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Summary

There is an emerging realisation in the water industry that improving resilience
enhances the sustainability of water distribution systems exposed to an uncer-
tain future with often unavoidable failures. A successful adaptation of resilience-
enhancing strategies relies on the effectiveness of the water distribution system’s
ability to resist, absorb, and restore its functionality exposed to the effects of stress.
Therefore, a deeper understanding of the underlying mechanisms promoting such
abilities is of great relevance for decision-makers involved with strategic planning.

This study evaluates resilience with respect to drinking-water quality objectives.
Through a simulation study, failure is quantified based on substance intrusion
and the propagation of pollutants in the water distribution networks. Resilience
is measured as the system’s degree of performance under progressively increasing
disturbance. This can be simulated through scenarios with an increasing mass
of substance injected into the network. Random failure sequences are adapted
to the failure mode as a multivariate stochastic modeling approach. A random
selection of source point inputs addresses spatial uncertainties, while start time
inputs address temporal uncertainties of the failure mode. The number of nodes
used as a source point presents the level of stress inflicted on the water distribution
system.

Resilience is influenced by the installed technologies and how they are connec-
ted. Yet, relatively few studies have addressed the actual relationship between re-
silience and topological characteristics of water distribution networks. Based on
network design constraints and statistical parameters, this study presents an auto-
matic network generation procedure to produce network variants with unique sets
of topological attributes. The network variants are exposed to the aforementioned
random failure sequences, and their resilience is evaluated based on 50 global
failure indicators. Strong positive correlations were only observed between the
rapidity of multiple failure metrics and certain topological attribute indicators.
Moderate to weak correlations were observed between the other global failure
metrics and some statistical properties of the topological layouts. The results in-
dicate that there is a relationship between network design and the resilience of
the generated network variants.

Keywords: Resilience, WDS, Quality, Topological Attributes, Network Generation
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Sammendrag

Motstandsdyktighet er et begrep av voksende betydning i vann- og avløpssektoren.
For en sektor på vei inn i en usikker fremtid preget av ofte uunngåelige svikter
vil tiltak for økende motstandsdyktighet være ett viktig redskap for sikring av
bærekraftige drikkevannssystem. Det vil være helt essensielt å fremme graden av
drikkevannssystemene sin evne til å motstå, absorbere, og gjenopprette sin funks-
jonalitet selv utsatt for store mengder stress. Av den grunn, vil en dypere forståelse
av de underliggende mekanismene som fremmer slike evner være av stor verdi for
beslutningstakere involvert med strategisk planlegging av drikkevannssystemer.

Denne masteroppgaven undersøker motstandsdyktigheten av drikkevannssystemer
utsatt for forringelse av drikkevannskvalitet. Dette er gjennomført ved å simulere
inntrengende giftstoff og dens utbredelse i modeller av drikkevannsystemer. Et-
tersom motstandsdyktighet er ett mål på drikkevannssystemet sin evne til å op-
prettholde sin funksjonalitet utsatt for stadig økende stress, kan det fremstilles
gjennom en rekke simuleringer med økende mengde giftstoff tilført nettverket.
Metoden for «random failure sequences» er tilpasset feil mekanismen som en mul-
tivariat stokastisk modellerings metode. Variabler for start tid er tilfeldig valgt for
å betrakte tidsavhengige usikkerheter av feil mekanismen, mens giftstoffkilde er
tilfeldig valgt for å betrakte romlige usikkerheter. Antall giftstoffkilder brukt i hver
iterasjon er ekvivalent med mengde giftstoff tilført nettverket.

Motstandsdyktigheten er påvirket av de installerte teknologiene og hvordan disse
teknologiene er koblet opp mot hverandre. Til tross for dette, relativt få studier
har sett på det faktiske forholdet mellom motstandsdyktighet og topologiske trekk
av utformingen av drikkevannsnettverk. Som en del av denne masteroppgaven,
basert på statistiske antagelser og designprinsipper, er en automatisk nettverk gen-
erator utviklet. De produserte nettverksvariantene er av unik topologi målt med
statistiske indikatorer fra grafiteori. Videre er nettverksvariantene utsatt for «ran-
dom failure sequences» og motstandsdyktighet er målt med «global failure indicat-
ors». En sterk positive korrelasjon er observert mellom hastigheten av giftstoffene
sin utbredelse og noen topologiske indikatorer. Andre aspekter av nettverkene sin
funksjonalitet viser en svak til moderat korrelasjon til flere topologiske indikatorer.
Resultatene gir en indikasjon på at det finnes en sammenheng mellom den topo-
logiske utforming og motstandsdyktighet av de genererte nettverkene.
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Chapter 1

Introduction

The water sector’s critical infrastructures form complex cyber-physical systems
[45]. With the expanded attack surface, these systems are exposed to cyber-physical
threats like denial of service attacks, hacking, data manipulation, deliberate con-
tamination events, and sabotage, along with vulnerabilities like corrosion, pipe
deterioration, pressure changes, and leakages. Additional challenges related to
climate change and urbanisation, make urban water systems increasingly vulner-
able to uncertain yet often unavoidable failures [32].

A common practice in water engineering, or any engineering field, is to break
down a problem into smaller parts to understand the underlying mechanisms of
the individual technologies. Reductionism has proven to be a phenomenally suc-
cessful approach in every branch of science. Consequently, the methodology is
wildly applied for problem-solving and has become an integrated part of most con-
ventional risk management procedures [11]. One could argue that the perform-
ance of individual technologies is acknowledged as more or less understood[48].
Nevertheless, it is far less clear how the overall urban water system performance
is affected by a portfolio of technologies for a given set of future scenarios [48].
Furthermore, the increase in size and complexity of water distribution systems
makes the hydraulic and quality analysis more challenging than in the past [12].

A great frontier of science today is concerned with what happens when the tech-
nologies come together to perform as a coherent system. The process of finding
system properties given the properties of its parts introduces the study of complex
systems.

In the last decades, the study of complex network theory has attracted the at-
tention of researchers from different disciplines with applications such as social,
cellular, and metabolic networks, power grids, transportation networks, and water
distribution networks [9, 10]. Hence, complex network theory is becoming one of
the most powerful and versatile tools to investigate, describe, and understand the
topology of irregular and distributed structures [12]. In such systems, structure
affects function [9].

1
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At the same time, there has been an emerging realisation that building resilience
is an essential component of enhancing the sustainability of water distribution
systems [35]. Resilience is a relatively new term and has roots in different sci-
ences. Although several definitions of resilience have been proposed, it is gener-
ally agreed upon that resilience is a property of the system [48]. E.g. in structural
engineering resilience refers to a material’s capability to withstand stress without
being permanently deformed [8], while in ecology resilience is defined as the
amount of disturbance an ecological system can withstand without changing its
self-organised processes and structures [7]. The stress-testing oriented definition
of Makropoulos et al. [48] addresses resilience as:

... the degree to which an urban water system continues to perform under
progressively increasing disturbance. Makropoulos et al. [48]

The degree of continued performance is measured through reliability and is defined
by [48] as the system’s ability to deliver its objective over a time span consistently.
The objectives may differ between areas depending on local regulations, policies,
and requirements. However, objectives typically refer to the water distribution sys-
tem’s ability to deliver water of sufficient quantity and quantity to customers [55].
It should also be noted that reliability can be evaluated as the loss of objectives
[13]. However, for this study, any loss of objectives is referred to as failure.

Another important aspect of resilience is communicated through the progressively
increasing disturbance. A disturbance typically refers to a stress-testing event with
less than optimal conditions. As such, resilience can be expressed as the relation-
ship between the reliability and level of stress inflicted on the water distribution
system [48].

The last aspect of resilience relates to the system. Resilience is influenced by the
installed technologies and how the components are connected to each other [48].
The connection between the components refers to the network design. Despite the
topological attributes and resilience being two distinct concepts, they are closely
related to the network design of water distribution systems.

In literature, it is generally assumed that the resilience of water distribution sys-
tems related to certain design principles of the network, yet relatively few studies
have addressed the actual relationship [32]. E.g., Pizzol [33] refers to certain to-
pological attributes as a direct measure of resilience. Similarly, Yazdani et al. [16]
applies topological attributes in order to compare structural vulnerability to the
cost of expansion strategies for an urban drainage system in a growing city of
Africa.

Mugume et al. [32] presents a comprehensive global resilience assessment using
random failure sequences in order to present a stress-strain relationship of resili-
ence by increasing the number of pipe failures in urban drainage systems. Using
the random failure sequences, Diao et al. [35] investigated the effect of several
failure modes (pipe failure, fire fighting, and substance intrusion) on the water
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distribution system’s resilience. As network design is an essential part of resili-
ence, Meng et al. [65] conducted an extensive correlation analysis between the
resilience of topological attributes of water distribution systems exposed to pipe
failure scenarios. The study of Meng et al. [65] is based on 85 water distribution
systems with different sizes and topological features, along with network variants
of a single water distribution system. The results of Meng et al. [65] show that
certain aspects of the quantity-related resilience (e.i. spatial and temporal scales
of the failure profile) are, in fact, strongly correlated to topological attributes.

1.1 Research question

This study is based on the presented framework of Mugume et al. [32], Diao et al.
[35], and Meng et al. [65] in order to address quality-related resilience of water
distribution and its relation to the network design expressed through topological
attributes. The study includes developing a network generation procedure to pro-
duce network variants based on a benchmark model. Its outcome is a series of
network variants with unique sets of topological attributes. This study conducts a
topological attribute and a resilience assessment of the produced network variants
to answer the following research question:

What is the relationship between the resilience of water distribution
systems exposed to substance intrusions and the network design char-
acterised by topological attributes?

The topological attribute assessment includes a total of five topological attribute
indicators. In its essence, topological attribute indicators are statistical parameters
used to characterise the various network designs of the network variants. The
topological properties of the produced network variants are evaluated based on
five indicators; link density, average shortest path length, clustering coefficient,
central-point of dominance, and average closeness centrality.

The three-step methodology of Moraitis et al. [56] is used to quantify the failure
related to water quality. An input uncertainty analysis evaluates the input para-
meters of substance intrusions related to the failure aspect of resilience. Global
failure metrics are introduced as the mean failure value derived from multiple
stress-testing events as a part of it. Furthermore, the random failure sequences
procedure of Mugume et al. [32] is adapted to simulate the progressively increas-
ing disturbance of substance intrusions as a multivariate stochastic modeling pro-
cedure. As a part of it, the number of nodes used as a source point for substance
intrusion expresses the level of stress inflicted on the water distribution models.
The model’s behavioral outcome is processed to present the related global failure
indicators of a water distribution system.
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1.2 Outline of report

Chapter 2: presents relevant literature about impact prediction.

Chapter 3: presents the methodology of the study.

Chapter 4: presents data and processing method used in this study.

Chapter 5: address validity of the global failure metrics.

Chapter 6: address reliability of the global failure metrics.

Chapter 7: evaluates the resilience of topological attributes.

Chapter 8: concludes main findings.



Chapter 2

Background

2.1 Modelling water quality

The Water Network Tool for Resilience (WNTR) provides multiple capabilities to
explore the resilience of water distribution systems, including modeling the effects
of aging infrastructure, environmental emergencies, pipe breakage, and quality
concerns [61]. Figure 2.1 presents the simulation procedure for modeling the be-
havior of a water distribution network exposed to substance intrusion.

As with any model, the simulation procedure requires well-defined system bound-
aries to study the artificial environment mathematically. The boundaries of the
model describe physical and non-physical technologies and their connection to
each other. Information on the system boundaries and environmental variables
(e.i. based demand and demand patterns) is described within the input file. In-
formation about the characteristics of a substance intrusion is added to the model
before the simulation procedure. The widely employed EPANET hydraulic and wa-
ter quality solver [28, 38] are applied as a part of WNTR to simulate the movement
of drinking water and other substances within the defined boundaries of the sys-
tem. The report file presents the output as a multidimensional matrix describing
water quality and quantity for each time step of the simulation period.

Figure 2.1: Modelling substance intrusion simulation procedure.

5
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2.1.1 Input file

Input files describe the physical components of a model as a collection of nodes
connected by links [60]. Nodes are represented as a singularity in the network
and include junctions, tanks, and reservoirs. Links are the connection between
the singularities and include pipes, pumps, and valves. Apart from information on
the network design (e.i. how the technologies are connected to each other), nodes
and links are assigned structural properties giving information of the technology
in use.

Apart from the physical components, the input file also includes non-physical com-
ponents. These informational objects describe the environmental and operational
aspects of the model. That is, curves, patterns, and controls with the following
characteristics:

• Patterns are a set of multipliers as a function of system time. E.g., nodes are
often assigned demand patterns as a multiplier to their base demand.

• Curves are data pairs that describe the relationship between two quantities.
E.g., pump head and flow rate, pump efficiency and flow rate, and water
storage height and volume.

• Controls are statements that determine operational aspects of the model
through the simulation period. These statements describe the state of links
such as valves, pumps, and pipes based on sensor data from nodes or time-
dependent thresholds.

2.1.2 Hydraulic solver

The WNTR hydraulic solver is derived from EPANET to run demand-driven ana-
lysis [61]. The solver approximates the hydrostatic and hydrodynamic behavior of
pressurized water pipe networks [61]. Based on equations on continuity and en-
ergy conservation, the hydraulic solver computes the hydraulic head at junctions
and flow rates in pipes at each hydraulic time step [60]. The hydraulic solver up-
dates reservoir levels, tank levels, and water demand at junctions before the next
computational step.

The continuity aspect solves the mass balance at each system node. A system of
equations describes inflow and outflow at each node n for all nodes in the system
N [28]. Equation (2.1) is the mass balance of node n. The set of pipes connected
to node n is denoted by Pn, such that qp,n is the inflow (e.i. negative number
describes the outflow) and Dn is the demand.

∑

p∈Pn

qp,n − Dn (2.1)

Head loss in pipes is calculated based on principles for conservation of energy
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[28]. Based on Bernoulli, the energy is conserved along a given pipe length by
relating friction, velocity, and pressure [28].

2.1.3 Quality solver

EPANET’s quality solver is applied to simulate water quality [37]. Propagation
and dilution of substance concentrations are calculated based on principles of
conservation of mass and reaction kinetics, advective transport in pipes, mixing at
pipe junctions and storage tanks, along with the bulk flow and pipe wall reactions
[60].

Although EPANET’s quality solver is widely applied to study water-quality con-
cerns [26, 27, 35], it only provides accurate results for shorter water quality time
steps [38]. Janke et al. [38] demonstrates that overly long time steps can yield er-
rors in concentration estimates and can result in a surplus of constitute mass. As
such, Janke et al. [38] presents guidelines through examples and demonstration
to appropriately configure the quality solver of EPANET.

2.2 Quantifying failure

A water distribution model is designed to provide sufficient quantity and quality
of water, covering customers’ needs without interruptions for all system nodes.
By default, a substance intrusion forms less than optimal conditions that affect
the quality of supplied water to customers at specific areas of the network for an
extended period. Such a scenario is referred to as a stress-testing event.

The report file from the model simulation procedure contains a pool of raw con-
sequence data from hydraulic and quality behavior of the network performance.
As a water distribution model may contain thousands of nodes and connection
with temporally and spatially varying behavior, it accounts for a difficult task to
translate the large volume of raw data into meaningful evaluations of the per-
formance.

In literature, performance indicators are used as a tool to determine if the loss of
service is high or low [6]. As such, Moraitis et al. [56] presents a collection of Key
Performance Indicators (KPI) to evaluate the failure of water distribution models
exposed to stress-testing events. The calculation of the failure metrics involves
a comprehensive three-step procedure to characterise failure by category type,
service level, and failure dimension. The three-step procedure is carried out by
the following steps:

1. The first step is a determination of the service category. The service category
refers to what type of service delivered to the customers. It is separated by
stress-testing events relation to either water quality or quantity failures.
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Figure 2.2: Generic loss function as presented by Moraitis et al. [56].

2. The second step is to identify the service levels for the selected service cat-
egory. Service levels are pivotal thresholds based on regulations, standards,
and policies to determine the operational state of a supply point. Based on
the defined thresholds, the service of every supply node can characterised
as normal, degraded, or disrupted for each step of the simulation period.

3. The third step is to differentiate between the four failure dimensions. The
failure dimensions are related to service, spatial, continuity, and customer
aspects of the service. Using the quality category as an example, the ser-
vice dimension refers to the volume of low-quality water supplied to nodes,
the spatial dimension refers to the number of nodes affected, the customer
dimension refers to the number of customers that are affected, and the con-
tinuity refers to the time low-quality water is observed in the system.

The defined categories, thresholds, and dimensions are applied to produce the
performance loss function. Figure 2.2 presents a generic loss function of a water
distribution model exposed to a stress-testing event. E.g., a substance intrusion
occurs at the time step te that results in a loss of performance in the following time
steps. The generic loss function reflects the performance of a water distribution
model on a system scale. It is observed that the failure raises to a peak loss (t =
tp) and decreases back towards normal operational values on a system scale. As
a result, the shape of the generic loss function closely resembles the shape of
the flood hydrograph [56]. Consequently, the curve can be characterised by the
properties of magnitude, average propagation, crest factor, and rapidity in order
to quantify the aforementioned failure metrics.
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2.3 Resilience as a measure of performance

While acknowledging the importance of impact prediction, it is also essential to
recognize the uncertainty of future events [48]. As future events are unknown, any
assumption made to define them may affect its outcome [48]. The input of a stress-
testing event or any other assumption made to determine how the existing system
or alternative system designs will behave may be uncertain. Thus, an essential task
of any stress-testing procedure is to capture the variability of the resulting impact
through parametric changes to the input of a stress-testing event.

As resilience is a performance property of the system, it requires consideration
of a wide range of threats that contribute to failure [32]. Risk analysis (e.g.,
the methodology of the Risk Analysis and Evaluation Toolkit [55]) is a proced-
ure to address threat-impact relationships [35]. Risk management procedure in-
volves threat identification, analysis, and evaluation, ranking threats based on
consequences and occurrence probability, and evaluation of possible treatment
options for risk reduction [57]. In terms of risk treatment, building resilience in-
volves reducing the consequences of the threat scenario by improving the overall
performance. This may be obtained by changing either the technologies (e.g., the
capacity of pipes, pumps, and tanks) water distribution system or the connections
between them (e.g., link connections, controls, service areas, etc.).

