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Abstract

Wind farm control design is a recently new area of research that has rapidly become a key
enabler for the development of large wind farm projects and their safe and efficient con-
nection to the power grid. A comprehensive review of the intense research conducted in
this area over the last 10 years is presented. Part I reviews control system concepts and
structures and classifies them depending on their main objective (i.e. to maximise power
production or to provide grid services. The work and key findings in each paper are dis-
cussed in detail with particular emphasis on the turbine side. Additionally, the review con-
tributes to the existing reviews on the area by providing an elegant classification between
model testing and control approaches. Areas where significant work is still needed are also
discussed. In Part II, a thorough review on aerodynamic wind farm models for control
design purposes is provided.

1 INTRODUCTION

Wind energy installations continue to increase at an accelerated
pace worldwide with larger wind farm projects consisting of
hundreds of turbines being constructed both onshore and
offshore. Although wind generation plays a central role in
achieving the transition to decarbonised electricity systems, it
also creates key operational and planning problems to trans-
mission (TSO) and distribution system operators (DSO) due to
the variable nature of the wind resource and the fact that they
are connected to the grid through power electronics converters.
Modern wind farms are fitted with advanced, state-of-the-art
monitoring and control equipment that enable the safe and reli-
able implementation of all functionalities required to achieve the
best possible performance. However, they are not sufficiently
optimised to conciliate a number of conflicting objectives
such as continuously maximizing the power production whilst
reducing turbine loading and still adapting to the spot price
for electricity.

In order to achieve the right balance among these objectives,
the philosophy behind wind farm control is evolving from the
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conventional approach of controlling turbines individually to a
holistic control approach. In this context, wind farm control has
become an area of increased interest and large amounts of works
have been presented in the open literature aiming to address
these pressing challenges.

The focus of recent research on wind farm control is pro-
vided by Knudsen [1], Boersma et al. [2] and Kheirabadi and
Nagamune [3], among others, who concentrate mainly on max-
imising power capture and mitigating turbine loading, using
both centralised and distributed approaches. This review goes
further and provides more details of the work conducted in each
paper and their findings. A significant contribution is the pro-
vision of a clear classification between model testing and con-
trol approaches.

1.1 Search strategy and structure of the
review

Wind farm control is a new area of research that requires
knowledge from a variety of scientific areas (and disciplines).
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Being also a highly specialised area, the body of work on wind
farm control is published on a handful of respected journals
and outlets. The present review has been intense and major
databases such as Scopus, Google Scholar and IEEEexplorer
among others, were searched. Examples of specific key sources
used include: Wind Energy, Journal of Fluid Dynamics, Journal of

Renewable and Sustainable Energy, Renewable Energy, Wind Energy

Science, IET RPG, IEEE Transactions (e.g. Control Systems Technol-

ogy, Power Systems, Energy Conversion and Sustainable Energy) and the
IEEE American Control Conference. Reports from research
institutions (e.g. NREL, former DTU RISOE) and large Euro-
pean project on wind energy were also carefully reviewed.

The review follows a coherent structure by first introduc-
ing the main objectives and characteristics of a wind farm con-
troller followed by the essential elements to be considered in
the design. A non-rigid classification of wind farm controllers
is then provided which serves as a basis to organise the various
references according the controller objective. The review pro-
vides key details of most papers and summary tables which will
undoubtedly assist the reader in finding works of interest are
also given.

2 UNDERSTANDING A WIND FARM
CONTROLLER

A wind farm controller oversees the operational aspects asso-
ciated with the generation of electricity in a wind farm, coor-
dinating the response and power contributions from individual
wind turbines in the farm. The typical objectives in a wind farm
controller include [4–6]:

- Maximising energy production
- Minimising mechanical loads and fatigue
- Complying with grid codes and providing ancillary services
- Handling local faults and malfunctions due to exter-

nal events

2.1 Control inputs

The control inputs to a wind farm controller are provided by
all actuators available in the individual wind turbines and also
masts (as available) which provide meteorological information.
An individual wind turbine typically has three controllable vari-
ables, the generator torque 𝜏, the blade pitch angle 𝛽 and the
yaw angle 𝛾. Instead of the generator torque also the tip-speed
ratio 𝜆 or the rotor rotational 𝜔 can be controlled.

When it comes to the design of the overall wind farm
control system, it is helpful to use the axial induction factor a

that describes the change in wind velocity across the turbine.
Two common control strategies are axial induction control
and wake steering control. On the one hand, axial induction
control changes the generator torque and blade pitch angle
while the turbine rotor faces the wind (Figure 1). It can be
seen that the wind deficit in the wake is stronger in the upper
figure (Figure 1a) where the turbine is operated close to its own
optimum (with regards to power production). The idea behind

FIGURE 1 Wind velocity behind a turbine in the far wake region
modelled with the Gaussian wake model [7]. Two different axial induction
factors are used. In the upper figure an axial induction factor of a = 0.33 and
in the lower figure of a = 0.18 is used.

FIGURE 2 Wind velocity behind a turbine in the far wake region
modelled with the Gaussian wake model [7]. The turbine is yawed with an
angle of 𝛾 = 31◦.

axial induction control for wind farms is that the upwind
turbine is operated away from its own optimum resulting in
a smaller wind deficit in the wake such that, for example the
overall energy production of multiple turbines can be increased.
On the other hand, wake steering control refers to a control
strategy that changes the yaw angle of a turbine to improve
wind farm performance (Figure 2). The idea behind yaw control
is to deflect the wake by yawing the upwind turbines (note that
the y-axis is not symmetric in Figure 2). As a consequence the
rotors of the downwind turbines are not located in the centre
of the wake and, for example the overall energy production of
the wind farm could be increased.

2.2 Sensor systems

Wind turbines are equipped with a supervisory control and
data acquisition system (SCADA) whose outputs can be used
to design the control system of a wind farm. Relevant SCADA
parameters for condition monitoring and control design pur-
poses are the blade pitch angle, yaw angle, rotor and generator
speeds, generator current in each phase, real and reactive
power output, anemometer wind speed and direction. More-
over, SCADA records temperature measurements of basically
every major mechanical and electrical component and the
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FIGURE 3 Structure of a hierarchical, model-based closed-loop wind farm controller (Schematic of the physical wind farm reproduced from the website
https://powerplants.vattenfall.com/).

ambient temperature [8]. Other sensors that may be available
include visual and thermal cameras, acoustic emission trans-
ducers and fibre-optic strain gauges, which measure the strain
in the blade material [9]. The torque in the drive shaft can be
measured by a transducer, and accelerometers can be used to
measure vibrations in various mechanical components [10]. A
nacelle-mounted LIDAR (light detection and ranging) system
can be used to anticipate turbulent fluctuations [11]. Additional
information for wind farm control design comes from meteo-
rological measurement masts providing information of the wind
velocity at possible several locations in and around the farm.

2.3 Wind turbine and wind farm flow
modelling

In order to design a wind farm control system it is necessary to
represent individual turbines with the appropriate turbine model
and control system [12, 13]. This paper does not cover wind
turbine modelling and control and readers are suggested to look
at references such as [10, 14–16] where more information can
be gathered.

Aerodynamic flow models describe the interaction between
the turbine and the surrounding wind field. The turbine extracts
energy from the wind, which increases the turbulence in the air
and decreases the velocity of the wind, causing a wake behind
itself. Consequently, the wake decreases the power capture

and increases the load on downstream turbines influencing
negatively the performance of the wind power plant [17]. Wind
farm aerodynamic flow models can be classified into three
categories: engineering [18–21], medium fidelity [2] and high fidelity

models [22]. A recent review about flow phenomena in wind
farms can be found in [23, 24]. In addition, a review on large
Eddy simulation (LES) modelling for wind farm simulations
can be found in [25].

3 WIND FARM CONTROL:
STATE-OF-THE-ART

As wind farms become larger in capacity they are requested to
participate and contribute to power grid operation. Under this
new scenario, it has become clear, as shown in several studies,
that individual wind turbine control cannot achieve this is aim
optimally as it does not consider the complex aerodynamic
couplings between turbines [4, 12, 17, 26–29]. Therefore, the
trend in wind farm control design has been towards enhanced
controllers that control and supervise the operation of wind
turbines from a higher level based on hierarchical approaches
such as the one illustrated in Figure 3. In this hierarchical
approach, the wind farm controller runs at the higher level and
includes controllers which oversee power production, operation
and maintenance and power system services. It uses power grid
demand, energy prices and turbine status inputs and distributes

https://powerplants.vattenfall.com/
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FIGURE 4 A classification of wind farm
controllers.

the set points to individual turbines to achieve the desired
performance. This hierarchical control structure facilitates
controlling turbines and wind farm more efficiently and achieve
the defined objectives by manipulating the power output of
the turbines and influencing the power flow distribution in the
electrical collectors whilst minimising turbine loading. Note that
the objectives in a wind farm controller are partly conflicting
and may also have different time scales making wind farm
control design a challenging task.

