, (z
′,h′)) are such that V (pk,w1, c, (z,h)) =

V (pk,w1, c, (z
′,h′)) = 1 and (z,h) 6= (z′,h′), then there exist v,u such that

||v||∞ < 2(γ1 − β), ||u||∞ ≤ 4γ2 + 2 such that Av + u = 0.

Proof Our conditions in the lemma implies

w1 = UseHintq(h,Az− ct1 · 2d, 2γ2)

w1 = UseHintq(h
′,Az′ − ct1 · 2d, 2γ2)

This again implies

||Az− ct1 · 2d − w1 · 2γ2||∞ ≤ 2γ2 + 1

||Az′ − ct1 · 2d − w1 · 2γ2||∞ ≤ 2γ2 + 1

Then the triangular inequality we get

A(z− z′) + u = 0

for a u such that ||u||∞ ≤ 4γ2 + 2 and ||z− z′||∞ < 2(γ1 − β).
�
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Lemma 4.4 For any quantum adversary A against UF-NMA security that issues
at most QH queries to the quantum oracle QO, there exist quantum adversaries
B and C such that

AdvUF−NMA
SIG (A) ≤ AdvMLWE

k,l,D (B) +AdvSelfTargetMSIS
H,k,l+1,ζ (C)

Proof When adversary C is given an A′ = [I|A′′] for A′′ ∈ Rk×(l+1)
q , it can write

A′′ = [A|t] and then set the public key of the signature scheme to be (A, t).
C then sends the public key to A. If the key is indistinguishable from the pk
generated by our IGen, then A will return a signature of message M such that
||z||∞ < γ1 − β and the verification equation

c = H(Az− ct1 · 2d + u ||M)

holds with probability AdvSelfTargetMSIS
H,k,l+1,γ (A). Here ||u||∞ ≤ 2γ2 + 1. We know

that t = t1 · 2d + t0 where ||t0||∞ ≤ 2d−1, hence we can rewrite the verification
equation as

c = H(Az− ct + (ct0 + u) ||M) = H(Az− ct + u′ ||M)

with ||u′||∞ ≤ ||u||∞+ ||ct0||∞ ≤ 2γ2 +1+2d−1 ·ρ. We now get a y ∈ Rk×(k+l+1)
q

such that H(A′y || M) = c where y =

[
r
c

]
and ||y||∞ = ||r||∞ = max{γ1 −

β, 2γ2 + 1 + 2d−1 · ρ}.
�

Having proved these we are now ready to put them all together in order to prove
the security of our signature scheme Dilithium.
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Theorem 3 If QRO is a quantum random oracle, the advantage of an adversary
A for breaking SUF-CMA on Dilithium is

AdvSUF−CMA
Dilithium (A) ≤ AdvMLWE

k,l,D (B)+AdvSelfTargetMSIS
H,k,l+1,ζ (C)+AdvMSIS

k,l,ζ′ (D)+2−254

for D a uniform distribution over Sη, and

ζ = max{γ1 − β, 2γ2 + 1 + 2d−1 · 60} ≤ 4γ2

ζ ′ = max{2(γ! − β), 4β2
+ 2} ≤ 4γ2 + 2

Proof From Proposition 4.1 we have the following inequality

AdvSUF−CMA1

SIG (A) ≤ AdvUF−NMA
SIG (B) + 2−α+1 + advCURID (C) + κmQS · εzk

Lemma 4.3 implies that AdvCURID (C) ≤ AdvMSIS
k,l,ζ′ (E) and it has been proven

that the min-entropy α is greater than 255. Seen as this signature is only
a simplification on Dilithium we can also conclude that AdvSUF−CMA

Dilithium (A) ≤
AdvSUF−CMA

SIG (A). Combining all of this gives us our final equation

AdvSUF−CMA
Dilithium (A) ≤ AdvMLWE

k,l,D (B)+AdvSelfTargetMSIS
H,k,l+1,ζ (C)+AdvMSIS

k,l,ζ′ (D)+2−254

�
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5 Discussion

In this section we will discuss the differences between the schemes we presented in
the previose section. We want to understand why we are not satisfied with Fiat-
Shamir and Lyubashevsky and therefore have constructed Dilithium based on
them. It is important to understand what improvements were added to Dilithium
and how are they improving the scheme.

Fiat-Shamir, as stated before, is in itself not a quantum safe signature. How-
ever, the technique for converting an ID-scheme can be used on both post- and
pre-quantum systems, and it is first and foremost this technique we want to il-
lustrate. The method uses some random-looking function, often a hash function,
to simulate the randomness of Victor’s challenge. This method is, as we have
seen, used in all three of our schemes. Lyubashevsky’s scheme uses some random
oracle to generate a random challenge. In Dilithium the function H is used.