Conventional risk analysis typically requires likelihood estimation of threats [57].
As such, unknown events will not be captured [59], and low likelihood events are
often ignored [35]. Water utilities often need to know how the system performs
faced changing conditions such as asset deterioration and behavioral patterns, as
well as the impact prediction of accidents and/or incidents of occurrence prob-
ability that is difficult to predict [48]. Rather than focusing on the occurrence
probability, resilience assessment is a method to evaluate a wide range of threat
scenarios, e.i. by including both low and high probability threats, through identi-
fication of failure modes [35].

risk cannot be calculated; that does not mean that such occurrences
should be ignored, and resilience assessment provides a tool by which
they can be considered. Diao et al. [35]

The random failure sequences presented by Mugume et al. [32] is a stochastic
stress-testing procedure to address the increasing disturbance of failure modes
in urban water systems. By modeling stress-testing events with an accumulative
number of link failures, Mugume et al. [32] expressed resilience as the relation-
ship between the number of failed links and properties of the resulting flood hy-
drographs in urban drainage systems. The presented procedure of Mugume et al.
[32] accounts for input variability by randomly selecting link failures at each stress
level multiple times. Thus, the degree of lost performance may be measured as
the minimum, mean, and maximum strain (e.i. strain) at each stress level.
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Similarly, Diao et al. [35] applies the random failure sequences to evaluate the
resilience of water distribution systems exposed to pipe failures, fire fighting de-
mands, and substance intrusions. In terms of failure due to substance intrusion,
Diao et al. [35] quantifies failure as the total volume of low-quality water (e.g.,
substance concentration above a predefined threshold) supplied to customers, and
the total duration of the low-quality water is observed in the network.

Meng et al. [65] express resilience as the area under the stress-strain curve using
the random failure sequences to express progressively increasing disturbance of
pipe failures. Based on quantity objective, Meng et al. [65] quantifies resilience
related to six failure aspects (e.i. start time of failure, failure duration, peak loss,
the rate of failure, recovery rate, the magnitude of failure).



Chapter 3

Methods and tools

The method and tools chapter presents the modules used in the correlation ana-
lysis. It is comprised of three sections Key Performance Indicators (see Section 3.1),
topological attribute metrics (see Section 3.2), and correlation as a statistical
method (see Section 7.3).

3.1 Key Performance Indicators

The total simulation duration are configured to 94 hours with a report time step
of 1 hour of all experiments conducted. Furthermore, hydraulic and quality time
steps are configured as 3600 seconds and 60 seconds, respectively. The quality
time step is significantly shorter than the hydraulic time step in order to avoid mass
imbalances and errors in concentration estimate [38]. The following subsections
presents service levels, failure dimension, and failure metrics used in this study
[56], along with the introduction of global failure indicators for water-quality
related concerns.

3.1.1 Service levels

Directive of the European Parliament and of the Council [3] defines safe wa-
ter intended for human consumption as the absence of harmful micro-organisms
and substances. In addition to definitions, principles, and regulations, its report
presents the minimum requirement for parametric values used to assess the qual-
ity of drinking water. As water contaminants may be harmful if consumed above
certain levels, concentration thresholds are set for a list of priority pollutants.
E.g., legislation values range from lower concentration such as cyanide 50µg/L to
250g/L that is chloride. Thus, it is reasonable to expect drinking water to contain
at least small amounts of contaminants, such as physical, chemical, or biological
substances, without harming the customer.

11
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Table 3.1: Quality ranges of service levels [56].

Service Level Criticality Alias Quality Range (g/L)
L0 Any Low Quality cn,t > 20
L1 Moderate Sub-Standard Quality 60> cn,t > 20
L2 Critical Polluted Quality cn,t > 60

The service levels of Moraitis et al. [56] assigns two concentration thresholds
based on a substantial degree of lethality. Moderate lethality is denoted by cse

and
indicates that the water quality is above legislation. Water consumed with a smal-
ler concentration than cse

is assumed harmless to the customer, while any water of
higher consternation may affect the customer’s health. As this study assesses the
failure mode of substance intrusion rather than a specific threat scenario, the ar-
bitrary value of 20g/L is assigned to cse

threshold. The threshold of critical lethally
is denoted by csp

, and any consumed concentration above csp
is considered lethal

to the customers. In a similar manner to cse
threshold, the value of csp

is configured
to 60g/L.

Quality ranges are defined from the given concentration thresholds in Table 3.1.
The three service levels L0 , L1, and L2 represent quality ranges that define low,
sub-standard, and polluted quality respectably. Water leaving the node n at time
t is classified as low quality (e.i. L0) if the substance concentration cn,t is above
cse

, including concentrations of both moderate and critical lethality. While pol-
luted quality (e.i. L0) involve any node n at time t with a substance concentration
cn,t above the critical threshold csp

. The final service level L0 is sub-standard wa-
ter quality and includes any substance concentration cn,t substance concentration
between the moderate and critical threshold. Hence, a source point with a sub-
stance concentration not included by the quality ranges at time t is predicted to
supply water of normal quality, or at least water safe to drink. It must also be
noted that cn,t may be included in two quality ranges as a combination of either
L0 and L1, or L0 and L2.

3.1.2 Failure dimension

The failure dimension is the manifestation of service, spatial, temporal, and social
aspects of performance [56]. Each dimension is quantified at a nodal and tem-
poral level and refers to the system loss function (see Figure 2.2). A stress-testing
simulation of a network that contains N number of supply points is defined for
time t ∈ (0, t] and node n ∈ [1, N]. Thus, substance concentration cn,t and water
supply Sn,t are defined for each time step and node in the report file.

The service dimension is the supplied volume in node n of water with quality Li
at time t and denoted as polluted supply PSLi ,n,t . Thus, polluted supply PSLi ,n,t is
identical to the supplied water Sn,t if the concentration of node n at time t is in
the quality range of Li , as seen in the Equation (3.1).
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PSLi ,n,t =

¨

Sn,t if cn,t ∈ Li

0 if cn,t /∈ Li
(3.1)

The spatial dimension NLi ,n,t determines if node n is affected by water of quality Li
at time t. Any node affected by degraded quality is assigned the value of 1, while
those not affect assigned the value of 0 (see Equation (3.2)). An estimation of the
number of nodes affected will, in turn, help to determine the spatial influence of
a stress testing event.

NLi ,n,t =

¨

1 if cn,t ∈ Li

0 if cn,t /∈ Li
(3.2)

Social metrics are closely related to the spatial dimension, as it determines the
number of affected customers. The number of costumers Ct,n at node n at time
t is calculated in Equation (3.3) as a function of Dt,n using the per capita con-
sumption at peak business hour Dtpeak

and the total population Ptotal . With the
estimated population at the supply point, the number of affected customers CLi ,t,n
is calculated as the spatial dimension in Equation (3.4).

Cn,t =
Dn,t

Dtpeak

· Ptotal (3.3)

CLi ,n,t =

¨

Cn,t if cn,t ∈ Li

0 if cn,t /∈ Li
(3.4)

The continuity dimension is denoted by TLi ,n,t and communicates the temporal
aspects of the failure. Equation (3.4) assigns nodes at time t node n is affected by
water of quality Li a value of one.

TLi ,n,t =

¨

1 if cn,t ∈ Li

0 if cn,t /∈ Li
(3.5)

3.1.3 Failure metrics

The proposed methodology of Moraitis et al. [56] quantifies a water system’s fail-
ure in terms of its magnitude, average propagation, severity, and peak-to-average
ratio using the loss function analogous with the flood curve in hydrology.

Magnitude

A key property of the flood curve is the total runoff volume, as it directly reflects
the magnitude of the flood event [25]. It also refers to the catchment’s ability
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to absorb some of the precipitation through infiltration and evaporation [55].
Similarly, the magnitude of failure captures the total area under the system loss
function for each of the failure dimensions. In terms of absorbing a substance
intrusion, the low-quality water may be flushed out of the system or diluted by
mixing with water from other parts of the distribution network.

In terms of the service dimension, magnitude is the total volume of degraded qual-
ity Li supplied to customers. The system loss function is first defined by volume
degraded water quality at each time step. Thus, by also adding the volume at each
time step of the simulation period, as shown in Equation (3.6), grants the total
volume of degraded water supplied to customers PSLi

. Equation (3.7) show an
alternative representation of service magnitude. PSLi ,Ratio forms a ratio between
the total volume degraded water supplied and total demand DLi

in the system
[56].

PSLi
=

T
∑

t0

N
∑

n=1

PSLi ,n,t (3.6)

PSLi ,rat io =

∑T
t0

∑N
n=1 PSLi ,n,t
∑T

t0

∑N
n=1 DLi ,n,t

(3.7)

Spatial metrics for magnitude give the number of nodes that experience degraded
water, according to each level [56]. As such, a one dimensional vector is formed by
(Equation 3.8) to quantify if node NLi ,n affected by degraded quality within the
simulation period T . The total number of nodes affected NLi

is calculated with
Equation (3.9), and ratio between nodes affected and total nodes in the system is
calculated with Equation (3.10).

NLi ,n =

¨

1 if ∃ t: NLi ,n,t = 1

0 if > t: NLi ,n,t = 1
(3.8)

NLi
=
∑

n

NLi ,n (3.9)

NLi ,rat io =

∑

n NLi ,n

N
(3.10)

The same principle holds for the customer dimension [56]. Based on customers
maximum customers affected CLi ,n from Equation (3.11), magnitude of failure is
the customers or ratio of customers that experienced failure throughout the total
duration of service failure (see Equation (3.12) and Equation (3.13)).

CLi ,n =

¨

maxt0≤t≤T CLi ,n,t if ∃ t: CLi ,n,t = Cn,t

0 if > t: CLi ,n,t = Cn,t
(3.11)
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CLi
=
∑

n

CLi ,n (3.12)

CLi ,rat io =

∑

n CLi ,n

P
(3.13)

As for continuity, the time based vector TLi ,t is derived from Equation (3.14) to
determine which time steps any nodes is supplied with degraded water quality Li .
Equation (3.15) is the summation of the TLi ,t vector to calculate total duration of
failure TLi

. That is the total time the system services below expectations even one
node, while TLi ,rat io is the ratio between failure time and the simulation duration
T (see Equation (3.16)).

TLi ,t =

¨

1 if ∃ n: NLi ,n,t = 1

0 if > n: NLi ,n,t = 1
(3.14)

TLi
=
∑

n

TLi ,n ·∆t t (3.15)

TLi ,rat io =

∑

n CLi ,n ·∆t t

T
(3.16)

Average propagation

The propagation through time is another characteristics of the flood curve [55]. As
average propagation is translated to average failure of water distribution systems
through time [56], it gives a give an absolute number to each dimension as the
average failure through time. Equation (3.17) explores the failure dimension FLi

as a average value against total duration of failure. The failure dimensions of
service, spatial, and customers is denoted by FLi

, such that FLi
∈ [PSLi

, NLi
, CLi
].

FLi
=

FLi
∑

t TLi ,t
(3.17)

Equivalently, to address continuity–related metrics, the average failure per node
of Equation (3.18) is applied as the ratio between total duration failure and total
number of nodes affected [56].

N TLi
=

TLi

NLi

(3.18)
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Severity

In terms of severity of a stress testing event, peak values of the performance loss
function derived from the maximum value reached through the simulation dura-
tion. The peak value of failure dimension FLi ,n,t is calculated by Equation (3.19)
to give the severity Fpeak,Li

. Severity of service failure refers to the peak volume
of degraded water, while the spatial and customer dimension is the maximum
number of nodes and customers affected at the same time.

Fpeak,Li
=max

t0:T

N
∑

n=1

FLi ,n,t (3.19)

Fpeak,Li
∈ [PSpeak,Li

, Npeak,Li
, Cpeak,Li

]

Crest factor

While some flood events produce a gradually increasing runoff value, others occur
rapidly as a flash flood. The flood analogy can be translated to stress testing events,
as the impact of some events is abruptly observed at the source points, while oth-
ers gradually increase in severity [56]. Peak-To-Average (PAR) is a crest factor
[25] addressing the relationship between peak failure and the average propaga-
tion of a failure dimension in Equation (3.20). The crest factor communicates
a constant failure profile as the value approaches one, while larger values may
indicate abrupt changes in severity [56].

FPAR,Li
=

Fpeak,Li

FLi

(3.20)

FPAR,Li
∈ [PSPAR,Li

, NPAR,Li
, CPAR,Li

]

Rapidity

Rapidity is another aspect of the failure. This is measured as the time from the
start of a stress testing event to the peak value. As shown presented by the generic
loss function (Figure 2.2), the beginning of the event is denoted as time te, and the
peak value occurs at time tp. Thus, time from Event-to-Peak (TEP) is calculated
with Equation (3.21).

FT EP,Li
= tFpeak,Li

− te (3.21)

FT EP,Li
∈ [PST EP,Li

, NT EP,Li
, CT EP,Li

]
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3.1.4 Global failure metrics

Based on the three-step methodology of Moraitis et al. [56] to quantify failure,
the proposed global failure metrics communicate the resilience water distribution
models exposed to a failure mode. As noted by Makropoulos et al. [48], following
the principle of parsimony implies reserving the term resilience by its intended
usage as a dynamic measure of reliability, and thus limiting the global failure
metrics to an indication of its definition. Being a reflection of the resilience metrics,
global failure metrics address the lack of resistance, absorption, and restoration
capacities of a water distribution system exposed to substance intrusions.

In order to preserve the interoperability of the aforementioned failure metrics of
Moraitis et al. [56], the global failure metrics are calculated as the mean failure
metrics of the simulated stress-testing events. Equation (3.22) express the global
failure metric F based on the properties of magnitude, average propagation, sever-
ity, crest factor, and rapidity of the system loss function for the service dimension
of interest. The number of stress testing events is denoted by s and Fi is the quan-
tified failure of a stress testing event, such that i ∈ [1,2, 3.., s]. Thus, global failure
metrics differ from the failure metrics of Moraitis et al. [56] as the former includes
failure quantification of multiple stress-testing events.

F =

∑s
i=1 Fi

s
(3.22)

3.2 Topological attribute assessment

Structural attributes are defined as key characteristics of the physical objects de-
scribed in the input file. This study combines elements of complex graph theory to
describe system elements’ relation to each other. The following subsections give an
introduction to complex graph theory and present relevant formulas to calculate
global structural attributes.

3.2.1 Complex network theory

Graph theory is a tool to study mathematical structures and relationships between
objects. Like many other infrastructures (e.g., road networks, electrical grids, rail-
way, gas, etc.), water distribution systems consist of multiple interconnected com-
ponents. As the input file describes these components for simulating hydraulic and
quality behavior, it also can be translated to the realm of graphs. A graph consists
of nodes connected with edges. As such, the objects inherent properties are ex-
cluded, such that its building blocks (e.g., connectivity) can be evaluated at the
most basic level [4].
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(a) Branch structure (b) Loop structure

Figure 3.1: The two main types of network design structures [19]

At its core, water distribution systems, or at least simplified versions, is often char-
acterised as a branch structure or a loop structure [19]. A looped structure (see
Figure 3.1b) is a network where nodes are supplied from multiple directions by
connecting the pipes as to form rings. The other type of system is termed branch
structure (see Figure 3.1a) as the pipes form branches to distribute water to end
nodes. The looped structure is often regarded as preferable, as it provides a higher
degree of reliability, robustness, and resilience in terms of pipe failure [33]. Yet,
most water distribution forms a complex combination of both types of systems
as the network adapts to the changing physical, social, and economic landscape.
Thus, analysis of complex networks using graph theory techniques involves quan-
tification of network building blocks to identify characteristics of the water distri-
bution networks. Through identification of vulnerabilities and critical locations,
complex network theory can be used to classify water distributions systems by
their structural features [40].

3.2.2 Topological attributes

The topological properties of a water distribution system are characterised by stat-
istical indicators in complex network theory [24]. This study uses the five topo-
logical attribute indicators of link density, average path length, clustering coeffi-
cient, central-point of dominance, and average closeness centrality.

Link density

Link density d is the most basic indicator as it describes the ratio between nodes
and links. Link density address the connectivity of a graph, e.i. a water distribution
network with an abundance of links is referenced as highly connected. The link
density is given by Equation (3.23), where n is the number of nodes and m is the
number of links in the graph.
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d =
2m

n(n− 1)
(3.23)

E.g., the branch structure of Figure 3.1a has a link density of 0.29 with seven
nodes and six links, while the loop structure (see Figure 3.1b) with an additional
two links has a density of 0.38. Thus, the ring system has higher connectivity than
the tree system in respect to the link density.

Average shortest path length

The average shortest path length estimates the average number of links that need
to be traversed in order to reach from one node to another. V of Equation (3.24)
is a set of nodes in G, and d(s, t) is the shortest distance between the nodes s and
t.

a =
1

n(n− 1)

∑

s,t∈V

d(s, t) (3.24)

The average shortest path length is a measure of the efficiency of water transport
in a network. An efficient network is distinguished from a complicated and in-
efficient one, with a shorter average path length being more desirable. E.g., the
looped structure has a lower value (a = 1.8) than the branched structure (a = 2),
since the terminal nodes of the branched network are connected in the looped
network. It must be noted that the average shortest path length used in the cor-
relation analysis is independent of the link lengths or any other physical property
of the system.

Clustering coefficient

The clustering coefficient Cc is based on triplets of nodes to measure the degree of
nodes tend to cluster together. Equation (3.25) quantifies the density of triangular
loops of triplets and the degree to which junctions in a graph tend to be linked.
A triplet consists of three nodes connected to each other. The triplet is defined
as open if the three nodes are connected by two links or closed if the nodes are
connected by three links. The clustering coefficient is the number of closed triplets
(3N∆) over the total number of triplets (N3), which includes both open and closed
loops.

Cc =
3N∆
N3

(3.25)

The clustering coefficient is usually found to be a small number in systems with
fewer structural loops that differ from a simple triangle [16]. E.g., as the loop
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structure of Figure 3.1b forms a grid-like system without any triangle loops, its
clustering coefficient equals zero.

Central-point of Dominance

The betweenness centrality of a node i is denoted as Bi and is the number of
times a node is traversed by the shortest path length d(s, t) such that s, t ∈ V . The
most central node is denoted Bmax and is defined as the node that is traversed
the most times. The Central-point of Dominance CB indicator is calculated with
Equation (3.26) as the average difference in betweenness centrality of the most
central node and all other nodes.

CB =
1

n− 1

n
∑

i=1

(Bmax − Bi) (3.26)

The indicator is a measure of the node concentration around a central location
in respect to other locations in the network. The value of CB is limited to two
extremes of 0 for a perfectly distributed network (e.g. all nodes connected to
each other) and 1 for a star-like structures (e.g. all nodes connected to a central
node). Using Figure 3.1 as an example again, the loop structure have a lower
central-point of dominance than the branched structure.

Average closeness centrality

As betweenness centrality quantifies the number of times a node acts as a bridge
along the shortest path between two other nodes, closeness centrality can be re-
garded as a measure of how long it will take to spread water from one node to
all other nodes following the shortest path (d(s, t)). Thus, the average closeness
centrality is a measure of the averaged shortest distance between all nodes in the
network independent of the total nodes in the system.

Cu =
n− 1

n

n
∑

j=1

n−1
∑

i=1

1
d(s j , t i)

(3.27)

3.3 Correlation as a statistical method

In order to limit noise from operational and environmental variables, network
variants are generated by adding and removing pipes from existing networks.
These networks are referred to as network variants being the networks generated
based on a benchmark model. The network variants are a set of water distribution
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models with the with fixed nodes node and non-physical objects (e.i., curves, pat-
terns, and controls), along with a identical topological backbone. However, the
generated networks can be characterised by different topological attributes as the
peripheral node connections vary from network variant to variant. The network
variants exposed to a random failure sequence of a substance intrusion and their
resilience are evaluated with the global failure indicators. Thus, two sets of inde-
pendent sets of variables addressing resilience and topological attributes may be
established for each network variant.

