
1
71

8
1
RU
Z
HJ
LD
Q�
8
QL
YH
UV
LW\
�R
I�6
FL
HQ

FH
�D
QG

�7
HF
KQ

RO
RJ
\

)D
FX
OW\
�R
I�1

DW
XU
DO
�6
FL
HQ

FH
V

'
HS

DU
WP

HQ
W�R

I�3
K\
VL
FV

(LYLQG�/\VKHLP
0
DVWHU
V�7KHVLV

(LYLQG�/\VKHLP

$QDO\VLV�RI�4XDQWLWDWLYH
6XVFHSWLELOLW\�0DSSLQJ�LQ�+HDOWK\
9ROXQWHHUV�DW��7�DQG��7

0DVWHUȇV�WKHVLV�LQ�$SSOLHG�3K\VLFV�DQG�0DWKHPDWLFV
6XSHUYLVRU��3§O�(ULN�*RD

-XQH�����0
DV
WH
UȇV

�WK
HV
LV





(LYLQG�/\VKHLP

$QDO\VLV�RI�4XDQWLWDWLYH�6XVFHSWLELOLW\
0DSSLQJ�LQ�+HDOWK\�9ROXQWHHUV�DW��7
DQG��7

0DVWHUȇV�WKHVLV�LQ�$SSOLHG�3K\VLFV�DQG�0DWKHPDWLFV
6XSHUYLVRU��3§O�(ULN�*RD
-XQH�����

1RUZHJLDQ�8QLYHUVLW\�RI�6FLHQFH�DQG�7HFKQRORJ\
)DFXOW\�RI�1DWXUDO�6FLHQFHV
'HSDUWPHQW�RI�3K\VLFV





Preface

This master thesis is the final project of my degree within the field of Biophysics and Med-
ical Technology, and marks the end of a 5-year journey. The project is a continuation of
the specialisation project initialised the autumn of 2020, and builds on the foundations
of this project. I want to thank my supervisor, Pål Erik Goa, for offering me this project
and giving me the guidance, tools and the freedom to solve this assignment. I am also
grateful for the help received by Dr. Runa Unsgård. Without your segmentations, this
project would not have been possible. Additionally, I would like to thank the volunteers
who have been so kind to let me scan their brains in this project, and the employees at
7T MR centre who have been so kind to lend me their brand new MR scanner.

I could have spent a long time listing all the things and people I have been grate-
ful for, these last 5 years. However, I will constrain myself to thanking my friends
and closest family for making these years so memorable. I am especially thankful for
companionship and motivation I have received the last year, which has been mostly
influenced by the pandemic Covid-19.

Eivind Lysheim
Trondheim, 18th June, 2021

i





Abstract

Today, extraction of information from brain structures critical in Parkinson’s Disease
(PD) and Amyotrophic Lateral Sclerosis (ALS) diagnosis is usually performed by manual
segmentations of the regions of interest (ROIs), which is both time consuming and
prone to errors. Automating this process using Convolutional Neural Networks (CNNs)
could both save hours of specialised labour and improve quality of segmentations, which
in turn aids the doctor in making a diagnosis.

40 Quantitative Susceptibility Mapping (QSM) images with segmentations of the
Red Nucleus (RN), Substantia Nigra (SN) and Subthalamic Nucleus (STN) were donated
by a Swedish research group. Additionally, 15 volunteers were scanned on a 3T and 7T
scanner at St.Olavs hospital. The images were reconstructed from Multi Gradient Echo
(MGRE) sequences using the total generalised variation reconstruction pipeline. RN, SN,
STN, Cerebrospinal Fluid, Primary Motor Cortex (PMC) and Primary Somatosensory
Cortex (PSSC) were manually segmented on the 7T data. Intra-subject co-registration
was performed to transform the 7T masks of RN, SN and STN to their corresponding
3T image.

CNNs trained on all three datasets yielded Dice Score (DS) with a minimum average
of 0.77, occurring for the STN, and a maximum average of 0.94, occurring for the
RN. The CNNs trained on the 7T images achieved on average the best results, and
had the smallest deviations, with a DS of 0.94 ± 0.01, 0.90 ± 0.01 and 0.89 ± 0.02
for the RN, SN and STN, respectively. The PSSC was segmented with a DS of 0.80
± 0.03 and the substructures of the PMC were segmented with a DS of 0.86 ± 0.02,
0.86 ± 0.04 and 0.86 ± 0.02 for the Arm, Face and Omega, respectively. The predicted
susceptibility values from the Swedish 3T datasets and the 7T dataset gave a Mean
Absolute Percentage Error (MAPE) lower than 5% for RN, SN og STN, when compared to
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the ground truth. The Swedish 3T CNNs were most accurate when predicting values for
RN and SN, while the 7T CNNs predicted more accurate values for the STN. Meanwhile,
for the last 3T dataset, the MAPE varied between approximately 26% and 44%. For
the intra-subject scanner comparison between the Norwegian 3T dataset and the 7T
dataset, the different scanners yielded highly varying results, with both large deviations
and very weak correlation between the measurements. Furthermore, the inter-subject
variability in susceptibility values for all datasets were large.

For all three datasets, automatic segmentation of the RN and SN yielded better results
than the intra-rater variability of professionals, indicating higher consistency. In the case
of the 7T data, this was true for STN, PMC and PSSC as well. The segmentation accuracy
of PMC and PSSC showed potential to be used in further ALS research. However, it is
recommended that the CNNs are further trained on a dataset with larger variation in age.
The CNNs trained on the Swedish dataset and CNNs trained on the 7T dataset yielded
on average the most accurate susceptibility values. It was found that the quality of the
manual segmentations obtained on the Norwegian 3T dataset were not adequate, and
could not to be used as ground truth, thus the CNNs trained on this data yielded highly
varying results. This was emphasised when there was found no correlation between
intra-subject susceptibility values when comparing 3T and 7T susceptibility values.
Inter-subject variation showed that using RN and SN as bio-markers for single-scan
QSM imaging in PD diagnosis was not feasible, as the natural variations in susceptibility
values of RN and SN are too large.





Sammendrag

For å anskaffe informasjon vedrørende hjernestrukturer sentrale i diagnosistisering
av Parkinsons sykdom og Amyotrofisk lateralsklerose ufører man gjerne manuelle
segmenteringer av de interessante regionene (ROIs). Dette er en jobb som både er
tidkrevende og vanskelig. En automatisering av denne prosessen ved bruk av CNNs
(Convolutional Neural Networks) kan både spare legen for timer med arbeid, men også
forbedre kvaliteten på segmenteringene, og dermed forbedre diagnostisering.

40 Quantitative Susceptibilty Mapping (QSM) bilder med manuelle segmenteringer
av Red Nucleus (RN), Substantia Nigra (SN) og Subthalamic Nucleus (STN) ble donert
av en svensk forskningsgruppe. I tillegg ble 15 frivillige skannet på en 3T og 7T skanner
lokalt på St.Olavs sykehus. QSM-bildene ble rekonstruert ved bruk rekonstruksjon-
salgoritmen total generalised variation. RN, SN, STN, Cerebrospinal Fluid, Primary
Motor Cortex (PMC) og Primary Somatosensory Cortex (PSSC) ble alle manuelt seg-
mentert på 7T QSM-bildene. Intra-subjekt co-registrering ble utført mellom de norske
7T og 3T bildene, og RN, SN og STN-maskene ble transformert fra 7T bildene til deres
korresponderende 3T bilde.

CNNs trent på alle tre datasettene opnådde en gjennomsnittelig Dice Score (DS) på
minimum 0.77, ved segmentering av STN, men maksimum gjennomsnittlig oppnådd
DS var 0.94, ved segmentering av RN. CNNs trent på 7T datasettet ga i snitt de beste
resultatene med høyest DS, i tillegg til å ha de laveste avvikene med 0.94 ± 0.01, 0.90
± 0.01 og 0.89 ± 0.02 for RN, SN og STN, respektivt. PSSC ble segmentert med en
DS på 0.80 ± 0.03, og understrukturene til PMC ble segmenert med en DS på 0.86 ±
0.02, 0.86 ± 0.04 and 0.86 ± 0.02 for Arm, Face og Omega, respektivt. De predikerte
suseptibilitetsverdiene oppnådd på det svenske 3T og det norske 7T datasettet ga de
minste gjennomsnittlige absolutt prosentvis avvik (MAPE), mindre enn 5% for RN,
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SN og STN da de ble sammenlignet med faktiske verdier. CNNs trent på det svenske
datasettet ga mest nøyaktige verdier for RN og SN, mens CNN trent på 7T ga mest
nøyaktige verdier for STN. For det resterende datasettet så varierte MAPE mellom
ca. 26% og 44%. Intra-subjekt skanning som sammenlignet datasettene fra St.Olavs
avslørte sterkt varierende suseptibiltitetsverdier i korresponderende ROIs, med både
store avvik og tilsynelatende ingen korrelasjon. Videre så kunne man se at inter-subjekt
variasjonen i suseptibilitetsverdiene for RN, SN og STN var meget stor.

For alle datasettene så var segmenteringen av RN og SN bedre enn intra-rater
variasjonen fullført av profesjonelle. For 7T dataene så gjaldt dette også for STN, PSSC
og PMC. Dette indikerer at CNNs fra dette prosjektet trent på å segmentere PMC og
PSSC har potensial til å bli brukt i videre forskning. Før de tas i bruk så anbefales
det å trene dem på et mer variert datasett, med høyere snittalder. Det viste seg at det
svenske 3T datasettet og 7T datasettet hadde de laveste MAPE. Ettersom at CNN trent
på det norske 3T datasettet hadde veldig høy MAPE, så kan dette forklares med at den
manuelle segmneteringen ikke var vellykket. Dette ble videre bevist da man ikke fant
en sammenheng mellom suseptibilitesverdier ved intra-subjekt skanning for de norske
3T og 7T datasettene. Inter-subjekt variasjonene innad i RN og SN var så store at disse
ikke kunne brukes som biomarkører i PD ved singel-skanning QSM-avbildning.
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Chapter 1
Introduction

This chapter gives an introduction to the thesis written this spring. It will present the
motivation behind the choice of the thesis and introduce the project description, goals,
research question and the contributions. The last section concerns the report structure
of the thesis.

1.1 Motivation

Nearly 10 million people worldwide are diagnosed with Parkinson’s Disease (PD) (1)
and nearly 250 thousand people are diagnosed with Amyotrophic Lateral Sclerosis (ALS)
each year (2). To deliver an effective treatment, it is advantageous to uncover these
diseases at an early stage, which in some cases may be accomplished using Magnetic
Resonance Imaging (MRI) (3)(4). PD is tightly connected to the degradation of the iron
rich mid-brain structures Red Nucleus (RN), Substantia Nigra (SN) and Subthalamic
Nucleus (STN) (5). As they are all encapsulated in a molecular complex called Ferritin,
they have high iron concentrations, relative to their neighbouring structures, making
them rich in contrast in Quantitative Susceptibility Mapping (QSM). Thus, the degra-
dation can be observed particularly when the SN and RN experiences increased iron
depositions in their nuclei, in turn increasing contrast. ALS can at an early stage of the
disease be viewed in QSM images, as one will observe that the Corticospinal Tract has
a high intensity. As the disease develops, one can also observe an increased intensity
and volume loss of the entire tract, ranging from the spinal cord to the motor strip (6).
Particularly in QSM imaging, one can also observe loss of signal around the pre-central
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1.2. PROJECT DESCRIPTION CHAPTER 1. INTRODUCTION

and post-central Gyrus due to iron deposition in the cortex (7).

In the case of PD, for a radiologist to make a conclusion purely based on QSM images,
the doctor usually performs manual segmentations of the relevant brain structures to
obtain a status report about the degradation of mainly RN, SN, and to some degree STN,
based on their respective susceptibility values. Or in the case of ALS, to obtain important
information about the Primary Somatosensory Cortex (PSSC) and the Primary Motor
Cortex (PMC), could be crucial to make a diagnosis (8). However, manual segmentation
is a time consuming and expensive use of specialised labour, often prone to errors.
An automation of this process has the potential to be more accurate, cost effective
and significantly quicker, which in turn can be a part of the radiologist’s toolbox when
diagnosing patients.

Currently, the most widely used research segmentation tools, such as the FMRIB’s
Automated Segmentation Tool (FAST), from the Functional Magnetic Resonance of
the Brain (FMRIB) Software Library (FSL) (9) or segmentation tools from Freesurfer
(10) do not support segmentation of the relevant brain structures for PD and ALS.
Currently, the doctors at St.Olavs Hospital in Trondheim do not have any tools for
automatically segmenting brain structures. The introduction of Deep Learning Deep
Learning (DL) has exploited the abundance of data, and has yielded ground braking
results within the field of digital image processing (11). Thus, techniques from DL,
in particular Convolutional Neural Networks (CNNs), have been implemented in this
thesis to perform the segmentations.

1.2 Project Description

This project is a continuation of the DL segmentation project the author initiated the
autumn of 2020, and some of the data, code and report is built on this. The data in this
paper originated from 3 different sources; 40 3T QSM images were donated by a Swedish
research group at Karolinska Institutet. These images had manual segmentations of
the RN, SN and STN. An additional 15 7T QSM images were acquired from healthy
volunteers recruited by the author. The RN, SN, STN, Cerebrospinal Fluid (CSF), PMC,
PSSC were manually labelled by a neurologist on the 7T dataset. 15 3T QSM images
of the same volunteers were acquired and linear co-registration was performed for
intra-subject mapping of the RN, SN, STN and CSF from the 7T images to the 3T
QSM images. To perform the QSM reconstructions, MRI data were transferred to the
cloud community, HUNT Cloud. The lab environment was set up to perform QSM
reconstructions on dedicated, secure servers.
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The manually labelled datasets were then used as training data for CNNs. The goal
of the training was to create CNNs which could perform accurate and precise automatic
segmentations. The precision of the segmentations of the CNNs were then evaluated by
comparing them to the manually contoured images that had not been used as training
data, and the segmentation accuracy of 3T vs 7T images were compared. Additionally,
the CNNs were used to extract susceptibility values of the regions of interest (ROIs).
An intra-subject susceptibility comparison was performed to compare the susceptibility
values across magnetic field strengths. Lastly, an analysis regarding the feasibility of
using the RN and SN as biomarkers for PD was completed.

1.3 Project Goals and Research Questions

There were multiple goals to this project. The first goal was to create a database of
manually segmented 3T and 7T QSM images that could be used in training of CNNs.
Automatic segmentation accuracy of the 3T and 7T images were compared, as it was
of interest to see whether or not the new 7T MRI scanner at Norwegian University of
Science and Technology (NTNU) showed improvement in medical imaging of brain
structures critical in PD and ALS. CNNs were applied to create segmentation method
which quickly could extract crucial information, such as susceptibility values, volume
and position from the ROIs, which then could be implemented at St.Olavs as a helpful
tool for the radiologists. The third goal was to see if the susceptibility values of the RN,
SN and STN were suitable as a bio-markers for PD diagnosis, and if the segmentation
accuracy of the PMC and PSSC were good enough to be applied in ALS research.

Additionally, the Magnetic Resonance (MR) physics group has recently started using
the cloud community HUNT Cloud, and this will be the main neuroimaging research
platform used by NTNU in the years to come. Thus, a component of this project
was to initialise and setup the virtual lab, which would allow for new master- and
Ph.D. students to quickly start their work in the lab, without the need to perform the
tedious initialisation steps. Furthermore, a large of part of this sub-task was to create
a data pipeline for QSM reconstruction methods and Graphics Processing Unit (GPU)
accelerated training of neural networks.
The main research questions in this thesis are summarised below:

• RQ1 How accurate can CNNs segment the ROIs at 3T and 7T scanners, and how
accurate susceptibility values can be extracted?

• RQ2 For intra-subject imaging, is QSM imaging reproducible across scanners, i.e. is
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the same susceptibility values obtained for 3T and 7T?

• RQ3 Is it feasible to use susceptibility values as a bio-marker for diagnosis of PD?

1.4 Contributions

This thesis has made the following contributions: The MR physics group at St.Olavs
has now a database with 70 QSM images with manual labelling. 55 of which are 3T
images with RN, SN and STN segmentations and 15 are 7T images with segmentations
of RN, SN, STN, CSF, PMC and PSSC. The HUNT Cloud lab has been set up and all
the necessary software for neuroimaging reserach and accelerated training of neural
networks are now installed. A documentation has also been written, making it possible
for new users to start with their work in the cloud immediately. A fully automatic end-
to-end segmentation software has been produced and trained, yielding high precision
segmentations and has the ability to extract information about the volume, position and
susceptibility values in seconds. The product from this thesis is available for researchers
at NTNU and St.Olavs and can be used as foundation for further research within the
field of QSM. In addition, a multi-national partnership with the MR physics and neuro
science group at Karolinska institutet has been established. Data and results have
been exchanged between the two institutions and a joint abstract was sent to the 2021
conference hosted by the International Society for Magnetic Resonance in Medicine.

1.5 Report structure

This report is divided into 6 chapters, in addition to preface, abstracts and appendix.
Chapter 2 gives an introduction to the relevant theory behind the neuroscience, MR
physics, QSM reconstruction pipeline and DL. Chapter 3 concerns the material and
methods and describes the implementation of the theory, while chapter 4 presents
the results obtained in this thesis. Chapter 5 displays an in depth interpretation of
the results obtained in chapter 4. Chapter 6 makes some conclusions based on the
information presented in chapter 4 and 5. Lastly, the appendix presents additional
information about the methods and results obtained in this thesis. This thesis mainly
presents new information, but some of the theory and methods are quoted from the
specialisation project written during the autumn of 2020. It will be clearly stated at the
start of each chapter if some information is reprinted from the specialisation project.
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Chapter 2
Theory

This chapter concerns the background theory, which is crucial for understanding the
methods implemented in this project. The first section focuses on Neurodegenerative
and Motor Neuron Diseases. The two following section focuses on the physics behind
MR and different acquisition methods. Chapter 2.4 is a large section which gives
the reader a comprehensive introduction to the field of QSM and its challenges. The
following section gives a brief introduction to the basics of image co-registration in
MRI, and the final section concerns the theoretical foundation behind DL. The following
sections are based on information presented in the specialisation project: section 2.1.1
about the RN, SN and STN, section 2.2 about MR physics, section 2.4.1 - 2.4.2 about
magnetic materials and phase to field, section 2.4.5, not including RESHARP, section
2.4.6 describing the dipole field inversion problem and chapter 2.6 about DL.

2.1 Degenerative Nerve Diseases

Neurodegenerative diseases are diseases which affect the brain, spinal cord or more
peripheral nerves, causing a step-wise degradation of the nervous system (12). PD is an
example of such a disease. Motor neuron disease is a collection of diseases where the
motoric neuron system is affected, leaving the remainder of the nervous system intact.
The degradation of these nervous cells causes loss of muscles, paralysis and in most
cases death. The most commonly known motor neuron disease is ALS.

PD occurs due to loss of brain cells in the brain stem. In Norway, approximately
approximately 8000 people are currently diagnosed with this disease (13), with an
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increasing frequency at increasing age. Dopamine is a key constituent in these brain
cells, and they are freed around the nerve cells’ terminal in the basal ganglia. Loss
of dopamine is believed to be the root of the symptoms in PD. Why brain cells die
during the course of the disease is still disputed, but it is believed that accumulation of
↵-synuclein in the nerve cells creates Lewy Bodies which influences the behaviour of
chemicals in the brain, being a destructive influence (14). PD is mainly defined by 2
out of 3 symptoms; considerable tremor while sitting still, muscle stiffness and reduced
ability to perform will-controlled movements. Currently, there exists no medicines
which can effectively treat PD, however, there are different drugs which may dampen
the symptoms. As PD is caused by lack of dopamine, dopamine is often used to counter
the symptoms. However, as dopamine can cause strong hallucinations and in some
cases worsen the symptoms, this must be strictly regulated.

ALS affects both the upper and lower motor neurons resulting in fatal outcome,
affecting approximately 400 people nationwide, and the cause of ALS is still not under-
stood (15). The disease affects the nerve cells which are connected to the will-controlled
motion of muscles, however, the remaining parts of the nervous system is left untouched.
Muscles are controlled by the central nervous system and are connected by several
neural pathways by the upper and lower motor neuron. Usually the upper and lower
neuron is influenced, effectively stopping the transmission of signal from the brain to
the muscles. A simple illustration of this can be seen in Figure 2.1.1. ALS develops
individually, but the common factor is paralysis and death within few years. The first
symptoms are partial paralysis, muscle weakness and abnormal reflexes. ALS is most
commonly uncovered during clinical testing, electro-mammography or MRI. Despite
advancements within the fields of genetics and molecular biology, the cause and de-
velopment still remain unrecognised, meaning that there are no effective treatment
methods available.

2.1.1 Red Nucleus, Subtantia Nigra and Subthalamic Nucleus

The RN, SN and the STN, depicted in Figure 2.1.2, are all pairwise midbrain structures
having relatively high susceptibility values. The RN is an oval-shaped structure that
received its name from the red colour it exhibits in a freshly dissected human (16).
This colour is believed to be correlated with the high levels of iron pigments within the
cytoplasm of its neurons. By the use of functional MRI, the RN has been associated
with speech production, pain processing and sensory discrimination. An increase in
iron levels has been proven to be related with Parkinson disease (17).
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Figure 2.1.1: The left figure shows how a normal functioning nerve cell behaves. The figure on
the right shows a nerve cell with sclerosis, unable to signal the muscle to contract. The illustration
was created by Eivind Lysheim using BioRender.com

The SN is a midbrain dopaminergic nucleus which is crucial for motor movement
and reward functions. The Nigrostriatal Pathway, the connection between SN and the
Putamen, is central in the loss of motor functions during the course of Parkinson disease.
It is believed that the SN is the part of the brain that suffers the most damage during
the disease course. The disease causes progressive and irreversible loss of neurons in
the SN. The loss of neurons are associated with symptoms such as hypokinesia, rigidity
and and resting tremor (18).

The STN is a constituent of the Basal Langlia system, and is a large component of
the Subthalamus. It is linked to motor control, but it also plays a role in attention,
motivation and response inhibition. Furthermore, it also coordinates impulses from
from Cortical and Sub-Cortical neurons, responsible for emotional pattern. As well
as for the SN, during the course of Parkinson disease, the STN looses large levels of
dopamine, which causes damage to central functions (19).
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Figure 2.1.2: An illustration showing components of the midbrain including RN, SN and STN.
The illustration was created by Eivind Lysheim using BioRender.com

2.1.2 Primary Motor Cortex

The PMC is situated in the Precentral Gyrus, as seen in Figure 2.1.3, and is the primary
region of our motor system. This brain region is a key component in the planning and
execution of movements, and works in parallel with other central motor regions, such as
the premotor cortex, supplementary motor area and the posterior parietal cortex (20).
It is only the region of the brain that is populated with Betz cells which anatomically is
described as the PMC. The Betz cells are constituted by huge neurons which send their
axons down to the spinal cord via the corticospinal tract. The axons are connected to
the horn cells, via synapses, which in turn are directly linked to muscles. Lesions can
results in paralysis of its connected side of the body.

