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Preface

This thesis completes my master’s degree in Mechanical Engineering at NTNU.

In my final year of study, I selected subjects involving computer vision and machine
learning due to curiosity. In my specialization project, I focused on solving computer
vision problems related to autonomous, offshore crane lifts. During this time, It
was discovered several methods on solving it as there was not a clear solution to
the problem. With artificial intelligence on the rise, it seemed feasible to implement
such a technology to this subject. Working with AI and computer vision throughout
the specialization project, lots of knowledge was gained on how to combine AI- and
classical computer vision technologies to track objects.

This master thesis is about computer vision and artificial intelligence, and will try
to help the reader understand the basics before solutions are presented. There
are some expectations that the reader has knowledge about linear algebra, basic
transformation matrices and 3D geometry, and programming. It is advantageous to
have knowledge about deep learning and projective transformations prior to reading
this.
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Summary
The report focuses on tracking cargo in offshore environments to develop an offshore
autonomous crane lift system. The report discusses the suitability of different sensor
solutions, such as implementing a 3D camera with structured light, 2D camera
and laser technology. Finally, it was proposed to use a 2D digital camera with
Perspective-n-points using deep learning as a feature extractor in conjunction with
a corner detector for cargo tracking.

The experiment of tracking and calculating pose automatically was implemented
on a small-scale model of a shipping container. The experiment performed with a
translational error between 8 mm and up to 15 mm during this experiment and error
of 0.14 degrees, describe in Euler angles. Along with the potential of the system,
some problems with noisy features were addressed.

The instance segmentation and corner detector combination were prone to noise if
the instance segmentation model did not return a precise mask prediction. A new
overfitted Mask R-CNN model was trained to test the system in a circumstance
where the mask prediction was precise. During the video test, it was able to find
image point correspondences in most cases, with exceptions in some frames.

Further, different methods of improving the system was proposed. The propose
methods for further work entails solutions to make the system more accurate, faster
and more robust against noise.

Upgrading the instance segmentation network. Combining a faster instance seg-
mentation model YOLACT++ (33.5 fps) with higher image resolution was proved
through testing to make the system more accurate and lower time delay. Methods of
filtering out the noisy features were proposed to make the current system more ro-
bust. Solutions such as optical flow or quadrilateral fitting were mentioned. It seems
like this solution is promising for tracking planar, rectangle surfaces are promising,
and with upgrades it have the potential to become a real-time tracking system with
error ≤ 10 mm, with noise filters.
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Sammendrag
Denne rapporten fokuserer på hyppig positur- og avstandsmåling av last i offshore
miljø for å utvikle et offshore autonomt kranløftesystem. Rapporten diskuterer
egnetheten for bruk av ulike type sensorer for denne problemstillingen, deriblant 3D
kamera som baseres på strukturert lys, 2D camera og laser teknologi. Tilslutt, så
ble det foreslått bruk av 2D digital kamera og Perspective-n-points ved hjelp av dyp
læring og hjørne detektor for å gjenkjenne karakteristiske trekk for å kunne måle
avstand til last.

Det ble utført et eksperiment ved å hyppig regne ut orientering og avstand på en
liten modell av en shipping container. Systemet ble utført med en translasjonsfeil
mellom 8 mm og opptil 15 mm under dette eksperimentet og en orienteringsfeil på
0,14 grader, beskrevet ut ifra Euler-vinkler. I tillegg til systemets potensial ble det
også løst noen problemer med støy.

Eksempler på at dyp læring- og hjørnedetektorkombinasjon var utsatt for støy var
når dyp læringssmodellen ikke returnerte en presis segmentering av objektet. En
overtilpasset Mask R-CNN-modell ble trent til å teste systemet i omstendighet der
segmenteringen var godt trent på. I løpet av videotesten var systemet i de fleste
tilfeller i stand til å finne punkt korrespondanser mellom 3D punkter og pixel koor-
dinatene i bildet.

Videre ble det foreslått forskjellige metoder for å forbedre systemet. Metodene for
videre arbeid innebærer løsninger for å gjøre systemet mer nøyaktig, raskere og mer
robust mot støy.

Å bruke høyere bildeoppløsning ble bevist gjennom testing for å gjøre systemet mer
nøyaktig. Det er foreslått å kombinere dette med en ny sanntids segmenteringsmod-
ell YOLACT++ (33.5fps) for å gjøre modellen mer nøyaktig, men også raskere.
Metoder for å filtrere ut støy ble foreslått for å gjøre det nåværende systemet mer
robust. Løsninger som optisk strømning eller firkantet montering ble nevnt. Det
virker som om systemet i denne rapporten er lovende for hyppig måling av orienter-
ing og posisjon av rektangeloverflater, og med oppgraderinger har den potensialet
til å bli et sanntids sporingssystem med error ≤ 10mm, inkludert støyfiltre.
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1 Introduction

1.1 Background

In the world we live in today, it can be observed that technology across various
industries focuses on becoming more automated. Robots are replacing processes
previously conducted by humans. The offshore industry in Norway is no different.

A powerful tool used in robotics to interact with its environment is computer vi-
sion. Computer vision aims to make computers be able to see the world, similar to
humans. In order to make robots interact with the world, the movements of robots
consist of calculated trajectories. It makes them able to move around. In order
for robots to efficiently interact with their environment in space, three-dimensional
coordinates of the world are required. 3D coordinates can be used to describe the
orientation and position of the robot and environment. Then the robot can com-
pute trajectories to complete the tasks it was designed to do. In order to achieve
data for the environment, computer vision can be used. The world geometry can
be described with different sensors, such as laser distance measurements, ultrasonic
sound, monocular camera and stereo vision, to mention some. To decide the sensors
to utilize, one has to consider their advantages and disadvantages.

A big part of computer vision is exploiting real-world features, which entails identi-
fying corners, contrast, shapes, and more.

The maritime sector identifies a need to have a system that loads on- and off ships
autonomously, with cranes from land, other ships, or offshore platforms. When
picking up cargo from a ship, problems that can occur are the ship’s movement due
to unpredictable wave motions. In order to automate the crane lift operations, it is
necessary to compensate for ship displacement. This can be done by tracking the
cargo. The tracking data may consist of the 6 degrees of freedom (DOF) pitch, yaw,
roll for rotation, surge sway, and heave for translation. The 6 degrees of freedom
need to be accurate in order to be able to pick up cargo. In other robotic applications
where the object is still standing, the metric for accuracy is dependant on accurate
measurements from sensors. In this application, the cargo will continuously move
around due to waves. If the readings from sensors are accurate but with considerable
time delay, the cargo may be subjected to significant displacements and effectively
means inaccurate readings with respect to time. This means that time is of the
essence while at the same time the system is dependant on accurate sensor readings.

There is relatively few autonomous crane control system implemented in today’s
market. However, other industries are conducting real-time pose estimation to func-
tion as an inspiration for this case study. Examples include the video games/film
industry that is working on similar projects for other use cases.
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1.2 Related Work

This subsection presents related work. It consists of related projects for solving the
same or similar problems. This subsection has been an inspiration for the solutions
in this report.

1.2.1 Optilift

Optilift has developed several solutions, and one of them calculates relative heave
movement [31]. This company also offers other solutions related to offshore crane
control [32] such as soft lifting, people detectors, to mention some. This company
is solves some of the same problems as this report. It states that it uses AI, and
by the appearances in the human detector system, it seems to be utilizing object
detection AI to classify humans in the operation area.

1.2.2 Autonomous Crane lifts

The company Intsite develops autonomous construction sites using AI and computer
vision [33]. Their focus is indicated to be on land-based construction sites, but their
technology’s transferability to the offshore sector seems to be significant.

1.2.3 Tracking of a Ship Deck Using Vanishing Points and Factor Graph

In the Paper [34], a new way to track a ship deck by using IMU data integrated into a
factor graph fused with vision measurements. Vision measurements found vanishing
points from a set of parallel lines to calculate the ship’s rotation and translation.

1.2.4 Drone Landing

Unmanned aerial vehicles (UAV) are a popular field that has many potential appli-
cations. Due to this being a popular research area, it is interesting to see solutions
for landing drones. This is because it has been observed lots of similarities between
landing cargo on moving ships and landing drones autonomously. The main differ-
ence observed is that the drones have a control system that is more reactive than
hydraulic cranes, which may require a high-frequency sensor input to react to new
inputs smoothly. A crane can have high-frequency sensor data describing the ship’s
Pose, but the system itself is slow, so a less frequent sensor input may be tolerated.
Drones can be trained to land on standstill platforms or moving land- and water
vehicles. The same is for crane operations as the ship can be relatively standstill or
moving due to wave motion. The paper [35] reviews different methods on how to
land UAVs that has worked as a great inspiration regarding analyzing the problems
that may occur and how it has been solved. There are parallels between landing
drones and landing cargo onto moving ships, such as one needs to identify a landing

2



zone and handle conditions such as moving landing pads in an outside environment
with different weather- and lighting conditions.

1.3 Report Outline

This report will be going through the basics of the maths used in this report. It will
include camera models, homographies and deep learning with instance segmentation
in focus. Further, it will discuss the problem and its complications with offshore com-
puter vision. It will be discussed different methods of solving the problem and finally
introduce a seemingly feasible method. After this method is presented, experiments
will follow to provide a proof of concept of this technique and discuss its pros and
cons. Evaluation and further work follow before the conclusion of this report in the
end.

1.4 Objective

The project itself can be large. For one person to complete a computer vision system
in a semester, the scope needs to be narrowed down to something that matches the
time and resources spent on this project. This project will focus on finding a solution
to track object related to the offshore crane lift operations. By tracking, it is meant
to find 6D pose estimation so it can be able to pick up an object. The project will
focus on calculating pose of one object, but at the same time keeping in mind that
the solution can be further developed to pick up cargo and land it from ship to
offshore platform and vice versa.

The solution will break down into following sub-goals

• Identify the requirements of the system.

• Analyze different approaches to solve for tracking of objects and find a suitable
solution.

• Use experiments to evaluation the suitability of the solution.

• Discuss optimization techniques for further improvements of the current sys-
tem.

3



2 Preliminaries

This section presents preliminaries that are necessary to understand this report.
The main topics are homographies, Perspective-n-points (PnP), camera calibration
and deep learning.

It will be important for the reader to understand different types of homograhies and
PnP to understand how pose (the orientation and translation) will be calculated in
this report.

It is also important for the reader to understand some deep learning and how it
works. Some of the parameters used in the calculation of the pose includes the use
of pixel coordinates and deep learning is used to help the extraction of these image
points automatically.

2.1 Pinhole Camera model

Figure 1: Illustration is taken from [1]

The pinhole camera model mathematically describes the relationship between the
3D world point and the projection onto an ideal pinhole camera’s image plane.
Properties of the ideal camera model:

p̃ = Ks̃ (1)

where p̃ are the pixel coordinates in the pixel frame, K is the intrinsic camera
parameters, and s̃ is the normalized image coordinates. It should be noted that
a perspective projection line intersects the camera frame, image point and object
point.

4



Intrinsic camera parameter matrix:

K =

 f
pw

k u0
0 f

ph
v0

0 0 1

 (2)

where pw and ph is the width and height of one pixel, f is the focal length, k is the
skew parameter which can be assumed to be 0 in certain circumstances. u0 and vo
are the pixel coordinates for the optical center.

The extrinsic camera parameters are the transformation from the camera frame to
an object frame. It can be described as the 4x4 matrix:

T c
o =

[
Rc

o tcco
0T 1

]
(3)

where Rc
o = is the 3x3 rotation matrix from the camera frame to object frame, and

tcco = is the 3x1 translation vector from the origin of the camera frame to the origin
of the object frame normally noted as

[
x y z

]T .
2.2 Homographies in 2D

Homographies can be described as a mathematical description of geometry. A ho-
mography can typically be used to describe 3D Euclidean space through projected
space. Knowing this will help the reader understand how 3D data can be obtained
through 2D data in an image.

First, basics of the projective transformations will be explained, before the explana-
tion of the important mathematical formula perspective-n-points or PnP for short.
PnP is used for amongst other things, pose estimation, that will be explained further
in this report.

Homographies in 2D shall be explained with the notation given Olav Egeland’s Robot
Vision [1].
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Figure 2: Brief introduction of different transformations. Illustration is taken from
[1].

2.2.1 Euclidean

Further in [1], an euclidean transformation is described as:

x′ =Hex =

[
R t
0T 1

]
x (4)

where t is 2D translation vector and R ∈ O(2), where

O(2) = {R ∈ R2x2|RRT = I and det R = ±1} (5)

is the second order orthogonal group.

R =

[
cos θ − sin θ
sin θ cos θ

]
∈ SO(2) (6)

is a valid 2x2 matrix when RRT and det R = −1. Given this, He ∈ SE(2) is a 3x3
homogeneous transformation matrix.

The transformation is a rigid reflection when

R =

[
cos θ sin θ
− sin θ cos θ

]
∈ SO(2) (7)

which is a 2 x 2 reflection matrix where RRT = I and det R = −1.
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A Euclidean transformation will have length and area as invariants, and in addition,
all the invariants of a similarity transformation.

2.2.2 Similarity

The second transformations is similarity, described as

x′ =Hsx =

[
sR t
0T 1

]
x (8)

s is the scaling factor and R ∈ O(2) is a rotation matrix or a reflection matrix. A
similarity transformation reduces to a Euclidean transformation when s = 1. The
inverse is

H−1
s =

[
(1/s)RT −(1/s)RT

0T 1

]
(9)

Similarity transformations will have a ratio of lengths and angles as invariants, and
in addition, all the invariants of an affine transformation.

2.2.3 Affine

x′ =Hax =

[
A t
0T 1

]
x (10)

where A is any nonsingular 2 x 2 matrix. There exists circumstances where A =
sR where R ∈ O(2), which makes an affine transformation equal to an similarity
transformation.

Inverse transposed affine transformations used in the transformation of lines is de-
scribed as

H−T
a =

[
A t
0T 1

]
x (11)

It further states in the compendium that Affine transformations has the following
invariants:

• 1. Collinear points, which are three or more points on the same line, are
transformed to collinear points.

• 2. Parallel lines will be transformed two parallel lines.

• 3. The ratio of lengths for parallel lines is invariant

• 4. Convex sets are transformed to convex sets.

• 5. Centroids of vectors are invariant.
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2.2.4 Projectivity

Projective transformation is written as

x′ =Hpx =

[
A t
vT v3

]
x (12)

Projective transformations includes invariants of collinearity of points, intersection
of lines, tangency, tangent discontinuities and cross ratios.

The projective transformation can be decomposed into

H =HsHasHps =

[
sR r
0T 1

] [
K 0
0T 1

] [
I 0
vT v3

]
=

[
sRK + rvT 0

vT v

]
(13)

Hs is similarity transformation, Has is affine transformation, Hps the projective
transformation and K is the upper triangular with a det K = 1.

2.3 PnP

Fischler and Bolles first introduced the Perspective-n-Point in 1981 [36] to establish
the camera pose with respect to an object. The method uses known 3D points with
respect to the world and corresponding 2D normalized image coordinates that are
projected in the image plane to calculate the transformation between the camera
frame and the world frame. PnP will be explained up to P4P because this report
uses n = 4 number of points to calculate pose.

λpc =K[R | t]x (14)

where λ is a scaling factor for image point, x is the homogeneous 3D world coordi-
nates and pc is the corresponding 2D projected image points located in the image
plane Figure (5). K is the intrinsic camera parameters (2) and R and t is cam-
eras 3D rotation and 3D translation respectively. Also known as the the extrinsic
parameters (3).

λ

uv
1

 =

 f
pw

k u0
0 f

ph
v0

0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



x
y
z
1

 (15)

In an instance where the PnP solution utilized 0 image points, the solution has 6
degrees of freedom (DOFs), where 3 of them are describing rotation, and the other
3 are for translation (x, y, z). This would commonly be written as P0P and would
not have enough data to estimate orientation nor translation.
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For P1P, one point is fixed for an object in the image frame. It makes it so that
the one point can rotate in all 3 directions, and it can move along the perspective
projection line as it would not change the perception if one is looking through the
image plane. What is constrained is that the point can no longer move in u or v
direction in the image plane. This means that there are 2 DOFs are now constrained,
and 4 DOFs are still free.

For P2P, two points in the image frame are fixed. This will result in both points
are constrained along the perspective projection line, and it will consequently mean
that two rotations are constrained for the object. It can still rotate about a line
formed by the two points and translate along the perspective projection lines. This
leaves it such that 4 DOFs are constrained, and two are free.

For P3P, one can imagine a triangle. This leaves 0 DOFs free, and all are constrained.
It seems like it is solved now, but it does have 8 possible solutions. It show be noted
that 4 of the solutions are in front of the camera and 4 behind the camera. The 4
solution presents the same translation, but the rotation is ambiguous as illustrated
in Figure (3) and Figure (4).

Figure 3: Illustrating two of the potential solutions

Figure 4: Illustrating the last 2 possible solutions that P3P can have in front of
camera
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Figure 5: Figure showing setup of P4P. Illustration is taken from p. 74 [1].

Now, an example of P4P with points in a plane from [1] is presented where the
rotation and translation between camera frame c and object frame o is presented,
as illustrated in Figure (5). The technique uses 4 points in a plane π. The trans-
formation or pose is

T c
o =

[
R t
0T 1

]
(16)

where R = Rc
o and t = tcco. The four world points ro0,1, ro0,2, ro0,3, ro0,4 are fixed in

the plane π with homogeneous coordinates ro0,i = (xi, yi, 0, 1)
T , i = 1, 2, 3, 4 and all

points are observed in the image frame.

The normalized image coordinates s̃i are

λis̃i = Πr̃cc,i = Π

[
R t
0T 1

]
r̃oo,i (17)

where λi is the depth coordinate set to unity as one can freely select scaling and

Π =

1 0 0 0
0 1 0 0
0 0 1 0

 (18)

This can be rewritten as

λis̃i =
[
R t

]
r̃oo,i (19)
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and further in the compendium it is stated that since z is set to zero for every ro0,i
the can be written as a homography

s̃i =Hx̃i (20)

where
H =

[
r1 r2 t

]
(21)

and

x̃i =

xi

yi
1

 (22)

The planar homography H can now be found. With H established, it can be used
to calculate T c

o . With columns of Hj =
[
h1 h2 h3

]
and h =HT

j . with

Ah = 0 (23)

and

A =


A1

A2

A3

A4

 (24)

Ai is found by point mapping i and h with singular value decomposition (SVD)
which is defined as

A =
9∑

i=1

σiuiv
T
i , ui ∈ R12,vi ∈ R9 (25)

The example from the compendium then explains that the column vector of H is
obtained with

r1 = kh1 (26)

r2 = kh2 (27)

t = kh3 (28)

with scaling being

k =
sgn(v9(9))

||h1||
(29)

with sign selected for a positive z value in the translation t.

The last column vector in the rotation vector is found with

r3 = r1 × r2 (30)
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2.4 Intrinsic Camera Calibration

The purpose of calibrating a camera is to find the intrinsic camera matrix K and
its distortion coefficients, which are used in to calculate the normalized image coor-
dinates s̃ with (2.1) from the pixel coordinates p̃.

The intrinsic camera matrix can be represented as K, as done in (2.1)

The 5 intrinsic parameters that have been estimated entails data on the focal length,
principal point, and image sensor format. In addition to this, the 5 non-linear lens
distortion coefficients are found but cannot be represented in the linear camera
matrix.

The lens distortion coefficients account for radial, tangential- and Thin prism lens
distortions.

Types of distortion in images can be barrel distortion, pincushion distortion, and
mustache distortion. It is important to account for this when calculating correlations
between 2D projective planes and the 3D world in photogrammetry. Illustrations of
distortion is shown in Figure (6).

Figure 6: Example of radial distortion in a camera. One knows that in 3D world
the lines are straight, but in the image the lines are being radially distorted which
can be a problem when calculation the homographies. Illustration is taken from [2].

Non-linear intrinsic parameters such as lens distortion are also important, although
they cannot be included in the linear camera model described by the intrinsic param-
eter matrix. Many modern camera calibration algorithms estimate these intrinsic
parameters as well in the form of non-linear optimization techniques. This is done
to optimize the camera and distortion parameters in what is generally known as
bundle adjustment.
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Lenses usually have radial distortion and a small tangential distortion. To account
for this, first the normalized image coordinates are calculated in Equation (2.3),
then afterwards according to openCV documentation under section Pinhole camera
Model the distortion coefficients are accounted for with the formulas written as [37]:

[
u
v

]
=

[
fxx

′′ + x0
fyy
′′ + y0

]
(31)

where [
x′′

y′′

]
=

[
x′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6
+ 2p1x

′y′ + p2(r
2 + 2x′2) + s1r

2 + s2r
4

y′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6
+ p1(r

2 + 2y′2) + 2p2x
′y′ + s3r

2 + s4r
4

]
(32)

with
r2 = x′2 + y′2 (33)

and [
x′

y′

]
=

[
Xc/Zc

Yc/Zc

]
(34)

if Zc 6= 0

The radial distortion coefficients are k1, k2, k3, k4, k5, k6

The tangential distortion coefficients are p1, p2

Thin prism distortion coefficients are: s1, s2, s3, s4

Two well-known methods of intrinsic camera calibration are Zhang’s method [38]
and Bouguet [39].

2.4.1 Spatial resolution

Spatial resolution describes the relationship between pixel resolution and 3D Eu-
clidean space. It will affect how accurately a digital camera may measure objects.
I.e., in the more extreme circumstance in Figure (8), when a satellite is capturing
an image of a house, if the spatial resolution is so that one pixel captures 30 square
meters in euclidean space, the output image will not be able to differentiate the
house and its surroundings, and the pixel will output one color.

