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Abstract

Kyrre S. Haugland

Underwater Pose Graph SLAM with DVL-Enhanced
Visual Loop Closure for Future Aquaculture

This master thesis presents a method for solving the simultaneous localization and
mapping (SLAM) problem for a remotely operated vehicle (ROV) doing inside traver-
sal of an aquaculture net pen. The method proposed is a six-degrees-of-freedom
pose-graph SLAM algorithm with Doppler velocity log (DVL) enhanced visual loop
closures. To the best of the author’s knowledge, this problem has never been solved
using pose graph SLAM in this environment. The pose-graph method formulates the
SLAM problem as a non-linear optimization problem of all the ROV sensor measure-
ments and their respective uncertainties. The non-linear problem can be reformulated
as a least-squares problem and solved with the Levenberg Marquardt Algorithm by
using the incremental smoothing and mapping 2 (iSAM2) framework.

This work has created a novel data association algorithm for solving the SLAM loop
closure- problem inside the fish cage using a mono camera. The algorithm is based
on the ROV net inspection procedure, where the ROV is pointing towards the net
while traversing it. Therefore, potential image loop closure candidates are filtered
on the similarity of depth- and heading measurements when the images were taken.
To also account for the fact that the fish cage is a sparse featured environment, a
global saliency measure was adapted to aid this filtering process further, avoiding
matching low featured scenes. Finally, after filtering image candidates based on these
three measures, the cosine similarity of term frequency–inverse document frequency
(TF-IDF) histograms of image visual words was used to sort out the best loop closure
candidates.

Assuming that the net pen is a planar structure, homography and homography de-
composition can be used to obtain the relative translation and rotation between two
images used for loop closure. As the homography decomposition solution is ambigu-
ous and only provides translation up to scale, the DVL measurements have been used
to estimate the plane structure in front of the ROV and solve the ambiguity and
scaling problem.

The system was tested on real-world datasets provided by SINTEF Ocean, and the
pose-graph showed promising results as long as the planar net-pen assumption was
fulfilled. The robustness of the solution with respect to the planer net-pen assumption
must be addressed in future work.
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Sammendrag

Kyrre S. Haugland

Underwater Pose Graph SLAM with DVL-Enhanced
Visual Loop Closure for Future Aquaculture

Denne masteroppgaven presenterer en metode for å løse lokaliserings- og kartleg-
gingsproblemet (SLAM) for en fjernstyrt undervannsfarkost (ROV) i en merde. Dette
problemet er løst ved å bruke en poseringsgraf-SLAM-algoritme med seks frihets-
grader og forbedret visuell sløyfelukking ved bruk av DVL. Etter forfatterens fatning
så har dette problemet aldri blitt løst før ved bruk av en poseringsgraf SLAM al-
goritme. Poseringsgraf metoden formulerer SLAM problemet som et ikke-lineært
optimaliseringsproblem som prøver å ta hensyn til alle sensormålingene og deres re-
laterte usikkerheter. Det ikke-lineære optimaliseringsproblemet kan bli reformulert
som et minste kvadraters problem som kan bli løst med Levenberg Marquardt algo-
ritmen via iSAM2 rammeverket.

I dette arbeidet har det blitt laget en ny dataassosieringsalgoritme for å løse sløyfelukkingsprob-
lemet i SLAM ved å bruke et monokamera. Algoritmen er basert på hvordan ROV-
inspiseringer blir utført i merden. Under inspeksjon siktes ROV-en mot merden når
den traverserer den. Potensielle sløyfelukkingskandidater blir derfor filtrert basert på
dybde og retningen ROV-en peket i da bilde ble tatt. Ettersom merden er et miljø
hvor det finnes få karakteristiske trekk, så ble et mål, kalt for global saliency, brukt
til å måle hvor unikt et bilde framsto. Etter sløyfelukkingskandidatene er filtrert på
global saliency, retning og dybde, så har bildenes TF-IDF histogrammer blitt sam-
menlignet ved bruk av cosinuslikhet, for å finne de beste kandidatene.

Ved å anta at fiskenettet er plant, så kan man bruke en projektiv transformasjon til
å finne den relative transformasjonen mellom to bilder tatt fra ulike vinkler. Selv
om denne projektive transformasjonsdekomponeringen vil ha to løsninger med ukjent
bildedybde, så kan man finne den riktige løsningen, samt bildedybden, ved å bruke
DVL målingene til å estimere et plan foran ROV-en.

Systemet ble testet på data produsert av SINTEF Ocean sin ROV og algoritmen ga
lovende resultater så lenge planantagelsen var reel. Hvor robust denne antagelsen er
må bli studert mer i fremtiden.
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Chapter 1

Introduction

1.1 Background & Motivation
It is estimated that by the year 2030 the global food consumption will have increased
by 70% compared to 2016 [41]. Therefore, a question raised is how to support such
a demand in a world a�ected by climate changes. Today, only 2% of human food
consumption stems from the ocean [41], yet the food from the ocean is considered
one of the most sustainable alternatives. This is because most marine animals feed
on plankton and algae, which is considered the lowest trophic level of the ecosystem.
Hence, fish farms are a convenient solution for handling these demands. However,
there are many challenges related to aquaculture, where one of them is fish escaping.
Escaping fish is a financial inconvenience for the fish farmers and an environmental
problem as the cross-breeding between wild fish and farm fish results in a less genet-
ically diverse species.

Figure 1.1: SINTEF ACE Rataren, a
full-scale laboratory facility designed to
develop and test new aquaculture tech-

nologies. Courtesy of [2]

It has been reported that two-thirds of regis-
tered fish escaping from Norwegian aquacul-
ture stem from tears in the net [46]. There-
fore, these holes need to be repaired, which
is solved today by combining a remotely op-
erated vehicle (ROV) to detect the holes and
use divers to repair them. Net repair is a
risky procedure for the diver as their heavy
equipment can easily get entangled in the
net, which can have lethal consequences. The
current state-of-the-art (SOTA) solution for
locating holes is to use an ROV equipped
with a forward-looking camera, depth sensor,
and compass. A combination of the ROV pi-
lot’s experience and the measurements from these sensors are then used to give a
rough estimate of where the hole might be [40]. This type of estimation cannot pro-
duce an accurate position estimate. Therefore, it is desirable to find a new way of
obtaining a more precise and reliable estimate that can better ensure the safety of
the divers.

The aquaculture environment is a challenging scenery for obtaining position esti-
mates. One reason is that global positioning system (GPS) signals are not available
here as the electromagnetic signals are strongly attenuated underwater [32]. There-
fore other sensors need to be used to acquire a position estimate; however, many of
them are not as e�ective in the underwater environment compared to land. Optical
sensors as cameras and lasers are limited as turbid waters cause attenuation and light
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scattering [4]. In addition, acoustic sensors are known to have a high signal-to-noise
ratio [32]. Other issues are the high concentration of fish in the fish cage environment
that disrupt measurements and the fact that the fish cage flexible structure. As it is
flexible, it can be deformed by the drag forces caused by ocean currents, and it has
been reported that currents over 0.6m/s can reduce the fish cage volume by 30% [29].

The current SOTA solution used for position tracking in an environment where there
are no GPS signals is the simultaneous localization and mapping (SLAM) algorithm.
The SLAM framework tries to build a map of the environment while using this map
to deduce its position [11]. This is solved by using sensor fusion of sensor measure-
ment to reduce the individual uncertainties related to each sensor measurement. A
critical part separating the SLAM algorithm from other position estimators is loop
closure (LC), which allows for position correction if the robot re-detects a previously
observed scene [11]. Today there are several ways of solving the SLAM problem,
where among others are the EKF-SLAM and visual SLAM. However, implementing
these solutions directly into the fish cage environment is challenging. EKF-SLAM is
especially vulnerable to incorrect landmark association due to incrementally fusing
its new measurements to obtain a current pose estimate [38]. Visual SLAM relies
on visual features to obtain reasonable visual odometry estimates. Visual odometry
used in visual SLAM would also most likely fail in the fish cage environment as it
relies on pair-wise image matching, which is di�cult in a scene with similar features
causing ambiguity while also having moving fish. However, cameras are one of the
best sensors for detecting previously seen scenes and are therefore an excellent sensor
for obtaining loop closures (LC).

1.2 Problem Statement
The problem statement is to create a functional SLAM framework for the fish cage
environment. As some sensor measurements in the underwater environment are not
as reliable as on land, it is desired to create a framework that fuses all sensors to
achieve the most reliable six-degrees-of-freedom (DOF) position estimate. The loop
closure problem is a big part of SLAM. The thesis also seeks to find a feasible way
of detecting LCs in the dynamic and feature sparse aquaculture environment using a
mono camera. It is desired that this framework can be used for real-time operations
in the future, but this thesis has not been focusing on achieving a computationally
optimal code.

1.3 Data Acquisition Platform
1.3.1 The Argus Mini Remotely Operated Vehicle
The ROV used for the experiments conducted in this master thesis is the Argus Mini
ROV, manufactured by Argus Remote Systems AS. The Argus Mini is illustrated
in figure 1.2. This ROV is of the observation class and built for intervention and
inspection purposes.

Instrumentation

The vessel is mounted with six sensors: a SONY FCB-EV7100 Full HD, 60Hz cam-
era, a fluxgate compass, a depth sensor, a gyro, a tilt sensor for pitch and roll, and a
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Figure 1.2: Illustration of the Argus Mini ROV with mounted lasers.
Courtesy of [4]

Nortek DVL 1000 velocity sensor. As the Argus Mini is used to inspect the net pen,
the DVL is mounted horizontally. Orienting the DVL towards the net and having
a high acoustic frequency configuration allows for an acoustic rebound from the fish
cage [40]. This way, the unconventional setup provides velocity readings.

Another part of the ROV instrumentation is the Sonardyne Ultra-Short Baseline
(USBL). This system consists of a Micro-Ranger Transceiver attached to a surface
vessel outside the fish cage and a nano-transponder mounted onto the ROV that stays
on the inside of the net. The USBL transponder/transceiver system communicates
over a low frequency, enabling signal transmission across the net [40]. This way, the
USBL system provides absolute position estimates of the ROV.

The Argus Mini has a dimension of L ◊ W ◊ H = 0.9m ◊ 0.65m ◊ 0.6m, and is
equipped with six ARS800 thrusters. Four of these are oriented in the horizontal
plane, while the others are pointing vertically. This way, the Argus Mini is fully
actuated in the horizontal plane while having 4 degrees of freedom (DOF); surge,
sway, heave, and yaw. In addition, the ROV is passively stabilized by gravity in pitch
and roll.

Control System

Based on SINTEF’s in-house control systems, the Argus Mini has three operational
modes: manual (assisted with auto-heading, AH, and auto-depth, AD), dynamic
positioning and net-following (NF) mode [4]. In net-following mode, the ROV is con-
trolled such that it traverses the net-pen at a given depth. The NF mode is only
available if the ROV is pointing towards the net and gets good DVL feedback from
the net.

Another feature of the ROV control system is that an extended Kalman filter (EKF)
has been implemented to acquire a better positional estimate of the ROV. This filter
uses the USBL measurements, the DVL, depth sensor, compass, and gyro to obtain
a more reliable positional estimate. As there is no ground truth in the datasets, this
will be used as a quasi-ground truth in the experiments conducted in this thesis.
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1.3.2 The Operational Environment

Figure 1.3: Traditional circular fish net. Courtesy of [37]

This thesis addresses in cage operations within sea-based aquaculture. An aquacul-
ture net-pen is shown in figure 1.3 and this is similar to the ones used at SINTEF’s
fish farms, where datasets for this thesis were acquired. The fish cages used in this
experiment had a diameter of 50m and 15m deep, and the bottom had a conical
shape. There are several mooring points along the net, and these weights cause sharp
edges to be formed. As these anchor points help to hold the net in place, the fish cage
can be viewed as a polygon-shaped box with planar walls. The net is constructed
of nylon threads, and as nylon is a flexible material, it is a�ected by the drag forces
of the ocean currents. A net-pen. such as the one depicted in fig 1.3, contains on
average 180000 to 200000 salmon individuals, for a total biomass at slaughter of up
to 1000 tons, assuming 5kg weight per individual at production.

1.4 Main Contributions
Main Contribution 1: Implementation of a six-degrees-of-freedom pose-graph
SLAM in the challenging fish cage environment. This framework was selected due
to its robust nature of formulating the SLAM problem as a non-linear optimization
problem, allowing for simple addition of new sensor measurement to the system while
also not being as fragile towards bad data association as the EKF-SLAM.

Main Contribution 2: A novel data association method for solving the loop clo-
sure problem in this environment. The data association algorithm is based on the
current net inspection procedure used by SINTEF, where the ROV traverses the
net while pointing towards it. The data association algorithm created is a filtering
method that proposes image loop closure candidates based on the similarity between
heading and depth measurements recorded when the images were taken. To avoid
matching between low feature images, it uses the global saliency measure proposed
in [27] and finds the best LC-candidate by evaluating the cosine similarity of image
TF-IDF histogram.
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Main Contribution 3: Using DVL measurements to scale and find the correct
homography decomposition solution from image loop closure.

1.5 Outline
This thesis is written in 6 chapters, where the remanding chapters are outlined as
follows:

• Chapter 2 explains the general theoretical concepts which are essential for the
construction of the pose SLAM algorithm.

• Chapter 3 represents literature that was used as inspiration in this work.

• Chapter 4 gives a detail description of the method and implementation of the
SLAM algorithm, describing its front- and back.

• Chapter 5 shows and discusses the results of running the algorithm on three dif-
ferent datasets from net inspection using the Argus mini ROV. It also discusses
some of the drawbacks of the bag of words algorithm used in this work.

• Chapter 6 provides the conclusion and discusses future work
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Chapter 2

Theory

The following sections will explain general theory for understanding the method and
implementation used in this thesis. The following topics will be addressed in the
given order: Reference Frames & Transformations, Camera Measurements, Prob-
ability Theory, Non-Linear Optimization and iSAM2. Note that section 2.1, and
subsections 2.3.1 and 2.3.1 are based on previous work "Acoustic DVL-SLAM for
Future Autonomous Aquaculture", the project that lead to this thesis and that was
delivered in December 2020.