2.1.3 Primary Somatosensory Cortex

The PSSC is a constitutent of the somatosensory system and is situated in the Postcentral
Gyrus, as seen in Figure 2.1.3. The PSSC is the primary receptor of sensations in the
body. Thalamic radiations transmit signal from muscles, tendons, skin and joints to the
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PSSC (21). Lesions affecting the PSSC can cause symptoms such as loss of fine touch,
vibration and proprioception.
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Figure 2.1.3: The PMC and the PSSC. The illustration was created by Eivind Lysheim using
BioRender.com

2.2 Nuclear Magnetic Resonance

The field of Nuclear Magnetic Resonance (NMR) exploits the interactions between tissue
in a strong and highly homogeneous magnetic field and non-ionising electromagnetic
radiation. When a body is immersed in a static magnetic field, we will observe splitting
in the nuclear spin energy of atoms and molecules, leading to discrete energy gaps.
By introducing an electromagnetic pulse with an energy equal to that of the energy
difference between the energy levels, the molecules in the lower energy state can be
excited to a higher energy level. The system will then experience two kinds of relaxation
processes, T1 and T2-relaxation. As the spins are subject to slightly different magnetic
fields, the spins will loose its coherence and dephase, a T2 relaxation. Simultaneously,
the loss of magnetisation will induce a measurable electromotive force. Meanwhile, the
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magnetisation will evolve back to equilibrium, aligning itself with the magnetic field
itself, a T1-relaxation. The entire derivation of the NMR phenomenon is not shown
here. For a detailed deduction, there exists many online sources and books available,
such as Magnetic Resonance Imaging: Physical Principles and Sequence Design, Second
Edition (22).

2.2.1 Magnetisation

In the case for an ensemble of nuclei, the population difference between the energy
levels can be calculated using the Boltzmann equation for two populations, with an
energy difference proportional to the Larmor frequency:

n↵
n�
= ex p(

��E
kbT

) = ex p(
~h�B0
kbT

) (2.2.1)

where n↵ and n� are the population of parallel and anti-parallel spins, respectively,
�E is the energy difference between the energy levels, kb is Boltzmann’s constant , T
is the absolute temperature, ~h is the reduced Planck’s constant, � is the gyromagnetic
ratio which is dependent on the isotope and B0 is the external magnetic field. We
wish to maximise the magnetisation, as this will increase the signal received. The
reason behind this will become apparent in the following sections. To increase the
magnetisation, the population difference has to be increased. As �E = � h

2⇡B0, one
can see that the gyromagnetic ratio and the strength of the magnetic field is directly
proportional to the difference in energy levels. An increase in either will increase �E,
and in turn increase the population difference. Changing the former means using nuclei
with higher �, while the latter means creating stronger magnets. The last point is a
good argument why NTNU has recently installed a new 7T MR scanner, as this has the
potential to create improved images compared to the widespread 1.5T and 3T MRI
scanners. Another possibility is to use nuclei that are more abundant in the material
being studied, resulting in a larger population difference, and in turn a stronger signal.

When the spins are distributed over the energy states, in the classical picture, the
populations in the energy levels will presses at the same frequency, parallel or anti-
parallel to the direction of B0. As the spins are precessing out of phase, the components
in the xy-plane, the transversal plane, will cancel out, and there will only be a net
magnetisation component in the positive z-direction, the longitudinal direction. The
magnetisation in the transversal plane and the longitudinal direction is denoted as Mx y
and Mz , respectively. By calculating the difference in spin populations in the energy
states, the magnetisation can be determined. For nuclei with spin quantum number I =
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1/2, such as the 1
1H nucleus of water, and for a nuclei with spin I > 1/2, the equilibrium

magnetisation in the z-direction is respectively given as:

M0 =
n~h2�2

4kB T
B0 M0 =

n�2~h2 I(I + 1)
3kB T

B0 (2.2.2)

Again, notice the impact � and B0 has on the magnetisation.

2.2.2 Rotating the Magnetisation and Relaxation

The only way to observe the nuclear magnetisation is to detect a change in precessional
motion of the spins in the transversal plane. However, at equilibrium, when there
is no phase coherence and the only magnetisation vector is the static Mz , this is not
possible. One can introduce a way to tip the system out of equilibrium, i.e. tip the
net magnetisation vector from only being in the longitudinal plane into the transversal
plane. This can be done by introducing a second oscillating electromagnetic wave, B1,
orthogonal to the B0-field with the same angular frequency as the Larmor frequency. In
other words, an electromagnetic wave that has an energy corresponding to the energy
gap between the Zeeman levels, which is proportional to the � and B0.For a magnetic
field, B0 = 1T, the frequency of such a wave is, f = 42.6 MHz. Clearly within the
radio frequency part of the electromagnetic spectrum, giving rise to the name Radio
Frequency Pulse (RF-Pulse).

The B1-field is only applied during the rotation of the magnetisation. The RF-
Pulse is created by running a current through a coil for a finite amount of time. The
magnetisation vector Mz experiences a torque from the RF-Pulse. During an excitation
pulse, both B1 and B0 is acting on Mz , causing the magnetisation vector to have a
perplexing motion towards the transversal plane, as seen in Figure 2.2.1. Here, both the
laboratory frame and the rotating frame have been included. The difference between
the two frames is that in the former, the viewer watching the magnetisation is stationary.
In the latter, the viewer follows the rotating path of magnetic moment in the xy-plane
of the magnetisation, making it seem like the magnetisation is only moving in the
z-direction.

The angle which the B1-field is rotated from the equilibrium magnetisation, M0, to
the transversal plane is not arbitrary, but in ideal conditions given by relation of the
nutation angle:

↵= �B1 t (2.2.3)

Where ↵ is the angle which the magnetisation vector is tilted and t is the amount of
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Figure 2.2.1: The figure to the left shows the complex path of the spin that has been tipped
towards the transverse plane in the laboratory frame of reference. The figure to the right shows
the same event, but in the rotating frame of reference. This figure is an illustration, and length of
the vectors may not necessarily be in scale. Figure created by Eivind Lysheim in BioRender.com.

time the coil produces the electromagnetic pulse. By choosing an appropriate t, one
can for example create a 90� pulse which rotates the entire magnetisation vector into
the transversal plane. After the RF-pulse is turned off, the spins feel a slightly different
magnetic field, causing the spins to loose coherence. This is known as T2 relaxation.
When the magnetisation evolves back to equilibrium, this is known as T1 relaxation.
When the transversal magnetisation is precessing around B0 and loosing coherence,
in turn loosing magnetisation, it will induce and electromotive force in the receiver
coil that is placed around the sample being studied. This electromotive force can be
described by Faraday’s law of induction. It is this electromotive force that is the origin
of the measured NMR signal.

The Transverse Relaxation Time: T2

After an initial rotation of the equilibrium magnetisation, i.e. Mx y 6= 0, the nuclei are
approximately in phase, with some deviations due to imperfections of the RF-pulse. The
nuclei are all spinning with a Larmor frequency, but due to local magnetic fields created
by the electromagnetic interactions between the nuclei and inhomogenities in B0, some
precess faster than others. This causes a dephasing of the rotating nuclei. The more
time that passes, the greater the phase difference becomes.
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T2 is the true decay constant that describes decay to equilibrium for the transverse
magnetisation in a uniform magnetic field B0. Only spin-spin interactions are affecting
the local magnetic field. However, when we talk about the transverse relaxation in
non-uniform magnetic fields, the relaxation constant is commonly denoted T⇤2 , the
observed decay constant. Here, both spin-spin interactions and inhomognenites in B0 is
accounted for. The transverse relaxation is caused by the loss of phase coherence, but
not of energy, meaning that transverse relaxation is an entropic process. After an initial
transverse magnetisation at t = 0, the magnetisation will decay to zero, following the
equation in the rotating frame:

dMx y (t)

d t
= � 1

T2
Mx y (t) (2.2.4)

) Mx y (t) = Mx y (0)e�t/T2 (2.2.5)

Where Mx y(0) is the initial magnetisation in the transverse plane. A uniform
magnetic field has been assumed. It follows from Equation 2.2.5 that the physical
interpretation of T2 is the time it takes to reduce the transverse magnetisation with a
factor of e.

The Longitudinal Relaxation Time: T1

Longitudinal relaxation occurs when the magnetisation vector Mz relaxes from Mz 6= M0
to the equilibrium state Mz = M0. The velocity of the relaxation process is governed
by the time the spins use to distribute themselves on the energy levels according to
the Boltzmann distribution, and is therefore proportional to M0 - Mz . The longitudinal
relaxation is related to the spin distribution among the energy levels and is effectively
related to a process of energy exchange with the environment in the form of thermal
energy, such as collisions, rotations or electromagnetic interactions. However, as this
energy is small compared to the average kinetic energy of the molecules, this energy is
quickly dispersed. As Mz evolves back to equilibrium, the total energy of the system
decreases, as protons favour lower energy states. The longitudinal magnetisation is
given by the Bloch equation:

dMz
d t
= �Mz �M0

T1
(2.2.6)

) Mz = M0(1� e�t/T1) (2.2.7)

From the equation above it follows that T1 is the time required to reduce the
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difference between Mz and its equilibrium by a factor of e.

2.2.3 Free Induction Decay

When the transversal magnetisation relaxes, i.e. exponentially evolving towards zero,
the precession induces an electromotive force, which can be measured using a receiver
coil. The signal is given as the induced current in the receiver coil, which is described
by the Faraday’s law of induction:

" = �d�M (t)
d t

(2.2.8)

where " is the induced electromotive force, and �M (t) is the magnetic flux. When the
magnetic vector precess, it induces a damped oscillating signal into the coil, the Free
Induction Decay (FID).
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Figure 2.2.2: A figure showing the excitation and the subsequent FID originating from the
dephasing of the spins in the transverse plane. (a) shows an excitation of 90�. (b), (c), (d)
and (e) shows dephasing of the spins. (f) shows the observable NMR signal generated by the
dephasing of spins. Figure created by Eivind Lysheim in BioRender.com

2.3 Acquisition Methods

This section will introduce and describe the relevant pulse sequences applied in this in
project, i.e. sequences relevant for the QSM acquisition.
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2.3.1 Gradient Echo and Multi Gradient Echo

The Gradient Echo (GRE) is a manipulation of the FID. After a 90� pulse, instead of
letting the spins dephase naturally, with a decay constant T⇤2 , a dephasing gradient is
used to accelerate the dephasing of the spins by locally changing the magnetic field,
thus altering the resonance frequency, in turn stimulating a quicker dephasing. After
the decay, a rephasing gradient is applied with the same strength and opposite polarity,
reversing the dephasing of the first gradient, causing an echo. A standard GRE pulse
sequence can be seen in Figure 2.3.1
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Figure 2.3.1: The schematics for a standard GRE pulse sequence. The initial RF-pulse causes
a tipping of the magnetisation vector into the Mx y plane. The dephasing of the transveral
magnetisation is accelerated by the application of magnetic gradients, causing the FID. The spins
are then rephased causing a gradient echo signal before again being dephased by gradients with
opposite polarity and same magnitude as the initial dephasing gradietn. The phase chart shows a
graphical description of the phase, where the spins are in phase when the two lines are crossing.
TE and TR are shown in the bottom of the figure. Illustration was created by Eivind Lysheim
using BioRender.com

A Multi Gradient Echo (MGRE) sequence uses the same principles, but the rephasing
and dephasing operations are repeated as long as the time that has passed since the
initial RF-pulse is less than the T⇤2 decay. A typical MGRE sequence looks identical to
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Figure 2.3.1, but the dephasing and rephasing components are repeated multiple times,
causing multiple echo signals.

2.4 Quantitative Susceptibility Mapping

QSM is an imaging reconstruction method that provides voxel contrast on the basis of
the magnetic susceptibility, � , making it possible to measure quantitative values of the
susceptibility, an improvement from the traditional Susceptibility Weighted Imaging
(23)(24). The linear relationship is useful in tissue identification and quantification of
specific bio-molecules based on their content of iron, gadolinium and super paramagnetic
iron oxide. To map the values of susceptibility, QSM extracts the phase and magnitude
images from a MGRE sequence, removes the background field, solves the magnetic field
to susceptibility inversion problem and the output is a 3D map of susceptibility values.
This section will describe the theoretical background behind all the steps necessary to
reconstruct complex data obtained from a MGRE sequence to QSM images. A schematic
overview of the end-to-end pipelines are shown in Figure 2.4.1. Three reconstruction
pipelines have been used in this project, and the difference between these approaches
are described more in detail in Section 3.2 and 3.3. Additionally, a visual illustration of
the reconstruction part of the QSM method can be seen in Figure 2.4.2.

2.4.1 Types of Magnetic Materials in the Brain

In magnetic theory, one mainly discuss three types of magnetic materials, which reacts
differently to being immersed in a static magnetic field. A diamagnetic material is
repelled by the magnetic field, and induces its own magnetic field in the direction
opposite to the magnetic field (25). In general this effect happens in all materials.
However, when this is the only effect a magnetic field has on a material, it is labelled a
diamagnetic material. Paramagnetic materials have a weak attraction to the magnetic
field. It induces a magnetic field in the direction of the magnetic field. This effect is
mainly caused by the interaction between the magnetic field and an unpaired electron.
The last one is ferromagnetic materials, which has a strong interaction between the
magnetic field and the material itself, and is long lasting, i.e. permanent magnet (26).
There exists only small levels of ferromagnetic structures in the body, such as iron,
which is ferromagnetic, but is stored in the paramagnetic Ferritin (27).
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Figure 2.4.1: A flowchart showing the entire pipeline from image acquisition from a MGRE to
the final reconstructed QSM image with its associated section. The green ellipses indicate start
and stop and the different colours indicate different reconstruction techniques. The gradient
boxes indicate that two different reconstruction techniques have an operation in common.
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MRI Phase Unwrapped Phase
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Figure 2.4.2: An overview of the QSM process. Gradient echo of MRI data creates T ⇤2 -maps
(magnitude) and a brain mask is extracted. The phase is extracted from the MGRE and normalized
between -⇡ and ⇡, and �B0 is estimated. The contributions from the background field is then
removed, yielding a map of susceptibility sources inside the ROI. Dipole field inversion is then
applied to transform the �B0-map to a susceptibility map. The images were obtained on a
Siemens 3T scanner.
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2.4.2 Phase to Field

The first step in the QSM reconstruction process is estimating magnetic field inhomogen-
ites, �B, from the phase maps of the gradient echo. As the phase of the MR signal
increases linearly with time, the phase of the signal is given as:

�(t) = �0 � 2⇡��Bt (2.4.1)

�(t) is the accumulated phase, t is the echo time and �0 is the initial phase shift at t
= 0. By plotting the phase as a function of the echo time, the slope will be proportional
to �B, and can be estimated for each voxel. For a MGRE acquisition, the fitting of �B
can be performed by using a least squares algorithm, which weights the phase shift
data from the earlier echos heavier than the later ones to increase the Signal-to-Noise
Ratio (28). As the phase angle can have values outside the range of [-⇡,⇡), due to large
differences in susceptibility values, one can correct this by introducing an integer, n.
This accounts for all the phase shifts over 2⇡:

�(t)k = �(t) + n · 2⇡ (2.4.2)

This will remove aliasing that may arise due to phase loss from Equation 2.4.1.
Phase warps are removed from the phase map by adding or subtracting an additional
2⇡. A scaled version of �B is then implemented as:

�� = 2⇡��T E�B (2.4.3)

Where TE is the echo time. This operation is called phase unwrapping and an
example of this operation is shown in Figure 2.4.3.

MRI Phase Unwrapped Phase

Figure 2.4.3: Phase unwrapping from a MGRE acquisition on one of the volunteers. The
discontinuities are a result of phase wrapping. Images obtained using a 7T scanner.

19



2.4. QUANTITATIVE SUSCEPTIBILITY MAPPING CHAPTER 2. THEORY

2.4.3 A Simple Phase Image Reconstruction for multi-Echodata

A challenge with modern ultra-high field MRI systems, such as the Siemens Magnetom
Terra 7T used in this project, is that it currently lacks the software to properly combine
phase signal received from each individual coil. The problem is twofold; each coil has
an individual phase offset, �c

0, the same offset, �0, as given in Equation 2.4.1, but
now with respect to (w.r.t.) each individual coil. The offset is independent of the time
echo. Additionally the warping of the phase further complicates this problem. As the
measurement of �B0, and in turn the reconstructed QSM image is dependent on the
phase offset, we seek to remove the phase offset completely. This can be performed
by applying A Simple Phase Image Reconstruction for multi-Echodata (ASPIRE) (29).
An offset in the phase can be calculated by comparing the true phase at different time
echos, TE. By measuring two instances of Equation 2.4.1 at different echos:

�c
0 =

T Ek ·�c
j � T Ej ·�c

k

T Ek � T Ej
(2.4.4)

where �c is the phase offset, T Ek, T Ej are different time echos and the superscript
c denotes the coil number receiving the signal. The phase offset is dependent on which
coil receives the signal. Including the coil number and echo number, Equation 2.4.2
can be rewritten as:

�c
j = ✓

c
j + 2⇡nc

j (2.4.5)

where nc
j is the same integer used for unwrapping the phase in Equation 2.4.2,

but w.r.t. echo number and coil and ✓ c
j is the measured phase. Equation 2.4.4 can be

rewritten:

�c
0 = �

c
j �

T Ej

T Ek � T Ej
· (�c

k ��
c
j ) (2.4.6)

the difference in offset term, (�c
k ��

c
j ) can be substituted with ��k, j , a variable

accounting for the coil-independent phase difference, yielding:

�c
0 = �

c
j �

T Ej

T Ek � T Ej
·��k, j (2.4.7)

Inserting the true phase from Equation 2.4.5 and replacing it with the measured
phase yields

�c
0 = ✓

c
j + 2⇡nc

j �
T Ej

T Ek � T Ej
· (�✓k, j + 2⇡n�) (2.4.8)
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We know from Equation 2.4.5 that the phase is just an integer multiple of 2⇡, thus
one can calculate the wrapped phase offsets the following way:

✓ c
0 = ✓

c
j �m ·�✓k, j mod2⇡ (2.4.9)

Where mod2⇡ represents the modulo operator of 2⇡. The result of this equation
indicates that phase unwrapping is not necessary.

2.4.4 T ⇤2 -Weighted Magnitude Images

In magnitude images, the constant T⇤2 is introduced to account for magnetic field
inhomogenities, mostly reflecting imperfections of the external magnetic field. Their
reciprocal values, i.e. relaxivities add together:

1
T⇤2
=

1
T2
+

1
T2,inhom

(2.4.10)

where T2,inhom accounts for the inhomogenities. Employing a MGRE, the T⇤2 can
be sampled at different echo times. This can then be used to calculate the relaxation
time by fitting an exponential curve to the measured signals.

S(t) = S0e
� t

T⇤2 (2.4.11)

The T⇤2 measurement yields a map representing the inhomogenites which causes
accelerated dephasing. T⇤2 -maps at different echo times are shown in Figure 2.4.4.

TE1 TE2 TE3 TE4

Figure 2.4.4: Different T ⇤2 -maps obtained at different echo times for one of the volunteers at the
Siemens 7T scanner.
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Brain Extraction

As seen in Figure 2.4.2, from the magnitude images, one can obtain a mask for the brain
using a Brain Extraction Tool (BET) (30), which function is shown in Figure 2.4.5. The
method can be divided into 7 steps. First the intensity histogram is extracted from the
T⇤2 -weighted image. Second, from the histogram, both the size and the centre of mass
can be obtained. Third, a sphere’s surface is approximated by triangular tessellations.
Subsequently, the sphere is allowed to be deformed by the inflicting forces acting upon
the vertexes. This process is rerun with higher order smoothness constraints if the
previous brain mask is not sufficiently clean. When the image intensity histogram is
used, outliers are removed as they are not representative of the intensity of the ROI in
the T⇤2 map. A threshold based estimation is then used to distinguish between brain
matter and bone (background). The threshold between the brain and the background is
then used to approximate the centre of gravity in the brain. The next step is to roughly
calculate the distance between the centre of mass in the brain to the edge of the brain,
a form of radius. The radius is found by counting all the voxels inside the skull, i.e.
within the threshold set by the intensity of the skull. The brain is estimated as a sphere,
and the sphere is centred around the centre of gravity.

The tessellated sphere is initialised with a radius half of the radius of the brain. In
the main training loop, the each vertex is updated to improve surface approximation. It
is performed approximately 1000 iterations per step to ensure accurate updates. The
entire model is rerun if the brain mask is not clean enough, i.e. if it is self-intersecting.
Then the algorithm is rerun with a higher smoothness constraint, for the initial 75% of
the iterations, but the constraint has a linear drop towards the original constraint for the
remaining fraction. The last term is added to prevent the surface from self-intersecting.

2.4.5 Background Field Removal

Background field removal is a vital component of the QSM reconstruction and includes
the removal of all field contributions not originating from the Volume of Interest (VOI),
i.e. brain tissue. The background field components are sources of susceptibility that
do not arise from the local susceptibility distribution inside the VOI, such as chemical
shifts, offsets in the receiver coil, eddy currents and especially air-tissue interface at
the skull, paranasal sinus and the human torso (31). The last component is by far the
strongest contributor as the susceptibility difference between air and brain tissues is of
the order one magnitude (24). This quickly varying susceptibility distribution at the
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Figure 2.4.5: An example of how the BET works in practice. On the left hand side we can see
the full magnitude image before skull stripping, with the brain outlined. In the middle only the
obtained mask is presented. One the right hand side we can see the skull stripped magnitude
image. Example shown on a volunteers using a 3T scanner.

edge of the VOI can create artifacts which may obscure the magnetic field inside the
VOI, distorting the actual susceptibility values in the brain. Therefore, we only want to
consider the internal magnetic field.

A number of methods have been proposed to tackle this problem, with varying
luck, such as high pass filtering (32), polynomial filtering (33) (34) and field forward
estimation (35). Drawbacks of these methods are that they tend to attenuate the local
field or leave residual background fields, both degrading the quality of the reconstruction.
The Sophisticated Harmonic Artifact Reduction for Phase (SHARP) algorithm (36),
which employs the mean value theorem to separate the non harmonic internal magnetic
field and the harmonic background field has shown good results. Additionally, the
Regularised Enabled Sophisticated Harmonic Artifact Reduction for Phase (RESHARP)
(37) algorithm introduces a Tikhonov regularisation to improve the background filtering
of SHARP. The principles behind SHARP and RESHARP will be explained in the following
sections.

SHARP

The SHARP algorithms exploits the fact that the background field, i.e. the air surround-
ing the skull, is homogeneous. Thus, all the components of the magnetic field satisfies
the Laplace equation (38).

@ 2Bback
@ x2 +

@ 2Bback
@ y2 +

@ 2Bback
@ z2 = 0 (2.4.12)

This can be seen by setting the magnetic field derivatives in the electromagnetic
wave equation to zero (39). However, the field inside the ROI is not harmonic and

23



2.4. QUANTITATIVE SUSCEPTIBILITY MAPPING CHAPTER 2. THEORY

does not satisfy this equation, as the brain has a highly inhomogeneous susceptibility
distribution. The field map containing both harmonic and non-harmonic fields is then
projected onto the space constructed by only the non-harmonic functions. This will
directly present the internal field we are looking for. This step is done by solving the
Poisson’s equation of the internal field:

r2Binternal =r2B0 (2.4.13)

By exploiting the spherical-mean-value theorem of harmonic functions, this can
be solved. This theorem states that the mean value of a harmonic function, f (�!r )
calculated over a sphere, S centred at �!r0 is equal to the harmonic function itself at �!r0:

h f (�!r )iS(�!r0)
= f (�!r0) (2.4.14)

By using the convolution operator, the relation above can be expressed in three
dimensions. Using the Fourier convolution theorem:

f � S ⇤ f = S̄ ⇤ f and S̄ = �̂� S̄ (2.4.15)

where �̂ is the unit pulse, in the centre of the sphere. The harmonic background
field can now be removed:

S̄ ⇤�1 [�mask(S̄B)]⇡ Binternal (2.4.16)

where �mask denotes an arbitrary mask that has been applied to remove artifacts
created by the deconvolution.