Figure 7: How different resolution affects the output image of a polygon. Illustration
is taken from [3]
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Figure 8: How different resolution affects the output image’s precision. This is
illustrated for spatial resolution affects for satellites on houses. Illustration is taken
from [4]
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2.5 Deep Learning

P4P has been explained in previous sections as a way to calculate the pose with the
Equation (2.3). What is missing now is a method to find the image points (u, v).
Deep learning will be part of the solution for extracting these image points and
therefore it is important to understand how deep learning works in the context in
object detection in images.

Artificial intelligence or AI for short, is a broad concept based on making intelligent
computers to act similarly to how humans do. A branch in the field of AI is machine
learning (ML). ML is is way to learn a computer based on data without explicitly
programming what it should do. Deep learning is a subgroup of machine learning
that process data in multiple layers call artificial neural networks (ANN).

First, basic theory on deep learning with the focus on applications within image
data. Following comes an introduction of important definitions. Finally, the deep
learning model used in this report will be introduced, named Mask R-CNN.

Here is a list of different terminology used in deep learning and will be used through-
out this report.

Table 1: Deep learning Acronyms and full word

Acronym Full word
AI Artifical Intelligence
ML Machine learning
DL deep learning
NN Neural network
CNN Convolutional neural network
TL Transfer learning
Bbox bounding box
KP Keypoint
GT Ground truth
IoU Intersection over union
Non-maximum suppression NMS
AP Average precision
mAP mean Average precision
FPN Feature Pyramid Network

In recent years increased use of Computer vision (CV) has been observed. This is
much due to stronger and cheaper computer processing and industry 4.0 [40]. Lack
of computational power was a limiting factor before the mid-2000s [41]. Within
AI, a deep learning architecture named Convolutional Neural Networks (CNNs) has
been developed.

As described in [12], CNN’s are commonly applied to work with problems with a
grid-like topology. Examples of this are images or time series. CNN’s in recent years
are seeing rapid development and is peaking now in the CV field [42].
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Figure 9: Examples of how a CNN can be used with image datasets. Illustration is
taken from [5]

A common representation of images is a 3-dimensional matrix, where the depth
dimension is 3 layered and consists of representations of red, green, and blue color
intensity. Applying this data form to a CNN can help train an AI model for object
detection, image classifications, semantic segmentation, scene understating, image
generation and more [43]. Examples of these can be seen in Figure (9).
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Figure 10: How different layers can op-
erate to recognize faces. Illustration is
taken from [6]

Figure 11: Internal workings of a DL
NN. Illustration is taken from [7]

Deep learning consists of deep neural networks (NN) with a potential large amount
of neurons. Based on the calculations of these neurons, the deep learning model will
be able to, i.e. predict objects. A hidden layers is illustrated in Figure (11). These
layers will have different tasks and inputs. An example is illustrated in Figure (10)
to detect human faces.

2.5.1 Current Applications of Deep learning

There are several use cases for Deep learning. Object detection (9) is an important
use case. Object detection in computer vision is about introducing the program to
an image, and from this, the program will classify and localize the object repre-
sented in pixel coordinates. One can observe this use case in three major industries;
autonomous driving, the medical field, and the gaming industry.
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2.5.1.1 Autonomous Driving In autonomous driving, the end goal is to achieve
level 5 autonomous driving, which entails that it is in no need of a human operator to
survey the driving operation. Most notably has Tesla’s autonomous driving system
received lots of attention in recent years. It utilizes several input devices, including
cameras with object detection to classify and localize different traffic components
such as traffic lights, other cars, and road surface marking.

Figure 12: This is an example of how Object detection works in cars. Illustration is
taken from [8]

2.5.1.2 Medical Field In the medical field, it is used to analyze image data
from various types of images. It can be looking for Glaucoma in the eye, analyze
X-ray images and more [9].

Figure 13: Illustration is taken from [9], illustration application areas of deep learn-
ing
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2.5.1.3 Human Pose estimation Human pose estimation is a researched field
that utilized deep learning to identify joints in the human body. What is very
similar to this project is that it uses object detection on different joins and then
assigns them a point. This type of human pose estimation can analyze the athlete’s
movement patterns, create realistic movements in videogames and more [44, 45].

2.5.2 CNN

Figure 14: An example for a type of CNN architecture. It uses convolution + ReLU
and pooling for learning features. Illustration is taken from [10], accessed 25.11.20.

Origin of the name Convolutional Neural Network is derived from convolution, which
is an algorithm that weighs data based on a set of given values that can be time-
series or adjacent data in matrices in images. An example for this in time series is
heavily inspired by the story presented in [12]:

A scientist uses a laser to measure the position of a moving vehicle. The laser
reading of position is only valid for a short amount of time before the vehicle has
been displaced to a new position. To solve this, the scientist will use the laser
to read positions with a higher frequency. The AI time series’s role in this part
is that you can tell the AI to prefer using the newest readings and use the older
readings to attempt to predict new measurements. In mathematical terms, the
distance measured is given by s(t), where t is time. The measurements are noisy,
and therefore several measurements are conducted with this high frequency. If one
uses these measurements’ average, one knows that the older measurements are less
relevant than the newer ones. To make the newer measurements more relevant or
in other words, weigh heavier, the following formula is used:

s(t) =

∫
x(a) · w(t− a)da (35)

where x(a) is the measurement with respect to the age a of the scan, w is the
weight/kernel that varies with time/relevance of input. w is true for w ∈ R≥ 0,
because the negative weighted function in this example would indicate that the
measurement came from the future.
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For images, the weighted function would be a filter, often referred to as a kernel, to
look over the matrix representing an image to identify features such as edges. This
filter tends to be a significantly smaller matrix than the image matrix. Depending
on the kernel size and image size, the kernel uses weighted functions to extract the
features in the image.

(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (36)

This data is sent to different neurons that train individually, as illustrated in Figure
(11). Some neurons will train on recognizing certain features, and combined will
these neurons be capable of identifying complex features.

Figure 15: Example of a 3x3 kernel used on an image matrix. an output matrix
smaller than the input is generated from this. One output is from by 9 inputs.
Illustration is taken from [11]

2.5.2.1 Activation Functions "A neural network without an activation func-
tion is essentially just a linear regression model." [46]

"Definition of activation function:- Activation function decides whether a neuron
should be activated or not by calculating weighted sum and further adding bias
with it. The purpose of the activation function is to introduce non-linearity into the
output of a neuron." [47]

These neurons will take the summed weights + biases as input and use them in
an activation function to check whether to activate the neuron or not depending
on the value of the activation function (11). If the output is True, the neuron will
send its weights to the next layers. This method is inspired by how the brain works
to process data as briefly discussed in section "Brief overview of neural networks"
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in the article [46]. The most commonly used activation function is called Rectified
Linear Unit, also known as ReLU [46].

To demonstrate how ReLU works for a neuron:

f(x) = max(0, x) (37)

x = xw + b, where b are biases. These biases are constants that are added to the
summation of weights before it is used as input the the activation function. The
output with ReLU will either return 0 or x, depending on what the value of x is. If
x ≥ 0, then output x. If x < 0, then return 0 If the function returns zero the neuron
will not be activated (return False) and if x is the output, then the neuron will be
activated (return True). If a bias is applied with the ReLU activation function (37),
it guarantees that it will activate the neuron to some degree.

2.5.2.2 Connectivity In Neural networks (NN), the neurons can be connected
in various ways. One of these is fully connected layers. Fully connected layers pro-
cess more information and lead to greater accuracy, but it is more computationally
expensive than sparse connectivity. The Figure (16) from [12] below illustrates two
different connections.

Figure 16: "Sparse connectivity, viewed from below. We highlight one input unit,
x3, and highlight the output units in s that are affected by this unit. (Top)When s
is formed by convolution with a kernel of width 3, only three outputs are affected by
x. (Bottom)When s is formed by matrix multiplication, connectivity is no longer
sparse, so all the outputs are affected by x3" [12]

2.5.2.3 Pooling In the example Figure (14), pooling layers comes after the con-
volution layer and activation function.

"In all cases, pooling helps to make the representation become approximately in-
variant to small translations of the input. Invariance to translation means that if
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we translate the input by a small amount, the values of most of the pooled outputs
do not change." -Page 342, [12]

How does pooling work to achieve this? Underneath is a Figure (17) illustrating the
calculation of the two most common pooling techniques, max pooling and average.
It should be explained that a stride length of n is how many units the kernel moves
in between calculating one pooling feature.

In a max pooling configuration, the pooling layer uses a kernel over the input image,
searching for the largest pixel value and collecting the output into what is known as
a feature map.

Similar to max pooling, the average pooling technique calculates the average of these
numbers and adds this number to the feature map.

Figure 17: Illustration of how different pooling may affect the feature extraction.
Kernel size is 2x2 and moves with a stride length of 2. An example of how max
pooling operates. Colors in input and output correspond to values being weighted.
Illustration is taken from [13]

2.5.3 Classification

"Classification is the process of predicting the class of given data points. Classes
are sometimes called targets/ labels or categories. Classification predictive modeling
is the task of approximating a mapping function (f) from input variables (X) to
discrete output variables (y)."- Sidath Asiri[48]

"Object detection is a computer vision task that involves both localizing one or more
objects within an image and classifying each object in the image.

It is a challenging computer vision task that requires both successful object local-
ization in order to locate and draw a bounding box around each object in an image,
and object classification to predict the correct class of object that was localized."-
Jason Brownlee [49]
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Figure 18: This image illustrates a CNN model predict objects in an image. It
has been trained to identify certain objects and return a probability for correct
prediction. It needs to identify the right class and decide coordinates for bounding
boxes. Illustration is taken from [14]

Softmax is an extension that allows multiple classes in a model. See Figure (14) for
how Softmax is used in the classification part of a CNN.

2.5.4 Shortcomings

There are multiple reasons where the deep learning approach is not always the best.
Some of the reasons as to why it is not according to Donges [50] follows:

Black boxes - There are so many parameters in a NN that it can be very tough to
troubleshoot an NN. Therefore, a NN can be reffered to as an black box. in Figure
(19) is a good example. It feeds an image of a cat into the NN. It its output is clear in
this figure, the model has predicted that the image is a cat with a 0.97 in probability,
where 1.00 is absolute certainty. One cannot be sure of all the calculations made
underway, so it can be tough to troubleshoot when the model does not return the
expected outcome.
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Figure 19: It can be difficult to troubleshoot the NN if the the output was not as
expected. Illustration is taken from [15]

Computationally expensive - It requires lots of processing power to train the
model. A model requiring a Powerful GPU is not uncommon, depending on the
settings chosen and dataset.

Data hungry - Deep learning models require lots of data to achieve good results.
The amount of data can vary from project to project, but say thousands to millions of
image data with human-made annotations to all images may be required to develop
this model. This can be a very time-consuming part. Labelimg is a annotation tool
used with its interfaces illustrated in Figure (20).

Figure 20: Program called labelImg [16] can be used to annotate each image with a
bounding box. These are the ground truths (GT) used in training.
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Duration of development - The time preparing dataset and training can be hours,
days, weeks, even months depending on the size of data and computational power
at your disposal.

Position and Orientations

CNN uses multiple neurons in the NN with different filters to present features to
identify objects in a given image. The problem that can occur is that CNN can
identify different features and conclude, but the object can have wrong positions
and orientations relative to each other. This is illustrated in Figure (21).

Figure 21: A difficult scenario for a CNN, as both contain the required details of a
human face. Illustration is taken from [17], accessed: 12.09.20.

A NN computes to extract features. For example, in some layers, extracting features
for identifying the face’s contours, the model will highlight this but simultaneously
overshadow the eyes, nose, and mouth. This effectively means that it identifies a
face without looking at eyes, nose, and mouth in the face’s context. When the model
extracts features for the eyes, nose, and mouth, it will not look in the context of the
rest of the face, just individually these features. This means that CNN can struggle
with larger contexts. This can, in some circumstances, lead to the model returning
a false positive.

Underfitting - "A model is said to be underfitting when it’s not able to classify the
data it was trained on." [51] For example: The model has been trained to classify
dogs and cats, but when tested on the training image data with a cat, it fails to
identify the cat.

In context, a model is trained on a dataset. If it cannot predict well on a test image
it previously has possessed the solution to, it will likely struggle when tested on a
never before seen image data.

Workarounds for this is among other things:

• Increase the number of layers.
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• Increase number of neurons in the layers.

• Change type and location of layers.

• Increase the amount of data. A powerful tool for this is data augmentation.

Increasing the model’s complexity requires more computational power, so it is a
trade-off that has to be done.

Overfitting - "Overfitting occurs when our model becomes really good at being
able to classify or predict on data that was included in the training set, but is not
as good at classifying data that it wasn’t trained on. So essentially, the model has
overfit the data in the training set." [52]

During training, one can analyze the metrics in the training set and validation set.
If the training set is considerably better than the validation, it indicates that it has
been overfitted. It has been very well-adjusted to the training, and there fails to
generalize objects. That is why it struggles to classify the objects in the validation
set because it has been too good to classify the data as presented in the training
set.

Iou can be defined as:

IoU =
|A ∩B|
|A ∪B|

=
|I|
|U |

(38)

Where A and B are bbox’s.

Figure 22: Multiple Predictions are made. A threshold IoU is set. If the IoU is
higher than threshold, store the bbox with the highest probability score. The other
bbox is assumed to be duplicates. In this image, Only one bbox is needed for this
image. Illustration is taken from [18]
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Figure 23: Illustration is taken from Youtube video made by [18]

This method of removing multiple boxes is a method called non-maximum suppres-
sion that filters out bboxs with lower confidence score.

2.5.5 Important Definitions in Machine Learning

Here will important definition regarding Deep learning be introduced. It will be
important when interpreting the test results later in Section (5).

2.5.5.1 Inference The inference is using a trained model to make a prediction.

Figure 24: Example of how these definitions work in practice. Illustration from [19]

2.5.5.2 True/False Positives/Negative: To translate the example in Figure
(24) to a CNN model, let’s say that we have two classes. One is wolf (Positive class)
and the other one is background (Negative class). When an image containing a wolf
is fed into the CNN, it will analyze the image. (How it analyzes depends on the
model chosen.) It will (hopefully) return a wolf (TP) and classify everything else as
background, also known as a negative class (TN).
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2.5.5.3 Precision

Precision =
TP

TP + FP
(39)

Precision is looking at all the predicted classes, then calculates how often does the
model predict correctly of these. Every time there is an object corresponding to a
class, how often does it guess correct.

2.5.5.4 Recall

Recall =
TP

TP + FN
(40)

Out of all Classes in an image, how often does the model find the class? It does
not consider how often it is wrong but just considers if it finds all the objects in
the image. the model compares its predictions to the GT made in the annotations,
shown in Figure (20). I.e., If all GT’s in an image are predicted, then the recall is
1, independently of how many times the model makes FP predictions.

2.5.5.5 Training, validation, test When training a model, 3 directories of
images are created

• Training dataset

• Validation dataset

• Test dataset

The training dataset consists of images of the class that it is supposed to be trained
on, and metadata about the annotated ground truth in each image. This is informa-
tion about the class and pixel coordinates of bbox, masks in instance segmentation
and more. This directory is what the model tries to learn

The validation dataset contains images and annotated ground truths for each image
in the folder. The difference is that the model tries to predict on the validation,
usually mid training or after the weights has been adjusted. The purpose is to
calculate metrics such as precision, recall, AP, mAP to mention some.

The test dataset consists of images only. The purpose is to test the trained model
to different inputs to see how it performs.

2.5.5.6 Batch size Say you have 80 images in a dataset with a batch size of 4.
What this means is that the model collects 4 images at a time to make predictions.
After it has completed the prediction in those 4 images, it will adjust its weights.
This effectively means it considers 4 training data, i.e., images before it adjusts its
weights. This process requires lots of GPU memory, and the memory may well be
the limiting factor for not increasing the batch size. However, the higher the batch
size may not always be better.
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2.5.5.7 Iterations When the model has trained through an entire dataset, it
has completed 1 iteration. So using iterations larger than 1 will train the model on
the same data multiple times.

2.5.5.8 Backbone "A convolutional neural network that aggregates and forms
image features at different granularities." [53]

2.5.5.9 Neck "The portion of an object detection model that forms features
from the base convolutional neural network backbone." [53]

2.5.5.10 Head "The portion of an object detector where prediction is made.
The head consumes features produced in the neck of the object detector." [53]

2.5.5.11 Transfer Learning Transfer learning is a method of utilizing weights
from other projects that can be applied in this project. I.e., another project may
have trained and become good at extracting features, so using these pre-trained
weights will save our model from relearning all this from scratch. It means that
the model has been trained to extract features similar to other projects, such as
extracting edges, curves, and more.

2.5.5.12 Freezing layers A CNN usually consists of several layers. During
training, these layers will adjust its weights. Freezing layers entails making layers
of neurons immutable, which means they will not adjust during training. This is
usually done in a context of utilizing transfer learning as the first few layers are
usually well-trained from a previously trained model. So, the layers that has well-
adjusted weights should not further adjust itself. A method of freezing these layers
in Python is to change the datatype of these layers into tuples.

2.5.5.13 Data Augmentation Data augmentation is a process of manipulating
existing data to create more data. I.e., one can take a dataset containing 500 images,
use mirror data augmentation with all these images. It means to mirror all the data
images and use them for training your model. Effectively, one now has 1000 images
to train instead of 500 if it mirrors each image data once. It exists several data
augmentation technique in ML.

2.5.5.14 Hyper parameter Hyperparameters are parameters that control the
learning process of a model.
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2.5.6 Mask R-CNN - Mask Region-based CNN

A well-known method used for instance segmentation predictions is Mask R-CNN.
It is an extension of Faster R-CNN where an additional branch is added for predict-
ing object masks in parallel with bounding box predictions [20]. According to the
original paper [20] it is able to run at 5 fps in 2018 with their hardware.

Short about Faster R-CNN is the history starts with R-CNN came first, then fast
R-CNN, and so came faster R-CNN in 2015 [54]. It was at the time the State-of-the-
art model for object prediction striving to achieve real-time with Region proposal
networks (RPN). In the paper it achieved 5 fps by using a deep layered VGG-16
model.

Figure 25: Framework of Mask R-CNN from input image to output. illustration
from [20]

At a high level, the framework can be separated into these modules:

2.5.6.1 Backbone Consists of standard CNN, with options of ResNet50 or
ResNet101, where 50 and 101 represents numbers of layers.

In addition to this, Feature Pyramid Network (FPN) is used as backbone. FPN
was introduced by the authors of Mask R-CNN as a tool for representing different
objects at various scales. Normally, feature maps are passes from lower to higher
level, but FPN passes high level features to low level. This way, features at every
level can be accessed.

2.5.6.2 RPN - Regional Proposal Network "RPN is a The RPN is a lightweight
neural network that scans the image in a sliding-window fashion and finds areas that
contain objects." [21]
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Figure 26: 49 anchors from RPN. Illustration from [21]

In reality it scans the backbone feature map and not the input image itself. It is not
uncommon to use 200 000 anchors with various size, aspect ratios and overlapping
anchors in the feature map. It can run in about 10 ms due to parallel computing
with GPU according to original Faster R-CNN paper [22].

For each anchor in the RPN, it will generate anchor class and bounding box refine-
ment. Anchor class is either foreground (FG) or background (BG). FG implies that
the region contains an object of a class. Background implies no object in the anchor.
Bounding box refinement is also called a positive anchor which implies that the an-
chor contains an object. The RPN predicts which anchor is most likely to contain
an object and uses NMS to filter out other anchors that has lower foreground score.

2.5.6.3 Region of Interest Classifier & Bounding Box Regressor Region
of interest (ROI) runs based on the input of RPN. It will output similar as the
RPN, but the difference is that the ROI network is deeper and can classify regions
and connect it to specific classes given by the user. (Car, boat, Person,...etc.) This
output is called Class.

The other bounding box refinement is further work to refine the location of the bbox
to predict an object. Following comes ROI pooling.
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Figure 27: Pipeline illustrating the connections of Faster R-CNN. The same imple-
mentation used in Mask R-CNN. Image from [22].

2.5.6.4 Segmentation Masks At this stage, object detection has been con-
ducted from previous stages. From now, masks in instance segmentation prediction
is being predicted. The segmentation mask is a Convolutional network that uses the
positive regions of the ROI classifier. The masks are at default 28x28 pixels in float
representations, so it contains more information than other formats such as binary
or integers.

Figure 28: Illustration from [21].
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3 Methodology

The goal is to make crane lifts offshore autonomously. As mentioned in the In-
troduction (1), this report focus is on the robot vision aspect of the system. It is
deemed necessary to be able to track the object of interest.

Figure 29: It is assumed that the crane operation may look something like in these
illustrations. Illustrations are taken from [23] and [24] respectively.

It is assumed in this report that a lifting operation may look something similar to
what is shown in the videos: Crane Operation 11 and Crane Operation 22.

In robotic applications, 6D pose estimation is utilized to pick up objects, including
rotation and translation. The rotation can be described with yaw, pitch, roll angles
and translation with surge, sway and heave as shown in Figure (30).

Figure 30: A change in one or more of these dimensions over time can create inac-
curate pose estimations due to time delay. Illustration is taken from [25]

1https://www.youtube.com/watch?v=abFD-8BGx1I
2https://www.youtube.com/watch?v=lNaPZFwcoZY&ab_channel=RunGun
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In this project, it is assumed that for a control system to pick up cargo with a
hydraulic crane autonomously, it needs a 6D pose estimation of the object. This is
so that a hydraulic crane or robotic arm can pick up the object due to its known
geometric data. The term hydraulic gripper may now be referred to as a robotic
arm throughout this report.