2.1 Reference Frames & Transformations
The mini Argus ROV and all other vehicles have sensors that are used to obtain
information about either the velocity of the vehicle or obtain knowledge about the
environment, e.g., if one has a lidar that provides range data of its surroundings. As
these sensors will be placed in di�erent positions on the vehicle, the measurements
will be related to the relative orientation and position (pose) of the specific sensor.
To simplify the process of relating these measurements to the world the vehicle is
traveling in, one uses di�erent reference frames and converts between them by know-
ing the relative position and orientation of one frame to the other. According to [30],
"A reference frame, or simply frame, can be pictured as a rigid lattice attached to
an observer, relative to which that observer quantifies the motion of objects.". By
this definition, reference frames can change pose relative to each other, despite being
attached to an observer. This way, if one has a reference frame attached to the body
of a vehicle, the body frame will be fixed to the body while the vehicle is moving in
the world.

NED frame
NED (North East Down) frame is a coordinate frame fixed to the surface of the Earth,
where the origin is defined relative to the Earth’s reference ellipsoid (WGS-84) [17].
The xy-plane forms the Earth’s tangent plane, where the x-axis points towards the
north while the y-axis points eastward. The z-direction points downward and is
normal to the Earth’s surface (tangent plane), forming a right-handed coordinate
system.

Body-frame
The body frame is a reference frame that is fixed to the body of a vehicle, and is
therefore a moving reference frame. As the body-frame is the reference frame used to
describe the linear and angular velocity of the vehicle, the body frame origin is located
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Figure 2.1: NED-frame and body-frame illustration. Note in this
drawing the NED-frame has the subscript n, however in this article

NED-frame is denoted w for world-frame. Courtesy of[48]

at the vehicle’s COG (center of gravity) as this is where the forces and moments are
acting [17]. The axes of the body frame are chosen to coincide with the principal axes
of inertia, and are defined as follows; xb is longitudinal axis directed from aft to fore,
yb is an axis directed to starboard and zb is normal axis directed from top to bottom
[17]. In figure 2.1 an illustration of the body frame and the NED-frame is shown.

Transformation Between Reference Frames
To perform a transformation between one frame to another is done by applying a
combination of rotation, aligning the orthonormal axis of both frames, and transla-
tion. The rotation of a frame is achieved by using a rotation matrix, while translation
is vector addition. By using a homogeneous transformation matrix, one can trans-
form from one frame to another in one calculation. What a rotation matrix and a
homogeneous transformation matrix are will be further explained in the following
subsections.

(a) 2D- rotation (b) 3D- rotation

Figure 2.2: Rotation from coordinate frame (x0, y0) to frame
(x1, y1). Courtesy of [42]
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Rotation matrix
Figure 2.2a shows an illustration of two frames oriented at an angle ◊ with respect
to each other. In this figure there is a point p. As the frames are oriented di�erently
the vector representation of the point will also be dissimilar in each frame. If the
point is only observed from frame F1, p1, one can describe the point in F0 by using
a rotation matrix R0

1(◊) that maps from F1 to F0. The frame transformation R0
1(◊)

can be described as follows:

R0
1 = [x0

1|y0
1 ] (2.1)

where x0
1 and y0

1 maps the x-axis and y-axis from F1 to F0 respectively[42]. From
figure 2.2a one obtain:

x0
1 =

C
cos ◊
sin ◊

D

, y0
1 =

C
≠ sin ◊
cos ◊

D

Inserting this into equation 2.1 gives:

R0
1 =

C
cos ◊ ≠ sin ◊
sin ◊ cos ◊

D

(2.2)

The rotation matrix from equation 2.2 belong to the Special Orthogonal group of order
2, SO(2). Rotational matrices, R, belonging to SO(n) obtains certain properties that
can be summarized as follows [42]:

• The columns and rows are mutually orthogonal

• The columns and rows are unit vectors

• det R = 1

• R≠1 = RT

• R œ SO(n) and RT œ SO(n)

As seen from the forth property, the inverse rotation, mapping from F0 to F1, can
be found by R1

0 = (R0
1)

T .

As the rotation in figure 2.2a occurs on a plane, the rotation can easily be transferred
to 3D as shown in figure 2.2b. Since the z-axis before and after the rotation aligns,
the SO(3) becomes:

R0
1 = Rz,◊ =

S

WU
cos ◊ ≠ sin ◊ 0
sin ◊ cos ◊ 0

0 0 1

T

XV (2.3)

As for the 2D-rotation, it can be shown that the SO(3) holds the properties listed
previously. The rotation in equation 2.3 is known as a basic rotation matrix. The
other basic rotation matrices belonging to SO(3) are rotations about the x-, and
y-axis can be calculated to be equal to:

Rx,◊ =

S

WU
1 0 0
0 cos ◊ ≠ sin ◊
0 sin ◊ cos ◊

T

XV , Ry,◊ =

S

WU
cos ◊ 0 sin ◊

0 1 0
≠ sin ◊ 0 cos ◊

T

XV
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Rotation Composition

Composition of rotations to achieve more complex orientations can be obtained by
multiplying together basic rotations. If one has three frames F0, F1 and F2, where
F0 and F1 are related by the rotation R0

1 and F1, F2 are related by the rotation R1
2,

then the relationship between F0 and F2 can be found to be:

R0
2 = R0

1R1
2 (2.4)

Equation 2.4 is the composition law for rotational transformation and it can be used
to transform a point p2 to p0 by first transforming it to p1 [42]. With this compo-
sition the first rotation, R1

2, is therefore relative to the F2 frame, while the second
rotation, R0

1 is relative to F1. One therefore says that the rotation occurs relative to
the current frame.

It is also possible doing rotation composition about a fixed frame, e.g. the NED-frame.
Such rotation composition can be derived by using the current frame composition
shown in equation 2.4. If one has a rotation R0

1 relating F0 and F1, while also having
another rotation R that is relative to F0, then the rotation R can be expressed in the
current frame as (R0

1)
≠1RR0

1 [42]. The fixed frame rotation composition therefore
becomes:

R0
2 = R0

1[(R0
1)

≠1RR0
1] = RR0

1 (2.5)

Hence, when using fixed frame rotation composition, one is therefore pre multiplying
the rotations, while for current frame rotation composition, one does post multiplica-
tion.

Roll, Pitch, Yaw

An intuitive representation of a general SO(3) rotation matrix is the roll, pitch, yaw-
representation. This representation uses a fixed-axes rotation, where roll („), pitch
(◊), yaw (Â) denotes the Euler angles used for the basic rotations about the x-, y-
and z-axis respectively. Based on the results from equation 2.5 one can express any
SO(3) rotation by doing successive rotations about the x,y and z-axis:

Rx,y,z = Rz,„Ry,◊Rx,Â

=

S

WU
cÂ ≠sÂ 0
sÂ cÂ 0
0 0 1

T

XV

S

WU
c◊ 0 s◊

0 1 0
≠s◊ 0 c◊

T

XV

S

WU
1 0 0
0 c„ ≠s„

0 s„ c„

T

XV

=

S

WU
c„c◊ ≠s„cÂ + c„s◊sÂ ≠s„sÂ + c„s◊cÂ

s„c◊ c„cÂ + s„s◊sÂ c„sÂ + s„s◊cÂ

≠s◊ c◊sÂ c◊cÂ

T

XV (2.6)

Here c– and s– denotes cos – and sin – respectively. One drawback of using the Euler
angle representation is that there is a singularity when the ◊ has an angle of ±90¶;
causing the yaw angle to be undefined [3]. This is also known as a gimbal lock, but
in the context of this work this will not be an issue as the ROV is passively stabilized
by gravity in pitch and roll [4].

Rigid Motion
A combination of positional translation and rotation is called 3D rigid body transfor-
mation [18]. This could either be used as a procedure to transfer between di�erent
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reference frames, or to transfer a frame to a new location and orientation in space,
as done in dead reckoning. An example of a rigid body motion is illustrated in figure
2.3. This shows how one can transform points observed in the body frame Fb to the
world frame Fw by first applying the rotation Rw

b in order to align the points with
Fw and then adding the translation vector of Fb with respect to Fw, tw

bw. A vector
described as va

bc, where {a}, {b} and {c} are coordinate systems, denotes the vector
of the point ob with respect to coordinate system {c} expressed in {a} [17]. Putting
the rigid body transformation into mathematical terms one gets:

pw = Rw
b pb + tw

wb (2.7)

The transformation can also be expressed as a single matrix multiplication as follows:

p̃w = Tw
b p̃b (2.8)

where:
Tw

b =

C
Rw

b tw
wb

0 1

D

, p̃b =

C
pb

1

D

, p̃w =

C
pw

1

D

utilizing a homogeneous transformation matrix and coordinate vectors. Inserting the
rotation expression from equation 2.6 into transformation matrix Tw

b of equation 2.8
results in:

Tw
b =

C
Rw

b tw
wb

0 1

D

=

S

WWWU

c„c◊ ≠s„cÂ + c„s◊sÂ ≠s„sÂ + c„s◊cÂ tw
bw,x

s„c◊ c„cÂ + s„s◊sÂ c„sÂ + s„s◊cÂ tw
bw,y

≠s◊ c◊sÂ c◊cÂ tw
bw,z

0 0 0 1

T

XXXV (2.9)

where the Euler angles are based on the relative orientation of the principal axes of
Fb with respect to Fw. The inverse transformation going from world to body can be
found to be equal to [42]:

Tb
w =

C
(Rw

b )
T ≠(Rw

b )
T tw

wb
0 1

D

Figure 2.3: Rigid body motion from world frame to body frame.
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2.2 Camera Measurements
This section will explain important theoretical concepts used for obtaining image
features and knowing relative translation and rotation between two camera frames.
The camera projection model will be explained first as this is essential for knowing
how images capture a scene.

2.2.1 Camera Projection Model
The geometric camera model projects 3D points, xc, observed in the camera frame
Fc, onto pixels in the image as shown in equation 2.10

u =

C
u
v

D

= fi(xc) (2.10)

where fi is the mapping function (camera model). The most common camera model
is the perspective camera model. This model is illustrated in figure 2.4a where a 3D-
point, xc, undergoes a central projection through the origin of Fc and mapped on the
x-y-plane at z=-f. Here f is the focal length, which is an intrinsic camera property.
When using the perspective camera model, the 3D-points is flipped; therefore a more
suitable representation is to use the frontal projection model, shown in figure 2.4b,
which maps the point onto the plane at z = f . To obtain the frontal projection model
it is convenient to first project xc onto a normalized image plane where z = 1. This
is achieved by first using homogeneous perspective projection, P0, to convert from
homogeneous coordinates x̃c to Cartesian camera frame coordinates:

x̃n = P0x̃c =

S

WU
1 0 0 0
0 1 0 0
0 0 1 0

T

XV x̃c = xc (2.11)

And then obtaining normalized image coordinates by normalizing the points based
on depth, zc:

x̆n =

S

WU
xn

yn

1

T

XV =

S

WU
xc/zc

yc/zc

1

T

XV =
1
zc

xc (2.12)

Based on the results from 2.12 one can convert the normalized image coordinates to
pixel coordinates using the following equation:

u = fip(xc; K) =

C
1 0 0
0 1 0

D

K 1
zc

xc =

C
fu

xc

zc + cu

fv
yc

zc + vu

D

(2.13)

Here the first matrix converts from homogeneous pixel coordinates to 2D Euclidean
space, while K is an upper triangular matrix called the intrinsic camera matrix. K
is an a�ne transformation matrix which contains idealized camera-specific properties
to map from normalized image coordinates to pixels. K is constructed as follows:

K =

S

WU
fu s◊ cx

0 fy cy

0 0 1

T

XV

where the parameters are defined as [18]:
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(a) Perspective camera model (b) Frontal projection model

Figure 2.4: Geometric camera models. Courtesy of [18] and [7]

• fu - Defines a pixel’s horizontal unit length. This can also be defined as fsu

where f is the focal length, while su is a scaling factor in v-direction.

• fv - Defines a pixel’s vertical unit length. This can also be defined as fsv where
f is the focal length, while sv is a scaling factor in v-direction.

• cx - Defines the principal point in u-coordinate of the image frame.

• cy - Defines the principal point in v-coordinate of the image frame.

• s◊ - Defines a skew factor that is proportional to cot ◊, where ◊ is the angle
between the u- and v-axis.

Note that in this work the idealized K matrix has been constructed such that s◊ is
set to zero.

2.2.2 Scale- Invariant Feature Transform
To obtain a loop closure in SLAM using a camera, one needs to obtain features that
can be tracked from one image to another. There are several established feature
detectors, where one of them is the Scale- Invariant Feature Transform (SIFT). The
SIFT algorithm for extracting features is divided into four consecutive steps:

• Scale-space extrema detection

• Keypoint localization

• Orientation Assignment

• Keypoint descriptor

Scale-Space Extrema Detection

One important property feature detectors need to have is that they are invariant to
translation, rotation and scale. This is a necessity when matching features from two
images as these images could be captured at di�erent locations and orientations in
space. The SIFT algorithm finds scale invariant image keypoints (pixel positions) by
locating local maximas over di�erent Gaussian scale spaces by using an approxima-
tion of the Laplacian of Gaussian (LoG). It approximates LoG with the Di�erence
of Gaussian (DoG) to be more computationally e�cient. The DoG calculation is
visualized in figure 2.5. When DoG is calculated, the maximas of a keypoint [u, v]T

can be found by comparing the DoG at di�erent scales.
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Figure 2.5: Di�erence of Gaussian calculations over di�erent scale
spaces. Courtesy of [21]

Keypoint localization

After scale-space extermas are detected, these points are refined by applying a contrast
threshold and a edge threshold. The constrast threshold is used to remove low-contrast
maximas, while the edge threshold is used to remove edge keypoints. The reason why
one would like to remove edges is due to the fact that DoG has a higher response to
edges [21].

Orientation Assignment

Orientation is assigned to each keypoint afterward to enable rotational invariance.
This assigned orientation has both a magnitude and a direction which are found from
a scale-dependent neighborhood. This neighborhood is then divided into 36 bins over
360 degrees. Pixels falling under the same degree category have their magnitude
summed. The orientation of the keypoint is then based on the maximum magnitude,
but if other bin-directions are 80% of the maximum, then these are also used to
describe the keypoint’s orientation.