SHARP suffer from some limitations. A drawback is that the ROI must be explicitly
defined for the algorithm to work, and errors occurring due to poorly contoured ROIs
will cause errors to propagate and influence the final reconstructed QSM map. This
is often solved using BET. As one can see in Figure 2.4.5, the brain extraction has in
this case segmented a too large volume. Furthermore, susceptibility values close to the
edge of the VOI are often unreliable. The original SHARP algorithm solved this by not
providing any values close the to the edge. Improvements have been proposed, such as
introducing Tikhonov regularisation to remove the distortions occurring at the edge of
the VOI. This regularisation algorithm will be discussed in the following section.

24



CHAPTER 2. THEORY 2.4. QUANTITATIVE SUSCEPTIBILITY MAPPING

RESHARP

Tikhonov regularisation has formerly been applied in MR, and is widespread within
the world of tomography (40)(41). The RESHARP algorithm is based on the SHARP
algorithm, but adds a regularisation term. Briefly, the matrix form of the RESHARP
algorithm can be derived in the following way, by exploiting the harmonic relation of
the background field first shown in Equation 2.4.12:

M((��⇢) ⇤ Bback) = 0 (2.4.17)

where M is the binary mask, yielding a value of 1 inside the brain region and 0 outside,
� denotes the Dirac delta function, ⇢ is the radially symmetric, non-negative normalized
convolution kernel. The brain mask is compromised by the radius of ⇢ as the mean
value property is violated at points where ⇢ overlaps between 2 different regions in
the brain mask. Again, transforming the problem into Fourier space to make for easy
calculation of the convolution operators yields:

MF�1{CF {Bback}}= 0 (2.4.18)

where C denotes F (��⇢). One can then manipulate the equation by multiplying
MF�1{CF } by the total field, Btot . As the background component is 0, the only field
component left is the local field, which has to be solved:

MF�1{CF {Bloc}}= MF�1{CF {Btot}} (2.4.19)

The system of equations given above is not determined, and we seek additional
information such that this can be solved, obtaining only one unique solution. As the
background field is the dominating component of the total field, the residual local field
component with the best fit is then chosen as the solution. Hence, finding the least norm
of Equation 2.4.19 represents a minimisation problem with constrictions. A common
method for solving these kinds of challenges is to introduce Lagrange Multipliers. In the
RESHARP algorithm, this is implemented by introducing Tikhonov regularisation to the
Bloc term, in addition to a balancing operation performed by the Lagrange multiplier:

ar gminBloc ||MF
�1{CF (Bloc � Btot )}||22 +�||Bloc ||22 (2.4.20)

argminBloc expresses the different values the local magnetic field can have to min-
imise the function, ||...||22 represents the sum of squares. The first norm term is the
data fidelity term and guarantees the harmonic behaviour of the background field. The
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second term is the Tikhonov regularisation term to keep the characteristics of the local
field, � is a Lagrange multiplier, for which the equation is minimised for different values
of �, where the best solution has the smallest error. In practice, this is performed by
minimising Equation 2.4.20 for a number of different values of �. The solution norm
(||Bloc||2

2) is plotted against norm of the data fidelity term. The optimal choice of � is
the value that corresponds to the point of maximal curvature on the so-called L-curve
(42). An L-curve is the norm of the regularised solution vs the norm of its corresponding
residual norm plotted in a log-log plot. In the log-log plot the user obtains a graphical
tool for studying the fit of the data vs the regularised solution as � varies, making it
more convenient to choose between the trade offs (42).

2.4.6 Dipole Field Inversion

When an atom is immersed in a static magnetic field, the electrons belonging to the
nucleus and the magnetic field will interact, causing a magnetisation of the matter. In
magnetic resonance imaging, the susceptibility of a voxel is given as:

� =
�!
M
�!
H

(2.4.21)

Where � is the magnetic susceptibility,
�!
M is the magnetisation vector, and

�!
H is the

magnetic field strength. It is related to the magnetic flux density, by the relation
�!
B =

µ0µr
�!
H . Where µ0 and µr is the permeability in vacuum and the relative permeability

of a material, respectively

As the body is an ensemble of different magnetic materials, where each material
either opposes or aligns itself with the magnetic field; an application of a magnetic
field, B0, will create magnetic inhomogenites in tissues, �B(r). One can utilise the
relationship between the magnetic susceptibility and the magnetic field inhomogenity,
�(r)��B(r) to obtain more information about the voxel. Each particle can be modelled
as a dipole, and a voxel is considered as an ensamble of each particle in said voxel. The
z-component of the local magnetic field produced by a dipole, µt , can be described as:

Bµz/
µt
r3 (3cos2✓ � 1) (2.4.22)

Where µt is the dipole moment of a material in tissue, r and ✓ denotes the position
w.r.t. the distance from the nucleus and the angle relative to the direction of the
magnetic field, respectively. An illustration is shown in Figure 2.4.6.

At an angle of ✓ ⇡ 54.7� the field will be equal to zero. This is also known as the
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Figure 2.4.6: The leftmost figure shows the magnetic field lines originating from the magnetic
dipole. The figure in the middle shows the z-component of the local field produced by the dipole µ.
The figure to the right shows Bµz= 0 at ✓ ⇡ 54.7�. Courtesy of Allen D. Elster, MRIquestions.com.

"magic angle". We will see later that this is the origin of the inversion problem. As we
are only looking at the field in the z-direction, Equation 2.4.21 can be rewritten as:

Mz(r) = �(r)H0 = �(r)
B0
µ0µr

= �(r)
B0

µ0(1+�(r))
(2.4.23)

Mz ⇡
�<<1

�(r)
B0
µ0

(2.4.24)

This approximation is valid as susceptibility values in human body are much smaller
than 1 (43). By exploiting the expression from Equation 2.4.24, this can be more
compactly written as:

�Bz(r) = µ0 ·Mz(r) ⇤ D(r) =) �Bz(r)
B0

= �(r) ⇤ D(r) (2.4.25)

Where �(r) is the susceptibility and D(r) is the dipole field. Trying to solve this
in the spatial domain is an ill-posed problem. However, by introducing the Fourier
Transform and transforming the problem from real space to k-space:

F {�Bz(r)}
B0

=
�Bz(k)

B0
=F {�(r)} ·F {D(r)}= �(k) · D(k) (2.4.26)

The expression is now only a point-wise multiplication between the expression for
the dipole field, D(k), and the susceptibility distribution ,�(k), in k-space. The unit
dipole in the z-direction can then be expressed as the following:
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D(k) = �1
3

ñ
3k2

z

k2
x + k2

y + k2
z
� 1

ô
=

ñ
1
3
�

k2
z

k2

ô
(2.4.27)

where kx , ky and kz denotes the wave number in x,y and z direction, respectively.
For a small rotation of ✓ , w.r.t. the x-axis, an expression for the dipole field can also be
obtained:

D(k) = �1
3

ñ
3
(kz · cos✓ � ky · sin✓ )2

k2
x + k2

y + k2
z

� 1

ô
(2.4.28)

where ✓ is the angle between the z-axis and the angle at which the nucleus is pre-
cessing, as shown in the two illustrations to the right in Figure 2.4.6. This expression in
the Fourier domain can effectively predict a perturbation in the field, if the susceptibility
distribution is known. However, at the magic angle, where the local magnetic field is 0,
the field to source inverse problem has a division by 0. This divergence is the source of
striking image artifacts and large distortions in the reconstructed image.

2.4.7 Morphology Enabled Dipole Inversion

The problem that arises as a result from Equation 2.4.28 is a well studied problem.
These methods typically try to estimate the susceptibility map by finding the variable
that minimises the distance between the estimated B0(�(k)⇤D(k)) and the measured
�B(k). Morphology Enabled Dipole Inversion (MEDI) aims to solve the divergence
problem in image space (44).

As shown in equation 2.4.25, the local magnetic field of tissue can be expressed as
the convolution between the susceptibility distribution and the dipole kernel giving the
following expression (45):

�B(r) =
3cos2(✓ )� 1

4⇡r3 ⇤�(r) (2.4.29)

which can be expressed on matrix form:

b = D� (2.4.30)

where b and � are the vector forms of the measured local field and susceptibility
distribution, respectively, and D is a matrix representing the convolution of the dipole
kernel, i.e. the magnetic field.

The MEDI method uses a physical prior which minimises the number of voxels
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that belong to the edges of the susceptibility map and not edges in the T⇤2 map. The
reconstruction w.r.t. the susceptibility is then a L1-norm minimisation problem with
constraints:

min� ||MG� ||1 subject to ||W (D� � b)||22  " (2.4.31)

where M is the structural weighting matrix, which is extracted from the gradient of
the T⇤2 -weighted magnitude image, G is the gradient operator, W compensates for the
noise variation inn the field measurement proportional to the image magnitude and "
is the noise and controls the faithfullness of the reconstruction. M is a binary mask that
assigns 1 to voxels with small gradients and 0 to voxels with large gradients given a
threshold in the magnitude image:

M =

8
<
:

1 |Gm|< µ
0 |Gm|� µ

(2.4.32)

where µ is a threshold associated with the noise level in the image and m is the
vector form of the magnitude image.

Algorithm Implementation

Equation 2.4.31 can be solved by rewriting it using the Lagrange multiplier method
into the following minimisation problem:

min� ,�E(� ,�),
�� E(� ,�)⌘ ||MG� ||1 +�(||W (D� � b)||22 � ") (2.4.33)

This equation can be numerically solved by finding the global minimas of the
following functions:

8
<
:
r� E(� ,�) = 0

r�E(� ,�) = 0
(2.4.34)

The first step to minimising the cost function, E, is setting the gradient w.r.t. � to 0
for a chosen value of �:

0=r� E(� ,�) = (MG)Hsign(MG�)+2�(W D)H (W D��W b)⌘ L(�)��eb (2.4.35)
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where (...)H is the conjugate transpose L(�) is given as:

L(�) = (MG)H
1
|MG� |MG + 2�(W D)HW D

furthermore, b̃ is a shortening for:

eb = 2�(W D)HW b

A weak derivative function is used to find the derivative of the L1 norm. A weak
derivative is used in cases where the function is integrable, but not differentiable for all
values:

(||�||1)0 = si gn(x) =

8
<
:

x/|x | if x 6= 0

0 if x = 0
(2.4.36)

where si gn(x) denotes the sign function, which is integrable, but not differentiable
for all values of x . A method for solving Equation 2.4.35 is to rewrite it as a fixed point
equation, and then solve it iteratively (46):

�n+1 = L�1(�n)b̃ (2.4.37)

by a reordering of Equation 2.4.35, b̃ can be expressed as:

b̃ = L(�n)�n �r� E(�n,�)

the fixed point iteration from Equation 2.4.37 has now become a quasi-Newton
problem (47). An advantage of this is that it is more robust against round-off errors.
The equation above can be rewritten as:

�n+1 = L�1(�n)(L(�n)�n �r� E(�n,�)) = �n � L�1(�n)r� E(�n,�) (2.4.38)

The �n+1 term can be computed by employing a conjugate gradient descent method
(48).

When the derivative of the cost function, E, w.r.t. � and � is equal to zero it, the
constraints term are equal to the expected noise power iteself:

0=r�E(�n,�) = ||||W (D� � b)||||22 � "||||(D�
⇤ � b)||||22 ⇡ " (2.4.39)

�⇤ is the susceptibility solution from Equation 2.4.35 given a value of �. Equa-
tion 2.4.39 is solved numerically for different values of �, and a � is chosen whose
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corresponding � satisfies this equation.

2.4.8 Total Generalised Variation

The implementation of dipole inversion methods called Total Variation (TV) penalties
have been used in the reconstruction of e.g. QSM-weighted images obtained from
gradient echo phase data (49)(35). A drawback of this method is that TV only takes
into account the first order derivative of the susceptibility distribution. This means that
TV does not enforce higher order smoothness, causing distortions, known as staircase
artifacts in the case of images which are not piecewise constant. Total Generalised
Variation (TGV) generalises the TV method by including higher order smoothness, in
turn leading to more accurate reconstruction (50).

The TV semi-norm of an image is well known , and in the case of our problem, the
susceptibility distribution can be described by:

T V (�) = ||r� ||M (2.4.40)

here r is the gradient and ||..||M is the Radon norm, which is a generalisation of
the L1-norm. The TGV, which in this case is defined as a second order T GV 2 is a
minimisation problem :

T GV 2
↵1,↵0

(�) =min
w
↵1||r� � w||M +↵0||"w||M (2.4.41)

We minimise over w, i.e. over all vector fields, and " denotes the symmetrical
derivative of w. The result of this operation creates a symmetric tensor field of second
order:

"w=
1
2
(rw+rwT )

where wT denotes the transpose of the vector fields. As an example, " for the 2D
case is defined as follows:

w=

ñ
w1
w2

ô
,"w=

2
4

@ w1
@ x

1
2 (
@ w1
@ y +

@ w2
@ x )

1
2 (
@ w1
@ y +

@ w2
@ x )

@ w2
@ y

3
5 (2.4.42)

The ratio of the positive weights, ↵0 and ↵1, introduced in Equation 2.4.41, is used
balance the first and second derivative of a function in T GV 2. It has been showed that
the ideal ration lies between 2:1 and 3:1 (51).
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Integrative QSM Reconstruction using TGV

Traditionally, QSM reconstruction has involved multiple steps, such as phase unwrap-
ping, background field removal and dipole field inversion, meaning that errors can
propagate and grow in each step, possibly creating distortions and inaccuracies in the
final reconstructed image. To avoid this problem, the wrapped phase data is directly
subjected to the TGV, an auxiliary variable is then created to account for the back-
ground field removal in the regularisation process. Another advantage of this method
is that there is no need to introduce a threshold parameter, which is used in other
background field removals, such as SHARP. QSM maps are obtained from the wrapped
phase, �wrapped of the gradient echo. The Laplacian of the wrapped phase is given as
the following:

�� = Im(�ei�wrapped · e�i�wrapped ) (2.4.43)

The reconstruction method then bases itself on an optimisation procedure applied
on the unwrapped version of Equation 2.4.43(52). By exploiting the Laplacian of the
phase, the dipole inversion is directly implemented as:

1
3

Å
@ 2�

@ x2 +
@ 2�

@ y2 +
@ 2�

@ z2

ã
=

1
2⇡TE�B0

�� (2.4.44)

As stated above, the background field was implicitly incorporated by the auxiliary
variable,  , which has a Laplacian equal to the discrepancy of the equation on the
brain mask M , which can be extracted using the BET described in Section 2.4.4. A
squared L2-norm was used to penalise  , in other words by integrating its absolute
value squared over M . The regularisation parameters ↵ = (↵0,↵1) and the TGV of
second order was used for inversion, resulting in a variational problem:

min
� , 

Z
| |2d x + T GV 2

↵ (�) subject to

�� =
1
3
@ 2�

@ x2 +
1
3
@ 2�

@ y2 �
2
3
@ 2�

@ z2 =
1

2⇡TE�B0
��inM

(2.4.45)

However, another auxiliary variable is introduced by the TGV function itself:

T GV 2
↵ (�) = minw↵1||r� � w||M +↵0||"w||M

Similar to other QSM reconstruction, solving the optimisation problem yields sus-
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ceptibility maps. However, the phase unwrapping and background filtering is done in a
single step, by only applying the Laplacian of the unwrapped phase, � in the inversion
problem. Therefore, the unwrapped phase is not employed directly (53). In terms
of the Laplacian operator, the discrepancy can be interpreted as the variation of the
phase � and � convoluted with the dipole kernel. Minimising w.r.t.  , is equivalent to
removing the harmonic background field. Furthermore, minimising w.r.t. � yields the
TGV-regularised dipole inversion.

2.4.9 Choosing a Reference Susceptibility Value

As the QSM images are not defined at the origin of k-space, the QSM pipeline yields
only relative susceptibility values. This causes mainly two constraints; form a clinical
viewpoint it is very useful to know the absolute susceptibility value of some tissues, e.g.
for RN and SN in possible diagnosis of PD. Additionally, with only relative susceptibility
values, the images may not be comparable to each other, making them unfit for use in
automatic segmentation algorithms, as the intensity from image to image may vary from
scanner to scanner. This problem is normally solved by taking the average susceptibility
in a reference region and subtracting it from the susceptibility in the other voxels
(54)(49). As the age of the subjects varies, one therefore seeks a reference tissue that
degrades as little as possible with increasing age. Regions in the Corticospinal Tract
and the CSF have been shown to be one of the brain tissues that is most resilient to
degeneration due to ageing (55)(56)

2.5 Linear and non-linear image registration

The use of linear image registration is a commonly used tool within the field of MR
brain image analysis. Both linear and non-linear image registration will be described in
this section.

2.5.1 Linear Image Registration

Linear image registration is a tool usually applied for co-registering images of different
modalities, within the same subject. However, co-registering can be performed within
the same modality, but with different resolution, e.g. transforming a mask between
7T and 3T QSM images. The warps are so similar that the image to image registration
can be performed only using a linear transformation with a maximum of 12 degrees of
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freedom Degrees of Freedom (DoF). A linear transformation is generally described in
the following way:

2
6664

x 0

y0

z0

1

3
7775 = T

2
6664

x
y
z
1

3
7775 (2.5.1)

where T is a 4x4 matrix describing a transformation. The challenge is to find the
best transformation T which best aligns a reference image, IRe f , with another image,
IN . Finding a suitable transformation is an optimisation problem, described as:

ar gmin{C(IRe f , IN · T )} (2.5.2)

where C is the cost function and IN ·T is the image IN after it has been transformed by
T. To constrain our problem, we must consider which kind of transformations which are
allowed. In linear image registration, we mainly distinguish between Rigid Body and
Affine transformations, having 6 and 12 DoF, respectively. Rigid Body transformation
can include 3 rotations and 3 translations while an Affine transformation includes an
additional 3 scalings and 3 skews/shears.

For discrete data, in the case of MR images, the intensity is defined voxel-wise,
meaning that we need to interpolate to find the intensity between these points. Classi-
cally, continuous tri-lienar, spline or windowed sinc kernels are convoluted with the
discrete voxels to create a discrete interpolation (57)(58). The type of interpolator
used will also affect whether or not the cost function becomes continuous or not as the
parameters in the transformation changes.

To maximise the similarity between two images, one can introduce a cost function.
Common cost functions are Mutual Information and Correlation Ratio. The registration
problem stated in Equation 2.5.2 can be descried by the transformation, interpolator
and the cost function. An optimiser must be found such that the transformation, T ,
minimises the cost function that is used. Furthermore, we must be sure that this is a
global minimum and not a local minimum, i.e. that we have truly achieved the highest
similarity between the different images. When the optimiser is performing its task,
it would be foolish to try to start with comparing the two images with the highest
resolution possible for each degree of freedom. Instead, the images can at first be
under-sampled and the optimiser can then improve the transformation and find the
global minimum and use this as a reference when the process is repeated with a higher
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sampling. This process is continued until the optimisation has been performed on the
resolution of the original images. In addition to the drastically reduced computational
time, lower resolution images are easier to align as the larger features, such as the edge
of the brain is more dominant than smaller features, i.e. there usually exist less local
minimums (59).

2.5.2 Non-Linear Image Registration

When one is using brain imaging data from a wide variety of subjects, it is often beneficial
to register the brains to each other by using a common template. This is profitable as it
creates a better foundation for the statistical analysis and makes it easier to compare
subjects. Between different subjects, the warps can usually not be described by linear
deformations, thus non-linear image registration must be applied.

In general, non-linear transformations can be descried as a linear transformation,
but with an added term accounting for the non-linearity:
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where T is an affine transformation described in the previous section. The matrix
containing the partial derivatives are displacement fields, and gives information about
the displacement in the position in the respective directions. The displacement fields
have the same dimension as the image it tries to approximate. To reduce computational
time, the displacement fields can be represented by a linear combination of basis
function, in turn reducing the amount of fitted parameters which needs to be calculated.

The optimisation methods are similar to those used in linear image registration,
as they start the optimisation process with a sub-sampled image to both reduce com-
putational costs, reduce chance of being stuck in a local minima, but also detect the
larger scale objects, before iteratively increasing the resolution. What separates the
non-linear optimisation process from the linear one is the regularisation term. The
non-linear optimisation process consists of finding a compromise between making the
images look similar, i.e. minimising the cost functions, and creating warps which are
physically plausible. Statistically, sharper warps are less common than smoother ones.
Typical regularisation functions are membrane energy or bending energy. Thus, the
goal is to minimise the cost-function:
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O(q) =
1X

i=1
(g(x 0i(xi , q))� f (xi))2 +�✏(q) (2.5.4)

where q is a parameter which minimises O, g is the image we want to warp, x 0 is
the transformed image, f is the image used as a reference, ✏ is a regularisation function
and � is a regularisation parameter where the value reflects the focus on similarity or
the likeliness of warps.

2.6 Deep Learning

This section concerns the theory of DL and is based on the theory presented in the
specialisation project. DL is a branch of machine learning that excels in solving problems
involving a large amount of features, such as speech, images and text processing
problems (11). The ground pillar in DL is the use of artificial neural networks, inspired
by the information processing and communication in biological systems, such as the
human brain (60). The name "Deep Learning" originates from the use of deep neural
networks, which is composed of long chains of neurons. In addition to the fact that it
exploits deep features of data, i.e. features extracted from other features.

2.6.1 Artificial Neural Networks

A simple artificial neural network, as depicted in Figure 2.6.1, is constituted by an input
layer, hidden layer and an output layer, each layer being composed by a given number
of neurons. Every neuron takes in multiple inputs, and delivers a single output, which
in turn can be sent along to all neurons in the next layer, or be expressed as an output.

The Artifical Neuron

An artificial neuron, also known as the perceptron, is a single layer neural network.
Figure 2.6.2 shows a perceptron overlaid on a neuron. The perceptron is constituted by
one or multiple outputs received from the previous neural layer, which is passed to the
subsequent neuron and used as an input. Each input, x1, x2, ..., xn is then multiplied
with a weighting factor w1, w2, ..., wn, respectively. The weighted inputs are then
summed and added a bias, b:

nX

n=1
wnxn + b (2.6.1)
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Input Layer

1st Hidden
Layer

Output Layer

Artificial Neuron

2nd Hidden
Layer

Figure 2.6.1: A model of a fully connected Neural Network, consisting of an input layer, two
hidden layers and an output layer. Figure created by Eivind Lysheim in draw.io.

where the summation is over all weights and inputs. However, as very few problems
in this world can be solved by simple linear models, an activation function is therefore
introduced to create a non-linearity in the system. Each neuron therefore implements a
logic regressor:

�(wx + b) (2.6.2)

Where wx symbols all the weighted inputs from the former neural layer, b is the
bias and � is the activation function. The output from Equation 2.6.2 is then sent to
the subsequent layer.

