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Abstract

Today’s oil and gas companies are experiencing a highly uncertain and volatile market situation.
With large fluctuations in the oil price, it is crucial to keep the operational costs at moderate
levels to maintain profitability. Costs related to drilling make up a significant part of the overall
expenditures; thus, improving drilling efficiency is essential to minimize costs. However, since most
wells today are drilled manually by a driller, the efficiency is subjected to human factors, such as
the drillers’ experience, strategy, and relation to risks. A research project called Performinator,
led by AkerBP, aims to autonomously control the drilling process using fully electric robots, thus
removing the human factors and increasing the drilling operation’s consistency, efficiency, and
safety.

This thesis presents one possible solution to the control problem, which can potentially be used as a
basis for further development. Results from simulations conducted in Matlab is presented, where a
successive linearization-based model predictive control (SLMPC) approach is used to autonomously
control the rate of penetration (ROP) to the desired value by adjusting the weight on bit (WOB)
and top drive rotary speed (RPM) while subjected to operational and safety constraints imposed
by the operation mode. This is done by linearizing a nonlinear Bourgoyne and Young ROP-model
successively at each time step to formulate a convex QP problem that an MPC solves. In addition,
a verification strategy was developed to simulate a real well response resulting from the calculated
control inputs from the SLMPC. The results show that when updating the SLMPC model regularly
with measurements from this simulated well, both through a trust-region parameter estimation
technique and an extended Kalman filter, the simulated well ROP can efficiently be controlled to
the desired value within the limits of the imposed constraints.
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Sammendrag

Dagens olje- og gasselskaper opplever for tiden en svært usikker og volatil markedssituasjon. Med
store svingninger i oljeprisen er det avgjørende å holde driftskostnadene p̊a moderate niv̊aer for å
opprettholde lønnsomheten. Kostnader knyttet til boring utgjør en betydelig andel av de samlede
utgiftene og det er dermed essentielt å forbedre boreprosessen for å redusere kostnadene. Siden de
fleste brønner i dag bores manuelt av en borer, p̊avirkes effektiviteten av menneskelige faktorer som
borerens erfaring, strategi og forhold til risiko. Et forskningsprosjekt kalt Performinator, som ledes
av AkerBP, har som m̊al å kontrollere boreprosessen autonomt ved hjelp av heleletriske roboter,
og dermed fjerne de menneskelige faktorene med intensjon om å øke boreprosessens p̊alitlighet,
effektivitet og sikkerhet.

Denne oppgaven presenterer én mulig løsning p̊a kontrollproblemet, som potensielt kan brukes som
grunnlag for videre utvikling. Resultater fra simuleringer utført i Matlab presenteres, hvor en
suksessiv lineariseringsbasert modell prediktiv kontroll (SLMPC) brukes til å autonomt kontrollere
gjennomtrengningshastigheten (ROP) til ønsket verdi ved å justere vekten p̊a borekronen (WOB)
og t̊arnboremaskinens rotasjonshastighet (RPM) mens drifts- og sikkerhetsbeskrankninger p̊alagt
av en gitt operasjonsmodus opprettholdes. Dette gjøres ved at en ulineær Bourgoyne og Young
ROP-modell lineariseres for hvert tidssteg slik at et konvekst QP-problem kan formuleres og løses
av en MPC. I tillegg er det blitt utviklet en verifikasjonsstrategi for å simulere en brønnrespons
som følge av de beregnede kontrollinngangene fra SLMPCen. Resultatene viser at dersom SLMPC-
modellen jevnlig oppdateres av m̊alinger fra den simulerte brønnen, b̊ade gjennom parameteres-
timering basert p̊a tillitsregions-metoden og via et utvidet Kalman-filter, kan gjennomtrengning-
shastigheten til den simulerte brønnen styres til ønsket verdi innenfor beskrankningenes rekkevidde.
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1 Introduction

This section covers the motivation and a description of a project led by AkerBP called Performinator .
Both these subsections are reproduced and elaborated from the specialization project (Kommedal
[2020]). The new problem description is given in subsection 1.3, before the scope and report outline
is presented in subsection 1.4.

1.1 Motivation

The oil and gas industry is facing significant challenges across the world. The COVID-19 pandemic
and the resulting falling oil prices in the spring of 2020 due to reduced energy demand emphasize
the market’s volatility. Besides, many of the easy-to-get oil and gas fields are depleted, requiring
drilling in more complex areas to obtain the same volumes as before, ultimately increasing the
projects’ break-even price. Furthermore, costs related to drilling make up a significant part of the
overall expenditures for an exploration and production company. Over the years 2001-2016, the
drilling costs made up on average 44% of the total investments towards oil and gas extraction1 on
the Norwegian continental shelf (Søbye [2017]). Hence, improving the drilling efficiency is of great
importance to reduce overall costs, thus ensuring profitability.

Further, most wells today are drilled manually by a driller. This can cause varying drilling
performance from day to day, depending on the driller’s experience, strategy, and relation to risk.
Thus, automating the drilling process and moving the driller to a supervisory role may provide
consistency in drilling performance and increased personnel safety.

A digitalization project which aims to do so is the Valhall IP Performinator project (see subsection
1.2), led by AkerBP. They want to investigate the possibility of using an advanced regulation prin-
ciple in conjunction with this project, namely Model Predictive Control (MPC), to autonomously
control the drill string in different operating modes.

Valhall is a mature oilfield located in the southern part of the Norwegian sector of the North Sea,
and is seen in figure 1.1 (a). It has been producing since 1982 and is expected to be producing
oil and gas for many years to come. However, depletion of the reservoir has induced subsidence,
which is a geological phenomenon where the ground’s surface gradually sinks to a lower level
(Reddish and Whittaker [1989]), leading to stress accumulation and resulting stress ridges shown
in Figure 1.1 (b). Weaker formations and limited drilling windows (see subsection 2.1.4) increases
the complexity of the drilling operations in the area, further emphasizing the need for new thinking
and improved control strategies in the drilling operations.

(a) Valhall IP is platform number two from right
(Source: AkerBP ASA)

(b) Well planning in order to avoid stress ridges
(Illustration courtesy: Petter Kvandal, AkerBP)

Figure 1.1: Valhall Oilfield

1Costs related to decommissioning and piping not included

1



1.2 Performinator Project

Performinator is a research project led by AkerBP that aims to automate the drilling process using
robotic automation of pipe handling for increased efficiency and safety on the drill floor. By using
five fully electric robots, shown in figure 1.2, instead of the conventional and manually operated
hydraulic pipe handling system, one can achieve more efficient operations with higher precision.
Other benefits will be the improved personnel safety as the drillers office can be placed at a remote
location, and that fewer drill floor personnel will be needed.

The whole system will integrate an open-source control system utilizing edge computing, simulators,
and digital twins. Performinator yields autonomous operations like tripping drill pipe, connection
of drill pipes, and optimization of the general drilling procedure.

The master thesis will be looking at the part concerning the drilling procedure. Specifically, it will
consider what AkerBP has called an Autodriller, which is meant to provide the driller the ability
to automatically control the drilling operations. However, this thesis assumes that the Autodriller
interaction framework is in place, thus it only concerns the actual control problem.

Figure 1.2: Illustration of robot setup on Valhall IP. (Courtesy: Arnfinn Grøtte, AkerBP)

2



1.3 Problem Description

The master’s thesis is given in collaboration with AkerBP and is a continuation of a prior project
thesis. The task is to develop an MPC regulator for the drilling process and to test the MPC on
data from an actual drilled well. The drilled well data is made available by AkerBP. The task
objectives are

• Establish a model of the drilling process based on established sources, such as the Bourgoyne
and Young ROP-model.

• Formulate one or more MPC-problems based on different operating modes for the drilling
process

• Develop a methodology for updating the MPC-model from online measurements

• Test and simulate the MPC regulator with measurements from the available well data

The final goal of the MPC is to be able to efficiently control the drilling process according to a
specified operating mode without compromising safety, thus placing the driller in a supervisory
role.

1.4 Scope and Report Outline

The following delimitations were made to narrow the scope of the task and to best meet the task
objectives:

1. Only one MPC problem/formulation has been developed for one operating mode for the drilling
process. Specifically, Rate of Penetration mode was developed as it is one of the most essential
drilling parameters for cost efficiency and is likely to be the preferred operating mode under normal
drilling conditions.

2. In lack of proper simulation environment of a proper wellbore, a verification strategy was
developed to simulate the response from a ”real well”. The measurements from the available well
data, as stated in the last bullet point in the task objectives, are thus made from this simulated
”real well”. This is described more thoroughly in subsection 6.2.2.

Further, the thesis has a total of nine sections, including the introduction. Section 2 provides
theoretical background and covers the basics of the drilling process and the MPC. Next, section
3 presents the Bourgoyne and Young ROP-model and parameter estimation techniques. How this
model can be applied to the MPC and the derivation of an MPC problem is given in section 4.
The software used and how the drilling data provided by AkerBP were structured and handled
are presented in section 5. Implementation, results, and discussion is given in section 6, 7, and 8,
respectively. Lastly, a conclusion is drawn, and suggestions on future work are given in section 9.
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2 Theoretical Background

This section provides necessary theory to understand some of the chief concepts regarding the
drilling process. Further, the basics of model predictive control is covered.

Note that most of the theoretical background, except for subsection 2.1.5 (which is new), was found
through a literature review conducted in the specialization project (Kommedal [2020]) as well as
information shared by AkerBP, and is reproduced and elaborated where necessary.

2.1 The Drilling Process

2.1.1 Drilling Platform Types

In offshore drilling there exists several types of drilling rigs, which can be divided into fixed or
floating rigs. When drilling at modest depths, it is usually preferable with fixed rigs, like the jacket
rig illustrated in Figure 2.1 (a). This yields stable operations, even in hard weather conditions.
As for deepwater operations, the floating rigs like the one depicted in Figure 2.1 (b) is required.
Naturally, these will be more affected by weather conditions. They typically utilize a technique
called dynamic positioning which allows the rig to maintain a stationary position in the sea,
regardless of waves and currents, by active control of a set of thrusters located on the hull of the
floating rig (King [2020]). However, the floating rig is still subjected to heave motions, meaning
that it fluctuates vertically due to the waves. Nikoofard et al. [2013] shows how this motion can
create a significant change in the pressure in the annulus, which is the void between the drill string
and the walls of the drilled open hole or casing (see Figure 2.2), as a result of the drill string
fluctuating vertically in the well. They used MPC to improve the attenuation of the heave motion.

However, the Valhall IP platform is a jacket platform, and is therefore not subjected to these
motions. This means that the MPC developed in this thesis does not have to consider such
vertical fluctuations.

(a) Valhall IP, AkerBP - Jacket platform
(Source: Norsk Oljemuseum)

(b) DSS-38, Keppel - Semisubmersible Rig
(Source: Rigzone)

Figure 2.1: Jacket Rig vs. Floating Rig
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2.1.2 Setup of a Jacket Platform

A simplistic illustration of a typical setup of the drilling process on an offshore jacket platform is
given in Figure 2.2:

Drawwork

Top drive

Derrick

Drill stringCasing

Casing shoe
Annulus

Bottom Hole Assembly
(BHA)

Drill bit

Open hole section

Riser

qp

Blowout preventer
(BOP)

Mud pumps
Rotating Control Device

(RCD)

qchoke

qbpp

Back pressure pump

NB!
RCD is not
present in
conventional drilling

pspp

Figure 2.2: Typical setup of an offshore jacket platform. (Illustration adapted from: Stamnes
[2011])

Drawworks

Located on the rig floor, one can see the drawworks. This is a large-diameter steel spool that is
used to reel in and out a drilling line attached to the top drive. To ease the load of the drawworks,
the drilling line is threaded through something called a traveling block. This is a multi-sheave
pulley system that mechanically enables heavy loads like the drill string to be lifted.

Top drive and mud pumps

The top drive is the machinery that applies rotary motion to the drill string. It moves verti-
cally along the derrick when it is lowered and hoisted by the drawworks. While drilling, a fluid
called drilling mud, further elaborated in subsection 2.1.3, is continuously pumped through the top
drive and further down the drill string by mud pumps.
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Drill string, BHA, and drill bit

Attached to the top drive is the drill string. It consists of a series of hollow steel drill pipes,
each at approximately 14m at Valhall IP. In the last section of the drill string, one can find the
Bottom Hole Assembly (BHA) before the drill bit at the very end. The BHA is a series of tools
used for logging, steering, testing, and completion. All data regarding the condition of the wellbore
usually is collected here. The drill bit is the component that transfers torque from the drill string
to the bottom of the open hole section of the wellbore. Today, it is normal to use Polycrystalline
Diamond Compact (PDC) bits, which are hard material bits designed to efficiently dig into the
wellbore.

Riser, BOP, casing

The riser, Blowout preventer (BOP), and the casings are all considered safety barriers when drilling
a well. These are supposed to prevent hazardous situations on the rig surface and avoid contam-
ination of surrounding fauna. Located on the rig surface is the BOP, which essentially is a large
safety valve. If the rig makes use of a Rotating Control Device (RCD), the BOP will be located
beneath. It seals the well in uncontrolled situations, such as when there are severe erratic pres-
sures or unexpectedly large volumes of fluids are flowing into the annulus from the surrounding
formations (called a formation kick). The safety barrier that encloses the drill string between the
BOP and the rig surface is called a riser. It ensures insulation between the fluids coming from the
wellbore and the surrounding seawater. Lastly, the safety barrier between the wellbore and the
annulus is called casing. These are large-diameter steel pipes, made to withstand the load from
the surrounding formation movements.

Rotating Contol Device, choke, and back pressure pump

Subsection 2.1.4 introduces three different drilling techniques, where the main differences are how
they utilize pressure control. Two of these, namely Underbalanced Drilling (UBD) and Managed
Pressure Drilling (MPD), are dependant on a RCD, back pressure pump, and a choke. These tech-
niques require that the circulation system, shown by the arrows in Figure 2.2, are closed against the
atmosphere. The RCD allows the drill string to rotate and move vertically while ensuring a closed
circulation system. The choke and the back pressure pump actively control the well’s pressure,
further elaborated in subsection 2.1.4. Note that the RCD, choke, and back pressure pump are
not present when using the third drilling technique, namely conventional drilling. In this case, the
circulation system is open to the atmosphere on the rig surface.
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2.1.3 Drilling the Wellbore

A wellbore on Valhall is typically drilled in sections of approximately 28m, which is the length
of so-called stands, consisting of two drill pipes in series. After a section is drilled, the top drive
comes to a halt allowing a new stand of drill pipe to be connected. This is done by wedging the
drill string with three steel wedges, liberating the top drive. A new stand can then be connected
to the drill string before the top drive is attached, allowing the next section to be drilled.

While each section is drilled, a fluid called drilling mud is continuously pumped through the drill
string and tiny nozzles in the drill bit into the annulus and further up to the surface. This
circulation system consists of tanks with drilling mud located on the rig surface, which feeds the
mud pumps which again is circulating the mud. The drilling fluid may be composed of water-base
muds, oil-base muds, or gas (Caenn et al. [2011]) and is usually a heavy and viscous fluid mixture.
The main functions of the drilling mud can be listed as:

• Transporting the drilled cuttings, which is the crushed mass from the drilled borehole, to the
surface and thereby providing a clean hole

• Providing hydrostatic pressure to prevent the formations of the open hole sections from
collapsing into the wellbore

• Cooling, cleaning, and lubricating the drill bit and drill string

• Reducing friction between the drill string and the sides of the hole

• Used to assess the hole condition as loss or gain of drilling fluids may imply cracked formation
or formation fluids entering the wellbore (called a kick) respectively

• Forms a low-permeability filter cake that seals openings in the formation

Thus the drilling mud needs to be sufficiently viscous to carry the drilled cuttings, and it should
have a high enough density to apply sufficient hydrostatic pressure. Further exploration of the
drilling mud properties is beyond the scope of this thesis and will not be considered, however
Caenn et al. [2011] provides a good read on the subject.

After drilling an open hole segment, the casing is lowered into the open hole with the intent to
protect the surrounding area from drilling mud and the wellstream from outside contaminations.
It also provides stabilization, preventing the walls from collapsing into the wellbore. The outer
diameter of the casing is intentionally smaller than the surrounding open hole. When the casing
is set, this void is filled with cement. The cementing layer acts as an extra protective barrier as
well as keeping the casing in place.

Before placing the casing, it is necessary to pull the drill string out of the wellbore. This procedure,
as well as hoisting the drill string into the open hole, is called tripping. Tripping pipe in and out
should be done with care, as it creates what is called swab and surge pressures. It can be seen
as moving a piston out of or into a cylinder, it will create a pressure which can either crack the
formation or make it collapse into the wellbore resulting in losses or kicks respectively.
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2.1.4 Drilling Techniques and Pressure Control

As explained in the previous subsection, the drilling fluid is necessary to maintain stability in the
open hole sections of the wellbore. The hydrostatic pressure increases with the true vertical depth
(TVD [ft] shown in figure 2.4), and mud weight (MW [ppg]) with the following relation (Lapeyrouse
[2002]):

phyd = 0.052×MW × TV D (1)

If the drill string is at rest, and the drill fluid flow is stopped, the bottom hole pressure (BHP)
will equal the hydrostatic pressure. However, when the fluid flows, and the drill string rotates, the
BHP will also be dependent on the pressure loss caused by annular friction (Malloy et al. [2009]):

pbh = phyd + paf (2)

Note that paf , commonly referred to as Equivalent Circulation Density (ECD), represents the
pressure loss for both annular friction and due to any extra mass added by the transported cuttings.
Equation (2) represents the BHP for conventional drilling setup. Here the mud exits the top of
the wellbore open to the atmosphere before the mud is returned through a flowline to a mud-gas
separator and handling equipment for the solids and then it is returned to the mud pit (Malloy et al.
[2009]). Note that the way to control the BHP in conventional drilling is to adjust the MW which
affect phyd and controlling the mud pump flow rates which affects paf . The goal of conventional
drilling is to stay well within the pressure limits of the formation known as the pore pressure and
fracture gradient, illustrated in Figure 2.3. This is called overbalanced drilling, referring to the
BHP exceeding the formation pore pressure.