Keypoint Descriptor

The keypoint descriptor is the property describing the characteristics of a detected
feature. The SIFT descriptor is generated by considering a 16 ◊ 16 neighbourhood
around the keypoint, which is then divided into 16 4x4-subregions. Then a down
scaled version of the keypoint orientation assignment is performed, where an eight
bin orientation histogram is created for each subregion. As one has eight bins in each
of the 16 subregions, this gives 128 bins in total, which is used as a vector to describe
a keypoint. Hence, the SIFT feature can be described with the following vector;

SIFTfeature = [p, s, r, f ]T (2.14)

where p is the pixel position of the keypoint, s is the scale, r is the orientation and f
is the feature descriptor.

2.2.3 Homography & Homography Decomposition
When a planar scene is observed from two camera angles and the intrinsic camera ma-
trix is known, the camera displacement can be found by decomposing the homography
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matrix relating the two views [35]. As the net pens of the cage can be approximated
to be planar, this is therefore relevant for determining camera displacement of relo-
cated scenes. In figure 2.6 a planar scene is observed by two di�erent camera views.
In this figure there is a plane, fi; described by its normal vector n, which consist of
n 3D-points, Pi = (xw

i , yw
i , zw

i ). The plane is observed by a source frame, Fs and a
desired frame Fd, where the 3D-points of the plane are projected to the normalized
homogeneous image coordinates mú

i = m̃s
i = [xs

i , ys
i , 1]T and mi = m̃d

i = [xd
i , yd

i , 1]T .
The pixel coordinates of both camera frames, ud and us, can be found by using equa-
tion 2.13. The depth/distance away from the plane is termed dú and d for desired
and current frame respectively.

Figure 2.6: Desired- and source frame (Fd and Fs) observing the
same planar scene, Pi. Courtesy of [35]

According to theorem 2.10 in [1] a homography (also known as a projectivity) is
defined as in definition 1 where P2 is a projective plane.

Definition 1:

A mapping h : P2 æ P2 is a projectivity if and only if there exists a non-
singular 3 ◊ 3 matrix H such that for any point in P2 represented by a vector
x it is true that h(x) = Hx

From this definition there exists a Euclidean homography matrix that maps from Fs

to Fd according to:
–hm̃d = Hm̃s (2.15)

where –h is a scaling factor. The projective transformation achieved by the homog-
raphy matrix can be found to be equal to [35]:

H = R + tnT (2.16)

where R = Rd
s , t = td

ds/dú and n = nd. Note that the translational component t
is only found up to scale. Similarly, the projective homography matrix G mapping
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pixels seen from one frame to another can be found to be:

–gũd = Gũs (2.17)

where G is a 3 ◊ 3 matrix equal to G = “K(R + tnT ), where “ is a scaling factor
and K is the intrinsic camera matrix. Both H and G can be calculated using the
normalized Direct-Linear Transformation (DLT) algorithm or the Gold Standard al-
gorithm (used by the openCV library [22]) which is explained in detail in algorithm
4.2 and algorithm 4.3 in [1].

Homography Decomposition
The homography matrix H can be decomposed into its respective components shown
in equation 2.16. A common method for homography decomposition is Zhang method
based on singular value decomposition (SVD) [49]. From SVD one can describe any
rectangular matrix A œ Rn◊m as in equation 2.18.

A = ULVT (2.18)

Here, U = [u1, u2, u3] and V = [v1, v2, v3] are orthogonal matrices, while L =
diag(⁄1, ⁄2, ⁄3) is a diagonal matrix. Since U and V are orthogonal matrices the
property QT Q = QQT = I holds. Hence, the squared matrix of the homography can
be expressed as:

HT H = VL2VT (2.19)

where L contains the eigenvalues of H while V contains the eigenvectors [35]. By
formulating the homography matrix in equation 2.16 as:

H = R(I + RT tnT ) = R(I + túnT ) (2.20)

where tú is defined as the normalized translation vector in Fs. Inserting equation
2.20 into 2.19 and using the properties of the SO(3) group one gets:

HT H = (I + túnT )T RT R¸ ˚˙ ˝
I

(I + túnT )

= I + n(tú)T + túnT + k2nnT (2.21)

where k2 = (tú)tú > 0. Based on equation 2.21 and the definition of eigenvalues and
eigenvectors (HT H ≠ ⁄I)v = 0) it is evident that one eigenvalue/eigenvector solution
is ⁄ = 1 and v = tú ◊ n (this solution is defined as ⁄2 and v2 in [49]). This is because
this configuration results into (HT H ≠ ⁄I) = n(tú)T + túnT + k2nnT , which is a 3 ◊ 3
matrix within the vector space of tú and n, while the vector tú ◊ n is orthogonal to
this vector space. Based on this solution Zhang derived the following relations [49]:

⁄1 Ø ⁄2 = 1 Ø ⁄3

ÎtúÎ = ⁄1 ≠ ⁄3, nT tú = ⁄1⁄3 ≠ 1
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in addition to:

v1 Ã vÕ
1 = ’1tú + n (2.22a)

v2 Ã vÕ
2 = tú ◊ n (2.22b)

v3 Ã vÕ
3 = ’3tú + n (2.22c)

where vi are the unit eigenvectors and ’1,3 are scalar functions. Both vi and ’1,3 are
derived from the eigenvalues of HT H according to [35]:

’1,3 =
1

⁄1⁄3

3
≠ 1 ±

Û

1 + 4 ⁄1⁄3
(⁄1 ≠ ⁄3)2

4
(2.23)

and ...vÕ
i

...
2
= ’2

i (⁄1 ≠ ⁄3)
2 + 2’i(⁄1⁄3 ≠ 1) + 1 (2.24)

combining the results from 2.22a, 2.22c, 2.23 and 2.24 one obtain 4 solutions of tú, n
and R, where the first two are:

tú = ±vÕ
1 ≠ vÕ

3
’1 ≠ ’3

, n = ±’1vÕ
3 ≠ vÕ

1’3
’1 ≠ ’3

and the second two are:

tú = ±vÕ
1 + vÕ

3
’1 ≠ ’3

, n = ±’1vÕ
3 + vÕ

1’3
’1 ≠ ’3

The rotation matrix R can be derived by manipulating the expression of 2.20 and
inserting a solution of tú and n.

A similar method that provides an analytical solution to the homography decompo-
sition is proposed in [35]. This provides the same four solutions as Zhang’s method
and is used by the openCV library used in this thesis. Due to this method being
more computational complex, Zhang’s method has been explained here for concep-
tual purposes.

2.3 Relevant Probability Theory
In robotics, a common complication is the inference problem. Robots need to draw
knowledge from their environment based on incoming sensor data as well as prior
information. One of these inference problems is the SLAM problem, where one tries
to estimate the location of a robot and map the environment it operates in. As the
sensor data are uncertain measurements, one needs a probabilistic framework to draw
better inferences about the world. One of these statistical frameworks used for solving
the Bayesian inference problem is factor graphs. Important probabilistic concepts will
now be explained, leading up to the explanation of factor graphs.

2.3.1 Multivariate Gaussian Distribution
In equation 2.25 one can see the equation of a multivariate Gaussian distribution of
a random variable, x. Here the variable µ represents the expected value of the dis-
tribution, while P represents its covariance. The Gaussian distribution is one of the
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most important types of probability density functions (PDF), and maps the probabil-
ity density/ relative likelihood for any random variable x. The Gaussian distribution
is mainly described by its quadratic exponent, but since the probabilistic sum of all
possible values of x needs to sum to 1, one needs to include the normalization constant

1
(2fi)

n
2 |P|

1
2

in equation 2.25.

N (x; µ, P) =
1

(2fi)
n
2 |P| 1

2
exp

3
≠1

2 (x ≠ µ)T P≠1(x ≠ µ)
4

(2.25)

Gaussian Linearity Theorem

Considering the quadratic exponent of the multivariate Gaussian, one can derive the
expression of a Gaussian random variable that goes through a linear transformation.
For example, suppose that one has the Gaussian distribution described in equation
2.25. One can then derive the distribution of the random variable y = Fx. For
the general proof, one assumes that F is a positive definite matrix, meaning it is
invertible.

N (x; µ, P) Ã exp
3

≠1
2 (x ≠ µ)T P≠1(x ≠ µ)

4

N (y; ...) Ã exp
3

≠1
2 (F

≠1y ≠ µ)T P≠1(F≠1y ≠ µ)
4

= exp
3

≠1
2 (F

≠1y ≠ µ)T FT (FT )≠1P≠1(F≠1)F(F≠1y ≠ µ)
4

= exp
3

≠1
2 (y ≠ Fµ)T (FT )≠1P≠1(F≠1)(y ≠ Fµ)

4

= exp
3

≠1
2 (y ≠ Fµ)T (FPFT )≠1(y ≠ Fµ)

4
(2.26)

From the equation 2.26 one arrive at the following theorem [5]:
Theorem 2.3.1 (Linearity) If having a RV x given by the Gaussian distribution
N (x; µ, P), the distribution of a RV y = Fx is then equal to N (y; Fµ, FPFT )

2.3.2 The Maximum a Posteriori Estimator
In the SLAM problem one tries to estimate the unknown true states X from sensor
measurements Z. The state vector X is defined as X = [X, L] in the full SLAM
problem, where X is a pose vector containing n poses: X = [x0, x1, ..., xn≠1, xn]T ,
and L is a landmark vector containing m landmarks: L = [l1, l2, ..., lm≠1, lm]T . In
the pose SLAM problem however; X = X. A sensor measurement is termed zi and
can come from various sensors such as lidar, dvl, tilt sensors, etc. All measurements
received from the environment are corrupted by noise. A common way of modeling a
measurement zi is according to the measurement model shown in equation 2.27 where
hi(xi) = ẑi is the measurement prediction function of the true state xi [44] and wi

is noise, assumed to have the characteristics of a zero-mean Gaussian noise model;
wk ≥ N (0, Sw). Here Sw is the measurement covariance related to the sensor.

zi = hi(xi) + wi (2.27)

Based on the measurement function in equation 2.27 one can generate an error func-
tion for measurement i: ei(xi) = hi(xi) ≠ zi. One can then select an objective
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function that minimizes the squared error sum of all n errors, ei(xi). Here, the
square function of ei(xi) is equal to the squared Mahalanobis distance [34]. Hence,
one obtain the following non-linear least squares (LS) objective function:

X ú = arg min
X

f(X ) = arg min
X

nÿ

i

Îhi(xi) ≠ ziÎ2
Si

(2.28)

The solution of equation 2.28 proves to be the maximum a posteriori (MAP) estimate
[9]. The MAP estimator tries to maximize p(X |Z), the posteriori density function,
with respect to X given measurements Z as shown in equation 2.29. Equation 2.29
can be rewritten to 2.30 by utilizing Bayes’ rule.

X MAP = arg max
X

p(X |Z) (2.29)

= arg max
X

p(Z|X )p(X )
p(Z)

(2.30)

In equation 2.30 the marginal p(Z) is a normalization factor, and is therefore ir-
relevant the posteriori maximization. Hence, one can instead use a proportional
expression of 2.30 for finding the MAP according to equation 2.31 [9]

X MAP = arg max
X

l(X ; Z)p(X ) (2.31)

where l(X ; Z) is the likelihood function of X given Z which is proportional to p(Z|X );
l(X ; Z) Ã p(Z|X )

2.3.3 Factor Graph for Inference

Figure 2.7: Illustration of the factor graph of full SLAM problem in
(a), and (b) illustrated the factor graph of the pose SLAM problem.

Courtesy of [16]

The SLAM problem can be represented graphically by utilizing a factor graph. A
factor graph is a probabilistic model and can be drawn as in figure 2.7 (a) and (b) for
both the full SLAM problem and the pose SLAM problem respectively. A factor graph
is a bipartite graph consisting of nodes and factors [16]. Nodes indicates variables one
are interested in estimating (e.g. poses and landmarks), while factors are probabilistic
constraints between nodes obtained from various noisy measurements. As the factors,
Yi(xi, li), are the only component that constraints the pose and landmarks, one can
find the MAP solution of the non-linear optimization problem by minimizing:

Xú, Lú
¸ ˚˙ ˝

X ú

= arg min
X,L

ÿ

i

Yi(xi, li) = arg max
X,L

p(X, L|U , Z) (2.32)
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Here U is a vector of all odometry measurements. As we are more interested in the
pose SLAM in this work, equation 2.32 can be rewritten accordingly:

X ú = arg min
X

ÿ

i

Yi(xi) = arg max
X

p(X |U , Z) (2.33)

where X = X. In pose SLAM landmarks are not a part of the state vector X , but
environmental features are used to obtain relative pose measurements between poses
as in visual odometry (VO).

Assuming that all measurements can be modeled by a multivariate Gaussian distri-
bution (see equation 2.25) and are independent, one can find the MAP of the joint
probability distribution of all measurements by rewriting equation 2.33 to:

X ú = arg min
X

≠ log p(X |U , Z)

= arg min
X

5 ÿ

i

Îxi ≠ fi(xi≠1, ui≠1)Î2
Sv

i
+

ÿ

j

...zj ≠ hj(xij )
...

2

Sw
j

6
(2.34)

where fi is the motion model and Sv
i and Sw

j are the covariance of motion- and
measurement model respectively. Notice how the formulation in 2.34 enables e�ortless
addition of new sensor measurements to the pose graph. Another important point to
note is that the error functions for both motion- and measurement model are described
by the Mahalanobis distance. However, the Mahalanobis distance can be reformulated
to become a euclidean norm expression by doing the following manipulation:

Îe(x)Î2
Wi

= e(x)T W≠1e(x) = (W≠1/2e(x))T (W≠1/2e(x)) =
...W≠1/2e(x)

...
2

The next section will clarify why it is convenient to have the problem formulated in
this way.