Activation Functions

The activation function of an artificial neuron converts the summed inputs and biases
from input to output, and can therefore be described as a mapping from input-space to
output-space. There are many reasons for using activation functions, the main reason
being complex tasks, as they can not be solved using linear combinations of neurons.
Only using linear activation functions would result in a deep neural network that in
reality would be equivalent to only having one neuron. Furthermore, as the neuron
is just a summation of weighted inputs and a biases, without the use of activation
functions, the range of the values of an output would have a much larger range of
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Figure 2.6.2: A neuron overlayed by an artificial neuron. The dendrites are represented by the
weighted inputs before it is added together, before it is sent to the axon, represented by the axon.
The illustration was created by Eivind Lysheim using BioRender.com

possible values, depending on the weighting and the output-number of neurons in the
previous layer. Therefore, activation functions are also important in restricting the
output values to a given range, and to ensure that smaller inputs are not neglected.
Which activation functions one chooses to use are dependent on the training data and
the neural network. It is especially important to choose a suiting activation function w.r.t.
back-propagation, which will be explained in the following section. Each activation
function has its advantageous and disadvantages.

The Sigmoid is an activation function that is a differentiable real function for real
inputs and has a positive derivative everywhere. The Sigmoid is given as:

g(x) =
1

1+ e�x

It is restricted to values between 0 and 1 and is therefore handy in binary classifica-
tion problems where we want the network’s output to be a probability floating number
between 0 and 1. The Sigmoid function is easy to understand and is therefore used in
introductory courses to Deep Learning, but should be avoided in the central parts of a
network, mainly due to the vanishing gradient problem, where the gradient tends to
zero, not being able to update weights in the earlier layers. Thus making it impossible
for the network to improve its performance (61).

The Rectified Linear Unit (ReLU) activation function has proved itself to be a faster
activation function than the Sigmoid, in addition to avoiding the vanishing gradient
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problem (62). The function is given as:

g(x) = max(0, x) =

8
<
:

xi , if x � 0

0, otherwise

As all inputs less than zero is set to zero, this eliminates the vanishing gradient problem.

Training a Neural Network

In a neural network, weights and biases are periodically updated to improve the output
of the network. The goal of the training is to optimise these weights and biases to
produce the best output, depending on the objective. During the training of a neural
network, one has a loss function, L = L(x ,✓ ), dependent on the input, x , and the
parameters ✓ . Normally, when we are talking about optimisation of an algorithm, an
objective function is used to evaluate the suggested solution. In the context of neural
networks we seek to minimise the error between the predicted output and the actual
solution, and the objective function is usually referred to a as loss function. There are
mainly two losses; the loss for the training data, commonly named "loss" and loss for the
validation data, commonly called "validation loss". To optimise the values of the weights
and biases, the goal of the training process is to minimise the loss functions. As the
input data is fixed; only the parameters ✓ can be updated during training. Therefore,
for training purposes, the loss function is only dependent on the parameters of the
model only, reducing the loss function to L = L(✓).

One method for training the network is by randomly changing the values of each
weighting and bias, and check if the output is better than the former results, and only
save the weights and biases if it is. However, this is an extremely inefficient method,
with a high probability of making things worse. Another option is to simply predict
the next adjustment that will decrease the loss for each iteration. By introducing a
loss function, one can use the derivative of the loss function to calculate the direction
that decreases the loss the most. The derivative is given by taking the tangent line
of the angle ↵. If the derivative is positive, i.e. ↵ < 90�, the parameters, ✓ , must be
decreased. On the other hand, if it is negative, i.e. 90� < ↵ < 180�, the parameters
must be increased.

The example above only holds for one parameter. However, neural networks tend
to have a huge amount of parameters. Therefore, one needs to look at the partial
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derivative of all parameters, i.e. the gradient:

r(L(w)) = (@ L(w)
@ w1

, ...,
@ L(w)
@ wn

) (2.6.3)

Where r is the vectorial differential operator, L(w) is the loss function in n-
dimensions w.r.t. the weights, w.

This is the foundation of the gradient descent technique, which is a technique
composed of 4 steps:

1. Parameters starts out with a configuration. Either random or non-random initiali-
sation.

2. Calculate the partial derivatives of the loss function, L(✓).

3. Move in the opposite direction of the gradient.

4. Repeat step 2-4 until the loss is below a given threshold appointed by the before-
hand.

Immediately, this method raises two questions; How long is the movement in the
opposite direction and how large should the threshold be?

The first question is decided by the update function, which updates the weights at
time (t-1):

wt = wt�1 �µlrL(w) (2.6.4)

where µl is the learning rate, and dictates the weighting of the gradient of the loss
function.

For a simple network, such as the perceptron seen Figure 2.6.2, computing the
gradient descent technique is easily done w.r.t. a given parameter. However, to improve
a neural network, one needs to update the weights w.r.t. to many parameters. This
is done by the implementation of the back-propagation algorithm (63). It provides
iterative rules used for computing partial derivatives of the loss function w.r.t each
parameter, i.e. weights and biases in the network. The basis for this method is the chain
rule for derivatives. The derivation of how we obtain an expression for updating the
parameters of each neuron is not shown here, but a nice derivation is shown here (64).
Most importantly, for each forward pass through a network, a backward pass adjusting
the weights and biases is performed. After the entire training data has been passed
both forward and backwards through the network, an entire epoch has been completed.
As the dataset tends to be quite large and usually too much for the memory to handle
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all at once, the training data can be divided into batches. The batch size is the fraction
of training examples utilised in each iteration.

To perform a back propagation, the network needs to know the difference between
the predicted value and the actual value, the loss. A commonly used loss function is
the binary cross-entropy. It calculates the cross entropy between true and predicted
labels whose output is a probability between 0 and 1 (65). Consider an objective
or an underlying probability P that we want the system to mimic, and the system’s
approximation of this is the distribution Q. The cross entropy of Q from P will then
be the number of additional bits that has to be used to represent an event using Q
instead of P. When the difference between the predicted and true labels is very small, the
entropy converges towards zero. When the difference increases, the entropy diverges.

As stated above, the goal is to minimise the loss function to make the predictions
of the network as correct as possible. To do this, the parameters of the model need to
be updated. Optimisers are used to solve this problem. They tie together the model
parameters and the loss function by updating the model parameters w.r.t. the output
from the loss function. In essence, the loss function has the map of the local terrain
and gives feedback to the optimiser if its moving in the right direction or not. A useful
optimiser is the "RMSprop". Opposed to the gradient descent where all gradients
accumulated for the momentum, this optimiser divides the gradient by a running
average of its recent magnitude, only using gradients accumulated inside window,
creating a more robust output (66).

As one only obtains a relative performance metrics by using only the loss function,
i.e. you only know if you are going in the right direction, but you do not know how far
away you are from the goal, an absolute performance metrics is useful. In the case of
problems like ours, where the objective is to train a network that never mislabels, but
also labels all of the regions of interest, the Dice Score (DS) is a relevant and widely
used metric. The DS, can be written in the following way:

DS =
2 · |A\M |
|M |+ |A| (2.6.5)

where A are the pixels that has been labelled by the automatic segmentation and M
are the pixels that has been manually segmented. To make a more robust metrics, a
smoothing factor, �, can be introduced. A dice coefficient of 1.0 means perfect overlap
and no miss-labelling between predictions and the ground truth, while a coefficient
of 0.0 means that there has been no correct predictions. In addition to the DS, there
are several other methods for evaluating the performance of a segmentation algorithm.
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A well known method is looking at the True Positive (TP), False Positive (FP), False
Negative (FN) and True Negative (TN). As the brain structures a are small compared to
the entire volume of the MR image, TN is not of interest to us, as it would always show
a number between 0.99 and 1.0. Thus, only the sensitivity and precision were applied
to evaluate the segmentations:

Sensi t ivi t y =
T P

T P + FN
| Precision=

T P
T P + F P

(2.6.6)

Sensitivity is often called true positive rate or recall and is a measure of the fraction
of actual positives which are correctly identified, the precision, often called positive
predictive value is the fraction of relevant instances among the retrieved instances.

A method for reducing training time is to introduce the batch normalisation layer
(67). A problem with deep neural networks is the continuous changing of inputs, caused
by an update in the parameters in the previous layer. This leads to a lower learning rate
and a more sensitive initial parameter initialisation, causing an increased training time.
Performing a normalisation of each mini-batch, the learning rate can be increased and
the initialisation will become less sensitive.

2.6.2 Convolutional Neural Networks

CNNs are networks that particularly excels in handling 2D images (68). One of the
main traits of a CNN is its ability to extract deep features from an image by applying
convolutional layers.

Imagine one has a neural network similar to the one in Figure 2.6.3. All neurons
are fully connected to the next, in a dense layer. If one wants to use this kind of densely
connected network to process images, one would need to collapse the dimensions of
the image into one dimension, to fit as an input to the neurons. By collapsing all the
information in the image into a 1D tensor, this would cause a loss of spatial information
that one could have used to extract features from in the image. The spatial structure is
indispensable in image processing, and one must therefore look for a solution which
can retain the spatial structure of the image.

To overcome the problem described above, one can first start to look at what a
digital picture really is, a matrix full of numbers between 0 and 255, either with 1
channel (grayscale) or 3 channels (RGB). Instead of connecting every single matrix
component to a single neuron, which also is computationally extensive, one instead
looks at patches of inputs and connect the patches to the neurons instead. By sliding
the patch-window all across the pixel-matrix, by e.g. 3 units each slide, one creates
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Input Layer � �� Hidden Layer � �10 Output Layer � �³Hidden Layer � �10 Hidden Layer � �10

Figure 2.6.3: A dense artificial neural network consisting of one input layer, 3 hidden layers and
an output layer. Image created by Eivind Lyseheim in NN-SVG.

connections between each patch and the neuron. This will keep more of the spatial
structure intact, as the objective was.

Filters, Feature Maps and Max Pooling

It is not only the spatial structure that is of interest, but also the features that can be
extracted from the image. The term "features" is a very broad term, but in the case
of computer vision it applies to the detection of edges, curves, facial attributes etc.
To extract features, a popular technique is to weigh each pixel with a filter before
connecting the patch to the neuron in the next layer. This operation is simply known as
convolution. In practice, for a 2D image, this operation first takes a filter, usually a 3x3
matrix, containing 9 different weights and apply it to the 3x3 patches. The dot product
of the patch and the filter is then taken, i.e. the convolution of the patch and the filter,
and then summed together. A feature map is then created. The output of this layer
reflects the features of the patches. The convolution operation is shown in Figure 2.6.4.

We use a filter that is larger than 1x1 as features are usually local and not confined
in just one pixel, meaning that we should extract information from a region, not a point.
The filter size is odd because the pixels in the previous layer are symmetrically placed
around the output filter. If we had implemented even sized filters on the other hand,
we would need to account for distortions across the layers, making things unnecessary
complicated. The reason that 3x3 filters are normally preferred, is mainly due to

43



2.6. DEEP LEARNING CHAPTER 2. THEORY

Figure 2.6.4: A figure showing the 3x3 filter operation in a convolutional layer. Courtesy of
Thomas Dean (69).

computational resources, as 5x5 filters will create almost 3 times as many trainable
parameters, causing a massive increase in computational cost, in turn making training
very slow. The filter needs to learn how to extract the features, therefore the weights in
the filter is updated through back propagation. By applying subsequent convolutional
layers, each new layer has the ability to extract higher order features from the existing
feature maps. E.g. the first layers can extract features such as dots and corners etc.
Subsequent layers can combine those small features to extract shapes and trends etc.

Two important parameters are used to define the convolutions, stride and padding.
Stride is the number of pixels which we slide our filter matrix over the input in each
step. Stride of 1 means that the filters are only moved one pixel before a convolution is
performed. Padding are filter elements that can be added outside our matrix, making it
possible to perform convolutions at edge of the matrix.

In addition to the normal convolution that has been introduced, the transposed
convolution, or the "de-convolution", does the opposite, and is very useful tool when
we want to up-sample an image from low resolution to high resolution. Again, we start
by taking a pixel as the input and convolute it with the filter. This is then performed
with all the input pixels. The filters can then be trained to perform the best up-sampling
possible.

In CNNs it is sometimes useful to reduce the dimension of the input so that we can
work with fewer parameters. The max pooling operation takes the highest pixel value
from sections of an image, creating a pooled feature map. In this map only the features
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which describe the context of an image the best can be seen, neglecting the features
that are deemed not important enough.

2.6.3 Overfitting

Overfitting is one biggest challenges one meets in the field of DL (70). It is concerned
with the generalisibilty of the network. If the network is overfitted, the weights and
biases have most likely been tuned to "remember" the images and creates a prediction
based on what it remembers is correct, rather than actually learning the features of
the images. An overfit network has a high variance and low bias, and the performance
varies widely with the introduction of new images, or even known images with added
statistical noise.

Overfitting can be diagnosed by looking at the loss and validation loss. Normally,
both losses will decrease then starts to stabilise. However, in an overfit model the
validation loss will start to increase again after a while. As the model starts to remember
the images, instead of learning the relevant features, its prediction on the validation set
will loose its accuracy, in turn leading to a higher validation loss. A simple solution to
this is implementing an early stopping mechanism that stops the training and saves the
weights and biases of the model if the a criteria is met, e.g. the validation loss starts to
grow over a certain threshold.

However, there exists other preventive methods for reducing overfitting. One method
is to introduce dropout layers, placed after convolutional layers (71). This layer sets
input units to zero, with a frequency given by the rate during training. The weights of
the inputs that are not set to be 0 are scaled up by 1

1�rate . Therefore, the sum over
all inputs remain unchanged. A major drawback of the dropout layer is that some
information go lost when the input is set to 0. Therefore, the dropout-rate should be
lower at the start of the network than at the end of the network.

Another method for reducing overfitting is to increase the size of the dataset (72).
By adding data, the model is unable to overfit all samples, forcing it to generalise. If it is
not possible to obtain more real data, data augmentation can be performed by applying
transformations to the existing dataset. These transformations can be angle rotations,
sheer forces, flipping, addition of noise, contrast improvement, blur etc.

2.6.4 U-Net

The 2D U-Net was first introduced in 2015 (73). The U-Net architecture is based on
a contracting path introduced to capture the context in the image and an expanding
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part introduced to capture the localisation of a feature. The symmetry between the
contracting and the expanding parts creates the "U" structure, as seen in Figure 3.7.1.
The U-Net exceeds mainly due to two different aspects; its high precision segmentation
as well as its ability to train using only a fraction of the images other state of the art
CNNs need (73). The left part of the network that contains the high resolution features
are concatenated with the expansive part. A subsequent convolutional layer will make
it easier to learn the network to produce high precision predictions.

The left side has a three dimensional input. Two dimension comes from the height
and width, while the last dimension comes from the colours in the image (RGB). This is
passed through a convolutional layer which extracts features, creating a feature map
(65). The data is then passed through a batch normalisation layer and a dropout layer,
which normalises the input values and skips the training of a fraction of the neurons,
respectively (74)(75). This is repeated once before the data is both concatenated with its
analogue in the expanding part, as well as being down-sampled by a max pooling layer
(76)(77). A concatenation is just an addition of "List A" to the end of "List B", where the
product is a list that has the length of List A + List B. The purpose of this operation is to
reuse features by concatenating them to new layers, which allows for more information
to be retained from previous layers. The concatenation operation comes before the
max pooling operation, which only extracts the strongest features. These operations
are repeated 3 times before one meets the lowest layer of the U-Net. Here the data is
passed through two convolutional layers, before it is passed to a deconvolutional layer
that up-samples the data (78). As the output is a high-resolution image, in which all
pixels are classified as either ROI or non-ROI, the deconvolution is needed to up-sample
the image. The two next steps of the expansive part of the network is identical, but it
includes the data from the concatenation. The final convolutional layer maps each each
n-component feature vector to the amount of classes in the system.
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Chapter 3
Material and Methods

This chapter will describe the operations performed in this project, which is heavily
based on theory introduced in the previous chapter. The chapter is mainly divided
into 8 sections. The first section describes the necessary steps to set up HUNT Cloud.
The following four sections describe the acquisition methods, QSM reconstruction and
how the manual segmentations were obtained. The following section describes which
operations were performed for data augmentation. The last two sections describe the
network architecture and the details about the training of the CNNs.

3.1 Setting up HUNT Cloud

All the imaging data needed to be transferred to secure servers to the cloud community,
HUNT Cloud, operated by NTNU and St.Olavs hospital (79). In addition to secure
containment of data, the cloud community offers state of the art GPUs and Central
Processing Units (CPUs) for high speed data processing. As the MR Physics group at
the university recently became a user of this digital lab system, a part of the thesis was
concerned with setting up and installing the relevant software on the servers. The goal
of the task was twofold; firstly the relevant software needed to be installed to allow
for GPU accelerated training of CNNs, as described more in detail in the subsection
below. Additionally, by spending some time setting up HUNT Cloud and installing the
relevant research software, new PhD. and master students can start using the HUNT
Cloud immediately, without the need to perform tiresome installations and changes to
the system.
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A short summary of the process of setting up the Cloud is described here, and a
detailed documentation can be seen in Appendix B.1. After the initial user registration
was finished, a Graphical User Interface (GUI) was installed. Subsequently, all the
necessary packages were installed to perform needed operations in the lab, the most
important were a Conda (80), NIfTI viewers, MATLAB, FSL and Python interpreters.
The Conda environment was configured to run the TGV-QSM reconstruction and GPU
accelerated training of CNNs.

Tensorflow and GPU

Tensorflow is a an open source library with a particular focus on DL operated by
Google, and provides an interface for simpler implementation of neural networks
(81). Additionally, Tensorflow provides a vast collection of classes which can improve
training, stability and analysis of neural networks. It also handles memory allocation
and optimisation of Graphics Processing Unit (GPU).

As working with neural networks usually include handling huge amount of data and
parameters, GPUs are exploited for acceleration of training as they allow for parallel
computation. Inside the GPU a particular task is broken into different independent
pieces, and calculated simultaneously. This allows for an increase in computational
efficiency, leading to a decreased training time compared to conventional CPUs. Addi-
tionally, as the memory of GPUs tend to be quite large, they are suitable for handling
large amounts of data. The GPU used for training in this project was a NVIDIA Tesla
P100 with Pascal architecture and 16GB of memory. Despite having all the hardware
ready, one can not take advantage of accelerated training without installing the nec-
essary software offered by NVIDIA. Essentially, the NVIDIA container toolkit allows a
user to run GPU accelerated containers. The containers are analogous to the containers
used in shipping today. They can contain everything, but the outside is standardised.
By using the Cuda toolkit, one can run everything from neural networks to FSL without
the need to interfere with the GPU software each time one needs to use a different
application. The Driver Version was updated to version 460.73.01, Cuda version was
updated to 11.2 and Cuda compilation tools 9.1.85. These updates were chosen to be
in compliance with Tensorflow-GPU 2.0.0.
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3.2 Data Acquisition

The image acquisition was performed on three different scanners. The acquisition
and processing of the first 3T QSM data, was performed by an external partner at
Karolinska Instiutet in Sweden, and will be referred to as the GE 3T dataset. The
acquisition of the second 3T QSM dataset was performed at St.Olavs university hospital,
Trondheim, Norway. This will be referred to as the Siemens 3T dataset. The third
dataset was obtained at the new 7T MR scanner at St.Olavs, owned by NTNU. This
will be referred to as the 7T dataset. The processing of the Siemens data was done
locally by the author on the Hunt Cloud machines. The data collection performed here
in Trondheim was approved by the Regional Ethical Committee. The thesis is a part
of the project "Kvalitetssikring og optimalisering av pasientundersøkelser på 7T MR"
(Quality assurance and optimisation of patient examination on 7T MR), with project
number: 108066. A total of 18 volunteers were recruited by the author, and all signed
a contract consenting to that images could be used anonymously.

3.2.1 MRI Acquisition GE 3T

Data was collected from 40 healthy participants (82). 22 were a group of younger
adults with a mean age = 36.18 years, SD = 4.66 years, in the range 26-42 years
old. The remaining 18 were a group of older adults with a mean age = 69.89 years,
SD = 3.17 years in the range 65 - 77 years. The image acquisition was performed
using a Discovery MR750 3T scanner (General Electric, Milwaukee, WI, USA), using
an 8-channel phased array-receiving coil. The sequence used was a MGRE, with TR =
37.52 ms, spatial resolution 0.9 x 0.9 x 1 mm3, flip angle of 20�, FoV = 24 cm and 176
axial slices. First echo was after TE = 3.74 ms and the following 7 echos had a constant
spacing of TE = 3.75 ms.

3.2.2 MRI Acquisition Siemens 3T

The MRI acquisition was performed at St.Olavs university hospital, Trondheim. The
image acquisition of 18 volunteers was performed in the period November 2020 to
March 2021. Due to the global pandemic caused by Covid-19, only healthy young
subjects were recruited, as it was deemed unethical to encourage older adults to visit
a hospital unnecessarily, possibly exposing them to the virus. The mean age = 25.63
years, SD = 3.78 years in the range 22 - 40 years. The imaging was performed using the
Magnetom Skyra 3T scanner (Siemens, München, Germany), with a 32-channel phased
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array-receiving coil. A 3D MGRE sequence was performed, with a spatial resolution of
1 x 1 x 1 mm3 and TR = 39 ms, FoV = 23 cm, 144 axial slices and flip angle of 20�.
The MRI sequence used a MGRE, with first echo after 6.15 ms and the 5 subsequent
echos had a spacing of TE = 5.48 ms.

3.2.3 MRI Acquisition 7T

The MRI acquisition was performed at the 7T MR lab at St.Olavs university hospital,
Trondheim. The same 18 volunteers were imaged using the 7T MAGNETOM TERRA
(Siemens, München, Germany). The image acquisition was performed in the period
January 2021 to April 2021. Due to different causes, 3 of the volunteers were not able
to complete more than the first few minutes of the scan, yielding no relevant data at all.
Among the volunteers who managed to complete the scans, mean age = 25.81 years,
SD = 4.08 years, in the range 22 - 40 years old. The MRI scanner had a 32-channel
phased array-receiving coil. A MGRE sequence was performed, with a spatial resolution
of 0.75 x 0.75 x 0.75 mm3 and TR = 31 ms, FoV = 23 cm, 224 axial slices and flip angle
of 12�. The first echo was after 2.54 ms and the 3 subsequent echos had a spacing of
TE = 4.68 ms.

3.3 QSM Acquisition

3.3.1 QSM Acquisition GE 3T

The QSM images were obtained using the data obtained from a MGRE sequence.
By employing a non-linear least squares fit, the frequency in each voxel could be
determined (28). By applying a 3D best path unwrapping (83), the frequency of
each voxel were unwrapped. The RESHARP algorithm was then employed to remove
unwanted background inhomogenities.

The MEDI method for reconstructing the susceptibility map was employed. The
images used in this project were processed using a non-linear extension (28). It imposes
a data fidelity constraint, which is determined by the difference between the generated
frequency map and complex exponential functions. The reconstructions were performed
in MATLAB (84). Implementations of RESHARP and MEDI are open source algorithms
(85).