The correlation analysis is a statistical method applied to evaluate the strength of
the relationship between produced global failure indicators and the topological
attribute indicators of the network variants.

3.3.1 Pearson correlation coefficient

The Pearson correlation coefficient was developed by Pearson (1896) [22] and
is a measure of the degree of linearity between two independent variables. The
strength and direction of the relationship between two sets vectors of variables
are measured with Equation (3.28), where i is a network variant associated with
topological attribute indicator x i and global failure indicator yi .

r =

∑n
i=1(x i − x)(yi − y)

Ç

∑2
i=1(x i − x)2
Ç

∑2
i=1(yi − y)2

(3.28)

The Pearson correlation coefficient yields a value between -1 and 0 for a decreas-
ing relationship, or a value between 0 and 1 for an increasing relationship. As
such, the coefficient describes a scenario in which the size of one variable in-
creases as the other variables also increases or where the size of one variable
increases as the other variable also decreases. A coefficient close to 0 means there
is no linear relation between the two variables. Whereas a coefficient close to 1
or -1 indicates a strong positive or negative correlation, respectively. Rather than
using oversimplified rules and ranges to translate the coefficient into descriptions
(e.i. weak, moderate, or strong correlations), it is suggested by Schober et al. [14]
to interpreted the strength of the relationship in the context of posed research
question.

3.3.2 Scatter plots

It is also advised by Asuero et al. [22] to conduct visual inspections of the pro-
duced data. In addition to the monotonic requirement of the data sequences, the
Pearson correlation coefficient is based on a linear relationship between the inde-
pendent variables. Thus, any observed relationship deviating from this linearity is
not captured by the Pearson correlation coefficient. As a scatter plot matrix gives
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a visual summary of linearity and non-linearity of the data, it is often more useful
than the correlation coefficient [22].

Additionally, the correlation coefficient is sensitive to points that substantially de-
viate from the main clustering. As a scatter plot presents network variants as in-
dividual points in the graph based on performance and topology, it makes it pos-
sible to detect outliers and evaluate their effect on the correlation coefficient. The
scatter plots applied in this study are supported by linear regression of the data.
However, the regression line itself provides no information about how strongly
the variables are related [22]. Linear regression has only one independent vari-
able and one dependent variable as it fits a line through the data points of the
scatter plots. The line is used as an indicator to evaluate the direction and spread
of the data.

3.3.3 P-values

The Pearson correlation coefficient of the independent variables is coupled with
a p-value. As such, the p-value is a measure of the probable error of a correlation
coefficient. The approach for determining the p-value is derived from bootstrap-
ping random permutations from the pool of x i , yi variables [15]. In order to obtain
a normal distribution of correlation coefficients, it is repeatedly calculated for the
pool of bootstrapped variables (x ′i , y ′i ). The probability of the observed result is
derived from the probability distribution, such that a small p-value indicates that
the observed result has a small probability of being random.
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Data acquisition and processing

In this chapter, all data which are used in this study are presented. The first part
presents the network characteristics of the benchmark models are, and the second
part describes the generation of network variants.

4.1 Benchmark models

Three benchmark models of various sizes and characteristics are used for the cor-
relation analysis. The overall network characteristics of the models are summar-
ised in Table 4.1. The Net3 model is an example network included in the install-
ation package of the Epanet software. This model is made to demonstrate the
percentage of Lake water in a dual-source system over time in a relatively small
system. CTown is selected as a medium-sized model as it is widely applied in other
academical studies [55, 65]. In contrast to the small and medium-sized network,
Trondheim is a real water distribution network from the region Trondelag region
in Norway. The city has a population of approximately 200 000 people with a
rapidly growing technology-oriented industry Statistics Norway [43]. The water
distribution network is operated by the municipality, yet it is often a subject to re-
search projects due to its approximate to the Norwegian University of Science and
Technology (NTNU). Trondheim is a relatively large water distribution network
with redundant loops in the urban center and branched configurations in the city
outskirts.

Table 4.1: Characteristics of the benchmark models.

Model Junction Reservoirs Tanks Pipes Pumps Valves Costumers
Net3 92 2 3 117 2 0 1000

Ctown 388 1 7 429 11 4 10000
Trondheim 10743 4 14 11903 83 124 200000

23
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4.1.1 Ctown configuration

The Trondheim model was initially exported from MIKE+, a commercial software
used by Trondheim municipality, to the format of an Epanet network file (.inp). As
the modeling environment of MIKE+ has added functionalities and a more flexible
labeling acceptance than the modeling environment in WNTR, the network file
must be adjusted to meet the following issues:

• Non ASCII characters within the file
• Duplicated and long (>32 characters) IDs
• IDs interpreted as a integer or a float value
• Errors reported by the WNTR package

Python scripted was developed to format and relabel the input file as the net-
work IDs of the model partially consist of Norwegian characters and numbering
interpreted as integers. This script generates a new labeling system similar to the
labeling system used in the CTown model. First by through integrating the net-
work element in the system and relabel the element with a character describing
the type and a number uniquely defined for the element (e.g. junction 124 is re-
labeled J124, tank Storvannet is relabeled T1 etc.). Then the network is written
back to a new network input file (.inp) with the new labeling and valid formatting
(see Code listing C.1).

Furthermore, the network models in WNTR do not support the variable speed
pump, real-time control, and ignorance of disconnected nodes functionalities of
MIKE +. Hence, manual modifications were therefore manually made to obtain
an accurate representation of the physical behavior of the system in the WNTR
environment.

4.2 Service areas

District Metered Areas (DMAs), also referred to as service areas, are defined as dis-
crete areas of a water distribution system. It is usually created by closing boundary
valves to break down the network into zones and sub-zones [19]. A zone is con-
nected to the main system with a pumping station which regulates the pressure
within the boundary of the service area.

The service areas of the benchmark models are mapped by removing pumping sta-
tions, valves, and closed pipes before converting the water distribution model into
a graph. The resulting graph of the benchmark models contains clusters of nodes
connected by pipes. These node clusters are equivalent to the aforementioned ser-
vice areas. As such, nodes are grouped with all other nodes within a cluster which
are reachable with a remaining pipe connections. Using Ctown as an example, the
result of the grouping are presented as individual graphs in Figure 4.1.
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(a) CTown (b) DMA 1

(c) DMA 2 (d) DMA 3

(e) DMA 4 (f) DMA 5

Figure 4.1: Ctown nodes and links grouped by service areas.
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4.3 Generating network variants

A water distribution system generation algorithm is developed to produce differ-
ent topological variants based on the benchmark models (see Code listing C.2).
Similarly, Moederl et al. [42] automated the generation of 2280 virtual water dis-
tribution systems of topological and size variations with a stochastic approach. In
their work, the network set were based on a constant elevation of junctions and a
fixed elevation of the reservoir. The study of Sitzenfrei et al. [41] presents a sim-
ilar method using geographic information system data and boundary conditions
to obtain a more comparable network to real world water distribution networks.

The produced networks variants of this study replicates a benchmark model’s
topological backbone, while peripheral pipe connections are shuffled between
nodes. E.i. the network variants share a fixed number of nodes, pumps, and valves
with identical properties, service area configurations, and primarily feeders mains,
along with non-physical objects. The network generation procedure are summar-
ised with the following four step:

1. Link classification prioritise links in a benchmark network based on a set
of predefined rules. Links such as pumps, valves, and primary feeders are
classified as critical, while all other links are classified as non-critical to the
network’s main structure.

2. Link stripping removes the defined non-critical links from the network.
Its output is the topological backbone of the benchmark model with a high
degree of disconnected nodes. Disconnected nodes refers to nodes or groups
of nodes not connected to the topological backbone.

3. Link addition detects disconnected nodes and generates a list of possible
connection points to other nodes. Based on statistical properties and design
constraints, nodes are randomly connected to each other in a controlled
environment to form edges. Its output is a fully connected graph with a
new set of topological attributes.

4. Model calibration assigns informational values (e.i. roughness, length, and
diameter) to the generated connections. The hydraulic behavior of under
business-as-usual scenarios are evaluated to calibrate diameters of the ad-
ded pipes through multiple simulation runs.

Figure 4.2 illustrates the steps of the network generation procedure. All opera-
tions involving topological modifications are supported by graph theory, e.i. link
removal, addition, and in part the DMA classification.
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Figure 4.2: Visual representation of the network generation procedure.

4.3.1 Link classification

Generating network variants involves prioritisation of network links in order to
reserve links that are important to the network’s main structure. Hence, links are
classified as either critical or non-critical to the network’s operational functional-
ity. Links of critical importance include pumps, valves, and feeder mains, and most
not be removed from the network. The links not classified as critical are assigned
to the pool of non-critical links and before removed from the network. These links
are pipes part of a sub-system within the defined service area with a primary role
of connecting supply nodes to the main network structure.

Classification of feeder mains (e.i. larger diameter pipes) involve defining its start
and endpoints. From the perspective of complex network theory, the start point
t and endpoint v is set of nodes (v, t) ∈ Vc from a group of nodes in a given ser-
vice area GDMA such that Vc ∈ GDMA. From the perspective of a water engineering
perspective, reservoirs may naturally be defined as the starting point for water
transportation. As water in the network is distributed from a source, reservoirs
are often connected to a treatment facility and a pumping station for further dis-
tribution of water. The service areas solely associated inlet the reservoir, treatment
plant, and pumping stations are not included in the network generation proced-
ure, and may be filtered out based on their relatively small size. Drinking water is
typically further distributed through feed mains from a pumping station to tanks
or other pumping stations within each service areas.Thus, Vc can be defined as all
combination of node pairs with the following properties:

• Water tank nodes
• Nodes connected to a pump
• Nodes connected to a valve

A path is a set of links that are traversed in order to reach from one node to an-
other. The Dijkstra algorithm [23] is used to determine the shortest path between
all defined start and end points Vc . Dijkstra’s closest weighted path is a modified
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version of the shortest path length d(t, v) from Equation (3.24). Weights are used
to determine the path of least resistance. Rather than the lengths of the links, the
inverse of the pipe diameters (e.i., 1/diameter) are used as weights. The inverse
diameter approach assigns smaller weights to primary feeder mains as they gen-
erally have a higher capacity to transport water. E.i. links with a larger diameter
represent a shorter path towards the endpoint than pipes of smaller diameters.
All pipes within each service area not included as a critical link is classified as
non-critical.

4.3.2 Link removal

The pipes classified as non-critical are removed from the system. The result is the
topological backbone graph and are illustrated in Figure 4.2. Start and endpoints
are represented by a red cross, and are correspond by feeder mains. As services
area of Figure 4.2 is left with multiple floating junctions, e.i. nodes not connected
to the main structure of the graph, the link removal generates a none functional
water distribution network. As such, the following steps concern the reconfigur-
ation of the graph to generate a fully connected network variant. The output of
the link addition procedure is a list of removed edges in the network graph.

4.3.3 Link addition

Link addition step is based on stochastic procedure to establish generate edges
with start and end nodes. The iterative procedure are based on the following
statistical properties and network design constraints to generate a edge:

1. The probability exponent of node degrees produces a probability distribu-
tion of floating nodes. E.i., each floating node of a service area is assigned a
probability of being selected as a start node. The probability associated with
a node is based on the number of nodes connected to the node of interest.
The node degree is raised to an exponent to amplify its probability further.
Thus, increasing the exponent value increases the probability of selecting a
node with a low node degree as a start node. The probability distribution
ensures convergence of the iterative link addition procedure.

2. The probability exponent of proximity assigns a probability distribution of
all nodes in a service area based on the Euclidean distance from the selected
start node. Nodes geographically adjacent to the selected start node have
a higher probability of being selected as an end node. The distances are
further amplified with the exponent of proximity.

3. The number of possible connections is regulated to limit possible connec-
tion points from a start node. The potential connections from step (2) are
ranked in ascending order, and N closed nodes are included in the array of
possible end nodes. A random end node is generated from the array to form
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a potential edge.
4. Alpha is an angle constraint of a potential edge. This step calculates the min-

imum angle between the potential edge and all existing edges from both the
start and end nodes. If the potential edge does satisfy the alpha constraint in
respect to the other edges, it is added to the graph, or else it is disregarded
as a network edge.

The step (1) to (4) is repeated until all nodes are connected to the topological
backbone of the service area. The procedure are repeated in each of the defined
service areas (see Section 4.2). The output of the link addition procedure is a list
of added edges to the network graph.

4.3.4 Model calibration

The output of the link removal and addition steps are used to remove and add
links to a digital copy of the benchmark model. Pipe length of the added links is
determined by the Euclidean distance between the start node and end node, while
the roughness value is assigned based on the average roughness of the removed
pipes in the service area.

The automatic pipe sizing procedure of Sitzenfrei et al. [41] is used to determine
appropriate diameters to the added pipes. The implemented approach is based on
an iterative calculation of flow velocities to optimise the diameter for a economic
flow rate. All pipes are first assign a pipe diameter of 80 centimeters. The flow
rate in each of the added pipes are evaluated from a simulation under normal
conditions. If the calculated flow velocity in a pipe exceeds the corresponding
flow velocity of a diameter, its pipe diameter is incrementally increased to the next
available pipe diameter. This process continues until all pipes satisfy the velocity
requirement of their pipe diameter.
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Input uncertainty analysis

This chapter outlines the steps of the input uncertainty analysis related to the
boundaries of substance intrusions, and its effects on the failure metrics related to
magnitude (see Equation (3.22)). Using a service area of Ctown as an example,
the following sections include a sensitivity analysis of the control variables and
variability analysis of the source points.

5.1 Sensitivity of control variables

This section concerns a sensitivity analysis of control variables and their effect
on failure metrics. As water distribution systems are dynamic infrastructures that
adapt to changing heads, demand patterns, and operational constraints, its hy-
draulic landscape may differ substantially from time step to time step. Hence, the
impact of a substance intrusion is in part dependent on the temporal and mag-
nitude aspects of a stress-testing event. The timing and the total mass entering the
system are characteristics of a stress testing event reflected through the control
variables start time, mass flow, and duration.

Through a One-At-a-Time (OAT) approach, one control variable is changed by in-
cremental steps at the time, while the other control variables are kept at a baseline
value. As the stress testing event is only changed by one variable each simulation
run, noise is reduced from other variables, making the failure metrics ambiguous
[31].

Table 5.1 presents the baseline and ranges of values for each of the three control
variable included in the sensitivity analysis. The procedure involves moving the
control variables with incremental steps from the lower to upper bound. The recor-
ded change of performance is measured through PSL0,rat io, NL0,n,rat io, TL0,t,rat io,
an CL0,n,rat io, e.i. magnitude as a failure ratio. This process is repeated such that
each junction of DMA 1 of Ctown (see Figure 4.1) is individually tested as a source
point for substance intrusion with moving control variables.

31
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Table 5.1: One-At-a-Time (OAT) control variable ranges.

Variable Baseline Lower bound Upper bound Increment Unit
Start time 0 0 24 1 hr
Duration 1 1 10 1 hr
Mass flow 25 10 100 10 g/s

Through a One-At-a-Time (OAT) approach, one control variable is changed by
incremental steps, while the other control variables remain at a baseline value. As
the stress testing event is only changed by one variable each simulation run, noise
is reduced from other variables, making the failure metrics ambiguous [31].

Table 5.1 presents the baseline and ranges of values for each of the three control
variables included in the sensitivity analysis. The procedure involves moving the
control variables with incremental steps from the lower to the upper bound. The
recorded change of performance is measured through PSL0,rat io (see Equation
3.7), NL0,n,rat io (see Equation 3.10), TL0,t,rat io (see Equation 3.13), and CL0,n,rat io
(see Equation 3.16). This process is repeated such that each junction in DMA 1
of Ctown (see Figure 4.1) is individually used as a source point for substance
intrusion with moving control variables.

5.1.1 Start time of a substance intrusion

The start time input is defined as the number of hours from the beginning of
the simulation to the substance intrusion at a source point. The start times input
range from 0 hours to 23 hours, with an incremental step of 1 hour for stress-
testing event. The mass flow input is 25 g/s, and the duration input is 1 hour. E.i.,
the level of stress is equivalent to 90 kg of a substance entering the system.

It is essential to understand the underlying mechanisms of a water distribution
model. The control and rules of Ctown regulate the pump operation based on
sensor data on tank levels. Tank levels are in part regulated by the inflow (e.i.
pumped water) or water outflow to cover demand in the service area. However,
the operation is highly dependent on the environmental variables enforced by
demand patterns. As such, demand patterns are used to evaluate the continuously
changing behavior of the system. Figure 5.1 presents the demand multipliers as a
function of time. It forms a periodic function repeating with a period of 24 hours.
The highest demand multipliers are observed between the time steps of 15 and
21, while the lowest demand value is observed at the time steps between 0 and 7.

The maximum NL0,n,rat io value is occurring at the start time input of 0 with a
value of 0.278, while the minimum NL0,n,rat io value of 0.138 occurs at the start
time input of 16. One could observe that the propagation of NL0,n,rat io values
tends to decrease with increasing start time inputs of 0 to 16 and increase for the
remaining inputs.
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Figure 5.1: Demand multipliers of Ctown as a function of time.

Figure 5.2: Ctown magnitude of failure as a function of start time input.
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Figure 5.3: Ctown magnitude of failure as a function of mass flow input.

The customer dimension is a function of demand pattern and baseline demand
values (see Figure 5.1). As such, the maximum CL0,n,rat io value occurs with a start
time input of 9 hours, while the minimum number of customers affected occurs at
the lower and upper input boundaries. E.i. an apparent trend is observed between
demand patterns and the failure of the customer dimension. Although there are
no prominent trends concerning the spatial and temporal dimensions, the PSL0,n
and TL0,t values are to some extent affected by the input uncertainty of the start
time.

5.1.2 Mass flow of a substance intrusion

Mass flow input (g/s) is a fixed mass value of a substance introduced to the system
per unit of time. E.g., with a fixed duration of 1 hour, a mass flow input of 10 g/s
accounts for a total of 36 kg substance injected into network, while a mass flow
of 20 g/s accounts for 72 kg substance. The mass value mixes with the water flow
of in going pipes to form a substance concentration associated with the outflow
from the source node [61]. Thus, a node with high flow rates at its inlet accounts
for lower substance concentrations than a source node with the same mass flow
value and lower in-going water flow rates.

The start time and duration inputs are kept at their baseline value, while the mass
flow is increased by incremental steps from 10 to 100 (see Table 5.1). The steps
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Figure 5.4: Ctown magnitude of failure as a function of duration input.

are repeated such that all junctions in DMA 1 of Ctown are applied as a source
node. The resulting failure can be observed in Figure 5.3 as a function of stress
testing events with various mass flows.