Figure 31: The robotic gripper needs 3D data of object and the surface it is supposed
to land on. The illustration is taken from [26]

If the robotic gripper has frequent 6D pose estimation readings of the object, it can
pick up the object. If the robotic gripper has 3D data of the surface it is loading
its cargo onto, let us image a point cloud, then the robotic gripper can land the
object based on 3D data in Euclidean space. If the crane were to load cargo onto
the oil platform, a predefined 3D point cloud could be generated so that the robotic
gripper knows where it can land the cargo.

Given that information is acquired about the pose of cargo and oil platform, it can
pick up the cargo from the ship and land onto the oil platform. This solves for
de-loading the ship. What about loading onto a ship? A critical difference between
the ships’ surface and the surface on the oil platform is that the ship is continuously
moving due to wave motion. Each ship will dock differently, so a predefined point
cloud of the ship is not feasible. Instead, the computer vision system requires 6D
pose estimation tracking of the ship. The method for tracking objects with frequent
6D pose estimations is assumed to work for the ship’s surface and cargo.
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3.1 Selecting Sensor

Different types of sensors were studied for the use of calculating pose of ships, cargo
or both.

A requirement is that it is accurate at ranges of roughly 3-15 meters, and it should
be high frequency. The range is a rough estimate of the expected distance from the
camera to an object.

Can there be a sensor that can be generalized to track ship deck, oil platform and
cargo? It was researched to use 3D scanning with calibrated stereo vision, 3D point
cloud generation with a camera and structured light, digital 2D camera, or laser
technology. A breakdown of the methods follows.

3.1.1 Laser Technology

A system consisting of 1D laser distance measurement units could be used to cal-
culate the distance with time of flight. Each laser could provide information about
a point in Euclidean space. If the number of lasers is three or more, 3 points can
be used to calculate the normal vector and translation. More lasers can be used to
make the point cloud more dense and robust against noisy points.

According to the datasheet of class 1 laser LIDAR-Lite v3HP [55], the operating
range is up to 40 meters and has an update frequency of 1 kHz.

Using this laser technology can provide the possibility to calculate the normal vector
of a plane, along with its translation. In a scenario of using 3 laser point to calculate
the normal vector of the plane and an origin, it may similar to what is shown in
Figure (32):
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Figure 32: 3 laser scanners could calculate the normal vector of a plane

A significant problem here is that it will have 3 DOFs free and only pitch, roll and
heave constrained. An example is that if the ship rotates only about the yaw angle,
laser technology may not observe the change due to the nature of laser technology.
The same applies to sway and surge along a plane.

It would need additional sensor methods in order to observe these changes. If the
system does not have these DOFs established, it may be difficult for the robot arm
to know where to place the load as yaw, surge, and sway can not be established.

During the process of loading on and off cargo, the sensor system needs to measure
different areas as the ship, cargo and area of interest change over time. A system able
to detect and steer the lasers to the area of interest is needed. It may require motor
control to steer the laser sensor and an object detection system to point towards the
area of interest.

Another complication is that the sensor system only sees the laser points, so if there
are obstacles between the euclidean points generated by the lasers, it cannot observe
this. A laser pattern that is sufficiently dense and a large enough FOV is needed
in order to clear all space in landing procedures. A circumstance where this is
illustrated can be seen in Figure (33).
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Figure 33: Low density laser system may not detect obstacles like the cylinder on
the plane. More points may help solving it, but is more expensive and requires more
precision

3.1.2 3D Camera

3D camera entails studying sensors that produce RGB-D data like Stereo Vision,
2D camera with structured light.

Generating a 3D point cloud with calibrated stereo vision or camera with structured
light would provide the opportunity to use RGB-D data, where D is for depth.
It could give measurements of 3D coordinates of both the ship and cargo. The
requirement for the sensor system should be precise at an operating range of 3-15
meters.

The Intel 415’s datasheet states the hardware has ≤ 2% precision with a range of
up to 2 meters at Table 4-9, page 66 in datasheet [56]. Its measurement frequency
is z.

Consider a high-end 3D camera. Zivid has a documented precision of roughly 5000
µm at a range of 5 meters with an error of precision exponentially increasing by
distance. Its measurement frequency is z with this hardware.
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Figure 34: Zivid Large 3D camera’s datasheet [27] describing accuracy over distance

It seems that the 3D cameras may be unsuited to this task primarily due to operating
range. It is suspected that the bandwidth for a continuous live feed of 3D data may
be a limiting factor unless an industrial GPU is used and the processing time might
be too slow. The 3D camera may also face challenges in outdoor environments with
shiny surfaces in various degrees, depending on several factors: lighting, surface
material, weather conditions, and more. It is assumed that these conditions will
lead to a decrease in the precision of the sensor.

A downside of this sensor, not unlike other options, is that it still requires a method
to distinguish between what cargo is and what the ship is in terms of tracking.

Suppose a 3D point cloud could be established accurately at a range of roughly
3-15 meters, and the data per measurement would be a lot less (for example, a
low-density cloud point). In that case, one still needs to track and distinguish the
cargo for deloading operations and track the ship when loading onto the ship. So,
an algorithm to track the object of interest is still needed.

3.1.3 Digital 2D Camera

The 2D digital camera provides information described in the pinhole camera model.
The data will output data as an image plane in 3 layers, each describing the color
intensity of RGB colors. It will not have sensor capabilities of measuring 3D data,
but methods such as PnP can be utilized in conjunction with RGB input from a 2D
camera to calculate 3D data. This type of sensor depends on feature extraction to
calculate 3D data, which can be done numerous ways.

The Spatial resolution must also be high enough for its purpose. This project aims
at distances of up to 15 meters. A standard camera is widescreen and is commonly
comes with an aspect ratio of 16:9, 16:10, 4:3. An important notation is that the
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coarsest spatial resolution in these common aspect ratios is the vertical axis. This
axis is assumed to be the least precise axis in terms of spatial resolution.

A critical notation is that one can decide to change a camera with the pixel reso-
lution of 640 x 480 (4:3 ratio) to, for example, 3840 x 2160 (16:9) will significantly
increase the computational cost. For the first camera, 640 x 480 corresponds to 0.3
Megapixels, and the latter is 8.3 Megapixels. The matrix size has become 27.67
larger, but the spatial resolution is 2160/480 = 4.5 times larger on the vertical axis.
The bottleneck may become hardware that cannot process that much information
due to RAM shortage or computational power.

3.2 Solution

The problem requires a fast system that can target the object of interest and track
it, preferably by constraining all 6DOFs, pitch, yaw, roll, surge, sway, and heave
at an operating range from 3-15 meters. This report has been focusing on a low
computational cost system that can calculate 6DOFs frequently. Based on the re-
quirements of operation range and speed, using PnP with a relatively low number
of points, low image resolution, and a lightweight feature extractor is deemed a
feasible solution to track objects. Using a lightweight deep learning algorithm in
computational cost can be used for feature extraction in conjunction with a PnP
solver with few matching points to solve 6D pose estimation for cargo. Using deep
learning for feature extraction can also help to increase the robustness of the feature
extraction problem in various settings, such as time of day and weather conditions
based on its training dataset. Varying the dataset to generalize localization and
objectification in different settings is assumed to increase the system’s robustness.
Using a PnP solver for calculation of pose estimation can be lightweight in terms of
the designer can choose n ≥ 6 to solve it. Increasing the number n will increase its
robustness at the expense of computational cost, but having relatively few points
decreases the time delay. The system’s precision is assumed to depend significantly
on the precision of the feature extractor of the deep learning model for image point
localization, pixel resolution in the camera and the time delay.

The following Section (4) will introduce a method to track the container. The
experiment will use deep learning to predict a planar surface on the standardized
container. It is intended that the camera shall be placed somewhere on the crane
or platform, similar to what is illustrated in Figure (31), above the container to
track so it will have clear visibility of the ceiling of the container. This makes the
environment more controlled as the perspective will be relatively similar from each
operation. Using deep learning to identify the rectangle that is the container ceiling
will solve the problem of targeting the object of interest and track it. A keypoint
detection algorithm is made off a more classic computer vision corner detector after
the AI object feature extraction has been applied to increase the accuracy of the
image points matching with the 3D object points model. The pipeline(35) can be
seen in the next section (4) .
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4 Experiments

To order to achieve pose estimation T c
o between the camera frame and object frame

with a PnP solution, 2 parameters are required, as explained in Section (2.3).

• The normalized image coordinates s̃i

• 3D object points r̃oo,i

The normalized image coordinates s̃i are obtained by using with the use of the
intrinsic camera parameters and pixel coordinates by using the relationship p̃ = Ks̃
that is explained in Equation (2.1). So, now it is required to obtain 2D image point
and the intrinsic camera parameters K + distortion coefficients. In the following
sections, it will be explained how all parameters was obtained.

The Flowchart (35) illustrates the pipeline of the system and the Figures (36) and
(37) illustrates the image output of all steps of the system.

Monocular
CameraStart Image Mask

R-CNN

instance
segmented
image

gftt()Image
pointsPnPFinish

output input

output

input

outputinput

Figure 35: Pipeline of the system
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Figure 36: Original image with 640x480 (left) used as input to Mask R-CNN +gftt().
Image after Mask R-CNN with custom post processing filter (right).

Figure 37: Left image is after gftt() is used to find corners. Right image is of
Orthogonal axis drawn onto object based on data from calculated rotation matrix.

4.1 2D image point Extraction

The normalized image coordinates s̃i is used in order to solve the extrinsic camera
parameters between the camera frame and the object frame is the 2D image points
projected onto the image plane that corresponds to the 3D object points.

The 3D generated model was based on 4 key points in each corner of the ceiling.
To solve the transformation, normalized image coordinates s̃i correspondences must
be found and matched as shown in Figure (54). An AI approach in conjunction
with a more classical CV corner detector was used. The machine learning algorithm
is the well-known Mask RCNN, and its function is feature extraction. Following
is the corner detector goodFeaturesToTrack() or gftt() for short. It was compared
to other algorithms such as Harris Corner Detector, but gftt() outperformed it in
precision in almost every experimental trial in this report. After classifying and
localizing the object of interest in the image with Mask RCNN to alter the image,
the altered image was used as input for the corner detector. From there, the corner
detector from OpenCV goodFeaturesToTrack() is used. If 4 corners are found, an
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array containing these image points in a random order will be passed as arguments
into pixelSorting(), which is an algorithm created to sort the image points so it will
correspond to the order of objpoints() array that contains all 3D world coordinates
in the object frame, explained in Section (4.3). After all the parameters are sorted
and found, it is used in the P4P algorithm. The P4P algorithm returns rotation
matrix and translation vector with respect to camera frame relative to object frame.

The plane may have multiple solutions, depending on the pixel sorting. In order
to correct this, the function correctsRmatrix() adjusts for this, explained in Section
(4.1.4). First, it asserts that the rotation matrix is a valid rotation matrix by
RT × R = I with a precision of 1E-6. Then, the algorithm checks the diagonals
positives and negatives and rotates the matrix into a positive orientation.

4.1.1 Detectron2

"Detectron2 is Facebook AI Research’s next generation software system that imple-
ments state-of-the-art object detection algorithms. It is a ground-up rewrite of the
previous version, Detectron, and it originates from maskrcnn-benchmark."[57]

In Detectron2, one has the opportunity to implement different types of detection
algorithms and compose it as one sees fit. One can see in the Appendix (A) on how
Detectron2 was implemented in this report. It is suggested to follow the installation
manual from Detectron2’s Github [57], but the installation guide might not always
work for everyone since some of the middleware is hardware dependant and one may
not have the same hardware as the authors.

4.1.2 Mask R-CNN

Assuming Detectron2 was successfully installed, a training script is created in order
to start training and testing AI models.

In this instance, Google Colab (an overlay of Jupyter notebook) is primarily utilized
due to its interfaces with Tensorboard, a toolkit for surveying different plots of
metrics of the trained model and it’s used for fast testing of scripts.

It is programmed in python language with .ipynb file format. Following is a series
of the code utilized to train the instance segmentation model with Mask R-CNN.
The initial setup is heavily inspired by the work of Detectron2’s "getting started"
[57] and the work of gilbert Tanner [58].

Modelzoo is a script in detectron2 that makes it easier to load in initial weights
from state-of-the-art models for object detection, instance segmentation, panoptic
segmentation and more.
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1 import torch, torchvision
2 import detectron2
3 from detectron2.utils.logger import setup_logger
4 setup_logger()
5

6 # import some common libraries
7 import numpy as np
8 import cv2
9 import matplotlib.pyplot as plt

10 import os
11 import json
12 import random
13 from matplotlib import pyplot as plt
14

15 # import some common detectron2 utilities
16 from detectron2 import model_zoo
17 from detectron2.engine import DefaultPredictor
18 from detectron2.config import get_cfg
19 from detectron2.utils.visualizer import Visualizer #For drawing

prediction onto images↪→

20 from detectron2.data import MetadataCatalog, DatasetCatalog
21 from detectron2.structures import BoxMode
22 from detectron2.engine import DefaultTrainer
23 from detectron2.utils.visualizer import ColorMode
24 from detectron2.utils.visualizer import GenericMask
25 from google.colab.patches import cv2_imshow # replaced from

cv2.imshow() when using google colab↪→

26 #import detectron2.utils.visualizer #suppressed but untouched. It was
to check whether the dictionary was loaded properly. After training
it has been replaced by another custom visualizer class, but not
overwritten.

↪→

↪→

↪→

The train/valid/test data was annotated using the annotation software labelme,
then it was structured inside a folder like this:

dir:train
file: *.jpg
file: *.json

dir:valid
file: *.jpg
file: *.json

dir:test
file: *.jpg

From there, a python script Labelme2coco3 was used to convert the data structure
of the .json files into the coco format. This is done because one can utilize function
associated to coco, including data registration and evaluation. The function reg-

3https://pypi.org/project/labelme2coco/
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ister_coco_instances(name, metadata, json_file, image_root)): registers data for
training as shown below.

1 from detectron2.data.datasets import register_coco_instances
2 register_coco_instances("containerCeiling_train", {},

"/content/testrig1v2Annetvalid/train/train.json",
"/content/testrig1v2Annetvalid/train/")

↪→

↪→

3 register_coco_instances("containerCeiling_valid", {},
"/content/testrig1v2Annetvalid/valid/valid.json",
"/content/testrig1v2Annetvalid/valid")

↪→

↪→

4 register_coco_instances("containerCeiling_test", {},
"/content/testrig1v2Annetvalid/valid/valid.json",
"/content/testrig1v2Annetvalid/test")

↪→

↪→

5

6 containerCeiling_metadata =
MetadataCatalog.get("containerCeiling_train")↪→

7 dataset_dicts = DatasetCatalog.get("containerCeiling_train")

After the metadata has been created in a dictionary, a new cell in .ipynb will test
if the data has been loaded correctly. This is done by using the Visualizer class to
print out the image with its corresponding annotation. It takes 3 randomly sampled
images and prints the output with annotations. It is a verification step to see if the
data was properly loaded. It is not necessary to train the model itself.

1 dataset_dicts = get_containerCeiling_dicts("containerCeilingV3/train")
2 for d in random.sample(dataset_dicts, 3):
3 img = cv2.imread(d["file_name"])
4 v = Visualizer(img[:, :, ::-1], metadata=containerCeiling_metadata,

scale=0.5)↪→

5 v = v.draw_dataset_dict(d)
6 plt.figure(figsize = (14, 10))
7 plt.imshow(cv2.cvtColor(v.get_image()[:, :, ::-1],

cv2.COLOR_BGR2RGB))↪→

8 plt.show()

Figure 38: example of output of cell
above. This image is loaded correctly

Figure 39: Only objects with full visibil-
ity of all corners should be accepted.
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When the data has been verified to been loaded into the dictionary properly, then the
configuration class get_cfg() shall set the settings for this training. The get_cfg()
has its default settings, and it’s up to the user to overwrite these configurations with
its own parameters.

Used mask rcnn R 50 FPN as the configuration file. It contains information about
which configurations shall be used in training, including hyperparameters and more.

Transfer learning was used. The weights from COCO-InstanceSegmentation/
mask_rcnn_R_50_FPN_3x.yaml was utilized here. The first two layers then
frozen, so the weights will not adjust during training. One class was registered,
which is containerCeiling. The model will train to learn to predict this class. After
trial and error, 1500 training iterations seem fine with the given dataset based on
the metrics and testing.

1 cfg = get_cfg() #create an object from class get_cfg()
2 cfg.merge_from_file(model_zoo.get_config_file(
3 "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
4 cfg.DATASETS.TRAIN = ("containerCeilingV3_train",)
5 cfg.DATASETS.TEST = ()
6 cfg.DATALOADER.NUM_WORKERS = 2
7 cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(

"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")↪→

8 cfg.SOLVER.IMS_PER_BATCH = 2
9 cfg.SOLVER.BASE_LR = 0.00025

10 cfg.SOLVER.MAX_ITER = 1500
11 cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
12

13 os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
14 trainer = DefaultTrainer(cfg)
15 trainer.resume_or_load(resume=False)
16 trainer.train()

The full config object is listed in Appendix (D)

The model has been trained with the configurations mentioned above. From here,
more parameters from the default configurations are being overwritten by new pa-
rameters that are used in inference. For example, the weights from training are
used, and the confidence score must be 0.9 in order to show prediction. In order to
focus on only one object at once, a restriction of one detection per image is enforced.
The prediction with the highest confidence score is shown. The inference is to be
tested on images from cfg.DATASETS.TEST. DefaultPredictor is chosen with the
updated instance of cfg.
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1 cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
2 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.9
3 cfg.TEST.DETECTIONS_PER_IMAGE = 1 #maximum number of predictions in

each image↪→

4 cfg.DATASETS.TEST = ("containerCeiling_test", )
5 predictor = DefaultPredictor(cfg)

Up to now, the class Visualizer that was imported in the code cell was used for
asserting that the data was loaded correctly in the dictionary "...". From now on,
the Visualizer class has been modified, and the full customized Visualizer class can
be found in Appendix (B). The changes that have been made are all pixel values
that are not a part of the prediction are set to a pixel value in RGB scale (0,0,0).
The instance of the prediction is assigned a random color that is not black (0,0,0).
Also, the opacity of the prediction has been set to 100%.

The following cell reads an image, uses the predictor from DefaultPredictor(cfg)
with the object cfg.

1 dataset_dicts = get_containerCeiling_dicts('containerCeilingV3/test')
2

3 im = cv2.imread( "containerCeilingV3/test/640x480_attempt1_300mm.jpg")
4 im2 = im # copy original
5

6 outputs = predictor(im)
7 v = Visualizer(im[:, :, ::-1],
8 metadata=containerCeiling_metadata,
9 scale=1,

10 instance_mode=ColorMode.IMAGE_BW
11 )
12 v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
13 plt.figure(figsize = (14, 10))
14 plt.imshow(cv2.cvtColor(v.get_image()[:, :, ::-1], cv2.COLOR_BGR2RGB))
15 plt.show()
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Now it should end up having a prediction with a custom filter looking like what is
shown in Figure (41):

Figure 40: Original image Figure 41: Image after instance predic-
tion and custom post processing
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4.1.3 goodFeaturesToTrack()

This new post-processed image is used as an input to a more classical CV approach
to finding key points, which in this circumstance is the four corners in the planar
surface. A corner detector from OpenCV named goodFeaturesToTrack() or gftt()
for short was used. The upper bound for allowable corners detected in an image
was set to 4, and a minimum distance between two corner detections is set to 30
pixels. The images that are passed into gftt() need to be in a grayscale format, so a
conversion is used. After a maximum of four corners is detected, the image points
are stored as integers and also printed and drawn onto the image. This way, the
test results can be analyzed more closely.

In 1994, J. Shi and C. Tomasi modified the Harris Corner Detector named Good
Features To Track. According to the OpenCV documentation [28], the Harris Corner
Detector has a scoring function:

R = λ1λ2 − k(λ1 + λ2)
2 (41)

Shi-Tomasi’s alteration:
R = min(λ1, λ2) (42)

This leads to that both λ1 and λ2 must surpass a certain threshold in order for the
algorithm to acknowledge it as a corner. The algorithm from open CV passes 4
parameters:

R = λ1λ2 − k(λ1 + λ2)
2 (43)

Shi-Tomasi’s alteration:
R = min(λ1, λ2) (44)

This leads to that both λ1 and λ2 must surpass a certain threshold in order for the
algorithm to acknowledge it as a corner. The algorithm from open CV passes 4
parameters:

• Grayscale image (matrix)

• number of detectable corners (integer)

• Quality level of corner detected (value between 0-1)

• minimum distance between each pixel
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Figure 42: When λ1 and λ2 is greater that λmin, then it is considered a corner. The
green rectangle represents a detected corner under a given threshold. Figure from
[28]

1 pred_im = cv2.cvtColor(v.get_image()[:, :, ::-1], cv2.COLOR_BGR2RGB)
2 gray = cv2.cvtColor(pred_im,cv2.COLOR_BGR2GRAY)
3

4 #cv2.goodFeaturesToTrack(matrix, FEATURE_DETECT_MAX_CORNERS,
FEATURE_DETECT_QUALITY_LEVEL, FEATURE_DETECT_MIN_DISTANCE)↪→

5 corners = cv2.goodFeaturesToTrack(gray ,4 ,0.3 ,30, )
6 corners = np.array(corners, dtype= int) #convert into integers for

image plane↪→

7 goodCorners = corners
8

9 #Draw circles around the detected corners.
10 for i in corners:
11 x,y = i.ravel()
12 cv2.circle(gray,(x,y),10,255,-1)
13

14 plt.figure(figsize = (14, 10))
15 plt.imshow(gray)#,plt.show()
16 cv2_imshow(im)
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Figure 43: Post gftt(), the output image is expected to look like this

4.1.4 pixelSorting()

Now there is an array list of pixel coordinates from gftt(). An essential part is that
the order of the list of image points and 3D obj points corresponds. The reality is
that the 3D obj points are constant since it is created in an array list, described in
Section (4.3), but the order of 2D image points are random in the gftt()-algorithm.
Therefore, an algorithm to sort these image points in the correct order is conducted.
The algorithm named pixelSorting() accepts an array list consisting of 4 image points
created by gftt(). The intention of the pixelSorting() algorithm is to sort the image
points in a clockwise manner in the image plane.