Figure 4 shows how wind farm control approaches can be
broadly categorized. They can be classified based on the objec-
tive(s), the control structure or the control concept adopted. A
final categorization (not shown in the figure) can be made based
on the actuator method for wake control, which may be based
on axial induction or wake steering. The review of the wind farm
controllers was conducted following the approach shown in Fig-
ure 5. It was decided that a classification based on the control
objective allowed to provide a more coherent review and pre-
sentation of references.

4 MAXIMISE POWER PRODUCTION

4.1 Non-optimisation-based verification of
models and control approaches

In [30], EVM is used to study the effects of down-regulating
upwind turbines using pitch control. A power gain of about
4.1% is achieved at a row of ten turbines with a spacing of 4 D.
In [31], the potential of axial induction control to increase the
power production is analysed using the ideal rotor disk theory
and the Jensen-Park model. Both, coordinated and individual
wind turbine control for two- and three-turbine rows is inves-
tigated. A methodology based on the power and thrust coeffi-
cient reference curves is proposed and validated in wind tunnel
experiments. In [32], simulation results of the Lillgrund wind
farm simulated in EllipSys3D are compared with measurements.

FIGURE 5 Classification of wind farm control concepts adopted for the
review.

A key finding was that the ambient atmospheric turbulence must
be considered to represent the farm production correctly. In
[33], axial induction control using FLORIS is evaluated together
with the high-fidelity model SOWFA. In [34], the influence of
blade pitch offsets to increase the power production and its
sensitivity to ambient turbulence is studied on the high-fidelity
model in [35].

Early work on wake steering is presented in [36]. The author
analysed wind tunnel experiments and found that a yawed
turbine clearly deflects the wake. A new study of turbines in
yawed conditions using wind tunnel experiments was presented
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TABLE 1 Maximise power production: Non-optimisation-based verification of models and control approaches

Ref. Inputs

Optimization

model Evaluation model Gain Comment

Grid-based test

Kim et al. [30] Pre f - BEM + Eddy Viscosity
model

4.1%

Wang and Garcia-Sanz [31] a Actuator Disc
model

Jensen-Park model/BEM;
Wind tunnel

4–9% Discussion about at which
turbine distance is WFC
beneficial

Fleming et al. [41] 𝛾 / 𝜈 / Pos - SOWFA −10% to 4.3% / −1.9% to
7.9% / −0.2 to 40.3%

Annoni et al. [33] a (𝜏, 𝛽) FLORIS* FLORIS, FLORIS*,
SOWFA

<0% (SOWFA)

Dilip and Porté-Agel [34] 𝛽 - LES Model - Michigan +
ETH

−4.4% to 2.8%

Campagnolo et al. [42] 𝜆; 𝛾; dyn. 𝛽 - Wind tunnel < 0.9%; up to 21%;
−14.5%

Bartl and Sætran [43] 𝜆; 𝛽 - Wind tunnel ≈ 0% Jensen-Park model is used for
wind vel. estimation

Adaramola and Krogstad [37] 𝛾 - Wind tunnel 12%

Bartl et al. [44] 𝛾 - Wind tunnel > 0%

Bastankhah and Porté-Agel [45] 𝛾 - Wind tunnel 17%

Wagenaar et al. [38] 𝛾 - Field test inconclusive

Churchfield et al. [39] 𝛾 - LES model 8–10%

Miao et al. [40] 𝛾 - CFD - STAR-CCM+S 2%

in [37]. A total power gain of 12% was achieved if the upwind
turbine is yawed 30◦. One of the first field tests investigating
wake steering was inconclusive because of large scatter in the
data [38]. In [39], wake steering strategies for the Fishermen’s
Atlantic City Windfarm using a high fidelity LES model are
studied. It is shown that the plant efficiency can increase by
8% to 10% using wake steering. Yaw offsets are not optimized
in the work but the effect of certain yaw offsets to turbines
in a row are tested. A similar study was presented in [40],
where the effects of a yaw offset was tested with CFD software
STAR −CCM+. A gain in power production of 2% is reported.
A summary of non-optimisation-based verification of models
and control approaches is shown in Table 1.

4.2 Non-optimisation-based feedback
control

Wind farm controls based on conventional feedback structures
use mainly either PI or Hinf controllers (Table 2). A closed-
loop wake steering implementation based on an internal model
consisting of a yaw actuator model, a wake deflection model
and a time-delay model is presented in [46] . A PI controller is
used to achieve the desired closed-loop performance by steering
the wake centre to the desired position. The approach is tested
using SimWindFarm. The approach is extended in [47] where an
Hinf controller is used. This implementation is tested with the
PALM in Raach et al. [48]. It is shown that in the closed-loop

case, the feedback yaw controller decreases the wake overlap
and increases the power production compared to the open-loop
case. A similar approach is presented in Dhiman et al. [49] where
transfer function models that relate the yaw angle and wake cen-
tre for a multiple wake case are identified. The estimated wake
centre is used to follow a reference. The approach is able to
increase the power production in a wind farm with 15 turbines
by about 1.7%.

4.3 Non-optimisation-based feed forward
control

A good number of feed forward wind farm controllers pro-
posed in the open literature incorporate dynamic axial induction
control (DAI), for example [51, 55] where optimal DAI was
combined with LES in a closed-loop approach; the SP-Wind
framework is used in both works (Table 2). The authors
demonstrate that by classifying the wind farm into first-row,
intermediate-row and last-row turbines, the optimal behaviour
of the first-row turbines, which should increase wake mixing,
can be mimicked with a periodic sinusoidal signal. This DAI
feed-forward control law can robustly increase the total power
output of a small wind farm. However, for larger ones, the
control actions on the first turbine row was insufficient to
increase the power and additional control actions on the
downwind turbines are required to increase the total power
production. Dynamic axial induction control is promising, but
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TABLE 2 Maximise power production: Non-optimization-based control approaches for power maximisation

Ref. Method Inputs Evaluation model Gain

Non-optimization-based feedback control

Raach et al. [46] PI controller with LiDAR 𝛾 SimWindFarm 4,5%

Raach et al. [47] H∞ controller with LiDAR 𝛾 WFSim –

Raach et al. [48] H∞ controller with LiDAR 𝛾 PALM 2.9%

Dhiman et al. [49] PI controller with LiDAR 𝛾 Gaussian wake model 0.6–1.7%

De-Prada-Gil et al. [50] Manual adjustment 𝜆 Jensen-Park model 1.9–6.2% AEP

Non-optimization-based feedforward control

Munters and Meyers [51] Feed forward control to reproduce dynamic
optimization results

Ct SP-Wind 0–5%

Frederik et al. [52] Dynamic individual pitch control - helix
approach

𝛽 SOWFA 7.7%

Munters and Meyers [53] Feed forward control to reproduce dynamic
optimization results

𝛾 SP-Wind 14%

Kazda et al. [54] Non-optimal power coefficient set-point 𝛽, 𝜆 MUTI3 - RANS / IWTM (immersed
wind turbine model)

9,7%

it still has to be shown that these approaches can increase the
power production in larger wind farms. On the other hand,
these approaches can be easily implemented in existing wind
farms since they operate within the original design constraints
of the turbines. An example for dynamic axial induction control
is presented in Frederik et al. [52].

4.4 Optimisation-based, feed forward
control

A summary of the works on wind farm control using this con-
cept is provided in Tables 3–7. Details of some of these works
are given in the following subsections.

4.4.1 Sequential quadratic programming

The authors in [56] improved FLORIS to make it suitable for
gradient-based optimisation and used it to optimise a wind farm
layout. This enhanced model was then used to increase the AEP
by optimising the layout and the yaw angles [57]. It is shown
that optimizing the layout and yaw angle of turbines (in partic-
ular) for a certain wind direction increases the AEP about 5%.
In [58], it is shown that layout optimization together with wake
steering has the potential to increase the AEP. An additional
improvement of 1.8% is achieved with the yaw control. How-
ever, simultaneous optimization of the yaw angle control and
farm layout adds negligible benefits over a sequential approach.
In [59], the axial induction factor is optimized to maximise
power production and minimise the cumulative thrust force
and turbulence intensity in the wind farm. The actuator disk
model is used to represent the wind farm. In [60], the axial
induction factor of a row of eight turbines is optimized using
multi-start sequential quadratic programming (SQP). The objec-
tive functions are to maximize power production at lower wind

speeds and to equalise turbine loads while tracking a power ref-
erence at higher wind speeds. The potential of yaw control is
also investigated in [61] using the curled wake model [62] and
the Gaussian one [7]. Studies are conducted for a three tur-
bine case using SOWFA. The optimization with the curled wake
model shows a decreased yaw angle for a turbine located further
downstream. Similar behaviour was observed in wind tunnel
experiments [45].