To overcome the relative susceptibility issue, the average susceptibility of region in
the Corticospinal Tract was subtracted. Applying FMRIB’s Non-Linear Image Registration
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Tool (FNIRT) from the FMRIB’s Software Library (FSL), the obtained coordinates could
be mapped to the individual coordinate system (86). The theory behind this operation
is described in Section 2.5.2. A region-growing algorithm was then introduced to centre
1000 voxels around the mapped coordinates, only encompassing white matter. The
region creation was performed by an in-house Python program. In the end, the FAST
algorithm from the FSL library was used for white matter segmentation (9).

3.3.2 QSM Acquisition Siemens 3T

All the data obtained from the 3T scans were transferred to secure servers at HUNT Cloud.
The TGV-QSM algorithm described in section 2.4.8 was implemented to reconstruct
QSM images from the phase and magnitude images obtained from the Siemens 3T
scanner. Before applying the TGV-QSM algorithm, some initial pre-processing was
necessary. First the DICOM images were converted to NIfTI images using software
available from MRIcron (87). This operation was performed as the TGV-QSM algorithm,
and its components from the FSL library do not support DICOM images. FSL ROI from
the FSLutils library (86) was run to extract the brain and the skull from the background.
Subsequently, the BET described in section 2.4.4 was applied to separate the brain from
the skull, creating a brain mask, which later was used to create a field estimation by the
susceptibility sources inside the ROI. The magnitude images were then separated based
on the echo time at acquisition. After this operation had been performed, the phase
images were extracted using FSL ROI, unwrapped and then scaled. Now that the initial
pre-processing was finished, the TGV-QSM algorithm was applied for each echo time,
removing the background field and performing the dipole inversion, in this case 5 times.
The median of the 5 QSM reconstructions was then calculated using FSL maths (86). In
the end, if the determinant of the image was smaller than 0, the left/right orientation
was flipped to present the image with the standard orientation. Finally, the average
susceptibility value in the CSF region was used as reference susceptibility value for the
dataset.

3.3.3 QSM Acquisition 7T

After the 7T MRI sequence was performed, the data was transferred to HUNT Cloud.
The magnitude images were pre-processed using standard Siemens software, but the
phase images were obtained using the ASPIRE method descried in Section 2.4.3. The
data was then processed in the same manner as the Siemens 3T data. Additionally, due
to the setup of the local data system at the Hospital, the susceptibility values in the
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DICOM images are in integer values ranging from 0 to 4095, and not the actual floating
suscpetibility values. This meant that a small conversion had to be performed when
calculating the susceptibility values:

IN I f T I =
IDICOM
10000

� 0.2048 | IN I f T I 2 [�0.2048,0.2047] (3.3.1)

where I is the intensity of the image, i.e. the susceptibility value. If the image has
intensity higher or lower than the extremes, the values are set to the closest extreme
value, i.e. 0.2047 or -0.2048.

3.4 Manual Tracing

The manual delineation of RN, SN and STN for the GE 3T dataset was performed
by a senior researcher (Grégoria Kalpouzos) at Karolinska institutet in Sweden. The
anatomical reference that was used was the Duvernoy’s atlas of the Human brain Stem
and Cerebellum (88). The intensity contrast due to difference in susceptibility was used
to separate tissue of interest and the remaining tissue.

The Siemens 7T dataset was manually segmented by a neurologist (Runa Geir-
mundsdatter Unsgård) at St.Olavs hospital. The manually segmented ROIs were RN,
STN and SN, in addition to the PMC, PSSC and the CSF. The PMC was divided into
three substructures: Omega, Arm and Face. All ROIs are depicted in Figure 3.4.1. The
QSM images were visualised and segmented using the software application ITK-SNAP
(89). Due to the limited amount of neurologists available and the limited period of
this project, the Siemens 3T QSM images were not labelled. The manually labelled
brain structures were then split into individual NIfTI-files using a in-house Python script
before they could be co-registered to their complementary 3T image, as described in
the following section.

3.5 Intra-subject Label Transfer

As only the Siemens 7T QSM images were manually labelled, a workaround was
implemented to obtain segmentations for the Siemens 3T dataset. For the volunteers
which managed to finish both the 3T and 7T scans one could perform a linear image
registration between the 7T and the 3T images of the same subject, to transform the
segmentations from 7T to 3T QSM images, as described in section 2.5.1 and depicted
in Figure 3.5.1 .
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Figure 3.4.1: A figure showing the segmentations of RN (Red),SN (Blue), STN (Green), CSF
(Yellow), (PSSC (Pink) and the PMC with Omega (Blue), Arm (Purple) and Face (Brown)

First the Affine transformation, allowing 12 DoF, transformed the 3T images into
higher resolution, 7T images, was calculated using Correlation Ratio as cost function and
a tri-linear interpolation. The inverse of the transformation matrix was then calculated
and applied to the segmentations, transforming the segmentations into 3T resolution.
The segmentations were now registered their corresponding coordinates in 3T space,
and could then be used on the 3T dataset. As commented in the section above, to avoid
thresholding complications, the segmentations of the different brain structures were
divided into separate files as the different segmentations had different RGB values. The
software FMRIB’s Linear Image Registration Tool (FLIRT) (58)(57)(90) was used to
calculate and apply the transformations and inversions and an in house python was
applied to ensure correct slice registration. In the end, a threshold of 0.9 was applied
to ensure minimal over-labelling (91). For each step of the method a visual inspection
was performed to ensure high quality segmentations of the Siemens 3T images. See
appendix B.1 for python script, installation of FSL and bash commands. This method
worked for 12 of the 15 people who had both performed 3T and 7T images, for the
remaining 3 volunteers, linear image registration was not successful. A visual analysis
uncovered that the co-registration between the 3T image and 7T image had not been
performed properly, in turn ruining the 3T segmentations. Uncovering the source of
this problem is outside of the scope of this thesis, but it is believed that filters used for
removing background field contributions in the QSM algorithm might have been to
aggressive on either the 3T or the 7T scans, removing crucial structural information, in
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Figure 3.5.1: An overview of the entire linear registration operation. From the top: the transfor-
mation from 3T image to 7T image is calculated using 7T as reference. The inverse transform is
then calculated. Second row: the inverse transform is applied to the 7T segmentation, yielding 3T
segmentations. Bottom row: the segmentations are then thresholded and applied to the original
3T image.
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turn making co-registration impossible. The same filters are believed to be the reason
why co-registration of PMC and PSSC did not work either, as these are situated at
the edge of the brain, close to background field, creating distortions, in turn making
co-registration impossible for these brain structures.

3.6 Data Augmentation

As the datasets used for training of the CNNs were sparse, there existed a possibility
that the network would be prone to overfitting. Acquiring more data was not an option
in this case, but one could create more data from the existing datasets. By introducing
sheer-forces, random flips, addition of random noise, contrast and blur, the dataset
substantially increased in volume. Examples of these modifications are shown in Figure
3.6.1.

(a) Original Image (b) Added Rotation (c) Added sheer force (d) Added swirl

(e) Added noise (f) Gamma enhancement (g) Enhanced contrast (h) Blur and contrast

Figure 3.6.1: Figures showing different methods to augment data on the GE 3T dataset. All
image enhancements have been done on subfigure a. Example shown on QSM images obtained
from the GE 3T dataset.
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Conv 3x3
Concatenate
Max pooling 2x2

Up-conv 2x2

Conv 1x1

Figure 3.7.1: The general architecture of a 2D U-Net.

3.7 Network Architecture

3.7.1 U-Net

The choice of a 2D U-Net rather than a three dimensional one, was twofold; firstly,
2D U-Nets have shown itself to obtain comparable results to 3D U-Nets, and adding
another dimension is computationally expensive as the amount of trainable parameters
explodes. As the segmented data was received quite late in this project, we did not have
the time to train multiple 3D networks. A solution to this might have been to crop the
images to e.g. 80x80x80 etc. However, this would remove a lot of valuable information,
especially on the 7T images. Instead, the 3D images were divided an array of 2D images
and trained separately. The predictions were then performed on each individual slice,
then reconstructed on top each other again, yielding fully segmented 3D images.

The general architecture of the 2D U-Net used in this project is shown in Figure
3.7.1. The difference between the U-Nets that have been applied its the amount of
filters used. For less complex brain structures, or small dataset, it is typically normal to
use less filters to avoid creating a too complex model, in turn causing overfitting. For
the RN, SN and the substructures of the PMC, an initial 16 filters were used in the first
layer and 256 filters in the lowest layer. Doubling the amount of filters after each max
pooling operation. For the STN and PSSC, which are more complex, the U-Net had an
initial 32 filters in the first layer and 512 in the lowest layer.

The ReLU activation function has been used in all convolutional layers except for
the output, in which the Sigmoid has been used. The Sigmoid has been introduced
to force the output prediction to take values between 0 and 1. The filters used in the
convolutional layers were of the size 3x3, and padding was set to "same". This ensures
that the image dimensions are kept constant during convolution. The dropout rate in
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all layers were between 0.1 and 0.3, with lower rate in the initial layers to inhibit too
much informaiton loss. The max pooling layers all had a pool size of 2x2, meaning that
the dimension of the image was halved every pooling. The deconvolution layers had
filters of size 3x3 and strides of 2x2. The latter was used to double the size of the image.
The choice of a 3x3 instead of a 5x5 filter was to reduce the trainable parameters in an
already computationally extensive network. The last convolution layer had a filter of
size 1x1 to maintain the dimensions of the output image equal to the input.

The "RMSprop" was chosen as the optimiser due to its robustness. In addition, the
learning rate had to be tuned. Leading to a modest learning rate of 0.001. An in-house
implementation of the weighted Dice coefficient was used as metrics of accuracy and
precision of the predictions. The weighted version of the DS presented in Equation
2.6.5 averages all the DS of the training set in an epoch, preventing large changes
from batch to batch, improving robustness. The binary cross entropy loss function was
implemented (92). The reason behind this choice was twofold; its a binary model,
meaning that it separates between two classes only. In our case it separated between
normal tissue and labelled tissue. Additionally, the output of the neural network is a
prediction map, meaning its entropy compared to the manual tracing could be easily
calculated.

As one downsamples by a factor of two, four times, a drawback of this network is
that one needs image dimension of the training data to be dividable by 24, unless one
adds an overlap-tile strategy for seamless segmentation of arbitrary large images (73).
Without this modification, the initial image dimension is restricted. Both by the factor
of 24 and the memory on the computer, as larger image dimension leads to higher
memory use.

Additionally, a so called "prefetch" function was implemented. The purpose of this
function was to open up for dimensional expansions and data augmentation while
training. Conventionally, before training, the array containing all images is appended
an additional axis to account for the channels in an image, e.g. 1 channel in our case.
This method is easily implemented, but not effective w.r.t. memory use, as one always
has a list with dimension N + 1 loaded into memory. An alternative to this approach is
to create the prefetch function. This function fetches a new batch of images before the
network has finished training on the previous batch, expands the array with a channel,
and sends the batch to the neural network for training, allowing for more efficient
memory usage. Moreover, one can also perform randomised image augmentation on the
fly while training, for a continuously varied dataset. However, despite the advantages
of this, it will slow down training if the image dimensions are too large and the GPU has
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finished training on the batch before new images has been augmented. Therefore, after
some testing, image augmentation on the fly was not implemented during training.

3.8 Training and Evaluation

3.8.1 Training on the GE 3T dataset

25% of the GE 3T dataset was randomly chosen to be a part of the test dataset, while
the remaining 75% was used for training. The RN, SN and STN were trained separately,
each being trained three times with validation splits of 10%, 15% and 20%. After
training was performed, post-processing steps were implemented, such as the nearest
neighbour algorithm where a segmentation was removed if it did not have a neighbour-
ing segmentation in any of its neighbouring lattice sites. This was implemented based
on the fact that it is not natural that the e.g. the RN has a segmentation floating in free
space, separated from the rest of its body. In total 9 CNNs were trained on the GE3T
dataset. The network performance was then evaluated by performing a visual analysis,
calculating the DS, sensitivity, precision and comparing the predicted susceptibility to
the ground truth.

3.8.2 Training on the Siemens 3T and 7T datasets

As the datasets of pure 3T and 7T images were quite small, only containing 12 and
15 images, respectively, we did not have the luxury of dividing the dataset into a
training and test set. A method for solving this problem is using k-fold cross validation.
This method divided the dataset into k amounts of folds, where all except one fold
is used for training and the remaining fold is used to evaluate the model. For both
datasets a "leave-one-out" algorithm was applied. Thus, 11 and 14 images were used
for training, and the remaining image was used as validation, for the 3T and 7T dataset,
respectively. The cross-validation performed on the 7T dataset can be seen in Figure
3.8.1. This is a computationally expensive algorithm, but due to limited amount of data
this considered the best solution. This method is commonly used for small datasets to
avoid overfitting and obtain a better statistical foundation, as one exploits the entire
dataset. The same post-processing steps and evaluation methods used for the GE 3T
dataset was implemented on the Siemens datasets aswell.

The 3T dataset contained segmentations of only RN, SN and STN, while the 7T
dataset also contained segmentaions of the PSSC and the substructures of the PMC,
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Fold 1 Fold 2 Fold 14 Fold 15

Dataset

Fold 1 Fold 2 Fold 14 Fold 15

Fold 1 Fold 2 Fold 14 Fold 15

Fold 1 Fold 2 Fold 14 Fold 15

Fold 1 Fold 2 Fold 14 Fold 15

...

...

...

...

...

Training Validation

Figure 3.8.1: An example of 15-fold (leave-one-out) cross validaiton. Here the entire dataset is
divided into training and test set. The training set is then divided into 15 folds, where 14 out of
15 (grey) is used for training and one is used for validation (blue). After a certain amount of
training, the fold used as validation is changed.

Omega, Arm and Face. As the PMC and PSSC are not particularly magnetic, therefore
not being particularly rich in contrast as seen in Figure 3.8.2, the only interest was to
measure its DS, and analyse whether or not the segmentations were good enough to
be implemented as a tool for the radiologist. In total, 36 CNNs were trained on the 3T
dataset and 105 CNNs were trained on the 7T dataset.

3.8.3 Evaluation Metrics

The segmentation accuracy and precision was evaluated using the DS, precision and
sensitivity described in Section 2.6.1. The susceptibility values obtained by the CNNs
were compared with the ground truth in violin plots. The middle line in these plots
represents the average susceptibility value, while the upper and lower lines represent
the maximum and minimal values. The light blue "clouds" represent the density of
measurements, i.e. a wider cloud represents higher density. A similar comparison
was performed, but now comparing one and one value, by plotting the ground truth
against the predicted values. For perfectly extracted susceptibility values, i.e. a perfect
segmentation, the measurements will lie on the diagonal. If the predicted values are
higher than the ground truth, the measurements will lie above the diagonal, and vica
versa if the predictions are too low. Additionally the Pearson correlation, which measures
the linear correlation between two datasets, Mean Absolute Error (MAE) and Mean
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Figure 3.8.2: A figure showing the PSSC (Pink) and the PMC with Omega (Blue), Arm (Purple)
and Face (Brown) on a 7T QSM image.

Absolute Percentage Error (MAPE) have been included. The latter is MAE divided by the
ground truth, yielding a percentage error, which makes it possible to compare errors,
independent of datasets and ROIs. MAPE* has also been included to compare two
datasets with different ground truth. This is identical to the MAPE, but the instead
of dividing by the ground truth, it has been divided by the average of the two values.
Thus, MAPE* is only introduced to obtain a feeling about the size of the error, and not
to be compared to any other MAPE measurements.
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Chapter 4
Results

The result section is mainly divided into three parts, where the first part will discuss
the accuracy of the segmentations based on both a visual and quantitative analysis.
Segmentation accuracy and precision of networks trained on different data and using
different hyperparameters will be presented and compared. Afterwards, the susceptibil-
ity values obtained using CNNs will be evaluated, comparing how well the predicted
susceptibility values are compared to the ground truth. The last part of this chapter
concerns the comparison of susceptibility values obtained intra-subject on the Siemens
3T and 7T scanners.

4.1 Image Segmentation

This section will present the segmentation accuracy of the CNNs for the different
datasets. For the 3T datasets, the segmenations of the RN, SN and STN will be presented.
Meanwhile, for the 7T dataset, the segmentations performed on the PSSC and the
substructures of the PMC will be presented aswell.

4.1.1 RN, SN and STN Image Segmentation on GE 3T Data

Table 4.1 shows the mean DS with Standard Deviation (SD) obtained for the RN, SN
and STN with validation split of 10%, 15% and 20%, respectively. As we can see from
Table 4.1, the general trend is that the CNNs trained on the RN obtains the highest DS.
The highest DS are obtained for validation splits of 10% and 20%, while showing an
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inferior DS for validation split 15%. The DS for SN is also quite high, but lower than
for the RN. The STN lies consistently about 0.1 points below the SN. For the SN and
STN, the DS do not fluctuate as much as for the RN when the validation split changes.

Table 4.1: DS for RN, SN and STN for the GE 3T dataset for different validation splits. The SD is
included.

DS RN,SN, STN for the GE 3T dataset
Val 10% Val 15% Val 20%

RN 0.92 ± 0.02 0.88 ± 0.04 0.92 ± 0.01
SN 0.88 ± 0.03 0.87 ± 0.03 0.86 ± 0.06
STN 0.79 ± 0.05 0.77 ± 0.03 0.78 ± 0.06

Additionally, the sensitivity and precision for the different segmentations with a
validation split of 10%, 15% and 20% are shown in Table 4.2. In this case we also
observe that the segmentation of RN has obtained the best results, closely followed by
the SN, while the STN is a bit behind. For different validation splits, within the same
ROI, the sensitivity and precision have approximately the same value with only minor
exceptions, such as precision for RN performed with CNN trained with validation split
15%. By referring to Equation 2.6.6.

Table 4.2: Sensitivity and Precision for RN,SN and STN from the GE 3T dataset for different
validation splits. The SD is included.

Sensitivity and Precision for RN, SN and STN for the GE3T dataset
Sensitivity Precision

Val 10% Val 15% Val 20% Val 10% Val 15% Val 20%
RN 0.94 ± 0.04 0.98 ± 0.02 0.93 ± 0.04 0.91 ± 0.05 0.79 ± 0.08 0.90 ± 0.05
SN 0.90 ± 0.08 0.91 ± 0.06 0.89 ± 0.12 0.87 ± 0.04 0.85 ± 0.04 0.86 ± 0.07
STN 0.79 ± 0.09 0.80 ± 0.10 0.79 ± 0.13 0.80 ± 0.07 0.78 ± 0.06 0.73 ± 0.11

Figure 4.1.1 has been introduced as an example of how the manual and automatic
segmentation appear. This example is in the case of the GE3T dataset with a validation
split of 10%. In the coronal plane the automatic segmentation appears precise, only
with a minor under-labelling of the STN, making it look thinner and a bit longer than
the manual segmentation. In the sagittal plane, we see that the segmentation of the
STN looks very similar to the ground truth, but the SN extends all the way to the STN.
Additionally we see some over-labelling of the “tail” of the SN to the right of the picture.
The tail is a bit thicker than its manually segmented counterpart. In the axial plane,
the RN is almost perfectly segmented. The left side of the left part of the SN is to some
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extend over-labelled, but the situation is reversed at the left right side of the right SN.
Additionally, the STN is not labelled at all in this slice, which we can see differs from
the ground truth.

Figure 4.1.1: GE 3T automated (left) and manual segmentations (right) of the RN (Red), SN
(Blue) and STN (Green) with a validation split of 10%. From top to bottom; coronal, sagittal and
axial slice.

4.1.2 RN, SN and STN Image Segmentation on Siemens 3T Data

Table 4.3 shows the average DS, precision and sensitivity for the network. Again, we
see that the segmentation of the RN has obtained the highest DS, followed by SN and
STN. The DS for the RN is lower than most of the RN segmentations performed by

63



4.1. IMAGE SEGMENTATION CHAPTER 4. RESULTS

the CNNs trained on the GE 3T network, but within one SD. This is also true for the
SN. The DS for the STN, on the other hand, is higher than all values obtained by the
GE 3T network, but still within one SD. The sensitivity for the brain structures varies
between approximately 0.50 to 0.70, which is clearly lower than all the values obtained
for the GE 3T segmentations. The precision, on the other hand, is converging towards
1.0. Compared to the GE 3T dataset, this is a major improvement, especially w.r.t. the
segmentation of STN.

Table 4.3: Mean DS, precision, sensitivity and mean susceptibility values of the RN, SN and STN
for the Siemens 3T dataset. The SD is included.

DS Precision Sensitivity
RN 0.90 ± 0.08 0.99 ± 0.001 0.68 ± 0.03
SN 0.84 ± 0.01 0.99 ± 0.002 0.60 ± 0.04
STN 0.80 ± 0.02 0.99 ± 0.01 0.50 ± 0.03

4.1.3 RN, SN and STN Image Segmentation on Siemens 7T Data

The DS, sensitivity, precision for the RN, SN and STN are presented in Table 4.4. As
seen in the case of both the 3T datasets, also here the DS follow the same pattern of
being highest for RN and lowest for the STN. The obtained DS for the RN is the highest,
but still within one SD compared to Siemens 3T and the GE 3T dataset with validation
split 10%. It also has obtained highest DS for the SN, but within one SD compared to
the GE 3T dataset. However, the DS for the STN is now approaching similar DS as for
the SN, which is an improvement of approximately 0.1 compared to the 3T datasets.
The sensitivity and precision follows the pattern of the DS, and has approximately the
same value intra-ROI. Compared to the Siemens dataset, the sensitivity is much higher,
but the precision is a lower.

Table 4.4: Mean DS, precision, sensitivity and mean susceptibility values of the RN, SN and STN
for the 7T dataset. The SD is included

DS Precision Sensitivity
RN 0.94 ± 0.01 0.93 ± 0.02 0.95 ± 0.01
SN 0.90 ± 0.01 0.89 ± 0.02 0.91 ± 0.02
STN 0.89 ± 0.02 0.89 ± 0.03 0.89 ± 0.03
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4.1.4 PMC and PSSC Image Segmentation on Siemens 7T Data

The DS obtained for the PSSC was 0.80 ± 0.03, Arm 0.86 ± 0.02, Face 0.86 ± 0.04
and Omega 0.86 ± 0.02. The 3 sub-fractions of the PMC has a similar average DS,
with Face having the largest SD. The PSSC obtained DS lower than the three, smaller
substructures. An analysis of the obtained magnetic susceptibility can be seen in Figure
A.9 and A.11 which show the error in predicted susceptibility as a function of DS for
PSSC and PMC, respectively. Figure A.10 and A.12 show the ground truth plotted
against the predicted susceptibility values for PSSC and PMC, respectively.

4.2 Extracting Susceptibility Values

The following part of the result section will focus on the performance of the CNNs in
predicting accurate and precise susceptibility values. This part will mostly focus on the
networks ability to extract correct susceptibility values and compare the values to the
ground truth obtained from manual segmentations. The MAPE will then be compared
across scanners and magnetic field strengths.

4.2.1 Susceptibility values: RN, SN and STN GE 3T

Violin plots showing both the predicted and ground truth susceptibility values for the GE
3T dataset are shown in Figure 4.2.1. These are not all the plots, but are representative
for the different validation splits. Please see Figure A.1 for the remaining plots. The
predicted susceptibility values agree quite well for RN with validation split 10% and
20%, while the network trained with validation split 15% is struggling to segment RN
with higher susceptibility values. SN has similar predicted susceptibility values across
all validation splits. However, also in this case, the networks are struggling to correctly
predict susceptibility values with a larger magnitude. In the case of STN, validation split
10% and 15% the extracted susceptibility values agree with the ground truth. However
for validation split 20%, we see that the network extracts susceptibility values which
are too low.