It is observed that failure metrics are strictly increasing with a progressively in-
creasing input value of mass flow until a certain threshold is reached at a system
scale (see Equation (3.22)). The progressively increasing disturbance is commu-
nicated as a monotonic increasing relationship between mass rate input and the
global failure indicators (see Figure 5.3) at the scale of the DMA1. The global
failure metrics of PSL0,rat io, CL0,n,rat io, and TL0,t,rat io presents a positive linear
increasing relationship to the input configurations, while NL0,n,rat io converge to-
wards a fixed failure value.

5.1.3 Duration of a substance intrusion

Duration input is the time period in which a mass booster is active. The duration of
a substance intrusion inherent properties of both temporal and magnitude aspects
of a substance intrusion. As plain as it sounds, the duration affects the total mass
entering the system and the timing of a substance intrusion.

The input values of mass flow and start times remain fixed, while duration is in-
crementally increased from 1 to 9 according to the OAT procedure (see Table 5.1).
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E.g., at the duration input of 4 hours, a total of 360 kg substance is injected into
the network. This is equivalent to a mass flow of 100 g/s in the previous section
(see Section 5.1.2). The upper bound for the duration input, a total of 8100 kg
is injected into the system over a period of 9 hours. The simulation of substance
intrusion is repeated with incremental steps such that all junction in DMA1 of
Ctown is tested individually as a source node.

Figure 5.4 presents the results from the simulation procedure for the four failure
dimensions with respect to magnitude. Similarly to mass flow, the duration forms a
strain-strain relationship with the failure metrics. The ratio of NL0,n,rat io converges
towards a maximum value of 0.33. As a result of increasing the time span of
substance intrusion, an increase of 0.03 is observed from the convergence value of
the mass flow function. The tendency of convergence is also observed by CL0,n,rat io
and TL0,t,rat io as they reach their maximum value of 0.31 and 0.45 at the upper
duration boundaries.

5.2 Variability of source nodes

The aforementioned OAT procedure involves a comprehensive sensitivity analysis
of the control variables for a range of different source nodes. As a result, large
quantities of failure data are produced describing the impact of substance intru-
sion at different nodes within DMA 1 in Ctown. The failure metrics data is grouped
by its source point, and the global failure metrics are calculated with respect to
each junction as a source point. The resulting matrices provide information on
the impact of substance intrusion at the system nodes with respect to service,
temporal, spatial, and customer aspects of the operation.

Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8 maps the global failure metrics as-
sociated with substance intrusion at different source points in DMA1 of Ctown.
The four graphs reflect the magnitude of failure for the service (see Figure 5.5),
the spatial (see Figure 5.6), the customer (see Figure 5.7), and the temporal (see
Figure 5.8) dimension. The scales indicate the observed global failure metrics as
a result of a substance intrusion at the various junctions in the sub-graph.

The extent of the spatial and customer dimension is mapped in figure 5.6 and 5.7
respectively. Substance intrusion close to the system inlet (e.i. lower right of the
graph plot) have the highest NL0,n,rat io and CL0,n,rat io impact. The impact reflected
by the global failure metrics decrease as the source point is shifted further away
from the reservoir. It is also noted that the placement of the tank (upper left corner
of the graph) has an influence on customer dimension compared to the spatial
dimension.

Figure 5.8 displays the extent of the temporal dimension at the aforementioned
junctions. The maximum TL0,t,rat io is observed at junction J12 as a source point.
Junction J12 is a part of a cluster of high-impact source points close to the outlet
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Figure 5.5: Consequence map scaled by PSL0,rat io at various source points.

Figure 5.6: Consequence map scaled by NL0,n,rat io at various source points.
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Figure 5.7: Consequence map scaled by CL0,n,rat io at various source points.

Figure 5.8: Consequence map scaled by TL0,t,rat io at various source points.
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to DMA3 and DMA4 (lower right outlet). However, junction J12 is not connected
to any of the primary feeders. High impact nodes to the temporal dimension are
also observed by the inlet to DMA2 and DMA5.

It is observed that the highly looped cluster of nodes (e.g., the bottom cluster and
cluster at the upper right corner) produced higher global failure metrics compared
to the branched subsystems (e.g. left clusters of nodes). In terms of topological
attributes, the results may indicate preferable network designs of substructures as
some part of the system tends to have a higher impact on the system performance.

5.3 Discussion

A quality-related stress testing event is defined by the control variables at source
nodes and the geographical distribution of source nodes. The input uncertainty
analysis characterises the randomness from each source of uncertainty based on
its manifestation to the magnitude, temporal, and spatial aspects of a substance
intrusion.

• The magnitude aspect of a substance intrusion relates to the total mass of
the substance entering the network during the simulation period. The mass
flow input is a direct translation of the magnitude aspect, as the temporal
and spatial aspects of the stress testing event are unaffected by any changes
of its input value. In addition to mass flow, another required property of
magnitude is the duration of substance intrusion. Yet, it is observed that
duration is also dependent on uncertainties related to temporal aspects.
The magnitude aspect of the failure form a ranked relationship to the per-
formance of the systems. This implies that a positive direction between the
ordered values of mass flow and failure to form a stress-strain relationship.
Performance failure is recorded as the mass flow input reaches a certain
threshold. Increments of the mass flow input above these thresholds result
in increased failure up to a maximum failure value.

• The temporal aspect of a substance intrusion relates to the timing of the ap-
pearance of a substance in relation to operational and environmental para-
meters of the water distribution system. The start time input reflects the
first appearance of a substance intrusion, while duration input addresses
the intrusion period. The temporal variables and their effect on system per-
formance are influenced by a high degree of randomness due to the com-
plexity of water distribution systems. In contrast to the magnitude input
variables, temporal input variables present a seemingly unpredictable rela-
tionship with the loss of performance.

• The spatial aspect of a substance intrusion relates to variability of system
failure in regard to the characteristics of a source point. Source points close
to the inlet, or source points connected to feeder mains tend to yield greater
failures compared to source points close to or at system end nodes.
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The input uncertainty analysis demonstrates that temporal aspects of a substance
intrusion affect the system performance. Its degree of variability may differ between
source points and failure dimensions, and the randomness of its output is partially
dependent on the complexity of the system.

In terms of validity of the global performance metrics (see Equation (3.22)), a
stochastic modeling procedure should address magnitude, temporal, and spatial
aspects in order to capture the full extent of a substance intrusion and all possible
failure states of a water distribution system. This will ensure to include spatial
variability and temporal uncertainty while capturing different stress levels with
an increasing magnitude of the failure mode.



Chapter 6

Convergence of random failure
sequences

This chapter shows the steps of the convergence analysis of the random failure
sequences, along with the confidence interval of the produced global failure in-
dicators of the Ctown benchmark model.

6.1 Random failure sequences

A random failure sequence can be applied to any type of system malfunction (in-
cluding substance intrusion) for any specified period in the simulation [32, 35,
65]. A key strength of the random failure sequence is the shift in objective from
the threats themselves to explicit consideration of system performance when ex-
posed to a large set of stress testing events [29]. Thus, its result can be used to
evaluate the impact of substance intrusion on various stress levels irrespective of
their occurrence probability.

Random failure sequences involve a random cumulative selection of nodes con-
figured as the source point for substance intrusions. As the number of nodes se-
lected as a source point reflects the magnitude aspect of a substance entering the
system, it may be used to indicate the level of stress inflicted on the water distri-
bution model. The main steps involved in the simulation procedure include [32]:

1. A simulation to determine the performance of the network under normal
conditions.

2. A random selection of i number of nodes and configured as a source point
for substance intrusion.

3. The behavior of the network configured with i source points is simulated
using the Epanet Simulator of WNTR, and the failure metrics are quantified
based on the resulting behaviour (see Section 3.1.3).

41
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Figure 6.1: Random failure sequence based on illustrations of Diao et al. [35].

4. The procedure in (2)-(3) is repeated for ni : i = 1,2, 3..., N number of source
points.

5. The procedure (2)–(4) is repeated x number of times in order to determine
the global failure indicators (see Equation (3.22)).

Figure 6.1 presents the described modeling framework for cumulative random
failure sequence for substance intrusion of a simplified water distribution net-
work (e.i. 10 nodes and 13 links). A random failure sequence rs j includes simu-
lated stress testing events with an increasing number of source points, as shown
in Figure 6.1. The number of source points is denoted as ni and derived as the per-
centage of total number of nodes in the network N , such that i ∈ [1, 2,3, ..., 10]
and ni = i/10 · N . This study adapts the random failure sequence of Mugume et
al. [32] as a multivariate approach in order to address both temporal and spatial
variability of the substance intrusion. As such, start time inputs and source point
input are randomly selected. The process is repeated for x number of random
failure sequences.

6.2 Control variables

As for the control variables, duration and mass flow input is configured as a fixed
value of 1 hour and 1 g/s, respectively. As such, each of the selected source points
contributes with a maximum total mass of 3.6 kg during the simulation period.
In order to capture the operational and environmental variability of the water
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distribution system during a day, the start time input is randomly selected between
the range of 0 to 23 hours from the simulation start. The start time input range is
defined by an incremental step of 1 hour such that each source node can in total
have 24 different control variable configurations.

A random failure sequence includes a set of scenarios with an increasing number
of source points (ni). The number of source points translates to the total mass of
substance injected into the system. As the input uncertainty analysis demonstrates
that tends global failure indicators converge at higher mass inputs, the maximum
number of source points is limited to a maximum of 300 kg of substance. Exposing
Ctown to a total mass of 300 kg substance requires a total of 83 source points
with the given set of control variables. In order to level the size difference of the
benchmark models and the potential impact of a random failure sequence, the
maximum number of nodes is converted to a percentage of the total number of
nodes in the network. Consequently, the range of potential source points is defined
as ni : i ∈ [0.01N , 0.02N , 0.03N , ..., 0.2N], such that the maximum substance
mass of Net3 and Trondheim is limited to 43.2 and 7732.8 kg, respectively.

As observed by the input uncertainty analysis for mass flow, the steepest slope
occurs at lower stress levels (e.i., the total mass of substance entering the system).
By the limited number of source points, the random failure sequence captures the
most sensitive range of mass input while minimising the total number of required
simulations.

6.3 Maximum number of stress-testing events

In order to capture the full extent of a failure mode, every possible combination
of source node should, in principle, be considered [30]. As such, a random failure
sequence of a network with a total of nodes (N) includes simulation with ni :
i ∈ [1,2, 3, ..., N] source nodes. By considering that each system node is either a
source point or not a source point, the number of unique combinations of source
nodes (ni) can be calculated by Equation (6.1) [32].

C(N , ni) =
N !

(N − ni)!ni!
(6.1)

Using the benchmark model of Ctown with 388 junctions as an example, the total
number of possible combinations involving substance intrusion of a single node
(ni = 1) is 388. The total number of combinations involving two (ni = 2), three
(ni = 3), four (ni = 4) source nodes would be 75078, 9660036 and 929778465
respectively. The highest number of possible combinations occurs at the mid-point
(ni = N/2), such that the analysis of the distribution of the source point combin-
ations at each stress level indicates a normal distribution [32]. The total number
of simulations required to include all possible combinations in the entire solution
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space is calculated as the sum of C(N , ni) : i = [1,2, 3, ..., N], and accounts for
6.5E+116 failure scenarios. Simulating such a large number of failure scenarios is
outside the scope of this study as it would require huge computational resources.

6.4 Minimum number of stress-testing events

The minimum number of stress-testing events is a limited number of random fail-
ure sequences. A bootstrapping procedure is applied to determine the minimum
number of random failure sequences (rsx) that should be analysed in order to
achieve consistent resilience results while covering as many failure states as pos-
sible. In doing so, a convergence analysis [32] is carried out with the following
steps:

1. A simulation of 500 random failure sequences is carried out for Ctown (e.i.,
10000 stress-testing events).

2. A general bootstrap technique [5] is applied as a resampling approach of the
random failure sequences. The technique involves the sampling of residuals
from the original dataset produced in step (1) with the following steps:

a. Data pairs (Fi , ni) are sampled from the original dataset to form x
number of random failure sequences rs j = [F0.01N , F0.02N , F0.03N , ...F0.2N ]
that corresponds to the defined stress levels of
ni : i = [0.01N , 0.02N , 0.03N , ..., 0.2N].

b. Step (a) is repeated for x ∈ [10, 25,50, 75,100] and the mean rs is
calculated for stress level and in within group x .

c. Step (b) is repeated G times to produce groups categorised by x such
that the variance of rs of each group can be determined.

3. The global failure indicators (see Equation (3.22)) is calculated from the
residual sampling of rs. The selected number of random failure sequences
rsx , and are used to determine the confidential interval of the global failure
indicators.

The performance indicator Fx ,i, j is a part of the multidimensional matrix gener-
ated by the bootstrapping procedure of the convergence analysis. The number of
bootstrapped sequences of rsx is indicated by N such that n ∈ [1, 2,3, ..., 100],
while i refers to the stress level, and x is the number of rs j used. As such, the
variance within each group of rsx can be calculated with Equation (6.2).

Var(x , ni) =

∑N
n=1(Fx ,ni ,n − Fx ,ni

)2

N
(6.2)
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Figure 6.2: Global failure indicator derived from random failure sequences rsx .

Figure 6.3: Variance of PSL0,rat io derived from random failure sequences rsx .
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Table 6.1: Convergence result of global failure metrics.

KPI Sample mean Maximum Minimum Confidence interval (95%)
PSL0,rat io 0.6085 0.6144 0.6040 ±3.19E − 04
NL0,n,rat io 0.6476 0.6517 0.6425 ±3.91E − 04
CL0,n,rat io 0.6661 0.6706 0.6617 ±3.61E − 04
PSL0,PAR 0.0150 0.0151 0.0148 ±9.37E − 06
CL0,PAR 0.9216 0.9243 0.9182 ±2.32E − 04
NL0,PAR 0.9655 0.9678 0.9628 ±1.71E − 04

PSL0,peak 0.1457 0.1471 0.1447 ±9.03E − 05
NL0,peak 243.6535 245.2400 241.4795 ±1.45E − 01
CL0,peak 222.9990 225.2489 221.1574 ±1.25E − 01
PSL0,T EP 54.1565 55.3089 53.0932 ±8.05E − 02
NL0,T EP 46.5191 47.8389 45.4432 ±9.39E − 02
CL0,T EP 19.5193 19.5600 19.4737 ±4.50E − 03

The results presented in Figure 6.2 and Figure 6.3 indicate that the increase in the
number of random failure sequences results in convergence of the performance
indicators. Using PSL0,rat io as an example, Figure 6.2 present the stress-strain re-
lationship formed by a random failure sequence with an increasing number of
source points along the x-axis. The lines are the output of step (2a) and are cat-
egorised by x ∈ [10,25, 50,75, 100].

Figure 6.3 presents the variance of each stress level for 10, 25, 50, 75, and 100
random failure sequences. The maximum variance is observed at the stress level of
2% with a value of 0.002 for 10 random failure sequences. The maximum value is
further reduced to 0.0012, 0.0003, and 0.0028 by considering 25, 50, and 75 ran-
dom failure sequences, respectively. It is also observed that the variance decreases
with an increasing stress level.

6.5 Reliability of global failure indicators

Based on the variance evaluations, a minimum of 100 random failure sequences
is adapted to measure the global failure metrics. Equation (3.22) is used to calcu-
late the global failure from the dataset produced by the bootstrapping procedure.
This provides a dataset (N = 100) of global failure metrics. Table 6.1 presents a
summary of the global failure results with mean, maximum, and minimum values
from the dataset.

Table 6.1 includes the sample mean, the maximum, and the minimum values,
along with the confidential interval of 95% (t = 0.95) of the global performance
indicators. E.g., there is a 95% chance that the true sample means of PSL0,rat io is
within the range of ±3.19E − 04 from the estimated sample mean.
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6.6 Discussion

It must be noted that the random failure sequences differ from the ones applied
in the study [32, 35, 65], as they do not include the full spectrum of possible link
failures. The maximum number of nodes applied as a source point is limited to
20% of the total number of nodes in the system. Rather than include all possible
levels of stress, the adapted random failure sequences capture the most sensitive
area of the stress-strain curve. This limits the required computational resources
while capturing a critical range of stress-testing events. Furthermore, the level
of stress may also be regulated by the configured mass flows and duration of
the substance intrusions. As the magnitude aspect of the substance intrusion is
addressed by the number of source points, input values of mass flow and duration
remain fixed (e.i. mass flow and duration are configured to 1 g/s and 1 hour,
respectively).

Although efforts to capture different aspects of substance intrusions, the simula-
tion period of 96 hours does not capture the full extent of the loss function of
the continuity dimension (fig. 2.2); consequently, the random failure sequences
yield a constant value of 1 for the global failure metric of TL0,t,rat io at all levels
of stress. As the failure metrics of average propagation address the relationship
of loss function properties to the temporal dimension, the result presents a scaled
version of original failure metrics. Thus, average propagation failure metrics are
excluded from the correlation analysis, along with the magnitude of the continuity
dimension.

The temporal variability is another aspect of a substance intrusion included in
the random failure sequences. The input uncertainty analysis reflects the periodic
changes of environmental variables and their effect on certain failure metrics on
the scale of a service area. Certain features of the hydraulic behavior may present
hidden quality-related vulnerabilities in the system in order to address the un-
certainty of the temporal aspect. It is included as a part of the random failure
sequences by a random selection of the start time inputs of the source points.

A key feature of the random failure sequences is the random selection of source
points in order to address spatial variability. As demonstrated in the input un-
certainty analysis, the impact of a substance intrusion is primarily dependent on
the selected source point. Generally, source points with a large number of down-
stream nodes present a higher failure than nodes close to or at a system endpoint.
Yet, this may be dependent on the magnitude of the failure, as nodes connec-
ted to large diameter pipes may dilute the substance concentration below critical
thresholds. The random failure sequences is an ideal stochastic simulation pro-
cedure, as regardless of failure probability, presents a selection of source point or
combination of source points that address representative samples of the resulting
impact population.
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In terms of convergence of random failure sequences, bootstrapping presents a
simple and straightforward way to estimate variance and confidence intervals
for complex estimators of the distribution [18]. Additionally, bootstrapping is a
convenient method that avoids the unnecessarily computational cost of repeat-
ing the experiment to get other groups of sample data. As such, a total of 10000
stress-testing events was simulated (e.i. 500 random failure sequences) to sample
groups of 10, 25, 50, 75, and 100 random failure sequences. Although bootstrap-
ping is asymptotically consistent, it does not provide general finite-sample guar-
antees [18]. The result of a higher number of random failure sequences may be
influenced by the representative sample. However, the convergence of magnitude
through random failure sequences of increasing sizes indicates a decrease in vari-
ance. The presented result corresponds with the finding of Mugume et al. [32],
evaluating convergence of an accumulative number of pipe failures in an urban
drainage system.

A total of 100 random failure sequences is selected as the desired number of
samples in the correlation analysis. This implies that global failure metrics of each
benchmark models and the presented network variants are derived from a total of
2000 stress-testing events. The result in Table 6.1 presents the convergence result
of global failure metrics and is used to evaluate the reliability of the following
global failure results in the correlation analysis.