On the other hand underbalanced drilling represents a drilling technique to stay below the pore
pressure, hence bringing formation fluids (oil, gas, water) to the surface. This improves the rate
of penetration (ROP), which is the speed the drill bit penetrates the bottom hole surface, due to
reduced pressure against the open hole walls. This is where the RCD, choke, and back pressure
pump are used, to create back pressure which is used for more efficient control of the BHP. Equation
(2) can then be extended as following (Nauduri et al. [2009]):

pbh = phyd + paf + pbp (3)

Where pbp serves as the surface back pressure applied, yielding yet a control parameter for the
BHP.

Lastly, managed pressure drilling is a continuation of the UBD technology, but whereas UBD allows
formation influx to utilize the effectiveness of the increased ROP, MPD will try to avoid influx
by keeping the BHP above the pore pressure. An underlying risk of UBD is that it may cause
too much formation influx, resulting in downhole problems and consequently non-productive time
(NPT). The reduction of drilling costs due to less NPT is the main advantage of MPD. NPT is
often a result of problems around depths where there is a close proximity between pore pressure
and fracture pressure of the formation (Rehm et al. [2009]).

Møgster et al. [2013] showed how MPC could be used for MPD. Here the main mud pump and a
choke were used to actively control the BHP, while all the imposed constraints were obeyed.

In the Valhall field most wells have been drilled with conventional overbalanced drilling. But with
the increasing field complexity as explained in subsection 1.1, MPD has been used for some of the
recent drilling operations on Valhall.
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Figure 2.3: Drilling windows from well at Valhall field. The colored areas show approximately
the operating area for conventional drilling, MPD, and UBD. Note that the pressure gradients are
usually associated with TVD but is here expressed with measured depth.
(Illustration inspiration from: Malloy et al. [2009], Courtesy: Arnfinn Grøtte, AkerBP)
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2.1.5 Directional Drilling and Wellbore Trajectory

According to Inglis [2013], wells were drilled only in the vertical direction in the late 1800s. Later,
it was discovered that these ”vertical” wells actually deviated a whole lot from a straight vertical
line. Wells that deviate from this vertical line is called deviated wells. At first, deviated wells
were considered to be a disadvantage as it meant more footage required to be drilled to reach the
desired depth and more wear and tear on the drill pipes due to curvy paths. Around the 1930s,
the first deliberately deviated wells were drilled, today known as directional drilling. Inglis [2013]
lists some of the applications for directional drilling as

• Sidetracking
Suppose that a part of the BHA is stuck in the bottom of the well. Then a sidetrack can be
drilled, using a downhole motor to deflect the BHA, allowing for a new path to be drilled.

• Avoiding geological problems
Certain areas of the formation may have geological properties, which are desirable to avoid.
This can be seen as an obstacle between the rig and the target location, as illustrated in
figure 2.4.

• Controlling vertical holes
If the goal is to drill a straight vertical well, directional drilling can be used to assure that
any deviation is minimized.

• Offshore development drilling
When drilling offshore, as opposed to land-based drilling, drilling vertical wells from individ-
ual platforms is very expensive. Instead they utilize directional drilling to several holes from
the same fixed platform, as seen in figure 1.1 (b).

• Horizontal drilling
For thin oil column reservoirs, meaning that the height of the formation containing the oil is
small, a horizontal well may be advantageous to increase the platform’s drainage area.

The wellbore path can be described by the parameters shown in figure 2.4. The Measured Depth
(MD) represents the wellbore’s total depth, that is, the length of the drill string when the drill
bit is at the bottom of the well. In comparison, TVD is the vertical depth of the wellbore. The
inclination angle, I, is the angle at which the wellbore deviates from a straight vertical line at the
point it is measured. Lastly, the azimuth angle, α, is the deviation between the measured point
and the true or magnetic north.

TVD

Target

MD

North

East

Target

α

I

I - Inclination Angle

α - Azimuth Angle

Vertical Profile of Well Horizontal Profile of Well

Surface

Obstacle

Figure 2.4: A vertical and horizontal profile view of the well showing the difference between TVD
vs. MD, and inclination vs. azimuth angle (Illustration adapted from: Inglis [2013])
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2.1.5.1 Well Surveying

To determine the drill bit’s location and orientation and thus a ”snapshot” of the wellbore trajec-
tory, well surveying is done regularly. Surveying instruments are then used to measure inclination
and azimuth angle at various depths, using measurement while drilling (see subsection 2.1.6). The
length between the points of surveys, usually called survey stations, varies over the well’s different
sections. For critical sections, such as the start of the well or sections with much curvature, the
survey stations may have intervals of approximately 12m. For straight-line sections, every second
or third drill pipe interval may be sufficient (Farah [2013]).

According to Bourgoyne et al. [1991] there are 18 or more techniques to calculate the wellbore
trajectory between each survey station. These can be divided into two groups: those who use
straight-line approximations and those who assume that the wellbore exists of curved segments.
Three of these techniques are covered in the following three subsections. Further, figure 2.5 il-
lustrates the main difference in the performance of the presented techniques in calculating the
trajectory between survey stations S1 and S2.

2.1.5.2 Tangential Method

The tangential method, being amongst the simplest of the survey calculation methods, uses the
inclination and azimuth angle at survey station S2 and assumes constant angles over the whole
length between the survey stations ∆MD. This yields the equations

∆N = ∆MDsin(I2)cos(α2)

∆E = ∆MDsin(I2)sin(α2)

∆TV D = ∆MDcos(I2)

(4)

This method is subject to substantial errors if the inclination and azimuth angles are different at
the two survey stations, depending on the length between each survey station. It should therefore
not be used, unless the length between the survey stations are no longer than the length of the
survey tool (Farah [2013]).

2.1.5.3 Angle Averaging Method

To cope with the errors that the tangential method yields, by only considering the angles of the
next survey station, the averaging method utilizes both survey stations’ angles. It uses the average
of the angles over the length ∆MD, resulting in the equations

∆N = ∆MDsin

(
I2 + I1

2

)
cos

(
α2 + α1

2

)
∆E = ∆MDsin

(
I2 + I1

2

)
sin

(
α2 + α1

2

)
∆TV D = ∆MDcos

(
I2 + I1

2

) (5)

It is shown in Bourgoyne et al. [1991] that this method yields a considerably less error than the
tangential method. However, it still uses a straight line approximation to calculate the trajectory
between the two survey stations. This will result in a deviation from the actual wellbore path in
between the survey stations, as illustrated in figure 2.5, if the azimuth and inclination angle have
changed considerably from S1 to S2.
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2.1.5.4 Minimum Curvature Method

The minimum curvature method developed by Taylor and Mason [1972] accounts for the curvature
of the wellbore path instead of the tangential and angle averaging methods straight-line approxi-
mation approach. The method uses the following equations to describe the change of position

∆N =
∆MD

2
[sin(I1)cos(α1) + sin(I2)cos(α2)]RF

∆E =
∆MD

2
[sin(I1)sin(α1) + sin(I2)sin(α2)]RF

∆TV D =
∆MD

2
[cos(I1) + cos(I2)]RF

(6)

where

RF =
2

β
tan

(
β

2

)
β = cos−1

(
cos(I2 − I1)− sin(I1)sin(I2) [1− cos(α2 − α1)]

) (7)

Here RF is a ratio factor between the straight line segments S1B + BS2 and the curved line
segments S1Q+QS2 and can be derived from geometrical relations between S1, S2, O, B, and Q
which is shown in figure 2.5. To avoid singularity in RF , as β → 0, RF is set to equal one for
β < 0.25 (Bourgoyne et al. [1991]). Further, β represents the overall angle change of the drill pipe
between the two survey stations.
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Figure 2.5: Calculated paths of tangential, angle averaging, and minimum curvature method
compared to the actual wellbore path between two survey stations (Illustration adapted from:
Farah [2013])
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2.1.6 Measurement and Logging While Drilling

There are two measurement techniques typically used to evaluate the drilling conditions downhole.
Measurements While Drilling (MWD) typically refers to the measurements regarding the wellbore
geometry and trajectory. It yields the measurements required to evaluate the wellbore placement.
Logging While Drilling (LWD) yields the measurements for evaluating formation and environmental
conditions, like formation porosity, density, and resistivity, to mention a few. For the sake of
simplicity, M/LWD will be used as a common name for both of them. A literature survey done by
Pastorek et al. [2019] covers the capabilities and limitations of data collection equipment today.
One of the tables presented yields the most commonly collected data for both surface and downhole
tools in drilling operations:

Surface Data Downhole Data
Mud Data Pit volume N/A

Mud temperature
Mud pressure
Mud weight
Pump strokes

Well Data Temperature Temperature*
Pressure Pressure
Gas measurement

Directional Data Inclination*
Azimuth*

Drilling Mechanics RPM RPM*
Weight on bit Weight on bit
Torque Torque on bit
Bending moment Bending moment
Rotary torque Downhole vibration*
Hook load
ROP

Geological Data Cuttings analysis Density*
Porosity*
Resistivity*
Gamma*

Table 1: Commonly collected data from M/LWD tools (Pastorek et al. [2019])

While most of the measurements are typically done on the rig surface, the M/LWD measurements
yield the downhole data, which best represents the wellbore condition.

Note that the most common measurements downhole is marked with (*). Another important
remark for the M/LWD technology is that it might be limited by the area of operation. In deep
wells subjected to temperatures above 150oC, the M/LWD tools may not be applicable due to the
equipment’s temperature limitations (Pastorek et al. [2019]).
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2.1.7 Data Transfer

Real-time drilling data will be crucial to optimize the drilling process. The data transmission
techniques are referred to as telemetry and can be done by wire or by wireless techniques. Telemetry
is the process of transmitting measured data from a remote location in a suitable form to the surface
(Schlumberger). Wired telemetry is typically done by fiber or cable incorporated in the drilling
pipes and yields enhanced bandwidth. Wireless technologies encompass electromagnetic telemetry,
acoustic telemetry, or pulsing in the mud (Shao et al. [2017]). An extensive literature review of
mud pulse telemetry was done by Mwachaka et al. [2019], where the characteristics and capabilities
of different communication technologies are compared. They presented the following table:

Features Electromagnetic Acoustics Mud pulses Wired drill pipe
Max. transm. data rate (bps) 10 20 20 57600
Maximum depth (meters) 5500 3700 12200 Unlimited
Data quantity Medium Low High Very high
Signal attenuation High High Medium N/A
Signal interference High Medium Medium Low
Costs Medium Medium Low High

Table 2: Comparing different M/LWD telemetry technologies (Mwachaka et al. [2019])

Table 2 shows the main differences by the most commonly used M/LWD telemetry technologies.
Note how M/LWD by electromagnetic and acoustic telemetry only is applicable for depths less
than 5500 and 3700 meters, respectively. They are also subjected to substantial signal attenuation
and interference and are thus seldom used compared to M/LWD by mud pulsing or wired pipe.

While M/LWD by wired drill pipe is superior to mud pulsing in maximum transmission data
rate, depth, and data quantity, it comes with a far greater maintenance cost. Thus mud pulsing
telemetry has been extensively used due to simple operations and low costs.

Edwards et al. [2013] summarized BP’s wired pipe trials from ten wells at five different locations
between 2007 and 2010. Some of the apparent benefits of wired pipe were listed; Greater visibility
of the wellbore allows measurements along the drill string and enables improved tools in the BHA
with higher bandwidth requirements. They also state that while ordinary mud pulse typically
updates the downhole parameters every two minutes at the rig surface, the wired pipe telemetry
allows for updates every two seconds. Thus wired pipe telemetry might be required to provide an
adequate amount of data to the MPC.
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2.2 Model Predictive Control

The first use of Model Predictive Control strategies originates back to the late seventies. It has
been applied in different fields as the chemical process industries, for robotic control, and within the
cement industry, to mention a few (Camacho and Bordons [2007]). MPC makes use of a model of
the process to predict future outputs within a finite time horizon, using an optimal control strategy
to minimize an objective function. As seen in Figure 2.6, an open-loop optimization problem is
solved at each timestep t, which yields a sequence of predicted optimal control signals ut. Further,
it applies the first control signal, ut′ , from this calculated sequence to the plant. This is all done
while satisfying a set of constraints that is formulated by the optimization problem.

Almost every control problem imposes constraints; limitations in actuators, safety limits of the ap-
plications such as max pressure, temperature or velocities, or just physical limitations like pushing
a gas pedal on the car to the bottom (Mayne et al. [2000]).

Note that in the literature, the input variables are normally referred to as manipulated variables
(MV), output variables (states) which are going to be controlled as controlled variables (CV).
These are further defined in section 4.

Figure 2.6: Illustration of the MPC algorithm (Foss and Aksel N. Heirung [2016]). The bottom
graph shows the plant state and input signal for past, current and future time steps. The upper
graph shows the open loop solution to the optimization problem at current time step t’ until a
finite time horizon t’ + N (also called prediction horizon), whereas the first control input is applied
to the plant
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The MPC strategy utilizes an old method of control design, as it essentially solves a standard
optimal control problem, but it differs from other controllers due to the on-line solving of the
problem at each time step whereas previous controllers used off-line feedback providing optimal
control for each state (Mayne et al. [2000]). Some of the advantages and drawbacks of the MPC
can be summarized as (Camacho and Bordons [2007]):

+ Can easily deal with multivariable cases, despite coupling between the states

+ Has the ability to deal with constraints

+ Solves an optimal control problem

+ Relatively intuitive control strategy and tuning parameters, with an easy-to-implement control
law

− The derivation of the control law is more complex than for example the PID control

− For a dynamic process, all the computations must be carried out at every sampling time,
which imposes high computational load.

− Requires a model representing the most important dynamics of the process to make sufficiently
accurate predictions.

Note, however, that the MPC should be updated using available online measurement data. Even
the most precise model of the process might yield inaccurate predictions over time without any
measurement updates. In contrast, a very simplistic model might be sufficient if it is frequently
updated with measurement data.
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2.2.1 Mathematical Formulation of the MPC Problem

As described in subsection 2.2 the MPC solves an online dynamic optimization problem at each
timestep, applying the first optimal control input to the plant. This can be mathematically for-
mulated, as done by Foss and Aksel N. Heirung [2016], in the following way:

min
z∈Rn

f(z) =

Np−1∑
t=0

1

2
XT
t+1Qt+1Xt+1 + dTxt+1Xt+1︸ ︷︷ ︸

Penalizing the CV

+
1

2
UTt RtUt + dTutUt︸ ︷︷ ︸
Penalizing the MVs

+
1

2
∆uTt R∆t∆ut︸ ︷︷ ︸
Penalizing the

MVs rate of change

+ ρTε +
1

2
εTSε︸ ︷︷ ︸

Penalizing
constraint violations

(8)

subject to

xt+1 = g(xt, ut), t = 0, . . . , Np − 1 (9a)

x0, u−1 = given (9b)

ε ≥ 0 (9c)

xlow − ε ≤ xt ≤ xhigh + ε, t = 0, . . . , Np (9d)

ulow ≤ ut ≤ uhigh, t = 0, . . . , Np − 1 (9e)

−∆ulow ≤ ∆ut ≤ ∆uhigh, t = 0, . . . , Np − 1 (9f)

where

zT = (xT1 , . . . , x
T
Np , u

T
0 , . . . , u

T
Np−1, ε) (10a)

n = Np · (nx + nu + nε) (10b)

Xt+1 = xt+1 − xreft+1 (10c)

Ut = ut − ureft (10d)

∆ut = ut − ut−1 (10e)

Here the objective function to be minimized, namely f(z), is a quadratic objective function
subjected to the constraints shown in 9a-9f. The variables, z, that are found by the chosen
solver to minimize this function is called decision variables. Note that there exists a wide variety
of dynamic optimization formulations and that this specific formulation is chosen to address some
important properties. The objective function contains the matrices Qt+1, Rt and R∆t which is
always positive semidefinite and symmetric, for a convex objective function (see subsection 2.2.3).
These matrices are called weighting matrices, containing the relative weighting of importance be-
tween each CVs/MVs in the diagonals, and is further elaborated in subsection 2.2.2. The first
constraint in this formulation, equation 9a, represents the model of the process and can either be
linear- or nonlinear dynamics.

Also worth noting is the two last terms of the objective function, and the added ε in 9d. The vector
ε contains what is called slack variables, and is important in order to ensure the feasibility of the
optimized solution at all times. In certain situations, the only way to find a feasible solution to
the optimization problem requires a violation of one or more constraints. If all the constraints are
hard, meaning that no violation is allowed, then in such situations there exists no feasible solution
resulting in an error and the MPC will fail. However, by allowing a violation, the MPC is able to
find a solution. The constraints containing the slack variables are called soft. The last two terms
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in the objective function are added to penalize the violation of the soft constraints. Note that
usually only one of these terms, that is either the linear or the quadratic term, is used at a time
in the objective function. Further elaboration of sizes and structures of the variables and matrices
in the optimization problem can be found in Foss and Aksel N. Heirung [2016].

Further, equations 10c-10d yields the error variables of the states and inputs. Here xreft+1 is the
desired states at timestep t + 1, while xt+1 represent the true states given by the chosen model
g(xt, ut). Similarly, ureft is the desired input at timestep t, with ut representing the true input.
∆ut represents the rate of change of the input.

It is usually desirable to define a terminal set in the MPC formulation. The terminal set is an
essential component when doing stability analysis of the MPC. However, due to the wellbore’s
continuously changing formation and conditions while drilling, such a set may be challenging to
implement consistently. Thus, a more comprehensive simulation approach may be necessary to
ensure that the MPC will be stable for the whole operation.

2.2.2 MPC Design Parameters

Selecting the proper design variables on the MPC is important to achieve a good performance, but
it will also affect the computational complexity of the MPC algorithm. Thus serving as a trade-
off between the added complexity and the performance of the controller. Bemporad et al. [2005]
has made a user’s guide to Matlab’s Model Predictive Control Toolbox, suggesting recommended
practices to choose the design parameters of the MPC. Some of which are listed below:

Sample Time
It is normal to choose the sampling time Ts initially and keeping it constant while tuning the rest
of the parameters. Smaller Ts will yield a higher rejection of unknown disturbances at the cost of
a higher computational effort. The prediction horizon duration will be equal to Np × Ts, where
Np is the prediction horizon as shown in figure 2.6. The appropriate value of Ts will be highly
dependent on the system dynamics, and bandwidth requirements for the specific application. As
an example, in process control with the MPC acting as a supervisory controller the sample time
might be in the area of minutes, while other applications might require Ts < 1s.