Additionally, the difference between the ground truth and predicted susceptibility
values, ��, was found. For both the RN and SN, there was a correlation between
increasing DS and decreased error. In 5 out of 6 plots this correlation coefficient is quite
high. For the SN with a validation split of 15%, this trend is much weaker than for the
prementioned 5. In the case of STN with validation splits 10% and 15%, we observe
a very weak increase in error when the DS increases. With validation split 20 %, we
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(a) (b) (c)

Figure 4.2.1: Violin plot comparing the average susceptibility of automatically segmented tissue
and manually segmented tissue for RN, SN and STN for the GE 3T dataset.

see again that the trend is decreasing. These plots can be seen in Figure A.2, with a
linear fit and its Pearsson correlation coefficient, p-value and approximated functional
expression.

The ground truth and susceptibility values extracted using CNNs were plotted against
each other. Three plots, representative for the end results are shown in Figure 4.2.2
a,d and g, for the RN, SN and STN, respectively. For the RN, the predictions based
on networks trained with validation split 10% and 20% yield similar results, while
for validation split 15% we see that the MAPE is over twice as high, indicating that
it predicts less accurate susceptibility values. For the SN the behaviour is similar for
the different validation splits, with validation split 10% giving the best results. In the
case of STN, validation split 10% and 15% show the best results, but for validation split
20%, the MAPE is almost doubled. Please see Figure A.3 for plots for each validation
split for all three structures.

4.2.2 Susceptibility values: RN, SN and STN Siemens 3T

The extracted susceptibility values using CNNs compared to the ground truth for RN,
SN and STN for the Siemens 3T dataset are shown in Figure 4.2.3. There are some
clear deviations between the predicted values and the ground truth. Both the RN and
STN are shifted with approximately 0.02 ppm, i.e. its maximal predicted values are too
low. However, their density distributions are similar compared to the ground truth. For
the SN, there is also an offset, but no striking similarities in the density distribution.

Looking at the error in predicted susceptibility values as a function of the DS, the
trend that the error is increasing as the DS improves in the case of RN and STN. In the
case of the SN, the trend is opposite. When the DS increases, the error in predicted
susceptibility is decreasing. For complementary information, see Figure A.4.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2.2: Susceptibility values extracted using the ground truth manual segmentation, plotted
against the predicted susceptibility values extracted from the segmentation performed by the
CNNs. From left to right: GE3T, Siemens 3T and 7T. From top to bottom: RN, SN and STN. The
blue, dashed, line is the diagonal. Pearson Correlation coefficient, MAE and MAPE is presented.
The x and y-axis do not have the same range for the GE 3T dataset and the Siemens datasets.
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(a) (b) (c)

Figure 4.2.3: Violin plot comparing the average susceptibility of automatically segmented tissue
and manually segmented tissue for RN, SN and STN for the Siemens 3T dataset.

The three plots shown in 4.2.2 b,e and h show the susceptibility values extracted
by the CNN, plotted against the ground truth. In all three plots we see substantial
deviations between the predicted values and the ground truth. For the RN, we observe
that the CNN is under-estimating all susceptibility values. For the SN and STN, the
CNNs both under and over-estimates susceptibility, with no particular bias. The MAPE
fluctuates between approximately 25% and 45%, indicating large errors.

4.2.3 Susceptibility values: RN, SN and STN Siemens 7T

Violin plots comparing the susceptibility values of RN, SN and STN obtained by the
automatic and manual segmentations are shown in Figure 4.2.4. For both the RN and
STN we see that the predicted values are similar to the ground truth, with no major
deviations for the RN and STN. However, for the SN, the predicted values have similar
density to the ground truth, but misses to accurately predict both the highest and lowest
susceptibility values.

(a) (b) (c)

Figure 4.2.4: Violin plot comparing the average susceptibility of automatically segmented tissue
and manually segmented tissue for RN, SN and STN for the 7T dataset.

For the error in the predicted susceptibility values, the trend is that the errors
decrease when the DS increases. This is clearly seen for the RN and STN, with a
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stronger correlation coefficient. Meanwhile, the for the SN we see weaker trend. The
plots are not shown here, but can be seen in Figure A.7.

The plots in Figure 4.2.2 c,f and i show the predicted susceptibility values plotted
against the ground truth. The RN and SN yields similar results with approximately
equal MAPE at around 4.5%, while the STN has a MAPE which is almost half that of
RN and SN. In the case of the RN and STN, we see that the network predicts both too
high and too low susceptibility values, with no particular bias. However, the trend is
that for the SN, it overestimates the susceptibility values.

4.2.4 Comparing Susceptibility Values: Siemens 3T and 7T

The manually obtained susceptibility values for the Siemens 3T and 7T dataset were
plotted against each other, as seen in Figure 4.2.5. We see that there are some major
deviations from the diagonal. The RN has the highest deviation between the 3T and
7T values, and the highest correlation coefficient. Meanwhile the SN and STN have
comparable correlation coefficients. In the case of the RN, the 3T scanners yield in the
majority of cases higher susceptibility values than the 7T scanner. This trend is opposite
for the STN. In the case of the SN, the points are approximately distributed equally on
both sides of the diagonal.

(a) (b) (c)

Figure 4.2.5: Manually obtained susceptibility for the Siemens 3T and 7T dataset plotted against
each other for RN, SN and STN. The blue, dashed, line is the diagonal. Pearson Correlation
coefficient, MAE and MAPE* is presented. From left to right: RN, SN and STN
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Chapter 5
Discussion

This chapter will discuss the results presented in the previous chapter. It will follow
the same structure as the results section, but three sections are appended at the end of
this chapter. Section 5.1 and 5.2 will discuss the results tied to RQ1, while RQ2 will be
elaborated on in Section 5.2.4 and RQ3 will be commented on in Section 5.2.5. The
last section will evaluate and propose work which can be performed to improve the
results obtained in this project.

5.1 Image Segmentation

This section will discuss the results presented in section 4.1, and will follow the same
outline.

5.1.1 RN, SN and STN Image Segmentation on GE 3T Data

In Figure 4.1.1 we could see in the axial plane that the STN is not segmented at all.
This might be related to the overlabelling of the SN, as the SN mostly covers the area
which is actually the STN. Furthermore, the automatic segmentation algorithm has not
covered the uppermost patch of the STN, which might reflect on the fact that this CNN
is not 3D based, loosing some spatial information by not including information from
the slices above and below when making a prediction. This will in turn make it more
challenging to segment some smaller areas at the edge of the ROIs, as seen here. This
challenge concerns all the datasets in general, as they are all segmented with 2D CNNs.
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As identified partly from the segmentation of SN in the sagittal and especially in the axial
plane, the segmentation of SN is not perfect. It appears like the CNN has some challenges
when it is required to make a verdict between intensity based image segmentation and
the regularisation of brain structures. An explanation for this ambiguity might lie in the
processing steps of the GE 3T QSM images, as they were non-linearly registered to a
common template, before the ROIs were drawn in. As discussed in section 2.5.2, when
the images are registered to a common template, a regularisation process is initialised.
The non-linear registration compromises between making the images look as similar as
possible, but also making the warps look "natural” and "reasonable" (86). A smoother
warp is more probable than a sharper one. Statistically, the dataset has a majority of
smoother brain structures, which in turn has trained the CNNs to assume smoother
brain structures are more reasonable, in turn prioritising this above intensity. However,
for the right component of the SN, in the axial plane, we can see a tendency of the
opposite, indicating that the earlier arguments may not reflect all situations.

As seen in Table 4.1, the segmentation of the RN has obtained the highest DS,
which is as expected in general for all datasets. The nearest neighbours of RN have
a noticeably different image intensity, and the border between ROI and non-ROI is
clearly identified. Additionally, the form is quite regular, making it easy for the CNN
to learn how to perform an accurate segmentation. One explanation why the RN is
not segmented with a DS closer to 1.0, is due to individual differences in the manual
segmentation, such as where the edge of the RN is defined. This is based on research
that indicates that when an expert segments the volume twice, the expert only achieves
a "self DS" between 0.82 and 0.86 (93). Evidently, there must be individual differences
in the training data which is used as the ground truth. In Figure 4.1.1, we can see that
the RN is manually segmented all the way to the edge some places, but other places
not. Even for a professional, it is in challenging to keep consistent while performing
the same operation multiple times. Due to the low complexity of the RN, the errors are
most likely caused by this effect. This argument is also valid for the segmentation of the
RN in the other datasets. It is interesting to see that with a validation split of 15%, the
DS falls to the same level as for the SN. An explanation for this drastic change might
be due to the choice of training, validation and test sets. As the data is anonymous,
and the GE 3T data includes volunteers from a variety of ages, we do not know which
subjects who are old and young. Let us say the test data has an overweight of older
volunteers, and the validation set also has an overweight of older volunteers, causing
the training set to be left with a bias of younger people, which have a different brain
anatomy, e.g. susceptibility values (82). If the majority of training data is young adults,
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the CNN will struggle with segmenting QSM images of older volunteers. In hindsight,
this could have been solved applying k-fold cross validation. E.g. training on 35 images
and testing on 5 images at the time, and repeating this 7 more times. This would also
have increased the statistical foundation for the analysis. Another likely explanation to
the poor labelling of the SN, which also applies to neural networks in general, is that
the weights are randomly initialised, and if we are unlucky with the initialisation, we
might end up in a large local minimia, which the optimiser are not able help us out
of. As the other networks are segmented with a better DS, this seems like a feasible
explanation.

The STN is by far the hardest for the CNN to label. In addition to it being small,
which means that under or overlabelling will have a stronger impact on the DS, than for
the RN and SN. The border between the SN and STN is quite hard to identify, and varies
from subject to subject. A manual intensity inspection of the volunteers uncovered
that the pixels on the border between the SN and STN, had in some places a intensity
difference as low as under 1%. Thus, the CNN will struggle with pinpointing the actual
border between SN and STN, based solely on image intensity. Furthermore, for a doctor
to decide where the border between SN and STN is based on such small differences,
leads to uncertainties in the training data. The CNNs are then forced to rely on other
features such as morphology and geography of the local brain structures to obtain an
accurate segmentation. An overlabelling of the SN and in turn an underlabelling of
the STN, or vica-versa, will yield large effects in the resulting DS. The same arguments
apply for the Siemens datasets as well.

5.1.2 RN, SN and STN Image Segmentation on Siemens 3T Data

As seen in Table 4.3, the DS of the RN fluctuates vastly compared to the segmentations
of the RN performed on the other datasets. An explanation may be due to fact that the
co-registration of images has not been completely successful, yielding varying quality of
the masks. As the mask were first transformed, then thresholded, one can ask questions
about whether too many or too few voxel have been segmented. As seen in Figure 5.1.1,
we see in the 7T case that there is a gap between the RN and the SN, but not in the 3T
case. This indicates that the 3T segmentations are too coarse to be used as a ground
truth when training a CNN. Furthermore, one can also see that the "arms" pointing out
from the main body of the SN, in the 7T image, is not seen in the 3T case. The fact that
these small details have been removed by the co-registration may not be a problem, as
the lower resolution makes is hard to separate the smaller details on the 3T scanner.
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Figure 5.1.1: An example of segmentation of RN (Red) and SN (Blue) on the Siemens 3T data
(left) and 7T data (right) for corresponding slices on the same volunteer.

On the other hand, in the case of the SN and STN both have small deviations in the
DS, indicating that the segmentations may have been more consistent than for the RN.
The effects of these contributions will become more apparent when the validity of the
co-registration will be further elaborated on in Section 5.2.2 and 5.2.4.

In general, the CNNs trained on Siemens 3T data have obtained a similar DS to
the CNNs trained on the GE 3T dataset. However, this has been performed with a
substantially smaller training dataset. It is therefore natural to discuss the problem of
overfitting. Even though the losses in training did not indicate overfitting, there is a
chance that this is the case, due to the fact that we have a small highly homogeneous
dataset which has achieved good results. Currently we do not know how well the CNNs
trained on this group generalises to a more heterogeneous population. In the case
of both Siemens datasets, it is recommended that older volunteers are recruited to
broaden the dataset. This operation was not performed in this project, as it was deemed
unethical to expose older volunteers to unnecessary risks of Covid-19 infections.

Another interesting observation is that the precision of the segmentations are the
highest among all, while the sensitivity is lowest among all. As a high precision indicates
very few FPs, this may be another indication that the mask transformation has not been
completely successful and labelled to many voxels. If the ground truth has labelled to
many voxels, the CNNs may label more area than the actual ROI, but it will still be
counted as being correctly segmented. This can also be an indication that the DS is
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unnaturally high. Furthermore, the sensitivity is low, indicating a large numuber of
FNs, meaning that the CNNs label too few voxels compared to the ground truth. As this
number is noticeably smaller than for the GE 3T and 7T datasets, this may be another
indicator that the segmenations are covering too much area.

5.1.3 RN, SN and STN Image Segmentation on Siemens 7T Data

Table 4.4 shows that it is quite obvious that 7T segmentations are an improvement from
both the 3T datasets with the highest average DS and lowest deviations, which is as
expected. The most obvious reason for this improvement is that the voxel size has been
reduced by approximately 25% compared to the 3T images. This has the potential to
yield more accurate manual segmentations, as the different brain structures which are
bordering each other are easier to separate, in turn improving training data. This will
potentially create better segmentations. The most clear improvement can be seen in
the case of the SN, in Figure 5.1.1. Earlier, we saw that in the 3T case, the "arms" of the
SN are too small to be contoured due to too low resolution. In the 7T case, the voxel
size is so small that we experience less fusion of signal between SN and non-SN tissue
at the borders.

Additionally, neither the Siemens 3T or 7T data have been registered to a common
template, sustaining all of the inter-subject variety in the dataset. A varied dataset is
preferred in DL as it will improve training and reduce overfitting. We saw in Figure
4.1.1 in that particular case, that the network preferred a smoother shape of the SN,
causing some overlabelling when the warps were not smooth, in turn yielding a poorer
segmentation. However, this is not the case of the non-enhanced 7T dataset. When
the dataset is varied, the networks tend to generalises more, in turn creating better
networks and reducing overfitting. Furthermore, by keeping the sharper warps in e.g.
the SN, this may work as a landmark, making it easier for the CNN to navigate and
separate between brain structures.

However, the improved segmentations may not only be due to the arguments
mentioned in the paragraphs above. An explanation to why the 7T segmentations
are better than the GE 3T segmentations is that the Siemens datasets have a very
homogeneous group of young and healthy volunteers, which may make it easier for
the CNNs to learn the patterns which causes accurate segmentations. In the case of the
Siemens 3T dataset, the 7T obtains better results because we have more 7T images than
3T images, in turn improving the training of the models. Additionally, the 7T images
have an optimised MGRE sequence and shimming. This will improve the quality of
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the obtained signal, and in turn reduce error propagation in the TGV-QSM algorithm.
It is not just the 7T scanner itself that is the only contributing factor to the improved
segmentations, but a part of it, combined with an optimised end-to-end reconstruction
procedure.

5.1.4 PMC and PSSC Image Segmentation on Siemens 7T Data

As we saw in Section 4.1.4, the DS of the PSSC is somewhat lower than the different
substructures of the PMC. A simple explanation for this, is that the PMC is divided into
three smaller substructures, making it easier to segment each structure. Looking at
Figure 3.4.1 and 3.8.2, this does not only simplify the structure, but also shrinks the
range of the susceptibility values of surrounding brain structures, which in turn can
make segmentation easier due less variations. However, by making the brain structures
easier for the CNNs to learn, combined with a sparse dataset, the chance of overfitting is
also increased. On the other hand, the average DS for the structures are not noticeably
high, which is not an indication of overfitting. The reason for this mediocre DS is
twofold. Firstly, the structures are quite complex. Additionally, the PMC and PSSC are
not particularly magnetic, making them low on contrast in QSM images, seen in Figure
3.8.2. This will in turn make it harder for the CNN to train on and segment the structures
compared to the RN, SN and STN, which are richer in contrast. However, obtained
DS are for the substructures of PMC as good, and on the limit to being better than the
intra-rater variability discussed in section 5.1.1. The PSSC, on the other hand, is in the
lower layer. At least in the case of the PMC, the CNNs trained on this cohort have the
potential to be accurate enough to be used as a tool for the radiologist. However, the
DS can be improved by training the CNNs on other MRI sequences which yields better
contrast w.r.t. the PMC and PSSC. Figure 5.1.2 shows the PMC and the PSSC on three
different MRI sequences; QSM, T1 and T2-weighted images. A visual inspection shows
that T1-weighted image c and d show a clear improvement in contrast w.r.t. the PMC
and PSSC in QSM imaging. In the case of the T2-weighted image, there is a decrease
in contrast. If the contrast is increased, making it easier to separate between ROIs
and non-ROIs, this can improve the accuracy of the segmentations. Not to mention,
another advantage of not using QSM images, as one can see from the comparison, the
QSM reconstruction algorithm performs a removal of voxels at the border between the
brain and the skull, where the magnetic field is ambiguous due to large differences
in susceptibility values. This may lead to loss of spatial information, which makes it
harder for the CNNs to learn the pattern of the ROIs.
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(a) QSM (b) QSM with labelling (c) T1 (d) T1 with labelling

(e) T1 (f) T1 with labelling (g) T2 (h) T2 with labelling

Figure 5.1.2: Figures showing difference in contrast of the PMC and PSSC for in 7T images.
Here QSM, two T1-weighted images with different contrast and a T2-weighted image are shown.

5.2 Extracting Susceptibility Values

This section will discuss the results presented in section 4.2 and will follow the same
structure. An additional section is appended to discuss the feasibility of using RN and
SN as bio-markers in PD.

5.2.1 Susceptibility values: RN, SN and STN GE 3T

As we saw in Figure 4.2.1, the general pattern is that for some validation splits the
extreme values of the susceptibility are either under or overestimated. Table 4.2 and
Equation 2.6.6 indicate that the amount of FNs and FPs is of the same size, which can
influence the predicted susceptibility values. In general, for the Siemens datasets as
well, the cases where the highest susceptibility values have not been included, is either
because some central parts of the ROI is not segmented due to FNs, or because area
outside the ROI is segmented due to FPs. As the sensitivity and precision decreases,
we see that the similarity between the predicted and ground truth susceptibility values
decreases.
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For the RN and STN, as seen in Figure 4.2.2, the CNNs tends to both over- and
understimate the susceptibility values. However, the predicted susceptibility values
of the STN at higher concentrations yield very accurate values. This might be due to
either that the error appears smaller as the concentration is relatively high, or due to
the fact that segmentations are more accurate for STN with increased susceptibility
concentrations, due to increased contrast. We see a small tendency to this for the three
highest values for the RN as well. For the SN, the CNN continuously underestimates the
susceptibility value. This is reflected in the relatively low precision of the segementation.
This means that we have quite a large amount of FP, indicating that we segment values
outside the ROI, which has a lower susceptibility value. Thus, it is expected that the
CNN would yield too low susceptibility values.

When the error in predicted susceptibility was plotted against the DS, the trend was
that the error shrunk. Intuitively, this makes sense, as one would expect lower errors in
the predicted susceptibility when the segmentations are more accurate. However, for
STN 10% and 15%, this is not the case. For an increasing DS, the trend is that the error
increases weakly. This may indicate that only the central parts of the STN is labelled.
If the central parts of the STN has a susceptibility value representative to that of the
entire ROI, a low DS might not contribute to an increased error. Furthermore, the SN
and STN have quite similar susceptibility values, meaning that an overlabelling into
SN, does not cause an increase in error. The RN and SN do not have this luxury, as an
overlabelling of the RN will mean labelling tissue with lower susceptibility values. As
the STN is much smaller than the SN, an overlabelling of the SN will most likely not
label the STN, but other tissue with a lower susceptibility value.

5.2.2 Susceptibility values: RN, SN and STN Siemens 3T

It is clearly shown in Figure 4.2.3 that there is a clear offset between the predicted
and ground truth susceptibility values, while the density, for the RN and STN is similar.
Looking at Figure 4.2.2, the Pearson Correlation coefficient is close to 1.0 for all three
ROIs, but the MAPE is high, reaching almost 45 % in the case of the SN. These are very
high values compared to the results obtained by the two other datasets. There may be
a number of reasons for this error, but the most likely cause is the poor quality of the
manual segmentation, which was discussed in section 5.1.2. The author, which has no
medical background, performed a visual quality control of all the masks, and concluded
that the masks were adequate. However, in hindsight this control does not seem to
have been very successful. This becomes clear when looking at Figure 5.2.1, where the
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SD divided by the average susceptibility value of the ROIs have been plotted for the
Siemens datasets. The SD of the average susceptibility of the manually extracted ROIs
are very high compared to the corresponding ROIs from the 7T dataset. This is also
true for the GE 3T dataset, which has not been plotted to keep the figure simple. The
high volatility presents two problems. Firstly, it indicates that area outside the ROIs are
segmented by the masks, as they will contribute to much lower susceptibility values,
thus increasing SD. This will also destroy the concept of the "ground truth", meaning
that the metrics used for the CNNs are useless. Furthermore, the very high SD will
mean that the segmentations performed by the CNN must be more or less perfect to
obtain susceptibility values which are similar to the "ground truth". In other words the
CNNs trained on the 3T should not be used in further research, until they are trained
on manually segmented 3T data. Preferably with a less homogeneous and increased
dataset.

Figure 5.2.1: Plot showing the SD divided by the average susceptibility value for RN, SN and
STN for Siemens 3T and 7T. The lower group are from the 7T data and the upper group is from
the 3T data.

However, if we look away from this major flaw, we can discuss the performance of
the CNNs. Firstly, all the susceptibility values extracted by the CNNs are within the SD
of the of the average susceptibility of the manually segmented values. This indicates
that even with a sparse dataset, there is potential to create quite good segmentations on
a 3T dataset that has not been post-processed like the GE 3T has. This is also reflected
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in the DS. Furthermore, the Pearson correlation coefficients are all in the mid to high
0.90s, indicating a very strong linear correlation. By adjusting for the offset, as done in
Figure 5.2.2, we see that the MAPE is drastically reduced. With the RN being reduced
from 34.4% to 4.8%, SN from 43.3% to 7.0% and STN from 26.9% to 10.4%. With this
offset correction we see that the MAPE for the predicted susceptibility values for the
Siemens 3T RN is quite similar to the predicted values for the Siemens 7T. However,
the error is a bit larger in the case of the SN and STN. We see that the offset reduction
of the STN is not as successful as for the RN and SN. This is due to fact that the MAPE
was initially not as large as for the other ROIs. Furthermore, the correlation is smaller
than for the RN, meaning that a linear offset correction will not have as big impact as
for the RN.

(a) (b) (c)

Figure 5.2.2: Susceptibility values extracted using the ground truth plotted against the offset
corrected predicted susceptibility values for RN, SN and STN on the Siemens 3T dataset. The
blue, dashed, line is the diagonal. Pearson Correlation coefficient, MAE and MAPE is presented.