Chapter 7

Resilience of topological
attributes

This chapter presents a characterisation of water distribution models and vari-
ants through topological attributes and their performance results exposed to the
aforementioned random failure sequences. Following this, correlation analysis
and clustering of the network variants are conducted in order to evaluate the
relationship between resilience and topological attributes.

7.1 Topological attributes and global failure of bench-
mark models

The benchmark models include the networks of Net3, Ctown, and Trondheim. The
first part is a characterisation of the network design through topological attributes
(see Section 3.2.2), followed by the performance result by exposing the networks
to random failure sequences (see Chapter 6) measured with global failure metrics
(see Equation (3.22)).

7.1.1 Topological attributes

As presented in chapter 4, the models differ substantially from each other as
they are of various network sizes and are comprised of different technologies
and network designs. The topological attributes presented in chapter 3.2.2 further
highlights the structural differences in the network design of the aforementioned
benchmark models.

Net3 is the network with the highest number of links compared to the number of
nodes in the network (d = 0.0128), along with the highest average shortest path
lengths (a = 2.448), clustering coefficient (Cc = 0.0429), and average closeness
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centrality (Cu = 0.0319). Compared to the two other benchmark models, Net3 is
a compact network with a uniform distribution of pipes compressed into only one
service area.

Networks influenced by a high concentration of terminal nodes centralised around
the core of the network generally present high values for the central-point of dom-
inance indicator. Ctown characterised by both looped and branched parts of the
network, along with a dominant topological backbone in terms of centrality. Due
to the central influence of junction J411 (e.i. source point with highest produced
failure with respect to magnitude), Ctown yields the highest a central-point of
dominance among the benchmark models (CB = 0.5422).

The network of Trondheim is based on a real water distribution system. The model
is characterised by large parts dedicated to the transportation of water and highly
detailed treatment and pumping station (e.i. clusters of nodes). Yet, the topo-
logical attributes reflect a relative low connectivity with the lowest link density
(d = 0.0001) and average closeness centrality (Cu = 0.0002). The central-point
of dominance in Trondheim (CB = 0.3848) is significantly higher than tin Ctown
(CB = 0.2666), while Trondheim have a the lowest average shortest path length
(a = 0.0065) and clustering coefficient (Cc = 0.01) of the benchmark models.

7.1.2 Global failure indicators

The benchmark models are exposed to 100 random failure sequences with control
variables configured according to the findings of the convergence analysis (see
Chapter 6). The resulting behavior of the benchmark models is evaluated with
the global failure metrics (see Equation (3.22)) based on the presented three-step
methodology of Moraitis et al. [56].

The largest spread of the benchmark models is observed through the lens of the
service dimension (PSrat io,L0

), where Net3 yields a value of 0.12, Ctown yields a
value of 0.61, and Trondheim yields a value of 0.77. The differences between the
benchmark models are less distinct in respect to NL0,n,rat io, where Net3, Ctown,
and Trondheim yield 0.42, 0.65, and 0.85, respectively. The CL0,n,rat io relates to
the ratio between the customers affect by low-quality water and the total number
of customers in the network and yields a value of 0.20 for Net3, 0.67 for Ctown,
and 0.81 for Trondheim as a result of the defined random failure sequence.

The mean peak value of the service dimension (PSpeak) is reduced with 51.5%
from the moderate to critical service threshold in Net3, while Ctown and Trond-
heim observe a reduction of 77.8% and 82.5% respectively. A similar change is
observed of the global failure indicators of Npeak (44.6%, 79.9%, and 87.9%) and
Cpeak (56.3%, 75.0%, and 82.7%). The results indicate that the peak value is most
sensitive in the larger Trondheim in respect to changes in service thresholds an-
d/or mass flow changes.

Peak-to-average describes the relationship between the average performance dur-
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ing the simulation period and the peak loss of performance. PAR values close to
1, as observed in Trondheim (PSPAR = 1), generally exhibit a more uniform fail-
ure propagation profile. While the larger values of 1.7 for PSpeak,L0

and 2.4 for
PSpeak,L2

is observed in Net3 implies a more spike-like failure [56].

The rapidity of a random failure sequence is a measure of the average time from
the start of the substance intrusion to the time of the peak failure. With a CT EP,L0

value of 15.4, 19.5, and 16.2 for the benchmark models Net3, Ctown, and Trond-
heim, respectively, the customer dimension research the peak failure rapidly in
comparison to the other dimensions. Derived from the same random failure se-
quences, Net3 presented an average of 40.6 hours to the peak number of nodes af-
fected, while Ctown and Trondheim presented an average of 46.6 and 88.1 hours,
respectively. In respect to the peak value of lower quality water supplied, Net3
presents an average of 36.6 hours, Ctown presents an average of 54.1 hours, and
Trondheim presented an average of 86.8 hours.

7.2 Topological attributes and global failure of network
variants

A detailed description of the network generation procedure is presented in Sec-
tion 4.3. The produced network variants include 100 network models generated
based on Net3 and 100 network models generated based on the Ctown. As the
network generation procedure only removes and adds pipes of low criticality, the
main backbone remains fixed in all variants of a benchmark model. The following
two parts present a characterisation and the result of the resilience assessment of
the aforementioned network variants.

7.2.1 Topological attributes

The link density of the generated Net3 variants forms a normal distribution with
a mean value of 0.0125, e.i. the network generation procedure tends to com-
plete with approximately the number of links as the benchmark model of Net3
(d = 0.0128). A normal distribution is also observed for the link density of Ctown
variants with a mean value of 0.003. It is noted that 98 of 100 Ctown variants are
generated with more pipes than the benchmark model. One outlier is observed in
the pool of Net3 variants with a link density of 0.0153 (network Net3_62).

The average shortest path length for network variants is normal distributed around
the mean value of 0.993 and 0.069 for the Net3 and Ctown models, respectively.
The average shortest path length of the benchmark models is substantially larger
than the maximum value observed by the variants. The difference between mean a
of the Net3 variants and the benchmark model is most extreme, with a factor of ap-
proximately 2.5 is observed, while the difference between the Ctown networks is
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Figure 7.1: Distribution of topological attributes in network variants.
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approximated to 2.0. The results may indicate that the generated network models
are less efficient in regard to transportation of water than the benchmark models.

The clustering coefficient of Ctown variants includes the two extremes Cc values of
0.004 and 0.169. Yet, a relatively high concentration of variants is observed below
the threshold of 0.05, resulting in a mean Cc value of 0.052. A similar shape of the
distribution curve of the clustering coefficient is observed for the Net3 variants.

The number of Net3 variants covers a wide range of CB values with a minimum
of 0.122 and a maximum of 0.418. The distribution of observations is apparently
evenly distributed between the two extremes. The Ctown variants, on the other
hand, present a much narrower range of CB, limited to the two extremes of 0.454
and 0.570. Out of the 100 network variants of Ctown, 57 networks yields a CB
value below 0.46. Additionally, a group of eight outliers is observed with a CB
value above 0.53 for the Ctown variants.

Average closeness centrality forms a normal distribution for the Net3 variants
with a mean value of 0.024. One outlier characterised by a redundancy of pipes
(d = 0.015) and is deviating from the normal distribution with a Cu value of
0.036. The Ctown variants form a uniform distribution of Cu values within the
range from 0.004 to 0.005 in contrast to the distribution of the Net3 variants. The
Net3 variant with the highest link density (network Net3_62) also produces an
outlier in regard to the average closeness centrality.

7.2.2 Global failure indicators

The 100 network variants of Ctown and 100 network variants of Net3 are all ex-
posed to the random failure sequences, and the global failure is calculated accord-
ing to the equation for global failure matrices (see Equation (3.22)). Figure 7.2
and Figure 7.3 presents a distribution of the global failure metrics as the number
of network variants that yields a performance within the discrete bins. The red
vertical line represents the value of the associated benchmark model.

The mean global failure metrics of the Ctown variants in terms of magnitude
(service, spatial, and customer dimension), peak (service and spatial dimension),
rapidity (spatial dimension) are greater than the benchmark model. However, a
significant portion of the network variants yields global failure values below the
benchmark model. E.i. some of the networks variants produced by the network
generation procedure is more resilient than the benchmark model in terms of
quality-related failures. The the global magnitude failure values in terms of the
service dimension range from a minimum value of 0.5927 to 0.6592, while the
spatial dimension range from 0.6268 to 0.6592 and the customer dimension range
from 0.6284 to 0.7060. The confidence interval for the produced failure metrics is
presented in Table 6.1. In terms of the magnitude, the confidence interval refers to
a 95% probability that the benchmark produces a global failure within the range
±0.0003 of the observed value.
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Figure 7.2: Distribution of global performance indicators in Ctown variants.
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Figure 7.3: Distribution of global performance indicators in Net3 variants.
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It is observed that the sample means of global failure values of Net3 variants are
below the produced failure values of the benchmark model, with the expectation
of crest factor (e.i. PSPAR, NPAR, and CPAR). As a matter of fact, 96 of 100 Net3
variants are more resilient than the benchmark models in terms of NL0,n,rat io. E.i.
the result indicate that the performance of certain network variants surpass the
benchmark model.

7.3 Correlation analysis of network variants

This section presents scatter plots of global failure metrics to topological attrib-
utes for Net3 variants and Ctown variants, respectively, along with the associated
Pearson correlation coefficient and p-value (see Section 7.3). The correlation ana-
lysis is separated by the networks benchmark affliction due to distinct ranges of
observed global failure metrics (see Figure 7.3 and Figure 7.2) and calculated
topological attributes (see Figure 7.1).

The figures of this section are related to the magnitude, crest factor, severity, or
rapidity of the global failure, where each failure aspect presents a grid of scat-
ter plots. The columns of the figures relate to the five topological attributes ad-
dressing connectivity, efficiency, redundancy, robustness, and centrality aspects of
the network design. The rows of the figures is a manifestation to service, spatial,
and customer dimension. Thus, a scatter plot displays the relationship between a
global failure indicator (y-axis) and topological attribute (x-axis) of the presen-
ted network variants. The scatter plots are associated with a Pearson correlation
coefficient coupled with a p-value that is presented above each grid cell.

7.3.1 Ctown variants

The scatter plots of Figure 7.4, Figure 7.8, Figure 7.6, Figure 7.10 presents scat-
ter plots between global performance and topological attributes vectors of Net3
variants. Link density and average closeness centrality form a moderate positive
correlation with the observed vectors of the magnitude of failure (see Figure 7.4)
and severity of failure (see Figure 7.8). A weak correlation is observed between
average shortest path length and the vectors of the magnitude of failure (see Fig-
ure 7.4) and severity of failure (see Figure 7.8), while rapidity of failure (see Fig-
ure 7.10) forms a weak positive correlation with link density and average shortest
path length. A weak negative correlation is presented between crest factors (see
Figure 7.6) and the vectors of link density and average closeness centrality.
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7.3.2 Net3 variants

The scatter plots of Figure 7.5, Figure 7.9, Figure 7.7, Figure 7.11 presents scat-
ter plots between global performance and topological attributes vectors of Ctown
variants. Moderate positive correlations are observed between magnitude (see
Figure 7.5 spatial and customer dimension) and severity (see Figure 7.9) of fail-
ure to the vectors of link density and average closeness centrality. Moderate neg-
ative correlations are observed between the global crest factors in terms of spatial
manifestation (see Figure 7.5) to the vectors of link density and average close-
ness centrality. A moderate correlation is also observed between the central point
of dominance and the failure aspects of crest factor (see Figure 7.5) and severity
(see Figure 7.9). Finally, the Net3 variants form a strong positive correlation to
the topological attributes of link density and average closeness centrality.

7.4 Resilience assessment of network variants

This section presents a clustering of the most and least resilient network variants.
The presented results of this section is further supported by the figures presented
in Appendix B. The global performance indicator of the rapidity of failure (service
and spatial dimension for low-quality supply), the magnitude of failure (service
and customer dimension for low-quality supply), and the severity of failure (ser-
vice and spatial dimension for low-quality supply) are evaluated for networks
variants.

7.4.1 Ranking network variants

The Ctown variants of 80, 87, 44, and 19 are the most resilient networks, while
the Ctown variants of 40, 79, 26, and 72 are the least resilient network in respect
to magnitude of failure (see Figure B.1). The Ctown variants of 26, 32, 61, and
16 are the most resilient networks, while the Ctown variants of 18, 13, 27, and 87
are the least resilient network in respect to severity of failure (see Figure B.5. The
Ctown variants of 72, 26, 31, and 79 are the most resilient networks, while the
Ctown variants of 80, 44, 19, and 82 are the least resilient network in respect to
rapidity of failure (see Figure B.6). Ctown variant 80 is among the most resilient
network variants in respect to magnitude and severity of failure, while it’s rapidity
of failure is among the group of worst performing networks. The Ctown variant
87 is among the least resilient network in respect to both severity and rapidity of
failure. At the same time, Ctown variant 87 is the second most resilient network
in respect to the magnitude of failure.

The Net3 variants of 92, 89, 45, and 49 are the most resilient networks, while
the Net3 variants of 47, 99, 41, and 70 are the least resilient network in respect
to magnitude of failure (see Figure B.4). The Net3 variants of 14, 90, 45, and
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Figure 7.12: Clustering Ctown variants based on magnitude of failure.

16 are the most resilient networks, while the Net3 variants 91, 43, 81, and 99
are the least resilient network in respect to severity of failure (see Figure B.5).
The Net3 variants of 49, 56, 45, and 74 are the most resilient networks, while
the Net3 variants of 1, 62, 41, and 47 are the least resilient network in respect to
rapidity of failure (see Figure B.6). Net3 variant 92 ranks among the most resilient
network variants in respect to both magnitude and severity of failure. However,
Net3 variant 92 also ranks among the least resilient network variants in respect
to rapidity of failure. Net3 variant 14 is the most resilient variant with respect to
rapidity, and among the group of average resilient network in respect to severity
and rapidity of failure. Net3 variant 47 is the most resilient variant with respect
to rapidity, among the mean group of variants in respect to severity of failure, and
among the group of worst performing network in respect to magnitude of failure.

7.4.2 Fuzzy C-Means Clustering

Using the magnitude of failure in Ctown as an example, Figure 7.12 presents the
results of the Fuzzy C-Means clustering of network variants performance1. As ob-
served in Figure 7.12, the network variants are divided into four clusters, each
network variant belonging to either of the four clusters. Cluster D is the best per-
forming network variants, while Cluster A contains the worst performing network
variants in respect to the magnitude of failure. The Fuzzy C-Means clustering is
conducted for the remaining two dimensions of interest (e.i., rapidity and severity
of the failures). Network variants which is a part of Cluster A are registered for
each of the failure aspects.

The Ctown variants are further divided into four groups based on the Fuzzy C-

1Georgios Moraitis, Civil Engineer and Ph.D. Candidate, Dept. of Water Resources and Environ-
mental Engineering, School of Civil Engineering, National Technical Univ. of Athens.
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Means clustering result; The network variants that are a part of Cluster A in all of
the three dimensions (e.i., magnitude, severity, and rapidity failure) are defined as
the least resilient networks. The network variants that are a part of Cluster A in two
out of the three dimensions (e.i., magnitude and severity failure, magnitude and
rapidity failure, or rapidity and severity failure) are defined as the second least
resilient networks. The network variants that are a part of Cluster A in one out
of the three dimensions (e.i., magnitude of failure, severity of failure, or rapidity
of failure) are defined as the second most resilient networks. The last group of
network variants is defined as the most resilient networks as they never appear in
Cluster A.

Figure 7.13 displays box plots of the network variants distribution of topolo-
gical attributes grouped by performance (e.i., Cluster A affiliation). The rows of
Figure 7.13 present the topological attribute indicators of link density, average
shortest path length, clustering coefficient, central-point of dominance, and aver-
age closeness centrality, respectively (see Figure 7.1). A box plot summarises the
topological attributes of a group of network variants based on a five-number sum-
mary. The sample mean of the dataset is indicated with a red horizontal line inside
the box. The box presents the boundaries of the first quarterlies (e.i., 25th per-
centile) and third quarterlies (e.i., 75th percentile) of the dataset, while the lines
extending outside the box indicate the variability outside the upper and lower
quarterlies. Network variant outliers are, for certain groups, presented as indi-
vidual points.

7.5 Discussion

The global performance indicators reflect the differences in the applied technolo-
gies and network designs of the benchmark models. The Net3 model is the most
resilient benchmark model in magnitude, severity, and average propagation. At
the same time, the large-sized structure of Trondheim model is evaluated as the
most resilient network in terms of rapidity. A rapid event implies that the water
utility has less time to react to the failure. As the Net3 is the smallest network,
low-quality water is rapidly distributed within the network structures compared
to the more extensive travel distances observed in the Ctown and the Trondheim
model.

In contrast to the Net3 model, both the Ctown and the Trondheim model have a
distinct pipe hierarchy indicated by a dominant topological backbone structure.
E.i. pipes are ranked according to their relative status and water distribution pur-
pose reflected by the central point of dominance. Furthermore, the flushing mech-
anisms of Net3 facilitate absorption and recovery rates of the failure through a
unidirectional flow pattern within looped parts of the network.

The proposed network generation procedure in Data Acquisition and Processing
(see Section 4.3) presents a tool to limit the number of uncertainties associated



Chapter 7: Resilience of topological attributes 69

with the system to the variability of link connections. The distribution of topolo-
gical attributes in network variants (see Figure 7.1) reflects the connection con-
straints enforced by the classification of links (e.i. service areas and critical links)
and the link addition step (e.i. alpha and spatial proximity). As the skeletonized
network of Ctown consists of more floating nodes than skeletonized Net3, it has
a higher probability of connecting multiple links to an already connected node.
Hence, Ctown generally required more pipes added pipes in order to complete the
network generation procedure.

In terms of Ctown variants, the value ranges of the produced global failure indic-
ators (see Figure 7.2) are of statistical significance in respect to the result of the
convergence analysis. The 95% confidence interval (see Table 6.1) of the conver-
gence analysis are smaller than the 95% confidence interval of the global failure
indicators of the Ctown variants. The result indicates that a relationship between
quality-related resilience and the network design exists.

Strong positive correlations were only observed between global failure metrics of
the rapidity of failure (see Figure 7.11) and the topological attributes of link dens-
ity and average closeness centrality in Net3 variants. However, weak correlations
were observed between the same Ctown vectors. A weak to moderate correlation
was observed for other global failure indicators and specific topological attributes
(link density, central point of dominance, and average closeness centrality).

Nevertheless, the relationship between resilience and network design is ambigu-
ous. As resilience is a term that encompasses multiple aspects of system perform-
ance, it is too complex to be represented by a single global performance indicator
[48, 65]. Figure 7.2 and Figure 7.3 illustrates that a system can be more resilient
in terms of one global failure indicator, and less resilient in terms of another global
failure indicator. The result is supported by Figure 7.13, as the grouping based on
performance illustrates that network variants may not exclusively perform bad in
all dimensions (e.i., magnitude, severity, and rapidity of failures).