H is undefined as a random oracle, but it concretely uses the SHAKE-256 hash
function on the 384-bit string from m followed by the k × 128-byte string from
w1. The first 60 bits from the first 8 bytes of the output is put in s = (s1, ..., s60),
respectively, discarding the remaining 4 bits. Having s we then use rejection sam-
pling to create c. We are then left with an element from R with 60 coefficients
either 1 or -1 and the remaining being 0.

Dilithium uses two main hash functions, namely SHAKE-128 and SHAKE-256.
H, as stated above, ExpandMask and CRH are all based on using SHAKE-256
to be randomn-looking. SHAKE-128 is only used in the construction of the ma-
trix A in ExpandA. This function takes in the 256-bit element ρ, feeding it to
SHAKE-128 to compute each individual element in the k × l matrix using rejec-
tion sampling in the order of our NTT domain representation. This matrix A
has an equivalent role to h in Luybashevsky.

ExpandMask’s purpose is to help create a random commitment. It computes
each of the l coefficients in y independently by taking 32 bytes from K, 48 bytes
from µ and a two byte representation of lκ+ i into SHAKE-256.

The collision resistante hash, CRH, is used two times in Dilithium. The first time
it takes in the 236-bits from ρ followed by the k ·256·9/8 bits from the bit-string of
t1 and put them into SHAKE-256. The hash will then set the first 384-bit output
from SHAKE-256 as its output tr. CRH is then used again with tr and µ as its
input and feed it to SHAKE-256 and sets the first 384-bit output as its output m.
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Scheme weak medium recommended very high

Lyubashevsky sk 16000 31000 49000 98000
Lyubashevsky vk 16000 31000 49000 98000
Lyubashevsky sig 49000 72000 119000 246000

Dilithium sk 17000 22000 28000 31000
Dilithium vk 7200 9500 12000 14000
Dilithium sig 11000 16000 22000 27000

Table 4: Estimate sizes in bits

A rather big difference between Luybashevsky and Dilithium is the construction
of the keys and how this changes the signature and verification algorithms. The
verification key is made much smaller, as can be seen in Table 4, by not including
the matrix A. Rather we let this matrix be computed individually in each of the
algorithms using ExpandA. A consequence of this is also that we need more small
variables for our keys, such as t1, t2. These are again made smaller by the func-
tion Power2round. We hide these further by using CRH on t1. This is all done
in such a way that we are able to provide a valid signature, and a consequence of
this is that we get more computations in each algorithm. This is, however, not
a problem, as the size of the matrix would have been greater than the size of all
the variables combined, and the cost of computations are less than the cost of
having the matrix in the keys.

All of the functions have specific purposes for improving Dilithium. ExpandA
and CRH are both used to shorten down the keys. ExpandMask take something
random looking and make it even more random. This might sound unnecessary,
but it is hard to make something truly random, and having other parties find a
pattern in our randomness can have grave consequences. Therefore we wish to
hide our randomness in more randomness, as done with ExpandMask.

In order to reduce the size of the keys as wished with the above functions we need
some helping algorithms. Namely the algorithms in Figure 6. We have stated
before that these algorithms are used to produce hints so that we may recover
high order bits later on. Power2round breaks up an element r into r1, r2 such
that r = r2 · 2d + r1. We see that if we choose a representation of r2 to be r′2, a
non-negative integer between 0 and q/2d, then the difference between r2 · 2d and
r′2 · 2d is most of the times less than 2d. The instances where this is not the case
create a problem for when we wish to produce a 1-bit hint, and this can lead to
a high order bit change. This problem is avoided by choosing an α such that
α | q− 1 and set r = r2 ·α+ r1. This procedure is handled by Decompose. Using
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these functions we can produce the functions MakeHint and UseHint to produce
hints and recover the high order bits. HighBits and LowBits are mainly there to
get r1 and r2 from Decompose as we wish.

We can examine the final size of our keys and signatures with different levels
of security given and recommended for Luybashevsky and Dilithium [11, 25] in
Table 4. The signature keys do not differ very much when using parameters with
a weak security. In fact Dilithium actually has a bigger signature key in this
case. However, when we increase the security of our schemes and hence adjust
our parameters we see that the signature key of Dilithium becomes 1/3 the size
of Luybashevsky. Likewise the verification key of Luybashevsky is seven times
the size of the verification key of Dilithium and the signature over nine times
bigger, with a very high security level. The increase in size makes Dilithium a
lot more efficient as a signature. The improvements made to Dilithium gives it
clear advantages.

Although the size reduction from Luybashevsky to Dilithium is rather big, it
is worth noting that the keys to Dilithium are large compared to the keys of
modern systems. For example, RSA has 2048-bit keys and ECC has 256-bit
keys. While RSA and ECC are not quantum safe systems, they illustrate the
key size of modern systems and thus how much more efficient they are. As long
as the threat of quantum computers are no more then a theoretical threat, these
key sizes illustrate the size and efficiency level post quantum cryptography need
to reach in order to become competitive.
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