Figure 44: Example of 4 image points that are stored in variable pixelarray

An arbitrary point may be selected, which in this instance, the reference point (RP)
is the first element in the pixel array. For the example here, let’s state that pt1 is
top left in the Figure (44), pt2 is top right, pt3 is at the bottom right, and pt4 is
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bottom left. The task now is to sort a randomly sorted array of pixel points into
the order numpy.array([pt1, pt2, pt3, pt4]).

Figure 45: Red circle is illustrated as the arbitrary reference point

For this example, let us state the first image point in the pixel array is pt1. This
makes the RP = pt1 in Figure (45). The algorithm calculates vec12, vec13, vec23
and finds the shortest vector from RP. It is assumed that the point closest to the
reference point in the image plane is the same point that is closest in the Euclidean
space that will be tested in this experiment. The point found is stored as pt2 as the
second element in the pixel array.

Figure 46: The point with the shortest vector RP is assumed to be alongside the
short edge of RP. It means relative position with respect to RP has been established
for pt2
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The next step is to identify the third image point, which would be the diagonal
of RP. Initially, when studying the figures above (44)(45), one could identify the
pt3 by calculating the vector furthest away from RP and identify that point as the
diagonal point in Euclidean space. However, due to affine transformations in the
image plane, there are circumstances where this won’t necessarily work.

Figure 47: An instance where the point diagonal to RP is not furthest away

The circumstance here is that vec14 is the longest. As a result of this, a different
approach was needed to counter this. The next step of the pixelSorting algorithm
uses the established points pt1 and pt2 to find the length of vec13, vec14, vec23,
vec24 is calculated. It is assumed here that the longest vector of all these vectors is
a part of the diagonal. This method will identify a point diagonally to another.

Figure 48: Calculates 4 vectors. The longest vector in this instance is the orange
line going from pt2 to pt4

This method compensates for affine transformations and most projective transfor-
mations.

Now, two points have been located and sorted. Since the longest vector is between
two points being diagonal to each other, a relative position has been acquired. I.e.,
in Figure (48), the longest vector is vec24. Given that pt2 and pt4 are located
diagonally to each other, it means that pt1 and pt3 are diagonal to each other.
Another instance is shown in the figure (49), where pt1 and pt3 is the longest vector
and therefore diagonally to each other.
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Figure 49: The longest vector in this instance is the orange line going from pt1 to
pt3

Now, relative positioning between pt1, pt2, pt3 and pt4 has been established. The
pixel array is being sorted into pt1, pt2, pt3, pt4, respectively. The code associated
to pixelSorting()-algorithm follows

1 #Initializing with an arbitrary image point, gftt[0]. Finding image
point with shortest distance↪→

2

3 def getLengthOfVector(vec):
4 assert len(vec) == 2, "The vector needs to be in length of 2. Ex:

[20,21]"↪→

5 return np.sqrt(vec[0]**2 + vec[1]**2)
6

7 def getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray):↪→

8 #returns the point placed diagonally to reference point pt1.
9 dist13 = getLengthOfVector(abs(pt3 - pt1))

10 dist14 = getLengthOfVector(abs(pt4 - pt1))
11 dist23 = getLengthOfVector(abs(pt3 - pt2))
12 dist24 = getLengthOfVector(abs(pt4 - pt2))
13

14 largestDiagonal = max(dist13, dist14, dist23, dist24)
15 if dist13 == largestDiagonal:
16 return pt3
17 elif dist14 == largestDiagonal:
18 return pt4
19 elif dist23 == largestDiagonal:
20 return pt4
21 elif dist24 == largestDiagonal:
22 return pt3
23 else:
24 print("Can't find largest diagonal. Lets return None")
25 return None
26

27 def swap(pt3 , pt4):
28 c = pt3
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29 pt3 = pt4
30 pt4 = c
31 return pt3, pt4
32

33 def pixelSorting(pixelarray):
34 assert len(pixelarray) == 4, "The pixel array needs to have a length

of 4 with this format-> Ex: [[370 88], [254 100], [413 270],
[225 286]] "

↪→

↪→

35

36 vec12 = abs(pixelarray[1] - pixelarray[0])
37 vec13 = abs(pixelarray[2] - pixelarray[0])
38 vec14 = abs(pixelarray[3] - pixelarray[0])
39

40 pt1 = pixelarray[0] #Reference point
41 pt2 = 0
42 pt3 = 0
43 pt4 = 0
44

45 if getLengthOfVector(vec14) > getLengthOfVector(vec12) <
getLengthOfVector(vec13):↪→

46 print("vec12 is smaller than vec13 and vec14. This corresponds to
imagepoint 2 in lst is closest to point 1")↪→

47 pt2 = pixelarray[1]
48

49 #initially start of variables pt3 and pt4
50 pt3 = pixelarray[2]
51 pt4 = pixelarray[3]
52

53 if getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[0] == pt3[0] and
getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[1] == pt3[1]:

↪→

↪→

↪→

54 elif getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[0] == pt4[0] and
getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[1] == pt4[1]:

↪→

↪→

↪→

55 pt3, pt4 = swap(pt3, pt4)
56

57 elif getLengthOfVector(vec14) > getLengthOfVector(vec13) <
getLengthOfVector(vec12):↪→

58 print("vec13 is smaller than vec12 and vec14. This corresponds to
imagepoint 3 in lst is closest to point 1")↪→

59 pt2 = pixelarray[2]
60 #initially setting these variables here
61 pt3 = pixelarray[1]
62 pt4 = pixelarray[3]
63
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64 if getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[0] == pt3[0] and
getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[1] == pt3[1]:

↪→

↪→

↪→

65

66 elif getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[0] == pt4[0] and
getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[1] == pt4[1]:

↪→

↪→

↪→

67 pt3, pt4 = swap(pt3, pt4)
68

69 elif getLengthOfVector(vec13) > getLengthOfVector(vec14) <
getLengthOfVector(vec12):↪→

70 print("vec14 is smaller than vec12 and vec13. This corresponds to
imagepoint 4 in lst is closest to point 1")↪→

71 pt2 = pixelarray[3]
72 #initially setting these variables here
73 pt3 = pixelarray[1]
74 pt4 = pixelarray[2]
75

76

77 if getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[0] == pt3[0] and
getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[1] == pt3[1]:

↪→

↪→

↪→

78 elif getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[0] == pt4[0] and
getPointDiagonallyInProjectedRectangle(pt1, pt2, pt3, pt4,
pixelarray)[1] == pt4[1]:

↪→

↪→

↪→

79 pt3, pt4 = swap(pt3, pt4)
80

81

82 pixelarray = np.array([pt1, pt2, pt3, pt4])
83

84 return pixelarray
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4.2 Camera Calibration

The intrinsic camera parameters, including its distortion coefficients, were estab-
lished by using a camera calibration script, found in Appendix (E) and programmed
by Tiziano Fiorenzani [59] from a template in OpenCV that is based on Zhang’s
method [38]. The camera shall be calibrated before using the other algorithms. The
script itself can be found in Appendix (E)

The webcam of the laptop Lenovo IdeaPad L340 Gaming offers various resolutions,
amongst 640x480 pixel resolution in width and height respectively for image- and
video capture. In order to reproduce the results of the system in this report, it is
advised to use the same camera for training images in the instance segmentation
model, camera calibration and feature extraction for the PnP solver. The Instance
segmentation model will be trained at predicting classes at images with a resolu-
tion of 640x480, which means it will be best suited for this resolution. Therefore,
the intrinsic camera calibration and pixel point feature extractor will use the same
resolution and camera.

A total of 50 images was captured from various distances and orientations. The
transformation T c

co between the checkerboard and camera were also varied in order
to make different distortions more prominent in different images.

The checkerboard used was 9x6 rows and columns, respectively, with a 15 mm length
of each square.

Each image was supervised and either accepted or discarded as input to the camera
calibration script.

Figure 50: Acceptable image. Figure
from [29]

Figure 51: This image was discarded

After the images were controlled, the algorithm started calculating the camera intrin-
sic parameters. The parameters was be stored in .txt-files, named cameraMatrix.txt
and cameraDistortion.txt in an output folder.
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4.3 3D world Point Model

The 3D object points are the 3D generated model of the planar surface. Mea-
surements of the containers were conducted with a digital caliper to find relative
positioning in Euclidean space.

Figure 52: Length of container measured
to be 69.50 mm

Figure 53: Width of container measured
to be 27.94 mm

Furthermore, the object frame’s origin is located in the center of the plane. The
coordinates of the edges are described from this origin in Euclidean space.
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Figure 54: an array is created from these points, with an order starting from top left
and moving horizontally towards the right. Similar to a rolling shutter movement.
The origin of object frame is marked with a red cross

1 #Creating 3D array of Object points in mm
--------------------------------------↪→

2

3 l = 69.50
4 w = 27.94
5 h = 0
6

7 objpoints = np.array([[-w/2, -l/2, 0],
8 [w/2, -l/2, 0],
9 [w/2, l/2, 0],

10 [-w/2, l/2, 0]])
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4.4 P4P Solver

All of the parameters needed for P4P is now assumed to be collected, given one has
followed the setup and executed the program described in Sections (4.1) (4.2)(4.3).This
data can now be used as input to calculate the pose of the object with respect to
the camera frame with P4P.

The image points are sorted relatively to each other and will now be used in P4P
solver along with the rest of the parameters. The image points are converted into
normalized image coordinates with Equation (2.1) and distortion is accounted. The
distortion in Equation (2.4) is accounting for 12 elements of distortion. The camera
calibration script shown in Section (4.2) accounts for radial- and tangential distortion
as these are the usually the most significant. According to openCV’s documentation
[29], radial distortion can be represented as:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

and tangential distortion as

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)]

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy]

The distortion coefficent found in Section (4.2) script are

Distortion coefficients =
[
k1 k2 p1 p2 k3

]
(45)

After accounting for distortion, the pose is now calculated by using the method
presented in Section (2.3).

4.4.1 Multiple solutions

A problem that needs to be addressed is that the pixelSorting() algorithm will choose
one out of 4 points as a reference point. This is expected to be random each time.
The relative position to RP is set, but let’s make some examples here to illustrate
what is happening. It is assumed that True rotation matrix is identity matrix in the
image. It may look something similar to this:

59



Figure 55: expected rotation matrix of container in this image with respect to camera
is identity matrix. Z axis would be equivalent to heave and is positive when pointing
towards the object.

Further, the four different possible solutions will be presented.

Case 1: It chooses the RP as pt1 as illustrated in Figure (44), pt2 as its closest,
pt3 as its diagonal and pt4 as it last point, as illustrated in the Section (4.1.3).
Since it corresponds with the object points given in Section (4.3), the PnP will
return R = I.

Case 2: RP in this case is pt2. It will choose pt1 as it closest point. Diagonal will
be pt4 and the last would be pt3. Since the algorithm expects the RP to be where
pt1 is located, it means that the algorithm will calculate that the plane is flipped π
radians about the y-axis. This means that

R =

−1 0 0
0 1 0
0 0 −1

 (46)

which equivalently means that the container is flipped on its head, which seems
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highly unlikely. Another way to look at it is a rotation of π angles about roll angle,
illustrated in Figure (30), seen from above the ship where the Z-axis is heave.

Case 3: RP in this case is pt3. It will choose pt4 as it closest point. Diagonal will
be pt1 and the last would be pt2. Since the algorithm expects the RP to be where
pt1 is located, it means that the algorithm will calculate that the plane is flipped π
radians about the roll axis. This means that

R =

−1 0 0
0 −1 0
0 0 1

 (47)

which equivalently means that it is rotated about the yaw axis π radians.

Case 4: RP in this case is pt4. It will choose pt3 as it closest point. Diagonal will
be pt2 and the last would be pt1. Since the algorithm expects the RP to be where
pt1 is located, it means that the algorithm will calculate that the plane is flipped π
radians about the y-axis. This means that

R =

1 0 0
0 −1 0
0 0 −1

 (48)

which equivalently means that the object is rotation π radians about the pitch angle.

Due to this, the function correctsRmatrix() is created to compensate for this. If
the rotation matrix R returns a matrix with the signs on the diagonal described in
case 2, 3 or 4, it will flip R π radians towards a solution that is positively oriented
along the diagonal of R so it will be closer to identity matrix for each frame. A
tool to analyze the test results quickly frame by frame, AR is utilized to project the
orthogonal axis on the plane with origin in the reference point RP. It is worth noting
that the red line is projecting normal to the plane, away from the object. The AR
solves the PnP equation with respect to image points with the cv2.projectPoints()
function. From this, vectors based on the image points are drawn onto the image.
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4.5 Test Rig

Figure 56: Setup of the produced Rig after being designed in CAD.

In order to test the accuracy of the system, a test rig was created to test the results.
The test rig is designed to fully define the 6 DOFs of the camera- and object frame.
The camera’s optical line will be perpendicular to the vertical plate it is leaning
against. For the object, the plate can rotate about an axis of the pin. This axis
that this pin creates intersects the center of the container. The reason for this
is that the pinhole’s position relative to the camera frame is known. With this
information, when testing different angles, the translation is expected to remain
the same, independently of how the container is rotated. In this experiment, it is
assumed that the geometry is ideal and can represent the True pose with no errors.
This may not be realistic, but for result comparisons, this is assumed.
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Figure 57: CAD of test rig made in
Solidworks. Green is laptop with inte-
grated webcam. Red is container

Figure 58: CAD of test rig made in
Solidworks. Green is laptop with inte-
grated webcam. Red is container

Figure 59: Yellow arrow illustrates the optical axis aiming at the centre of the ceiling
of the container
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Figure 60: yellow arrow is pointing at
the rotation axis

Figure 61: translation of the object is in-
variant of rotation since the object frame
does not move

4.6 Ground Truth image point extraction

A method to test how well the feature extractor in Section (4.1) is performing, it
will be tested against a benchmark. This benchmark consists of using ground truth
(GT) image points. These will be handpicked in the test image and used as input for
a P4P solver that is explained in Section (2.3). In the software paint, on can hover
over pixels and the coordinates will be printed. The image points were manually
selected and used as input.

(a) A test image used in the experiments
(b) Same image, but zoomed in. The im-
age coordinates were manually extracted
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4.7 Video experiment

In the previous experiment, accuracy was tested. Since the purpose of this test is
tracking, video testing was utilized as a way to evaluate speed performance and
noise. A test featuring accuracy, speed and noise evaluations simultaneously is the
optimal circumstance to evaluate the system. For testing live video, while at the
same time knowing the true pose for each frame can be done but is challenging.
Instead, testing with video input for evaluating the feature extractor and potential
noise is evaluated. This can be done by analyzing the corner detector in each frame.

The test video used can be seen here: Original Test Video4

4https://www.youtube.com/watch?v=cHk5R2saTi4
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5 Results

This section will introduce various results of the system.

5.1 Instance Segmentation Model

Some metrics of the train DL model is being explained before presented. The total
loss function, FP and FP is calculated during training. The precision and recall are
calculated by using the validation set.

5.1.1 Deep Learning Metrics

Total loss function:

The multi-task loss function of Mask R-CNN combines the loss of classification,
localization and segmentation mask:

Ltotal = Lcls + Lbox + Lmask (49)

more details on how each loss functions is calculated, see Appendix (F).

false negative:

If a container ceiling is present in the image and the model predicts no object of the
class in the image, it will return a false negative since it wrongfully claimed there
was no object.

false positive:

If the model predicts an object in the image, but the IoU < 0.5 between GT and
prediction, then it classified as a FP. It is invariant whether there exists an object
in the image, it only checks if it passes the IoU threshold compared to GT set by
the user.

Precision @IoU:

The precision and recall metrics are calculated by running the trained model in the
validation set.

Precision is explained in Section (2.5.5.3) as:

Precision =
TP

TP + FP
(50)

In the false positive explanation above, it was explained that it returns TP or FP
based on a threshold value for IoU. In this experiment, the average precision (AP)
is calculated with different IoU values from all the images in a validation dataset. If
the IoU notation is @IoU = 0.50 : 0 : 95 it means that it calculates AP for all IoU
with and incremental step of 0.05, starting from 0.5 and up to 0.95.
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Recall @IoU:

Recall is explained in (2.5.5.4) as:

Recall =
TP

TP + FN
(51)

The recall in the results includes the average recall (AR) from different IoU thresh-
olds.

5.1.2 Deep Learning Results

Figure 63: Ltotal over i iterations. Ltotal = 0.02679 at 2500 iterations.

Figure 64: Horizontal axis represents number of iterations during training.

67



Precision table

Average Precision (AP) @ IoU=0.50:0.95 = 42.1%
Average Precision (AP) @ IoU=0.50 = 62.1%
Average Precision (AP) @ IoU=0.75 = 56.6%

Recall table

Average Recall (AR) @ IoU=0.50:0.95 = 56.6%

5.2 Accuracy Test P4P

Test with estimated True pose of identity matrix and translation vector (x, y, z) =
(0, 0, 300) in mm.

5.2.1 With instance segmentation and gftt

Achieved results on test image:

rotate π radians about the z-axis

T c
co =


0.999999 0.006836 0.000119 13.410
0.000007 0.999974 0.002432 11.440
−0.000119 −0.002432 0.999974 314.801

0 0 0 1

 (52)

Yaw, Pitch, Roll respectively in degrees:[
−0.1394 0.0004 0.0068

]
(53)

5.2.2 With GT image points

Comparing these results to an instance where GT image points are used as input
instead of instance segmentation + gftt().

T c
co =


0.999999 0.000000 0.000121 13.365
0.000006 0.999997 0.002436 11.640
−0.000121 −0.002436 0.999997 313.758
0.000000 0.000000 0.000000 1.000000

 (54)

Yaw, Pitch, Roll respectively in degrees:[
−0.1396 0.0004 0.0070

]
(55)
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5.2.3 Error between instance segmentation + gftt and GT image points

If there is not error, then
I = RRT (56)

The error between RAIRGT is calculated by expecting an identity matrix I

Rerror = RAIR
T
GT =

0.99999 0.00684 −0.00002
0.00000 0.99998 −0.00000
0.00000 0.00000 0.99997

 (57)

Yaw, Pitch, Roll respectively in degrees:[
0.00023 0.00042 −0.0001

]
(58)

Translation vector
tAItGT = 0.044− 0.21.043 (59)

5.2.4 High resolution 1280x720 GT

An instance where GT image points was used with a higher resolution camera.
Expected True pose is identity matrix for rotation and translation vector (x, y, z) =
(0, 0, 300) in mm.

T c
co =


1.00000 −0.000000 0.000000 −0.9110
−0.000000 1.00000 0.000000 20.3160
−0.000000 −0.000000 1.000000 308.2378

0 0 0 1

 (60)

Yaw, Pitch, Roll respectively in degrees:[
0.0000 −0.0000 0.0000

]
(61)

5.3 Feature extraction

These results include the instance segmentation and gftt(). The results are compar-
ing the GT image points from the test image and the image points extracted from
instance segmentation model and gftt().

GT image points =


321 155
380 155
380 304
322 304

 (62)
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Mask R-CNN + gftt() =


323 156
377 156
378 302
324 302

 (63)

Perror = PAI+gftt − PGT =


2 1
−3 1
−2 −2
2 −2

 (64)

Figure 65: Illustrating relative error between GT and AI + gftt in image plane.
Scale is not precise with respect to image plane of 640x480.
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5.4 Speed Test

Full Pose Estimation5 Speed testing this 120 frames video on local computer with
RTX 3070, including pose estimation and visualizations. To calculate pose of 120
frames took 13.0 seconds. This corresponds to 9.23 FPS.

Instance segmentation + gftt()6 Same video input, but with gftt() and top of in-
stance predictions. Managed to perform at 13 seconds or 9.23 fps.

Instance segmentation7 Time spent instance segmentation on video input with 120
frames was 13.0 seconds when run locally with a single RTX 3070 GPU. This equals
to an inference speed of 9.23 FPS.

Default Visualizer implementation8 This video shows the standard visualizer class
with the trained model. Used 14.0 seconds to predict 120 frames.

5.5 Camera Calibration

Intrinsic camera matrix K:

K =

fx s x0
0 fy y0
0 0 1

 =

662.61758 0.00000 322.27689
0.00000 661.39105 204.96692
0.00000 0.00000 1.00000

 (65)

Distortion coefficients =
[
k1 k2 p1 p2 k3

]
with variables described in Section

(2.4) that accounts for radial- and tangential distortion.
k1
k2
p1
p2
k3

 =


0.02586
−0.06599
0.00118
0.00001
−0.21194

 (66)

5https://youtu.be/kPFWiagKGG8
6https://youtu.be/L5DCWHwRRVU
7https://youtu.be/LKBR3pX3BrY
8https://youtu.be/ID4tRdz48vY
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6 Discussion

6.1 Accuracy

This subsection will present factors that may have affected the accuracy of the
system.

6.1.1 True Pose inaccuracy

(u,v) coordinates had errors. The optical axis is expected to intersect the object
frame in the center of the container ceiling. By checking the test image, it showed
that the object frame was projected in image coordinates (429, 266) instead of
the image center, which is located at the coordinates half of the image resolution
(u, v) = (320, 240). By calculating the spatial resolution regarding the deviation,
one can correct the translation in the (x,y) direction.