2.4 Non-Linear Optimization
SLAM systems are often separated into a front-end system and a back-end system.
The front-end system is responsible constructing the optimization problem (equa-
tion 2.34), while the back-end handles the optimization. When having an objective
function f(x) = arg minx Îe(x)Î2 where e(x) is a non-linear function, this requires
non-linear solvers for obtaining the optimal solution. Two common non-linear solvers
are the Gauss-Newton and the Levenberg-Marquardt algorithm. These are both iter-
ative solvers, which requires an initial estimate to converge towards a local minimum.
Both algorithm follow the general framework given below [18]:

1. Select initial estimate; x̂0

2. Linearize e(x) about the current estimate x̂t

3. Find increment by solving the linearized problem

4. Update estimate with found increment
Here step 2-4 are repeated until the solution converges or one are left with a satisfying
error e(x). The linearization step of a non-linear function e(x) can be achieved by
using a first order Taylor expansion about a current estimate x̂t as follows:

e(x) = e(x̂t + Dx) ¥ e(x̂t) + Je
x̂t Dx (2.35)
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where Je
x̂t is the Jacobian matrix of e(x) at the x̂t, and Dx = x̂ ≠ x̂t. From the

expression in equation 2.35 one can approximate the non-linear LS problem to:

f(x) = arg min
x

Îe(x)Î2

¥ arg min
x

...Je
x̂t Dx + e(x̂t)

...
2
= arg min

x

...Je
x̂t Dx ≠ (≠e(x̂t))

...
2

= arg min
x

ÎADx ≠ bÎ2 (2.36)

The solution to 2.36 can be found by taking the derivative of the expression and
setting it to zero. One would the obtain the expression;

Dx = (AT A)≠1AT b (2.37)

where the expression (AT A) can be found to be an approximation of the Hessian of
f(x) at current estimate x̂t [18]. Equation 2.37 can be solved by QR factorization
or Cholesky factorization. Based on the solution of the linearized problem 2.37 one
can update the current estimate for the non-linear problem and repeat the procedure
around the new state estimate.

2.4.1 The Gauss- Newton Algorithm
This work has utilized the Levenberg-Marquardt optimizer for finding the MAP solu-
tion to the non-linear LS problem obtained from the incremented factor graph. How-
ever, this method is based on the Gauss-Newton method, and one therefore needs to
understand this algorithm first. The Gauss-Newton procedure is shown in algorithm
1. As for line 2-4 these are the same steps explained in the previous section, while
line 5-7 are the stop criteria.

Algorithm 1 Gauss-Newton Algorithm [18]
Require: Objective function f(x) and an initial estimate x̂0

1: for i = 0 to tmax do
2: A, b Ω Linearize f(x) about x̂t

3: Dx Ω By solving the equation Dx = (AT A)≠1AT b
4: x̂t+1 Ω x̂t + Dx
5: if f(x̂t+1) < f(x)th or x̂t+1 ¥ x̂t then
6: x̂ Ω x̂t+1 Û Estimated solution to the non-linear LS problem
7: return x̂
8: end if
9: end for

2.4.2 The Levenberg-Marquardt Algorithm
As stated previously, the expression (AT A), which is used in the Gauss-Newton
method, is an approximation of the Hessian matrix of f(x) at current estimate x̂t.
Because the Gauss-Newton method is using this approximation it is not guaranteed to
converge towards a solution [18]. Hence, a way of handling this is to use trust regions
that determines how confident one is to trust the approximated Hessian. Such trust
regions are used in the Levenberg-Marquardt algorithm, and the modification to the
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solution of Dx is done accordingly:

Dx = (AT A + ⁄diag(AT A))≠1AT b (2.38)

Based on the addition of the increment Dx is contributing to a convergence towards
the solution or not, the trust region is either increased or decreased by the parameter
⁄. The Levenberg-Marquardt algorithm is shown in algorithm 2.

Algorithm 2 Levenberg-Marquardt Algorithm [18]
Require: Objective function f(x) and an initial estimate x̂0

1: ⁄ Ω 10≠4

2: for i = 0 to tmax do
3: A, b Ω Linearize f(x) about x̂t

4: Dx Ω By solving the equation Dx = (AT A + ⁄diag(AT A))≠1AT b
5: if f(x̂t+1) < f(x̂t) then
6: x̂t+1 Ω x̂t + Dx Û Accept update
7: ⁄ Ω ⁄/10 Û Increase trust region
8: else
9: x̂t+1 Ω x̂t Û Decline update

10: ⁄ Ω ⁄ ú 10 Û Decrease trust region
11: end if
12: if f( ˆxt+1) < f(x)th or x̂t+1 ¥ x̂t then
13: x̂ Ω x̂t+1 Û Estimated solution to the non-linear LS problem
14: return x̂
15: end if
16: end for

2.5 Incremental Smoothing and Mapping 2
As explained in section 2.3.3 and 2.4 a factor graph can be optimized by solving the
non-linear problem shown in equation 2.32. The MAP solution is found by contin-
ues linearization until convergence. However, the SLAM problem is an incremental
inference problem, as new measurements arrive in a temporal sequence. A naive ap-
proach for solving this problem would be to solve the entire LS-problem for each new
measurement, but this would require too much computational power in a real-time
system. The iSAM2 (incremental smoothing and mapping 2), predecessor of iSAM,
is a SOTA solution to this issue. The iSAM2 algorithm are able to update MAP es-
timate by utilizing the previous MAP estimate; allowing for a computationally faster
calculation. This incremental update is made possible by structuring measurements
into cliques in a Bayes Net, structuring this Bayes Net into a Bayes tree, and doing
incremental updates of the MAP solution through fluid relinearization. The iSAM2
procedure is summarized in algorithm 3

Bayes Tree
The Bayes tree, seen in figure 2.8 (c), is a graphical model used as a framework in
the iSAM2 model to handle incremental MAP updates e�ciently. This is based on
rewriting of a Bayes Net (a transformation of a factor graph), seen in figure 2.8 (b),
which is possible due to the chordal property of the Bayes Net. The chordal property
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Algorithm 3 iSAM2 Algorithm for adding new measurements and updating MAP
estimate [44]
Require: Bayes tree T , factors F , linearization point from previous estimate Q,

previous update D, new factors F Õ, new initial estimate QÕ

1: Add new factor to factor graph F = F fi F Õ

2: Add initial estimate to linearization point Q = Q fi QÕ

3: Fluid relinearization of all a�ected cliques J
4: Update Bayes tree T
5: Find MAP incremental update D
6: Increment previous MAP estimate Q ü D

is any undirected cycle of length greater than three [9]. Such an undirected cycle is
apparent in figure 2.8 (b). The chordal property allow for identification of groups
of interconnected nodes, cliques. Cliques are the foundation of the Bayes tree as its
tree nodes are represented by the conditional probability distribution to the variables
eliminated in cliques [24]. The joint probability density of the Bayes tree, p(X), can
be found by taking the product of all the conditional density p(Fk|Sk) provided by the
cliques. Here Sk is the separator of the clique and its parents node, while the frontal
variables Fk are the remaining variables [9]. This can be described mathematically
as follows:

p(X) =
Ÿ

k

p(Fk|Sk) (2.39)

Updating the Bayes Tree
When a new measurement arrives, one need to add the respective factor into the Bayes
Tree. An example of such a factor is a factor depending on two variables Y(xi, xj).
When adding such a factor only the paths from the root to these cliques needs to be
changed, as these are the only probabilities a�ected by the addition of the factor. An
example of adding a factor Y(x3, x1) to the Bayes tree is shown graphically in figure
2.9.

Fluid Relinearization
As an addition of a new measurement to a clique will only a�ect the conditional
probabilities of cliques between the updated clique and the root, there needs to be
done a relinearization of these respective nodes a�ected by the new measurement.
All the respective nodes from the Bayes Tree needs to then be removed, relinearized
(if needed) and put back into the Bayes Tree. This relinearized is done by the fluid
relinearization algorithm shown in algorithm 4. A variable is only relinearized if its
current state update vector D is larger than some threshold — as stated in line 1.

Algorithm 4 Fluid relinearization [24]
Require: Current linearization point Q and current D

1: Mark variables in D above some threshold : J = {Dj œ D|Dj Ø —}
2: Update marked values QJ = QJ ü DJ

3: Mark all cliques M that involve the marked variables Qj and all their ancestors
4: return M and QJ
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Figure 2.8: The factor graph and the associated Jacobian matrix
A for a small SLAM example, where a robot located at successive
poses x1, x2, and x3 makes observations on landmarks l1 and l2. In
addition there is an absolute measurement on the pose x1. (b) The
chordal Bayes net and the associated square root information matrix
R resulting from eliminating the factor graph using the elimination
ordering l1, l2, x1, x2, x3. The last variable to be eliminated, here x3,
is called the root. (c) The Bayes tree and the associ- ated square root
information matrix R describing the clique structure in the chordal
Bayes net. A Bayes tree is similar to a junction tree, but is better at
capturing the formal equiv- alence between sparse linear algebra and
inference in graphical models. The association of cliques and their
conditional densities with rows in the R factor is indicated by color.

Courtesy of [24]
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Figure 2.9: Updating a Bayes tree with a new factor, based on the
example in figure 2.8. The a�ected part of the Bayes tree is highlighted
for the case of adding a new factor between x1 and x3 . Note that
the right branch (green) is not a�ected by the change. (top right) The
factor graph generated from the a�ected part of the Bayes tree with the
new factor (dashed blue) inserted. (bottom right) The chordal Bayes
net resulting from eliminating the factor graph. (bottom left) The
Bayes tree created from the chordal Bayes net, with the unmodified
right “orphan” sub-tree from the original Bayes tree added back in.

Courtesy of [9]
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Chapter 3

Literature

This chapter will review relevant field work and studies that has inspired the method
proposed for solving the SLAM problem in the aquaculture net pen environment.
When writing this thesis, there has been studied several other papers. However,
as many of these solutions use expensive imaging sonars or propose a not transfer-
able solution to the aquaculture environment, these have not been mentioned in this
chapter.

3.1 Experimental Evaluation of Hydroacoustic Instru-
ments for ROV Navigation Along Aquaculture Net
Pens

Motivation: This article has been included in the literature as it is a critical study
showing that both the DVL and USBL can be used inside a fish cage. In addition, this
article also presents an average positional error estimate of the USBL measurements,
which has been used for determining the USBL measurement uncertainty in this thesis.

In this article, Rundtop and Frank do an experimental study of a DVL and USBLused
on an ROV inside a fish cage. The experiments were conducted on a salmon farm
under calm weather conditions where the fish cage had an upper diameter of 15m and
was 25m deep. Nylon thread was the fabric used for the mesh grid, and the mesh
had a twine diameter of 2-3mm. The equipment used was a Teledyne Workhorse
Navigator DVL, which was mounted on the frontal side of ROV and pointed towards
the net, and a Scout plus USBL from Sonardyne where the transceiver is connected
to a surface vessel outside the fish cage while the transponder is attached to the ROV.
The DVL was operated at a frequency of 1200kHz, a frequency high enough to cause
reflection of the DVL beams from the net pen [40], allowing for velocity and range
measurements. The USBL, on the other hand, operated at a low frequency between
35 and 55kHz. The low operating frequency has the opposite e�ect and allows com-
munication between the transmitter and transponder located at each side of the net.

The research aimed to determine if the acoustic equipment was reliable to use in a
fish cage in its peak production stage. A single net pen can hold up to 200 000 fish at
peak production, corresponding to 800 000tons [40]. This amount of fish can cause
challenges in the acoustic world, as the air-filled swim-bladders of the fish can cause
acoustic scattering [15]. When the experiments were conducted, the cage contained
approximately 170 000 fish, and halocline occurrences, which cause acoustic refrac-
tion, were unusual in the area.
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Despite the fact that USBL and DVL were subjected to a challenging environment,
the results from the experiments were positive. Open water studies were conducted
for the USBL and recorded a positional standard deviation to be 1.1m, 0.7m, and
0.3m for the respective NED coordinates. USBL experiments were also conducted
when the fish cage was filled with fish. These results are shown in figure 3.1. In this
study, the transponder was placed at equally spaced position along the circumference
of the net pen, ranging from 0 to 180 degrees. This experiment was conducted for
three di�erent depths: 2m, 8m, and 15m. From figure 3.1 it is evident that accuracy
decreases as the transponder is placed at 54¶ or more. This caused by a combination
of longer travel time in addition to fish bladder scattering the acoustic signal. An-
other observation regarding this study was that there were generally longer intervals
between samples when the transponder was set at more than 54¶; ranging from 1s to
2s.

Similar positive results was seen for the DVL. The DVL proved to be e�ective at
tracking a relative distances of 1.5m to 3.5m between the ROV and the net with low
noise. However, the DVL was not e�ective when fish obstructed the travel path of the
DVL beam. The DVL was also used to estimate net relative yaw angle and velocity
of the ROV, and these estimates were e�ected in the similarly.

Figure 3.1: The figure to the left shows the average position esti-
mated by the USBL in the horizontal plane after 3 minutes of sam-
pling. The right figure illustrates the horizontal deviation from the

transponder reference position. Courtesy of [40]
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3.2 Autonomous ROV Inspections of Aquaculture Net
Pens Using DVL

Motivation: Findings in this paper are summarized as it proposes a method for
approximating the net pen as a plane. The approximation method has been used in
the SLAM algorithm proposed in this thesis for scaling and determining the correct
homography decomposition when doing loop closures.

In this paper, Amundsen and his team are developing a line-of-sight (LOS) guiding
method for an ROV to enable autonomous traversing of the net pen using only the
DVL. The Argus Mini ROV was also used in this work, where the DVL was mounted
similarly to experiments conducted in this thesis. Instrumentation and control sys-
tems are explained in detail in section 1.3.1 and 1.3.1. The solution represented was
based on four steps [2]:

• Estimate the geometry of a local region in front of the ROV. This was done by
plane approximation based on DVL readings, using the same method seen in
[10].

• Estimate the distance and yaw angle of the ROV relative to the approximated
plane.

• Use the estimated relative yaw angle to control the ROV such that it is facing
the plane.

• Apply LOS guidance and velocity control to allow for traversing.