4.4.2 Steepest descent

Park et al. [66] employ the steepest descent method to find
the optimal yaw angles and induction factors to maximise the
power production in a wind farm. The wake interaction model,
for which the Jensen Park model is used, is linearised base
on the first order Taylor’s expansion. The approach is tested
on a wind farm with a 4 × 4 wind turbines layout using the
same engineering wake model. It is shown that cooperative
control outperforms the greedy control approach for most
wind directions. The approach is further developed in [68].
The extended Jensen Park wake model in [69] is used and
the non-linear optimization problem is solved with sequential
convex programming. Studies performed on Horns Rev I show
that cooperative optimization increases the power production
by 7% on average compared to the greedy strategy.

4.4.3 Conjugate gradient

In [70], the power production is maximised using a LES model
[73] whilst minimising power fluctuations. Pareto frontiers are
constructed showing the trade-off between maximizing energy
extraction and reducing power variability. If an energy-loss of
1% is allowed, a considerably reduction in power variability can
be achieved.
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TABLE 3 Maximise Power Production: Gradient-based algorithms

Ref. Inputs Optimization model Evaluation model Gain Comment

Sequential quadratic programming

Horvat et al. [60] a NREL 5 MW turbine
/ Wake model by
Brand [63]

NREL 5 MW turbine
/ Wake model by
Brand [63]

2.85% Load considered at high
wind speeds

Barradas-Berglind and
Wisniewski [59]

a Actuator Disc model Actuator Disc model – Objective includes thrust
force and turbulence
intensity minimisation

Annoni et al. [64] 𝛾 Gaussian wake model Gaussian wake model 17%

Bay et al. [61] 𝛾 FLORIS (curled and
Gaussian wake
model)

SOWFA 6.5–19.4% Fatigue load minimisation
included

Thomas et al. [56] 𝛾 + layout Smoothed FLORIS
(Jensen-Park model)

Smoothed FLORIS
(Jensen-Park model)

up to 24%

Gebraad et al. [57] 𝛾 + layout FLORIS - improved
Jensen Park model

3.7%

Fleming et al. [58] 𝛾 + layout FLORIS FLORIS 1.8%

CT + layout Fuga in PyWake [65] Fuga AEP: +4% (layout +
control); +1.2%
(control)

Steepest descent

Park et al. [66] a,𝛾 Linearised Jensen-Park
model

Linearised Jensen-Park
model

0–30% AEP

Howland et al. [67] 𝛾 Model by Shapiro 2018
+ Gaussian wake
model

Field test 0.3% AEP; 7–13%
(some directions)

Stochastic programming

Park and Law [68] a, 𝛾 Model by Park and
Law [68, 69]

Park and Law [68, 69] 7% Multi-start optimization
for non-convex
problem; max power
and min diff. flapwise
and edgewise bending
moment

Conjugate gradient

De Rijcke et al. [70] 𝜏, 𝛽 SP-Wind SP-Wind – Max. power while min
power fluctuation

Thøgersen et al. [71] 𝛾 Jensen-Park +
statistical wake
meandering

Jensen-Park +
statistical wake
meandering

7.5%

Quasi-Newton method

van Dijk et al. [72] 𝛾 FLORIS* (modified
Jensen-Park)+
CCBlade

FLORIS* (modified
Jensen-Park)+
CCBlade

2.85%–18.7% (mean
power)

Low and high turbulence
are simulated

4.4.4 Genetic algorithm

In [74], the authors use genetic algorithm (GA) to optimise
the pitch angle and maximise power production. The Eddy
Viscosity Model (EVM) [75] is used to model the wake and
BEM) theory to model the turbine. Simulation studies of Horns
Rev show that power output could be increased by 4.5%. In
[76], GA is used to optimise the pitch angle and tip-speed ratio
achieving an increase in AEP of 1.5%. In [77], a wind farm
layout optimization is combined with control optimization.
This combined optimisation approach is extended to use
variable turbine hub heights in [78]. It can be concluded that

coordinated control becomes important if wake interactions
cannot be avoided in the farm layout optimization.

4.4.5 Particle swarm optimisation

A particle swarm optimization (PSO) that finds optimal pitch
angles and tip-speed ratios of the turbines in a wind farm is
proposed in [80] (Tab. ??). It is shown that PSO can increase
the power output of a 16-turbine wind farm with constant
wind speed by 10.6%. In [81], PSO is used to find optimal axial
induction factors for power maximisation. The power from a
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TABLE 4 Maximise Power Production: Heuristic optimization algorithms

Ref. Inputs

Optimization & Evaluation

model Gain

Genetic algorithm

Serrano González et al. [76] 𝜆, 𝛽 Jensen-Park model 1.5%

Lee et al. [74] 𝛽 BEM + EVM 4.5%

Wang et al. [78] a; layout Jensen-Park model 1% (control); 2% (total)

Wang et al. [79] a; layout Jensen-Park model 1% (control); 2% (total)

Particle swarm optimization

Behnood et al. [80] 𝜆, 𝛽 Jensen-Park model / Cp-𝜆-𝛽
turbine function
approximation

10.6%

Bo et al. [81] a Jense-Park model 10%

Gionfra et al. [82] a Model by [69, 83] 6.4–23.5%

Hou et al. [84] 𝛽 Jensen-Park model 5–16.7%

Zhang et al. [85] 𝜆, 𝛽 Jensen-Park model / DEL
Lookup table from
SimWindFarm

6–7%

Artificial bee colony algorithm

Abbes and Allagui [86] 𝜆 Jensen-Park model 4–6%

Constrained optimization by using linear approximation optimization algorithm

Quick et al. [87] 𝛾 FLORIS (extended
Jensen-Park model)

3%

TABLE 5 Maximise power production: Game theory

Ref. Inputs Optimization model Evaluation model Gain Comment

Game theory

Gebraad et al. [88] 𝛾 FLORIS - improved
Jensen Park model

SOWFA; FLORIS 1–13% Max. power and min. differential
flapwise and edgewise bending
moments

van Dijk et al. [91] 𝛾 FLORIS* + CCBlade FLORIS* + CCBlade 3.7% (just power); −18.7
(just load)

Rott et al. [98] 𝛾 FLORIS (extended
Jensen-Park model)

WFSim, Jensen-Park −0.5% to 1.4%

Herp et al. [99] a Jensen-Park model Jensen-Park model 1.4–5.4%

row of turbines is increased by 10% compared to the greedy
setting. A distributed PSO to optimise the axial induction
factor for power maximization is presented in [82]. The wake
is modelled with the model presented in Park and Law [68, 69].
Compared to the greedy control strategy the algorithm is able
to increase the power gain up to 23.5% in a wind farm with 196
turbines.

4.4.6 Artificial bee colony

The artificial bee colony (ABC) algorithm is used in [86] to
optimize the turbines’ tip-speed ratio to maximise the power
extraction. The algorithm adjusts the control inputs based on
wind speed and direction measurements. The authors report an
annual energy increase of 4–6% for a nine-turbine wind farm.

4.4.7 Game theory optimisation

In [88], the optimal yaw settings of the turbines in a wind farm
are found using FLORIS. The settings are optimised using the
game theory (GT) approach presented in [89]. The optimal
yaw settings are tested with the SOWFA and for a wind farm
with six turbines a power gain of 13% is found compared to
the greedy control setting. In [90], it is shown that optimal
yaw misalignment for minimizing the blade load variations can
be implemented without power losses for above rated wind
speeds. Another study that combines load variations and power
maximisation in the objective function to optimize the yaw
settings is presented in [72, 91]. In the former, GT is used
while in the latter a gradient-based optimization one is used.
The wake is modelled with FLORIS, but for the latter the
discrete wind profile is smoothed using a Gaussian distribution
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TABLE 6 Maximise power production: Dynamic programming arguments

Ref. Inputs Optimization model Evaluation model Gain Comment

Bitar and Seiler [93] a Jensen-Park model Jensen-Park model up to 8% Fatigue load penalty by turbulence intensity.