The clustering of Ctown variants based on the performance categories (see Fig-
ure 7.13) presents a weak trend in increasing median of link density and average
closeness centrality based on the threshold for low-quality water supplied. How-
ever, it is noted that the shape of the percentiles is inconsistent with the observed
sample mean of the consecutive group. Evaluations of polluted water supplied
threshold show a more prominent trend, as the less resilient networks generally
display a higher link density, clustering coefficient, and average closeness central-
ity values.

As stated before, this study is only concerned with quality-related water concerns.
Conversely, the study of Meng et al. [65] demonstrated a strong negative correl-
ation between link density and specific temporal dimensions in terms of water
quantity-related water concerns. The results of the water quality-related failures
indicate that higher link density promotes the spread of contaminants and in-
creases the rapidity of the stress-testing event (see Figure 7.11). The findings sug-
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gest that there may be a trade-off between quality-related and quantity-related
resilience in terms of temporal aspects of the failure. Similarly, the study of Diao
et al. [35] reveals that increased resilience to one failure mode may decrease re-
silience to another.

It is noted that the topological attributes applied in this study are concerned with
a graphical representation of the water distribution networks. Specific global fail-
ure indicators may be more dependent on the hydraulic behavior of the network
variants. These node connections may significantly influence the hydraulic in the
system than multiple other node connections. However, as the number of pipes
in the network generation procedure increases, it also increases the probability
of establishing a high influence connection or a series of high influence connec-
tions in terms of hydraulic behavior. The result of the correlation analysis (see
7.3) suggests that the topological backbone of the Ctown variants strongly affects
the temporal behavior of the system, and changes to the peripheral subsystems
have less influence on the overall rapidity of the event. As such, the results of the
source point variability analysis (see Section 5.2) show that the peripheral source
points have a more substantial influence on the system performance in terms of
the temporal dimension.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this study, three benchmark models are exposed to substance intrusion in order
to evaluate the behavior and the resilience of the systems. An automatic network
generation procedure is proposed to generate network variants with a unique set
of topological attributes. The generation procedure uses statistical properties of
the system to classify, remove, and add node connections, while the calibration of
the added pipe diameters is based on economic flow rates. Topological attributes
are applied to characterise the network design of the network variants. The mod-
els are exposed to random failure sequences of substance intrusions. The system
response is measured with the proposed global failure indicators to evaluate the
resilience of topological attributes. Based on the obtained results of this study, the
following conclusions have been drawn:

• The proposed global failure metrics are derived from the novel framework of
Moraitis et al. [56] to address various aspects of the failure (e.i. magnitude,
peak, average propagation, crest factor, and rapidity). A global failure in-
dicator is the mean key performance indicator of stress-testing events with
increasing disturbance. The global failure metrics combined address the sys-
tem’s lack of ability to resist, absorb, and restore quality-related failures.

• The network generation procedure presents a framework to generate net-
work variants based on design principles automatically. The input, defined
by system constraints and statistical parameters, may be modified to pro-
mote desirable topological network features on a network scale (e.i. design
of the system). Furthermore, the economic flow rates may be modified to
alter the system’s hydraulic landscape and flow patterns (e.i. technologies).

• The system behavior exposed to a substance intrusion is characterised by the
spatial distribution of source nodes and the input boundaries defined by the
control variables. The magnitude of the mass entering the system (e.i. re-
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stricted by mass flow, duration, and the number of nodes) may be used as
a predictable measure of stress inflicted on the system. Spatial (e.i. node or
nodes used as a source point) and temporal (e.i. start time and duration)
variability address hydraulic uncertainties of the system. The random fail-
ure sequences are adapted to communicate stress through the magnitude
of mass (e.i. number of source points selected) while addressing spatial and
temporal variability in a multivariate stochastic approach (e.i. random se-
lection of source points and start time inputs).

• The confidence intervals presented in the convergence analysis (see Table 6.1)
in light of the performance distribution of network variants implies that re-
silience is dependent on the structural changes enforced by the network
generation procedure.

• Strong correlations were only observed between global failure metrics of
the rapidity of failure (service, spatial, and customer dimension) and topo-
logical attributes for Net3 variants. The result suggests that the topological
backbone of Ctown strongly affects the temporal scales of failure. In con-
trast, topological changes to the peripheral subsystem of Ctown have less
influence on the overall rapidity of the event.

• Trade-offs are observed between global failure indicators a benchmark model
and the the mean performance of the associated network variants. E.i., one
network variant may be more resilient in terms of one global failure indic-
ator and less so in light of other global failure indicators.

• Correlation trends between topological attributes and global failure indicat-
ors are non-consistent comparing the results of Ctown variants to the results
of Net3 variants.

• The results of this study suggest that it can be misleading to use topological
attribute metrics, or at least without hydraulic considerations, as a surrog-
ate in evaluating resilience enhancing strategies in terms of substance in-
trusions in water distribution systems.

This study suggests that resilience, as an integrated concept that allows multiple
risks and stress to be measured with global failure indicators, to be evaluated in
the context of a portfolio of technologies and network designs comprised within
the boundaries of water distribution models. As such, resilience assessment may
be used to evaluate the effectiveness of alternative system designs in strategic
planning of water distribution systems.

Nonetheless, a systematic approach to address multiple stress-testing events of
alternative network designs has its own drawbacks. Practitioners may want to fall
back on more familiar concepts with which they have practical experience. Risk
and risk management procedures provide such familiarity and allow for cross-
disciplinary communication [55]. Thus, combining elements of the resilience as-
sessment and risk management procedures will likely be the most practical option.
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8.2 Future Work

Being in its infancy, several aspects of resilience remains to be explored. While
resilience clearly has attractions as a unifying concept and a vision for sustainable
water distribution systems in uncertain times, achieving positive outcomes will
require intensive research of its underlying components. Because of this study,
a comprehensive toolkit for modifying and generating network variants is de-
veloped, along with an algorithm for stress-testing water distribution systems with
substance intrusions (see Appendix C). Therefore, different studies can be done
to extend and improve this work by using the developed algorithms as a starting
point. Some of the studies may be suggested here:

• There is a dependency between network design and loss of quality-related
objectives of the models evaluated in this study. Since the dependencies
vary between variants derived from different benchmark models, one study
might extend the pool of benchmark models and generated network vari-
ants to evaluate the installed technologies, their relationship to the network
design, and the consistency of the produced global failure indicators.

• The results of the Fuzzy C-Means clustering indicate that the critical con-
centration threshold yields a more prominent trend of the least resilient net-
work groups and the topological attribute indicators than any concentration
threshold. Due to dilution, lower concentration values are observed in the
topological backbone, making the global failure indicators more influenced
by substance propagation in the peripheral subsystems. Furthermore, most
stress-testing events produced undesirable conditions at all time steps of
the simulation period. As a result, the temporal scales of the failure became
trivial with the input configuration of the random failure sequences used
in this study. Thus, this study suggests that future studies use a lower mass
flow input to highlight the importance of network design in subsystems.

• A total of five topological attribute indicators are included in this study. The
indicators are derived from graphical representations of the water distri-
bution networks, and thus, without consideration of technical characterist-
ics. One study might incorporate structural properties or hydraulic relations
(e.g., as weights of the Dijkstra shortest path) to further highlight the im-
portance of certain connections as a part of the topological attribute indic-
ators. Similarly, future studies may evaluate the relationship between the
input of the generation procedure and the resilience of the produced net-
work variant.

• In order to fully grasp the complexity of resilience, one study should incor-
porate several failure modes related to both quantity and quality concerns
of the water distribution system (e.g., substance intrusion, pipe failure, and
shifting demand patterns). In light of the findings in the previous studies of
Diao et al. [35] and Meng et al. [65], the results of this study indicate there is
a trade-off between quality and quantity failures. As such, one study might
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evaluate the resilience of the water distribution system through a multi-
objective optimisation procedure.
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Appendix A

Critical quality threshold to
topological attribute indicators

Appendix A presents the scatter plots and the Pearson correlation coefficients of
failure based on the polluted water-quality threshold and topological attributes
vectors. The topological attributes of link density, average shortest path length,
clustering coefficient, central-point of dominance, and average closeness central-
ity is presented along the columns in the figures (e.i., x-axis), while the service,
spatial, and customer dimension is presented along the rows of the figures (e.i., y-
axis). Figure A.1 and Figure A.2 present the magnitude of each failure dimension.
Figure A.3 and Figure A.4 present the crest factor of each failure dimension. Fig-
ure A.5 and Figure A.6 present the severity of each failure dimension. Figure A.7
and Figure A.8 present the rapidity of each failure dimension. Network variants
are represented as points in the figures.
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Appendix B

Ranking of network variants

Appendix B presents the network variants ranked by performance. Figure B.2
presents the Ctown variants ranked by magnitude of failure in ascending order
(e.i., the service and the spatial dimension). Figure B.2 presents the Ctown vari-
ants ranked by severity of failure in ascending order (e.i., the service and the
spatial dimension). Figure B.3 presents the Ctown variants ranked by rapidity of
failure in descending order (e.i., the service and the spatial dimension). Identical
to the ranking of Ctown variants, Figure B.4, Figure B.5, and Figure B.6 presents
Net3 variants ranked by performance.
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Figure B.1: Ctown variants ranked by ascending PSL0,rat io and NL0,n,rat io.
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Figure B.2: Ctown variants ranked by ascending PSL0,peak and NL0,peak.
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Figure B.3: Ctown variants ranked by descending PSL0,T EP and NL0,T EP .
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Figure B.4: Net3 variants ranked by ascending PSL0,rat io and NL0,n,rat io.
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Figure B.5: Net3 variants ranked by ascending PSL0,peak and NL0,peak.
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Figure B.6: Net3 variants ranked by descending PSL0,T EP and NL0,T EP .





Appendix C

Computer and code listings

C.1 Computer and Python packages

The tools used in this study is a Lenovo ThinkPad X1 Carbon Generation 8 Intel
Core i7 2.00 GHz processor, 16.0 GB RAM, and SSD storage. Python 3.7 qith a
Anaconda interpreter is used for all simulations, calculations, and data visualisa-
tion. Table C.1 present a overview the file name, description, chapter and listing
of the codes developed under the course of this thesis. The following list presents
a short description of the Python packages extensively used in all scripts.

• WNTR v0.3.1 is based on the EPANET solver used to simulate hydraulic and
water quality behaviour.

• NetworkX v2.5.0 is used to generate and study topological attributes of water
distribution networks.

• NumPy v1.20.0 is a part of the library PyLab, and is applied to solve math-
ematical operations.

• Pandas v1.2.4 is applied to structure, manage, and store produced data.
• SeaBorn v1.20.0 and Matplotlib v3.4.1 functionalities is used to represent

and visualise data.
• SciPy v1.20.0 is used to calculate the Spearman correlation strength and

direction.

Table C.1: Summary of attached algorithms.

File Description Chapter Listings
config.py Configuration of input file Chapter 4 Code listing C.1

generation.py Groups nodes by service areas Chapter 4 Code listing C.2
generation.py Network generation procedure Chapter 4 Code listing C.2

stress.py Random failure sequences/KPI’s Chapter 7 Code listing C.3
attributes.py Topological indicators Chapter 7 Code listing C.4
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C.2 Listings

Code listing C.1: Code listing of config.py script.

import re
import io
import os, sys
from collections import OrderedDict
from datetime import datetime

INP_SECTIONS = [’[OPTIONS]’, ’[TITLE]’, ’[JUNCTIONS]’, ’[RESERVOIRS]’,
’[TANKS]’, ’[PIPES]’, ’[PUMPS]’, ’[VALVES]’, ’[EMITTERS]’,
’[CURVES]’, ’[PATTERNS]’, ’[ENERGY]’, ’[STATUS]’,
’[CONTROLS]’, ’[RULES]’, ’[DEMANDS]’, ’[QUALITY]’,
’[REACTIONS]’, ’[SOURCES]’, ’[MIXING]’,
’[TIMES]’, ’[REPORT]’, ’[COORDINATES]’, ’[VERTICES]’,
’[LABELS]’, ’[BACKDROP]’, ’[TAGS]’]

class InpFile(object):
"""
EPANET INP file reader and writer class for ID convert based on WNTR package
This class provides read and write functionality for EPANET INP files.
The EPANET Users Manual provides full documentation for the INP file format.
"""
def __init__(self, input, output):

self.sections = OrderedDict()
self.nodes = OrderedDict()
self.links = OrderedDict()
self.patterns = OrderedDict()
self.curves = OrderedDict()

for sec in INP_SECTIONS:
self.sections[sec] = []

self.read(input)
self.write((output))

def read(self, input):
section = None
with io.open(input, ’r’, encoding=’utf-8’) as f:

for lnum, line in enumerate(f):
line = line.strip()
nwords = len(line.split())
if len(line) == 0 or nwords == 0:

# Blank line
continue

elif line.startswith(’[’):
vals = line.split(None, 1)
sec = vals[0].upper()
if sec in INP_SECTIONS:

section = sec
self.sections[section] = []
continue

elif sec == ’[END]’:
section = None
break

else:
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#print(’Section {} not included’.format(sec))
section = None

elif section is None and line[0] == ’;’:
# Top comment
continue

if section is not None:
self.sections[section].append(line)

self.format_patterns()
self.format_junctions()
self.format_reservoirs()
self.format_tanks()
self.format_curves()
self.format_pipes()
self.format_pumps()
self.format_valves()
self.format_demands()
self.format_status()
self.format_controls()
self.format_rules()
self.format_mixing()
self.format_coordinates()

def format_patterns(self):
lnum = 1
patterns = OrderedDict()
for line in self.sections[’[PATTERNS]’]:

line = line.split(’;’)[0]
current = line.split()
if current == []:

continue
pattern_name = current[0]
if pattern_name not in self.patterns.keys():

self.patterns[pattern_name] = ’PAT{}’.format(lnum)
patterns[self.patterns[pattern_name]] = []
lnum += 1
for i in current[1:]:

patterns[self.patterns[pattern_name]].append(i)
else:

for i in current[1:]:
patterns[self.patterns[pattern_name]].append(i)

format = list()
num_columns = 6
format.append(’{:10s}␣{:10s}’.format(’;ID’, ’Multipliers’))
for pattern_name in patterns.keys():

string = ’’
for lnum, multiplier in enumerate(patterns[pattern_name]):

if lnum % num_columns == 0:
string += ’\n{:10s}␣{:10s}’.format(

pattern_name, multiplier
)

else:
string += ’{:10s}’.format(multiplier)

format.append(’\n;’)
format.append(string)
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self.sections[’[PATTERNS]’] = format

def format_junctions(self):
count = 1
junctions = [’{:10s}␣{:10s}\n’.format(’;ID’, ’Elevation’)]
for line in self.sections[’[JUNCTIONS]’]:

line = line.split(’;’)[0]
current = line.split()
if current == []:

continue
if current[0] not in self.nodes:

id = ’J{}’.format(count)
self.nodes[current[0]] = id
junctions.append(’{:10s}␣{:10s}\t;\n’.format(id, current[1]))
count += 1

self.sections[’[JUNCTIONS]’] = junctions

def format_reservoirs(self):
count = 1
reservoir = [’{:10s}␣{:15s}␣{:15s}\n’.format(’;ID’, ’Elevation’, ’Pattern’)]
for line in self.sections[’[RESERVOIRS]’]:

line = line.split(’;’)[0]
current = line.split()
if current == []:

continue
if current[0] not in self.nodes:

id = ’R{}’.format(count)
count += 1
self.nodes[current[0]] = id
if len(current) == 2:

reservoir.append(’{:10s}␣{:15s}␣{:15s};\n’.format(
id, current[1], ’’

))
elif len(current) == 3:

reservoir.append(’{:10s}␣{:15s}␣{:15s};\n’.format(
id, current[1], self.patterns[current[2]]

))
else:

print(’Check␣Reservoir:␣’, line)

self.sections[’[RESERVOIRS]’] = reservoir

def format_tanks(self):
count = 1
tank_format = ’{:10s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}\n’
tanks = [tank_format.format(

’;ID’, ’Elevation’, ’MinLevel’, ’MaxLevel’,
’Diameter’, ’MinVol’, ’VolCurve’

)]

tank_format = ’{:10s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}\t;\n’
for line in self.sections[’[TANKS]’]:

line = line.split(’;’)[0]
current = line.split()
if current == []:

continue
id = ’T{}’.format(count)
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count += 1
self.nodes[current[0]] = id
tanks.append(tank_format.format(

id, current[1], current[2], current[3], current[4], current[5], ’’)
)

self.sections[’[TANKS]’] = tanks

def format_curves(self):
count = 1
curves = [’{:10s}␣{:15s}␣{:15s}␣\n’.format(’;ID’, ’X-Value’, ’Y-Value’)]

for line in self.sections[’[CURVES]’]:
line = line.split(’;’)[0]
current = line.split()
if current == []:

continue
if current[0] not in self.curves.keys():

id = ’CURVE_{}’.format(count)
self.curves[current[0]] = id
curves.append(

’{:10s}␣{:15s}␣{:15s}␣\n’.format(id, current[1], current[2])
)
count += 1

else:
curves.append(’{:10s}␣{:15s}␣{:15s}␣\n’.format(

self.curves[current[0]], current[1], current[2]
))

self.sections[’[CURVES]’] = curves

def format_pipes(self):
count = 1
pipe_format = ’{:10s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}\n’
pipes = [pipe_format.format(

’;ID’, ’Node1’, ’Node2’, ’Length’,
’Diameter’, ’Roughness’, ’MinorLoss’, ’CV’

)]

pipe_format = ’{:10s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}\t;\n’
for line in self.sections[’[PIPES]’]:

line = line.split(’;’)[0]
current = line.split()
if current == []:

continue

id = ’P{}’.format(count)
count += 1
node1 = self.nodes[current[1]]
node2 = self.nodes[current[2]]
self.links[current[0]] = id

if len(current) == 7:
pipes.append(pipe_format.format(

id, node1, node2, current[3], current[4],
current[5], current[6], ’’

))
if len(current) == 8:

pipes.append(pipe_format.format(
id, node1, node2, current[3], current[4],
current[5], current[6], current[7]
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))

self.sections[’[PIPES]’] = pipes

def format_pumps(self):
count = 1
pumps = [’{:10s}␣{:15s}␣{:15s}␣{:15s}␣\n’.format(

’;ID’, ’Node1’, ’Node2’, ’Parameters’
)]

for line in self.sections[’[PUMPS]’]:
line = line.split(’;’)[0]
current = line.split()
if current == []:

continue

id = ’PU{}’.format(count)
count += 1
node1 = self.nodes[current[1]]
node2 = self.nodes[current[2]]
self.links[current[0]] = id

pumps.append(’{:10s}␣{:15s}␣{:15s}␣{:5s}{:15s}\t;\n’.format(
id, node1, node2, current[3], self.curves[current[4]]

))

self.sections[’[PUMPS]’] = pumps

def format_valves(self):
count = 1
valves = [’{:10s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣\n’.format(