Figure 3.2: Illustrating the jth beam vector with the DVL pointing
downwards. Inspired by [10]

This article review will only explain the first three steps as the last is not relevant for
this thesis. Before proceeding with explaining the plane approximation method, it
is important to know how the DVL sensor readings are converted to range measure-
ments. By looking at figure 3.2, one can see how the j-th beam vector is projected.
This beam vector can be calculated according to equation 3.1
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rd
j =

S

WU
xd

j

yd
j

zd
j

T

XV =

S

WU
ad

j

h cos(—j)
h sin(—j)

T

XV = ad
j

S

WU
1

tan(“j) cos(—j)
tan(“j) sin(—j)

T

XV (3.1)

Here ad
j is the DVL reading of beam j, and —j and “j are angles related to the static

beam orientation with respect to the yd- and xd-axis, respectively. The four DVL
beam range measurements can be transformed from DVL-frame, d, to the body-
frame, b, by doing the calculation shown in equation 3.2. Further, the transformation
from body-frame to NED-frame n is shown in equation 3.3.

rb
j = Rb

d(Qbd)rd
j + rb

bd (3.2)

rn
j = Rn

b (Qnb)rb
j + xn

nb (3.3)

Here Rb
d is the rotation matrix from DVL-frame to body-frame, and Qbd is the rel-

ative orientation of the DVL-frame with respect to the body-frame (equal to the
identity matrix for the Argus Mini ROV). Rn

b is the rotation matrix from body-frame
to NED-frame, and Qnb is the heading of the ROV with respect to the NED-frame,
also referred to as yaw, Â.

The plane equation is shown in 3.4.

f(x, y, z) = ≠x + by + cz + d = 0 (3.4)

As this consist of three unknown variables, b, c and d, one only needs three valid beam
readings to approximate a plane. However, if four beams are available, one can use
a least square regression to find the best fitting plane related to the measurements.
The objective function to minimize is shown in equation 3.5.

4ÿ

j=1
[ad

j ≠ (byd
j + czd

j + d)]2 (3.5)

Writing equation 3.5 on matrix form, one gets
S

WWWU
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1 zd

1 1
yd

2 zd
2 1
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4 zd
4 1
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¸ ˚˙ ˝
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2
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3
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4

T

XXXV

¸ ˚˙ ˝
b

(3.6)

The solution to 3.6 is found by solving the normal system AT Ax = AT b [12]. It is
also worth noting that this regression method can help filter out the noise related to
the DVL [2].

Calculation of Desired Heading
For the ROV to be pointed directly towards the approximated plane, the heading of
the ROV needs to be aligned with the normal vector to the plane, f (see equation
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3.4). This normal vector in the DVL-frame, {d}, can be written as follows [2]:

nd =

S

WU
≠1
b
c

T

XV (3.7)

The normal vector in equation 3.7 can be converted to the NED-frame n by doing
the following rotational transformation:

nn = Rn
b (Â)(Rd

b (Qdb))
T nd (3.8)

The vector nn is a 3D-vector, and needs to be projected onto the 2D-North-East-
plane in order to acquire the desired heading. This projection is done in the following
manner according to [2]

nn
projection =

S

WU
xn

projection

yn
projection

0

T

XV = ≠(zn ◊ nn ◊ zn) (3.9)

where zn = [0, 0, 1]T . The desired heading which allows the ROV to be pointing
towards the net pen can then be calculated using basic trigonometry:

Âd = arctan 2(yn
projection, xn

projection) (3.10)

ROV Distance Relative to the Approximated Plane
The normal vector of the plane with respect to the DVL-frame is shown in equa-
tion 3.7 and can be transformed to its respective unit vector by doing the following
manipulation:

nd
unit =

nd

||nd||2
=

1Ô
1 + b2 + c2

S

WU
≠1
b
c

T

XV

As the shortest distance from a plane to a point pú will be perpendicular to the plane,
one can use the property of the dot product to find the distance to a plane. Since
one is interested in determining the distance from the body to the plane one will
start of describing a vector going from a random point on the plane pd

0 to the body
coordinate, which can be defined as follows:

vd = rd
db + pd

0 =

S

WU
xd

db + xd
0

yd
db + yd

0
zd

db + zd
0

T

XV

Note that vd is described in the DVL-frame. By taking the dot product between vd

and nd
unit one will project vd onto nd

unit. Hence, by the absolute value of this dot
product will correspond to the distance between the body and the plane:

db/net = |(vd)T nd
unit| =

| ≠ xd
bd + byd

bd + czd
bd ≠ d|Ô

1 + b2 + c2
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3.3 Real-Time Visual SLAM for Autonomous Underwa-
ter Hull Inspection Using Visual Saliency

Motivation: This article is added into the literature chapter as this article is the
main inspiration for this thesis. The article shows how measurements can be added
to a pose graph and solved by the iSAM framework. It also provides a measure for
determining intra- and inter-image saliency, which this thesis uses for its data asso-
ciation filtering algorithm.

In this work, Ayoung and Eustice created a visual SLAM algorithm for ship hull
inspection purposes. The proposed method was proven to handle limited field of
view imagery while also handling feature-sparse regions. This was accomplished by
using the iSAM-framwork to create a six-DOF pose-graph and only consider imagery
considered to be visually salient. In addition, an online bag-of-words algorithm was
created to determine the inter and intra saliency of an image.

A visual representation of the pose-graph used in this work can be seen in figure
3.3. Here each pose node, xi, contains a stored image taken at time i. The absolute
measurements constraining the nodes are gathered from roll/pitch and depth mea-
surements, odometry was captured by a DVL, while the camera factor was obtained
from a five DOF pair-wise camera measurements.

Figure 3.3: Shows the pose-graph structure used in Ayoung- and
Eustice’s work. Odo and abs referes to odometry and absolute mea-
surements for roll/pitch and depth, respectively. Cam is camera con-

straints. Courtesy of [27]

Camera Constraints

Figure 3.4: Shows the pose-graph structure used in Ayoung- and
Eustice’s work. Odo and abs referes to odometry and absolute mea-
surements for roll/pitch and depth, respectively. Cam is camera con-

straints. Courtesy of [27]
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The mono camera had a fixed bearing pointing nadir towards the ship’s hull surface.
Due to this constraint, one only needs a five-DOF measurement model for the camera.
This five-DOF model is obtained from image pairing, and models the relative baseline
direction of motion azimuth, –ij , elevation angle, —ij and the relative Euler angles
between keyframes; „ij , ◊ij and Âij [27]. The model is illustrated in figure 3.4 and
mathematically in 3.11.

hcam(xi, xj) = [–ij , —ij , „ij, ◊ij, Âij ] (3.11)

The image features and camera constraint are obtained by using a camera-client
processing pipeline which is described as follows [27]:

(a) The image is radially undistorted and features are enhanced by using contrast-
limited adaptive histogram specification (CLAHS).

(b) SURF is used to extract image features which is processed using GPU power
for real-time performance.

(c) A pose-constrained correspondence search (PCCS) together with RANSAC is
used as a geometric model selection framework [26].

(d) The inliers found by the previous step are then feed into a two-view bundle
adjustment algorithm to acquire a 5 DOF camera measurement as well as its
corresponding covariance [19].

(e) The 5-DOF camera measurement is added as a factor constraint to the iSAM
framework.

Figure 3.5 shows three possible cases of the camera-client processing pipeline. The
first case is related to poor features, but there is a strong SLAM prior. Then the
PCCS provides a minimal search region for feature matching that allows for success-
ful feature matching despite the scene being feature-poor. The middle case shows the
worst-case scenario where one has not good features nor a good prior, causing the
image matching to fail. The final case considers a feature-rich image with a weak
SLAM prior. Due to the feature rich scene, one is also able to obtain a camera con-
straint like in the first case.

Bag-of-Words
To distinguish between salient and non-salient frames, the paper proposed two types
of salient measures; local saliency (intraimage) and global saliency (interimage) [27],
where both are computed using an online BOW algorithm. The online BOW algo-
rithm used 128-dimension SURF descriptors, which were extracted from a pre-blurred
image (in addition to applying the CLAHS algorithm). Pre-blurring was applied to
enable better generalization by forcing the SURF-algorithm to search for large-scale
features and remove particle noise. The BOW-algorithm used assumed no prior ap-
pearance knowledge about the environment, and the vocabulary was therefore set to
be empty at initialized. During an inspection, the vocabulary size was augmented
as new words were discovered. SURF- features were assigned to respective words by
evaluating the Euclidean inner product to existing words in the vocabulary, and new
vocabulary words were assigned if the direction cosine of a discovered word to existing
vocabulary was more significant than 0.4.
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Figure 3.5: This image shows three cases of the camera-client pro-
cessing pipeline. Here the columns (a) to (e) are as follows: (a) the raw
image input, (b) CLAHS enhanced image, (c) PCCS search regions,
(d) Putative matches and (e) inliers found by RANSAC. Courtesy of

[14]

Local Saliency
The word diversity within a keyframe i, Ki, was found by calculating the entropy of
its BOW histogram which is calculated according to equation 3.12:

Hi = ≠
W (t)ÿ

k

p(wk) log2(p(wk)) (3.12)

Here, p(wk) is the term frequency (TF) of a word wk within image i, which can be
described mathematically as W(t) = {wk}W (t)

k=1 , where W(t) is the size of the online
vocabulary at time t. The entropy calculation is normalized, and the paper refer to
this as the local saliency of the image. This normalization is done accordingly:

SLi =
Hi

log2 W(t)

Here log2 W(t) is the maximum entropy possible, which is achieved by a uniform word
distribution in an image across the entire vocabulary[27]. SLi gives a value between
zero and one, determining how feature-rich an image is considered.

Global Saliency
The global saliency was as an interimage measure for determining uniqueness. The
purpose of the global saliency is to detect unique pictures that can be used for large-
scale loop-closure. The way to determine the uniqueness of features contained within
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a keyframe is done through the use of inverse document frequency (IDF). The IDF
algorithm will give a higher weight to less frequent features, making them easier to
detect. This paper used a sum of IDF within a keyframe to determine its score. This
was done accordingly:

Ri(t) =
ÿ

kœWi

log2
N (t)

nwk(t)
(3.13)

where Wi ™ W(t) is the subset of words found in image i, nwk(t) is the number
of images containing the word wk and N (t) is the number of images containing all
words in the vocabulary. In a similar way as for local saliency, one also calculates a
normalized global saliency score SGi œ [0, 1]:

SGi =
Ri(t)
Rmax

(3.14)

where Rmax is the maximum summed IDF score encountered thus far. As the rarity
of words changes over time, the Ri score needs to be updated regularly.
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3.4 Real-time SLAM with Piecewise-planar Surface Mod-
els and Sparse 3D Point Clouds

Motivation: This article has not been used in this work, but it is added to the lit-
erature study as this article proposes a method for evaluating the plane uncertainty
related to DVL approximated plane in front of the ROV. This uncertainty evaluation
can be relevant for further development of the proposed pose-graph solution in the
aquaculture net pen environment.

In this paper, Ozog and Eustice implemented a real-time SLAM solution where a DVL
sensor was used as a mapping and pose-correction device for ship hull inspections.
The DVL extracted planes from the scene, and these were used as factors in a factor
graph, using the iSAM framework [23]. The solution provided was su�cient for
correcting odometry inaccuracies, and enhancing the performance of mono camera
measurements.

Figure 3.6: Shows the least square fit of a plane approximation using
PCA on DVL measurements (a). In (b), the propagation of uncertainty

of the DVL point cloud to elevation and azimuth. Courtesy of [39]

The SLAM algorithm they constructed in this paper estimates pose with six-DOF;
xi = [xi, yi, zi, „i, ◊i, Âi]. The plane approximation of the k ≠ th observed plane seen
in index frame xi is expressed as: fii

k = [ai
k, ei

k, di
k]. The components ai

k, ei
k and di

k
are the azimuth- and elevation of the surface normal, and the orthogonal distance
of the vehicle to the plane, respectively [39]. The unit surface normal of the plane,
ni

k, is found from a least-square fit using a sliding window of N consecutive DVL
measurements with respect to the vehicle pose xi, pi

k œ R3◊N . The LS estimate of
ni

k is achieved by using principal component analysis (PCA) on the DVL points, pi
k,

and this LS-fitting is illustrated in figure 3.6 (a). The surface normal can be modeled
as a function of azimuth and elevation as seen in equation 3.15.

ni
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S

WU
ni

kx

ni
ky
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kz
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XV = h(
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k

D

) =
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WU
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k) cos (ai
k)
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k) sin (ai

k)
sin (ei

k)

T

XV (3.15)

By inverting the Cartesian surface normal in equation 3.15 one achieves the azimuth
and elevation:
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ni
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,
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ni
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2 + ni
ky

2)

D

(3.16)

The stando� distance parameter, di
k, is found by taking the dot product of the centroid

of pi
k and ni

k. By using three-DOF parametrization of the plane vector, fii
k, one avoids



Chapter 3. Literature 35

issues of over-parametrization of nodes in the iSAM framework.

The Plane Factor
A single plane factor connected to a pose, xi, is modeled as a unitary factor:

Y(fii
k; zfii

k
, Sfii

k
) =

...zfii
k

≠ fii
k

...
2

S
fii

k

where zfii
k

is the measurement of the plane, while Sfii
k

is the covariance estimate of
the plane measurement. Sfii

k
is estimated by assuming that the 3D-points stored pi

k

is corrupted by Gaussian noise. As these points are mapped to the plane, fii
k, by some

non-linear function f(), one can propagate the uncertainty of the points by linearizing
f() around the observed measurements, pi

k. This can be described mathematically
as:

fii
k = f(pi

k) pi
k ≥ N (µpi

k
, Spi

k
)

Sfii
k

¥ FSpi
k
FT

where F is the jacobian matrix of f(). In figure 3.6 (b) one can see an illustration of
this first-order covariance approximation.
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Chapter 4

Method & Implementation

In this chapter, the method and implementation of the pose SLAM algorithm for ob-
taining the ROV path in the net pen will be explained. The method uses the iSAM2
framework for achieving this and has been inspired by the articles [10] and [27] and
the fieldwork in [40]. The loop closure problem is solved using a proposed filtering
method to achieve correct data association. The DVL has been used together with the
mono-camera measurements to obtain the loop closure factor. An important assump-
tion for this method is that the vertical walls of the fish cage are assumed to be planar.

Main Assumption

The vertical fish cage walls are assumed to be planar.