Prediction Horizon
An important feature of the MPC is its predictive capabilities. How far into the ”future” the
controller should look, is decided by the prediction horizon Np. Just like the sample time, for most
applications, it should be chosen early and kept constant in the design process. If the prediction
horizon is too short, the controller loses its predictive capabilities, which might lead to control
actions being applied too slowly. This in turn can lead to violations of constraints and infeasible
solutions. On the other hand, a too long prediction horizon will lead to high computational efforts,
and can also lead to unnecessarily large violations of the constraints. It should therefore be chosen
just large enough to cover the significant dynamics of the system.

Control Horizon
The optimal control sequence, ut, as depicted in the top graph of figure 2.6 is the predicted open-
loop solution of the MVs which will yield the predicted evolution of xt shown in the same graph.
Note that in this illustration the control horizon, which represents the number of MV moves which
should be optimized at each control interval, equals the prediction horizon. However, only the
first MV move will be used and the rest are discarded. Hence it is normally beneficial to let the
control horizon be sufficiently smaller than the prediction horizon (but larger than one) to avoid
unnecessary computational expenses. Note also that the mathematical formulation in subsection
2.2.1 does not include a separate control horizon, and that it might be reformulated if need be.

Constraints
Usually, the constraints of an optimization problem are dictated by the application. As mentioned
in subsection 2.2 these involve physical limitations on the actuators, safety limits of states et cetera.
Yet there are some important considerations to take. Physical limitations should be included on
all MVs as hard constraints. For the CVs, one should try to minimize the number of constraints
to minimize the computational complexity of the optimization problem. The CV constraints may
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possibly be softened, if the constraint is not critical in terms of safety or for other reasons, in order
to ensure feasibility as discussed in subsection 2.2.1.

Weights
The relative importance of each CV and MV can, as stated in subsection 2.2.1, be expressed in
the weighting matrices Qt+1, Rt and R∆t. Hence these are the primary tuning parameters in our
control problem. Note that whether or not these matrices are time-dependent depends on the
application. Consider an optimization problem, as stated in equation (8), with two error states
Xt+1 = [X1,t+1 X2,t+1]T and the following time-invariant Q-matrix:

Q =

[
1 0
0 10

]
(11)

Based on this matrix one can see that the square of X2,t+1 is weighted ten times more than the
square of X1,t+1. If we look at these terms isolated from the rest of the optimization problem, it

means that deviations in x2,t+1 from xref2,t+1 will be penalized more then deviations in x1,t+1 from

xref1,t+1. This will, combined with the R- and R∆-matrix, decide how much the CVs and MVs will
be penalized as a function of their respective deviations.

2.2.3 Convexity vs. Non-Convexity

A critical factor for how fast the MPC solves the optimization problem is whether the problem
is convex or not. Both sets and functions may be convex. According to Nocedal and Wright
[2006], a set S ∈ IRn is convex if any straight line connecting two points in S lies entirely within S.
Mathematically this can be expressed as if for any two points x ∈ S and y ∈ S then αx+(1−α)y ∈
S, ∀α ∈ [0, 1], and graphically expressed as in figure 2.7. It is further specified that a function is
convex if for any two points x ∈ S and y ∈ S, where S is a convex set, and

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀α ∈ [0, 1] (12)

is satisfied. To summarize, a constrained optimization problem is convex if it satisfies the three
conditions:

1) The objective function is convex

2) The equality constraints are linear

3) The inequality constraints are convex2

where the set of constraints 2-3 yields a convex set. The most significant feature of convexity
is that any local solution is also a global solution, which is vital to reduce the time it takes to
solve the optimization problem. This is not the case for a non-convex problem; thus, solving
these optimization problems efficiently is much more complex and requires more sophisticated
algorithms.

S1 S2

Convex set Non-convex set

x

y

y

x

Figure 2.7: Convex set S1 vs. non-convex set S2

2Note that in Nocedal and Wright [2006] it says concave. This is because they have defined the inequality
constraints as ci(x) ≥ 0, instead of the more common definition of ci(x) ≤ 0, and that the negated version of a
convex function is concave.
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3 Model and Parameter Estimation

This section, except for subsection 3.1.3 (which is new), has been reproduced and elaborated from
Kommedal [2020].

As mentioned in subsection 2.2, the MPC requires a model of the process to make sufficient
predictions. An extensive literature study was conducted by Eren and Ozbayoglu [2010], where
the most important contributions to optimize drilling parameters in real-time during the drilling
operation were addressed. They stated that one of the most significant contributions was made by
Bourgoyne and Young [1999]. They performed a multiple regression analysis on historical drilling
data in order to determine the optimal WOB, top drive RPM and bit hydraulics. Sui et al. [2013]
further developed a moving-window method for the multiple regression analysis, considering only
the most recent historical drilling data. Further, they employed an MPC strategy to optimize the
ROP using the Bourgoyne and Young model (B&Y-model). Hence, the B&Y-model seems to be a
promising prediction model for the MPC and will be further elaborated in this section.

3.1 Bourgoyne and Young ROP-Model

Bourgoyne and Young [1999] developed a mathematical drilling model that takes formation strength,
formation depth, formation compaction, the pressure differential across the bottom hole, bit di-
ameter and weight, rotary speed, bit wear, and bit hydraulics into account. ROP can be defined
as

ROP (t) =
dh

dt
(13)

where dh/dt is the change of bit depth h with small change in time t. The following model was
then proposed by B&Y:

R̂OP (t) = Exp(a1 +

8∑
j=2

ajXj) (14)

where Exp(z) is the exponential ez. An alternative formulation emphasizes the individual contri-
bution from all the drilling effects included in the model as exponential functions:

R̂OP = f(1)f(2)...f(8) =

8∏
j=1

Exp(ajXj) (15)

The model incorporates the effect of the drilling parameters, Xj , on the modeled ROP. Further
elaboration of the drilling parameters are found in Table 3. An explanation of each individual
contribution, f(j), ∀j = 1, ..., 8 in equation (15) is given in subsection 3.1.1. The constants
aj , ∀j = 1, ..., 8 can be found through parameter estimation techniques, which is further elaborated
in subsection 3.1.2 and 3.1.3. The coefficients definitions are given in table 5.
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Parameters Description Sub-equations Effect description
h True vertical depth of bit X1 = 1 Dummy value
h0 Point of normalization X2 = h0 − h Vertical depth
gp Pore pressure gradient X3 = h0.69(gp − gp0) Formation compaction
gp0 Point of normalization X4 = h(gp − paf ) Differential pressure

paf Equivalent circulation density X5 = ln(w/dB−w0/dB
4−w0/dB

) Bit type and weight

w WOB X6 = ln(r/r0) Rotary speed
w0 Threshold for bit weight X7 = −H Bit tooth wear

dB Bit diameter X8 = ln(
Fj
Fj0

) Bit hydraulics

r RPM
r0 Given RPM Fj = 0.01823Cdq

√
ρ∆pb

H Fractional tooth height worn away ∆pb = 8.311×10−5ρq2

C2
dA

2
T

ρ Mud density
q Flow rate
Fj Hydraulic impact force
Fj0 Point of normalization
∆pb Pressure drop across the bit
Cd Discharge coefficient
AT Total bit nozzle area

Table 3: Drilling Parameters and ROP-model parameters adapted from Sui et al. [2013] and
Bourgoyne et al. [1991]

3.1.1 The Effect of f(j), ∀j = 1, ..., 8 on the ROP-Model

Eren and Ozbayoglu [2010] lists the effects of each exponential function f(j), ∀j = 1, ..., 8 as
formulated in equation (15), which forms the basis for the following subsection.

The first, f(1), represents the formation strength, also known as the formation’s drillability. Note
that only the coefficient a1 affects the drillability, as X1 is just a dummy value that always equals
one. a1 includes the effect of formation strength and other drilling parameters that are not a part
of the mathematical model, such as drilled cuttings, equipment efficiency, et cetera.

Furthermore, f(2) and f(3) incorporates the effect of formation compaction, resulting from com-
pressed sediments, which further increase the formation strength. f(2) yields the impact of what

is called normal compaction, which assumes an exponential decrease in R̂OP as a function of
increasing depth. Abnormal pressures in the formation may produce further compaction and are
expressed through f(3).

As explained in subsection 2.1.4, a BHP close to or below the pore pressure gradient, will yield a
higher ROP . This is essentially the effect that f(4) yields. Hence, if the ECD is much higher than

the pore pressure, f(4) will yield a low contribution to the R̂OP .

The exponential function f(5) represents the contribution from the WOB and includes the bit
diameter. Note that Exp(aln(b)) = ba, implying that f(5) yields a contribution proportional to

(w/dB)a5 to the R̂OP as a function of the WOB and the bit diameter. X ′5s specific formulation
is normalized for 4000lbf/inch ≈ 714.32kg/cm per bit diameter. Further, w0/db represents the
minimum WOB required for the bit to dig further into the wellbore. According to Bourgoyne
et al. [1991] this WOB threshold is often very small, and normally negligible unless the formation
is relatively hard.

Likewise, f(6) will yield a relation proportional to ra6 to the R̂OP . This function represents the
rotary speed RPM. The function will be normalized to equal 1 for a given RPM r0.

The function f(7) incorporates the effect of tooth wear on the R̂OP . If the bit wear is not of
significant size, a7 can be assumed zero and thus removed from the multiple regression analysis.
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The last function, f(8), models the bit hydraulics effect on the R̂OP . The jet impact force Fj
is the force that is produced by the flow of mud through the bit nozzles as it hits the bottom
hole. The discharge coefficient Cd is typically introduced since the rest of the equation, given by
Fj , assumes frictionless flow, which is not the case for real applications (Bourgoyne et al. [1991]).
Eckel and Bielstein [1951] found this coefficient experimentally and recommended a discharge value
of Cd = 0.95. Further, AT is the total area of the bit nozzles in the drill bit. It can be found by
AT = π

4(32)2 (N2
1 +N2

2 + ...+N2
n), where n denotes the number of nozzles and N denotes the nozzle

diameter expressed in 32nds of an inch (i.e. diameter of nozzle one is N1/32 in.). Note that this
function, f(8), is different from the one presented in Kommedal [2020]. However, in Bourgoyne
et al. [1991], it is shown that both these functions affect the ROP similarly and argues that the
choice of the impact force function is arbitrary.

3.1.2 Determining aj , ∀j = 1, ..., 8 Through Multiple Regression

In order to determine the exponent coefficients aj , ∀j = 1, ..., 8, specified in table 5, a multiple
regression analysis may be applied. The purpose of multiple regression is simply to find a linear
approximation that best represent the data that is being regressed. This subsection summarize
the multiple regression approach done by Bourgoyne and Young [1999].

By comparing the real ROP from equation (13) with the modeled ROP from equation (14) one get
the following equation:

dh

dt
= Exp(a1 +

8∑
j=2

ajXj) (16)

Applying the natural logarithm to both sides of equation (16) yields:

ln(
dh

dt
) = a1 +

8∑
j=2

ajXj (17)

Now we can define the residual error between the logarithmic of the actual ROP, ln(dh/dt), and

the model R̂OP given by the right hand side of equation (17). Defining rk for the kth datapoint:

rk = a1 +

8∑
j=2

ajXj − ln(
dh

dt
) (18)

The goal is to find a linear approximation which minimizes the residuals for n historical datapoints,
where n is some value greater than 8. Further, it is common to evaluate the square of the residuals.
This can be advantageous both as the sign of the residual can be neglected, and so that large
residuals (square of large deviations) will have a larger impact on the resulting linear approximation.
Hence, choosing a1 to a8 such that the squared of the residuals are at a minimum yields

∂
∑n
k=1 r

2
k

∂aj
=

n∑
k=1

2rk
∂rk
∂aj

=

n∑
k=1

2rkXj = 0, ∀j = 1, ..., 8 (19)
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By substituting for rk from equation (19) with right hand side of equation (18), a system of
equations are obtained which can be solved for a1 to a8:

a1n+ a2

n∑
k=1

X2 + a3

n∑
k=1

X3 + ...+ a8

n∑
k=1

X8 =

n∑
k=1

ln(
dh

dt
) (20a)

a1

n∑
k=1

X2 + a2

n∑
k=1

X2
2 + a3

n∑
k=1

X2X3 + ...+ a8

n∑
k=1

X2X8 =

n∑
k=1

X2ln(
dh

dt
) (20b)

a1

n∑
k=1

X3 + a2

n∑
k=1

X3X2 + a3

n∑
k=1

X2
3 + ...+ a8

n∑
k=1

X3X8 =

n∑
k=1

X3ln(
dh

dt
) (20c)

... (20d)

a1

n∑
k=1

X8 + a2

n∑
k=1

X8X2 + a3

n∑
k=1

X8X3 + ...+ a8

n∑
k=1

X2
8 =

n∑
k=1

X8ln(
dh

dt
) (20e)

Note that if any of the constants a1 to a8 is assumed known, the amount of equations to be solved
are reduced. Note also that the set of equations (20), will only have the coefficients aj as unknowns
and that Xj and ln(dh/dt) will be found as a sum of n historical data points. Hence, a system of
eight equations are to be solved for eight unknowns at most.

If the model in eq. (14) reflected the true rotary drilling process with a 100% accuracy, only eight
historical data points n would be needed. In reality, this is not the case. Bourgoyne and Young
found, through a sensitivity study of the multiple regression analysis, that both the number of
historical data points n and the range of values of the drilling parameters X1,...,X8 were important
in order to obtain reasonable estimates of aj , ∀j = 1, ..., 8. They presented the following table

Parameter Minimum Number of Minimum Number of
Range Parameters aj Data Points n

X2 2000 8 30
X3 15000 7 25
X4 15000 6 20
X5 0.40 5 15
X6 0.50 4 10
X7 0.20 3 7
X8 0.50 2 4

Table 4: Minimum data ranges recommended by Bourgoyne and Young [1999]

Hence the more parameters that are assumed to be known, meaning fewer parameters to be found
in the multiple regression analysis, the fewer historical data points can be used. The minimum
range of the parameters X2,...,X8 is the difference between the smallest parameter value and the
largest, which is used in the regression analysis. Bourgoyne and Young [1999] further argues that
if the drilling parameters, Xj , are close to constant over the regression interval, then aj are better
off estimated from values acquired from past drilled wells in the area. For some applications, they
had to combine results from more than one well to obtain reasonable ranges for Xj .
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3.1.3 Determining aj , ∀j = 1, ..., 8 Through Trust-Region Method

A dataset fulfilling the recommendations of table 4 may not always be obtainable. This may lead
to meaningless drilling coefficients when using multiple regression. Suppose, for example, that the
bit weight exponent, a5, were negative or zero. This would imply that increasing the WOB would
reduce the ROP or yield zero change in ROP, respectively. Reasonable ranges for the drilling
coefficients are given in Bourgoyne et al. [1991] and can be seen in the following table

Drilling Description Minimum Maximum
Coefficients

a1 Formation strength exponent 0.5 1.9
a2 Normal compaction exponent 0.000001 0.0005
a3 Under-compaction exponent 0.000001 0.0009
a4 Pressure differential exponent 0.000001 0.0001
a5 Bit weight exponent 0.5 2
a6 Rotary speed exponent 0.4 1
a7 Tooth wear exponent 0.3 1.5
a8 Hydraulic exponent 0.3 0.6

Table 5: Drilling coefficients and their reasonable ranges as proposed by Bourgoyne et al. [1991]

In order to ensure that the drilling coefficients are within reasonable ranges, Bahari and Baradaran Seyed
[2007] used a trust-region approach to estimate the coefficients. The trust-region method allows
for upper and lower bounds on the coefficients to be specified. An explanation of the algorithm is
given, with the notation and an elaboration of Nocedal and Wright [2006].

The basic idea of trust region algorithms is to use a constructed model function that is easy to
evaluate and behaves similarly, in a small neighborhood, to the objective function one wants to
minimize. Suppose one wants to minimize the objective function f(x), which represents a curve-
fitting problem to minimize the residuals as in subsection 3.1.2. The model function around an
iterate xk can then be defined, based on a Taylor-series expansion of f . Nocedal and Wright [2006]
defines such a model function as

mk(p) = fk + gTk p+
1

2
pTBkp (21)

where fk = f(xk) is a scalar, gk = ∇f(xk) is the gradient vector, and Bk is a symmetric matrix of
the true hessian ∇2f(xk) or some approximation of it. Further, p is the step towards the minimizer.

Remember that this model function will only be a reasonable approximation within a small region.
Hence, the algorithm must minimize the model function iteratively until it is close enough to a
solution of f(x). The minimization problem performed at each iterate is given as

min
p∈Rn

mk(p) = fk + gTk p+
1

2
pTBkp s.t. ||p|| ≤ ∆k (22)

where ∆k is the region where the model is trusted to be an adequate approximation of f(xk), i.e.
the trust region. Here || · || is the Euclidian norm. Therefore, the constraint in this minimization
problem will ensure that the solution is within a ball of radius ∆k.

At each iteration, the size of the trust-region radius should be evaluated. If the step, p, that solves
eq. (22) produces a sufficient decrease in f , that is f(xk + p) < f(xk), the trust region radius ∆k

can be increased.
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However, if it yields an unsatisfactory decrease, ∆k should be reduced (Moré and Sorensen [1983]).
To evaluate the validity of the model function relative to the actual function, given the step pk,
the ratio ρk is defined as

ρk =
actual reduction

predicted reduction
=
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(23)

Note that a ratio ρk near one means a good correspondence between the modeled function and
the actual function, suggesting that the model is a good approximation within the specified trust
region. However, if ρk is close to zero or negative, the step should be rejected, and the trust region
shrunk.

A general algorithm can then be given

Algorithm 1: Trust Region (as given by Nocedal and Wright [2006])

Given ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈ [0, 1
4 ):

for 0,1,2,... do
Solve eq. (22) to obtain pk;
Evaluate ρk from eq. (23);
if ρk <

1
4 then

∆k+1 = 1
4∆k

else
if ρk >

3
4 and ||pk|| = ∆k then

∆k+1 = min(2∆k, ∆̂)
else

∆k+1 = ∆k

if ρk > η then
xk+1 = xk + pk

else
xk+1 = xk

Here ∆̂ is a maximum value for the trust-region, ∆0 is the initial trust-region, and η specifies a
minimum decrease in f as a fraction of the modeled prediction decrease.