’;ID’, ’Node1’, ’Node2’, ’Diameter’, ’Type’, ’Setting’, ’MinorLoss’
)]

for line in self.sections[’[VALVES]’]:
line = line.split(’;’)[0]
current = line.split()
if current == []:

continue

id = ’V{}’.format(count)
self.links[current[0]] = id
count += 1
node1 = self.nodes[current[1]]
node2 = self.nodes[current[2]]
valves.append(

’{:10s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣{:15s}␣;\n’.format(
id, node1, node2, current[3], current[4], current[5], ’0’

))

self.sections[’[VALVES]’] = valves

def format_demands(self):
count = 1
demands = [’{:10s}␣{:15s}␣{:15s}␣{:15s}\n’.format(

’;ID’, ’Demand’, ’Pattern’, ’Category’
)]
for line in self.sections[’[DEMANDS]’]:

line = line.split(’;’)
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current = line[0].split()
if current == []:

continue
if current[0] in self.nodes.keys():

id = self.nodes[current[0]]
if len(current) == 3:

pattern = self.patterns[current[2]]
else:

pattern = ’’

if len(line) > 1:
if line[1].upper() == ’LEKKASJE’:

demands.append(’{:10s}␣{:15s}␣{:15s};␣{:15s}\n’.format(
id, current[1], pattern, ’leakage’

))
elif line[1].upper() == ’FASTBOENDE’:

demands.append(’{:10s}␣{:15s}␣{:15s};␣{:15s}\n’.format(
id, current[1], pattern, ’residential’

))
elif line[1].upper() == ’VIRKSOMHET’:

demands.append(’{:10s}␣{:15s}␣{:15s};␣{:15s}\n’.format(
id, current[1], pattern, ’enterprise’

))
else:

demands.append(’{:10s}␣{:15s}␣{:15s};␣{:15s}\n’.format(
id, current[1], pattern, ’other’

))
else:

demands.append(’{:10s}␣{:15s}␣{:15s};␣\n’.format(
id, current[1], pattern

))

count += 1

self.sections[’[DEMANDS]’] = demands

def format_status(self):
count = 1
status = [’{:10s}␣{:10s}\n’.format(’;ID’, ’Status/Setting’)]
for line in self.sections[’[STATUS]’]:

line = line.split(’;’)[0]
current = line.split()
if current == []:

continue
if current[0] not in self.nodes:

id = self.links[current[0]]

status.append(’{:10s}␣{:10s}\n’.format(id, current[1]))
count += 1

self.sections[’[STATUS]’] = status

def format_controls(self):
count = 1
control = []
controls = list()
for line in self.sections[’[CONTROLS]’]:

line = line.split(’;’)[0]
current = line.split()



106 E. G. Rokstad: Resilience of WDS

if current == []:
continue

elif len(current) == 7: # Clocktime
link = self.links[current[1]]
if link not in control:

controls.append(
’;␣-------------␣Clocktime␣{}␣---------------␣\n’.format(

link
))

control.append(link)
controls.append(

’{:1s}\t{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}␣\n’.format(
current[0], link, current[2], current[3],
current[4], current[5], current[6]

))
elif len(current) == 8:

link = self.links[current[1]]
node = self.nodes[current[5]]
if node not in control:

controls.append(
’;␣-----------␣Tank␣{}␣---------------␣\n’.format(node[1:]))

control.append(node)
controls.append(

’{:1s}\t{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}\n’.format(
current[0], link, current[2], current[3],
current[4], node, current[6], current[7]

))
else:

print(’Check␣control:␣’, line)
self.sections[’[CONTROLS]’] = controls

def format_rules(self):
def string(words):

if words[1].upper() == ’TANK’:
return ’{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}\n’.format(

words[0], words[1], self.nodes[words[2]],
words[3], words[4], words[5]

)

elif words[1].upper() == ’SYSTEM’:
return ’{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}\n’.format(

words[0], words[1], words[2],
words[3], words[4]

)

elif words[1].upper() == ’LINK’:
return ’{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}\n’.format(

words[0], words[1], self.links[words[2]],
words[3], words[4], words[5]

)
elif words[1].upper() == ’VALVE’:

return ’{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}\n’.format(
words[0], words[1], self.links[words[2]],
words[3], words[4], words[5]

)

elif words[1].upper() == ’PUMP’:
return ’{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}␣{:1s}\n’.format(

words[0], words[1], self.links[words[2]],
words[3], words[4], words[5]
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)
else:

print(words[1])

rules = []
if len(self.sections[’[RULES]’]) > 0:

rule = 1
for line in self.sections[’[RULES]’]:

line = line.split(’;’)[0]
words = line.split()

if words[0].upper() == ’RULE’:
rules.append(’\nRULE␣{}␣\t␣;\n’.format(words[1]))

elif words[0].upper() == ’PRIORITY’:
rules.append(’{}␣{}\n’.format(words[0], words[1]))

else:
rules.append(string(words))

self.sections[’[RULES]’] = rules

def format_mixing(self):

count = 1
mixing = [’{:10s}␣{:15s}\n’.format(’;Tank’, ’Model’)]

for line in self.sections[’[MIXING]’]:
line = line.split(’;’)
current = line[0].split()
if current == []:

continue

mixing.append(’{:10s}␣{:15s}\n’.format(
self.nodes[current[0]], current[1]

))

self.sections[’[MIXING]’] = mixing

def format_coordinates(self):
count = 1
coordinates = [’{:10s}␣{:15s}␣{:15s}\n’.format(

’;ID’, ’X-Coord’, ’Y-Coord’
)]

for line in self.sections[’[COORDINATES]’]:
line = line.split(’;’)
current = line[0].split()
if current == []:

continue

coordinates.append(’{:10s}␣{:15s}␣{:15s}\n’.format(
self.nodes[current[0]], current[1], current[2]

))

self.sections[’[COORDINATES]’] = coordinates

def write(self, output):

with io.open(output, ’wb’) as f:
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now = datetime.now().strftime("%d/%m/%Y␣%H:%M:%S")
f.write(’;␣Generated:␣{}\n’.format(now).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[TITLE]\n’.encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[JUNCTIONS]\n’.encode(’ascii’))
for line in self.sections[’[JUNCTIONS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[RESERVOIRS]\n’.encode(’ascii’))
for line in self.sections[’[RESERVOIRS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[TANKS]\n’.encode(’ascii’))
for line in self.sections[’[TANKS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[PIPES]\n’.encode(’ascii’))
for line in self.sections[’[PIPES]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[PUMPS]\n’.encode(’ascii’))
for line in self.sections[’[PUMPS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[VALVES]\n’.encode(’ascii’))
for line in self.sections[’[VALVES]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[TAGS]\n’.encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[DEMANDS]\n’.encode(’ascii’))
for line in self.sections[’[DEMANDS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[STATUS]\n’.encode(’ascii’))
for line in self.sections[’[STATUS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[PATTERNS]\n’.encode(’ascii’))
for line in self.sections[’[PATTERNS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[CURVES]\n’.encode(’ascii’))
for line in self.sections[’[CURVES]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))
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f.write(’[CONTROLS]\n’.encode(’ascii’))
for line in self.sections[’[CONTROLS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[RULES]\n’.encode(’ascii’))
for line in self.sections[’[RULES]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[ENERGY]\n’.encode(’ascii’))
for line in self.sections[’[ENERGY]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’\n’.encode(’ascii’))

f.write(’[EMITTERS]\n’.encode(’ascii’))
f.write(’{:10s}␣{:10s}\n’.format(

’;Junction’, ’Coefficient’).encode(’ascii’)
)

f.write(’\n’.encode(’ascii’))

f.write(’[QUALITY]\n’.encode(’ascii’))
f.write(’{:10s}␣{:10s}\n’.format(’;Node’, ’InitQual’).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[SOURCES]\n’.encode(’ascii’))
f.write(’{:10s}␣{:10s}␣{:10s}␣{:10s}\n’.format(

’;Node’, ’Type’, ’Quality’, ’Pattern’).encode(’ascii’)
)

f.write(’\n’.encode(’ascii’))

f.write(’[REACTIONS]\n’.encode(’ascii’))
for line in self.sections[’[REACTIONS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’\n’.encode(’ascii’))

f.write(’[MIXING]\n’.encode(’ascii’))
for line in self.sections[’[MIXING]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[TIMES]\n’.encode(’ascii’))
for line in self.sections[’[TIMES]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’\n’.encode(’ascii’))

f.write(’[REPORT]\n’.encode(’ascii’))
for line in self.sections[’[REPORT]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’\n’.encode(’ascii’))

f.write(’[OPTIONS]\n’.encode(’ascii’))
for line in self.sections[’[OPTIONS]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))
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f.write(’\n’.encode(’ascii’))

f.write(’[COORDINATES]\n’.encode(’ascii’))
for line in self.sections[’[COORDINATES]’]:

f.write(’{}’.format(line).encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[VERTICES]\n’.encode(’ascii’))
f.write(’{:10s}␣{:10s}␣{:10s}\n’.format(

’;ID’, ’X-Coord’, ’Y-Coord’).encode(’ascii’)
)

f.write(’\n’.encode(’ascii’))

f.write(’[LABELS]\n’.encode(’ascii’))
f.write(’{:10s}␣{:10s}␣{:10s}\n’.format(

’;X-Coord’, ’Y-Coord’, ’Label’).encode(’ascii’)
)

f.write(’\n’.encode(’ascii’))

f.write(’[VERTICES]\n’.encode(’ascii’))
f.write(’{:10s}␣{:10s}␣{:10s}\n’.format(

’;ID’, ’X-Coord’, ’Y-Coord’).encode(’ascii’)
)

f.write(’\n’.encode(’ascii’))

f.write(’[BACKDROP]\n’.encode(’ascii’))
f.write(’\n’.encode(’ascii’))

f.write(’[END]\n’.encode(’ascii’))

Code listing C.2: Code listing of generation.py script.

import matplotlib.pyplot as plt
from scipy.spatial import distance
import copy
import networkx as nx
import numpy as np
import pandas as pd
import wntr
import pickle

DIAMETER = [80, 100, 125, 150, 200, 250, 300, 400, 500, 600]
FLOW = [1, 1, 1, 1.5, 1.5, 1.75, 1.75, 2, 2, 2, 2]
class GenerationProcedure(object):

"""
GenerationProcedure is a network generation procedure to produce network variants
based on a benchmark model. The procedure is initialized with a input file (.inp)
of a working water distribution network model.
"""
def __init__(self, input):

self.wn = wntr.network.WaterNetworkModel(input)
self.roughness = list()
self.links = list()
for name in self.wn.pipe_name_list:

link = self.wn.get_link(name)
self.links.append(

[name, (link.end_node.name, link.start_node.name),
link.diameter, link.roughness]

)
self.links = pd.DataFrame(self.links, columns=[’ID’, ’edge’, ’d’, ’r’])
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self.pos = dict()
for name in self.wn.node_name_list:

node = self.wn.get_node(name)
self.pos[name] = node.coordinates

self.remove_links = list()
self.critical_nodes = self.wn.tank_name_list + self.wn.reservoir_name_list
self.graph = self.wn.get_graph().to_undirected()
self.service_areas(min_size=15)
self.classification()

def plot_graph(self, graph):
nx.draw(graph, pos=self.pos, node_size=20)
plt.show()

def service_areas(self, min_size=15):
G = self.graph

self.brigdes = self.wn.pump_name_list + self.wn.valve_name_list
for name in self.wn.pipe_name_list:

link = self.wn.get_link(name)
if str(link.status) == ’Closed’:

self.brigdes.append(name)
elif link._cv is True:

self.brigdes.append(name)
else:

self.roughness.append(link.roughness)

for brigde in self.brigdes:
link = self.wn.get_link(brigde)
G.remove_edge(link.start_node.name, link.end_node.name)
if link.start_node.name not in self.critical_nodes:

self.critical_nodes.append(link.start_node.name)
if link.end_node.name not in self.critical_nodes:

self.critical_nodes.append(link.end_node.name)

components = [G.subgraph(c).copy() for c in nx.connected_components(G)]
self.dma = dict()
for idx, g in enumerate(components, start=1):

if len(g.nodes()) > min_size:
dma = nx.Graph()
dma.add_nodes_from(g.nodes(data=True))
dma.add_edges_from(g.edges(data=True))
self.dma[idx] = dma

def classification(self):
self.dma_critical_nodes = dict()
self.dma_float_nodes = dict()
self.dma_links = dict()
self.backbone = dict()
for dma_id in self.dma.keys():

self.dma_float_nodes[dma_id] = list()
self.dma_links[dma_id] = list()
self.backbone[dma_id] = nx.Graph()
self.backbone[dma_id].add_nodes_from(self.dma[dma_id].nodes())
self.dma_critical_nodes[dma_id] = list()
for n in self.dma[dma_id].nodes:

if n in self.critical_nodes:
self.dma_critical_nodes[dma_id].append(n)
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weights = []
for edge in self.dma[dma_id].edges():

u, v = edge[0], edge[1]
if (u,v) in self.links[’edge’].to_list():

row = self.links[(self.links[’edge’] == (u,v))]
else:

row = self.links[(self.links[’edge’] == (v,u))]
self.dma_links[dma_id].append(

(u, v, self.links.loc[row.index[0], ’ID’])
)
weights.append((u, v, 1/self.links.loc[row.index[0], ’d’]))

self.dma[dma_id].add_weighted_edges_from(weights)
for n1 in self.dma_critical_nodes[dma_id]:

for n2 in self.dma_critical_nodes[dma_id]:
if n1 != n2:

path = nx.shortest_path(
self.dma[dma_id], source=n1, target=n2, weight=’weight’

)
for i in range(len(path)-1):

self.backbone[dma_id].add_edge(path[i], path[i+1])

for node in self.backbone[dma_id].nodes:
if self.backbone[dma_id].degree[node] == 0:

self.dma_float_nodes[dma_id].append(node)

for link in self.dma_links[dma_id]:
if link[0] in self.dma_float_nodes[dma_id] \

or link[1] in self.dma_float_nodes[dma_id]:
self.remove_links.append(link[2])

def generate_variant(
self,
dgr_exp=10.0,
dst_exp=10.0,
n_connections=10,
alpha=45,
calibrate=True

):

self.add_links = list()
for dma_id in self.backbone.keys():

dma = self.backbone[dma_id]
float_nodes = self.dma_float_nodes[dma_id]
connections = dict()
for node_id in float_nodes:

connections[node_id] = []
for neighbour_id in dma.nodes():

if neighbour_id != node_id:
dst = distance.euclidean(

self.pos[node_id],
self.pos[neighbour_id]

)
connections[node_id].append([neighbour_id, dst])

connections[node_id] = \
pd.DataFrame(connections[node_id], columns=[’ID’, ’dst’])

connections[node_id] = \
connections[node_id].sort_values(’dst’).head(n_connections)

connections[node_id][’dst’] = \
1/np.power(connections[node_id][’dst’], dst_exp)
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connections[node_id][’dst’] = \
connections[node_id][’dst’]/connections[node_id][’dst’].sum()

while nx.is_connected(dma) == False:
float_pool = pd.DataFrame(

[[node, dma.degree[node]] for node in float_nodes],
columns=[’ID’, ’dgr’]
)

float_pool[’dgr’] = 1/np.power((float_pool[’dgr’] + 1), dgr_exp)
float_pool[’dgr’] = float_pool[’dgr’]/float_pool[’dgr’].sum()
u = float_pool.sample(1, weights=’dgr’)[’ID’].tolist()[0]

if len(connections[u][’ID’]) == 0:
float_nodes.remove(u)
continue

v_row = connections[u].sample(1, weights=’dst’)
v_index = v_row.index.tolist()[0]
connections[u] = connections[u].drop(v_row.index.tolist()[0])

v = v_row[’ID’].tolist()[0]
include = True
for v_ex in dma.neighbors(u):

v_1 = [
self.pos[u][0] - self.pos[v][0],
self.pos[u][1] - self.pos[v][1]

]
v_2 = [

self.pos[u][0] - self.pos[v_ex][0],
self.pos[u][1] - self.pos[v_ex][1]

]
radians = self._angle_between(v_1, v_2)
degrees = np.degrees(radians)
if abs(degrees) < alpha:

include = False
break

if not include:
continue

for v_ex in dma.neighbors(v):
v_1 = [

self.pos[v][0] - self.pos[u][0],
self.pos[v][1] - self.pos[u][1]

]
v_2 = [

self.pos[v][0] - self.pos[v_ex][0],
self.pos[v][1] - self.pos[v_ex][1]

]
radians = self._angle_between(v_1, v_2)
degrees = np.degrees(radians)
if abs(degrees) < alpha:

include = False
break

if include:
self.add_links.append(([u, v]))
dma.add_edge(u, v)
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self.variant = copy.deepcopy(self.wn)
for pipe in self.remove_links:

self.variant.remove_link(pipe)

self.pipes_added = list()
roughness = round(np.array(self.roughness).mean(), 1)
for n, con in enumerate(self.add_links):

name = f’NP{n+1}’
length = distance.euclidean(self.pos[con[0]], self.pos[con[1]])
diameter = DIAMETER[0]
self.variant.add_pipe(

name, start_node_name=con[0], end_node_name=con[1],
length=length, diameter=diameter, roughness=roughness

)
self.pipes_added.append(name)

if calibrate:
self.calibrate()

def calibrate(self, save=None):
self.variant.options.hydraulic.demand_model = ’PDD’
for n, flow in enumerate(FLOW[1:]):

sim = wntr.sim.EpanetSimulator(self.variant)
results = sim.run_sim()
for name in self.pipes_added:

maximum = results.link[’velocity’][name].max()
i = 0
if maximum > flow:

link = self.variant.get_link(name)
link.diameter = DIAMETER[n]
i += 1

if i == 0:
break

def _angle_between(self, v1, v2):
v1_u = v1 / np.linalg.norm(v1)
v2_u = v2 / np.linalg.norm(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))

Code listing C.3: Code listing of quality.py script.