5.2.3 Susceptibility values: RN, SN and STN 7T

Even though the DS and sensitivity are the highest for the CNNs trained on the 7T dataset,
there are still some deviations between the predicted and ground truth susceptibility
values, as seen in Figure 4.2.2. Especially in the case of the SN. This indicates that the
CNN has not successfully segmented the smaller parts of the SN, which has a lower
susceptibility value than the rest of the SN. This might be due to the small "arms"
which have been included in the segmentation of the SN, and can be seen in Figure
3.4.1 and 5.1.1. They are hard to segment due to their size, but also due to the fact
that their susceptibility value is similar to that of the surrounding tissue, in turn being
low on contrast. As discussed earlier, it is here the 3D CNNs could have excelled by
exploiting increased spatial information. By not segmenting the "arms", this will lead to
an increased average susceptibility value, as their average susceptibility value is smaller
than the main body of the SN. This argument is supported by the fact that the RN and
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STN has similar DS values, but does not over estimate the susceptibility values as much.
Another interesting result, which we saw tendencies of in the 3T datasets, is that the
CNN trained on the STN data yields very accurate and precise susceptibility values,
despite having the lowest accuracy metrics. As mentioned in section 5.2.1, this may be
connected to the fact that an overlabelling of the STN into the SN does not change the
average susceptibility value as the SN has comparable values. Furthermore, as one can
see in Figure 5.2.1,the average relative SD for the STN is the lowest among the three
ROIs. As the volatility of the susceptibility values within the ROI is not that low, FNs
are not contributing that much to increased errors in predicted susceptibility values.

5.2.4 Comparing Susceptibility Values Obtained: Siemens 3T and
7T

It is expected that intra-subject imaging across field strengths would yield only small
deviation in the measured susceptibility values in the ROIs (94). However, as seen in
Figure 4.2.5, the plots do not indicate this. If it had only been an offset, it could be
explained by a unsuccessful co-registration of the CSF in the Siemens 3T data, but the
low correlation coefficient indicate that the reproducibility across scanners is almost non
existing. Again, this is another indicator that the co-registration of the masks between
7T and 3T images were not successful. As the deviations between 3T and 7T are so
large, likely due to poor segmentations of the 3T dataset, the susceptibility comparison
between Siemens 3T and 7T dataset is not relevant anymore, only the obtained accuracy
metrics. The foundation that the 3T dataset is built on is simply not good enough to
conclude whether or not the extraction of susceptibility values is better on the 3T or
7T scanner. However, as most precision metrics for the CNNs trained on the 7T data
are higher, this will most likely lead to more accurate prediction of the susceptibility
values inside the ROIs. One can not conclude, but the results indicate that both the
manual segmentations and CNNs trained on the 7T data are more accurate than that of
the Siemens 3T. Additionally, I would like to emphasize that the reason why a similar
comparison between the GE 3T and the 7T dataset was not performed, is due to the
different processing steps and difference in volunteers of the two datasets.
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5.2.5 Using Susceptibility Values as Bio-Marker for Neurodegener-
ative Diseases

Elevated susceptibility values, especially in the SN and RN are associated with PD
(95)(96). We are investigating whether or not SN and RN can be used as a bio-markers
for PD for only a single MRI scan. Research indicate that the SN experiences the largest
relative increase in susceptibility values, as much as a doubling in the susceptibility
values, meanwhile, for RN the increase is approximately as much as 50% (97). However,
the uncertainty is comparable to the average increase in susceptibility values due to the
large variety in susceptibility between individuals, as seen in Figure 4.2.2. This is also
apparent the GE 3T dataset, which has a large variety of ages, but also in the Siemens
datasets, which are constituent of volunteers mainly in their 20s. The inter-subject
deviations are so large, that for an average person, an increase in susceptibility values
due to PD would be interpreted as being within the interval of what is normal. In
practice, this means that using the RN or SN as bio-markers for diagnosis of PD do not
seem feasible, as elevated susceptibility values for one patient may be what is normal
for another patient. However, for patients with naturally high susceptibility values,
elevated values originating from PD could be detected and interpreted as a sign of PD,
as these values would lie outside of interval of what is normal.

5.3 Further Work

Even though this thesis presents promising results for segmentation and susceptibility
prediction on 3T and 7T QSM images, there are still a number of components which
can be improved to obtain better results. One of the most obvious drawbacks of this
project is that cohort that has been imaged has a relative low average age, meanwhile
diseases such as PD and ALS tend to affect the older population. When the older
population are vaccinated and the current Covid-19 restrictions are lifted, I recommend
starting the imaging of an older cohort. This will reduce the chance of overfitting and
create CNNs which have the ability to generalise to the entire population, not just a
heterogeneous group of volunteers and actually train on a population which is at risk.
A bi-product of this thesis has been that we have started to share QSM data with a
group in Sweden. They are currently working on imaging cohorts in a wide variety of
ages. If they are willing to continue shearing their data with us, this will improve the
dataset and the foundation of this project substantially. As the information obtained
about PD patients is purely based on research performed by others, it would be an
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improvement to the dataset if we could scan patients suffering from PD. Firstly, we
could see for ourselves if there is a noticeable difference susceptibility values of the RN
and STN between healthy and PD patients. Furthermore, it would also teach the CNNs
how to generalise towards PD patietns as well. The last argument explains why ALS
patients should be included in the dataset as well. Additionally, to properly perform
comparison between 3T and 7T QSM segmentation, it is advised that the 3T images are
segmented manually, and not just co-registered from 7T to 3T space, as this was not
successful. Also in the 3T case, it is advised that the dataset is substantially increased.
Furthermore, to improve the quality of the segmentations, more than one radiologist
should perform the segmentations of the ROIs, at least two times each. This will not
just improve segmentation, but also yield a wider statistical foundation when one is
comparing weather or not the 7T segmentation are better than the 3T segmentations.

As the machines on the HUNT Cloud have been set up and labelled imaging data
is already available, new master students now have the ability to initiate training of
neural networks at once. This means that they have the time to train 3D CNNs. The 3D
approach has the potential to improve segmentation quality due to increased spatial
information, and in turn improve susceptibility prediction. In addition, DL is still in its
youth and is developing rapidly, meaning that segmentation methods using CNNs are
improving. CNNs such as Capsule Networks have shown very promising results within
the field of medical image segmentation, and might yield better results than the U-Net
applied in this project (98).

An interesting extension of this project, if enough data is available, that can improve
the quality of QSM data, is to train a CNN to perform the reconstruction process. This
will exchange the dipole inversion step that is prone to error propagation with a CNN.
Recent developments within the field has shown potential, such as the SHARQnet (99)
and the DeepQSM (100), which both exploits the U-Net for the dipole inversion. As a
U-Net already has been implemented, only minor modification would be needed before
training could commence.

Additionally, an improvement to the segmentation pipeline would be to train a
CNN to automatically segment and extract susceptibility values from the CSF. As the
pipeline is already built, it is only a manner of making a few small changes and train
the CNN. By automatically recognising the CSF, the segmentation pipeline can yield
absolute susceptibility values and not relative values, without the need of a doctor to
make segmenations.

In the case of improving segmentations of PMC and PSSC, as they are not partic-
ularly rich in contrast in QSM, I recommend to move the training from QSM images
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to T1-weighed images. As the ROIs would have stronger contrast, the training and
segmentations could be improved.
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The results showed that the CNNs trained on the 7T dataset obtained the highest average
DS, in addition to having the lowest deviations from the average value. For all three
datasets, automatic segmentation of the RN and SN yielded better results than the
intra-rater variability of professionals. In the case of the 7T data, this was true for
STN, PMC and PSSC as well. The segmentation accuracy of PMC and PSSC showed
potential to be used in further ALS research. However, before the CNNs trained on 7T
data are applied, it is recommended that the neural networks are trained on a more
varied dataset, as the generalisation of the networks have not been tested. Further
segmentations of the PMC and PSSC should be performed on T1-weighted images,
which are richer in contrast w.r.t. these brain structures. As the manual segmentations
of the 3T QSM images obtained at St.Olavs were lacking, the CNNs should be retrained
on higher quality manually labelled data.

CNNs trained on the GE 3T dataset and CNNs trained on the 7T dataset obtained the
most accurate susceptibility values. The high accuracy of the GE 3T dataset is likely due
the post-processing steps, where non-linear image registration was applied. Meanwhile,
the Norwegian 3T dataset, expressed low accuracy. The inadequate results seem to
originate from the poor quality of the manual segmentations. Thus, a conclusion could
not be made, but the results give a small indication that data obtained on the Siemens
7T scanner is better than the Siemens 3T dataset. In addition to the 7T CNNs obtaining
better evaluation metrics, this is also based on the argument that CNNs trained on 14 7T
QSM images, obtained nearly as good results as CNNs trained on a regularised dataset
of twice the size. The CNNs trained on the GE 3T dataset showed very good results, but
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they are not directly comparable to the other datasets due to the post-processing steps.
However it proved that regularisation of data is a powerful tool which can be used to
extract highly accurate susceptibility values.

Further analysis showed that the susceptibility values in the SN and RN, have a
high inter-subject variance in the case of all the datasets. Due to large variations in
susceptibility value, an increased value caused by PD, would for the majority of patients
not be interpreted as an abnormality. It is therefore advised that the patients undergo
two QSM scans, at different times, to identify the development in the susceptibility
values of the RN and SN.

Lastly, the intra-subject susceptibility comparison on the Siemens 3T and 7T scanner
indicated that the scanners produce vastly different susceptibility values. However, it is
believed that the error originates not purely from the inter-scanner and intra-subject
differences, but mainly due to poor the segmentation of the 3T dataset, yielding incorrect
susceptibility values.
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A.1 Additional Results

This appendix will present some additional plots that were not included in the result
section.

Figure A.1 shows all the violin plots for the GE3T data.

Figure A.2 shows how the error in measured susceptibility changes as a function of
DS for the GE3T dataset.

Figure A.3 shows the susceptibility values obtained from manual segmentation
plotted against the suscpetibility values obtained by the Convolutional Neural Network
(CNN).

Figure A.4 shows how the error in predicted susceptibility changes as a function of
DS for the Siemens 3T dataset.

Figure A.5 shows how the error in predicted susceptibility values changes as a
function of DS for the 7T dataset for RN, SN and STN.

Figure A.6 shows the violin plot for PSSC.

Figure A.7 shows the error in predicted susceptibility values as a function of DS.

Figure A.8 shows the violin plot for the PMC.

Figure A.9 shows how the error in predicted susceptibility values changes as a
function of DS for the 7T dataset for the PSSC.

Figure A.10 shows how ground truth susceptibility values plotted against the pre-
dicted values for PSSC.

Figure A.11 shows how the error in predicted susceptibility values changes as a
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: Violin plot comparing the average susceptibility of automatically segmented tissue
and manually segmented tissue for RN, SN and STN for the validation split 10%, 15% and 20%.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: Plots showing the error in predicted susceptibility values as as function of measured
DS for RN, SN and STN for the GE 3T dataset. The plots have been fitted with a straight line
approximated using a least squares error algorithm. Pearson Correlation coefficient, p-value and
approximated functional expression is presented. From left to right: validation split: 10 %, 15 %
and 20 %. From top to bottom: RN, SN and STN.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: Susceptibility values extracted using the ground truth manual segmentation plotted
vs the predicted susceptibility values extracted from the segmentation performed by the neural
network for RN, SN and STN for the GE 3T dataset. The blue, dashed, line is the diagonal.Pearson
Correlation coefficient, MAE and MAPE is presented. From left to right: validation split 10 %, 15
% and 20 %. From top to bottom: RN, SN and STN.

(a) (b) (c)

Figure A.4: Plots showing the error in predicted susceptiility value as a function of DS for RN, SN
and STN for the Siemens 3T dataset. The plots have been fitted with a straight line approximated
using a least squares error algorithm. Pearson Correlation coefficient, p-value and approximated
functional expression is presented. Plotsfrom left to right: RN, SN and STN
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(a) (b) (c)

Figure A.5: Susceptibility values extracted using the ground truth manual segmentation plotted
vs the predicted susceptibility values extracted from the segmentation performed by the neural
network for RN, SN and STN for the 7T dataset. The blue, dashed, line is the diagonal.Pearson
Correlation coefficient, MAE and MAPE is presented. From left to right: RN, SN and STN.

Figure A.6: Violin plot comparing the average susceptibility of automatically segmented tissue
and manually segmented tissue for the PSSC for the 7T dataset.

(a) (b) (c)

Figure A.7: Plots showing the error in predicted susceptiility value as a function of DS for RN,
SN and STN for the 7T dataset. The plots have been fitted with a straight line approximated
using a least squares error algorithm. Pearson Correlation coefficient, p-value and approximated
functional expression is presented. Plots from left to right: RN, SN and STN.
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(a) (b) (c)

Figure A.8: Violin plots comparing the average susceptibility of automatically segmented tissue
and manually segmented tissue for the substructures of the PMC: Omega, Arm and Face for the
7T dataset

Figure A.9: Plot showing the error in predicted susceptibility value as a function of DS for the
PSSC for the 7T dataset. The plot has been fitted with a straight line approximated using a least
squares error algorithm. Pearson Correlation coefficient, p-value and approximated functional
expression is presented.

Figure A.10: Susceptibility values extracted using the ground truth manual segmentation plotted
vs the predicted susceptibility values extracted from the segmentation performed by the neural
network for the PSSC for the 7T dataset. The blue, dashed, line is the diagonal.Pearson Correlation
coefficient, MAE and MAPE is presented.
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(a) (b) (c)

Figure A.11: Plots showing the error in predicted susceptiility value as a function of DS for the
substructures of the PMC; Omega, Arm and Face for the 7T dataset. The plots have been fitted
with a straight line approximated using a least squares error algorithm. Pearson Correlation
coefficient, p-value and approximated functional expression is presented. Plotsfrom left to right:
Omega, Arm and Face.

(a) (b) (c)

Figure A.12: Susceptibility values extracted using the ground truth manual segmentation plotted
vs the predicted susceptibility values extracted from the segmentation performed by the neural
network for Omega, Face and Arm for the 7T dataset. The blue, dashed, line is the diagonal.
Pearson Correlation coefficient, MAE and MAPE is presented. From left to right: Omega, Arm
and Face

function of DS for the 7T dataset for the PSSC.
Figure A.12 shows how ground truth susceptibility values plotted against the pre-

dicted values for PMC.
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B.1 HUNT Cloud Documentation

This subsection covers the practical aspect of using HUNT Cloud. 1 - 9 covers the
basic setup, 10 and 11 covers QSM reconstruction, 12 covers tensorflow and GPU
implementation and 13 covers general tips when using HUNT Cloud.

1) There are 4 initial steps before you can start using HUNT Cloud. They involve
contacting you lab leader so you can get permission for the HUNT Cloud group
to create a user for you. They are very well documented on their homepage
(https://docs.hdc.ntnu.no/getting-started/)

2) Working in your lab. Now that you are set up on the machines with Ubuntu 18.04,
you need to perform some installations to exploit the full capacity of HUNT Cloud.
Except for Python, which is already installed, the machines are empty.

3) How to move inside the lab:

(a) ssh <username>@<your-lab-IP> -XY # -XY to activate Graphics User Inter-
face

4) ssh to "home". This is a personal machine type, only available for you. You can
Download packages and programs, but without root access. As we are encouraged
to share our data and results this machine only have 100GB of storage. Therefore,
we should perform our calculations on the Iaas1, GPU and blue machines.
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(a) ssh home -XY

5) ssh to the machine "iaas1". If you need root access, you can ask for permission
from your lab leader to access the iaas machine. Having root access, you can
download all the programs and packages as you wish

(a) ssh ubuntu@mrphys-iaas1 -XY

6) To exit a machine (will take you back to the machine you ssh’ed from):

(a) exit

7) Access the GPU machine. Currently, the CPU has 16 GB of memory, making it
possible to perform extensive computations. This machine type gives you the
possibility to accelerate your work, in addition to the root access. In particular,
the GPU drastically decreases DL training time and drastically speeds up some of
the FSL applications

(a) ssh ubuntu@mrphys-gpu1 -XY

8) Installing GUI. To access graphical tools, you need the software X2GO.

(a) Brew install —cash quartz # (MAC)
Brew install —cask x2goclient # (MAC)

(b) Follow steps here: https://docs.hdc.ntnu.no/working-in-your-lab/technical-tools/
x2go/#set-up-your-local-machine

9) Installing the necessary packages. As an example, this step will be described on
the gpu1 machine, but the procedure is identical on iaas1 and home. Remember
that you do not have root access on home machines, which means that you might
need to do some alterations. . . :

(a) Installing Rsync (https://linux.die.net/man/1/rsync). An effective way of
transferring data between machines, both from your own machine to HUNT
Cloud and between machines in HUNT Cloud. If some files already exists
on the receiving machine, the files existing files will not be updated

i. Sudo apt install rsync (UBUNTU)
Brew install rsync (MAC)
rsync directory/on/Mac/filename <username>@<your-lab-IP>:/̃ #
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Example use from MAC to HC
rsync directory/on/HC/filename ubuntu@mrphys-gpu1:/̃ # Example
transfer between home and gpu1

(b) Installing 7z. Medical imaging data often tends to become quite large. It is
therefore recommended that you zip large files before transfer

i. sudo apt-get install p7zip-full # (UBUNTU)

ii. brew install p7zip # (MAC)

(c) Installing Conda. It is very convenient to install a Conda environment if you
do not want to struggle with installation paths etc.

i. wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_
64.sh # Downloads Conda
bash Miniconda3-latest-Linux-x86_64.sh # Installs Conda

(d) Jupyter Lab. To get a better Graphics user interface (GUI) when program-
ming in your lab, you can install Jupyter.

i. conda install -c conda-forge jupyterlab
jupyter notebook # In X2GO

(e) Spyder

i. conda install spyder
spyder # Open in X2GO

(f) MATLAB

i. Download Matlab to your own PC (https://software.ntnu.no/)
rsync directory/MATLAB username@user-name
rsync MATLAB mrphys-gpu1:/̃ sudo apt install unzip libnss3 #(install
dependencies)
unzip <matlabfile.zip> chmod -R 777 <matlab-folder> # make sure it
is executable
# Activate license
Matlab # X2GO

(g) PyCharm

i. sudo apt get update
sudo apt install snaps
sudo snap install pycharm-community –classic
/snap/bin/pycharm-community #(Running in x2go)
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(h) MRIcron for viewing nifti images

i. sudo apt-get install mricron

10) Converting from DICOM to Nifti. When working with medical imaging it is very
useful to convert the images to Nifti.

(a) rsync path/to/MRimages ubuntu@mrphys-gpu1:/̃
rsync gen_nii.sh ubuntu@mrphys-gpu1:/̃
rsync extract_prot_from_dicom ubuntu@mrphys-gpu1:/̃
rsync xzdirauto.sh ubuntu@mrphys-gpu1:/̃
ssh ubuntu@mrphys-gpu1 -XY
chmod 744 * # make sure it is excecutable
mkdir dicom
mv *005* dicom # These are T2* magnitiude images
mv *006* dicom # These are phase images
gen_nii.sh dicom # creates nifti files of phase and magnitude + protocol.
Also the original dicom file is zipped

11) QSM reconstruction using TGV-QSM algorithm (Langkammer et al. 2015). Now
that you have nifti images you can install TGVQSM package to reconstruct QSM
from phase and magnitude images. As you need Python 2.7 I recommend creating
a new environment in Conda where you can install Python2.7, as you will most
likely use python3 for other task. The manual below is a small modification from
https://github.com/CAIsr/qsm#using-tgvqsm-in-windows-subsystem-for-linux-wsl-10

(a) conda create -n QSM python ==2.7 # creates a separate environment with
Python 2.7. The "base" environment will not be affected
conda activate QSM # Activating your environment with Pyhton 2.7
conda install numpy #installs numpy in this environment
conda install pyparsing
# (make sure pip is not your system pip, but the one in miniconda: which
pip)
pip install scipy==0.17.1 nibabel==2.1.0 Cython==0.19.2
wget http://www.neuroimaging.at/media/qsm/TGVQSM-plus.zip #Down-
loads scripts
unzip TGVQSM-plus.zip
cd *TGVQSM-master-*
python setup.py install # installs TGVQSM
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cd test_data
tgv_qsm -p epi3d_test_phase.nii.gz -m epi3d_test_mask.nii.gz -f 2.89 -t 0.027
-o epi3d_test_QSM #testing on test images. Takes approx 2 minutes on our
machine
cd nifti # go to the nifti directory with phase and magnitude 3t_qsm_by_tgv_qsm.sh
#Do this in X2GO - you will be viewing images
# Choose one of the protocols (does not matter which) -> press "i" # Choose
one magnitude image -> press "m" # Choose one phase image -> press "p"
# Type "yes" when you are asked

12) Run DL on ubuntu@mrphys-gpu1. GPU will drastically decrease training time
as you exploit the parallellisation a GPU offer. However, to exploit this you must
first make sure that you have the required drivers and libraries to exploit the GPU
for that specific Tensorflow GPU version. Tensorflow-GPU 2.0.0. was used in this
project. An easy and organised method for installing all the packages, without
interfering with other packages and libraries is to create a new environment that
you activate each time you do DL. Driver version: 460.32.03, CUDA version 11.2

(a) ssh ubuntu@mrphys-gpu1 -XY
conda create -n DL python=3.7 #Change the name "DL" to whatever you
want
conda activate DL conda install tensorflow-gpu=2.0.0 #Not necessarily the
smartest thing to install the newest tf, as this requires newer drivers
# Add NVIDIA package repositories (from https://www.tensorflow.org/
install/gpu):

i. wget https://developer.download.nvidia.com/compute/cuda/repos/
ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/ cuda-repository-
pin-600
sudo apt-key adv –fetch-keys https://developer.download.nvidia.com/
compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/
compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/
repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_
1.0.0-1_amd64.deb
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sudo apt install
./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb sudo
apt-get update
wget https://developer.download.nvidia.com/compute/machine-learning/
repos/ubuntu1804/x86_64/libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
sudo apt install ./libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
sudo apt-get update
sudo apt-get install –no-install-recommends cuda-11-0 libcudnn8=8.0.4.30-
1+cuda11.0| libcudnn8-dev=8.0.4.30-1+cuda11.0
sudo reboot # migth take a couple of minutes nvidia-smi # run man-
agement interface to verify all things are working
sudo apt-get install -y –no-install-recommends
libnvinfer7=7.1.3-1+cuda11.0
libnvinfer-dev=7.1.3-1+cuda11.2
libnvinfer-plugin7=7.1.3-1+cuda11.2

(b) Install necessary packages for DL. In the Conda DL environment, you most
likely will need packages such as numpy etc. This is easily installed with
Conda

i. conda activate DL
conda install skimage
conda install scikit-image
conda install scikit-learn
conda install numpy
conda install scipy
conda install glob
conda install opencv
conda install pillow
conda install tqdm

13) Install FSL through their webpage: https://web.mit.edu/fsl_v5.0.10/fsl/doc/
wiki/FslInstallation(2f)Linux.html#Debian.2FUbuntu_users. The following com-
mands will run the operation described in Figure 3.5.1.