The pose SLAM algorithm implemented in this thesis can be divided into two parts:
the front-end and the back-end. This architecture is illustrated in figure 4.2. The
front-end is responsible for data abstraction, feature extraction and the data asso-
ciation of measurements, and the back-end is responsible for the inference of the
abstracted data produced by the front-end [6]. The construction of both of these
components will now be explained for pose SLAM, starting with the back-end. For
convenience, the back-end section will also include the factor graph structure. After
the front-end and back-end, the selected noise parameters will be listed and explained.

Figure 4.1: The SLAM front-end and back-end. Courtesy of [6]
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Figure 4.2: The pose graph structure used in this work. Here the
absolute factors are measurements received from compass, depth sen-
sor, tilt sensor and USBL. The prior are based on estimate from an
extended Kalman filter, DVL speed estimates are used as a odometry

factor and loop closure are obtained from image matching

4.1 The Simultaneous Localization and Mapping Back-
End

The method used in this work can be summarized by the pose graph shown in figure
4.2. The reason why only optimizing for poses instead of solving the full SLAM prob-
lem is due to the environment the ROV operates in. Not only is this an environment
containing low amounts of feature points to be mapped (as the corners in the grid
cannot be used due to ambiguity problems between frames [27]), the environment
is also a�ected by the currents. Although the fish cage has several mooring points
which should hold the structure in place, the net can be deformed by the drag-forces
of these currents as the net is a flexible structure [31], violating the SLAM assump-
tion that landmarks are fixed in space. The non-linear pose SLAM problem has been
solved using the iSAM2 framework explained in section 2.5, where the GTSAM li-
brary has been used to construct the factor graph and optimization. As the iSAM2
framework tries to find the MAP solution of the pose graph, this enables e�ortless
addition of measurements obtained from various sensors. The optimization algorithm
used in GTSAM is the Levenberg-Marquardt Algorithm 2. As this requires an initial
estimate to converge towards a solution, a four-DOF pose estimate provided by an
extended Kalman filter has been used. The EKF is an in-house algorithm of SIN-
TEF that assumes stability in pitch and roll and fuses the measurements of the DVL,
USBL, compass, depth-sensor and the ROV gyro measurement (measuring yaw rate).

The factor graph structure used in this work is visualized in figure 4.2. The graph
consists of four factors: absolute factor, prior factor, odometry factor, and loop closure
factor. All of the factors are modeled by Gaussian distribution with a diagonal
covariance matrix. The absolute factors are factors that only related to a single
pose. The absolute factors consist of the measurements from the pressure sensor
(providing depth measurements), the compass reading, tilt sensors in pitch and roll,
and the USBL sensor reading in the NE-plane of the NED-frame. As the USBL
transponder is not placed in the origin of the body-frame, one needs to transform
this measurement. How this is done is shown in 4.3. The direct USBL measurement
is tw

wu, while one is interested in using tw
wb for the USBL factor. Here, b refers to

body-frame, w refers to NED-frame/world-frame, and u refers to USBL-frame. tw
wb

can be calculated by vector subtraction:

tw
wb = tw

wu ≠ tw
bu (4.1)
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where tw
bu is found by transforming the know vector tb

bu into the world coordinate
system:

tw
bu = Rw

b (Â
w)tb

bu =

S

WU
cÂw ≠sÂw 0
sÂw sÂ 0
0 0 1

T

XV tb
bu (4.2)

This calculation neglects the pitch and roll angles, and assumes that the ROV is
heading is the same as the direct heading measurement from the compass. The prior
factor used for the initial pose estimate of the ROV stems from the four-DOF EKF.
The odometry factor is a unitary factor obtained from the DVL speed estimate and
yaw rate from the gyro, and it provides a connection between two consecutive poses
xn≠1 and xn. The relative transformation between one body frame to the next is
modeled by a homogenous transformation matrix described in section 2.1. One issue
with the DVL velocity measurement is that these are not always available. When DVL
measurements are not available, as the SINTEF in-house outlier detection algorithm
filters out bad measurements, the speed estimates of the four-DOF EKF is used as a
substitute. The final factor is the loop closure factor, and this factor is obtained from
the re-detection of a previously identified scene by the camera. This factor and the
data association algorithm for achieving it will be explained in the following section.

Figure 4.3: USBL measurement transformation from USBL-frame
to body-frame

4.2 The Simultaneous Localization and Mapping Front-
End

4.2.1 Feature Extraction
Cameras are one of the most used sensors for obtaining loop closures in SOTA SLAM
systems. However, obtaining loop closures in the fish cage environment using a cam-
era is not an easy task for several reasons. The main reason for this is because the
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fish cage is constructed by a standardized grid net, making every scene look similar in
texture. An example of how di�erent scenes in the fish cage may look like is illustrated
in figure 4.4. These pictures also illustrate why VO would be hard to implement in
this environment, as there would be an ambiguity in matching similar corner features
between frames.

However, due to high nutrient concentration in the net pen, this causes the blossom of
algae on the net [20]. As these algae grow in random patterns, the patterns created
will be unique to a specific location and can therefore be used as features to ori-
ent around. An example of such algae growth is shown in image 4.5a. Here, one can
observe the algae on the net; however, these features are not that evident from a com-
puter perspective due to low contrast. As described in [27], as a way of increasing the
contrast while also dealing with the nonuniform lightning, a common issue in under-
water imagery [13], one can use the contrast limited adaptive histogram specification
(CLAHS), which is a more general version of the CLAHE algorithm. The e�ect of
applying this algorithm is shown in image 4.5b, and it is apparent that algae features
are more distinct compared to the original image. The CLAHS algorithm inputs a
grayscale, blurred image and divides this image into equal-area regions. The image
is pre-blurred is to reduce noise while also forcing the feature detector to focus on
larger-scale features. For each region, histogram specification is applied, which tries to
redistribute pixel intensity values from the original image to fit the desired distribu-
tion using a gray-level intensity transformation function pnew = T (pold). Afterward,
a clip limit is used to set a maximum value to each individual bin (intensity value)
in the transformed histogram, where in some cases, the clipped intensities would be
uniformly distributed to the remaining bins [13].

Empirical studies were conducted to determine the desired distribution and parame-
ters of the CLAHS algorithm. These experiments showed that one obtained a higher
contrast image in the fish cage environment by remapping the image histogram to-
wards a Rayleigh distribution with a scale parameter – = 0.4. The clip limit was set
to 6, but their intensity redistribution was not included. The size of each region was
selected to be 15 ◊ 15.

128-dimensional SIFT features were used to extract image characteristics. The rea-
soning for selecting this feature detector was based on the fact that SIFT features
detect blobs on the image as it uses DoG at di�erent scale-spaces [21]. These blobs
will be a more general feature compared to a pixel-based feature detector as BRIEF
used in ORB. SIFT is therefore not as subjected to noise and would therefore be better
to use when wanting to track algae, as these can be somewhat a�ected by the ocean
currents. 128-dimensional descriptor, as opposed to 64, was selected to ensure the
possibility of detecting larger algae patches. Despite the camera having a frequency of
60Hz, extracting SIFT features from each image is not ideal as it is a computationally
heavy operation, and there would be little to no additional information. Therefore
there was only sampled a keyframe every second.

Dynamic Environment Management

Another complication related to the fish cage environment is the presence of fish and
objects outside of the net. Both of these issues are shown in figure 4.6, and both are
a part of the same underlying problem: they are moving objects in the scene. Moving
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Figure 4.4: The extreme case showing the di�culty of determining
where a scene is from, making it hard to do loop closure or VO due to

the ambiguity related to frame matching.

(a) Original image (b) Applying the CLAHS algorithm on image (A)

Figure 4.5: Algae growth on the net pen

objects are problematic as these are not features one wants to track in the environ-
ment as they cannot be used for loop closure. The fact that fishes move around in
the scene is evident; however, objects outside the net appear to move as the net is
transparent. When moving from one frame to another, the object’s position relative
to the net would have changed due to the ROV movement.

The concept called positional-invariant robust feature (PIRF) described in [25] has
been used to avoid sampling features from moving objects in the scene. Instead of
sampling features directly and then identifying the features’ respective words in a
BOW dictionary, one is instead only using the matched descriptors in a frame Fi

to its previous frame Fi≠1 to describe the features of frame Fi. Note that in the
original paper, the PIRF- feature descriptor is an average of the matched descriptors,
while in this work, the matched descriptor of frame Fi has been used. The feature
matching procedure used to obtain the PIRF features is based on Lowe’s ratio test,
which compares the Euclidean distance of the closest neighbor of a possible match to
that of the second-closest neighbor [33]. If one has a feature fa described in frame Fi

and the best match and the second best match in frame Fi is f1
b and f2

b respectively,
then the ratio test will be as follows:

d(fa, f1
b )

d(fa, f2
b )

< Lth (4.3)

where Lth is a ratio threshold defining how much better the best match needs to
be compared to the second-best match for it to be considered a match. Setting
the Lth to a high value would correspond to being more conservative in the feature
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matching, avoiding ambiguous matches (a real concern in the fish cage as explained
in the previous section). In this work, Lth was set to a value of 0.7, which appeared to
work su�ciently, as bad matches are further filtered out in the homography procedure
when doing loop closure. More on this later.

Figure 4.6: Entirety of the fish cage environment

4.2.2 Data Association
Bag of Words

In the work of [27] they used a self-created online BOW algorithm, that started with
an empty vocabulary and incrementally added new words to the vocabulary when
discovered. In this thesis, there has however been used a more straightforward o�ine
approach for constructing the vocabulary. As the vocabulary is created o�ine, one
needs to set a predefined vocabulary size, and this was set to 150 words. The selected
vocabulary size was based on the vocabulary size achieved in [27], as they arrived
at about 200 words after 200 min of mission time using their online vocabulary. As
the ship hull used in their experiments and the fishnet used in this are both low on
unique features, it was assumed that the number of unique words found in the fishnet
would be pretty similar.

The generation of the BOW vocabulary was done by extracting features from a train-
ing dataset consisting of 305 images. SIFT features were extracted from these images,
and the descriptors were clustered into 150 words. This was achieved using the k-
means method, using ten iterations with di�erent centroid seeds, where the solution
is taken from the iteration which obtained the minimum total variance of all clus-
ters. The mean of each cluster is the word description used in the vocabulary. As all
PIRF-features extracted during operation need to be assigned to their corresponding
words, this would be a linear-time operation if not using any aiding frameworks. To
avoid linear run-time, the words generated are structured in a simple binary tree. The
k-means method was also used in the generation of the binary tree. This was done
by starting at a root node and dividing the 150 words into 2 clusters, obtaining the
tree’s respective left and right branches. For each branch, the k-means was recursively
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applied until each branch/leaf only contained one word. Since the k-means method
tries to minimize the Euclidean distance within each cluster, the Euclidean distance
was also used when doing word searching. As this tree is constructed in a naive way,
one is not able to obtain a fully balanced tree and a search time of O(log2(n)) [8].
However, the tree structure obtained from this approach had a maximum depth of 15,
whereas a fully balanced binary tree consisting of 150 nodes would have a depth of
eight (log2(150) ¥ 7.23 ¥ 8), hence the binary tree used provides almost logarithmic
search time.

Finding Loop Closure Candidates

As explained previously, the loop closure detection algorithm used in this work is
inspired by the work of [27] and [10]. In short, loop closure candidates are found by
a proposed filtering technique based on the net inspection procedure. In figure 4.7,
there is a flow chart outlining the processing pipeline of this filtering algorithm. This
technique involves filtering the image database based on a global saliency threshold,
depth- and heading thresholds concerning the depth and heading a current image was
captured, and a histogram similarity threshold. In addition to this, to avoid adding
visual factors for every frame, the ten most previous keyframes are not accounted
for when searching for loop closures. The filtering concepts will now be explained in
more detail.

Figure 4.7: Flow chart summarizing how loop closure factors are
generated

Local/Global Saliency & Global Saliency Thresholding

The words obtained from the BOW algorithm are used to construct local saliency,
global saliency, and TF-IDF histogram. The concepts of local saliency and global
saliency were explained in section 3.3 but will be reviewed again.
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The word diversity within a keyframe, Fi, can be found by evaluating the entropy of
its BOW histogram as done in equation 4.4.

Hi = ≠
W (t)ÿ

k

p(wk) log2(p(wk)) (4.4)

Here W(t) is the number of detected unique words at time t, and p(wk) is the term
frequency (TF) of word wk within image i. The term frequency is equal to nki

ni
where

nki is the occurrence of word k in image i, and ni is the total word count in image i.
The entropy can be normalized with respect to the maximum entropy possible which
can be proved to be equal to log2(W(t)) [27] and one gets:

SLi =
Hi

log2 W(t)
(4.5)

The measure SLi œ [0, 1] in equation 4.5 is termed local saliency, and is a measure of
the intra-image feature diversity.

Global saliency, on the other hand, is a measure of the inter-image uniqueness of
an image. This measure wants to describe if an image contains features that are
considered rare in the dataset. To capture this rarity the summed inverse document
frequency (IDF) of all words within an image has been used to obtain this measure,
and then normalized the maximum summed IDF-score encountered thus far. This is
described mathematically in equation 4.6

SGi =
Ri(t)
Rmax

(4.6)

where Ri(t) is the summed IDF and equals to:

Ri(t) =
ÿ

kœWi

log2
N (t)

nwk(t)¸ ˚˙ ˝
IDF of word wk

(4.7)

The inputs nwk(t) is the number of images in the vocabulary database containing word
wk, and N (t) is the total number of images comprising the vocabulary database. A
thing to note is that as both SLi and SGi are measures based on time-dependent
variables, hence both need to be updated regularly.

As the local saliency measures how feature-rich an image is, it will determine if a
matching between two images will be likely to fail or not. Hence, a minimum local
saliency threshold has been set such that images below this threshold are discarded,
saving storage. The global saliency is used as a temporary data association measure
to determine if there is a possibility of loop closure. Loop closure is a risky procedure.
A wrong data association would lead to the entire robot pathing becoming corrupted;
one, therefore, wants to be as confident as possible when doing a loop closure. As
the global saliency tracks inter-image rarity, images with a high global saliency would
represent images that are possible loop closure candidates. Hence, loop closure can-
didates are filtered based on defined global salience threshold SG,th.