Rotea [94] a Actuator Disc model Actuator Disc model ≈5% Reduction of up to 38% load fluctuation

Santhanagopalan et al. [95] 𝜆 RANS RANS 0.8%

Santoni et al. [96] 𝜆 Jensen-Park model UTD-WF 0.2%

Iungo et al. [97] 𝜆 Data-driven RANS UTD-WF -

Dar et al. [100] 𝛾; a Modified Jensen-Park model Modified Jensen-Park model 4.5–26.5%

TABLE 7 Maximise power production: Additional work on optimization-based feed-forward control

Ref. Method Inputs Optimization model Evaluation model Gain

Schepers and Van der
Pijl [101]

FluxFarm a WakeFarm model up to 40%; <0.5%
overall gain

Mirzaei et al. [102] Study of three
down-regulated
strategies

𝜆 Jensen-Park model / 5 MW NREL turbine model –

Duc et al. [103] Preparation of field study
for axial induction
control

a Jensen-Park model 1–2%

Kim et al. [104] Nelder-Mead simplex
algorithm to increase to
max power and min
loads

Pre f Simplified Ainslie
model

Ainslie model 2.4% + 16.7% load
reduction at
upstream turbine

Bossanyi and Jorge
[105]

Min. overall power losses
and fatigue

a WindFarmer + lookup table from Bladed 0%–5.20% (load
decrease with about
same energy)

Bossanyi [106] Min. overall power losses
and fatigue

𝜏, 𝛽, 𝛾 WindFarmer + lookup
table from Bladed

Dynamic wind farm
simulator

2%

Harrison et al. [107] Reduce blade root bending
moment while max.
power

𝛾 WindFarmer + lookup table from Bladed +6.9% AEP (just
power opt); +0.4%
AEP + 0.4% blade
life + 0.5% energy
prod. over lifetime

Kanev et al. [108] Max power production
and reduce the loads

𝛾, 𝛽 FarmFlow FarmFlow 4-6% (+ lifetime
extension 1.5%)

Kanev [109] Adapt optimized yaw angle
to reduce actuator duty

𝛾, 𝛽 FarmFlow FLORIS 2.19%

Simley et al. [110] Stochastic opt. for
dynamic wind directions

𝛾 FLORIS (Gaussian
wake)

SOWFA 3.24%

function. The load variations due to partial wake overlap is
computed with CCBlade⋆ [92]. In a simulation study on a 3 × 3
wind farm using the same models, the mean power could be
increased by 2.8% while the differential flap and edgewise loads
could be decreased by 8.2% and 12.5%, respectively, compared
to the greedy control settings.

4.4.8 Dynamic programming optimisation

With the principle of optimality a closed-form expression for
turbine control using a near-field model is derived in [93]. For
the far-field, the Jensen-Park model is used and an optimal

axial induction factor in dependency of the turbine spacing is
discussed. In [94], dynamic programming optimisation (DPO)
is used to maximise power production by optimising the axial
induction factor. It is shown that the problem can be solved
sequentially running from the most downwind turbine to
the most upwind turbine. This procedure allowed increasing
the power production by about 5% for wind farms with ten
turbines. In Santhanagopalan et al. [95], the tip-speed ratio
is optimized by coupling a RANS solver and DPO. A power
gain of 0.8% is achieved for a turbine row with five turbines.
However, it is reported that the gains are highly sensitive to the
incoming turbulence intensity and for high wind turbulence the
optimization is ineffective. In [96], this dynamic programming
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TABLE 8 Maximise power production: Field tests

Ref. Inputs Optimization model Gain Comment

Wagenaar et al. [38] 𝛾 - inconclusive Not model-based optimization

Fleming et al. [111] 𝛾 FLORIS (extended Jensen-Park
model)

- Describes preparation of field test

Fleming et al. [112] 𝛾 FLORIS (extended Jensen-Park
model)

-

Fleming et al. [113] 𝛾 FLORIS (Gaussian wake) 4%

Fleming et al. [114] 𝛾 FLORIS (several models are tested) 6.6% reduction in wake losses

Howland et al. [67] 𝛾 Model by Shapiro et al. [115] +
Gaussian wake model

0.3% AEP; 7–13% (some directions)

van der Hoek et al. [116] 𝛽 FarmFlow 3.3% for one row; <0.37% for the
entire farm

TABLE 9 Maximise power production: Adaptation of positions of floating wind turbines

Ref. Optimization model Evaluation model Gain

Fleming et al. [41] - SOWFA −0.2% to 40.3%

Kheirabadi and Nagamune [117] FLORIS (extended Jensen-Park model) FLORIS (extended Jensen-Park model) 16–54%

Rodrigues et al. [118] Jensen-Park model FarmFlow 4.4%

method was used in combination with the Jensen Park model
with the UTD-WF high fidelity model. It was tested in [97]
on a data-driven RANS algorithm calibrated with LES data.
The former, optimized the tip-speed ratio of a three-turbine
array. Contrary to the Jensen-Park model’s prediction, the
increase in power production in the high-fidelity model is
marginal (+0.2%). However, the loads within the turbine array
became more uniform, which may extend the lifetime of
the turbines.

4.4.9 Field test of feed forward optimisation
works

More recently, field tests using wake steering have been con-
ducted, which showed promising results to increase the power
production even for an open-loop approach (see Table 8).
Details of an experimental setup to conduct wake steering in
a field campaign is presented in [111]. The yaw offset applied
to the turbine is computed offline and saved in a look-up table.
A full scale field test of wake steering control is presented in
[112]. The yaw offset of one turbine of the Rudong wind farm
in China is controlled to mitigate the wake interactions between
the turbine and downwind turbines. The FLORIS model, for
which the parameters are tuned to approximate the power pro-
duction predicted by the high fidelity model SOWFA, is used
offline to compute the optimal yaw settings. The yaw settings
are saved in a look-up table. During the field test the optimal yaw
settings were not strictly followed because of the large uncer-
tainty in the yaw alignment of the turbine. Although the amount
of collected data is limited and the uncertainty high, power

gains are reported showing the potential of the wake steering
approach.

4.4.10 Works specific to floating wind turbines

For floating turbines, it is theoretically possible to relocate
the turbines within certain constraints. Table 9 summarises
some relevant works found associated with floating wind tur-
bine/wind farm control . In [41], the potential of reposition-
ing the downwind turbine in a turbine simulation case using
SOWFA is evaluated. An increase in power production of
41% is observed if the turbine is moved a full rotor diame-
ter. In [118] the turbine location for different wind direction
is optimized. The Jensen Park model is used in the optimisa-
tion and the results are evaluated with the FarmFlow model.
Large discrepancies between the Jensen Park and the Farm-
Flow model are reported such that the scenarios where the
turbines were moved had a negative impact on the wind farm
efficiency. The efficiency of the wind farm only increased
if the placement of the turbines in the wind farm was also
optimized.

4.5 Optimisation-based model-based
closed-loop

A tutorial for closed-loop controller synthesis for wind
farms is given in [119]. A central component of the con-
trol approach is a data-driven adaptation of the FLORIS
model. An example for a closed-loop controller for a
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TABLE 10 Maximise power production: Closed-loop model predictive control

Ref. Inputs Optimization model Evaluation model Gain

Shu et al. [121] 𝜔 Mosaic-tiles Wake model Mosaic-tiles Wake model 2%

Gionfra et al. [124] a Model by Park and Law [69],
Park et al. [83]

Model by Park and Law [69], Park et al.
[83]

4%

Heer et al. [125] 𝛽, 𝜆 Jensen-Park model SimWindFarm 0.4–1.4%

Vali et al. [126] a WFSim WFSim 3.8%

Vali et al. [127] a WFSim WFSim 2–8%

Vali et al. [128] a WFSim WFSim 4%

Goit and Meyers [129] CT SP-Wind SP-Wind 15.8%

Goit et al. [130] CT SP-Wind SP-Wind 7%

Munters and Meyers [131] CT SP-Wind SP-Wind 8–21%

Munters and Meyers [55] CT SP-Wind SP-Wind About 10% (up to 20% without constraints on
input change)

Munters and Meyers [53] CT , �̇� SP-Wind SP-Wind About 30%

Munters and Meyers [132] CT , �̇� SP-Wind SP-Wind 1–66%

Doekemeijer et al. [119] 𝛾 FLORIS (Gaussian wake) SOWFA 7–11%

Doekemeijer et al. [120] 𝛾 FLORIS (Gaussian wake) SOWFA 1.4% (various wind direction); 11% max. gain

nine turbine wind farm maximizing the power production
using yaw control actions is presented. The robust closed-
loop controller shows in average the best performance and
increases the power production by about 7%. The approach
is tested for varying wind directions in Doekemeijer et al.
[120].