One can see that if the ratio ρk is less than 1
4 , suggesting a low correspondence between the modeled

and actual function, the trust-region is shrunk. Note also how the trust-region is only increased
if the ratio is above 3

4 , and if the step length ||pk|| equals the radius of the trust-region. There
is no need to increase the trust-region if the step length is well within its borders, as it does not
interfere with the progress of the algorithm (Nocedal and Wright [2006]).
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4 Model Predictive Control in Performinator

As previously stated, the Autodriller is supposed to allow autonomous control of the drilling
operation. The idea is to let the driller interactively select the drilling variable to be controlled
and choosing its desired value. The MPC should then drive the chosen variable to its reference
value while obeying limitations imposed by the application.

Kommedal [2020] presented four different operating modes; Rate of Penetration, Torque of Rotary
Drilling Equipment, Weight on Bit, and Mud Pump Standpipe Pressure mode. Each with its
corresponding control objectives and limitations. However, only the ROP mode is developed in
this thesis and is thereby reproduced and elaborated in subsection 4.1. Further, subsection 4.2
describes how a model can be developed to be used as a predictive model in the MPC. Here
subsection 4.2.1, 4.2.2, and a minor part of 4.2.4 is reproduced and elaborated, while the rest is
new. Lastly, subsection 4.3 shows how the quadratic program problem were derived for the MPC.

4.1 Rate of Penetration Mode and its Limits

In this mode, the ROP should be driven to its desired value which is chosen by the driller. If a
harder formation is encountered and the ROP is reduced, proper control actions should be taken
to maintain the ROP. This may involve increasing the WOB by reducing the amount of braking
by the drawworks and increasing the RPM of the top drive. However, the WOB and RPM should
at all times be maintained within the system safety limits.

In addition to the safety limits set by the driller, other limits apply to the ROP mode specifi-
cally. Firstly, the ROP will be highly restricted in terms of maintaining adequate hole cleaning.
If the ROP is too high, it will generate more cuttings than the mud can transport to the surface,
resulting in downhole problems and increased NPT.

Another limiting factor of the generated cuttings, assuming that the circulated mud can clean the
hole properly, is the rig surface’s cuttings handling capacity. In a report with the title handling
of cuttings in areas with vulnerable benthic fauna (Øfjord et al. [2012]), different technologies for
handling cuttings are addressed, as well as the regulations stated by the Norwegian law. Here it
is stated that cuttings generated from drilling using oil-based mud, which is the preferred method
on Valhall, cannot be released back into the seawater. Consequentially, a drill cuttings handling
system, is used on the rig surface on Valhall. When the drilled cuttings are returned to the rig
surface, it is separated from the mud on shale-shakers, which is vibrating screens where the mud
falls into mud pits. Next, in what is called a slurrification system, the cuttings are ground to a
slushy mass and added lubricant oil before it is re-injected into ”waste” wells, or drilled cuttings
re-injection wells. The shale-shakers, the slurrification system, and the wells will all have capacity
limits. In some cases, tanker ships are used to transport the cuttings to shore and will be restricted
by their respective load capacity.

The flow inlet of the returned mud is directed to a header box, a small box mounted on the shale-
shakers used to distribute the mud to the screens evenly. A gas-trap is found in the header box,
where two gas sensors are present. One of these is an online infrared sensor measuring the gas
development trend in the returned drilling fluid. Hence, it will determine if the gas is increasing,
stable, or decreasing. The other gas sensor is a so-called chromatograph measurement. It yields a
more precise measurement of the total gas percentage, with each measurement taking up to two
minutes. These are crucial to limit the rig surface’s gas levels and thereby provide safety to the
personnel. Besides, there are two gas detectors located on the rig surface. If one of these sensors
measure 20% of Lower Explosive Level (LEL), which is the minimum level of a gas required to
enable combustion, an alarm is activated. If they both measure 20% of LEL, a production shutdown
sequence is activated. Consequentially, it might be necessary to reduce the drilling fluid flow rate
to limit the amount of gas returned, yielding limitation to the ROP.

The upper bound on the ROP can be delivered to the MPC by a product called Max ROP,
developed by one of AkerBP’s alliance partners Halliburton. This is a program which calculates
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the maximum achievable ROP based on the different safety and operational conditions as presented.

4.2 Using B&Y-model for Setpoint Control in ROP Mode

This subsection aims to explain how the MPC can utilize the B&Y-model to control the ROP. It
summarizes the development of a nonlinear model to be used in a nonlinear MPC suggested by
Sui et al. [2013], but presents an alternative approach named Successive Linearization based MPC
(SLMPC).

4.2.1 Moving Data Window Method for the Multiple Regression and Trust-Region
Method

When the coefficients aj , ∀j = 1, ..., 8 are calculated once, based on historical data from one
particular section of the well, it might yield insufficient ROP predictions for the ongoing drilling
operation. This due to the formation’s many layers with varying geological properties, where
different coefficients will best represent these differences. A moving-window strategy, illustrated in
figure 4.1, was proposed by Sui et al. [2013] to only include the most recent historical data. This
can be done by defining the data set at time t

Φ(t) = {dh
dt

(t−N), ...,
dh

dt
(t− 1), Xj(t−N), ..., Xj(t− 1),∀j = 1, ..., 8} (24)

with the fixed window size here being N . This will be the data set which will be used to calculate
the coefficients aj(t) with the methods explained in subsection 3.1.2 and 3.1.3 . Then the next
coefficients aj(t+ 1) is found using the data set Φ(t+ 1), aj(t+ 2) is found using the set Φ(t+ 2)
and so on.

Behind the moving-window proposition lies the assumption that the most recent data will yield the
best approximations of the current wellbore properties. Naturally, a varying sized window could
yield even better approximations. For example, a smaller sized window could better represent the
wellbore’s current conditions if the formation is very nonuniform (changing rapidly with increasing
depth). However, for the sake of simplicity, a fixed window size is assumed to be sufficient.

t-N t-N+1 t-N+2 t t+1 t+2

DATA

Data set Φ(t+ 2)

Figure 4.1: Fixed moving window. Red dots represents the data points.
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4.2.2 ROP Calculation

First, one can define the error between the real ROP and the modeled ROP at time t to be

e(t) =
dh

dt
(t)− R̂OP (t) (25)

Now using Eulers method on depth of bit h yields

h(t+ 1) = h(t) + ∆t(
dh

dt
(t)) (26)

where ∆t is the time step length. Note that one can now use equation (25) to substitute for dh/dt
in equation (26) resulting in the following equation

h(t+ 1) = h(t) + ∆t(R̂OP (t) + e(t)) (27)

This combined with an assumption that the error remains constant from t to t + 1 allows for the
following state space representation

x(t+ 1) =

[
f1(t)
f2(t)

]
=

[
h(t+ 1)
e(t+ 1)

]
=

[
h(t) + ∆t(R̂OP (t) + e(t))

e(t)

]
(28a)

y(t) = g(x(t), u(t), α(t)) = R̂OP (t) + e(t) (28b)

Note that R̂OP (t) incorporates all the inputs u(t) which should be used to control the ROP to
the desired setpoint, aswell as the time dependant effects aj(t), gp(t), paf (t), H(t), q(t) and ρ(t)
as given in table 3. In short, the state space can be rewritten as

x(t+ 1) = f(x(t), u(t), α(t)) (29a)

y(t) = g(x(t), u(t), α(t)) (29b)

Lastly, the time dependant vectors are given as:

x(t) =

[
h(t)
e(t)

]
, u(t) =

[
w(t)
r(t)

]
(30a)

α(t) = [aj(t), gp(t), paf (t), H(t), q(t), ρ(t)] (30b)

assuming that only the WOB, w(t), and the RPM, r(t), is controllable variables. A possible
extension to this formulation is to include the flow rate, q(t), in u(t), allowing yet another MV for
the MPC. It should be noted that Sui et al. [2013] includes a disturbance term de(t), associated
with fluctuations in e, in the formulation of f2(t) in state space given in (28). In this thesis it is
assumed to be incorporated in e as process noise, and is handled by the Extended Kalman Filter
described in subsection 4.2.4.
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4.2.3 Successive Linearization Based MPC

Sui et al. [2013] formulated a nonlinear optimization problem and solved it using nonlinear tech-
niques. An alternative approach is to linearize the nonlinear functions of the equations (29) in
order to formulate a quadratic optimization problem that satisfies the terms of convexity given in
subsection 2.2.3.

Linearization is often used to bypass the mathematical and computational complexity of nonlin-
earity. When linearizing the nonlinear model of the process around the current states, at each
time step, it is called successive linearization. Seki et al. [2004] used this technique to linearize a
nonlinear model before solving the optimization problem to control a chemical reactor. Another
example is Zhakatayev et al. [2017] which applied this technique to control variable stiffness actu-
ated robots. They showed that the SLMPC provided similar performance as the nonlinear MPC
while requiring less computation time.

A linear model can be used to approximate the nonlinear model for a small region around an
operating point. A way of doing such a linearization is given in Hovd [2009]. Consider a nonlinear
function p(x), x ∈ Rn. The change in p(x) due to a small change in x can be approximated by
the Taylor series expansion

p(x) = p(xop + δx) ≈ p(xop) +
∂p

∂x

∣∣∣∣
x=xop

δx+
1

2
δxᵀ

∂2p

∂x2

∣∣∣∣
x=xop

δx+ . . .︸ ︷︷ ︸
Higher-order terms

(31)

where xop is the point of linearization, called the operating point, and δx = x − xop represents
the deviation from the operating point. Further, |x=xop means that the derivatives are evaluated
at the operating point. When the deviation δx is sufficiently small, the higher-order terms will be
negligible and can be ignored. This yields the linear approximation

p(x) ≈ p(xop) +
∂p

∂x

∣∣∣∣
x=xop

(x− xop) (32)

This can be extended to include the input u, and applied to the nonlinear state space equation
given in (29)

x(t+ 1) = f(x(t), u(t), α(t)) ≈ f(`op) +
∂f

∂x

∣∣∣∣
`=`op︸ ︷︷ ︸

At∈Rnx×nx

δx+
∂f

∂u

∣∣∣∣
`=`op︸ ︷︷ ︸

Bt∈Rnx×nu

δu

y(t) = g(x(t), u(t), α(t)) ≈ g(`op) +
∂g

∂x

∣∣∣∣
`=`op︸ ︷︷ ︸

Ct∈Rny×nx

δx+
∂g

∂u

∣∣∣∣
`=`op︸ ︷︷ ︸

Dt∈Rny×nu

δu

(33)

Recall that α(t) only yields the parameters at time t and should therefore be evaluated as constants.
Note that nx, nu, and ny represents the dimensions of the states, inputs, and outputs, respectively.
Further, the point of linearization is given by

` =

[
x
u

]
=

[
xop
uop

]
= `op (34)
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This yields the linearized model

x(t+ 1) = f(`op) +Atδx(t) +Btδu(t)

y(t) = g(`op) + Ctδx(t) +Dtδu(t)
(35)

with At, Bt, Ct, Dt given as

At =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

] ∣∣∣∣
`=`op

=

[
1 + ∆t · R̂OP (t) ·

(
a4 · (gp − paf )− a2 + 0.69 · a3 · ( gp−gp0x0.31

1
)
)

∆t

0 1

] ∣∣∣∣
`=`op

Bt =

[
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

] ∣∣∣∣
`=`op

=

[
∆t · R̂OP (t) ·

(
a5

u1−w0

)
∆t · R̂OP (t) ·

(
a6
u2

)
0 0

] ∣∣∣∣
`=`op

Ct =
[

∂g
∂x1

∂g
∂x2

] ∣∣∣∣
`=`op

=
[
R̂OP (t) ·

(
a4 · (gp − paf )− a2 + 0.69 · a3 · ( gp−gp0x0.31

1
)
)

1
] ∣∣∣∣
`=`op

Dt =
[

∂g
∂u1

∂g
∂u2

] ∣∣∣∣
`=`op

=
[
R̂OP (t) ·

(
a5

u1−w0

)
R̂OP (t) ·

(
a6
u2

) ] ∣∣∣∣
`=`op

with f1, f2 and g as defined in eq. (28). Using the linearized state space, from equation (35), to
formulate the MPC’s optimization problem, at each time step, concludes the SLMPC strategy.
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4.2.4 Extended Kalman Filter for State Estimation

Sui et al. [2013] showed that the performance of the MPC using a B&Y could be further improved
by using observer methods to estimate the states. This since the B&Y-model is not a perfect
representation of the real world. State observer methods are used to estimate the states of the
system when the states can not be directly measured at each time step.

One such observer, meant for nonlinear systems, is the Extended Kalman Filter (EKF). It is an
extension of the regular linear Kalman filter, developed by Kalman [1960], but where the nonlinear
system is linearized around the current state estimate. Fossen [2011] was used as a basis for
the implementation of the EKF, and is shown in the following algorithm with a slightly different
notation

Algorithm 2: Extended Kalman Filter (Adapted from Fossen [2011])

Initial conditions: x̂−(0) = x0, P̂−(0) = P0, Qd = QTd > 0, Rd = RTd > 0

1. Take measurement if available
y(t) = [hmeas emeas]

T

2. Calculate the Kalman gain matrix

K(t) = P̂−(t)CTd

[
CdP̂

−(t)CTd +Rd

]−1

3. Correct the state and covariance error estimate
x̂(t) = x̂−(t) +K(t) [y(t)− Cdx̂−(t)]

P̂ (t) = [I −K(t)Cd] P̂
−(t) [I −K(t)Cd]

T
+K(t)RdK

T (t)

4. Predict next state estimate and covariance error
x̂−(t+ 1) = f(x̂(t), u(t), α(t))

P̂−(t+ 1) = AdP̂ (t)ATd +Qd

Here x̂−(t) and P̂−(t) is the state and covariance matrices before the measurement correction,
while x̂(t) and P̂ (t) is after the correction. Qd is the covariance matrix for the process noise, and
Rd the covariance matrix of the measurement noise. Kalman gain matrix is given by K(t). For the
measurement emeas, being the difference between the real ROP and the modeled ROP, it should
be emphasized that only the real ROP is measured while the modeled ROP from last time step is
used. Further, Ad has the same structure as At from equation (35) but is linearized around the
state estimate, while Cd = diag([1 1]).

The idea of the filter is to estimate the states recursively and correct the estimation with measure-
ments. Thus, it is an iterative algorithm, where t is incremented after step 4 along with the progress
of the simulation. If there are no new measurements at a particular time step, it will predict the
following states using only step 4 in the algorithm without any measurement corrections.

The numeric size of the Kalman gain matrix K(t) weighs the importance of the measurement
compared to the state prediction. An intuitive interpretation can be made by rewriting the Kalman
gain calculation in the following way

K(t) =
P̂−(t)CTd

CdP̂−(t)CTd +Rd
(36)

It is important to note that this is a misuse of notation and is not mathematically correct as one
cannot perform normal division on matrices. However, it emphasizes the role of the covariance
matrix for measurement noise Rd. If the measurement is very noisy, hence large Rd, the Kalman
gain will be small. As shown in step 3 of the algorithm, the state will then be updated with the
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last predicted value plus only a small contribution of the measurement correction. On the other
hand, if the measurement noise is minimal, K(t) will be significant and yield a higher measurement
correction in this step. Further, the covariance matrix P̂ (t) represents the uncertainty in the state
estimate. As seen in step 4, Qd feeds directly into the prediction P̂ (t + 1), as it represents the
process noise in the state estimation model. A large Qd will thus yield a large covariance matrix
P̂ (t) and cause a strong contribution from the measured values on the state estimates.
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4.3 Deriving the Quadratic Program Problem

This subsection aims to describe the derivation of the quadratic program problem used in the
MPC. Zhakatayev et al. [2017] provided a thorough derivation of the problem and was used as a
basis. An augmentation is also done to include slack variables and is based on the formulations
found in Perne et al. [2018]. For ease of notation, the state-space matrices, from equation (35), are
hereafter denoted as

xk+1 = f(`op) +At(xk − xop) +Bt(uk − uop)
= Atxk +Btuk + F

yk = g(`op) + Ct(xk − xop) +Dt(uk − uop)
= Ctxk +Dtuk +G

(37)

where the subscript k denotes the kth step into ”the future” in the MPC, and t is the time step
of the drilling operation. Further, all the constant terms are collected into the matrices F ∈ Rnx
and G ∈ Rny .

4.3.1 Evolution of the predicted ROP

Now one can find the evolution of the predicted ROP, given by the set Y = {y0, y1, ..., yNp−1},
where Np is the prediction horizon by

y0 = Ctx0 +Dtu0 +G

y1 = Ctx1 +Dtu1 +G

= Ct (Atx0 +Btu0 + F )︸ ︷︷ ︸
x1

+Dtu1 +G

= CtAtx0 + CtBtu0 +Dtu1 + CtF +G

y2 = Ctx2 +Dtu2 +G

= Ct(Atx1 +Btu1 + F ) +Dtu2 +G

= Ct(At(Atx0 +Btu0 + F ) +Btu1 + F ) +Dtu2 +G

= CtA
2
tx0 + CtAtBtu0 + CtBtu1 +Dtu2 + CtAtF + CtF +G

...

yNp−1 = CtA
Np−1
t x0 + CtA

Np−2
t Btu0 + CtA

Np−3
t Btu1 + · · ·+ CtBtuNp−2 +DtuNp−1

+ CtA
Np−2
t F + CtA

Np−3
t F + · · ·+ CtF +G

(38)

Note that every xk is replaced with its corresponding prediction equation xk = Atxk−1+Btuk−1+F .

This is repeated until x0 and u0 appears. Further, one can define the tracking error yek
∆
= yk − yrk,

where the evolution of the tracking error is given by the set Y e = {ye0, ye1, ..., yeNp−1}, and the ROP

reference is given by the set Y r = {yr0, yr1, ..., yrNp−1}.
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The evolution can be compactly formulated, in terms of the tracking error, with matrices as


ye0
ye1
ye2
...

yeNp−1


︸ ︷︷ ︸
Y e∈RNp·ny

=


Ct
CtAt
CtA

2
t

...