T o
co =


0.999999 0.006836 0.000110 13.410
0.000007 0.999974 0.002430 11.440
−0.000119 −0.002432 0.999974 314.801

0 0 0 1

 (67)

The expected true pose from the test was

T c
co =


1 0 0 0
0 1 0 0
0 0 1 300
0 0 0 1

 (68)

After studying the test image, the object frame is located in 350x232. This indicates
that the True pose has some offset in the XY plane. In the image plane it has an
offset from image centre by (u, v) = (30,−8). The optical projection line almost
intersects the long edge. Since the distance from the longest edge to the centre of the
object is w

2
= 27.94

2
= 13.97. This can also be calculated with the spatial resolution

of a pixel and calculate how many pixels are between the projective center line and
object frame. The distance from where the optical centerline intersects the object
and the object frame was y = 5.80mm.

The correction of this data is added to the previous True pose transformation matrix:

TTrue =


1 0 0 13.97
0 1 0 5.80
0 0 1 300
0 0 0 1

 (69)

Calculating the error of True pose and pose estimation from the AI + gftt() with

Rerror = RAI+gfttR
T
True (70)
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, and expecting Identity matrix I, and error in translation with

terror = tAI+gftt − tTrue (71)

would result in a error:

Terror = TAI+gftt − TTrue =


0.99999 0.00684 0.00012 0.56
0.00000 0.99997 0.00243 5.64
−0.00012 −0.00243200 0.999974 14.801

0 0 0 1

 (72)

The rotation matrix Rerror was close to an identity matrix. The most significant
error would be the depth translation of 14.801 mm. It should be noted that using a
higher resolution (1280x720) resulted in an error of 8.238 mm, described in Section
(5.2.4).

6.1.2 Feature Extractor

When considering the pose estimation, the Z-axis measured 315 mm while the true
pose was 300 mm, as shown in Figure (65). This metric showed the most significant
deviance of the 3 translation axis. The image points projected from the AI + gftt
were relatively closer to adjacent image points than the GT image points. By looking
at the Figure (65), it shows that the planar surface has a smaller projection in the
image plane when using AI + gftt than GT. Consequently, this will make it seem
like the 3D object is further away than it is. In the accuracy-test, shown in Section
(5.2.3), the results demonstrated that the object was estimated to be further away
from it than it did with the GT results with its 315 mm instead of 308.6 mm.

In terms of feature extraction, it achieved a mean error in the image plane compared
to GT

Erroravg =

∑
vecAI+gftt

GT

np

= 2.76 (73)

where vecAI+gftt
GT is the length of a vector in the image plane defined by prediction

image point generated from AI + gftt and to the GT image point. The number of
image points used in this calculation is the 4 from the image point list in Equation
(5.3).

Another method of evaluating the accuracy of the feature extractor, a comparison
between the image point extracted and the GT image points, is made by calculating
the error in pose estimations Section (5.2.3). The error was at most 1.043 mm along
the Z-axis. So, just by isolating the instance segmentation and gftt() as a feature
extractor, this has a relatively good accuracy.
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6.1.3 pixelsorter

The pixelSorting()-method has been explained in Section (4.1.4). The algorithm is
based on the length of vectors in the image plane. It exists circumstances where
this algorithm will fail.

This youtube video Container Projections9 illustrates how different perspectives on
the container ceiling is subdued to different projections in the image plane by looking
at it from different angles.

To make an algorithm that sorts and assigns image points corresponding to 3D object
points, one must be aware that it may fail under different projective transformations
if the algorithm is based on vectors and lengths between edges in the image plane.

Ex: Let us assume that the pixel coordinates in all four corners on the container’s
ceiling are already established in an image correctly. So, if one wants to define the
two corners that make up the short edge based on finding the closest points, this
fails in angles such as shown in Figure (66). The pixelSorting()-function calculates
the shortest vector in the image plane, defined by two image points. In this specific
image, the shortest vector projected in the image plane will be two points that form
the longest edge.

Figure 66: In this image, the longest edges are projected as shorter compared to the
short edges in the image plane.

The problem that may occur and is illustrated in the Figure (66), is that in certain
angles between the camera and the planar surface is that the projection in the image
plane may change the shortest distance for the points. At the end of the Video
(6.1.3), the longest edge will actually be projected as shorter than the shortest edge
in the image plane. When designing an algorithm to sort this, this may need to
be solved, depending on what the relative perspective one is encountering. If the
camera is held above, as suggested in Section (3.2), then the camera is assumed to
avoid this problem.

9https://youtu.be/UdprbdvsJL8

74

https://youtu.be/UdprbdvsJL8
https://youtu.be/UdprbdvsJL8


6.1.4 Multiple solutions

In Section (4.1.4), the problem with multiple solutions were discussed. This system
calculates the pose of a planar surface and will be able to return multiple solutions.
This includes

Figure 67: The PnP solver may return inverted Z-orientation due to randomized
reference point in pixelSorting(). Left is the expected orientation in the object
frame with respect to camera. Right image is rotated about red axis.

Figure 68: Rotated 180 degrees about blue axis (left image) and rotated 180 degrees
about green axis (right image)

There are four possible solutions, illustrated in Figures (67)(68). The P4P algorithm
will return one of these solutions. The correctsRmatrix() will flip the plane so that
it has a positive z axis. If the z axis is negative, it would indicate that the camera
would see the plane for underneath. This is an unrealistic circumstance since it
would mean that either the container is flipped upside down or that the camera
can see the image points from underneath, which seems unrealistic for the scenario
where the camera is located with a top plane view.

The function correctsRmatrix() will pass the output rotation matrix and it will check
which orientation the X,Y and Z axis is returning. If the x and z is inverted (negative
sign) and y is positive, the algorithm will rotate π radians about the y axis. The
same applies to circumstances for x as the only positive and a circumstance where
z is the only positive. So, the correctsRmatrix() would correct the matrix so it
outputs an expected orientation where the depth translation value Z is positive and
the camera is looking at the object from above.
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6.1.5 Image resolution

Image input in this experiment is 640x480 with 3 layered channel consisting of RGB
color intensities. This is represented in a 3 Dimensional matrix with a array size of
640x480x3 = 921600. The deviation from the True pose was suspected to partially
be represented by low spatial resolution. If one chooses to increase it to full HD or
1920x1080, it would mean an image input of array size of 1920x1080x3 = 6220800
which is 6220800

921600
= 6.75 larger than the initial image input with 640 x 480 resolution.

The computational cost would increase, but the relative spatial resolution would
also increase by 1920

640
= 3 along x-axis and 1080

480
= 2.25 in the y-direction.

Increasing pixel resolution further to 4k Will increase the image matrices 27 times,
but precision may increase with 4.5 spatial resolution in the v-direction and 6 times
in the u-direction, seen from the image plane.

The effect of adjusting the same webcam to a resolution of 1280x720 was noticeable.
The difference in rotation of the ground truth images between Equation (5.2.2) and
(5.2.4) was considered neglectable, but the translation improved from 313 mm to
308 mm in depth, where the actual depth was 300 mm. It is indicated through
the test results in Section (5.2.4) that increasing the spatial resolution may help
the accuracy of the system at the expense of increased computational cost. The
computational cost can make the system slower.

6.2 Video Performance

The performance of the video was promising but showed some noisy frames. The
DL model could predict an object in all 120 frames with a confidence threshold of
0.9 or higher. Studying the video frame by frame, the system is somewhat prone to
noise as the lines predicted tends to be curvy in certain areas and affect the gftt()-
algorithm. It could make it so that the corner detector returned false positives in
terms of image points that would result in a significant error as illustrated with the
Figure (69).
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Figure 69: Example of how the corner detector find inliers (left) and outliers (right).
The pixel extraction is a cooperation between DL-model and the gftt()-algorithm
and the desired outcome is to find the 4 corners of the rectangle.

6.2.1 Overfitting

The model performed well in trained environments but was over-fitted due to the
problem it had to generalize the containerCeiling-class in other circumstances. It
was attempted to create a more generalized model, but the result was highly curved
lines, see Figure (69). The generalized model managed to be better when detecting a
container in an arbitrary image outside the training dataset. However, it did return
more curved images, which resulted in corner detection, as seen in Figure (69).

Figure 70: A canny image for highlighting of the edges. It shower that a more
generalized model resulted in curvy edges. The corner detector had difficulty finding
the 4 corners of the rectangle with this prediction.

It was suspected that it needed more training to remove the uncertainty it returned
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around the edges in the output image, shown in Figure (70). To solve this, an
over-fitted model was trained to provide a proof of concept where the circumstance
is a well-trained model for an image. It was decided that it should be trained on
the same images it was to be tested on, see Figure (36). The purpose of this is
to provide a model that is optimally trained so one can observe an instance where
an ideal model is trained and can output a high-quality output for the rest of the
system. Surprisingly, the metrics found by examining the model with the validation
set in Section (5.1.2) was achieving a relatively high score with Average precision
and average recall. However, this experiment requires very high precision from the
model in order to extract image points that are close to the ground truth. In some
frames, the image points extracted could look like what is illustrated here in Figure
(69), due to uneven predictions.

6.3 Evaluation

A total evaluation of the system is presented.

This report aimed to develop a computer vision system that can help a robotic
gripper, most likely a hydraulic crane of some sort, to pick up cargo from a ship and
land onto an offshore platform, and vice versa. This system has proven to calculate
the pose of small-scale shipping containers with an accuracy of approximately 15
mm at 9.23 FPS with 640x480 image resolution. Its principle can be used to further
develop a pose estimation for other planar surfaces, including but not limited to
barrels and ship decks.

The translation vector was more accurate when using higher image resolution in
Equation (6.1.5), so it is indicated that in order to increase the accuracy of the
translation vector, higher resolution can be a promising solution.

During testing with video, some frames were noisy. The robustness could increase
by optimizing the AI model or image point extractor as explained in Section (4.1).
The speed of 9.23 fps is assumed to be sufficient for a robotic arm that is assumed
to be a slow hydraulic crane.

It remains a solution for generating the 3D geometry of the platform drop zone. For
now, the computer vision system should be able to pick up containers with the 3D
data, but it does not currently have 3D data about where to land the object. It
still needs an algorithm to solve for pose estimation of the ship to land cargo onto
ships. It requires 3D data of the landing zone for landing cargo onto the platform as
well. The platform 3D data may potentially consist of a predefined 3D point cloud
under the assumption that the orientation and translation are assumed to be fixed
for the platform. Therefore, tracking might not be necessary. The computer vision
system should include safety systems and anti-collision control. However, this is out
of scope for this report.
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6.4 Further Work

3 things will be suggested for improving this system. The first is to upgrade to the
speed of the instance segmentation, as discussed in Section (6.4.1). It will allow an
increase of image resolution, which in return indicated an increase in accuracy in
Section (6.1.5). Second, it is suggested in Section (6.4.3) to improve the stability of
point correspondences with quadrilateral fitting using contours, to filter out noise.
Also, using optical flow for pixel sorting and filtering outliers with the current P4P
solution or with the corners of the quadrilateral-fitted rectangle may stabilize the
rotation matrix, as discussed in Section (6.4.2).

These methods is believed to make the system more accurate and stable for rectangle
planar pose estimation with less than 10 mm error in translation, with the possibility
of doing so in real-time or at least close to.

6.4.1 YOLACT++

Consider upgrading to a new model, such as YOLACT++. [30].

Figure 71: "Speed-performance trade-off for various instance segmentation methods
on COCO. To our knowledge, ours is the first real-time (above 30 FPS) approach
with over 30 mask mAP on COCO test-dev" Figure and quote from [30].

The paper of YOLACT++ [30] documented that it could have a precision close
to state-of-the-art models while running in real-time (>30fps). There are still im-
perfections in mask generation in both YOLACT++ and Mask R-CNN. However,
the speed on YOLACT++ in conjunction with a more robust image point extractor
could make this system significantly more accurate and possibly more than 3x faster.
This faster instance segmentation opens up the opportunity of increasing the image
resolution that was indicated to improve the accuracy of the pose estimation, ac-
cording to the results in Section (6.1.5). It is suggested to set the resolution to 1920
x 1080 initially, and from there, do a parameter study of optimal image resolution
where accuracy and speed are measured.
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6.4.2 Optical Flow

It can be observed in the videos containing gftt() in Section (5.4), recognized by
the circles drawn in the image, that the corner detector is prone to noise in certain
frames. For the first step, instance segmentation is applied. The output of this is
used as input to gftt(). In certain frames, such as in Figure (69), one can observe the
predicted corners is placed along the more curvy edges, created by the DL-model.
The system can benefit from using a system that consider the previous frames when
predicting the pixel coordinates in the next one in order to filter out these sudden
jumps in the image point location. This can be solved by using optical flow to the
drawn on circles. According to the documentation in OpenCV [60], optical flow
works on assumptions that:

• The pixel intensities of an object do not change between consecutive frames.

• Neighbouring pixels have similar motion.

When using the output of the predicted image with the custom post processed filter,
the pixel intensities remain the same for the pixels that are to be tracked and this
also is valid for its neighbouring pixels. For example, the circles drawn onto the
image here will have the same color intensities for each frame, illustrated in Figure
(37). After the first image frame, this method can also replace the pixelSorting()-
algorithm. The intention of pixelSorting() allocates a pixel coordinate to its cor-
responding 3D object point, but optical flow can allocate the consecutive frames’
image point to the corresponding object point. For the first frame it needs to be
sorted as it has no previous reference but afterwards, the optical flow can control
the noise and image point sorting. Since optical flow works under the assumption
that the color intensity remains the same between frames, then all the corner pixels
can have its own unique color for more lenient pixel Sorting. I.e. the first pixel can
be red ( I.e. RGB= (255,0,0)), the next image point orange, then yellow and so on.
Then the red pixel can correspond to a given object point as illustrated underneath
in Figure (72).
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Figure 72: Optical flow is color based. Using post processing of image input can
give constant color assignments

6.4.3 Quadrilateral fitting

Based on the experiments, increasing the image resolution improved the accuracy of
the translation vector. A supplement to make the solution more robust would be to
increase the number of points used as well, as the translation tended to show some
volatility during testing due to outliers.

Instead of detecting 4 corners, one can use contours to fit a rectangle, also known as
quadrilateral fitting. This method considers more points into the pose estimation, so
the model is assumed to become more stable and more computationally expensive.
The general idea is to include more points so the noise will be reduced if some image
points have a deviation from the ground truth, but with the current model with fps
< 10, it will become a trade-off with speed for stability.
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Figure 73: The custom post processing can be converted using contours generation.
This rectangle can then be used for quadrilateral fitting
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7 Conclusion

This report sought to solve the computer vision aspect of an autonomous offshore
crane lift system. Different requirements were addressed. To solve it, one needs 3D
data about the ship, platform and cargo. The scope of this report was decided to
be narrowed down to cargo tracking.

To track cargo, it was attempted to use deep learning for feature extraction in
conjunction with goodFeaturesToTrack-algorithm from OpenCV, then solve pose
with PnP where n = 4.

To test this system, a small-scale shipping container was used as a test object.
It delivered some promising results with an accuracy of 0.14 degrees and 15 mm,
with a speed of 9.23 fps, given a very well-trained instance segmentation model was
used. Increasing the image resolution from 640x480 to 1280x720 further improved
the accuracy to 8 mm, and 0 degrees error up to the 5th decimal. It was strongly
indicated that this system can benefit for higher image resolution and it should be
implemented.

During testing, it was clear that some noisy image points needed to be filtered out
to make the system more robust. It was discussed different methods for increasing
the robustness such as optical flow and quadrilateral fitting. Further work also
suggests exploring a different instance segmentation model named YOLACT++ due
to its documented accuracy and speed. Combining this new, fast 30 fps instance
segmentation model with higher image resolution, quadrilateral fitting for feature
extracton, and cross-examine the image points with optical flow seems promising to
make the system more accurate, stable and faster.
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Appendix

A Detectron2 Installation

For this project, Detectron2 was used as a platform to train the Mask R-CNN.

"Detectron2 is Facebook AI Research’s next generation software system that imple-
ments state-of-the-art object detection algorithms. It is a ground-up rewrite of the
previous version, Detectron, and it originates from maskrcnn-benchmark."[57]

In order to start out with detectron2 on your local computer, it is highly recom-
mended to start by creating a virtual environment.

In this project, anaconda was used. It enables one to create a virtual environment
where different packages/dependencies can be installed without affecting the global
environment on your personal computer. This way, in case of the installation of your
packages crashes, your computer will not fail on a global- level, such as one is required
to reboot your computer. Worst case scenario with conda installment, your virtual
environment is ruined, and you can create a new environment with the terminal
command "conda create [insert name of venv]". It should be noted that for my
personal computer, some packages were unable to install with the <conda install>
command in the anaconda terminal. A workaround was to use <pip install>, but
it should be noted that pip installing is a python installation and will affect other
python tasks. For the most part, this will be harmless, but in some instances,
packages may be broken due to other dependencies etc. Keeping them in isolated
environments should be the preferred method.

After a conda environment is created, the installation procedure could start. Some
of the packages and other software have dependencies between each other, so if a
package’s version is installed, one needs to install a package that is compatible with
this specific version. Other packages are compatible with certain hardware. So, the
first types of software that were installed were the ones that are hardware dependant
due to the difficulty of working around these.

First, identify what hardware and OS one is using. In this project, OMEN 25L
Desktop GT11-0829no was used. Software must be compatible with the Graphics
card and OS. The reason for this is that the python scripts for training are using
CUDA devices for multiprocessing data. For instance, this computer uses Windows
10 with x86_64 architecture with Nvidia RTX3070. One needs to install a CUDA
driver compatible with this on the NVIDIA homepage for CUDA software. Along
with this, Visual Studio has a C++ compiler that supports CUDA, so the corre-
sponding needs to be downloaded with it. Please follow the instruction found at
NVIDIA.

Next step was to install the Pytorch + dependencies that corresponded with the
CUDA toolkit that was previously installed.

The start was initially promising, but some dependencies that were listed in the
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gettingstarted.md at Detectron2 GitHub [57] may fail for you since because of OS
and/or hardware incompatibility. It was solved with a trial and error approach. The
final list over the virtual environment can be found in Appendix (C).

It was attempted to use Virtual Machine (VM), but the problem is that the VM will
not have 100% access to the GPU since it shares hardware with the host operating
system(OS). If one wants to use a different OS, dual booting is advised. Dual boot
with RTX3000 series GPU ran into errors as of February 2021, and it did not work.
Therefore, against the advice in the GitHub [57], Windows 10 as OS was utilized
with no dual booting setup.
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B Visualizer

1 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2 #Detectron2 is released under Apache2.0 license.
3 import colorsys
4 import logging
5 import math
6 import numpy as np
7 from enum import Enum, unique
8 import cv2
9 import matplotlib as mpl

10 import matplotlib.colors as mplc
11 import matplotlib.figure as mplfigure
12 import pycocotools.mask as mask_util
13 import torch
14 from fvcore.common.file_io import PathManager
15 from matplotlib.backends.backend_agg import FigureCanvasAgg
16 from PIL import Image
17

18 from detectron2.data import MetadataCatalog
19 from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints,

PolygonMasks, RotatedBoxes↪→

20

21

22 from detectron2.utils.colormap import random_color
23

24 logger = logging.getLogger(__name__)
25

26 __all__ = ["ColorMode", "VisImage", "Visualizer"]
27

28

29 _SMALL_OBJECT_AREA_THRESH = 1000
30 _LARGE_MASK_AREA_THRESH = 120000
31 _OFF_WHITE = (1.0, 1.0, 240.0 / 255)
32 _BLACK = (0, 0, 0)
33 _RED = (1.0, 0, 0)
34

35 _KEYPOINT_THRESHOLD = 0.05
36

37

38 @unique
39 class ColorMode(Enum):
40 """
41 Enum of different color modes to use for instance visualizations.
42 """
43

44 IMAGE = 0
45 """
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46 Picks a random color for every instance and overlay segmentations
with low opacity.↪→

47 """
48 SEGMENTATION = 1
49 """
50 Let instances of the same category have similar colors
51 (from metadata.thing_colors), and overlay them with
52 high opacity. This provides more attention on the quality of

segmentation.↪→

53 """
54 IMAGE_BW = 2
55 """
56 Same as IMAGE, but convert all areas without masks to gray-scale.
57 Only available for drawing per-instance mask predictions.
58 """
59

60

61 class GenericMask:
62 """
63 Attribute:
64 polygons (list[ndarray]): list[ndarray]: polygons for this

mask.↪→

65 Each ndarray has format [x, y, x, y, ...]
66 mask (ndarray): a binary mask
67 """
68

69 def __init__(self, mask_or_polygons, height, width):
70 self._mask = self._polygons = self._has_holes = None
71 self.height = height
72 self.width = width
73

74 m = mask_or_polygons
75 if isinstance(m, dict):
76 # RLEs
77 assert "counts" in m and "size" in m
78 if isinstance(m["counts"], list): # uncompressed RLEs
79 h, w = m["size"]
80 assert h == height and w == width
81 m = mask_util.frPyObjects(m, h, w)
82 self._mask = mask_util.decode(m)[:, :]
83 return
84

85 if isinstance(m, list): # list[ndarray]
86 self._polygons = [np.asarray(x).reshape(-1) for x in m]
87 return
88

89 if isinstance(m, np.ndarray): # assumed to be a binary mask
90 assert m.shape[1] != 2, m.shape
91 assert m.shape == (height, width), m.shape
92 self._mask = m.astype("uint8")
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93 return
94

95 raise ValueError("GenericMask cannot handle object {} of type
'{}'".format(m, type(m)))↪→

96

97 @property
98 def mask(self):
99 if self._mask is None:

100 self._mask = self.polygons_to_mask(self._polygons)
101 return self._mask
102

103 @property
104 def polygons(self):
105 if self._polygons is None:
106 self._polygons, self._has_holes =

self.mask_to_polygons(self._mask)↪→

107 return self._polygons
108

109 @property
110 def has_holes(self):
111 if self._has_holes is None:
112 if self._mask is not None:
113 self._polygons, self._has_holes =

self.mask_to_polygons(self._mask)↪→

114 else:
115 self._has_holes = False # if original format is

polygon, does not have holes↪→

116 return self._has_holes
117

118 def mask_to_polygons(self, mask):
119 # cv2.RETR_CCOMP flag retrieves all the contours and arranges

them to a 2-level↪→

120 # hierarchy. External contours (boundary) of the object are
placed in hierarchy-1.↪→