4.5.1 Model predictive control optimisation

An early approach for closed-loop power maximisation is pre-
sented in [121] (Table 10). A dynamic wake model based on the
dynamic wake meandering model [122] and Frandsen’s model
[123] called the Mosaic-tiles wake model are used. A wind
speed estimator corrects the wind speed measurement error
using the estimated error in the torque. A short term free wind
speed forecast and a prediction correction based on a ARMA
model is used in the MPC. Laguerre functions approximate
the control sequence and reduce the optimization time. In a
simulation study of a wind farm with 80 turbines the method
increased the power by 2% in comparison to the greedy control
approach.

An adjoint-based MPC to optimise the axial induction factor
and maximize energy extraction using the dynamic wake model
WFSim is proposed in [126–128]. It is demonstrated that setting
the prediction horizon to twice the time a wake needs to travel
from upwind to the downwind turbine provides a good com-
promise between closed-loop performance and computational
demand. The approach is validated using the LES wind farm
model PALM. A power increase of up to 4% is observed (in full
wake interactions).

A model predictive controller (receding horizon controller)
using full state feedback to maximize the power production
using the thrust coefficient is presented in [129, 130]. The high

fidelity toolbox SP-Wind is used. The dynamic optimal con-
trol of turbine set-points allows to increase the power extrac-
tion from the wind farm by 16% [129] and 7% [130] for a wind
farm with 50 turbines and a turbine spacing of 7D. A hierarchi-
cal closed-loop control approach is presented in [124]. A high
level controller computes the optimal axial induction factors to
maximise the power output of the wind farm. A simplified ver-
sion of the wake model in [69] is used. The local controller uses
a combination of feedback linearisation and MPC. A Kalman
filter estimates the effective wind speed and the systems states.
In simulations with variable wind a power gain of about 4%
is achieved in comparison to the greedy controller. In [125], a
brute force optimization is used to find the optimal pitch angle
and tip-speed ratio. On the turbine level, the set points are fol-
lowed by an MPC. The optimizer uses the Jensen-Park wake
model and SimWindFarm is used in the simulation to test the
approach. A power increase of about 1% was obtained simulat-
ing a wind farm with Horns Rev layout.

4.5.2 Data-driven model-based approaches

Data-driven approaches find the optimal operation point of the
plant by either constant excitation of the inputs and evalua-
tion of the objective function (model-free approach) or iden-
tifying a model based on the observed data and then optimizing
the created model (Table 11). The advantage of the data-driven
approaches is that they do not rely on a possible error-prone
model. The disadvantage is usually the long convergence time
of most of the proposed methods in the literature and questions
their applicability to a wind farm in time-varying conditions [2].
This holds especially for the model-free approaches.

In [133], a surrogate model using polynomial chaos expan-
sion is built. The data to train the model are generated with
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TABLE 11 Maximise power production: Data-driven model-based approaches

Ref. Method Inputs Optimization model Evaluation model Gain Comment

Hulsman et al. [133] Polynominal chaos
expansion

𝛾 surrogate model EllipSys3D + FLEX5 2-4% DEL considerations
can be included

Park et al. [83] Bayesian Ascent 𝛾, 𝛽 Gaussian regression
model

wind tunnel 30.4–33.2%

Park et al. [134] Bayesian Ascent 𝛾, 𝛽 Gaussian regression
model

Model by Park and Law
[69], Park et al. [83]

24%

Park [138] BO with trust-region 𝛾, a Gaussian regression
model

–

Doekemeijer et al.
[139]

Bayesian optimization
(BO) using data
from FLORIS
model

𝛾 FLORIS (Gaussian
wake)

SOWFA 4.4% BO used to represent
FLORIS model

Andersson et al. [135] Gaussian process
modifier adaptation

𝛾, a Gaussian wake model +
Gaussian regression
model

Gaussian wake model –

Andersson and
Imsland [136]

𝛾, a –

Andersson et al. [140] Distributed Gaussian
Process modifier
adaptation

𝛾, a –

Andersson and
Imsland [136]

𝛾 SOWFA 24% DEL considerations
can be included

Zhao et al. [141] Knowledge-assisted
deep deterministic
policy gradient
algorithm

a Deep Reinforcement
Learning model

WFSim 10%

Yin et al. [142] Support vector
machine (SVM) with
PSO to max power
and min thrust
generation

𝛾 SVM FLORIS - Modified
Jensen-Park model

1.7% improvement of wind farm reliability

Yin et al. [143] Relevance vector
machine with five
heuristic algorithms
to max power and
actuator health and
min. thrust force

𝛾 Relevance vector
machine model

0.15% AEP + 13% decrease of wind farm
thrust

the high-fidelity flow solver Ellipsys3D LES and the aeroelas-
tic tool FLEX5. A two turbine case is simulated. The surro-
gate model is used to represent the power output and loading
of the turbines. It is shown that the power of the two turbine
case with sufficiently small turbine spacing (less than 3.5 D)
can be increased by 2% to 4%. A Bayesian ascent (BA) algo-
rithm fitting a Gaussian process (GP) regression to input-output
data of the plant is proposed in [83, 134]. The control inputs
are yaw and pitch angle and the algorithm is successfully tested
in wind tunnel experiments, showing an increase of the power
production of 30% compared to a greedy individual turbine
control strategy. Another approach using GP regression was
proposed in [135, 136]. The GP regression is used in a mod-
ifier adaptation approach to correct for the plant-model mis-
match and find the optimal operation point of the wind farm.
The approach is data-driven but uses an initial model, which is
gradually corrected. It is, therefore, a hybrid method. Finally, in

Andersson et al. [137] the approach is successfully tested with
the high-fidelity simulator SOWFA. The approach by Anders-
son et al. [137] can include DEL in the objective function of
the optimization.

4.6 Optimisation-based Model-free
Closed-loop

A summary of these approaches is provided in 12. Game
theoretic (GT) methods apply a random search algorithm to
compute the next control actions. In [89] a game theoretic
approach, in Gebraad et al. [144] a gradient descent and in
Gebraad and Van Wingerden [145] a gradient decent and quasi-
Newton method are used to maximise the power production.
In [146], a multi-resolution simultaneous perturbation stochas-
tic approximation algorithm is used to maximise the power in



ANDERSSON ET AL. 13

TABLE 12 Maximise Power Production: Optimisation-based model-free closed-loop approaches

Ref. Method Inputs Evaluation model Gain

Marden et al. [89] Game theory a Jensen-Park model up to 25%

Gebraad et al. [144] Gradient descent a 1%

Gebraad and Van Wingerden [145] Gradient descent; Quasi-Newton approach a 4%

Ahmad et al. [146] Multi-resolution simultaneous perturbation
stochastic algorithm

a 32%

Zhong and Wang [156] Decentralised discrete stochastic
approximation; decentralised regret-based
adaptive filter algorithm

a 3.9%

Barreiro-Gomez et al. [147, 148] Gradient estimation with population game
approach

a -; up to 15%

Extremum seeking controller

Johnson and Fritsch [149] Extremum seeking controller a Jensen-Park model 3.8 - -13.8%

Guillemette and Woodward [150] Multi-unit optimization (Extremum seeking
controller)

𝛽, 𝜆 SimWindFarm -

Yang et al. [151] Nested Extremum seeking controller 𝜏gain SimWindFarm 1.3%

Ciri et al. [152, 153] Nested Extremum seeking controller 𝜏gain UTD-WF 10%; 7.8%

Ciri et al. [154] Individual ESC; nested ESC 𝜏gain UTD-WF 7.6%; 7.8%

Campagnolo et al. [155] Extremum seeking controller 𝛾 wind tunnel 15%

a wind farm using the axial induction factor of the turbines.
Faster convergence in comparison to the algorithms proposed
in [89, 144, 145] is reported. In [147, 148], a population game
approach is used to estimate the multi direction gradient based
on stored information. The axial induction factor is optimized.
Centralised and decentralised control schemes are implemented.
The decentralised control scheme needs more iterations to find
the optimum but works only with local information and has,
therefore, a higher reliability.