CtA
Np−1
t


︸ ︷︷ ︸
P∈R(Np·ny)×nx

x0 +



Dt 0 0 · · · 0

CtBt Dt 0
...

CtAtBt CtBt Dt

...
...

...
...

. . .
...

CtA
Np−2
t Bt CtA

Np−3
t Bt CtA

Np−4
t Bt · · · Dt


︸ ︷︷ ︸

H∈R(Np·ny)×(Np·nu)


u0

u1

u2

...
uNp−1


︸ ︷︷ ︸
U∈RNp·nu

+


0
Ct

Ct(I +At)
...

Ct(I +
∑Np−2
i=1 Ait)


︸ ︷︷ ︸

E∈R(Np·ny)×nx

F +


I
I
I
...
I


︸︷︷︸

1∈RNp·ny

G−


yr0
yr1
yr2
...

yrNp−1


︸ ︷︷ ︸
Y r∈RNp·ny︸ ︷︷ ︸

M∈R(Np·ny)

Now all the constant terms can be collected in the matrix M , so that the evolution of the error is
given by

Y e = Px0 +HU + EF + 1G− Y r

Y e = Px0 +HU +M
(39)

4.3.2 Unconstrained Control Objective

The control objective is to minimize the deviation between the estimated ROP and the desired
ROP, hence minimizing Y e. This should be done by choosing the proper control actions, U , over
the prediction horizon Np. This problem can be expressed as

min
U

J =
1

2
Y eTQY e +

1

2
UeTRUe (40)

where J denotes the cost function to be minimized, and the matrix Ue ∈ RNp·nu is the error
between the predicted inputs and the desired inputs over the prediction horizon. Often it will be
desirable to achieve the control objective while minimizing the amount of input resources needed to
do so. However, when considering the drilling process, too low RPM can cause poor hole cleaning
and downhole problems. Setpoints on the inputs can therefore be specified to make sure that the
input is minimized around desired values. Further, the weighting matrices Q ∈ R(Np·ny)×(Np·ny)

and R ∈ R(Np·nu)×(Np·nu) are diagonal and positive definite.

By substituting Y e from equation (39) into equation (40) one can derive the following expression
for the cost function

J =
1

2
(Px0 +HU +M)TQ(Px0 +HU +M) +

1

2
(U − Ur)TR(U − Ur)

=��
���

��:01

2
xT0 P

TQPx0 +
1

2
xT0 P

TQHU + · · ·+ 1

2
UTRU + · · ·+

��
�
��
�*0

1

2
UrTRUr

=
1

2
UT (HTQH +R)︸ ︷︷ ︸

H̃∈R(Np·nu)×(Np·nu)

U + (xT0 P
TQH +MTQH − UrTR)︸ ︷︷ ︸

c̃T∈R1×(Np·nu)

U

(41)
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Note that the terms that are not dependant on the minimization variable, U , will not affect the
optimization problem and can be removed. So the unconstrained control problem can be formulated
as

min
U

J =
1

2
UT H̃U + c̃TU (42)

4.3.3 Adding Hard Constraints

As earlier mentioned, constraints can be added to ensure safe operation in terms of safety limits
and physical limitations. Upper and lower limits on the WOB and RPM can be added as


WOB
RPM

...
WOB
RPM

 ≤ U ≤

WOB
RPM

...
WOB
RPM

 (43)

where WOB and WOB are the upper and lower limits of WOB, respectively (and similar for
RPM). Further, there should be limitations on how fast the WOB and RPM can increase, from
one time step to another.

The evolution of the control vector over the prediction horizon can be described with

u0 = u−1 + δu1

u1 = u0 + δu2

= u−1 + δu1 + δu2

...

uNp−1 = u−1 + δu1 + δu2 + · · ·+ δuNp

(44)

where u−1 is a known initial input and δuk is the input increment from uk−2 to uk−1. This can
be formulated with the matrices


u0

u1

u2

...
uNp−1


︸ ︷︷ ︸

U

=


u−1

u−1

u−1

...
u−1


︸ ︷︷ ︸

U−1∈RNp·nu

+


I 0 · · · 0

I I · · ·
...

...
...

. . .
...

I I · · · I


︸ ︷︷ ︸

∆∈R(Np·nu)×(Np·nu)


δu1

δu2

δu3

...
δuNp


︸ ︷︷ ︸
δU∈RNp·nu

(45)

with ∆ being a lower triangular matrix with elements of {I, 0} ∈ Rnu×nu . Now constraints on the
rate of change δU can be specified in terms of U by

U = U−1 + ∆δU

δU = ∆−1(U − U−1)

⇓ Add bounds and formulate in terms of U

δU + ∆−1U−1 ≤ ∆−1U ≤ δU + ∆−1U−1

⇓
A1U ≤ b1

(46)
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where the upper and lower bounds on the rate of change is given by δU and δU , respectively.

Further, the matrices A1 ∈ R(2·Np·nu)×(Np·nu) and b1 ∈ R(2·Np·nu) is given by

A1 =

[
∆−1

−∆−1

]
, b1 =

[
δU + ∆−1U−1

−δU −∆−1U−1

]
(47)

4.3.4 Augmented Formulation with Soft Constraints

A recommendation from the drill bit producer is to avoid running both the WOB and RPM on
upper limits simultaneously, as this will reduce its lifespan. One way to achieve this is to add soft
constraints with more strict upper limits on the inputs. This way, a violation of the soft constraints
is allowed if the corresponding increase in ROP is beneficial based on the chosen weights. Consider
the constraints

U ≤


WOB −WOBM + εw1
RPM −RPMM + εr1

...
WOB −WOBM + εwNp
RPM −RPMM + εrNp

 (48)

where WOBM and RPMM are margins in order to reduce the bit wear, and εwk and εrk is the
slack variable for WOB and RPM at time step k, respectively. By augmenting the optimization
problem to include the slack variable one can formulate this constraint as


I 0 · · · 0 −I 0 · · · 0

0 I
... 0 −I

...
...

. . . 0
...

. . . 0

︸ ︷︷ ︸
I1 ∈ R(Np·nu)×(Np·nu)

0 · · · 0 I ︸ ︷︷ ︸
−I1 ∈ R(Np·nu)×(Np·nu)

0 · · · 0 −I


[
U
εu

]
≤


WOB −WOBM
RPM −RPMM

...
WOB −WOBM
RPM −RPMM


︸ ︷︷ ︸

b2∈R(Np·nu)

(49)

where εu = [εw1 εr1 ... εwNp εrNp ]T is the vector of slack variables on u.

Next, in order to avoid wear and tear on the top drive and drawworks due to aggressive actuation,
soft constraints on the inputs rate of change is added. This can be done using the same procedure as
in equations (46) and (49), but without the upper and lower bounds and by adding slack variables

δU = ∆−1(U − U−1)

⇓ Add slack and formulate in terms of U

∆−1U−1 + εδu ≤ ∆−1U ≤ ∆−1U−1 + εδu

⇓[
∆−1 − I1︸ ︷︷ ︸
A1

−∆−1 ︸ ︷︷ ︸
−Iδu

− I1

] [
U
εδu

]
≤
[

∆−1U−1

−∆−1U−1

]
︸ ︷︷ ︸
b3∈R(2·Np·nu)

(50)

where εδu = [εδw1 εδr1 · · · εδwNp εδrNp ]T is the vector of slack variables on δu,

Iδu ∈ R(2·Np·nu)×(Np·nu), and the other matrices as defined above.
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Lastly, constraint on the modeled ROP must be considered. Y as given in subsection 4.3.1 should
be limited due to considerations presented in subsection 4.1. Further, it should be added as a
soft constraint in order to avoid infeasibility due to conflicting constraints (further described in
discussion (section 8)). Upper bound of Y can be written in terms of U as following

Y = Px0 +HU + EF + 1G ≤ ROP + εy

⇓
HU ≤ ROP − Px0 − EF − 1G︸ ︷︷ ︸

b4∈R(Np·ny)

+εy
(51)

where the vectors ROP = [y0 y1 ... yNp−1]T and εy = [εy1 εy2 ... εyNp ]T yields the upper
bound of ROP and the slack variables for each time step, respectively. Now one can augment
the optimization problem once again to include the new slack variables, and equation (51) can be
reformulated in the same way as equation (49) and (50) including U , εu, εδu, and εy. Note that
the slack variables must be constrained to be positive.

A final augmented formulation, including all constraints, can then be given as

min
U,εu,εδu,εy

J =
1

2


U
εu
εδu
εy


T 

H̃ 0 0 0
0 Su 0 0
0 0 Sδu 0
0 0 0 Sy


︸ ︷︷ ︸

Γ


U
εu
εδu
εy

+


c̃
ρu
ρδu
ρy


T

︸ ︷︷ ︸
ZT


U
εu
εδu
εy



s.t.


A1 0 0 0
I1 −I1 0 0
A1 0 −Iδu 0
H 0 0 −I2



U
εu
εδu
εy

 ≤

b1
b2
b3
b4



U
0
0
0

 ≤

U
εu
εδu
εy

 ≤

U
∞
∞
∞



(52)

where Su, Sδu, Sy is the quadratic weighting matrices and ρu, ρδu, ρy is the linear weighting vectors.
Note that either the quadratic or the linear term can be excluded by setting its corresponding
weighting matrix to zero. Further, the upper and lower bounds on the decision variables are
formulated explicitly on the form lb ≤ z ≤ ub. If the chosen optimization solver does not accept
such constraints, these can be reformulated to be incorporated in the inequality constraints.
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5 Software and Drilling Data Handling

5.1 Software

The program was developed and implemented in Matlab. Matlab is a programming platform that
uses a language that lets one express matrix and array mathematics directly. Data analysis, de-
veloping algorithms, creating models and desktop application is amongst some of its capabilities
(MathWorks inc.). It also has the benefit of having a vast amount of valuable toolboxes and func-
tions which are well documented. The toolboxes used in the program developed in this thesis was
Optimization Toolbox, Signal Processing Toolbox, Mapping Toolbox, and Symbolic Math Toolbox.

Further, Microsoft Excel were used to import and format .xml-files, as described in subsection
5.2.1. Further, it is a helpful tool to structure large data-files and to do quick calculations over
repetitive data.

Lastly, the open source editor Notepad++3 were used to structure .xml-files and make them
readable as shown in figure 5.1 (a).

5.2 Data Files

AkerBP delivered the data files in various formats. Data regarding the wellbore geometry and BHA
specifications were given in .xml-files, information regarding the pressure gradients were given in
.xlsx-files, and lastly, the drilling data given by .csv-files.

5.2.1 Wellbore Geometry, BHA Specifications, and Drilling Windows

In order to calculate the wellbore trajectory, mathematical methods presented in subsection 2.1.5
were used to calculate the paths between survey points performed at regular depth intervals.
These survey points were provided by AkerBP as .xml-files. XML stands for Extensible Markup
Language. It is a text-based format that can represent structured information such as data (World
Wide Web Consortium (W3C)). It is well suited to share information between computers and
humans, as it is readable for both. An example of how the data is structured in .xml-files can
be seen in figure 5.1 (a). It specifically shows the data at a survey point at a measured depth of
2869.9m.

Information regarding the drill bit and other BHA equipment was also provided as .xml-files.
Hence, drilling parameters required by the application could be read directly from these files and
applied to the Matlab program. Note that the fractional tooth height worn away, H, was not
included in the model (H was set to zero), assuming that the bit wear was insignificant. This since
no information regarding the bits’ current state was obtainable.

In order to determine the immediate depth of the bit at any time, the depths and angles at the
survey points had to be made available to the Matlab program. This was done by using the import
tools in Microsoft Excel to create a table in .xlsx-file format. Further, all unnecessary data were
deleted to obtain a table, as shown in figure 5.1 (b). Note that the figure only shows a small
section of all the survey points. The .xlsx-files are easily read by the Matlab application by using
the function readtable(filename,opts).

The drilling windows, as shown in figure 2.3, were also provided as .xlsx-files and could be read
into Matlab in the same way. It could then be used as a lookup table to find the pressure gradients
for a given depth. Note that the pressure gradients in the provided file were given in terms of MD,
while these plots are normally expressed in terms of TVD.

3Further description of notepad++ found in: https://notepad-plus-plus.org/
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1726   <md uom="m">2869.9</md>
1727   <tvd uom="m">2330.08</tvd>
1728   <incl uom="dega">50</incl>
1729   <azi uom="dega">280.72</azi>
1730   <dispNs uom="m">394.45</dispNs>
1731   <dispEw uom="m">-964.46</dispEw>
1732   <dls uom="dega/30m">4.03</dls>

(a) Data extracted from one
survey point in the provided
.xml-file.

MD UNIT TVD UNIT INCL. ANGLE UNIT AZIM. ANGLE UNIT
2814 m 2293,7 m 49,2 dega 272 dega

2842,1 m 2312,06 m 49,3 dega 275,91 dega
2869,9 m 2330,08 m 50 dega 280,72 dega
2897,8 m 2347,84 m 50,9 dega 285,45 dega
2925,7 m 2365,32 m 51,5 dega 287,69 dega
2953,6 m 2382,53 m 52,4 dega 291,63 dega

2982 m 2399,72 m 53,1 dega 292,5 dega
3009,9 m 2415,99 m 55,5 dega 293,78 dega

3038 m 2431,3 m 58,4 dega 294,65 dega

(b) Data from several survey points as presented in an .xlsx-file.
The framed row is the one given in the .xml-example from (a).

Figure 5.1: Wellbore Geometry Data

5.2.2 Drilling Data

The rest of the drilling data were delivered in .csv-files 4. CSV is short for Comma-Separated
Values. They are typically text files that contain data separated by commas or other delimiters.
In this way, large datasets can be exported from one application to another using .csv-files.

How the provided .csv-files were structured can be seen in figure 5.2. Note that the figure only
shows a small section of the file. One can see that the first two lines are the title and units of
the different data provided in the file. Further, all the data is provided with a timestamp given as
the first value of the comma-separated values. While large .csv-files can be hard to read with the
naked eye, they can easily be read and sorted in tables by programs like Matlab in the same way
as for the .xlsx-files.

How the drilling data were imported to Matlab is shown in appendix B.2. SimulateAll specifies
whether the whole imported data set should be used, or only a specified interval. If only a specified
interval is to be used, the time interval specified by FromDate, ToDate, FromTime, and ToTime is
found in the imported data set. To do this, the function
FindTimeIndexes(WellData,FromDate,FromTime,ToDate,ToTime) were made and is shown in
appendix B.3. Further, the Matlab function extractBetween(str,startPos,endPos) is used to
extract all the time data in the interval on a specified format, converted to datetime. Lastly, the
well data and time, in the specified interval, is forwarded to the interpolation covered in subsection
5.3.

TIME,BITDEP,ROP_AVG,GRAX,GRCX,BLOCKCOMP,TAVG_BITVEL,WOB_AVG,TORQUE,SURF_RPM,RPMX,FLOWIN,PUMP,ECDBIT,ECDCS,ECDTD,APRESX,TPDX,HKLD_AVG
yyyy-MM-dd"T"HH:mm:ss.fffzzz,m,m/h,gAPI,gAPI,m,m/s,klbf,kN.m,RPM,RPM,L/min,psi,ppg,ppg,ppg,psi,degC,klbf
2018-03-22T07:18:56.000+01:00,2904.103,18.820,-999.25,-999.25,7.927,0.005,5.800,18.090,120.770,-999.25,3095.130,2555.480,-999.25,-999.25,-999.25,-999.25,-999.25,256.980
2018-03-22T07:18:59.000+01:00,2904.119,18.850,-999.25,-999.25,7.911,0.005,4.710,18.940,120.780,-999.25,3068.000,2167.190,-999.25,-999.25,-999.25,-999.25,-999.25,258.340
2018-03-22T07:19:00.000+01:00,-999.25,-999.25,-999.25,-999.25,-999.25,-999.25,-999.25,-999.25,-999.25,-999.25,-999.25,-999.25,14.910,14.900,14.910,-999.25,-999.25,-999.25
2018-03-22T07:19:02.000+01:00,2904.133,18.790,-999.25,-999.25,7.897,0.005,3.150,17.230,120.770,-999.25,3123.610,1792.490,-999.25,-999.25,-999.25,-999.25,-999.25,259.590
2018-03-22T07:19:05.000+01:00,2904.150,18.880,-999.25,-999.25,7.880,0.005,2.720,17.230,120.780,-999.25,3099.880,1705.620,-999.25,-999.25,-999.25,-999.25,-999.25,260.100

Figure 5.2: Data structure of the provided .csv-file

4For the reader who is not familiar with CSV-files, more can be read under
https://www.howtogeek.com/348960/what-is-a-csv-file-and-how-do-i-open-it/
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5.3 Drilling Data Processing and Operation Identification

When all the drilling data were assembled in Matlab, they had to be processed in order to be used
by the MPC-application as described in section 4. One of the challenges in the data set is the
nonuniform sample rate of the different drilling variables. Variables like the WOB, RPM, and bit
depth, are logged every 2-3 seconds. However, variables like the ECD at bit, ECD at total depth,
and ECD at casing shoe are only logged every 30 seconds. Further, a recurring value in the dataset
is the value −999.25, hereby referred to as ”NaN”. This value emerges for every drilling variable
which does not measure a new value at the current time step. Some values have more of these
than others, depending on their respective sampling rates compared to the other drilling variables.

To create the moving data window Φ(t) as described in subsection 4.2.1, a uniform interpolated
table with data at every time step was created. To achieve this, the function
InterpolateTable(PreData,Time) seen in appendix B.4 were created. Here the PreData is data
extracted from a desired time interval from the supplied drilling data files, while Time is the time
steps in the same interval on datetime-format which is arrays representing points in time. A linear
interpolation is done using the Matlab function resample(x,tx,fs,p,q) from Signal Processing
Toolbox to create the table InterData with a uniform sample spacing of (p/q)/fs. It should be
noted that the interpolated data table was created with a sample spacing of 1 Hz to ensure that
no real measured value was lost due to insufficient sample rate. However, the data incorporated
in the moving data window Φ(t) is spread over every two seconds5, under the assumption that
wired drill pipe is used to transfer downhole data to the platform every other second as presented
in section 2.1.7.