121 # Internal contours (holes) are placed in hierarchy-2.
122 # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from

contours.↪→

123 mask = np.ascontiguousarray(mask) # some versions of cv2 does
not support incontiguous arr↪→

124 res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP,
cv2.CHAIN_APPROX_NONE)↪→

125 hierarchy = res[-1]
126 if hierarchy is None: # empty mask
127 return [], False
128 has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
129 res = res[-2]
130 res = [x.flatten() for x in res]
131 res = [x for x in res if len(x) >= 6]
132 return res, has_holes
133
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134 def polygons_to_mask(self, polygons):
135 rle = mask_util.frPyObjects(polygons, self.height, self.width)
136 rle = mask_util.merge(rle)
137 return mask_util.decode(rle)[:, :]
138

139 def area(self):
140 return self.mask.sum()
141

142 def bbox(self):
143 p = mask_util.frPyObjects(self.polygons, self.height,

self.width)↪→

144 p = mask_util.merge(p)
145 bbox = mask_util.toBbox(p)
146 bbox[2] += bbox[0]
147 bbox[3] += bbox[1]
148 return bbox
149

150

151 class _PanopticPrediction:
152 def __init__(self, panoptic_seg, segments_info):
153 self._seg = panoptic_seg
154

155 self._sinfo = {s["id"]: s for s in segments_info} # seg id ->
seg info↪→

156 segment_ids, areas = torch.unique(panoptic_seg, sorted=True,
return_counts=True)↪→

157 areas = areas.numpy()
158 sorted_idxs = np.argsort(-areas)
159 self._seg_ids, self._seg_areas = segment_ids[sorted_idxs],

areas[sorted_idxs]↪→

160 self._seg_ids = self._seg_ids.tolist()
161 for sid, area in zip(self._seg_ids, self._seg_areas):
162 if sid in self._sinfo:
163 self._sinfo[sid]["area"] = float(area)
164

165 def non_empty_mask(self):
166 """
167 Returns:
168 (H, W) array, a mask for all pixels that have a prediction
169 """
170 empty_ids = []
171 for id in self._seg_ids:
172 if id not in self._sinfo:
173 empty_ids.append(id)
174 if len(empty_ids) == 0:
175 return np.zeros(self._seg.shape, dtype=np.uint8)
176 assert (
177 len(empty_ids) == 1
178 ), ">1 ids corresponds to no labels. This is currently not

supported"↪→
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179 return (self._seg != empty_ids[0]).numpy().astype(np.bool)
180

181 def semantic_masks(self):
182 for sid in self._seg_ids:
183 sinfo = self._sinfo.get(sid)
184 if sinfo is None or sinfo["isthing"]:
185 # Some pixels (e.g. id 0 in PanopticFPN) have no

instance or semantic predictions.↪→

186 continue
187 yield (self._seg == sid).numpy().astype(np.bool), sinfo
188

189 def instance_masks(self):
190 for sid in self._seg_ids:
191 sinfo = self._sinfo.get(sid)
192 if sinfo is None or not sinfo["isthing"]:
193 continue
194 mask = (self._seg == sid).numpy().astype(np.bool)
195 if mask.sum() > 0:
196 yield mask, sinfo
197

198

199 def _create_text_labels(classes, scores, class_names):
200 """
201 Args:
202 classes (list[int] or None):
203 scores (list[float] or None):
204 class_names (list[str] or None):
205

206 Returns:
207 list[str] or None
208 """
209 labels = None
210 if classes is not None and class_names is not None and

len(class_names) > 0:↪→

211 labels = [class_names[i] for i in classes]
212 if scores is not None:
213 if labels is None:
214 labels = ["{:.0f}%".format(s * 100) for s in scores]
215 else:
216 labels = ["{} {:.0f}%".format(l, s * 100) for l, s in

zip(labels, scores)]↪→

217 return labels
218

219

220 class VisImage:
221 def __init__(self, img, scale=1.0):
222 """
223 Args:
224 img (ndarray): an RGB image of shape (H, W, 3).
225 scale (float): scale the input image
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226 """
227 self.img = img
228 self.scale = scale
229 self.width, self.height = img.shape[1], img.shape[0]
230 self._setup_figure(img)
231

232 def _setup_figure(self, img):
233 """
234 Args:
235 Same as in :meth:`__init__()`.
236

237 Returns:
238 fig (matplotlib.pyplot.figure): top level container for all

the image plot elements.↪→

239 ax (matplotlib.pyplot.Axes): contains figure elements and
sets the coordinate system.↪→

240 """
241 fig = mplfigure.Figure(frameon=False)
242 self.dpi = fig.get_dpi()
243 # add a small 1e-2 to avoid precision lost due to matplotlib's

truncation↪→

244 # (https://github.com/matplotlib/matplotlib/issues/15363)
245 fig.set_size_inches(
246 (self.width * self.scale + 1e-2) / self.dpi,
247 (self.height * self.scale + 1e-2) / self.dpi,
248 )
249 self.canvas = FigureCanvasAgg(fig)
250 # self.canvas =

mpl.backends.backend_cairo.FigureCanvasCairo(fig)↪→

251 ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
252 ax.axis("off")
253 ax.set_xlim(0.0, self.width)
254 ax.set_ylim(self.height)
255

256 self.fig = fig
257 self.ax = ax
258

259 def save(self, filepath):
260 """
261 Args:
262 filepath (str): a string that contains the absolute path,

including the file name, where↪→

263 the visualized image will be saved.
264 """
265 if filepath.lower().endswith(".jpg") or

filepath.lower().endswith(".png"):↪→

266 # faster than matplotlib's imshow
267 cv2.imwrite(filepath, self.get_image()[:, :, ::-1])
268 else:
269 # support general formats (e.g. pdf)
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270 self.ax.imshow(self.img, interpolation="nearest")
271 self.fig.savefig(filepath)
272

273 def get_image(self):
274 """
275 Returns:
276 ndarray:
277 the visualized image of shape (H, W, 3) (RGB) in uint8

type.↪→

278 The shape is scaled w.r.t the input image using the
given `scale` argument.↪→

279 """
280 canvas = self.canvas
281 s, (width, height) = canvas.print_to_buffer()
282 if (self.width, self.height) != (width, height):
283 img = cv2.resize(self.img, (width, height))
284 else:
285 img = self.img
286

287 # buf = io.BytesIO() # works for cairo backend
288 # canvas.print_rgba(buf)
289 # width, height = self.width, self.height
290 # s = buf.getvalue()
291

292 buffer = np.frombuffer(s, dtype="uint8")
293

294 # imshow is slow. blend manually (still quite slow)
295 img_rgba = buffer.reshape(height, width, 4)
296 rgb, alpha = np.split(img_rgba, [3], axis=2)
297

298 try:
299 import numexpr as ne # fuse them with numexpr
300

301 visualized_image = ne.evaluate("img * (1 - alpha / 255.0) +
rgb * (alpha / 255.0)")↪→

302 except ImportError:
303 alpha = alpha.astype("float32") / 255.0
304 visualized_image = img * (1 - alpha) + rgb * alpha
305

306 visualized_image = visualized_image.astype("uint8")
307

308 return visualized_image
309

310

311 class Visualizer:
312 """
313 Visualizer that draws data about detection/segmentation on images.
314

315 It contains methods like
`draw_{text,box,circle,line,binary_mask,polygon}`↪→
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316 that draw primitive objects to images, as well as high-level
wrappers like↪→

317

`draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`↪→

318 that draw composite data in some pre-defined style.
319

320 Note that the exact visualization style for the high-level wrappers
are subject to change.↪→

321 Style such as color, opacity, label contents, visibility of labels,
or even the visibility↪→

322 of objects themselves (e.g. when the object is too small) may
change according↪→

323 to different heuristics, as long as the results still look visually
reasonable.↪→

324 To obtain a consistent style, implement custom drawing functions
with the primitive↪→

325 methods instead.
326

327 This visualizer focuses on high rendering quality rather than
performance. It is not↪→

328 designed to be used for real-time applications.
329 """
330

331 def __init__(self, img_rgb, metadata=None, scale=1.0,
instance_mode=ColorMode.IMAGE):↪→

332 """
333 Args:
334 img_rgb: a numpy array of shape (H, W, C), where H and W

correspond to↪→

335 the height and width of the image respectively. C is
the number of↪→

336 color channels. The image is required to be in RGB
format since that↪→

337 is a requirement of the Matplotlib library. The image
is also expected↪→

338 to be in the range [0, 255].
339 metadata (MetadataCatalog): image metadata.
340 instance_mode (ColorMode): defines one of the pre-defined

style for drawing↪→

341 instances on an image.
342 """
343 self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
344 if metadata is None:
345 metadata = MetadataCatalog.get("__nonexist__")
346 self.metadata = metadata
347 self.output = VisImage(self.img, scale=scale)
348 self.cpu_device = torch.device("cpu")
349

350 # too small texts are useless, therefore clamp to 9
351 self._default_font_size = max(
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352 np.sqrt(self.output.height * self.output.width) // 90, 10
// scale↪→

353 )
354 self._instance_mode = instance_mode
355

356 def draw_instance_predictions(self, predictions):
357 """
358 Draw instance-level prediction results on an image.
359

360 Args:
361 predictions (Instances): the output of an instance

detection/segmentation↪→

362 model. Following fields will be used to draw:
363 "pred_boxes", "pred_classes", "scores", "pred_masks"

(or "pred_masks_rle").↪→

364

365 Returns:
366 output (VisImage): image object with visualizations.
367 """
368 boxes = predictions.pred_boxes if predictions.has("pred_boxes")

else None↪→

369 scores = predictions.scores if predictions.has("scores") else
None↪→

370 classes = predictions.pred_classes if
predictions.has("pred_classes") else None↪→

371 labels = _create_text_labels(classes, scores,
self.metadata.get("thing_classes", None))↪→

372 keypoints = predictions.pred_keypoints if
predictions.has("pred_keypoints") else None↪→

373

374 if predictions.has("pred_masks"):
375 masks = np.asarray(predictions.pred_masks)
376 masks = [GenericMask(x, self.output.height,

self.output.width) for x in masks]↪→

377 else:
378 masks = None
379

380 if self._instance_mode == ColorMode.SEGMENTATION and
self.metadata.get("thing_colors"):↪→

381 colors = [
382 self._jitter([x / 255 for x in

self.metadata.thing_colors[c]]) for c in classes↪→

383 ]
384 alpha = 1.0 # her skriver man opacity til masken og dens

innhold. original er alpha = 0.8, men endret den til
1.0

↪→

↪→

385 else:
386 colors = None
387 alpha = 1
388
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389 if self._instance_mode == ColorMode.IMAGE_BW:
390 self.output.img = self._change_color_brightness(color=

_BLACK, brightness_factor=0)↪→

391

392 alpha = 1.0 # her skriver man opacity inne i masken.
originalt er 0.3↪→

393

394 self.overlay_instances(
395 masks=masks,
396 #boxes=boxes,
397 #labels=labels,
398 keypoints=keypoints,
399 assigned_colors=colors,
400 alpha=alpha,
401 )
402 return self.output
403

404 def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.8):
405 """
406 Draw semantic segmentation predictions/labels.
407

408 Args:
409 sem_seg (Tensor or ndarray): the segmentation of shape (H,

W).↪→

410 Each value is the integer label of the pixel.
411 area_threshold (int): segments with less than

`area_threshold` are not drawn.↪→

412 alpha (float): the larger it is, the more opaque the
segmentations are.↪→

413

414 Returns:
415 output (VisImage): image object with visualizations.
416 """
417 if isinstance(sem_seg, torch.Tensor):
418 sem_seg = sem_seg.numpy()
419 labels, areas = np.unique(sem_seg, return_counts=True)
420 sorted_idxs = np.argsort(-areas).tolist()
421 labels = labels[sorted_idxs]
422 for label in filter(lambda l: l <

len(self.metadata.stuff_classes), labels):↪→

423 try:
424 mask_color = [x / 255 for x in

self.metadata.stuff_colors[label]]↪→

425 except (AttributeError, IndexError):
426 mask_color = None
427

428 binary_mask = (sem_seg == label).astype(np.uint8)
429 text = self.metadata.stuff_classes[label]
430 self.draw_binary_mask(
431 binary_mask,
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432 color=mask_color,
433 edge_color=_OFF_WHITE,
434 text=text,
435 alpha=alpha,
436 area_threshold=area_threshold,
437 )
438 return self.output
439

440 def draw_panoptic_seg_predictions(
441 self, panoptic_seg, segments_info, area_threshold=None,

alpha=0.7↪→

442 ):
443 """
444 Draw panoptic prediction results on an image.
445

446 Args:
447 panoptic_seg (Tensor): of shape (height, width) where the

values are ids for each↪→

448 segment.
449 segments_info (list[dict]): Describe each segment in

`panoptic_seg`.↪→

450 Each dict contains keys "id", "category_id",
"isthing".↪→

451 area_threshold (int): stuff segments with less than
`area_threshold` are not drawn.↪→

452

453 Returns:
454 output (VisImage): image object with visualizations.
455 """
456 pred = _PanopticPrediction(panoptic_seg, segments_info)
457

458 if self._instance_mode == ColorMode.IMAGE_BW:
459 self.output.img =

self._create_grayscale_image(pred.non_empty_mask())↪→

460

461 # draw mask for all semantic segments first i.e. "stuff"
462 for mask, sinfo in pred.semantic_masks():
463 category_idx = sinfo["category_id"]
464 try:
465 mask_color = [x / 255 for x in

self.metadata.stuff_colors[category_idx]]↪→

466 except AttributeError:
467 mask_color = None
468

469 text = self.metadata.stuff_classes[category_idx]
470 self.draw_binary_mask(
471 mask,
472 color=mask_color,
473 edge_color=_OFF_WHITE,
474 text=text,
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475 alpha=alpha,
476 area_threshold=area_threshold,
477 )
478

479 # draw mask for all instances second
480 all_instances = list(pred.instance_masks())
481 if len(all_instances) == 0:
482 return self.output
483 masks, sinfo = list(zip(*all_instances))
484 category_ids = [x["category_id"] for x in sinfo]
485

486 try:
487 scores = [x["score"] for x in sinfo]
488 except KeyError:
489 scores = None
490 labels = _create_text_labels(category_ids, scores,

self.metadata.thing_classes)↪→

491

492 try:
493 colors = [random_color(rgb=True, maximum=1) for k in

category_ids]↪→

494 except AttributeError:
495 colors = None
496 self.overlay_instances(masks=masks, labels=labels,

assigned_colors=colors, alpha=alpha)↪→

497

498 return self.output
499

500 def draw_dataset_dict(self, dic):
501 """
502 Draw annotations/segmentaions in Detectron2 Dataset format.
503

504 Args:
505 dic (dict): annotation/segmentation data of one image, in

Detectron2 Dataset format.↪→

506

507 Returns:
508 output (VisImage): image object with visualizations.
509 """
510 annos = dic.get("annotations", None)
511 if annos:
512 if "segmentation" in annos[0]:
513 masks = [x["segmentation"] for x in annos]
514 else:
515 masks = None
516 if "keypoints" in annos[0]:
517 keypts = [x["keypoints"] for x in annos]
518 keypts = np.array(keypts).reshape(len(annos), -1, 3)
519 else:
520 keypts = None
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521

522 boxes = [BoxMode.convert(x["bbox"], x["bbox_mode"],
BoxMode.XYXY_ABS) for x in annos]↪→

523

524 labels = [x["category_id"] for x in annos]
525 colors = None
526 if self._instance_mode == ColorMode.SEGMENTATION and

self.metadata.get("thing_colors"):↪→

527 colors = [
528 self._jitter([x / 255 for x in

self.metadata.thing_colors[c]]) for c in labels↪→

529 ]
530 names = self.metadata.get("thing_classes", None)
531 if names:
532 labels = [names[i] for i in labels]
533 labels = [
534 "{}".format(i) + ("|crowd" if a.get("iscrowd", 0) else

"")↪→

535 for i, a in zip(labels, annos)
536 ]
537 self.overlay_instances(
538 labels=labels, boxes=boxes, masks=masks,

keypoints=keypts, assigned_colors=colors↪→

539 )
540

541 sem_seg = dic.get("sem_seg", None)
542 if sem_seg is None and "sem_seg_file_name" in dic:
543 with PathManager.open(dic["sem_seg_file_name"], "rb") as f:
544 sem_seg = Image.open(f)
545 sem_seg = np.asarray(sem_seg, dtype="uint8")
546 if sem_seg is not None:
547 self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.5)
548 return self.output
549

550 def overlay_instances(
551 self,
552 *,
553 boxes=None,
554 labels=None,
555 masks=None,
556 keypoints=None,
557 assigned_colors=None,
558 alpha=0.5
559 ):
560 """
561 Args:
562 boxes (Boxes, RotatedBoxes or ndarray): either a

:class:`Boxes`,↪→

563 or an Nx4 numpy array of XYXY_ABS format for the N
objects in a single image,↪→
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564 or a :class:`RotatedBoxes`,
565 or an Nx5 numpy array of (x_center, y_center, width,

height, angle_degrees) format↪→

566 for the N objects in a single image,
567 labels (list[str]): the text to be displayed for each

instance.↪→

568 masks (masks-like object): Supported types are:
569

570 * :class:`detectron2.structures.PolygonMasks`,
571 :class:`detectron2.structures.BitMasks`.
572 * list[list[ndarray]]: contains the segmentation masks

for all objects in one image.↪→

573 The first level of the list corresponds to individual
instances. The second↪→

574 level to all the polygon that compose the instance,
and the third level↪→

575 to the polygon coordinates. The third level should
have the format of↪→

576 [x0, y0, x1, y1, ..., xn, yn] (n >= 3).
577 * list[ndarray]: each ndarray is a binary mask of shape

(H, W).↪→

578 * list[dict]: each dict is a COCO-style RLE.
579 keypoints (Keypoint or array like): an array-like object of

shape (N, K, 3),↪→

580 where the N is the number of instances and K is the
number of keypoints.↪→

581 The last dimension corresponds to (x, y, visibility or
score).↪→

582 assigned_colors (list[matplotlib.colors]): a list of
colors, where each color↪→

583 corresponds to each mask or box in the image. Refer to
'matplotlib.colors'↪→

584 for full list of formats that the colors are accepted
in.↪→

585

586 Returns:
587 output (VisImage): image object with visualizations.
588 """
589 num_instances = None
590 if boxes is not None:
591 boxes = self._convert_boxes(boxes)
592 num_instances = len(boxes)
593 if masks is not None:
594 masks = self._convert_masks(masks)
595 if num_instances:
596 assert len(masks) == num_instances
597 else:
598 num_instances = len(masks)
599 if keypoints is not None:
600 if num_instances:
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601 assert len(keypoints) == num_instances
602 else:
603 num_instances = len(keypoints)
604 keypoints = self._convert_keypoints(keypoints)
605 if labels is not None:
606 assert len(labels) == num_instances
607 if assigned_colors is None:
608 assigned_colors = [random_color(rgb=True, maximum=1) for _

in range(num_instances)]↪→

609 if num_instances == 0:
610 return self.output
611 if boxes is not None and boxes.shape[1] == 5:
612 return self.overlay_rotated_instances(
613 boxes=boxes, labels=labels,

assigned_colors=assigned_colors↪→

614 )
615

616 # Display in largest to smallest order to reduce occlusion.
617 areas = None
618 if boxes is not None:
619 areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
620 elif masks is not None:
621 areas = np.asarray([x.area() for x in masks])
622

623 if areas is not None:
624 sorted_idxs = np.argsort(-areas).tolist()
625 # Re-order overlapped instances in descending order.
626 boxes = boxes[sorted_idxs] if boxes is not None else None
627 labels = [labels[k] for k in sorted_idxs] if labels is not

None else None↪→

628 masks = [masks[idx] for idx in sorted_idxs] if masks is not
None else None↪→

629 assigned_colors = [assigned_colors[idx] for idx in
sorted_idxs]↪→

630 keypoints = keypoints[sorted_idxs] if keypoints is not None
else None↪→

631

632 for i in range(num_instances):
633 color = assigned_colors[i]
634 if boxes is not None:
635 self.draw_box(boxes[i], edge_color=color)
636

637 if masks is not None:
638 for segment in masks[i].polygons:
639 self.draw_polygon(segment.reshape(-1, 2), color,

alpha=alpha)↪→

640

641 if labels is not None:
642 # first get a box
643 if boxes is not None:
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644 x0, y0, x1, y1 = boxes[i]
645 text_pos = (x0, y0) # if drawing boxes, put text

on the box corner.↪→

646 horiz_align = "left"
647 elif masks is not None:
648 # skip small mask without polygon
649 if len(masks[i].polygons) == 0:
650 continue
651

652 x0, y0, x1, y1 = masks[i].bbox()
653

654 # draw text in the center (defined by median) when
box is not drawn↪→

655 # median is less sensitive to outliers.
656 text_pos = np.median(masks[i].mask.nonzero(),

axis=1)[::-1]↪→

657 horiz_align = "center"
658 else:
659 continue # drawing the box confidence for

keypoints isn't very useful.↪→

660 # for small objects, draw text at the side to avoid
occlusion↪→

661 instance_area = (y1 - y0) * (x1 - x0)
662 if (
663 instance_area < _SMALL_OBJECT_AREA_THRESH *

self.output.scale↪→

664 or y1 - y0 < 40 * self.output.scale
665 ):
666 if y1 >= self.output.height - 5:
667 text_pos = (x1, y0)
668 else:
669 text_pos = (x0, y1)
670