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import pandas as pd
import wntr
import pickle
import sys
import os
import seaborn as sns

class substance_intrusion():
def __init__(self, inp, pop, mass_value=1000, duration=1, cs_e=50, cs_p=100):

’’’
:arg
inp: Epanet .inp file
pop: Population .pkl file
duration: [min, max]
start_time: [min, max]
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mass_value: MASS [mg/s] at booster point
cs_e: Threshold for low quality water supply [mg/L]
cs_p: Threshold for polluted water supply [mg/L]
’’’

self.cs_e = cs_e
self.cs_p = cs_p
self.duration = duration
self.mass_value = mass_value
self.network_file = ’wn.pickle’
self.inp = inp
self.quality_timestep = 60
self.report_timestep = 3600
self.hydraulic_timestep = 3600
self.simulation_duration = 24 * 3600 * 4

wn = wntr.network.WaterNetworkModel(self.inp)
wn.options.hydraulic.demand_model = ’DD’
wn.options.quality.parameter = ’CHEMICAL’
wn.options.time.duration = self.simulation_duration
wn.options.time.hydraulic_timestep = self.hydraulic_timestep
wn.options.time.report_timestep = self.report_timestep
wn.options.time.quality_timestep = self.quality_timestep

self.node_name_list = wn.node_name_list
self.junction_name_list = wn.junction_name_list
self.demand = wntr.metrics.expected_demand(wn)[self.junction_name_list]
self.total_demand = self.demand.sum().sum()
self.total_nodes = len(self.demand.columns)
self.total_time = self.simulation_duration # hours

with open(pop, ’rb’) as f:
self.population = pickle.load(f)
self.total_population = self.population.sum(axis=1).max()

with open(self.network_file, ’wb’) as f:
pickle.dump(wn, f)

def random_failure_sequences(
self, nsim, start_range=np.arange(0, 24, 1),
n_sourcepoints = np.arange(0.01, 0.2, 0.01), duration=1

):
self.result = pd.DataFrame()
nodes_injected = np.arange(0.01, 0.2, 0.01)
for n in range(nsim):

for p in nodes_injected:
self.metrices = {}
self.metrices[’%␣of␣nodes’] = p
pool = self.junction_name_list.copy()
with open(self.network_file, ’rb’) as f:

wn = pickle.load(f)

for s in range(int(p * len(pool))):
start = np.random.choice(start_range)
source = np.random.choice(pool)
pool.remove(source)
source_pattern = wntr.network.elements.Pattern.binary_pattern(

f’SP_{source}’, start_time=start*3600,
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end_time=(start+self.duration)*3600,
duration=wn.options.time.duration,
step_size=wn.options.time.pattern_timestep

)
wn.add_pattern(f’SP_{source}’, source_pattern)
wn.add_source(

f’Source_{source}’, source, ’MASS’,
self.mass_value, f’SP_{source}’

)
try:

sim = wntr.sim.EpanetSimulator(wn)
results = sim.run_sim()

except:
print(’Epanet␣Error’)
continue

self.supply = results.node[’demand’].loc[:, wn.junction_name_list]
self.concentration =\

results.node[’quality’].loc[:, wn.junction_name_list]
self._quality_performance()
self.result = self.result.append(self.metrices, ignore_index=True)

self.result[’%␣of␣nodes’] = self.result[’%␣of␣nodes’] * 100

def global_failure(self, indicator):
sns.set_theme(style="whitegrid", palette="deep")
sns.lineplot(

data=self.result, x=’%␣of␣nodes’, y=indicator, ci=None)
sns.lineplot(

data=self.result, x=’%␣of␣nodes’, y=indicator, estimator=’min’, ci=None)
sns.lineplot(

data=self.result, x=’%␣of␣nodes’, y=indicator, estimator=’max’, ci=None)
plt.show()

def _quality_performance(self):
concentration = self.concentration
supply = self.supply

self.N = {
0: concentration > self.cs_e,
1: (concentration > self.cs_e) & (concentration < self.cs_p),
2: concentration > self.cs_p

}

self.T = self.N
self.PS, self.C = {}, {}
for k in self.N.keys():

self.PS[k] = supply.where(self.N[k], other=0)
self.C[k] = self.population.where(self.N[k], other=0)

self._magnitude()
self._average_propagation()
self._severity()
self._crest_factor()
self._rapidity()

def _magnitude(self):
for i in range(3):

# Service Metrics
self.metrices[r’$PS_{{L{0}}}$’.format(i)] = self.PS[i].sum().sum()
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self.metrices[r’$PS_{{L{0},␣ratio}}$’.format(i)] \
= self.metrices[r’$PS_{{L{0}}}$’.format(i)] / self.total_demand

# Spatial Metrics
value_count = (self.N[i].sum(axis=0) > 0).value_counts()
if True in value_count:

self.metrices[r’$N_{{L{0},␣n}}$’.format(i)] = value_count[True]
self.metrices[r’$N_{{L{0},␣n,␣ratio}}$’.format(i)] \

= self.metrices[r’$N_{{L{0},␣n}}$’.format(i)] / self.total_nodes
else:

self.metrices[r’$N_{{L{0},␣n}}$’.format(i)] = 0
self.metrices[r’$N_{{L{0},␣n,␣ratio}}$’.format(i)] = 0

# Costumers Metrics
self.metrices[r’$C_{{L{0},␣n}}$’.format(i)] \

= np.sum([self.C[i][col].max() for col in self.C[i].columns])
self.metrices[r’$C_{{L{0},␣n,␣ratio}}$’.format(i)] \

= self.metrices[r’$C_{{L{0},␣n}}$’.format(i)] / \
self.total_population

# Continuity Metrics
value_count = (self.N[i].sum(axis=1) > 0).value_counts()
if True in value_count:

self.metrices[r’$T_{{L{0},␣t}}$’.format(i)] = value_count[True]
self.metrices[r’$T_{{L{0},␣t,␣ratio}}$’.format(i)] = \

self.metrices[r’$T_{{L{0},␣t}}$’.format(i)] * 3600 / \
self.total_time

else:
self.metrices[r’$T_{{L{0},␣t}}$’.format(i)] = 0
self.metrices[r’$T_{{L{0},␣t,␣ratio}}$’.format(i)] = 0

def _average_propagation(self):
for i in range(3):

T = self.T[i].sum().sum()
if T > 0:

self.metrices[r’$\overline{{PS_{{L{0}}}}}$’.format(i)] =\
self.metrices[r’$PS_{{L{0}}}$’.format(i)] / T

self.metrices[r’$\overline{{N_{{L{0}}}}}$’.format(i)] = \
self.metrices[r’$N_{{L{0},␣n}}$’.format(i)] / T

self.metrices[r’$\overline{{C_{{L{0}}}}}$’.format(i)] = \
self.C[i].sum().sum() / T

self.metrices[r’$\overline{{NT_{{L{0}}}}}$’.format(i)] = \
self.metrices[r’$T_{{L{0},␣t}}$’.format(i)] / T

else:
self.metrices[r’$\overline{{PS_{{L{0}}}}}$’.format(i)] = None
self.metrices[r’$\overline{{N_{{L{0}}}}}$’.format(i)] = None
self.metrices[r’$\overline{{C_{{L{0}}}}}$’.format(i)] = None
self.metrices[r’$\overline{{NT_{{L{0}}}}}$’.format(i)] = None

def _severity(self):
for i in range(3):

self.metrices[r’$PS_{{L{0},␣peak}}$’.format(i)] = \
self.PS[i].sum(axis=1).max()

self.metrices[r’$N_{{L{0},␣peak}}$’.format(i)] = \
self.N[i].sum(axis=1).max()

self.metrices[r’$C_{{L{0},␣peak}}$’.format(i)] = \
self.C[i].sum(axis=1).max()

def _crest_factor(self):
for i in range(3):
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if self.metrices[r’$PS_{{L{0}}}$’.format(i)] > 0:
self.metrices[r’$PS_{{L{0},␣PAR}}$’.format(i)] =\

self.metrices[r’$PS_{{L{0},␣peak}}$’.format(i)] / \
self.metrices[r’$PS_{{L{0}}}$’.format(i)]

else:
self.metrices[r’$PS_{{L{0},␣PAR}}$’.format(i)] = None

if self.metrices[r’$N_{{L{0},␣n}}$’.format(i)] > 0:

self.metrices[r’$N_{{L{0},␣PAR}}$’.format(i)] =\
self.metrices[r’$N_{{L{0},␣peak}}$’.format(i)] / \
self.metrices[r’$N_{{L{0},␣n}}$’.format(i)]

else:
self.metrices[r’$N_{{L{0},␣PAR}}$’.format(i)] = None

if self.metrices[r’$C_{{L{0},␣n}}$’.format(i)] > 0:
self.metrices[r’$C_{{L{0},␣PAR}}$’.format(i)] =\

self.metrices[r’$C_{{L{0},␣peak}}$’.format(i)] / \
self.metrices[r’$C_{{L{0},␣n}}$’.format(i)]

else:
self.metrices[r’$C_{{L{0},␣PAR}}$’.format(i)] = None

def _rapidity(self):
t_e = 0
for i in range(3):

if self.PS[i].sum(axis=1).idxmax() / self.report_timestep > t_e:
self.metrices[r’$PS_{{L{0},␣TEP}}$’.format(i)] = \

self.PS[i].sum(axis=1).idxmax() / self.report_timestep- t_e
else:

self.metrices[r’$PS_{{L{0},␣TEP}}$’.format(i)] = None

if self.N[i].sum(axis=1).idxmax() / self.report_timestep > t_e:
self.metrices[r’$N_{{L{0},␣TEP}}$’.format(i)] = \

self.N[i].sum(axis=1).idxmax() / self.report_timestep - t_e
else:

self.metrices[r’$N_{{L{0},␣TEP}}$’.format(i)] = None

if self.C[i].sum(axis=1).idxmax() / self.report_timestep > t_e:
self.metrices[r’$C_{{L{0},␣TEP}}$’.format(i)] = \

self.C[i].sum(axis=1).idxmax() / self.report_timestep - t_e
else:

self.metrices[r’$C_{{L{0},␣TEP}}$’.format(i)] = None

Code listing C.4: Code listing of attributes.py script.

import wntr
import networkx as nx

def attributes(G):
properties = {}
uG = nx.Graph(G.to_undirected())
properties[’d’] = [nx.density(G)]
properties[’a’] = [nx.average_shortest_path_length(G)]
properties[r’$C_c$’] = [nx.transitivity(sG)]
properties[r’$C_B$’] = [wntr.metrics.central_point_dominance(G)]
properties[r’$C_u$’] = \

[pd.array([nx.closeness_centrality(G)[k]
for k in nx.closeness_centrality(G)]).mean()]

return properties



Jupyter notebook - A demonstration
Elias Gulla Rokstad

Resilience of topological attributes

This is a demonstation of the classes developed during the course of my master thesis. The code
listings are found in attributes.py, quality.py, and generation.py.

[1]: import matplotlib.pyplot as plt
import networkx as nx
import pandas as pd
import seaborn as sns
import numpy as np

import attributes
import quality
import generation

sns.set_theme(style="whitegrid", palette="deep")
networks = ['Net3', 'Ctown']

Network generation procedure

The network generation procedure is developed to automatically generate network variants of the
benchmark model. It is a four-step procedure with the following steps:

1. Link classification

2. Link removal

3. Link addition

4. Model calibration

[3]: net = networks[1]
gen = generation.GenerationProcedure(f'networks/{net}.inp')

# Benchmark model
G = gen.wn.get_graph().to_undirected()
gen.plot_graph(G)
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Link classification

The link classification convert the water distribution model into a graph (Graph theory). Links
classified as pumps, valves or pipes with CV settings are removed from the graph. The following
operations are conducted for each service area:

1. Connected nodes are grouped together as service areas.

2. Junctions connected to the pumps, valves or CV pipes, tanks, and reservoirs are stored as
critical nodes

3. Dijkstra’s shortest path algorithm are used to map the links connected the critical nodes
together. The inverse of the diameter of the links are used as weights, e.i. large diameter
pipes presents a shorter traveling distance than smaller pipes. pipes part of the shortest
path are stored as critical links.
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[5]: color_links = gen.backbone[1].edges()
color_nodes = gen.critical_nodes
gen.plot_graph_highlight(G, nodes=color_nodes, links=color_links)
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Link removal

The links not included by Dijkstra’s shortest path algorithm are removed in each service area.

[6]: G = gen.backbone[1]
gen.plot_graph(G)

Link addition

Pipes are added to the graph based on following statistical parameters:

1. dgr_exp: probability exponent of node degrees (e.i. high dgr_exp value increase probability
of selecting nodes with low node degree as a start point).

2. dst_exp: probability exponent of spatial closeness (e.i. high dst_exp value increase probability
of selecting nodes close to the start node as a end node).

3. n_connection: the number of possible connection from each start node ranked by closed
neighbours.

4. alpha: the mimimum allowed angle between a possible connections and existing connections
at start or end node.
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[20]: gen.generate_variant(dgr_exp=10.0, dst_exp=5.0, n_connections=5, alpha=20,␣
↪→calibrate=False)

G = gen.variant.get_graph()
print(pd.DataFrame.from_dict(attributes.attributes(G)))
uG = G.to_undirected()
gen.plot_graph(uG)

d a $C_c$ $C_B$ $C_u$
0 0.003101 0.051234 0.162963 0.476203 0.00429

[30]: # Degree exponent
data = []

for dgr in np.arange(1, 10, 1):
for n in range(5):

try:
gen.generate_variant(dgr_exp=dgr, dst_exp=10.0, n_connections=10,␣

↪→alpha=20, calibrate=False)
att = attributes.attributes(gen.variant.get_graph())
temp = [dgr]
for k in att.keys():

temp.append(att[k][0])
data.append(temp)
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except:
print(f'Generation did not converge: parameter={dgr}')

columns = ['Parameter', 'd', 'a', '$C_c$', '$C_B$', '$C_u$']
data = pd.DataFrame(data, columns=columns)
print(data.groupby('Parameter').mean())
sns.lineplot(data=data, x='Parameter', y='d')
plt.show()

d a $C_c$ $C_B$ $C_u$
Parameter
1 0.003359 0.063179 0.217721 0.467299 0.004890
2 0.003372 0.067628 0.214109 0.464630 0.004934
3 0.003278 0.067658 0.181934 0.460170 0.004750
4 0.003295 0.059747 0.180518 0.459995 0.004716
5 0.003211 0.060876 0.183827 0.475639 0.004557
6 0.003213 0.058660 0.172766 0.460961 0.004605
7 0.003197 0.069192 0.167241 0.458544 0.004645
8 0.003232 0.061102 0.163880 0.466311 0.004667
9 0.003162 0.061488 0.172492 0.483199 0.004506
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[32]: # Distribution exponent
data = []
for dgr in np.arange(1, 10, 1):

for n in range(5):
try:

gen.generate_variant(dgr_exp=10.0, dst_exp=dgr, n_connections=10,␣
↪→alpha=20, calibrate=False)

prop = attributes.attributes(gen.variant.get_graph())
temp = [dgr]
for k in prop.keys(): temp.append(prop[k][0])
data.append(temp)

except:
print(f'Generation did not converge: parameter={dgr}')

columns = ['Parameter', 'd', 'a', '$C_c$', '$C_B$', '$C_u$']
data = pd.DataFrame(data, columns=columns)
print(data.groupby('Parameter').mean())
sns.lineplot(data=data, x='Parameter', y='d')
plt.show()

d a $C_c$ $C_B$ $C_u$
Parameter
1 0.003119 0.067675 0.069922 0.489786 0.004832
2 0.002966 0.053652 0.065965 0.505071 0.004373
3 0.002946 0.062386 0.080099 0.467963 0.004328
4 0.003184 0.064021 0.134851 0.489888 0.004767
5 0.003230 0.062787 0.148626 0.464156 0.004738
6 0.003093 0.070542 0.152123 0.463272 0.004471
7 0.003217 0.065164 0.168145 0.466604 0.004695
8 0.003246 0.065099 0.175769 0.467905 0.004713
9 0.003195 0.061849 0.161146 0.461516 0.004624
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[33]: # Number of possible end nodes connections pr. start node
data = []
for connections in np.arange(5, 16, 1):

for n in range(5):
try:

gen.generate_variant(dgr_exp=10.0, dst_exp=10.0,␣
↪→n_connections=connections, alpha=20, calibrate=False)

prop = attributes.attributes(gen.variant.get_graph())
temp = [connections]
for k in prop.keys(): temp.append(prop[k][0])
data.append(temp)

except:
print(f'Generation did not converge: parameter={connections}')

columns = ['Parameter', 'd', 'a', '$C_c$', '$C_B$', '$C_u$']
data = pd.DataFrame(data, columns=columns)
print(data.groupby('Parameter').mean())
sns.lineplot(data=data, x='Parameter', y='d')
plt.show()
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d a $C_c$ $C_B$ $C_u$
Parameter
5 0.003162 0.057748 0.160293 0.457022 0.004480
6 0.003200 0.067271 0.168446 0.482575 0.004623
7 0.003281 0.060292 0.182354 0.459884 0.004682
8 0.003209 0.064154 0.170501 0.475741 0.004647
9 0.003220 0.059715 0.173642 0.475412 0.004599
10 0.003177 0.061211 0.176558 0.458031 0.004566
11 0.003277 0.066789 0.184438 0.458132 0.004766
12 0.003180 0.060428 0.160254 0.458719 0.004554
13 0.003275 0.057096 0.180497 0.470411 0.004712
14 0.003221 0.060370 0.170536 0.481412 0.004624
15 0.003252 0.066187 0.168694 0.459670 0.004717

[34]: # Minimum angle constraint between added links
data = []
for angle in np.arange(0, 60, 10):

for n in range(5):
try:

gen.generate_variant(dgr_exp=10.0, dst_exp=10.0, n_connections=10,␣
↪→alpha=angle, calibrate=False)

prop = attributes.attributes(gen.variant.get_graph())
temp = [angle]
for k in prop.keys(): temp.append(prop[k][0])
data.append(temp)
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except:
print(f'Generation did not converge: parameter={angle}')

columns = ['Parameter', 'd', 'a', '$C_c$', '$C_B$', '$C_u$']
data = pd.DataFrame(data, columns=columns)
print(data.groupby('Parameter').mean())
sns.lineplot(data=data, x='Parameter', y='d')
plt.show()

d a $C_c$ $C_B$ $C_u$
Parameter
0 0.003377 0.069097 0.166071 0.516136 0.004913
10 0.003228 0.061961 0.170843 0.476627 0.004727
20 0.003248 0.064281 0.178603 0.460016 0.004668
30 0.003232 0.063656 0.170840 0.482568 0.004669
40 0.003135 0.056098 0.110578 0.463398 0.004499
50 0.002932 0.050924 0.030279 0.456973 0.004188
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Model calibartion

The network variant may be calibrated to obtain a economic flow regime. All added pipes is
configured with a 80 mm diameter. These pipes may lead to high flow rates and pressure loss.
Thus, if the simulated flow rate of a pipe is above a predifned velocity, the pipe’s diameter are
increased before the next simulation run. Pipe roughness is defined as the average of the removed
pipes in the area, while the pipe length is calculated as the distance between the start node and
the end node.

[36]: gen.calibrate(save=None) # save to .inp format

Random failure sequences

[9]: input_file = f'networks/{net}.inp'
population_file = f'networks/population/{net}.pkl'
sim = quality.substance_intrusion(inp=input_file, pop=population_file,␣

↪→mass_value=1000, duration=1, cs_e=50, cs_p=100)

[10]: sim.random_failure_sequences(nsim=10, start_range=np.arange(0, 12, 1),␣
↪→n_sourcepoints=np.arange(0.1, 1.1, 0.1))

Mean, maximum, and minimum values

The line plot of mean, maximum, and minimum failure values for each level of stress can be
expressed with the global_failure(indicator) function.

[11]: sim.global_failure(r'$PS_{L2, ratio}$')
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[12]: sim.global_failure(r'$N_{L2, n, ratio}$')

[13]: sim.global_failure(r'$C_{L2, n, ratio}$')
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[14]: sim.global_failure(r'$T_{L2, t, ratio}$')

13
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