The saliency algorithm used in this work is shown in algorithm 5 and is based on the
algorithm from [27].
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Algorithm 5 Saliency Algorithm
Require: BOW vocabulary W, features of frame i Fi = [f1, f2, ...., fn]
Require: statistics N (t), Hb(t) , Hwt(t)

1: { Generate image word histogram }
2: Initialize BOW histogram: Hi Ω ¶
3: for each feature fj œ Fi do
4: map feature fj to word in vocabulary wk œ W
5: increment histogram: H(wk)i Ω H(wk)i + 1
6: end for
7: Update Hb(t) if there are words in Hi not seen before
8: Increment Hwt(t) based on word found in Hi

9: Increment image tracker N (t) Ω N (t) + 1
10:
11: { Calculate local saliency }
12: SLi = 0, Hi = 0
13: for all words k in W do
14: Compute Hi(wk)
15: end for
16: Compute SLi

17:
18: { Calculate global saliency & TF-IDF histogram }
19: for all tracked word in Hi do
20: Calculate TF: TF Ω nki

ni

21: Calculate IDF: IDF Ω log2
N(t)

nwk (t)

22: Ri+ = IDF
23: Htf≠idf i

(wk) Ω TF ú IDF
24: end for
25: Calculate SGi

26: if Ri > Rmax then
27: Update Rmax: Rmax Ω Ri

28: end if
29:
30: if mod(N (t), 10) == 0 then
31: Update all local saliencies and global saliencies
32: end if
33: return SLi , SGi , Hi, Htf≠idf i

, Rmax,

The now undescribed parameters used in 5 is described as follows:

• Hi - Word count histogram of image i

• Hwt(t) - Histogram tracking number of images containing a specific word nwk(t)

• Hb(t) - Binary histogram tracking all words which has occurred from dictionary
W. Boolean histogram of Hwt

• Htf≠idf i
- TF-IDF histogram of image i
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The TF-IDF Histogram

As the BOW algorithm provides a framework for e�ciently labeling images, one way
of determining the similarity of two images would be to calculate the euclidean dis-
tance of their word frequency histograms Hi. However, this type of comparison is
naive and would lead to false matches of images in many cases, as some features
will be occurring more often than others. This is especially evident in the fish cage,
as the net corners will be present in each image; hence these features provide little
information. A better way of evaluating image similarity would be to compare the
TF-IDF histograms of images, a histogram constructed by the product of the term
frequency and the inverse document frequency. This is a better measure as weighting
TF by IDF would provide a histogram where rare features are favored, and standard
features are ignored.

Calculating the Euclidean Distance between two histograms would only result in a
scalar number. A more relatable measure would be to use the cosine similarity [47],
where one obtains a value between [0, 1], representing how similar the images are.
Using the cosine similarity, similar images would obtain a value close to one. The
cosine similarity can be calculated as follows:

dcos = 1 ≠
HT

T F ≠IDF ,iHT F ≠IDF ,j
ÎHT F ≠IDF ,iÎ ÎHT F ≠IDF ,jÎ

When a new image i arrives, the TF-IDF histogram is calculated using by algorithm
5, and then HT F ≠IDF ,i is compared to all the other TF-IDF histograms stored in the
database using the cosine similarity.

Heading and Depth Filter

When the ROV performs net pen inspection, the ROV traverses the net pen and
points towards the fishnet. As the net pen is a concave environment and the camera
has a limited FOV, one can filter undesired loop closure candidates by considering
the heading and depth measurements (di,Âi) recorded when a keyframe was taken.
This filter is described mathematically in the equations below where dkf and Âkf are
depth and heading vector, respectively, containing all the previous depth and heading
measurements related to stored keyframes.

|dkf ≠ dcur| Æ dth (4.8)

sin |Âkf ≠ Âcur| Æ sin Âth (4.9)

The reason why one needs to use the sin function here, is such that the function
accounts for the proximity between the angles fi and ≠fi. dth was set to be equal to
0.8m while Âth was set to 7.5 degrees.

Data Association Algorithm - Summary

To summarize, the algorithm for detecting loop closure candidates is based on 4
consecutive filtering steps:

1. Filter candidates below SGth

2. Filter candidates below dth

3. Filter candidates below Âth
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4. Filter candidates below a histogram similarity threshold Hth

Afterward, the remaining candidates are sorted based on their cosine similarity to
HT F ≠IDF ,cur, and the top 3 candidates are selected as loop closure candidates. Be-
low, one can see a summary of all selected parameter variables related to the data
association algorithm, which were based on empirical studies.

Summary: Data Association Variables

SGth = 0.45, SLth = 0.4, dth = 0.8m, Âth = 7.5¶

Hth = 0.7, HT F ≠IDF th = 0.45, Lth = 0.7

4.2.3 Loop Closure Factor
If loop closure candidates are obtained after the filtering technique, the algorithm
proceeds with feature matching and homography matrix. The matching is done in
the same way as obtaining PIRF features, and the homography matrix is afterwards
estimated from the matches using findHomography()-function in the OpenCV library
[22]. The findHomography()- function tries to find the perspective transformation
from a source image to a destination image using the RANSAC algorithm. RANSAC
gives the initial estimate by selecting a minimum amount of random points needed
to calculate the homography matrix m̃c = Hm̃d, and then evaluating the number of
point inliers and outliers from this representation. If the inlier/outlier- ratio is not
satisfactory, a new set of random points is selected, and the procedure is repeated.
However, if the ratio is satisfactory, the solution of H is optimized by minimizing
there-projection error using the Levenberg Marquardt algorithm 2. The re-projection
error function is shown in the equation below [45].

ÿ

i

3
xd

i ≠ h11xs
i + h12ys

i + h13
h31xs

i + h32ys
i + h33

42
+

3
yd

i ≠ h21xs
i + h22ys

i + h23
h31xs

i + h32ys
i + h33

42

If enough inliers are found, then the determinant of the homography needs to be eval-
uated. As stated in the projectivity definition 1, the homography matrix cannot be
singular. Hence, a determinant threshold is set to avoid bad homographies, and this is
set to 0.7. If the homography matrix passes this threshold, the matrix is decomposed
into a rotation, translation, and normal vector of the plane (R, t and n) by using the
OpenCV decomposeHomographyMat()- function. The decomposeHomographyMat()-
function is an implementation of the homography decomposition algorithm derived
in [35]. As explained in section 2.2.3, four solutions are obtained from this decompo-
sition due to the ambiguity of the homograph matrix. Two of these can be falsified
directly as they will contain negative point depth in either camera frame, which is not
physically possible [35]. Negative point depth can be evaluated by the z-component
sign of the normal vector, as a negative sign would indicate a plane behind the desired
camera. See image 2.6.

One is then left with two solutions: S1 = {Ra, ta, na} and S2 = {Rb, tb, nb}, and
these can be furthered filtered to one solution by using the range measurements from
the DVL. As the DVL receives four range measurements from its beams, one can use
these measurements to estimate the plane in front of the ROV, using an LS-fitting
method described in [2], see section 3.2. One would then obtain the parameters of
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Figure 4.8: Plane approximation of the net pen using DVL range
measurements. Courtesy of [2]

the plane equation (b, c , d), f(x, y, z) = ≠x+ by + cz + d = 0, and these parameters
are further be used for estimation of the unit normal vector to the plane, nd

unit, as
such [2]:

nd
unit =

nd

||nd||2
=

1Ô
1 + b2 + c2

S

WU
≠1
b
c

T

XV

By evaluating the Euclidean distance between nd
unit and na and nb, one can obtain

a final solution of the homography decomposition by selecting the solution with the
minimum Euclidean distance to nd

unit. As explained in section 2.2.3, the solution
to the homography decomposition is only up to scale, as an image cannot capture
the depth of the scene. The DVL, however, captures this depth. The depth vector
obtained in [2] was the plane with respect to the body, but here one is interested
in the plane’s depth with respect to the camera. The same procedure could obtain
dc/net by replacing the rd

db with rd
dc, where c denotes the camera-frame. Hence, the

vector from a random point on the plane to the camera can be expressed as:

vd
plane,c = rd

dc + pd
0 =

S

WU
xd

dc + xd
0

yd
dc + yd

0
zd

dc + zd
0

T

XV

The distance from the net to the camera can then be found by the following equation:

dc,net = |(vd
plane,c)

T nd
unit| =

| ≠ xd
dc + byd

dc + czd
dc ≠ d|Ô

1 + b2 + c2

One can then obtain the scaled translation vector by multiplication:

tú = tsolution ú dc,net
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This way one acquire the transformation matrix that maps from a source-frame to a
destination-frame:

Td
s =

C
R tú

0 1

D

=

C
Rd

s td
s

0 1

D

(4.10)

When a loop closure is found, one can select which frame will be chosen as source-
frame and destination-frame. To avoid storing plane-depth measurements, the most
recent frame is selected as the source-frame. This is because the translation scaling
factor is based on the depth of the source frame (H = Rd

s +
td

s
ds (ns)T ), and the normal

vector found from the homography decomposition, ns, is also related to the source-
frame. To create the loop closure factor, the GTSAM BetweenFactor() has been used.
This is the same factor used for odometry measurement. The factor considers the
transformation going from one pose to another and the related uncertainty of the
odometry measurement. To avoid creating a factor that is directed from the current-
frame to the previous, the transformation in equation 4.10 needs to be inverted:

Ts
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C
(Rd
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T ≠(Rd

s)
T td

s

0 1

D

(4.11)

It is di�cult to evaluate the uncertainty related to rotation and translation obtained
from the homography matrix decomposition. Firstly, because one deals with a net
that is a�ected by the drag-forces of the current, which can cause the net to have
slightly shifted when comparing a current- and previous frame. Secondly, few stud-
ies have been conducted on how a DVL is a�ected when receiving rebounds from
a flexible structure. However, SINTEF has done a comparative study between the
distance measurement from the DVL and distance measurement obtain from laser
triangulation [4]. This was conducted on the same dataset as used in this work. The
results here showed significant overlap between the two distance measures. Here they
also tried to approximate the standard deviation (STD) of distance measurement
produced by the DVL and the distance measurement from the laser triangulation.
This was obtained by generating a quasi-ground-truth of the distance by fusing the
two distance measurements with a linear Kalman filter. From this the STD of the
DVL-distance was estimated to be 2.9cm, while the laser had 3.2cm [4].

To avoid being overconfidence in the distance measure, a factor was added such that
the STD of the DVL distance was assumed to be equal to ‡dlc

= 0.06m. Finally,
this uncertainty was propagated to the translation vector using the linearity theorem
2.3.1 for a Gaussian distribution [5]. The covariance of ts

d(= ≠(Rd
s)

T td
s) could then

be calculated accordingly:
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(4.12)

The covariance of the rotation on the other hand was set manually, and used a
diagonal matrix:

Cov[Rd
s ] = SRlc

=

S

WU
‡2

◊lc
0 0

0 ‡2
„lc

0
0 0 ‡2

Âlc

T

XV (4.13)

where ‡◊lc
and ‡„lc

were set to 5 degrees and ‡Âlc
was set to 7.5 degrees, being con-

servative.
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4.3 Selection of Noise Parameters
In this section, noise parameters selected in this system will be listed. These vari-
ables were selected by various methods. Among others, [28] was used to find sensor
precision estimates of the depth measurement, compass, gyro and inclinometer. The
article [40] was used to deduce a rough estimate of the USBL uncertainty. The speed
uncertainty of the DVL was based on bottom velocity long-term accuracy provided
in the technical specification of the Nortek DVL 1000. It should be noted there is few
studies on how DVL measurements are a�ected when used on a flexible structure.
Therefore, a factor of safety has been added to avoid DVL measurement overconfi-
dence. However, due to having a large number of tune-able variables in conjunction
with limiting time, this thesis has not been focusing on fin-tuning of the system.
Hence, this is added to future work for further development of the pose SLAM sys-
tem. The noise variables selected are listed in the summary below.

Summary: Measurement Noise Variables

SDV L =
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u 0 0
0 ‡2

v 0
0 0 ‡2

w

T
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where
‡u = 0.01m/s, ‡v = 0.01m/s, ‡w = 0.02m/s

‡x = 1.3m, ‡y = 1.3m, ‡◊ = 5¶, ‡„ = 5¶

‡depth = 0.02m, ‡compass = 2¶

Loop Closure Paramters:

SRlc
=
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0
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XV , ‡dlc
= 0.06m

where
‡◊lc

= 5¶, ‡„lc
= 5¶, ‡Âlc

= 7.5¶
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Chapter 5

Results & Discussion

In this section the results from running the algorithm on three datasets will be shown
and discussed. As there was no GT available, the EKF, mentioned in the previous
chapter, was used as a quasi-ground truth.

Datasets & Limitations
The datasets used for testing the pose SLAM algorithm are shown in figures 5.1, 5.2,
and 5.3. In these plots, the ROV path is shown in the blue line, and this path is
the estimate provided by the 4 DOF EKF filter, which assumes stability in pitch and
roll. The red dots on the figures are the DVL range estimates, which are found by
averaging the starboard and port side measurements individually. Due to the lack of
ground truth for the ROV path, the EKF estimates were used as a quasi-GT.

One issue with these measurements is that the camera and other sensor measure-
ments are not synchronized. The camera used had a frequency of 60Hz, while the
other sensor measurements had a sample period of 0.1s. Synchronization between
these, therefore, had to be done manually, and as the time of when the video record-
ing was taken could only be tracked to the closest second, there was a synchronization
errorof ±0.5s. This o�set is an issue when doing loop closures as the DVL plane es-
timate is not taken simultaneously as in the picture. If tight turns occur or the ROV
traverses a corner, this will a�ect the LC-factor achieved by homography decomposi-
tion, depending on the DVL-plane estimation.