4.6.1 Extremum Seeking Control (ESC)

Extremum Seeking Control (ESC) reconstruct the gradient of
the objective function to compute the next control actions.
One of the earliest ESC model-free approaches applied to
wind farms is presented in [149]. It was found that by control-
ling the axial induction factor the power production could be
improved in low to medium wind speed conditions. A limitation
of the study is that for the tested plant the simple Jensen Park
model was used. In [150] a multi-unit optimization, which is a
extremum seeking method, is used. The multi-unit optimization
applies a constant offset between inputs units and subtracts the
corresponding outputs from each other to estimate the gradi-
ent. The approach is tested with SimWindFarm and it is shown
that the optimum can be found in presence of different wind
speeds and disturbances in the wind. A nested ESC approach is
presented in [151]. In [152–154] a nested ESC is used to opti-
mize the plant performance. The mathematical justification to
use a nested ESC and optimize an turbine array sequentially is
given in [94]. Power gains of 8–10% compared to the greedy
control approach are reported. Campagnolo et al. [155] tested a

gradient-based ESC algorithm in a wind tunnel. Wake steering
demonstrated substantial increase on power production up to
15%.

5 PROVISION OF GRID SERVICES

5.1 Conventional feedback control

A summary of these methods is provided in Table 13.

5.1.1 PID control with gain scheduling -
hierarchical structure

A hierarchical and robust control structure is proposed in [157,
158] where a central supervisory controller dispatches the active
(P) and reactive (Q) power references to the local control in indi-
vidual turbines based on a proportional distribution of the P and
Q available. The turbine controller adjusts the pitch angle and
tip-speed ratio. Gain-scheduling and PID controllers are used.
In [159], the authors present a hierarchical control system and
demonstrate that it is possible to control wind farms with dif-
ferent wind turbine generator technologies (i.e. fixed-speed and
variable-speed). The core of the control structure is again gain-
scheduling and PID controllers. In [18, 160], a wind farm con-
troller using a proportional distribution to dispatch the active
power reference to the wind turbines in the farm is presented.
The full load controller is a gain-scheduled PID controller act-
ing on the pitch angle and the partial load controller applies a
PID controller to maintain the generator operating on the opti-
mal power curve.
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TABLE 13 Provision of grid services: Conventional feedback control approaches

Ref. Method Inputs Evaluation model

Sørensen et al. [157] Hierarchical control with gain scheduling and PID controllers (DFIG
turbines)

𝜆, 𝛽 Model by Sørensen
et al. [166]

Hansen et al. [158] Hierarchical control with gain scheduling and PID controllers (DFIG
turbines)

𝜆, 𝛽 Power Factory
DIgSILENT

Rodriguez-Amenedo et al. [159] Hierarchical control with gain scheduling and PID controllers
(AC/HVDC/SVC/DFIG turbines)

𝜆, 𝛽 –

Grunnet et al. [18], Soltani et al. [160] Hierarchical control proportional dispatch; gain scheduling PID controller 𝜆, 𝛽 SimWindFarm

Aho et al. [161, 162] Primary and secondary frequency control with gain scheduling feedback
controllers

𝜏, 𝛽 FAST

Fleming et al. [163] Active power control of Aho et al. [161] testing different control inputs 𝜏, 𝛽, 𝛾 SOWFA

Annoni et al. [164] Preliminary wind farm control with PI controller to follow power reference 𝜏 dynamic Jensen Park
model

Stock et al. [167], Poushpas and Leithead
[168], Hur and Leithead [169], Hur [170]

Full envelope controller augmented by power adjustment controller for
primary frequency support

𝜔; 𝜏 Supergen wind turbine

Baros and Ilić [171] Dynamic distributed dispatch with leader-follower consensus protocol - CLF
based controller

𝜏 rotor-speed dynamical
model

van Wingerden et al. [165] Gain scheduling controller with PI feedback controller Pdem SOWFA

Petrović et al. [172] Gain scheduling controller with PI feedback controller (concept by van
Wingerden et al. [165])

Pi ; 𝜏gen

Vali et al. [173] Inclusion of thrust measurement for coordinated load distribution (CLD) in
control approach of van Wingerden et al. [165]

Pi ; ΔP ; 𝛼 PALM

Vali et al. [174] Controller by Vali et al. [173] with gain-scheduling extension for the CLD law Pi ; ΔP ; 𝛼 PALM

In [161], a control system to provide primary and secondary
frequency control is proposed using gain-scheduling feedback
controllers on the turbine level. Three different de-rating com-
mand modes are introduced. The controller is further discussed
in Aho et al. [162] where different performance metrics are
analyzed. In [163], illustrates that automatic generation control
response is good in un-waked conditions. However, in waked
conditions, active power control (APC) becomes more challeng-
ing. The influence of individual turbine control on the dynamics
of a wind farm is investigated in [164]. The static Jensen Park
model is extended to a dynamic one and performance is tested
with wind tunnel experiments using three turbines. A PI con-
troller is implemented to track the total power or voltage. In
[165], a hierarchical controller is proposed where the wind farm
controller distributes the power reference of the grid operator
to individual turbines based on a simple gain-scheduling PI con-
troller using power feedback from the wind farm. The proposed
control structure is tested with SOWFA showing good track-
ing performance.

5.1.2 PID control with gain
scheduling—distributed structure

In [171], a dynamic distributed turbine set-point dispatch
is proposed using a fair dispatch where the power pro-
duction relative to the maximum available power pro-
duction at the turbine is equal for each turbine. The
turbines communicate with the nearest neighbour and

the torque controller of the turbines is control-Lyapunov
function-based.

5.2 Optimisation-based model-based
open-loop control

An optimal control strategy that exploits the wake interac-
tion to maximise the kinetic energy in the wind farm to pro-
vide primary frequency services is proposed in [175]. The
control variables are the pitch angle and tip-speed ratio and
the wake model used in the optimization is the stationary
model proposed in [176]. In [163], an open-loop controller
for active power control (AGC more specifically) and provi-
sion of power reserve is presented. Torque control and wake
steering are used and the authors illustrate the difficulties of
providing APC when wind turbine controllers interact through
wakes.

5.3 Optimisation-based model-based
closed-loop

For power point tracking closed-loop approaches more often
proposed for power tracking and provision of grid services than
open-loop approaches. By way of example, Figure 3 shows the
structure of a hierarchical, model-based closed-loop wind farm
controller currently being developed by the authors under the
OPWIND project.
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5.3.1 Model predictive control

Intense research has been conducted on the use of model
predictive control (MPC) in wind farm controllers that have
as an objective the provision of services to the power grid.
Table 14 provides a summary of numerous relevant works using
this approach. In [177], a hierarchical wind farm control con-
cept is described. A high level controller distributes the power
production and loading optimally while a low level controller
reacts to sudden disturbances. The multi-parametric solutions
of the low level controller are computed offline disregard-
ing the coupling between wind turbines. An online reconfig-
uration algorithm redistributes the power reference using the
pre-computed solutions. In [178], an MPC wind farm con-
troller with the objective of constant load tracking of the tower
shaft while following the power reference is proposed. The
wind farm controller is tested on a wind farm with two tur-
bines showing shaft DEL reductions of 5% to 8% at the
turbines.

In [179], a distributed controller to dispatch the power pro-
duction while considering the turbine loading is suggested. This
is An extension of the work by Spudić et al. [178] is presented
in [179] under communication constraints where a distributed
controller dispatched the power production considering the tur-
bine loading. Due to the distributed controller design the result-
ing feedback matrix can be made sparse, which increases the
modularity and scalability of the approach. In [186], a closed-
loop MPC for dispatching the power command and reducing
the mechanical loads is described. A wind flow model is not
used, but the wind velocity at the turbines is predicted with an
ARMA process. A deterministic and stochastic MPC are tested
with SimWindFarm and show similar performance. Best perfor-
mance was achieved with a prediction horizon of 2–3 s. In [195],
a supervisory MPC is presented that dispatches the power refer-
ences to the turbines while operating the turbines close to their
maximum power curve. A wake model is not included in the
control model. Simulation results indicate that the shaft fatigue
can be reduced.

In [194], an MPC is proposed to follow a power reference
while mitigating the turbine fatigue loads. A look-up table with
damage equivalent loads (DEL) depending on operational con-
ditions is used to represent the fatigue loads. The dynamic flow
predictor is used as flow model. The performance of the MPC is
compared to a PI controller using proportional dispatch based
on the available power at the turbines. The MPC shows larger
deviations from the power reference but reduces the DEL up
to 28% compared to the PI controller in an eight-turbine array
simulated in SimWindFarm. In [187], an active power control
for wind farm cluster is presented. The approach considers a
hierarchical control structure. On the upper-level, a distributed
active power dispatch based on a consensus protocol is used.
On the lower level an MPC algorithm takes into account the
dynamic response of the system. The control approach is tested
with SimWindFarm showing a good tracking performance
while reducing the fatigue loads.