(a) flirt -in /home/ubuntu/invol.nii.gz -ref /home/ubuntu/refvol_7T.nii.gz -out
/home/ubuntu/outvol3Tto7T.nii.gz -omat outvol3Tto7TtranaformMatrixInverse.mat
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-dof 12 #Transforms input (3T) image to reference (7T) space and saves
nifti an transformation matrix
convert_xfm -omat outvol3Tto7TtranaformMatrix.mat -inverse
outvol3Tto7TtranaformMatrix_inverse.mat #Find the inverse transforma-
tion

(b) flirt -in 7Tsegmentations.nii.gz -ref
/home/ubuntu/invol.nii.gz -out /home/ubuntu/3Tsegmentations.nii.gz -
init outvol3Tto7TtranaformMatrixInverse.mat -applyxfm #Transforms input
(7T segmentations) to output (3T segmentations) using the inverse transfor-
mation calculated above

14) General tips when working in your lab,

(a) sudo apt-get install nohup
touch output-file.txt #Creates .txt file
nohup python file.py> output-file.txt # Runs script in background and saves
output (verbose) to .txt file

(b) tail -f output-file.txt # displays the output in real time

(c) vim pyhonFile.py # quick way to do changes to scripts (or text documents)

(d) conda info –envs # list of installed conda environments

(e) history # list of last commands performed in terminal

(f) ls -rtl # list read and write permissions of files
chmod 744 filename.py # Approve read and write permission of file. Usually
the case if script is not running properly
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This chapter will present the most central parts of the code structures that were imple-
mented in this thesis.

C.1 Pre-processing of data

This section presents the pre-processing of data. Only the code for the 7T images is
shown, but it is similar to the 3T pre-processing.

X_TRAIN = []
Y_TRAIN = []
#From file paths
for MR,RN in zip(MR_7T_TRAIN,RN_7T_TRAIN):

#Open Nifti Images
img = read_nifti(MR)
mask = read_nifti(RN)
img = normalize(img)
#Crop to avoid some unecessary background
new_img,new_mask = crop7T(img,mask)

#Add unaltered brain image to list#
add_slice(new_img,X_TRAIN)
add_slice(new_mask,Y_TRAIN)
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#Rotation#
for x in range(0,1):

new_img1,new_mask1 = random_rotate(new_img,new_mask)
add_slice(new_img1,X_TRAIN)
add_slice(new_mask1,Y_TRAIN)

#Flip up down
img_updown = np.flipud(new_img)
mask_updown = np.flipud(new_mask)
add_slice(img_updown,X_TRAIN)
add_slice(mask_updown,Y_TRAIN)

#Noise#
for x in range(0,1):

new_img1 = add_random_noise(new_img)
add_slice(new_img1,X_TRAIN)
add_slice(new_mask,Y_TRAIN)

#Sheer#
for x in range(0,1):

new_img1,new_mask1 = sheer_forces(new_img,new_mask)
add_slice(new_img1,X_TRAIN)
add_slice(new_mask1,Y_TRAIN)

#Elastic transformation (not used)
#new_img1,new_mask1 = elast

#Blur
for x in range(0,1):

new_img1 = image_blur(new_img)
add_slice(new_img1,X_TRAIN)
add_slice(new_mask,Y_TRAIN)

#Contrast
for x in range(0,1):

new_img1 = improve_contrast(new_img)
add_slice(new_img1,X_TRAIN)
add_slice(new_mask,Y_TRAIN)
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#Create numpy array (for tf)
X_TRAIN = np.asarray(X_TRAIN, dtype = np.float32)
Y_TRAIN = np.asarray(Y_TRAIN, dtype = np.float32)

#Delete unnecessary data to free memory
del new_img
del new_mask
del new_img1
del new_mask1
gc.collect()

############################################
#Functions for expand dims (for greyscale)
def train_preprocessing(volume,label):

volume = tf.expand_dims(volume, axis=2)
label = tf.expand_dims(label,axis=2)
return volume, label

def validation_preprocessing(volume,label):
volume = tf.expand_dims(volume, axis=2)
label = tf.expand_dims(label, axis=2)
return volume, label

C.2 U-Net

This section presents a generic version of the U-Net which was implemented. Changes
between the datasets and ROIs occur.

###############################################################
### Different metrics ###
# Dice
from tensorflow.keras import backend as K
def dice_coeff(y_true, y_pred, smooth=1.):

y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
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return (2. * intersection + smooth) /
(K.sum(y_true_f) + K.sum(y_pred_f) + smooth)

def dice_coeff_loss(y_true, y_pred):
return 1-dice_coeff(y_true, y_pred)

def CE_DL_loss(y_true, y_pred):
def dice_loss(y_true, y_pred):

y_pred = tf.math.sigmoid(y_pred)
numerator = 2 * tf.reduce_sum(y_true * y_pred)
denominator = tf.reduce_sum(y_true + y_pred)

return 1 - numerator / denominator

y_true = tf.cast(y_true, tf.float32)
o = tf.nn.sigmoid_cross_entropy_with_logits(y_true, y_pred)
+ dice_loss(y_true, y_pred)
return tf.reduce_mean(o)

####################################################################
#U-NET
import tensorflow as tf
from tensorflow.keras import metrics
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import models
from tensorflow.keras import optimizers
from tensorflow.keras import callbacks
from tensorflow.keras import metrics
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger,
TensorBoard

def U_NET(filter1,x,y,channels):
inputs = keras.Input(shape=(x,y,channels))

conv1 = layers.Conv2D(filter1, (3, 3), activation='relu',
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padding='same')(inputs)
conv1 = layers.BatchNormalization()(conv1)
conv1 = layers.Dropout(0.1)(conv1)
conv1 = layers.Conv2D(filter1, (3, 3), activation='relu',
padding='same')(conv1)
conv1 = layers.BatchNormalization()(conv1)
pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1)
pool1 = layers.Dropout(0.10)(pool1)

#filter2 = 32
conv2 = layers.Conv2D(2*filter1, (3, 3), activation='relu',
padding='same')(pool1)
conv2 = layers.BatchNormalization()(conv2)
conv2 = layers.Dropout(0.1)(conv2)
conv2 = layers.Conv2D(2*filter1, (3, 3), activation='relu',
padding='same')(conv2)
conv2 = layers.BatchNormalization()(conv2)
pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2)
pool2 = layers.Dropout(0.10)(pool2)

#filter3 = 64
conv3 = layers.Conv2D(2*2*filter1, (3, 3), activation='relu',
padding='same')(pool2)
conv3 = layers.BatchNormalization()(conv3)
conv3 = layers.Dropout(0.2)(conv3)
conv3 = layers.Conv2D(2*2*filter1, (3,3), activation='relu',
padding='same')(conv3)
conv3 = layers.BatchNormalization()(conv3)
pool3 = layers.MaxPooling2D(pool_size=(2, 2))(conv3)
pool3 = layers.Dropout(0.2)(pool3)

#filter4 = 128
conv4 = layers.Conv2D(2*2*2*filter1,(3, 3), activation='relu',
padding='same')(pool3)
conv4 = layers.BatchNormalization()(conv4)
pool4 = layers.Dropout(0.2)(conv4)
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conv4 = layers.Conv2D(2*2*2*filter1, (3, 3), activation='relu',
padding='same')(conv4)
conv4 = layers.BatchNormalization()(conv4)
conv4 = layers.Dropout(0.3)(conv4)
pool4 = layers.MaxPooling2D(pool_size=(2, 2))(conv4)
pool4 = layers.Dropout(0.20)(pool4)

#filter5 = 256
conv5 = layers.Conv2D(2*2*2*2*filter1, (3, 3), activation='relu',
padding='same')(pool4)
conv5 = layers.BatchNormalization()(conv5)
conv5 = layers.Dropout(0.3)(conv5)
conv5 = layers.Conv2D(2*2*2*2*filter1, (3, 3), activation='relu',
padding='same')(conv5)
conv4 = layers.BatchNormalization()(conv4)
conv5 = layers.Dropout(0.2)(conv5)

#########################################
#EXPANSIVE PATH
#########################################
#filter6 = 128

up6 = layers.Conv2DTranspose(2*2*2*filter1, (3, 3),
activation="relu",strides = (2,2), padding="same")(conv5)
up6 = layers.BatchNormalization()(up6)
up6 = layers.concatenate([up6,conv4])
conv6 = layers.Conv2D(2*2*2*filter1, (3, 3), activation='relu',
padding='same')(up6)
conv6 = layers.BatchNormalization()(conv6)
conv6 = layers.Dropout(0.2)(conv6)
conv6 = layers.Conv2D(2*2*2*filter1, (3, 3), activation='relu',
padding='same')(conv6)
conv6 = layers.BatchNormalization()(conv6)

#filter7 = 64
up7 = layers.Conv2DTranspose(2*2*filter1, (3, 3),
activation="relu",strides = (2,2), padding="same")(conv6)
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up7 = layers.BatchNormalization()(up7)
up7 = layers.concatenate([up7,conv3])
conv7 = layers.Conv2D(2*2*filter1, (3, 3), activation='relu',
padding='same')(up7)
conv7 = layers.BatchNormalization()(conv7)
conv7 = layers.Dropout(0.2)(conv7)
conv7 = layers.Conv2D(2*2*filter1, (3, 3), activation='relu',
padding='same')(conv7)
conv7 = layers.BatchNormalization()(conv7)

#filter8 = 32
up8 = layers.Conv2DTranspose(2*filter1, (3, 3),
activation="relu",strides = (2,2), padding="same")(conv7)
up8 = layers.BatchNormalization()(up8)
up8 = layers.concatenate([up8,conv2])
conv8 = layers.Conv2D(2*filter1, (3, 3), activation='relu',
padding='same')(up8)
conv8 = layers.BatchNormalization()(conv8)
conv8 = layers.Dropout(0.1)(conv8)
conv8 = layers.Conv2D(2*filter1, (3, 3), activation='relu',
padding='same')(conv8)
conv8 = layers.BatchNormalization()(conv8)

#filter9 = 16
up9 = layers.Conv2DTranspose(filter1, (3, 3),
activation="relu",strides = (2,2), padding="same")(conv8)
up9 = layers.BatchNormalization()(up9)
up9 = layers.concatenate([up9,conv1], axis=3)
up9 = layers.Dropout(0.2)(up9)
conv9 = layers.Conv2D(filter1, (3, 3), activation='relu',
padding='same')(up9)
conv9 = layers.BatchNormalization()(conv9)
conv9 = layers.Conv2D(filter1, (3, 3), activation='relu',
padding='same')(conv9)
conv9 = layers.BatchNormalization()(conv9)
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outputs = layers.Conv2D(1, ( 1, 1), activation='sigmoid')(conv9)

model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
return model
#model.summary(line_length=120)
#Resetting model weigths
#model.save_weights('reset.h5')
#model.load_weights('reset.h5')

C.3 Training

This section presents the code that was used to train on the 7T dataset. The code has
similarities to the code used for training of the 3T CNNs.

model = U_NET(16,176,224,1)
model.compile(optimizer="rmsprop", loss="binary_crossentropy",
metrics=[dice_coeff])
#model.summary(line_length=120)
#Retting model weigths
model.save_weights('reset.h5')
#################################################
factor = int(X_TRAIN.shape[0]/(len(MR_7T_TRAIN*150)))
for x in range(0,len(MR_7T_TRAIN)):

print("-----Training for for fold ", x)
model.load_weights('reset.h5')
print("loop: ",x)
pic_ = int(x * factor*150)
#pic = int((x+1)*factor)
#pic = int((x+1)*factor + 150)
pic = pic_ + 150
#plt.imshow(X_TRAIN[pic_:pic,:,69])
#plt.show()

x_val = X_TRAIN[pic_:pic]
print("xval ",x_val.shape)
y_val = Y_TRAIN[pic_:pic]
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print("yval ",y_val.shape)
x_train = np.delete(X_TRAIN,slice(pic_,pic),axis=0)
print("xtrain ",x_train.shape)
y_train = np.delete(Y_TRAIN,slice(pic_,pic),axis=0)
print("y_train ",y_train.shape)

#Some of the data loaders code is borrowed from Keras
# Define data loaders.
train_loader = tf.data.Dataset.
from_tensor_slices((x_train, y_train))
validation_loader = tf.data.Dataset.
from_tensor_slices((x_val, y_val))
print("train dataset")
batch_size = 30
# Augment the on the fly during training.
train_dataset = (

train_loader.shuffle(len(x_train))
.map(train_preprocessing)
.batch(batch_size)
.prefetch(30)
)

print("Validation dataset")
# Only rescale.
validation_dataset = (

validation_loader.shuffle(len(x_val))
.map(validation_preprocessing)
.batch(batch_size)
.prefetch(30)
)

#### Training #####
import os
output_directory = "/home/ubuntu/eivind/weights/7TFACE/2DCV/"
# Train the model, doing validation at the end of each epoch
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#log_dir = "/home/ubuntu/eivind/weights/7TRN/2DCV/" +
datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
#tensorboard_callback =
tf.keras.callbacks.TensorBoard(log_dir=log_dir,
histogram_freq=1)
mcp_save = ModelCheckpoint(os.path.join(output_directory,
"model_best"+
str(x)+".h5"), save_best_only=True)

epochs = 35
model.fit(train_dataset,validation_data=validation_dataset,
epochs=epochs,shuffle=True,verbose=2,
callbacks=[mcp_save]) #
callbacks=[mcp_save,tensorboard_callback,checkpoint]

C.4 Obtaining results and post-processing of the results

vekter = sorted(glob("/home/ubuntu/eivind/weights/7TRN/2DCV/*.h5"))

dice_score = []
suscM = []
suscA = []
sensitivity = []
precision = []
for i in range(0,len(vekter)):

print("----------new brain----------")
print("Round ", i)
print(vekter[i])
height_ = 150*i
height = 150 * (i+1)
model = U_NET(16,176,224,1) #16 for RN,SN, 32 for STN
model.compile(optimizer="rmsprop", loss="binary_crossentropy",
metrics=[dice_coeff])
model.load_weights(vekter[i])
X_TEST__ = X_TEST[height_:height,:,:,:]
preds_test = model.predict(X_TEST__, batch_size = 1, verbose = 2)
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#suscM = []
#suscA = []
#dice_score = []
preds_test_t = (preds_test > 0.5).astype(np.float32)
preds_test_t = preds_test_t[:,:,:,0]
#plt.subplot(2,2,1)
#plt.hist(preds_test_t[:,:,:],bins=20)
#plt.subplot(2,2,2)
#plt.hist(Y_TEST[:,:,:,O])
#plt.show()

#preds_test_t_SN = (preds_test_SN > 0.5).astype(np.float32)
#preds_test_t_SN = preds_test_t_SN[height_:height,:,:,0]

#preds_test_t_RN = (preds_test_RN > 0.5).astype(np.float32)
#preds_test_t_RN = preds_test_t_RN[height_:height,:,:,0]

Y_TEST_ = Y_TEST[height_:height,:,:,0]
X_TEST_ = X_TEST[height_:height,:,:,0]
X_TEST_unormalized_ = X_TEST_unormalized[height_:height,:,:]
dice = dice2D(Y_TEST_,preds_test_t)
dice_score.append(dice)
#sensitivity.append(sensitivity_)
#precision.append(precision_)
#susceptibility

# Susceptibility wrt CSF has been accounted for
manual,preds = susceptibility(Y_TEST_,preds_test_t,
X_TEST_unormalized_)

manual_average = (np.average(manual))
manual_average -= (average_values_csf[i])

preds_average = (np.average(preds))
preds_average -= ((average_values_csf[i]))
suscM.append(manual_average)
suscA.append(preds_average)
print("Susceptibility")
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print("manual")
#print("max ", max(manual))
#print("min ", min(manual))
print("preds")
#print("max ", max(preds))
#print("min ", min(preds))
print("average")
print("average true ", np.average(manual))
print("average preds ", np.average(preds))

"""
# for saving numpy arrays as nifti
if x == 1:

new_preds = nib.Nifti1Image(array,affine=np.eye(4,4))
nib.save(new_preds,"3TSN_array.nii.gz")

new_preds = nib.Nifti1Image(preds_test_t,affine=np.eye(4,4))
nib.save(new_preds,"3TSN_preds.nii.gz")

new_preds = nib.Nifti1Image(Y_TEST_,affine=np.eye(4,4))
nib.save(new_preds,"3TSN_manual.nii.gz")

new_preds = nib.Nifti1Image(X_TEST_,affine=np.eye(4,4))
nib.save(new_preds,"3TSN_MR.nii.gz")

new_preds = nib.Nifti1Image(True_pos,affine=np.eye(4,4))
nib.save(new_preds,"3TSTN_True_pos.nii.gz")
new_manual = nib.Nifti1Image(False_neg,affine=np.eye(4,4))
nib.save(new_manual, "3TSTN_False_neg.nii.gz")
new_manual = nib.Nifti1Image(False_pos,affine=np.eye(4,4))
nib.save(new_manual, "3TSTN_False_pos.nii.gz")
new_image = nib.Nifti1Image(X_TEST_,affine=np.eye(4,4))
nib.save(new_image,"3TMR.nii.gz")

"""
print("---------Summary---------")
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print("dicescore= ", dice_score)
print("diceaverage= ", np.average(dice_score))
print("suscM= ", suscM)
print("averageM= ", np.average(suscM))
print("sucsA= ",suscA)
print("averageA= ", np.average(suscA))
print("sensitivity= ", sensitivity)
print("precision= ", precision)

C.5 Helper functions

import nibabel as nib
import numpy as np
import sklearn
import scipy

def read_nifti(file):
img = (nib.load(file)).get_data()
return img

def padding(file,size1,size2,size3,old_size):
ref_pixel_val = file[0,0,0]
new_img = np.zeros([size1,size2,size3]) #256,256,256
new_img[:,:,0:old_size] += file[:,:,0:old_size]
new_img[:,:,old_size:size3] += ref_pixel_val
return new_img

def plot_images(file_,slice_):
plt.imshow(file_[:,:,slice_],cmap="gray")
plt.show()

def crop(image,label):
#resized_image = image.crop((16,32,400,300))
resized_image = image[16:240,16:240,15:159]
resized_label = label[16:240,16:240,15:159]
return resized_image,resized_label
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def crop7T(image,label):
#resized_image = image.crop((16,32,400,300))
resized_image = image[30:206,32:256,45:195]
resized_label = label[30:206,32:256,45:195]
return resized_image,resized_label

def crop7T3D(image,label):
resized_image = image[30:206,32:256,35:185]
resized_label = label[30:206,32:256,35:185]
return resized_image,resized_label

def crop_siemens3T(image,label):
resized_image = image[14:174,32:208,:]
resized_label = label[14:174,32:208,:]
return resized_image,resized_label

def crop_CSF3T(image):
resized_image = image[14:174,32:208,:]
#resized_label = label[14:174,32:208,:]
#print(resized_image.shape)
return resized_image

def normalize(MR):
#DICOM to nifti convertion
norm = (MR/10000) - 0.2048
norm[norm > 0.2047] = 0.2047
norm[norm < -0.2048] = -0.2048
return norm

def normalize_scan3T(MR,CSF):
#Where CSF is a list of manually labelled CSF
coord_csf = []
csf_x,csf_y,csf_z = np.where(CSF > np.average(CSF)) #Coordinates
print("coordinates")
print(len(csf_x))
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print(len(csf_y))
print(len(csf_z))
for x in range(0,len(csf_x)):

coord_csf.append(MR[csf_x[x],csf_y[x],csf_z[x]])
average_csf = np.mean(coord_csf)
averageMR = np.average(MR)
print("average_csf: ", average_csf)

MR = np.asarray(MR,dtype=np.float32)
MR -= average_csf
return MR

def normalize_scan7T(MR,CSF):
#Where CSF is a list of manually labelled CSF
coord_csf = []
csf_x,csf_y,csf_z = np.where(CSF > 0) #Coordinates
for x in range(0,len(csf_x)):

coord_csf.append(MR[csf_x[x],csf_y[x],csf_z[x]])
average_csf = np.average(coord_csf)
averageMR = np.average(MR)
print("average_csf: ", average_csf)
print("average RM: ", averageMR)
MR = np.asarray(MR,dtype=np.float32)
MR -= average_csf
return MR

def find_csf_values(MR,CSF):
coord_csf = []
csf_x,csf_y,csf_z = np.where(CSF > 0.9*np.max(CSF)) #Coordinates
for x in range(0,len(csf_x)):

coord_csf.append(MR[csf_x[x],csf_y[x],csf_z[x]])
average_csf = np.average(coord_csf)
print("average_csf: ", average_csf)
return average_csf

def unormalize(img):
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#img = np.asarray(img,dtype=np.float32)
dicom = (img + 0.2048) * 10000
dicom[dicom > 4095] = 4095
dicom[dicom < 0] = 0
return dicom

def reverse_unormalize(img):
#img = np.asarray(img,dtype=np.float32)
norm = (img/10000) - 0.2048
norm[norm > 0.2047] = 0.2047
norm[norm < -0.2048] = -0.2048
return norm

def add_slice(input_,list_):
for slice_ in range(0,input_.shape[2]):

list_.append(input_[:,:,slice_])
return list_

def random_rotate(image,label):
angle = random.randint(0,360)
image = ndimage.rotate(image,angle,reshape=False)
label = ndimage.rotate(label,angle,reshape=False)
return image, label

def add_random_noise(image):
noise = random.randint(0,5) / 100
img_noise = random_noise(image, var=noise**2)
return img_noise

def improve_contrast(image):
x = random.randint(0,10) / 10
v_min, v_max = np.percentile(image, (x, 99.8))
img_contrast = exposure.rescale_intensity(
image, in_range=(v_min, v_max))
return img_contrast
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def sheer_forces(image,label):
random_sheer = random.randint(0,4) / 10
tf = transform.AffineTransform(shear = random_sheer)
img_sheer = transform.warp(image, tf, order=1,
preserve_range=True,mode='constant')
mask_sheer = transform.warp(label, tf,order=1,
preserve_range=True,mode='constant')
return img_sheer, mask_sheer

def image_blur(image):
img_blur = ndimage.uniform_filter(image, size=(3,3,3))
return img_blur

def elastic_deformation(image,label):
[X_deformed, Y_deformed] = elasticdeform.deform_random_grid(
[image,label],sigma=5, points=3)
return X_deformed,Y_deformed

def plot2D(img,label,slice_):
plt.figure()
plt.subplot(2,2,1)
plt.imshow(img[:,:,slice_])
plt.subplot(2,2,2)
plt.imshow(label[:,:,slice_])
plt.show()

def dice2D(Y_test_,preds_test_t):
dice1 = np.sum(Y_test_[preds_test_t == 1]) * 2.0 /
(np.sum(Y_test_) + np.sum(preds_test_t))
return dice1

def susceptibility(Y_test,Y_pred,X_test):
#remember preds_test_t
susc_true = []
susc_pred = []
print("Ytest", Y_test.shape)
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list_true_x,list_true_y,list_true_z =
np.where(Y_test > 0) #Coordinates
print("list x true shape",list_true_x.shape)
print("len list",len(list_true_x))
print("list true 0",list_true_x[0])
list_pred_x,list_pred_y,list_pred_z =
np.where(Y_pred > 0) #Coordinates
for x in range(0,len(list_true_x)):

susc_true.append(X_test[list_true_x[x],list_true_y[x],
list_true_z[x]])

for x in range(0,len(list_pred_x)):
susc_pred.append(X_test[list_pred_x[x],list_pred_y[x],
list_pred_z[x]])

return susc_true,susc_pred
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