The processing progress for WOB is illustrated step by step in figure 5.3. The first figure illustrates
the raw data, including the NaN values. Removing the NaN values yields the figure in the middle.
Lastly, the data is interpolated to yield one data point for each time step.

Next, the data files provided by AkerBP included 40 days and nights of different operations such as
tripping pipe in or out of the hole, drilling a stand, connection of stands, et cetera. In order for the
parameter estimation, presented in subsections 3.1.2 - 3.1.3, to make sense it is essential that they
are estimated while drilling. To identify the drilling operation, only sections where the measured
depth increased over time were considered. However, the measured depth will also increase during
tripping operations. The other drilling variables were therefore investigated in the intervals of
increasing depth. This is illustrated in figure 5.4, where one can see that ROP > 0, WOB > 0,
and RPM > 0 in the intervals where the depth is increasing. This is identified by inspection as
the process of drilling two stands in sequence. It can also be seen that the pump is shut down and
that the top drive RPM is stopped during a connection. This also results in a drop in the ECD.
During the connection of a new stand, surveys are taken to obtain new information of the angles
at the given depth.

5Φ(t) = { dh
dt

(t− 2 ·N), ..., dh
dt

(t− 2), Xj(t− 2 ·N), ..., Xj(t− 2),∀j = 1, ..., 8}
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Figure 5.3: How the drilling data was treated in steps before it was used.
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Figure 5.4: Drilling data from operation identified as drilling of two stands with connection in
between.
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6 Implementation and Verification

This section explains the model- and SLMPC setups in the Matlab program to get the results pre-
sented in section 7. Subsection 6.1 presents the model setup itself, while subsection 6.2 presents the
setup and the verification strategy when using the SLMPC. Note that for the different subsections
it is occasionally referred to the Matlab code which is found in appendix B.

6.1 B&Y-Model Setup and Verification

The setup shown in figure 6.1 illustrates how the modeled ROP was calculated in the developed
Matlab program. Here, the interpolation of the drilling data is already done and is represented by
InterData. The dashed arrows illustrate the data, which is only updated when a new measurement
is available, while the regular arrows yield data at every time step. If there are no new measurement
at the current time step, the drilling coefficients a1, ..., a8 and drilling parameters X1, ...X8 from
last estimation and measurement is used.

The data set Φ used to estimate the coefficients a1, ..., a8 is found by the function
CreateDataSet(N,t,InterData) as seen in appendix B.9. Note that the structure of this func-
tion and the function DrillingParameters(h,t,InterData), given in appendix B.8, is similar.
The only difference being that the latter finds the drilling parameters X1, ..., X8 and α of the
current time step t, if available, while the data set extracts drilling parameters from N historical
measurements. Note that α incorporates the rest of the drilling parameters shown in the output
of the drilling parameters function.

Further, the depth from the provided drilling data was given as measured depth. Therefore, it
could be used directly to find the pore pressure gradient (see figure 2.3), as the pressure gradients
were expressed in terms of MD. However, the drilling parameters X2, X3, and X4 are all expressed
in terms of TVD. The function MDtoTVD(MD), seen in appendix B.5, were therefore developed to
convert from MD to TVD. The function was based on the angle averaging method, even though
it does not include the curvature of the wellbore trajectory as presented in subsection 2.1.5. This
method was chosen because the maximum overall angle change over the delivered wellbore trajec-
tory data was β = 0.1320 < 0.25 rad. As presented in subsection 2.1.5.4, it is reasonable to set
the ratio factor between the curved line segments and the straight line segments to RF = 1 for
β < 0.25, so the minimum curvature method would only yield a straight-line approximation. It
can also be argued that the deviation between the TVD acquired from the minimum curvature
method and the angle averaging method is negligible to calculate the drilling parameters.

The drilling coefficients a1, ..., a8 is found in the function FindDrillingParameters(DataSet,Method)

seen in appendix B.6, where Method determines whether multiple regression or trust-region method
is used. Where multiple regression solves the equations in (20) to find a1, ..., a8 which minimizes
the residuals, the trust-region method is used to solve the least-squares curve-fitting problem
mina

1
2 ||Ca − d||

2
2 s.t. lb ≤ a ≤ ub, by using the function lsqlin(...) from the Optimization

Toolbox. Further, the upper and lower bounds were set according to Table 5. Note also that
the last estimated parameters are stored and used as initial guess to the algorithm at next time
instance through persistent a0.

Next, the EKF was implemented as shown in appendix B.10 in line with algorithm 2 shown
in subsection 4.2.4. Note that calculation of the Kalman gain matrix K(t) and the state and
covariance correction step is only performed if a new measurement is available. For the simulations
performed to evaluate the model performance, these measurements come from the interpolated data
table InterData, which contains the actual drilling data. The modeled ROP can then be compared
to the actual ROP, where all the drilling coefficients and parameters used in the model are based
on the actual well data.
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Note that when using multiple regression for parameter estimation, the estimated ROP had to be
corrected in certain time steps due to sporadic large changes in the ROP estimates. This was done

by setting R̂OP (t) = R̂OP (t − 1) if the difference between the two were larger than some bound
(chosen as 5 m/h in the matlab code). The effect of this correction can be seen in the figures 7.2
and 7.3

Φ aj ,

∀ j = 1, ..., 8
Xj ,

∀ j = 1, ..., 8

DrillingParameters(h,t,InterData)

R̂OPN, t

ĥ, ê

α

Figure 6.1: Model setup
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6.2 Successive Linearization based MPC

This subsection explains the setup and verification strategy of the SLMPC. How the code was
implemented for the SLMPC is given in appendix B.11. Subsection 6.2.1 aims to elaborate on the
structure of this implementation, while subsection 6.2.2 elaborates how a verification strategy was
developed in order to evaluate the SLMPC.

6.2.1 SLMPC Setup

The setup of the SLMPC is illustrated in figure 6.2, where the Model has the same structure as
described in subsection 6.1. First, a linearization is performed based on the model parameters. The
linearized matrices At, Bt, Ct, and Dt is then used to construct the different matrices described
in subsection 4.3.

Next, the QP problem for the whole prediction horizon is constructed in QP Formulation. The
function InitMPC() in appendix B.12 initializes the MPC with the length of the simulation, pre-
diction horizon, size of states, inputs, and outputs, bounds, input reference values, the weight
matrices, and a predetermined drilling plan.

Further, to find the P , H, E, and ∆-matrices from subsection 4.3 the functions FindP(At,Ct,Np),
FindH(At,Bt,Ct,Dt,Np), FindE(At,Ct,Np), and FindDelta(Np,nu) were created and is shown
in appendix B.7. To create the matrix U−1 the Matlab function repmat(u op,[Np 1]) were used.
The function simply creates a vector consisting of Np rows of uop. When constructing the matrix
M , which collects all the constant terms, the reference ROP (Y r) is constructed using a moving
window that moves along the drilling plan defined in the initialization of the MPC. Next, H̃, c̃,
the inequality constraints, upper and lower bounds, and the augmented matrices Γ and Z are
constructed according to the formulations shown in subsection 4.3.

To solve the optimization problem the Matlab function quadprog(H,f,A,b,Aeq,beq,lb,ub) from
Optimization Toolbox was used. The solver accepts quadratic objective functions with linear con-
straints. It also allows for the upper and lower bounds on the decision variables to be explicitly
formulated. The stop/TimerTicker in the code was used to evaluate the average run speed of
the solver.

At last, the first input from the open-loop solution of the MPC is applied to the system. In the
simulation, this is done by adding the inputs w and r to the next time instance of InterData. In
this way, the drilling parameters in the model will evaluate these in the next time step.

Model

y = [h e]T

N,t,InterData

ĥ,α,uop,R̂OP
u = [w r]T

ĥ, ê, uop, R̂OP

InitMPC()

Figure 6.2: ”Model” is structured as shown in figure 6.1, while the right hand side represents the
SLMPC
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6.2.2 SLMPC Verification

The model alone can be compared to the actual drilling data to evaluate its performance. However,
other methods must be used when evaluating the model and SLMPC together. The challenge is to
evaluate how a real well application would respond to the WOB and RPM applied by the SLMPC.
It is already established that the B&Y-model is a simplification of the real world and that it will
deviate from the response of an actual drilling process. Thus, measurements from the real world
response are necessary to estimate the drilling coefficients, but also to correct the model estimates
with the EKF.

However, in the absence of a proper simulation environment that can adequately determine the
drilling response as a function of the drilling parameters, formation properties, et cetera, a verification
strategy was developed. It does not, of course, replace the need for proper simulation tools but
can suffice as a first step towards verification.

The verification setup is illustrated in figure 6.3. The coefficients and parameters of the simulated
”real well”, hereby denoted without quotation marks, are marked with W in super- or subscript.
Both the model and the real well coefficients are first initialized in InitDrillingCoefficients()

shown in appendix B.12. Note that the real well parameters are initialized based on 200 datapoints
from the actual drilled well. This is done to get somewhat ”realistic” initial coefficients. The model
coefficients are initialized randomly within the reasonable range given in table 5. Further, the real
well is quite comparable to the model setup, except for the VaryingFormation() which is used
to simulate a nonuniform formation with varying properties. This is simply done by generating
a random disturbance in the coefficients using the Matlab function randn() and can be seen in
appendix B.1. The real well ROPW is now found using the B&Y-model based on the drilling
coefficients aWj and the parameters XW

j . Further, the real depth hW is propagated based on
ROPW before they are both injected to the next time instance of the InterData table, along
with the optimal WOB and RPM calculated by the SLMPC. The inputs are then applied to
both the real well and the model, in the next time instance, through InterData in the function
DrillingParameters. The drilling coefficients in the model are then calculated by parameter
estimation based on a moving horizon data window of size N propagating over the InterData
table.

In this application, the flow rate q and the ECD paf do not have any state models, so reasonable
values for these as a function of other drilling conditions cannot be found. Therefore, their values
at the next time instance in the InterData table are set to their value at the previous time instance
and are thus held constant.

Model SLMPC InterData(t+1)
InitMPC()

InitDrillingCoefficients()

aW
init

ainit

ROPW

hW (t+ 1) = hW (t) +∆t(ROPW )

hW (t+ 1)
ROPW ,

u = [w r]
T

Figure 6.3: Strategy to verify the Model and SLMPC performance
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7 Results

This section presents the results. Specifically, the results from the model itself are given in sub-
section 7.1, while the SLMPC results are given in subsection 7.2. The subsections are structured
similarly. First, the relevant simulation parameters used to obtain the results are presented. Next,
figures with results are given with brief figure texts and a more in-depth explanation either directly
under each figure or at the end of the subsection. The results will further be discussed in section
8.

Note that the true values will be plotted in blue for all figures, while the estimated values are
plotted in red.

7.1 Bourgoyne and Young ROP-Model

The B&Y ROP-model were tested on real well data, from a well drilled on 20th of March, 2018.
The simulation length was n = 4000 with step size of 1 second, hence the data cover a little
more than an hour (3600 seconds). The drilling data used to calculate the drilling coefficients and
parameters over the simulation period are shown in figure 7.1.

Figure 7.1: Drilling data over the simulated period

Note that the pore pressure gradient is red. This is because it was not included in the drilling data
and had to be estimated as a function of the measured depth from the delivered pore pressure-
and fracture-gradient table.

Further, the extended Kalman filter were initialized with x̂−(0) = [h 0]
T

, where h is the measured
depth at the initial time step, P̂−(0) = diag([1 10]), Qd = diag([1 10]), and Rd = diag([1 1]).
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7.1.1 B&Y-Model Using Multiple Regression as Parameter Estimation Technique

(a) Moving data window of N = 30 (b) Moving data window of N = 100

Figure 7.2: Model performance using MR for parameter estimation without EKF and no correc-
tion on sporadic ROP estimates.

(a) Moving data window of N = 30 (b) Moving data window of N = 100

Figure 7.3: Model performance using MR for parameter estimation without EKF and when
correcting sporadic ROP estimates
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(a) Moving data window of N = 30 (b) Moving data window of N = 100

Figure 7.4: Model performance using MR for parameter estimation with EKF and when correct-
ing sporadic ROP estimates.

Figure 7.5: The estimated drilling coefficients aj ∀j = 1, ..., 8 using Multiple Regression with
moving data window of N = 30.
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Figure 7.2 shows the performance of the model when using multiple regression as parameter es-
timation technique. Some large sporadic deviations are seen, where for the case of moving data
window of size N = 100, it caused the model to fail. Removing these sporadic deviations yields
the performance of figure 7.3. Further, figure 7.4 shows the performance when the Kalman filter is
used to further improve the estimates. The results are shown for two cases, (a) where the moving
data window Φ(t) is of size N = 30 and (b) where the size is N = 100. Note that the root mean
square error (RMSE) is given for each result. RMSE is a measure of how close the estimated

values are to the real, and is calculated by RMSE =

√∑n
t=1(ROP (t)−R̂OP (t))2

n , where n is number
of simulation steps. Hence RMSE close to zero implies that the model response is close to the true
value, while large RMSE implies bad correspondence between the two.

It is seen that increasing the data window size yields more sluggish model estimates, yielding a
larger RMSE. It also performs worse in intervals where the ROP changes rapidly. The model
performance vastly improves when the EKF is applied, which is emphasized by the decrease in
RMSE for both cases (a) and (b).

Figure 7.5 shows the estimated drilling coefficients when using moving data window of N = 30. It
can be seen that these values rapidly fluctuates between positive and negative values. Further, it
can be seen that the scales of the parameters are very different. While the drillability a1 mainly
varies between ±2 × 104, the bit weight exponent a5 ranges between ±0.5. Note that the tooth
wear exponent is constant, as it was not included in the model.
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7.1.2 B&Y-Model Using Trust-Region Method as Parameter Estimation Technique

(a) Moving data window of N = 30 (b) Moving data window of N = 100

Figure 7.6: Model performance using TR for parameter estimation without EKF

(a) Moving data window of N = 30 (b) Moving data window of N = 100

Figure 7.7: Model performance using TR for parameter estimation with EKF
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Figure 7.8: The estimated drilling coefficients aj ∀j = 1, ..., 8 using Trust-region method with
moving data window of N = 30.

Figure 7.9: ROP and WOB with corresponding estimated drillability using TR with moving
data window of N = 30. Green intervals where drillability is relatively high, red intervals where
drillability is relatively low.
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Figure 7.6 and 7.7 shows the model performance, without and with Kalman filter, respectively,
when using the Trust-region method to estimate the drilling coefficients. It is seen that the model
has some severe fluctuations around the real ROP value, resulting in deviations up to 10 m/h.
However, for N = 30, the estimated ROP follows the trend of the real ROP, while N = 100 barely
captures it, yielding nearly the doubled RMSE. The RMSE is vastly reduced for both cases when
using the EKF, yielding 1/7th and 1/10th of the RMSE when not using EKF for (a) and (b),
respectively.

Figure 7.8 shows the estimated drilling coefficients when using trust-region method as parameter
estimation technique, and moving window of size N = 30. Note that the coefficients obey the
upper and lower limits, given by table 5, over the whole simulation period. This also implies that
they are never negative.

Further, figure 7.9 shows how the estimated drillability a1 propagates over the simulation period
and shows the evolution of ROP and WOB in the same period. The intervals given by the green
dashed lines shows that the drillability a1 is at its highest (∼ 1.7-1.9 m/h) when the ROP is at its
highest (∼ 18-20 m/h), and the WOB is at its lowest (∼ 5-10 klbf). Conversely, the red intervals
shows that the drillability is low when the ROP is low, and the WOB is high. This makes sense
as a1 incorporates the effect of the formation strength as stated in subsection 3.1.1. One would
expect that if the rock formation strength is high (low drillability), then even a high WOB would
yield a low ROP.
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7.2 Successive Linearization based MPC

Subsection 7.2.1 presents the results for a SLMPC using a static model. Next, the results from
the verification strategy presented in subsection 6.2.2 is given in subsection 7.2.2. Note that the
constraints are visually presented in the results and is therefore not specified by text, except for
the upper and lower bound on input rate of change which were set to ±0.5 for both WOB and
RPM. Further, a sampling rate of ∆t = 1s were used for the SLMPC.

7.2.1 SLMPC with Static Model

This subsection presents the results for a test on the SLMPC alone. The setup is the same as
shown in figure 6.2, but the model used is constant in the sense that the drilling coefficients
aj ∀j = 1, ..., 8 are constant. The simulation length was n = 4000 and the prediction horizon set
to Np = 10. Further, since there is no real well in this simulation, the EKF was omitted. The
drilling coefficients and the weight matrices used to achieve the results were

a1 = 1.9, a2 = 0.000053, a3 = 0.0009, a4 = 0.000008,

a5 = 0.6, a6 = 0.7, a7 = 0.9, a8 = 0.59

q = 104, r1 = 10, r2 = 10, su1
= 1, su2

= 104,

sδu1
= 106, sδu2

= 106, sy = 106

Q =


q
q
...
q

 , R =


r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · r2

 , Su =


su1 0 · · · 0
0 su2

· · · 0
...

...
. . .

...
0 0 · · · su2

 ,

Sδu =


sδu1

0 · · · 0
0 sδu2 · · · 0
...

...
. . .

...
0 0 · · · sδu2

 , Sy =


sy 0 · · · 0
0 sy · · · 0
...

...
. . .

...
0 0 · · · sy



(53)

Further, ρu, ρδu, and ρy were all set to zero, as only the quadratic weight matrix was used. The
matrix sizes are defined in subsection 4.3. Two cases are considered for testing all the different
constraints in subsection 7.2.1. One was implemented with the weights above (green), while the
other was implemented without the soft margin constraints, which is meant to avoid that max
WOB and max RPM are run simultaneously (red). The latter were therefore implemented with
the corresponding weights su1

and su2
being zero.
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Figure 7.10: Estimated ROP and MD with (green) and without (red) margin constraints on the
inputs

Figure 7.11: WOB and RPM applied to the model with (green) and without (red) margin
constraints

Figure 7.12: Estimated ROP for different prediction horizons Np
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Figure 7.10 shows the evolution of the modeled ROP and measured depth over the simulation
period, where the inputs applied by the SLMPC can be seen in figure 7.11. It should be noted
that all the soft constraints are plotted in orange, while the hard constraints are red.