In [191, 192], a receding horizon controller to follow the
power reference and reduce changes in the thrust coefficient is

presented. The MPC uses a one-dimensional time-varying wake
model and the turbine is approximated with the actuator disk
theory. The performance of the MPC is tested with LESGO. In
[193], the error correction term is replaced with a state estima-
tor. An ensemble Kalman filter (EnKF) estimates the velocity
deficit and the wake expansion parameters using the measure-
ments of the turbine power. A similar approach using MPC
to optimize the axial induction factor for APC is presented in
[199]. The wake model WFSim is used and it is assumed that
all necessary states for the MPC are measurable. The control
approach is tested on a layout of a 2 × 3 wind farm with WFSim.
In [188], a closed-loop MPC for active power control is pro-
posed. The wake model is neglected and instead measurements
of the rotor-average wind velocities are used. The objective of
the controller is to minimize the axial force variations while
following the power reference using the thrust coefficient. The
power reference is distributed in the wind farm based on the
proportional distribution law in [158]. An additional control
loop, which utilizes FLORIS to find the optimal yaw settings
and increase the available power in the plant, is implemented.
The tracking performance is tested in PALM. In [189], the
approach is extended to optimizes the thrust coefficients of the
turbines. Again the approach is tested on a six turbine test case
with PALM showing good tracking performance.

A lexicographic MPC is proposed in [201] to find optimal
power set-points for the turbines. First, an optimization prob-
lem to track the power reference while minimizing the varia-
tion in the power reference is solved and a second optimization
problem maximises the available power. The latter problem is
constrained with the solution of the first problem.

5.3.2 Linear quadratic regulator

The application of LQR to wind farm control has also been
investigated in a good extent. Table 15 presents a summary of
relevant works using this approach. In [206], a central and dis-
tributed wind farm control for de-rated operation is proposed.
The additional degrees of freedom in operation of the wind tur-
bines are used to reduce the fatigue loads in the wind farm. The
coupling between turbines is neglected based on the arguments
in [176]. A linear time-invariant wind farm model is used result-
ing in a standard linear quadratic Gaussian control problem.
The controller is able to reduce the tower and shaft fatigue by
15% to 20%. In [207], the dynamic power coordination in [177]
is analysed and turbine control constrains relaxed to increase
control flexibility and to reduce rotor speed variations. Coor-
dinated power fluctuations in individual turbine control is also
suggested to reduce turbine loads.

Another approach considering power tracking and load min-
imization is discussed in [208]. In order to reduce the fatigue
loads, the variations of the thrust force are included in the objec-
tive function. The resulting control structure consists of a local
controller at the turbine level, which follows a LQG control
law, while a wind farm coordinator applies a single averaging
operation to compensate for deviations in the power set-points
at the wind farm level. The control approach is tested with
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TABLE 14 Provision of grid services: Model predictive control

Ref. Method Inputs Controller model Evaluation model

Spudic et al. [177] Hierarchical controller; High level power
and load distribution; low level
disturbance rejection

Pre f ; 𝜏, 𝛽 linearised BEM turbine model; no
wake model

linearised BEM turbine
model; no wake model

Spudić et al. [178] MPC for power point tracking and load
fluctuation minimisation

𝜏, 𝛽

Madjidian et al. [179] Optimal distributed feedback law to follow
power reference and minimise bending
moments

𝜏

Spudić et al. [180] Cooperative distributed MPC with
quadratic cost function to follow power
reference and reduce thrust force

𝜏, 𝛽 SimWindFarm

Zhao et al. [181, 182] Proportional power dispatch and
distributed MPC to follow reference
and minimize shaft and thrust torque
variations

Pre f piecewise affine wind turbine model
identified with clustering-based
algorithm Zhao et al. [183]

SimWindFarm

Zhao et al. [184] MPC for active and reactive power
tracking and minimisation of shaft
torque variations

Pre f , Qre f , Vre f Simplified NREL 5 MW turbine by
Grunnet et al. [18]

SimWindFarm

Guo et al. [185] Distributed MPC for active and reactive
power control with reducing shaft
torque and thrust force variation

𝛽, tau Simplified NREL 5MW turbine by
Grunnet et al. [18]

SimWindFarm

Riverso et al. [186] Several different MPCs for power dispatch
and load reduction

Pre f Simplified NREL 5MW turbine by
Grunnet et al. [18] + wind velocity
prediction at turbines with ARMA
predictor

SimWindFarm

Huang et al. [187] Power dispatch based on consensus
control and decentralised MPC on
turbine level to follow power reference
and minimise variation in shaft torque
and thrust force

Pre f , 𝛽, 𝜔 Simplified NREL 5MW turbine by
Grunnet et al. [18]

SimWindFarm

Boersma et al. [188, 189] Model predictive to follow power
reference and minimize axial force
variation; + FLORIS model to optimise
yaw angles

CT linear parameter varying actuator disc
turbine model; no wake model

PALM

Boersma et al. [190] Sampled-based stochastic MPC for power
reference tracking and minimisation of
thrust coefficient variation

CT ; 𝛾 linear parameter varying actuator disc
turbine model; no wake model

PALM

Shapiro et al. [191, 192] Receding horizon controller to follow
power reference and reduce changes in
thrust coefficient

CT 1-D time varying wake model +
actuator disc model

High fidelity code
LESGO; to validate
wake model SP-Wind

Shapiro et al. [193] Receding horizon controller to follow
power reference and reduce changes in
thrust coefficient and ensemble Kalman
filter for state and parameter estimation

CT 1-D time varying wake model +
actuator disc model

High fidelity code
LESGO

Kazda et al. [194] MPC to follow power reference and
reduce DEL of tower bending moments

Pre f Dynamic flow predictor + fatigue load
look-up table

SimWindFarm

Wang et al. [195] Supervisory MPC for power dispatch with
power storage considering twist-angle
variation

Pre f , Ibat 3rd order two-mass shaft dynamic
wind turbine model and simplified
battery model

WTG by Qiao [196] +
el. model by Ni et al.
[197]; no wake model

Huang et al. [198] Two-stage optimization with energy
storage; 1st stage follow power
reference while reduce fluctuation in
power storage, shaft torque and thrust
force; 2nd stage distribute ESS inside
wind farm

Pre f DFIG turbine model with simplified
NREL 5MW turbine by Grunnet
et al. [18] as mechanical part; no
wake model

SimWindFarm

Vali et al. [199] Adjoint-based model predictive control to
minimise power tracking error

a∕(1 − a) WFSim WFSim

(Continues)
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TABLE 14 (Continued)

Ref. Method Inputs Controller model Evaluation model

Bay et al. [200] Limited communication distributed MPC
for power reference tracking

𝛾, a linear approximation of Jensen-Park
model and Gaussian wake model

FLORIS (Gaussian wake
model)

Siniscalchi-Minna et al.
[201]

Lexigraphic MPC following power
reference and minimise its variation
while increasing available power

Pre f Jensen-Park model Jensen-Park model

Siniscalchi-Minna et al.
[202]

MPC to minimize tracking power,
electrical power losses, variation in
power reference and maximise available
power

Pre f Jensen-Park model SimWindFarm

Siniscalchi-Minna et al.
[203, 204]

Partitioning of wind farm to minimise
wake effects; dispatch of power
reference on partition; local MPC to
follow power reference and maximise
available power

Pr e f Jensen-Park model SimWindFarm

Ahmadyar and Verbič
[205]

Three operation strategies: Max power
output while maintain kinetic energy,
max rotational energy while maintain
power output, deload with max kinetic
energy

𝜔, 𝛽 NREL 5 MW turbine with fitted Cp

and Ct curves; no wake model; no
wake model

NREL 5 MW turbine
with fitted Cp and Ct

curves; no wake
model; no wake model

Ahmadyar and Verbič
[175]

Maximise kinetic energy for primary
frequency service

𝛽, 𝜆 Model by Madjidian and Rantzer [176] Model by Madjidian and
Rantzer [176]

TABLE 15 Provision of grid services: Linear quadratic and particle swarm optimisation approaches

Ref. Method Inputs Controller model Evaluation model

Biegel et al. [206] Distributed linear quadratic Gaussian control
penalising fatigue and power set-point variations

𝛽, 𝜔g linearised BEM turbine model; no wake model

Madjidian et al. [207] Dynamic power coordination with relaxed power
tracking constraints to decrease loads

𝜏, 𝛽 linearised BEM turbine model; no wake model

Madjidian [208] LQR on turbine level with thrust force reduction in
objective and high level wind farm coordinator to
adjust for power tracking deviations

Pr e f ; linearised BEM turbine
model; no wake model

SimWindFarm

Baros and Annaswamy
[209]