Another issue with the datasets is that there was no invented procedure for trailing
the net pen for a SLAM system to work. Therefore, it was requested that the ROV
should move in a zig-zag pattern when traversing the net pen such that there would
be overlap between features and this way allowing for several loop closures. This
zig-zag pattern was attempted in dataset II, shown in figure 5.2. However, due to low
FOV in the vertical direction, it resulted in little to no overlap between the images
captured by the ROV.
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Figure 5.1: Dataset I - The red dots DVL range measurements, while
the blue line is the ROV path estimate by the EKF

Figure 5.2: Dataset II - The red dots DVL range measurements,
while the blue line is the ROV path estimate by the EKF

Figure 5.3: Dataset III - The red dots DVL range measurements,
while the blue line is the ROV path estimate by the EKF
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5.1 Results Dataset I - Loop Closure in a Corner

(a) Bad Loop Closure

(b) Good Loop Closure

Figure 5.4: Two loop closures which are achieved in rapid succession

The ROV path of dataset I can be seen in figure 5.1. The ROV is, in the beginning,
traveling down to greater depths until it settles at 8m depth and starts traversing the
net, going back and forth along a couple of planes. When traversing, the ROV has
roughly 1.5m distance to the net and travels approximately a linear velocity of 0.15-
0.2m/s, where occasional acceleration spikes. Along the path, there are occasional
areas with high algae content, which provide possible loop closures.

During this traverse, there is a particular corner where loop closure occurs. This
is the corner where the ROV changes direction to traverse back to where it came
from. As the ROV has to change its momentum, it uses some time to do this, and
several images are therefore captured from this area leading to multiple loop closures
as these are globally salient images. The first LC that occurs is one where there is
no great overlap between the current and previously taken image, resulting in a bad
loop closure. This loop closure is seen in figure 5.4a. From this figure, one see several
issues with the LC algorithm. There are no criteria on how matched features should
be distributed. As the thick wire connecting the two net pen planes is high in unique
features that can be matched between the images, these are used. However, as all
of these points lie on a line, this will cause an incorrect projective transformation
between the two images, which is evident when comparing the bad LC with the good
LC shown in 5.4b. A bad projective transformation will again be propagated into the
LC-factor, which is undesirable.

Another point to note is that the algae are not matched as well as hoped. This is
evident from both the good and the bad LC candidates, and there are several of
the high content algae areas that have not been used. This is partly because of the
feature filtering caused by Lowe’s algorithm but can also be the result of movement
in the algae and the net, causing the SIFT feature of a particular alga to change. It
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would therefore be desirable with a feature detector that better maps the algae than
the SIFT. A possible solution for solving bad algae pattern detection would be to
downsize the image, forcing the SIFT algorithm to be more general and detect larger
features. However, image downsizing was not tested in this work.

Another issue with the LC algorithm is the positional di�erence between the DVL
and the camera. The camera is placed on the ROV’s starboard, while the DVL is
placed at the port. This is problematic when the ROV does loop closure in a corner,
as the DVL will approximate the plane on the left side, while the camera will picture
more features from the right-side plane. This can cause that both distance estimate
and the normal vector estimate obtained from the DVL are not related to the pic-
ture, which will cause corruption in the translational and rotational estimate of the
homography decomposition. The synchronization issue between the camera and the
rest of the sensors adds to this problem.

There was conducted four experiments when running the algorithm on dataset I:

• Run algorithm with all factors

• Run algorithm with all factors except visual LC-factor

• Run algorithm with all factors except tilt factor. Assuming stability in pitch
and roll

• Run algorithm with all factors except tilt factor and visual LC-factor. Assuming
stability in pitch and roll

The respective plots for these runs are shown in figures 5.5, 5.6, 5.7, and 5.8. The
plots are generated from running the pose SLAM algorithm, created in this thesis,
which can be found on GitHub [36]. Here figure (A), for all plots, shows the posi-
tion estimates for [x, y, z, Â], while figure (B) shows the position error of [x, y, z, Â]
with respect to the 4DOF-EKF estimate. In these figures the red line is the actual
measurement, blue is the 4DOF-EKF estimate, green is the pose-SLAM estimate
and the black line is the dead reckoning estimate (DR). When comparing the results
from running the algorithm with all factors 5.5 with the one where the LC-factor
has been excluded 5.6, these obtain almost identical estimates for the depth and yaw
measurements with respect to the 4DOF-EKF estimates. This is, however, expected
as these estimates stem from accurate absolute measurements. When looking at the
x-y-estimates (north and east respectively), however, the error in x are similar over-
all, while the y-error is better for the estimate with visual LC. Even though this is
a desirable result, it is not fully known why this is the case. It should be mentioned
that it is di�cult to determine the quality of each estimate as areal GT is not avail-
able. However, one possible reason this might be the case is that the visual factors
can stabilize the roll and pitch estimates. This is an advantage as roll and pitch
are noisy measurements, and bad estimates of them would corrupt the ROV course.
It could also be from the fact that the EKF-assumes that roll and pitch are zero,
which causes wrong positional estimates of the EKF due to this simplification. Most
likely, it is a combination of both. Another point to note here is that the loop closure
occurs at time 500s, and it seems to be constraining the error when comparing the two.

In addition to comparing w/wo LC, it was also interesting to see the e�ect of removing
the tilt factor and assume that the ROV was stabilized in pitch and roll as this is what
is assumed for the EKF. The result of this and having no LC is seen in figure 5.8,
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and here there is almost no positional error, only some deviation in yaw. This is an
expected result as the pose graph would only be a single chain, where the optimization
of each node is only a�ected by the former and latter nodes in addition to the absolute
measurements. This is similar to the EKF as this incrementally marginalizes pose
estimate based on its prior and the new measurement. However, this result shows
that the pose graph is implemented correctly. When looking at figure 5.7 one can see
that one obtain almost the same overall error with respect to the EKF estimate as
one did when using a 6DOF model, including the tilt measurements.
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(a)

(b)

Figure 5.5: Dataset I - Position estimate (A) and position error with
respect to EKF-estimate (B) with visual loop closure. The red, blue,
green, and black lines represent actual sensor measurements, EKF

estimate, pose graph estimate, and dead reckoning, respectively.
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(a)

(b)

Figure 5.6: Dataset I - Position estimate (A) and position error
with respect to EKF-estimate (B) without visual loop closure. The
red, blue, green, and black lines represent actual sensor measurements,
EKF estimate, pose graph estimate, and dead reckoning, respectively.
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(a)

(b)

Figure 5.7: Dataset I - Position estimate (A) and position error with
respect to EKF-estimate (B) with visual loop closure. Pitch and roll
set to zero. The red, blue, green, and black lines represent actual
sensor measurements, EKF estimate, pose graph estimate, and dead

reckoning, respectively.
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(a)

(b)

Figure 5.8: Dataset I - Position estimate (A) and position error with
respect to EKF-estimate (B) without visual loop closure. Pitch and
roll set to zero. The red, blue, green, and black lines represent actual
sensor measurements, EKF estimate, pose graph estimate, and dead

reckoning, respectively.
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5.2 Results Dataset II - No Loop Closure
In figure 5.9 one can see the results from running the pose-SLAM algorithm on dataset
II. This is a dataset with no loop closure, and the result from this is almost identical
to the pose estimate produced by the EKF despite being a six-DOF model. The
result further concludes the correct implementation of the pose graph.

(a)

(b)

Figure 5.9: Dataset II - Position estimate (A) and position error
with respect to EKF-estimate (B) with visual loop closure. The red,
blue, green, and black lines represent actual sensor measurements,
EKF estimate, pose graph estimate, and dead reckoning, respectively.
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5.3 Results Dataset III - Loop Closure at the Net Bot-
tom

Figure 5.10: One of several consecutive LC causing the system to
become corrupted

The results of running the code on dataset III is shown in figure 5.11 and 5.12, where
the first figure is generated by running the algorithm with all factors while the second
excludes the visual LC-factor. When looking at the run without visual LC one can
see that there is little to no error regarding the pose SLAM estimate. There are
some deviation between the EKF estimate and the pose SLAM estimate in the north
direction at the end of the run, but this does not exceed 1.5m, which is approximately
the same value used for the x,y STD of the USBL measurement.

Looking at the pose SLAM estimate with LC, it is evident that this fails. The loop
closures causing the system to become corrupted happen at about 350s into the
operation when the ROV travels at the bottom of the net pen. Here the ROV, travels
slowly in the area, which allows for loop closures of pictures taken close in time. The
first few LCs do not a�ect the system that much, but after more are added, the system
collapses. The LC causing the collapse is seen in figure 5.10, and in figure 5.13, one
can see the position estimate before and after this LC-factor is added to the graph.
The LCs taken before the one shown in 5.10 are similar to this one, and looking at it,
one can verify that it is from the same area, indicating that there is no issue related
to the filtering algorithm. However, the pictures are taken in an area where the net
goes from a polygon shape into a cone-shaped structure. This is problematic as the
planar net assumption is violated in this region, which both the homography and the
DVL plane estimation rely on. As one relies on the normal vector of the DVL plane to
determine which of the homography decompositions is true decomposition, this can
cause that the wrong solution is selected. Obtaining a bad visual factor could also be
the result of DVL outliers. Even though the SINTEF in-house algorithm filters DVL
outliers, there are still outliers that occur. Therefore, a better approach for solving
this would be to use a sliding window of the DVL measurements to determine the
plane, similar to the one explained in plane estimation described in section 3.4. It
is not clear why this LC causes all the previous estimates to change.It causes major
pose changes from 0-300s. However, this region is not within the pose graph chain
connected by the LC factors, and these poses should therefore be constrained mainly
by their measurements and priors. This detrimental e�ect needs to be researched
more in the future.
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(a)

(b)

Figure 5.11: Dataset III - Position estimate (A) and position error
with respect to EKF-estimate (B) with visual loop closure. The red,
blue, green, and black lines represent actual sensor measurements,
EKF estimate, pose graph estimate, and dead reckoning, respectively.
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(a)

(b)

Figure 5.12: Dataset III - Position estimate (A) and position error
with respect to EKF-estimate (B) without visual loop closure. The
red, blue, green, and black lines represent actual sensor measurements,
EKF estimate, pose graph estimate, and dead reckoning, respectively.
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(a) Before

(b) After

Figure 5.13: Position error with respect to EKF-estimate before
(A) and after (B) consecutive LC causing the system to become cor-
rupted. The red, blue, green, and black lines represent actual sensor
measurements, EKF estimate, pose graph estimate, and dead reckon-

ing, respectively.
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5.4 Discussion of Bag-of-Words Algorithm
One issue regarding this work that is not detectable by looking at the travel path of
the ROV is the BOW algorithm. Due to time limitations, the algorithm was imple-
mented naively, and it is neither optimal for real-time operations nor for obtaining a
good vocabulary. Firstly, the vocabulary is created o�ine by using k-means, which
requires the user to define the number of words the vocabulary should consist of.
Setting a fixed value to the vocabulary size is di�cult, as each run would be di�erent,
and one cannot know how many words are actually present in each dataset. This is
especially problematic if one observes unique words. These words risk being gener-
alized to more common words when using a fixed vocabulary, a�ecting the local and
global saliency measures.

The tree structure used in this work is neither an ideal candidate for how to structure
the words. Firstly, it is not optimal for a real-time system as the tree is not balanced,
leading to higher run-time when labeling features. Secondly, when generating the tree,
the k-means method has been used to divide the tree into its respective branches. This
starts at the root, divides the tree into two clusters for the left and right branches, and
continues this recursively for each branch until all leaves only contain one word. As
the k-means will not provide the correct cluster solution every time as the algorithm
depends on its seeds, there is a possibility that some words are put in an incorrect
branch. This incorrect branching will, in turn, lead to false positives when it comes
to word labeling. However, this binary tree generation’s e�ect on the ratio between
false-positives and true-positives has not been studied in this work.
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Chapter 6

Conclusion & Further Work

The problem statement of this thesis was to create a functional six-degrees-of-freedom
SLAM framework for the fish cage environment that was able to fuse all the sensor
measurements of the ROV. It was also desired to create a method of solving the loop
closure problem in this environment. This has been accomplished by creating a pose
graph SLAM algorithm, formulating the SLAM problem as a non-linear optimization
problem, and solving this by using the iSAM2 framework. The loop closure problem
was solved by creating a novel data association filtering method that proposed salient
image loop closure candidates captured at similar depth and heading. If an image
loop closure was found, the correct homography decomposition was determined and
scaled using the DVL range measurements to approximate the net structure in front
of the ROV as a plane. The algorithm shows promising results when the ROV oper-
ates in regions of the net that do not violate the planar assumption; however, further
development is required to obtain more reliable and consistent pose measurements.

One part of the algorithm that needs more research is the visual factor. Even though
the ROV revisited areas in these datasets, the only LC that was achieved when run-
ning the algorithm was LC of images close in time. This is because the ROV was
not controlled such that it revisited scenes containing an abundance of features. This
needs to be kept in mind if one desires to continue this SLAM approach in the fish
cage and must be accounted for in a procedure of how to traverse the net e�ectively.
One point to note here is that the fish cage needs to be traversed slowly capture
the scene and avoid image distortion caused by motion. Slow traversing will also be
beneficial due to better overlap between images.

There also needs to be done improvements towards the loop closure algorithm. As
one can see from some of the images illustrated in this report, one can see that the
SIFT features used are not adequate to capture the algae detection of the scene, and
it could be desired to replace this feature detector with another solution. Secondly,
DVL measurements should be put into a sliding window framework, similar to the
one in [39], such that one could have more measurements to estimate the plane in
front of the ROV. Using a sliding window would also be beneficial as RANSAC can
be used to remove DVL outliers. Another point that needs to be looked more into is
how to handle loop closures better at the bottom of the fish cage. Of these, obtaining
a procedure for handling the bottom of the fish cage is the most crucial as seen in
the results of dataset III illustrated in section 5.3, as this scene violated the plane
assumption used in this work.

More research should also be done in system tuning and developing an actual GT
used for this tuning. There also needs to be obtained a more precise timestamp when
camera recordings were taken, enabling better synchronization between the camera
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and the other sensor data.

A final area that needs to be put more e�ort into solving is reducing the algorithm’s
run-time. This code is mainly created in python, but transferring this work to
C++would significantly improve run-time. The BOW vocabulary should also be
structured in a better framework, either by using a balanced tree or trying to im-
plement hash tables to decode the features into words [43]. In addition, it would be
desirable to use an online approach for building the vocabulary, as one would this
way avoid issues related to insu�cient vocabulary size.
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Appendix A

Pose Graph SLAM Code

The code created in this work can be found on GitHub [36]. The code is mainly
written in python. However, it also utilizes a MATLAB implementation of the CLAHS
algorithm, provided by Ryan Eustice, and the inclinometer-, depth- and USBL factor
are written in C++.
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