For the first 500 seconds, the ROP tracks the reference value without any problems. After 500
seconds, the reference value is set to 55 m/h. However, the max ROP constraint is no higher than
35; hence the ROP is set to no higher than this. After 1000 seconds, a new max ROP is set to
55, so the ROP is yet again increased. This is where the two cases, with and without soft margin
constraints, differ. As shown in figure 7.11, the RPM is held back to obey the margin constraint
for the green case. The margin constraint effect is further shown in the time interval 2000-3000
seconds, where the solver finds it cheaper to increase the WOB to keep the RPM under the margin
constraint. In the time interval 3000-4000 seconds, the max ROP constraint drops down to 5 m/h.
However, the WOB and RPM have lower bounds governed by hard constraints at 2 klbf and 100
RPM, respectively. This results in the ROP not dropping below approximately 7 m/h. The red
case is seen to drill the well slightly faster than the green in the time interval 1000-2000 due to the
difference in ROP in the same period.

Figure 7.12 shows the difference in the ROP response when increasing the reference value at 400
seconds and decreasing it at 600 seconds. The figure illustrates the predictive capabilities of the
MPC. The higher the prediction horizon Np, the earlier the ROP starts to rise or fall depending on
the setpoint change. However, with the rising prediction horizon, the number of decision variables
in the problem also increases, and thus the time it takes to solve the optimization problem. The
average time it took the SLMPC to solve the optimization problem at each time instance, and the
RMSE for the different prediction horizons is given in table 6

Prediction Number of Decision Average RMSE
Horizon Np Variables Np · (3 · nu + ny) Solving Time [s] [m/h]

5 35 0.0062 3.8111
10 70 0.0208 2.9272
15 105 0.0369 2.4594
25 175 0.1313 2.2287
45 315 0.45 2.2293

Table 6: Tracking performance and solving time for the setpoint change shown in figure 7.12 in
ROP with different prediction horizons

While the average solving time increases more rapidly as the prediction horizon and decision
variables increase, the change in RMSE converges. It can also be seen in figure 7.12 that the
response difference of prediction horizon Np = 10 to Np = 45 are not as significant as for Np = 5
to the rest. The choice of proper prediction length is thus a tradeoff between solving time and
performance.
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7.2.2 Control of ”real well” Using SLMPC

This subsection presents the results for the verification strategy presented in subsection 6.2.2, where
the setup is given in figure 6.3. Here the drilling coefficients were estimated using the trust-region
method with a moving data window of N = 30. Further, a varying formation were created by
randomly altering the real well drilling coefficients aW1 , aW5 , and aW6 for the first run, with the rest
of the coefficients being constant. The drilling coefficients were saved and used for all the results
below, and is shown in the following figure

Figure 7.13: The simulated varying formation coefficients, and their corresponding estimates
using TR-method with moving window of N = 30

The SLMPC were initialized with a prediction horizon of Np = 15. Further, the drilling coefficients
and weighting matrices used for the following results are defined in the same way as in equation
(53), but with the values of

a1 = 1.5, a2 = 0.000053, a3 = 0.0009, a4 = 0.000008,

a5 = 0.6, a6 = 0.5, a7 = 0.9, a8 = 0.59

q = 104, r1 = 10, r2 = 10, su1
= 1, su2

= 106,

sδu1 = 106, sδu2 = 106, sy = 106

(54)

The Kalman filter were initialized with x̂−(0) = [h 0]
T

, P̂−(0) = diag([1 10]), Qd = diag([1 10]).
Results from two different covariance matrices for the measurement noise Rd = diag([1 1]) and
Rd = diag([1 1000]) are presented.
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Figure 7.14: Control of real well using a static model (no parameter estimation or EKF)

Figure 7.14 shows the model’s performance compared to the real well response when using a static
model in the SLMPC. It is seen that the model poorly reflects the actual well behavior, with
deviations up to 15 m/h in the time interval of 200-2000 seconds. On the other hand, the modeled
ROP better approximates the real ROP behavior in the interval of 2000-4000 seconds. This can
be caused by the model being a better approximation of the local drilling conditions in certain
areas. For instance, it is seen that the static rotary speed exponent of a6 = 0.5 is a reasonable
approximation of the real exponent shown in figure 7.136 from the interval of 1000-4000 seconds.
Using the static model in the SLMPC yields smooth control inputs, which only varies with the
setpoint change. However, due to the large deviations in the true ROP and the modeled ROP,
large deviations appear in the modeled and true measured depth.

6Note that the ”estimated exponent” in this figure is the results of parameter estimation using TR-method, and
is not relevant for the static model
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Figure 7.15: Control of real well using a model which is updated by TR parameter estimation
over a moving horizon window of size N = 30 (no EKF)

Figure 7.15 shows that the performance can be vastly improved, relative to the static model, by
estimating the local drilling coefficients using the trust-region method over a moving data window
of size N = 30. This does, however, require more active control inputs. Note that for the areas
where the control inputs are saturated, due to upper and lower bounds, the real well ROP is the
same as when using the static model. Naturally, this makes sense as the same control inputs should
yield the same real system response. A small deviation can be observed in the estimated and true
measured depth, due to the deviations on the real well ROP and the estimated ROP.
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Figure 7.16: Control of real well using a model which is updated by TR parameter estimation
over a moving horizon window of size N = 30 and extended Kalman filter with Rd = diag([1 1])

Figure 7.16 shows the performance while using both TR-method over a moving data window of
size N = 30, and EKF with Rd = diag([1 1]). It can be seen that the modeled ROP are much
closer to the real well ROP over the whole simulation period, relative to the modeled ROP in
figure 7.14 and 7.15. It does, however, require a much more active use of the control inputs. In the
time interval 200-1000 seconds it can be seen that the WOB and RPM have to rapidly fluctuate in
order to make achieve the desired ROP. With the modeled ROP being so close to the actual ROP,
and the measured depth being estimated through the EKF, no deviation in the estimated and
true measured depth is observed. It is, however, shown in table 7 that there is a small deviation
between the two.
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Figure 7.17: Control of real well using a model which is updated by TR parameter estimation over
a moving horizon window of size N = 30 and extended Kalman filter with Rd = diag([1 1000])

Figure 7.17 shows the performance when using the exact same setup as in figure 7.16, but using
a higher covariance on measurement uncertainty of the error state e. Here Rd = diag([1 1000])
were used. It can be seen that the largest deviations from figure 7.15, where no EKF were used,
is removed. The control inputs are still more actively actuated then using no EKF, but the rapid
fluctuation on WOB and RPM can be seen to be reduced within the time interval of 200-1000
seconds, relative to when Rd = diag([1 1]). No deviations in the modeled and real measured
depth is observed, but can be seen in table 7.
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Figure 7.18: Control of real well using a model which is updated by TR parameter estimation over
a moving horizon window of size N = 30 with extended Kalman filter using Rd = diag([1 1000])
and sδu1

= sδu2
= 107

Figure 7.18 shows the performance when using the exact same setup as in figure 7.17, but with
higher weights on the rate of change of the control inputs. This means that deviations in input rate
of change from zero are penalized more heavily. Even more conservative use of the control inputs
can be seen, relative to figure 7.17. More significant deviations can thus be observed between the
real well ROP and the reference. No deviation is observed in the measured depth, but is also given
in table 7.
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In order to compare the five different results presented above, table 7 was made. It presents the
three errors RMSEP , RMSEM , and RMSEMD. RMSEP yields the RMSE between the real well
ROP and the ROP reference value in the time interval of 2000-3000 seconds. This is the longest
run in the simulation where no constraints are limiting the reference tracking. Further, RMSEM
yields the RMSE between the modeled ROP and the real well ROP over the whole simulation
period. Lastly, RMSEMD yields the RMSE between the modeled and the real well measured
depth.

Model Setup Figure RMSEP RMSEM RMSEMD

[m/h] [m/h] [m]
Static Model fig. 7.14 3.9824 5.8110 2.9808
Model using TR-method for fig. 7.15 2.0451 1.7928 0.0580
parameter estimation
Model using TR-method for fig. 7.16 1.5151 0.5536 0.0002
parameter estimation and
EKF with Rd = diag([1 1])
Model using TR-method for fig. 7.17 1.7644 0.9920 0.0005
parameter estimation and
EKF with Rd = diag([1 1000])
Model using TR-method for fig. 7.18 3.2828 0.9823 0.0005
parameter estimation and
EKF with Rd = diag([1 1000])
and sδu1

= sδu2
= 107

Table 7: RMSE as a result of different model setups

It is seen that the static model has the highest RMSEp, RMSEM , and RMSEMD and thus the
worst performance. The best performance, in terms of RMSE, is achieved when using the TR-
method for parameter estimation and EKF using Rd = diag([1 1]), but the performance is not
far from the model type using Rd = diag([1 1000]). Both the methods using EKF yields very
low RMSEMD relative to the two model types where no EKF was used. This makes sense, as
they are continuously updated by the real well measured depth. The last model type, using more
conservative actuation, yields a higher RMSEP . This is also expected since less active actuation
will not counteract the formation variation to the same extent as for more active actuation.
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Figure 7.19: Control of real well with no soft constraint to penalize the rate of change of the
inputs.

Figure 7.19 shows the consequence of not having a soft constraint (as given in eq. (50)) which is
used to limit the rate of change of the control inputs. This was done by setting the weights used to
penalize the deviation in the slack variables on control input rate of change, sδu1 = 0 and sδu2 = 0.
As seen, this causes very rapid fluctuations in the control inputs and unnecessary wear and tear
on the actuators.
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8 Discussion

It is shown in the results that the developed SLMPC can drive a simulated well ROP to its desired
values. There are, however, some limitations and potential weaknesses with the proposed solution
that should be addressed. Thus, a discussion on the capabilities and drawbacks of the implemented
B&Y-model and the SLMPC is given in the following subsections.

8.1 Bourgoyne and Young ROP-Model

The presented results show that the B&Y-model yields reasonable estimates of the real well ROP
when frequently updated by recent measurements. In terms of RMSE, the best estimation result
was achieved by using a moving data window of size N = 30 with a multiple regression approach.
This can further be improved by the use of EKF to estimate the states. However, when looking at
the estimated drilling coefficients
aj ,∀j = 1, ..., 8 achieved by using multiple regression (figure 7.5), it is clear that the method
cannot be used as a model for the SLMPC. As earlier described, negative drilling coefficients are
physically meaningless. Furthermore, their numeric values are far beyond the reasonable ranges
given by table 5. Since the moving data window, Φ(t), only considers 30-100 data points with a
spread of 2 seconds (due to measurement taken every 2 seconds under the assumption of wired
pipe), the variation in the drilling parameters Xj are nowhere near the recommended ranges given
in table 4. This further emphasizes the uncertainty in the drilling coefficients found by the multiple
regression method.

An alternative approach is to use the trust-region method to estimate the drilling coefficients aj .
The most significant advantage of the trust-region method is that one might specify boundaries
for the parameters to ensure that they are always within the reasonable ranges. Even though the
B&Y-model with trust-region method alone (figure 7.6) yields higher RMSE than the multiple
regression approach, the parameter estimation yields more meaningful results, part of which is
illustrated for a1 in figure 7.9. Another essential feature of the trust-region method used in the
program is that the last estimated drilling coefficients can be used as an initial guess for the trust-
region method in the next iteration. This ensures that the contribution from the different drilling
parameters on the estimated ROP changes more smoothly over time, instead of the large and rapid
changes such as in the multiple regression case. Further, even though the estimated ROP deviates
up to approximately 7-8 m/h from the true ROP, it can be sufficient if updated by measurement
corrections through the EKF.

It should be stressed that due to lack of variation in some of the input variables as shown in figure
7.1, it is likely that the parameter estimation will still yield wrongful results at least for some of
the drilling coefficients. As presented in subsection 3.1.2, Bourgoyne and Young [1999] argues that
the coefficients which are based on practically constant drilling parameters Xj might be better off
being set constant based on prior knowledge from other drilled wells in the area. Hence, it might
be necessary to restrict the parameter estimation to some of the drilling coefficients.

Further, a linear interpolation was used between every real measured value in the provided drilling
data to create a uniform drilling data table where the moving data window Φ(t) could move over.
This introduces some ”real measured” drilling values, which were never actually measured during
the actual drilling process. While it may be a reasonable assumption that the actual value would
not differ far from these, it does introduce an extra element of uncertainty in the simulation.
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8.2 Successive Linearization based MPC

The first step of testing the SLMPC was done using a static model, where the results is presented
in subsection 7.2.1. The drilling coefficients were chosen such that a high ROP (∼ 50-55 m/h)
could be obtained within the control input boundaries. The results shows that the static model
can be driven to the desired reference value, within the control input boundaries and the max
ROP constraint. Some considerations can be given to the results presented in figure 7.10 and 7.11.
Two cases are shown, where one is obeying the margin constraints (green), and the other does not
(red). Whether or not to include the soft constraints will merely depend on the situation. It would
probably, in most cases, be wise to obey the recommendation by the bit producer by not running
the max WOB and max RPM simultaneously to reduce wear and tear on the drill bit. For example,
suppose that the drill bit is overloaded and has to be replaced. This would involve tripping the
whole drill string out of the hole, replacing the bit, and then tripping the whole way back to the
total depth of the hole. Such an operation may stretch over days, depending on the length of the
drill string, and are thus very costly. On the other hand, if it is at the end of a drilling session,
and the drill bit is planned to be replaced before the next drilling session, the soft constraint can
be removed to drill the last section faster. It should be noted that only the RPM input obeys the
soft constraint. This is chosen by design, to limit only one of the control inputs from running at
maximum capacity, and is reflected by the weighting difference in su1 = 1, su2 = 104.

Further, the importance of implementing the max ROP as a soft constraint becomes clear in figure
7.10. Suppose that high concentrations of gas emerges to the platform, forcing the max ROP
to immediately drop to 5 m/h at t = 3000s. The control inputs would not be able to drop fast
enough, due to the constraints on the input rate of change, to obey the constraint. Further,
the control inputs are saturated before reaching the max ROP constraint at 5 m/h. This would
result in infeasibility and the controller would fail if the max ROP was implemented as a hard
constraint. Instead, the max ROP constraint was implemented as a soft constraint, with a weight
of (sy = 106) >> (q = 104), i.e. weighted 100 times more than the weight on the ROP reference q.

Next, the effect of different prediction horizons Np is visualized in figure 7.12 and elaborated in
table 6. The optimization problem is seen to be solved relatively efficient, with the average solving
time of all prediction horizons being well within the sampling time of the SLMPC. While a small
prediction horizon of Np = 5 is solved on an average of 6.2 ms by the Matlab solver quadprog,
it has quite poor predictive capabilities. On the other hand, a very large prediction horizon of
Np = 45 has far greater predictive capabilities at the cost of an average solving time as high
as 450 ms. There are, however, numerous ways to improve the average solving time. While the
optimization problem is easily formulated and solved using the Matlab quadprog solver, there exist
other solvers that can solve the optimization problem faster. Further, modifying the optimization
problem formulation can yield faster solving time. For example, the QP-formulation used in this
thesis has equal prediction- and control horizon length. However, as presented in subsection 2.2.2,
this may impose a higher computational complexity on the optimization problem than necessary.
Hence, the average solving time can be reduced by formulating a separate and shorter control
horizon. Another technique is called input blocking and involves forcing the control inputs to be
constant over several time steps, thus reducing the number of decision variables, and is visualized
in Foss and Aksel N. Heirung [2016]. For now, however, a prediction horizon of around 10-15 steps
seems to suffice as a trade-off between time complexity and predictive capabilities.

A verification strategy was developed to determine the performance of the SLMPC when being
continuously updated by measurements from a simulated real well with varying formation prop-
erties. The results presented in subsection 7.2.2 suggests that all the different model setups can
control the real well ROP towards the ROP reference with varying degrees of success. Using just
a static model without updating the MPC-model from online measurements yields the highest
RMSE as shown in table 7. However, the performance of the static model will highly depend on
the accuracy of the initial guess of the static model drilling coefficients relative to the real well
coefficients and to what degree the formation properties vary. Needless to say, the SLMPC model
should be updated against real well measurements as it is already stated that the B&Y-model is a
simplification of the drilling process and thus will deviate from the actual real well response.

The RMSE is significantly improved when using the trust-region method to estimate the drilling
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coefficients from a moving data window continuously updated by the control inputs and the real
well response. There is, however, an imminent chance that the RMSE between the modeled ROP
and the simulated well ROP is lower than it would be for a real world application. As seen
in the B&Y-model using TR-method on the actual drilling data given in figure 7.7, the RMSE
is approximately twice as large as for the simulated real well in figure 7.15. This captures the
weakness of the verification strategy. Since the simulated real well ROP is based on the same
model as the modeled ROP, only differing in the varying drilling coefficients aj/a

w
j and measured

depth ĥ/hW , then the modeled ROP is likely to have a larger correlation to the simulated real
well response than to an actual real well application. Furthermore, the simulated real well drilling
coefficients aW1 , aW5 , and aW6 were altered randomly, within their realistic ranges, to simulate the
effects of a varying formation. This might yield unrealistic combinations of drilling coefficients
which in addition potentially varies at unrealistic rates. It does, however, introduce and element
of uncertainty and does illustrate the importance of updating the model used in the SLMPC by
measurements from the real well response.

The extended Kalman filter further reduced the RMSE as seen in table 7. The best result, in terms
of RMSE, was achieved by usingQd = diag([1 10]), P̂−(0) = diag([1 10]), andRd = diag([1 1])
and is seen in figure 7.16. A higher process noise and uncertainty in the state estimate e is as-
sumed, as its propagation is solely based on being updated by measurement corrections as seen in
section 4.2.2. It is, therefore, reasonable to trust the measurements more than the state estimate.
However, due to the very nonuniform formation properties, it would require particularly active
control inputs that could cause wear and tear on the actuators. By increasing the measurement
uncertainty with Rd = diag([1 1000]), the most rapid changes in the ROP are ignored while
the trends are still captured, which in turn requires less active actuators as seen in figure 7.17.
If necessary, the input rate of change weights sδu1 and sδu2 can be increased to yield even more
conservative actuation as seen in figure 7.18, at the cost of larger deviations from the desired ROP
value. Removing these weights, however, may cause a severe fluctuation about the reference value
which may be harmful to the actuators and potentially the drilling equipment.