671 height_ratio = (y1 - y0) / np.sqrt(self.output.height *
self.output.width)↪→

672 lighter_color = self._change_color_brightness(color,
brightness_factor=0.7)↪→

673 font_size = (
674 np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
675 * 0.5
676 * self._default_font_size
677 )
678 self.draw_text(
679 labels[i],
680 text_pos,
681 color=lighter_color,
682 horizontal_alignment=horiz_align,
683 font_size=font_size,
684 )
685
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686 # draw keypoints
687 if keypoints is not None:
688 for keypoints_per_instance in keypoints:
689 self.draw_and_connect_keypoints(keypoints_per_instance)
690

691 return self.output
692

693 def overlay_rotated_instances(self, boxes=None, labels=None,
assigned_colors=None):↪→

694 """
695 Args:
696 boxes (ndarray): an Nx5 numpy array of
697 (x_center, y_center, width, height, angle_degrees)

format↪→

698 for the N objects in a single image.
699 labels (list[str]): the text to be displayed for each

instance.↪→

700 assigned_colors (list[matplotlib.colors]): a list of
colors, where each color↪→

701 corresponds to each mask or box in the image. Refer to
'matplotlib.colors'↪→

702 for full list of formats that the colors are accepted
in.↪→

703

704 Returns:
705 output (VisImage): image object with visualizations.
706 """
707 num_instances = len(boxes)
708

709 if assigned_colors is None:
710 assigned_colors = [random_color(rgb=True, maximum=1) for _

in range(num_instances)]↪→

711 if num_instances == 0:
712 return self.output
713

714 # Display in largest to smallest order to reduce occlusion.
715 if boxes is not None:
716 areas = boxes[:, 2] * boxes[:, 3]
717

718 sorted_idxs = np.argsort(-areas).tolist()
719 # Re-order overlapped instances in descending order.
720 boxes = boxes[sorted_idxs]
721 labels = [labels[k] for k in sorted_idxs] if labels is not None

else None↪→

722 colors = [assigned_colors[idx] for idx in sorted_idxs]
723

724 for i in range(num_instances):
725 self.draw_rotated_box_with_label(
726 boxes[i], edge_color=colors[i], label=labels[i] if

labels is not None else None↪→
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727 )
728

729 return self.output
730

731 def draw_and_connect_keypoints(self, keypoints):
732 """
733 Draws keypoints of an instance and follows the rules for

keypoint connections↪→

734 to draw lines between appropriate keypoints. This follows color
heuristics for↪→

735 line color.
736

737 Args:
738 keypoints (Tensor): a tensor of shape (K, 3), where K is

the number of keypoints↪→

739 and the last dimension corresponds to (x, y,
probability).↪→

740

741 Returns:
742 output (VisImage): image object with visualizations.
743 """
744 visible = {}
745 keypoint_names = self.metadata.get("keypoint_names")

#Originale. denne er byttet med den under↪→

746 #keypoint_names = self.metadata.get("keypoint_names") #
Originale. denne er byttet med den under↪→

747 for idx, keypoint in enumerate(keypoints):
748 # draw keypoint
749 x, y, prob = keypoint
750 if prob > _KEYPOINT_THRESHOLD:
751 self.draw_circle((x, y), color=_RED)
752 if keypoint_names:
753 keypoint_name = keypoint_names[idx]
754 visible[keypoint_name] = (x, y)
755

756 if self.metadata.get("keypoint_connection_rules"):
757 for kp0, kp1, color in

self.metadata.keypoint_connection_rules:↪→

758 if kp0 in visible and kp1 in visible:
759 x0, y0 = visible[kp0]
760 x1, y1 = visible[kp1]
761 color = tuple(x / 255.0 for x in color)
762 self.draw_line([x0, x1], [y0, y1], color=color)
763

764 # draw lines from nose to mid-shoulder and mid-shoulder to
mid-hip↪→

765 # Note that this strategy is specific to person keypoints.
766 # For other keypoints, it should just do nothing
767 try:
768 ls_x, ls_y = visible["left_shoulder"]
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769 rs_x, rs_y = visible["right_shoulder"]
770 mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y +

rs_y) / 2↪→

771 except KeyError:
772 pass
773 else:
774 # draw line from nose to mid-shoulder
775 nose_x, nose_y = visible.get("nose", (None, None))
776 if nose_x is not None:
777 self.draw_line([nose_x, mid_shoulder_x], [nose_y,

mid_shoulder_y], color=_RED)↪→

778

779 try:
780 # draw line from mid-shoulder to mid-hip
781 lh_x, lh_y = visible["left_hip"]
782 rh_x, rh_y = visible["right_hip"]
783 except KeyError:
784 pass
785 else:
786 mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y)

/ 2↪→

787 self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y,
mid_shoulder_y], color=_RED)↪→

788 return self.output
789

790 """
791 Primitive drawing functions:
792 """
793

794 def draw_text(
795 self,
796 text,
797 position,
798 *,
799 font_size=None,
800 color="g",
801 horizontal_alignment="center",
802 rotation=0
803 ):
804 """
805 Args:
806 text (str): class label
807 position (tuple): a tuple of the x and y coordinates to

place text on image.↪→

808 font_size (int, optional): font of the text. If not
provided, a font size↪→

809 proportional to the image width is calculated and
used.↪→

810 color: color of the text. Refer to `matplotlib.colors` for
full list↪→
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811 of formats that are accepted.
812 horizontal_alignment (str): see `matplotlib.text.Text`
813 rotation: rotation angle in degrees CCW
814

815 Returns:
816 output (VisImage): image object with text drawn.
817 """
818 if not font_size:
819 font_size = self._default_font_size
820

821 # since the text background is dark, we don't want the text to
be dark↪→

822 color = np.maximum(list(mplc.to_rgb(color)), 0.2)
823 color[np.argmax(color)] = max(0.8, np.max(color))
824

825 x, y = position
826 self.output.ax.text(
827 x,
828 y,
829 text,
830 size=font_size * self.output.scale,
831 family="sans-serif",
832 bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7,

"edgecolor": "none"},↪→

833 verticalalignment="top",
834 horizontalalignment=horizontal_alignment,
835 color=color,
836 zorder=10,
837 rotation=rotation,
838 )
839 return self.output
840

841 def draw_box(self, box_coord, alpha=0.5, edge_color="g",
line_style="-"):↪→

842 """
843 Args:
844 box_coord (tuple): a tuple containing x0, y0, x1, y1

coordinates, where x0 and y0↪→

845 are the coordinates of the image's top left corner. x1
and y1 are the↪→

846 coordinates of the image's bottom right corner.
847 alpha (float): blending efficient. Smaller values lead to

more transparent masks.↪→

848 edge_color: color of the outline of the box. Refer to
`matplotlib.colors`↪→

849 for full list of formats that are accepted.
850 line_style (string): the string to use to create the

outline of the boxes.↪→

851

852 Returns:
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853 output (VisImage): image object with box drawn.
854 """
855 x0, y0, x1, y1 = box_coord
856 width = x1 - x0
857 height = y1 - y0
858

859 linewidth = max(self._default_font_size / 4, 1)
860

861 self.output.ax.add_patch(
862 mpl.patches.Rectangle(
863 (x0, y0),
864 width,
865 height,
866 fill=False,
867 edgecolor=edge_color,
868 linewidth=linewidth * self.output.scale,
869 alpha=alpha,
870 linestyle=line_style,
871 )
872 )
873 return self.output
874

875 def draw_rotated_box_with_label(
876 self, rotated_box, alpha=0.5, edge_color="g", line_style="-",

label=None↪→

877 ):
878 """
879 Draw a rotated box with label on its top-left corner.
880

881 Args:
882 rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w,

h, angle),↪→

883 where cnt_x and cnt_y are the center coordinates of the
box.↪→

884 w and h are the width and height of the box. angle
represents how↪→

885 many degrees the box is rotated CCW with regard to the
0-degree box.↪→

886 alpha (float): blending efficient. Smaller values lead to
more transparent masks.↪→

887 edge_color: color of the outline of the box. Refer to
`matplotlib.colors`↪→

888 for full list of formats that are accepted.
889 line_style (string): the string to use to create the

outline of the boxes.↪→

890 label (string): label for rotated box. It will not be
rendered when set to None.↪→

891

892 Returns:
893 output (VisImage): image object with box drawn.
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894 """
895 cnt_x, cnt_y, w, h, angle = rotated_box
896 area = w * h
897 # use thinner lines when the box is small
898 linewidth = self._default_font_size / (
899 6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale

else 3↪→

900 )
901

902 theta = angle * math.pi / 180.0
903 c = math.cos(theta)
904 s = math.sin(theta)
905 rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w

/ 2, h / 2)]↪→

906 # x: left->right ; y: top->down
907 rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx +

cnt_y) for (xx, yy) in rect]↪→

908 for k in range(4):
909 j = (k + 1) % 4
910 self.draw_line(
911 [rotated_rect[k][0], rotated_rect[j][0]],
912 [rotated_rect[k][1], rotated_rect[j][1]],
913 color=edge_color,
914 linestyle="--" if k == 1 else line_style,
915 linewidth=linewidth,
916 )
917

918 if label is not None:
919 text_pos = rotated_rect[1] # topleft corner
920

921 height_ratio = h / np.sqrt(self.output.height *
self.output.width)↪→

922 label_color = self._change_color_brightness(edge_color,
brightness_factor=0.7)↪→

923 font_size = (
924 np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5

* self._default_font_size↪→

925 )
926 self.draw_text(label, text_pos, color=label_color,

font_size=font_size, rotation=angle)↪→

927

928 return self.output
929

930 def draw_circle(self, circle_coord, color, radius=3):
931 """
932 Args:
933 circle_coord (list(int) or tuple(int)): contains the x and

y coordinates↪→

934 of the center of the circle.
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935 color: color of the polygon. Refer to `matplotlib.colors`
for a full list of↪→

936 formats that are accepted.
937 radius (int): radius of the circle.
938

939 Returns:
940 output (VisImage): image object with box drawn.
941 """
942 x, y = circle_coord
943 self.output.ax.add_patch(
944 mpl.patches.Circle(circle_coord, radius=radius, fill=True,

color=color)↪→

945 )
946 return self.output
947

948 def draw_line(self, x_data, y_data, color, linestyle="-",
linewidth=None):↪→

949 """
950 Args:
951 x_data (list[int]): a list containing x values of all the

points being drawn.↪→

952 Length of list should match the length of y_data.
953 y_data (list[int]): a list containing y values of all the

points being drawn.↪→

954 Length of list should match the length of x_data.
955 color: color of the line. Refer to `matplotlib.colors` for

a full list of↪→

956 formats that are accepted.
957 linestyle: style of the line. Refer to

`matplotlib.lines.Line2D`↪→

958 for a full list of formats that are accepted.
959 linewidth (float or None): width of the line. When it's

None,↪→

960 a default value will be computed and used.
961

962 Returns:
963 output (VisImage): image object with line drawn.
964 """
965 if linewidth is None:
966 linewidth = self._default_font_size / 3
967 linewidth = max(linewidth, 1)
968 self.output.ax.add_line(
969 mpl.lines.Line2D(
970 x_data,
971 y_data,
972 linewidth=linewidth * self.output.scale,
973 color=color,
974 linestyle=linestyle,
975 )
976 )
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977 return self.output
978

979 def draw_binary_mask(
980 self, binary_mask, color=None, *, edge_color=None, text=None,

alpha=0.5, area_threshold=0↪→

981 ):
982 """
983 Args:
984 binary_mask (ndarray): numpy array of shape (H, W), where H

is the image height and↪→

985 W is the image width. Each value in the array is either
a 0 or 1 value of uint8↪→

986 type.
987 color: color of the mask. Refer to `matplotlib.colors` for

a full list of↪→

988 formats that are accepted. If None, will pick a random
color.↪→

989 edge_color: color of the polygon edges. Refer to
`matplotlib.colors` for a↪→

990 full list of formats that are accepted.
991 text (str): if None, will be drawn in the object's center

of mass.↪→

992 alpha (float): blending efficient. Smaller values lead to
more transparent masks.↪→

993 area_threshold (float): a connected component small than
this will not be shown.↪→

994

995 Returns:
996 output (VisImage): image object with mask drawn.
997 """
998 if color is None:
999 color = random_color(rgb=True, maximum=1)

1000 color = mplc.to_rgb(color)
1001

1002 has_valid_segment = False
1003 binary_mask = binary_mask.astype("uint8") # opencv needs

uint8↪→

1004 mask = GenericMask(binary_mask, self.output.height,
self.output.width)↪→

1005 shape2d = (binary_mask.shape[0], binary_mask.shape[1])
1006

1007 if not mask.has_holes:
1008 # draw polygons for regular masks
1009 for segment in mask.polygons:
1010 area = mask_util.area(mask_util.frPyObjects([segment],

shape2d[0], shape2d[1]))↪→

1011 if area < (area_threshold or 0):
1012 continue
1013 has_valid_segment = True
1014 segment = segment.reshape(-1, 2)
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1015 self.draw_polygon(segment, color=color,
edge_color=edge_color, alpha=alpha)↪→

1016 else:
1017 rgba = np.zeros(shape2d + (4,), dtype="float32")
1018 rgba[:, :, :3] = color
1019 rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
1020 has_valid_segment = True
1021 self.output.ax.imshow(rgba)
1022

1023 if text is not None and has_valid_segment:
1024 # TODO sometimes drawn on wrong objects. the heuristics

here can improve.↪→

1025 lighter_color = self._change_color_brightness(color,
brightness_factor=0.7)↪→

1026 _num_cc, cc_labels, stats, centroids =
cv2.connectedComponentsWithStats(binary_mask, 8)↪→

1027 largest_component_id = np.argmax(stats[1:, -1]) + 1
1028

1029 # draw text on the largest component, as well as other very
large components.↪→

1030 for cid in range(1, _num_cc):
1031 if cid == largest_component_id or stats[cid, -1] >

_LARGE_MASK_AREA_THRESH:↪→

1032 # median is more stable than centroid
1033 # center = centroids[largest_component_id]
1034 center = np.median((cc_labels == cid).nonzero(),

axis=1)[::-1]↪→

1035 self.draw_text(text, center, color=lighter_color)
1036 return self.output
1037

1038 def draw_polygon(self, segment, color, edge_color=None, alpha=0.5):
1039 """
1040 Args:
1041 segment: numpy array of shape Nx2, containing all the

points in the polygon.↪→

1042 color: color of the polygon. Refer to `matplotlib.colors`
for a full list of↪→

1043 formats that are accepted.
1044 edge_color: color of the polygon edges. Refer to

`matplotlib.colors` for a↪→

1045 full list of formats that are accepted. If not
provided, a darker shade↪→

1046 of the polygon color will be used instead.
1047 alpha (float): blending efficient. Smaller values lead to

more transparent masks.↪→

1048

1049 Returns:
1050 output (VisImage): image object with polygon drawn.
1051 """
1052 if edge_color is None:
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1053 # make edge color darker than the polygon color
1054 if alpha > 0.8:
1055 edge_color = self._change_color_brightness(color,

brightness_factor=-0.7)↪→

1056 else:
1057 edge_color = color
1058 edge_color = mplc.to_rgb(edge_color) + (1,)
1059

1060 polygon = mpl.patches.Polygon(
1061 segment,
1062 fill=True,
1063 facecolor=mplc.to_rgb(color) + (alpha,),
1064 edgecolor=edge_color,
1065 linewidth=max(self._default_font_size // 15 *

self.output.scale, 1),↪→

1066 )
1067 self.output.ax.add_patch(polygon)
1068 return self.output
1069

1070 """
1071 Internal methods:
1072 """
1073

1074 def _jitter(self, color):
1075 """
1076 Randomly modifies given color to produce a slightly different

color than the color given.↪→

1077

1078 Args:
1079 color (tuple[double]): a tuple of 3 elements, containing

the RGB values of the color↪→

1080 picked. The values in the list are in the [0.0, 1.0]
range.↪→

1081

1082 Returns:
1083 jittered_color (tuple[double]): a tuple of 3 elements,

containing the RGB values of the↪→

1084 color after being jittered. The values in the list are
in the [0.0, 1.0] range.↪→

1085 """
1086 color = mplc.to_rgb(color)
1087 vec = np.random.rand(3)
1088 # better to do it in another color space
1089 vec = vec / np.linalg.norm(vec) * 0.5
1090 res = np.clip(vec + color, 0, 1)
1091 return tuple(res)
1092

1093 def _create_grayscale_image(self, mask=None):
1094 """
1095 Create a grayscale version of the original image.
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1096 The colors in masked area, if given, will be kept.
1097 """
1098 img_bw = self.img.astype("f4").mean(axis=2)
1099 img_bw = np.stack([img_bw] * 3, axis=2)
1100 if mask is not None:
1101 img_bw[mask] = self.img[mask]
1102 return img_bw
1103

1104 def _change_color_brightness(self, color, brightness_factor=-1):
1105 """
1106 Depending on the brightness_factor, gives a lighter or darker

color i.e. a color with↪→

1107 less or more saturation than the original color.
1108

1109 Args:
1110 color: color of the polygon. Refer to `matplotlib.colors`

for a full list of↪→

1111 formats that are accepted.
1112 brightness_factor (float): a value in [-1.0, 1.0] range. A

lightness factor of↪→

1113 0 will correspond to no change, a factor in [-1.0, 0)
range will result in↪→

1114 a darker color and a factor in (0, 1.0] range will
result in a lighter color.↪→

1115

1116 Returns:
1117 modified_color (tuple[double]): a tuple containing the RGB

values of the↪→

1118 modified color. Each value in the tuple is in the [0.0,
1.0] range.↪→

1119 """
1120 assert brightness_factor >= -1.0 and brightness_factor <= 1.0
1121 color = mplc.to_rgb(color)
1122 polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
1123 modified_lightness = polygon_color[1] + (brightness_factor *

polygon_color[1])↪→

1124 modified_lightness = 0.0 if modified_lightness < 0.0 else
modified_lightness↪→

1125 modified_lightness = 1.0 if modified_lightness > 1.0 else
modified_lightness↪→

1126 modified_color = colorsys.hls_to_rgb(polygon_color[0],
modified_lightness, polygon_color[2])↪→

1127 return modified_color
1128

1129 def _convert_boxes(self, boxes):
1130 """
1131 Convert different format of boxes to an NxB array, where B = 4

or 5 is the box dimension.↪→

1132 """
1133 if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes):
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1134 return boxes.tensor.numpy()
1135 else:
1136 return np.asarray(boxes)
1137

1138 def _convert_masks(self, masks_or_polygons):
1139 """
1140 Convert different format of masks or polygons to a tuple of

masks and polygons.↪→

1141

1142 Returns:
1143 list[GenericMask]:
1144 """
1145

1146 m = masks_or_polygons
1147 if isinstance(m, PolygonMasks):
1148 m = m.polygons
1149 if isinstance(m, BitMasks):
1150 m = m.tensor.numpy()
1151 if isinstance(m, torch.Tensor):
1152 m = m.numpy()
1153 ret = []
1154 for x in m:
1155 if isinstance(x, GenericMask):
1156 ret.append(x)
1157 else:
1158 ret.append(GenericMask(x, self.output.height,

self.output.width))↪→

1159 return ret
1160

1161 def _convert_keypoints(self, keypoints):
1162 if isinstance(keypoints, Keypoints):
1163 keypoints = keypoints.tensor
1164 keypoints = np.asarray(keypoints)
1165 return keypoints
1166

1167 def get_output(self):
1168 """
1169 Returns:
1170 output (VisImage): the image output containing the

visualizations added↪→

1171 to the image.
1172 """
1173 return self.output
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C Conda Environment