Distributed fatigue load minimisation and power
reference optimal control

𝜔 DFIG turbine by Pulgar-Painemal and Sauer [210]; no
wake model

Soleimanzadeh and
Wisniewski [211]

Distribution of power reference while reducing
structural loading

𝜔; 𝛽, Pre f linearised 2D Navier Stokes eq. by Soleimanzadeh et al.
[212]; NREL 5MW turbine with polynomial
approximation of Cp and CT tables

Soleimanzadeh et al. [213] Distribution of power reference while reducing
structural loading

𝜔, 𝛽, Pre f linearised 2D Navier Stokes eq. by Soleimanzadeh and
Wisniewski [214]; linearised turbine model by Brand
[63]

Siniscalchi-Minna et al.
[215]

Maximisation of available power with linear program Pr e f Actuator Disc model SimWindFarm

Zhao et al. [216] Power reference dispatch based on load sensitivity Pre f Simplified NREL 5MW
turbine by Grunnet
et al. [18]

SimWindFarm

Ebrahimi et al. [217] Power dispatch and optimal wind turbine control that
minimises tower torque, turbine power reference
error and wind farm power demand error

𝛽, V DFIG turbine model; no wake model

Jensen et al. [218] Distributed optimal dispatch and added turbulence
minimisation

Pre f Actuator Disc model SimWindFarm

Particle Swarm Optimization

Tian et al. [219] PSO to maximise available power 𝛽, 𝜆 Jensen-Park model Jensen-Park model
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TABLE 16 Provision of grid services: Estimation and observation methods

Ref. Method Estimator model Evaluation model

Gebraad et al. [220] Kalman filter to correct wind field velocities based on measured
power data from turbines

FLORiDyn SOWFA

Doekemeijer et al. [221] Approximate and ensemble Kalman filter using wind velocity
measurements around the turbines to correct wind field

WFSim SOWFA

Doekemeijer et al. [222] Ensemble Kalman filter using wind velocity measurements
around the turbines to correct wind field

WFSim SOWFA

Doekemeijer et al. [224] Ensemble Kalman filter to estimate wind field with turbine power
measurements

WFSim SOWFA

Doekemeijer et al. [225] Linear, extended, unscented and ensemble KF to correct wind
field with downstream flow measurements at each turbine from
LiDAR

WFSim SOWFA

Shapiro et al. [193] Ensemble Kalman filter for state and parameter estimation using
power measurements

Model by Shapiro et al. [192] LESGO

Annoni et al. [226] Kalman filter to estimate state of reduced order model by optimal
placement of sensors

ROM SOWFA

Cacciola et al. [227] Wake centre tracking with load measurements from turbine by
minimizing difference between model and measurements

Larsen wake model high-fidelity multibody
turbine model
Cp-Lambda [228]

Schreiber et al. [229] Wake center tracking with load measurements from turbine by
minimizing difference between model and measurements [227]

Larsen wake model wind tunnel

Campagnolo et al. [230] Wind Sector observer to estimate rotor effective wind speed with
blade load sensors

BEM turbine model wind tunnel

Bottasso and Schreiber [231] Maximum likelihood estimate of wind speeds using rotor loads
based on Bottasso et al. [232]

Wake model by Keane et al.
[233] with wake deflection
by Jiménez et al. [234]

wind tunnel

Bottasso et al. [232] Estimate of wind speed over turbine quadrants using load
measurements (Blade-Load-based Estimator)

BEM turbine model high-fidelity multibody
turbine model
Cp-Lambda [228];
CART3 measurements

Göçmen et al. [235] Estimation of possible power in down-regulated wind farm Larsen wake model +Cp

look-up tables
SCADA data

Mittelmeier et al. [236] Detect underperforming turbines by comparing expected and
measured power using lookup tables.

Fuga wake model SCADA data

Annoni et al. [237] Consensus-based optimization of wind direction - SCADA data

Bossanyi [238] Exponential-weighted average of wind direction measurement in
wind farm

- LongSim model

Doekemeijer and van
Wingerden [239]

Model inversion to estimate wind direction by local wind
measurements at turbines.

FLORIS FLORIS

Adcock and King [240] Estimate mixing length field and thrust coefficient to minimise
difference in wind speed using lidar and meteorological tower
measurements

WindSE SOWFA

SimWindFarm and resulted in a 35% average reduction of
fatigue damage in the wind turbine towers compared to the case
where each turbine maintains its nominal power reference. In
[209], a distributed approach to solve the Fatigue-load minimization

optimal control problem is proposed. It follows the power reference
while minimizing the fatigue loads in the wind farm. Interac-
tions between turbines due to wakes are neglected.

5.3.3 Particle Swarm Optimisation

In [219], a PSO optimization is used to obtain optimal pitch
angles and tip-speed ratios to maximise the available power in

the plant. The wake effects are modelled with the Jensen-Park
model and the method is able to increase the available power in
the wind farm considerably in comparison to the proportional
dispatch method.

6 ESTIMATION

Very little work has been done regarding state observers for
wind farms. Some of the most relevant works are summarised
in Table 16). In Gebraad et al. [220] the states of the FLORI-
Dyn model are estimated with a Kalman filter using the power
production and control settings measured at the turbines.
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Noteworthy is the work by [221–225] who in a series of articles
used the ensemble Kalman filter (EnKF) (and other Kalman
filters) to estimate the states of the WFSim model reducing
sequentially the required amount of measurements. Another
example of applying an EnKF to the wind farm can be found in
[193]. In [226], a data-driven sparse-sensor placement algorithm
to find optimal sensor locations for flow field reconstructions
is presented. The measurements of the flow field are used
by a Kalman filter to adjust the flow field predictions of a
reduced-order model.

7 DISCUSSION

A comprehensive literature review on wind farm control con-
cepts and structures has been presented and details on the work
conducted by numerous researchers and their main findings
provided. It is evident that there is still work to do in the field
and the following is a brief summary of some pressing chal-
lenges in wind farm control:

∙ Quantification of the impact of wind farm control strate-
gies on the wind turbine loads would be highly advantageous
in moving wind farm control strategies forward towards
widespread implementation and industry acceptance.

∙ Wind farm power maximisation is designed and evaluated on
many different models, which makes the evaluation of the
performance of different control approaches difficult. The
FarmConners benchmark was launched recently to provide
data sets on which control models can be evaluated [241].

∙ While in simulations it was shown that the power produc-
tion of wind farms can be increased with a cooperative con-
trol strategy, the proof-of-concept on a real wind farm is
still missing. Moreover, it is questionable if axial induction
control has the capabilities to improve the annual energy pro-
duction of a wind farm. Even for wake steering, in simula-
tions the more promising approach, such a proof-of-concept
on a real wind farm has not been brought forward, yet. A
problem is the large measurement noise and uncertainty mak-
ing the interpretation of the results of measurements cam-
paigns very difficult. The uncertainties in for example wind
direction and aerodynamic models, puts cooperative con-
trol strategies in risk of being counter-productive over some
periods, which may result in them not increasing the annual
energy production. On the other hand, even if these control
concept cannot increase the power production they may still
be capable of decreasing the load in wind farms.

∙ Wake steering is a promising control strategy. However, it is
not clear if wake steering actually can contribute to lower
the CoE. Turbines are not designed to constantly be yawed
into the wind. These will increase the dynamic load on some
parts of the turbines which may result in higher maintenance
costs. Some simulation studies exist showing the load will
change considerably on the blade and drive-train. More stud-
ies possibly also long term experiments are necessary to show
how much this control strategy effects the lifetime of the
turbine components. It may be even necessary to redesign

some components if this control strategy proofs to be
effective.

∙ Many cooperative control approaches are optimisation-
based. To operate a model-based optimiser in closed-loop a
state estimator is required. In comparison to noise-free full
state feedback the usage of a state estimator will decrease the
performance of the optimisation approach to some extent.
Very little work has been done developing state estimators
for wind farms.

∙ If the wind farm is operated below available power it is still
an open question if the fatigue load can be reduced. How
is the energy production distributed the best over the farm
to achieve this goal, and how to formulate this the best in
a comprehensive objective function that can be optimised in
real-time?
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LIST OF VARIABLES

a Axial induction factor
CT Thrust coefficient
Ibat Battery current

P Power
Pre f Power reference
Pdem Power demand

Pi Power at turbine i
Pos Position

Qre f Reactive power reference
Vre f Voltage reference
𝛽 Blade pitch angle
𝜈 Tilt
𝜆 Tip-speed ratio
𝛾 Yaw angle
𝜏 Generator

𝜏gain Generator torque gain
𝜔 Rotor rotational speed
𝜔g Generator rational speed
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