(detectron2) C:\Users\Marti>conda list
# packages in environment at C:\Users\Marti\anaconda3\envs\detectron2:
#
# Name Version Build Channel
absl-py 0.11.0 pypi_0 pypi
anyio 2.1.0 py37h03978a9_0 conda-forge
argon2-cffi 20.1.0 py37hcc03f2d_2 conda-forge
async_generator 1.10 py_0 conda-forge
attrs 20.3.0 pyhd3deb0d_0 conda-forge
babel 2.9.0 pyhd3deb0d_0 conda-forge
backcall 0.2.0 pyh9f0ad1d_0 conda-forge
backports 1.0 py_2 conda-forge
backports.functools_lru_cache 1.6.1 py_0 conda-forge
blas 1.0 mkl
bleach 3.3.0 pyh44b312d_0 conda-forge
brotlipy 0.7.0 py37hcc03f2d_1001 conda-forge
ca-certificates 2020.12.5 h5b45459_0 conda-forge
cachetools 4.2.1 pypi_0 pypi
certifi 2020.12.5 py37h03978a9_1 conda-forge
cffi 1.14.4 py37hd8e9650_1 conda-forge
chardet 3.0.4 pypi_0 pypi
cloudpickle 1.6.0 pypi_0 pypi
colorama 0.4.4 pyh9f0ad1d_0 conda-forge
cryptography 3.4.4 py37h65266a2_0 conda-forge
cudatoolkit 11.0.221 h74a9793_0
cycler 0.10.0 pypi_0 pypi
cython 0.29.21 pypi_0 pypi
decorator 4.4.2 py_0 conda-forge
defusedxml 0.6.0 py_0 conda-forge
detectron2 0.2.1 dev_0 <develop>
entrypoints 0.3 pyhd8ed1ab_1003 conda-forge
freetype 2.10.4 hd328e21_0
future 0.18.2 pypi_0 pypi
fvcore 0.1.1.post20200716 py37 <unknown>
google-auth 1.4.2 pypi_0 pypi
google-auth-oauthlib 0.4.2 pypi_0 pypi
google-colab 1.0.0 pypi_0 pypi
grpcio 1.35.0 pypi_0 pypi
idna 2.8 pypi_0 pypi
imgviz 1.2.5 pypi_0 pypi
importlib-metadata 3.4.0 py37h03978a9_0 conda-forge
importlib_metadata 3.4.0 hd8ed1ab_0 conda-forge
intel-openmp 2020.2 254
iopath 0.1.3 pypi_0 pypi
ipykernel 4.6.1 pypi_0 pypi
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ipython 5.5.0 pypi_0 pypi
ipython-genutils 0.2.0 pypi_0 pypi
ipython_genutils 0.2.0 py_1 conda-forge
jedi 0.18.0 py37h03978a9_2 conda-forge
jinja2 2.11.3 pyh44b312d_0 conda-forge
jpeg 9b hb83a4c4_2
json5 0.9.5 pyh9f0ad1d_0 conda-forge
jsonschema 3.2.0 py_2 conda-forge
jupyter-http-over-ws 0.0.8 pypi_0 pypi
jupyter_client 6.1.11 pyhd8ed1ab_1 conda-forge
jupyter_core 4.7.1 py37h03978a9_0 conda-forge
jupyter_server 1.3.0 py37h03978a9_0 conda-forge
jupyterlab 3.0.7 pyhd8ed1ab_0 conda-forge
jupyterlab_pygments 0.1.2 pyh9f0ad1d_0 conda-forge
jupyterlab_server 2.2.0 pyhd8ed1ab_0 conda-forge
kiwisolver 1.3.1 pypi_0 pypi
labelme 4.5.7 pypi_0 pypi
libpng 1.6.37 h2a8f88b_0
libsodium 1.0.18 h8d14728_1 conda-forge
libtiff 4.1.0 h56a325e_1
libuv 1.40.0 he774522_0
lvis 0.5.3 pypi_0 pypi
lz4-c 1.9.3 h2bbff1b_0
m2w64-gcc-libgfortran 5.3.0 6 conda-forge
m2w64-gcc-libs 5.3.0 7 conda-forge
m2w64-gcc-libs-core 5.3.0 7 conda-forge
m2w64-gmp 6.1.0 2 conda-forge
m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge
markdown 3.3.3 pypi_0 pypi
markupsafe 1.1.1 py37hcc03f2d_3 conda-forge
matplotlib 3.2.2 pypi_0 pypi
mistune 0.8.4 py37hcc03f2d_1003 conda-forge
mkl 2020.2 256
mkl-service 2.3.0 py37h196d8e1_0
mkl_fft 1.2.0 py37h45dec08_0
mkl_random 1.1.1 py37h47e9c7a_0
mock 4.0.3 pypi_0 pypi
msys2-conda-epoch 20160418 1 conda-forge
nbclassic 0.2.6 pyhd8ed1ab_0 conda-forge
nbclient 0.5.1 pypi_0 pypi
nbconvert 6.0.7 py37h03978a9_3 conda-forge
nbformat 5.1.2 pyhd8ed1ab_1 conda-forge
nest-asyncio 1.5.1 pypi_0 pypi
ninja 1.10.2 py37h6d14046_0
notebook 5.2.2 pypi_0 pypi
numpy 1.19.2 py37hadc3359_0
numpy-base 1.19.2 py37ha3acd2a_0
oauthlib 3.1.0 pypi_0 pypi
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ocrd-fork-pylsd 0.0.3 pypi_0 pypi
olefile 0.46 py37_0
opencv-python 4.5.1.48 pypi_0 pypi
openssl 1.1.1i h8ffe710_0 conda-forge
packaging 20.9 pyh44b312d_0 conda-forge
pandas 0.24.2 pypi_0 pypi
pandoc 2.11.4 h8ffe710_0 conda-forge
pandocfilters 1.4.3 pypi_0 pypi
parso 0.8.1 pyhd8ed1ab_0 conda-forge
pickleshare 0.7.5 py_1003 conda-forge
pillow 8.1.0 py37h4fa10fc_0
pip 20.3.3 py37haa95532_0
portalocker 2.2.0 pypi_0 pypi
portpicker 1.2.0 pypi_0 pypi
prometheus_client 0.9.0 pyhd3deb0d_0 conda-forge
prompt-toolkit 1.0.18 pypi_0 pypi
protobuf 3.14.0 pypi_0 pypi
pyasn1 0.4.8 pypi_0 pypi
pyasn1-modules 0.2.8 pypi_0 pypi
pycocotools 2.0.2 pypi_0 pypi
pycparser 2.20 pyh9f0ad1d_2 conda-forge
pydot 1.4.1 pypi_0 pypi
pygments 2.7.4 pyhd8ed1ab_0 conda-forge
pylsd 0.0.2 pypi_0 pypi
pyopenssl 20.0.1 pyhd8ed1ab_0 conda-forge
pyparsing 2.4.7 pyh9f0ad1d_0 conda-forge
pyqt5 5.15.4 pypi_0 pypi
pyqt5-qt5 5.15.2 pypi_0 pypi
pyqt5-sip 12.8.1 pypi_0 pypi
pyrsistent 0.17.3 py37hcc03f2d_2 conda-forge
pysocks 1.7.1 py37h03978a9_3 conda-forge
python 3.7.0 hea74fb7_0
python-dateutil 2.8.1 py_0 conda-forge
python_abi 3.7 1_cp37m conda-forge
pytorch 1.7.1 py3.7_cuda110_cudnn8_0 pytorch
pytz 2021.1 pyhd8ed1ab_0 conda-forge
pywin32 300 pypi_0 pypi
pywinpty 0.5.7 py37hc8dfbb8_1 conda-forge
pyyaml 5.4.1 pypi_0 pypi
pyzmq 22.0.2 pypi_0 pypi
qtpy 1.9.0 pypi_0 pypi
requests 2.21.0 pypi_0 pypi
requests-oauthlib 1.3.0 pypi_0 pypi
rsa 4.7 pypi_0 pypi
send2trash 1.5.0 py_0 conda-forge
setuptools 52.0.0 py37haa95532_0
simplegeneric 0.8.1 pypi_0 pypi
six 1.12.0 pypi_0 pypi
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sniffio 1.2.0 py37h03978a9_1 conda-forge
tabulate 0.8.7 py37_0
tensorboard 2.4.1 pypi_0 pypi
tensorboard-plugin-wit 1.8.0 pypi_0 pypi
termcolor 1.1.0 pypi_0 pypi
terminado 0.9.2 py37h03978a9_0 conda-forge
testpath 0.4.4 py_0 conda-forge
tk 8.6.10 he774522_0
torchaudio 0.7.2 py37 pytorch
torchvision 0.8.2 py37_cu110 pytorch
tornado 4.5.3 pypi_0 pypi
tqdm 4.56.0 pyhd3eb1b0_0
traitlets 5.0.5 py_0 conda-forge
typing_extensions 3.7.4.3 pyh06a4308_0
urllib3 1.24.3 pypi_0 pypi
vc 14.2 h21ff451_1
vs2015_runtime 14.27.29016 h5e58377_2
wcwidth 0.2.5 pyh9f0ad1d_2 conda-forge
webencodings 0.5.1 pypi_0 pypi
werkzeug 1.0.1 pypi_0 pypi
wheel 0.36.2 pyhd3eb1b0_0
win_inet_pton 1.1.0 py37h03978a9_2 conda-forge
wincertstore 0.2 py37_0
winpty 0.4.3 4 conda-forge
xz 5.2.5 h62dcd97_0
yacs 0.1.8 pypi_0 pypi
yaml 0.2.5 he774522_0
zeromq 4.3.3 h0e60522_3 conda-forge
zipp 3.4.0 py_0 conda-forge
zlib 1.2.11 h62dcd97_4
zstd 1.4.5 h04227a9_0
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D config

CUDNN_BENCHMARK: false
DATALOADER:
ASPECT_RATIO_GROUPING: true
FILTER_EMPTY_ANNOTATIONS: true
NUM_WORKERS: 2
REPEAT_THRESHOLD: 0.0
SAMPLER_TRAIN: TrainingSampler
DATASETS:
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
PROPOSAL_FILES_TEST: []
PROPOSAL_FILES_TRAIN: []
TEST:
- container_ceiling_test
TRAIN:
- containerCeilingV3_TestimgOnly_train
GLOBAL:
HACK: 1.0
INPUT:
CROP:
ENABLED: false
SIZE:
- 0.9
- 0.9
TYPE: relative_range
FORMAT: BGR
MASK_FORMAT: polygon
MAX_SIZE_TEST: 1333
MAX_SIZE_TRAIN: 1333
MIN_SIZE_TEST: 800
MIN_SIZE_TRAIN:
- 640
- 672
- 704
- 736
- 768
- 800
MIN_SIZE_TRAIN_SAMPLING: choice
RANDOM_FLIP: horizontal
MODEL:
ANCHOR_GENERATOR:
ANGLES:
- - -90
- 0
- 90
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ASPECT_RATIOS:
- - 0.5
- 1.0
- 2.0
NAME: DefaultAnchorGenerator
OFFSET: 0.0
SIZES:
- - 32
- - 64
- - 128
- - 256
- - 512
BACKBONE:
FREEZE_AT: 2
NAME: build_resnet_fpn_backbone
DEVICE: cuda
FPN:
FUSE_TYPE: sum
IN_FEATURES:
- res2
- res3
- res4
- res5
NORM: ”
OUT_CHANNELS: 256
KEYPOINT_ON: false
LOAD_PROPOSALS: false
MASK_ON: true
META_ARCHITECTURE: GeneralizedRCNN
PANOPTIC_FPN:
COMBINE:
ENABLED: true
INSTANCES_CONFIDENCE_THRESH: 0.5
OVERLAP_THRESH: 0.5
STUFF_AREA_LIMIT: 4096
INSTANCE_LOSS_WEIGHT: 1.0
PIXEL_MEAN:
- 103.53
- 116.28
- 123.675
PIXEL_STD:
- 1.0
- 1.0
- 1.0
PROPOSAL_GENERATOR:
MIN_SIZE: 0
NAME: RPN
RESNETS:
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DEFORM_MODULATED: false
DEFORM_NUM_GROUPS: 1
DEFORM_ON_PER_STAGE:
- false
- false
- false
- false
DEPTH: 50
NORM: FrozenBN
NUM_GROUPS: 1
OUT_FEATURES:
- res2
- res3
- res4
- res5
RES2_OUT_CHANNELS: 256
RES5_DILATION: 1
STEM_OUT_CHANNELS: 64
STRIDE_IN_1X1: true
WIDTH_PER_GROUP: 64
RETINANET:
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_WEIGHTS: &id001
- 1.0
- 1.0
- 1.0
- 1.0
FOCAL_LOSS_ALPHA: 0.25
FOCAL_LOSS_GAMMA: 2.0
IN_FEATURES:
- p3
- p4
- p5
- p6
- p7
IOU_LABELS:
- 0
- -1
- 1
IOU_THRESHOLDS:
- 0.4
- 0.5
NMS_THRESH_TEST: 0.5
NORM: ”
NUM_CLASSES: 80
NUM_CONVS: 4
PRIOR_PROB: 0.01
SCORE_THRESH_TEST: 0.05
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SMOOTH_L1_LOSS_BETA: 0.1
TOPK_CANDIDATES_TEST: 1000
ROI_BOX_CASCADE_HEAD:
BBOX_REG_WEIGHTS:
- - 10.0
- 10.0
- 5.0
- 5.0
- - 20.0
- 20.0
- 10.0
- 10.0
- - 30.0
- 30.0
- 15.0
- 15.0
IOUS:
- 0.5
- 0.6
- 0.7
ROI_BOX_HEAD:
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_LOSS_WEIGHT: 1.0
BBOX_REG_WEIGHTS:
- 10.0
- 10.0
- 5.0
- 5.0
CLS_AGNOSTIC_BBOX_REG: false
CONV_DIM: 256
FC_DIM: 1024
NAME: FastRCNNConvFCHead
NORM: ”
NUM_CONV: 0
NUM_FC: 2
POOLER_RESOLUTION: 7
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
SMOOTH_L1_BETA: 0.0
TRAIN_ON_PRED_BOXES: false
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
IN_FEATURES:
- p2
- p3
- p4
- p5
IOU_LABELS:
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- 0
- 1
IOU_THRESHOLDS:
- 0.5
NAME: StandardROIHeads
NMS_THRESH_TEST: 0.5
NUM_CLASSES: 1
POSITIVE_FRACTION: 0.25
PROPOSAL_APPEND_GT: true
SCORE_THRESH_TEST: 0.9
ROI_KEYPOINT_HEAD:
CONV_DIMS:
- 512
- 512
- 512
- 512
- 512
- 512
- 512
- 512
LOSS_WEIGHT: 1.0
MIN_KEYPOINTS_PER_IMAGE: 1
NAME: KRCNNConvDeconvUpsampleHead
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
NUM_KEYPOINTS: 17
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
ROI_MASK_HEAD:
CLS_AGNOSTIC_MASK: false
CONV_DIM: 256
NAME: MaskRCNNConvUpsampleHead
NORM: ”
NUM_CONV: 4
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
RPN:
BATCH_SIZE_PER_IMAGE: 256
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_LOSS_WEIGHT: 1.0
BBOX_REG_WEIGHTS: *id001
BOUNDARY_THRESH: -1
HEAD_NAME: StandardRPNHead
IN_FEATURES:
- p2
- p3
- p4
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- p5
- p6
IOU_LABELS:
- 0
- -1
- 1
IOU_THRESHOLDS:
- 0.3
- 0.7
LOSS_WEIGHT: 1.0
NMS_THRESH: 0.7
POSITIVE_FRACTION: 0.5
POST_NMS_TOPK_TEST: 1000
POST_NMS_TOPK_TRAIN: 1000
PRE_NMS_TOPK_TEST: 1000
PRE_NMS_TOPK_TRAIN: 2000
SMOOTH_L1_BETA: 0.0
SEM_SEG_HEAD:
COMMON_STRIDE: 4
CONVS_DIM: 128
IGNORE_VALUE: 255
IN_FEATURES:
- p2
- p3
- p4
- p5
LOSS_WEIGHT: 1.0
NAME: SemSegFPNHead
NORM: GN
NUM_CLASSES: 54
WEIGHTS: ./output/model_final.pth
OUTPUT_DIR: ./output
SEED: -1
SOLVER:
AMP:
ENABLED: false
BASE_LR: 0.00025
BIAS_LR_FACTOR: 1.0
CHECKPOINT_PERIOD: 5000
CLIP_GRADIENTS:
CLIP_TYPE: value
CLIP_VALUE: 1.0
ENABLED: false
NORM_TYPE: 2.0
GAMMA: 0.1
IMS_PER_BATCH: 2
LR_SCHEDULER_NAME: WarmupMultiStepLR
MAX_ITER: 1000
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MOMENTUM: 0.9
NESTEROV: false
REFERENCE_WORLD_SIZE: 0
STEPS:
- 210000
- 250000
WARMUP_FACTOR: 0.001
WARMUP_ITERS: 1000
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0001
WEIGHT_DECAY_BIAS: 0.0001
WEIGHT_DECAY_NORM: 0.0
TEST:
AUG:
ENABLED: false
FLIP: true
MAX_SIZE: 4000
MIN_SIZES:
- 400
- 500
- 600
- 700
- 800
- 900
- 1000
- 1100
- 1200
DETECTIONS_PER_IMAGE: 1
EVAL_PERIOD: 0
EXPECTED_RESULTS: []
KEYPOINT_OKS_SIGMAS: []
PRECISE_BN:
ENABLED: false
NUM_ITER: 200
VERSION: 2
VIS_PERIOD: 0
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E Camera Calibration

1 import numpy as np
2 import cv2
3 import glob
4 import sys
5 import argparse
6

7 #---------------------- SET THE PARAMETERS
8 nRows = 6
9 nCols = 9

10 dimension = 15 #- mm
11

12 workingFolder = "./Calibration Images/IphoneCalibration" #find path
of your images↪→

13 imageType = 'JPG' #image filetype
14 #------------------------------------------
15

16 # termination criteria
17 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,

dimension, 0.001)↪→

18

19 # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
20 objp = np.zeros((nRows*nCols,3), np.float32)
21 objp[:,:2] = np.mgrid[0:nCols,0:nRows].T.reshape(-1,2)
22

23 # Arrays to store object points and image points from all the images.
24 objpoints = [] # 3d point in real world space
25 imgpoints = [] # 2d points in image plane.
26

27 if len(sys.argv) < 6:
28 print("\n Not enough inputs are provided. Using the default

values.\n\n" \↪→

29 " type -h for help")
30 else: # can pass arguments from console to overwrite currentt

arguments.↪→

31 workingFolder = sys.argv[1]
32 imageType = sys.argv[2]
33 nRows = int(sys.argv[3])
34 nCols = int(sys.argv[4])
35 dimension = float(sys.argv[5])
36

37 if '-h' in sys.argv or '--h' in sys.argv:
38 print("\n IMAGE CALIBRATION GIVEN A SET OF IMAGES")
39 print(" call: python cameracalib.py <folder> <image type> <num rows

(9)> <num cols (6)> <cell dimension (25)>")↪→

40 print("\n The script will look for every image in the provided
folder and will show the pattern found." \↪→
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41 " User can skip the image pressing ESC or accepting the image
with RETURN. " \↪→

42 " At the end the end the following files are created:" \
43 " - cameraDistortion.txt" \
44 " - cameraMatrix.txt \n\n")
45

46 sys.exit()
47

48 # Find the images files
49 filename = workingFolder + "/*." + imageType
50 images = glob.glob(filename)
51

52 print(len(images))
53 if len(images) < 9:
54 print("Not enough images were found: at least 9 shall be

provided!!!")↪→

55 sys.exit()
56

57 else:
58 nPatternFound = 0
59 imgNotGood = images[1]
60

61 for fname in images:
62 if 'calibresult' in fname: continue
63 #-- Read the file and convert in greyscale
64 img = cv2.imread(fname)
65 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
66

67 print("Reading image ", fname)
68

69 # Find the chess board corners
70 ret, corners = cv2.findChessboardCorners(gray,

(nCols,nRows),None)↪→

71

72 # If found, add object points, image points (after refining
them)↪→

73 if ret == True:
74 print("Pattern found! Press ESC to skip or ENTER to

accept")↪→

75 #--- Sometimes, Harris cornes fails with crappy pictures,
so↪→

76 corners2 =
cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)↪→

77

78 # Draw and display the corners
79 cv2.drawChessboardCorners(img, (nCols,nRows), corners2,ret)
80 cv2.imshow('img',img)
81 # cv2.waitKey(0)
82 k = cv2.waitKey(0) & 0xFF
83 if k == 27: #-- ESC Button
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84 print("Image Skipped")
85 imgNotGood = fname
86 continue
87

88 print("Image accepted")
89 nPatternFound += 1
90 objpoints.append(objp)
91 imgpoints.append(corners2)
92

93 # cv2.waitKey(0)
94 else:
95 imgNotGood = fname
96

97 cv2.destroyAllWindows()
98

99 if (nPatternFound > 1):
100 print("Found %d good images" % (nPatternFound))
101 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints,

imgpoints, gray.shape[::-1],None,None)↪→

102

103 # Undistort an image
104 img = cv2.imread(imgNotGood)
105 h, w = img.shape[:2]
106 print("Image to undistort: ", imgNotGood)
107 newcameramtx,

roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))↪→

108

109 # undistort
110 mapx,mapy =

cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5)↪→

111 dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)
112

113 # crop the image
114 x,y,w,h = roi
115 dst = dst[y:y+h, x:x+w]
116 print("ROI: ", x, y, w, h)
117

118 cv2.imwrite(workingFolder + "/calibresult.png",dst)
119 print("Calibrated picture saved as calibresult.png")
120 print("Calibration Matrix: ")
121 print(mtx)
122 print("Disortion: ", dist)
123

124 #--------- Save result
125 filename = workingFolder + "/cameraMatrix.txt"
126 np.savetxt(filename, mtx, delimiter=',')
127 filename = workingFolder + "/cameraDistortion.txt"
128 np.savetxt(filename, dist, delimiter=',')
129

130 mean_error = 0
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131 for i in range(len(objpoints)):
132 imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i],

tvecs[i], mtx, dist)↪→

133 error = cv2.norm(imgpoints[i],imgpoints2,
cv2.NORM_L2)/len(imgpoints2)↪→

134 mean_error += error
135

136 print("total error: ", mean_error/len(objpoints))
137

138 else:
139 print("In order to calibrate you need at least 9 good pictures...

try again")↪→
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F Mask Rcnn metrics

The total loss function in Mask R-CNN is calculated as:

Ltotal = Lcls + Lbox + Lmask (74)

Symbol Explanation
pi Predicted probability of anchor i being an object.
p∗i Ground truth label (binary) of whether anchor i is an object.
ti Predicted four parameterized coordinates.
t∗i Ground truth coordinates.
Ncls Normalization term, set to 256
Nbox Normalization term, set to 2400
λ A balancing parameter, set to be 10

L = Lcls + Lbox (75)

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) +

λ

Nbox

∑
i

p∗i · Lsmooth
1 (ti − t∗i ) (76)

The term λ Lcls + Lbox is set to 10 so (so that both Lcls and Lbox terms are roughly
equally weighted).
where

Lcls(pi, p
∗
i ) = −p∗i log pi − (1− p∗i ) log(1− pi) (77)

and
Lsmooth
1 = 0.1 (78)

Lmask is calculated:

Lmask =
1

m2

∑
1≤i,j≤m

[yij log ŷ
k
ij + (1− yij) log(1− ŷkij] (79)

Mask loss function:

"As in Fast R-CNN, an RoI is considered positive if it has IoU with a ground-truth
box of at least 0.5 and negative otherwise. The mask loss Lmask is defined only on
positive RoIs. The mask target is the intersection between an RoI and its associated
ground-truth mask." [20]
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