Since there were no state models for the ECD, paf , or the flow rate, q, these were set constant
during the simulation with the SLMPC. It is, however, likely that the ECD would increase with
larger RPM and as a function of the amount of transported cuttings in the mud as described in
subsection 2.1.4. Since both the ECD and the flow rate are important factors for the pressure
control in the wellbore, it would make sense to augment the state model to include these. This
would potentially further limit the max ROP, and is in the program developed in this thesis
assumed to be incorporated in the max ROP constraint.

Lastly, some thoughts on the difference between using a successive linearization based MPC ap-
proach as opposed to a nonlinear MPC approach. The obvious advantage of linearizing the model
at each time step is to obtain the convexity property as presented in subsection 2.2.3, thus allowing
highly efficient solving of the optimization problem. While the developed SLMPC had an average
solving time of 36.9 ms with a prediction horizon of Np = 15, Sui et al. [2013] reported an average
solving time of 70 ms with the use of a nonlinear MPC with a prediction horizon of Np = 7,
fewer decision variables, and seemingly fewer constraints. Further, the convex QP problem is a
well-documented area of research with highly efficient solvers available. However, the nonlinear
MPC approach allows for nonlinear constraints to be directly formulated in the optimization prob-
lem. In the developed SLMPC, the max ROP constraint is assumed to be externally calculated by
Halliburton’s Max ROP and applied to the SLMPC as a linear constraint. Hence, the predictive
capabilities of the SLMPC do not apply to the max ROP constraint. If these calculations were
calculated directly as a nonlinear constraint on the max ROP, some predictive capabilities could
be obtained and ultimately respond faster to unforeseen events. However, the feasibility of such a
solution in terms of solving time and model complexity is unknown.
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9 Conclusion and Future Work

9.1 Conclusion

This thesis presents results suggesting that a successive linearization-based MPC might be a promis-
ing candidate to control the drilling procedure. A Bourgoyne & Young ROP-model was established,
where the drilling coefficients were found by parameter estimation techniques based on a moving
data window. While the parameter estimation was performed both through a multiple regression
method and a trust-region method, only the trust-region approach provided drilling coefficients
within physically meaningful ranges and was thus the preferred method. Furthermore, the model
was linearized at every time step to formulating a convex QP problem that the MPC could effec-
tively solve.

Thus, an SLMPC-problem was formulated based on the ROP operating mode, where the control
objective is to drive the ROP to the desired reference value, according to a pre-determined drilling
plan, while obeying the imposed operational and safety constraints.

Further, a verification strategy was developed to test the SLMPC performance against a simulated
”real well” response. The MPC model was updated from online measurements, both in terms of
historical measurements in the moving data window and by the real-time measurements done in
the extended Kalman filter. A prerequisite for the SLMPC scheme developed in this thesis is that
a wired drill pipe is used, as the measurements in the simulation were done every two seconds. The
results then showed that the SLMPC successfully controlled the simulated well to the reference
value or the best obtainable value based on the constraints and the chosen weighting matrices.

While the simulation results suggest that the developed SLMPC can control the drilling process
efficiently, according to the specified operating mode, it cannot be said to be done without compro-
mising the safety in terms of pressure control. Therefore, augmenting the state-space model with
states necessary to obtain proper pressure control might be a prerequisite for a fully autonomous
operation, with the driller in a supervisory role.

9.2 Future Work

Suggestions to some potential improvements or next steps are provided in the following bulletpoints

• Formulate a separate control horizon or apply input blocking in the optimization problem
developed in subsection 4.3 to further improve the average solving time of the SLMPC.
Further, other optimization solvers should be considered.

• Augment the state space model to include ECD and flow rate to improve safety in terms of
increased pressure control

• Evaluate, or develop methods to evaluate which drilling parameters Xj that should be
excluded from the parameter estimation and thus which drilling coefficients aj should be
chosen based on prior knowledge of the drilling conditions and kept constant during the
drilling process.

• Simulate and test the SLMPC in a proper well simulator environment.

• Formulate and develop an MPC for the rest of the operating modes that is mentioned in
section 4 and further elaborated in Kommedal [2020].

• Formulate and develop a nonlinear MPC to test the performance relative to a SLMPC
strategy.
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Appendix

A Table of Dates Website References was Accessed

Due to difficulties of including the date a website reference was accessed with the chosen Latex
reference framework, this table is included to provide this information.

As referenced in Bibliography Date accessed
AkerBP ASA. Valhall-omr̊adet 05/09/2020
Rigzone. How Do Semisubmersibles Work? 18/10/2020
Norsk Oljemuseum. Valhall IP 18/10/2020
Gregory King. 8.4.3.2: Semi-Submersible Rig 18/10/2020
IADC. Drilling Manual Drilling mechanics and performance. 08/11/2020
Schlumberger. telemetry 18/11/2020
World Wide Web Consortium (W3C). XML Essentials 24/04/2021
MathWorks inc. MATLAB - MathWorks - MATLAB & Simulink. 27/04/2021
Borekostnadene p̊a sokkelen: Knask eller knep? - SSB 24/05/2021

Table 8: Dates of when the website references was accessed.

B Matlab Code

B.1 Simulating Varying Formation Properties

%% Simulating a non-uniform varying formation

awell(1) = awell(1) + randn()*0.01;
awell(5) = awell(5) + randn()*0.01;
awell(6) = awell(6) + randn()*0.01;

if awell(1) > 1.9
awell(1) = 1.9;

elseif awell(1) < 1.5
awell(1) =1.5;

end
if awell(5) > 0.7

awell(5) = 0.7;
elseif awell(5) < 0.5

awell(5) =0.5;
end
if awell(6) > 1.0

awell(6) = 1.0;
elseif awell(6) < 0.4

awell(6) =0.4;
end
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B.2 Opening and Extracting Data from Drilling Data Files

%% Open and Extract Data From Files

% 0: Use data from specified interval, 1: Use all data
SimulateAll = 0;

FileToRead = 'WellData.csv';
FromDate = '2018-03-20';
ToDate = '2018-03-20';
FromTime = '05:34:00';
ToTime = '07:01:00';

% Import .csv-file properly.
opts = detectImportOptions(FileToRead);
opts = setvartype(opts, 'TIME', 'string');
WellData = readtable(FileToRead, opts);

%% Extract time on correct datetime format YYYY-MM-DDTHH:MM:SS

if SimulateAll
t1 = 1;
t2 = height(WellData);
Time=datetime(extractBetween(WellData.TIME(:),"","."),...

'Format','yyyy-MM-dd''T''HH:mm:ss');
else

[t1,t2] = FindTimeIndexes(WellData,FromDate,FromTime,ToDate,ToTime)
Time=datetime(extractBetween(WellData.TIME(t1:t2),"","."),...

'Format','yyyy-MM-dd''T''HH:mm:ss');
end

%% Creating Interpolated Data Sample (Uniform Data at 1 Hz)

InterData = InterpolateTable(WellData(t1:t2,:),Time);

B.3 Find Time Indexes

% Find data between specified date and time
% Date format: 'YYYY-MM-DD', Time format: 'HH:MM:SS'
function [t1, t2] = FindTimeIndexes(G22A,FromDate,FromTime,ToDate,ToTime)

FromDateTime = sprintf([FromDate 'T' FromTime '.000+01:00']);
ToDateTime = sprintf([ToDate 'T' ToTime '.000+01:00']);

t1 = find(G22A{:,1} == FromDateTime);
t2 = find(G22A{:,1} == ToDateTime);

end
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B.4 Interpolating the Drilling Data Table

function InterpolatedTable = InterpolateTable(PreData,Time)
% Function made to create the interpolated data table

% Data prior to interpolation. Zeroes are added in first and last row
% to ensure that there exist no NaN data in these rows prior to the
% interpolation
PreData{1,2:19} = 0;
PreData{height(PreData),2:19} = 0;

% Dimensions of the new interpolated table.
InterHeight = height(resample(PreData{:,2}...

(PreData{:,2} > -999),Time(PreData{:,2} > -999),1,1,1));
InterWidth = width(PreData);

% Variable types of new interpolated table
VarTypes = {'datetime','double','double','double','double',...

'double','double','double','double','double','double','double',...
'double','double','double','double','double','double','double'};

% Defining the new interpolated table
InterpolatedTable = table('Size',[InterHeight InterWidth]...

,'VariableTypes',VarTypes);
InterpolatedTable.Properties.VariableNames = ...

PreData.Properties.VariableNames;

% Removing all "NaN" values, and creating the interpolated data using
% Matlab function resample()
for i = 2:19

[InterpolatedTable{:,i},InterpolatedTable{:,1}] = ...
resample(PreData{:,i}(PreData{:,i} > -999),...
Time(PreData{:,i} > -999),1,1,1); %Interpolated data (1 hz)

end

% Omit the first and last two rows of the interpolated data
InterpolatedTable(1:3,:) = [];
InterpolatedTable(height(InterpolatedTable)-2:...

height(InterpolatedTable),:) = [];
end

B.5 Converting from Measured Depth to True Vertical Depth

function TVD = MDtoTVD(MD)
% Converts MD to TVD using Angle Averaging Method from MD1 to MD2
% i.e. does not include curvature.

global MDvsTVD

% Finding the index %
[ ~, index] = min( abs( MDvsTVD.MD(:)-MD ) );

if MDvsTVD.MD(index) > MD
index = index - 1;

end

% TVD calculation based on current MD %
TVD = MDvsTVD.TVD(index)...

+ (MD - MDvsTVD.MD(index))*(cosd((MDvsTVD.INCLINATIONANGLE(index)...
+ MDvsTVD.INCLINATIONANGLE(index + 1))/2));

end
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B.6 Finding the Drilling Coefficients aj , ∀j = 1, ..., 8 Through MR and TR Methods

function sol = FindDrillingCoefficients(DataSet,Method)
%Function for Finding a(j) For All j = 1,...,8

persistent a0

%% Determining a(j) For All j = 1,...,8 Through Multiple Regression
if Method

syms a1 a2 a3 a4 a5 a6 a7 a8;

eq1 = a1*sum(DataSet.X1(:)) + a2*sum(DataSet.X2(:)) + a3*sum(DataSet.X3(:)) + a4
eq2 = a1*sum(DataSet.X2(:)) + a2*sum(DataSet.X2(:).*DataSet.X2(:)) + a3*sum(Data
eq3 = a1*sum(DataSet.X3(:)) + a2*sum(DataSet.X2(:).*DataSet.X3(:)) + a3*sum(Data
eq4 = a1*sum(DataSet.X4(:)) + a2*sum(DataSet.X2(:).*DataSet.X4(:)) + a3*sum(Data
eq5 = a1*sum(DataSet.X5(:)) + a2*sum(DataSet.X2(:).*DataSet.X5(:)) + a3*sum(Data
eq6 = a1*sum(DataSet.X6(:)) + a2*sum(DataSet.X2(:).*DataSet.X6(:)) + a3*sum(Data
eq7 = a1*sum(DataSet.X7(:)) + a2*sum(DataSet.X2(:).*DataSet.X7(:)) + a3*sum(Data
eq8 = a1*sum(DataSet.X8(:)) + a2*sum(DataSet.X2(:).*DataSet.X8(:)) + a3*sum(Data

sol = solve([eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8],...
[a1, a2, a3, a4, a5, a6, a7, a8]);

sol = [sym2poly(sol.a1) sym2poly(sol.a2) sym2poly(sol.a3) ...
sym2poly(sol.a4) sym2poly(sol.a5) sym2poly(sol.a6) ...
sym2poly(sol.a7) sym2poly(sol.a8)]';

%% Determining a(j) For All j = 1,...,8 Through Trust-Region Method
% min 0.5*(NORM(C*x-d)).ˆ2 with upper and lower bounds using TR method
% x

else

C = [sum(DataSet.X1(:)) sum(DataSet.X2(:)) sum(DataSet.X3(:)) sum(DataSet.X4(:))
sum(DataSet.X2(:)) sum(DataSet.X2(:).*DataSet.X2(:)) sum(DataSet.X3(:).*Data
sum(DataSet.X3(:)) sum(DataSet.X2(:).*DataSet.X3(:)) sum(DataSet.X3(:).*Data
sum(DataSet.X4(:)) sum(DataSet.X2(:).*DataSet.X4(:)) sum(DataSet.X3(:).*Data
sum(DataSet.X5(:)) sum(DataSet.X2(:).*DataSet.X5(:)) sum(DataSet.X3(:).*Data
sum(DataSet.X6(:)) sum(DataSet.X2(:).*DataSet.X6(:)) sum(DataSet.X3(:).*Data
sum(DataSet.X7(:)) sum(DataSet.X2(:).*DataSet.X7(:)) sum(DataSet.X3(:).*Data
sum(DataSet.X8(:)) sum(DataSet.X2(:).*DataSet.X8(:)) sum(DataSet.X3(:).*Data

d = [sum(log(DataSet.ROP{:,:}));
sum(log(DataSet.ROP{:,:}).*DataSet.X2(:));
sum(log(DataSet.ROP{:,:}).*DataSet.X3(:));
sum(log(DataSet.ROP{:,:}).*DataSet.X4(:));
sum(log(DataSet.ROP{:,:}).*DataSet.X5(:));
sum(log(DataSet.ROP{:,:}).*DataSet.X6(:));
sum(log(DataSet.ROP{:,:}).*DataSet.X7(:));
sum(log(DataSet.ROP{:,:}).*DataSet.X8(:))];

% Lower and Upper Bounds on a(j) %
% a1 a2 a3 a4 a5 a6 a7 a8
lb = [0.5;0.000001;0.000001;0.000001;0.5;0.4;0.3;0.3];
ub = [1.9;0.0005 ;0.0009 ;0.0001 ;2.0;1.0;1.5;0.6];

options = optimoptions('lsqlin','Algorithm'...
,'trust-region-reflective','Display','Off');

sol = lsqlin(C,d,[],[],[],[],lb,ub,a0,options);
a0 = [sol(1) sol(2) sol(3) sol(4) sol(5) sol(6) sol(7) sol(8)]';

end

end
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B.7 Finding the Matrices; P, H, E, and ∆

function P = FindP(At,Ct,Np)
% Find P matrix
% Inspired by obsv() matrix (J.C.Slater, J.A. Leitner)

nx = size(At,1);
ny = size(Ct,1);

% Allocate Fc and compute each C Aˆk term
P = zeros(Np*ny,nx);
P(1:ny,:) = Ct;

for k=1:Np-1
P(k*ny+1:(k+1)*ny,:) = P((k-1)*ny+1:k*ny,:) * At;

end

end

function H = FindH(At,Bt,Ct,Dt,Np)
% Find H matrix

ny = size(Ct,1);
nu = size(Bt,1);

H = kron(eye(Np),Dt);

for k = 2:Np*ny
indx = 1;
for j = 1:2:Np*nu

if k-1 >= indx
H(k,j:j+1) = Ct*Atˆ(k-1-(indx))*Bt;

end
indx = indx + 1;

end
end
end

function E = FindE(At,Ct,Np)
% Find E matrix

nx = size(At,1);
ny = size(Ct,1);

E = zeros(Np*ny,nx);

E(1:ny,:) = 0;
E(2,:) = Ct;

for k = 3:Np*ny
SumOfA = 0;
for i = 1:k-2

SumOfA = SumOfA + Atˆi;
end
E(k,:) = Ct + Ct*SumOfA;

end

end
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function Delta = FindDelta(Np,nu)
% Find Delta matrix
%
% kronD produces
%
% |I 0 .. 0 |
% |I I .. 0 |
% kronD = |. . .. . | , size(kronD) = [N*nu*nu,N*nu*nu]
% |I I .. I |
%
% Delta extracts the upper left quadrant of the matrix
%
% |I 0 .. 0 |
% |I I .. 0 |
% Delta = |. . .. . | , size(Delta) = [N*nu,N*nu]
% |I I .. I |
%

kronD = kron(tril(ones(Np*nu)),eye(nu));

Delta = kronD(1:Np*nu,1:Np*nu);

end
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B.8 Finding the Drilling Parameters X1, X2, ..., X8 at Time t

function [X,w,r,gp,gp0,ECD,w0] = DrillingParameters(h,t,InterData)
% Provides X1,X2,...,X8 and other drilling parameters
% for time t used in ROP estimate

global PPFG
%% Constants and variables

if(length(class(h)) < 6)
h = sym2poly(h); % Ensures numeric value for h

end

h0TVD = MDtoTVD(InterData{1,2}); % Point of normalization for TVD [m]
hMD = h; % Measured depth [m]
hTVD = MDtoTVD(h); % True Vertical Depth [m]
ECD = InterData{t,14}; % ECD at bit [ppg]
gp0 = 9; % Point of normalization of PP [ppg]
w = InterData{t,8}; % Weight on Bit [klbf]
w0 = 0; % Bit weight threshold before

% the bit is effective
r = InterData{t,10}; % Surface RPM [RPM]
r0 = 100; % Point of normalization of RPM [RPM]
q = InterData{t,12}; % Mud flow [L/min]
d B = 12.25; % Bit outer diameter [in]
H = 0; % Bit tooth wear
rho = 14.6; % Mud Weight
A T = (15ˆ2 + 15ˆ2 + 15ˆ2 + ... % Total area flow [inˆ2]

15ˆ2 + 16ˆ2 + 16ˆ2 + ...
16ˆ2)*pi*(1/(4*32ˆ2));

Cd = 0.95; % Discharge coefficient
LPMtoGPM = 0.26417; % Conversion factor for L/min

% to gallons/min
PD = (8.311e-5)*... % Bit pressure drop[lbs/inˆ2]

(rho*(q*LPMtoGPM)ˆ2)/...
((Cdˆ2)*(A Tˆ2));

Fj = 0.01823*Cd*(q*LPMtoGPM)*... % Jet impact force [lbf]
(rho*PD)ˆ.5;

Fj0 = 1000; % Point of normalization for jet impact
% force

%% Finding approximate PP gradient corresponding to given measured depth

[ ~, PPindex] = min( abs(PPFG.depth(:) - hMD));
gp = PPFG.MLPP(PPindex,1); % Pore pressure gradient [ppg]

%% Drilling Parameters
X(1) = 1;
X(2) = distdim(h0TVD-hTVD,'m','ft');
X(3) = (distdim(hTVD,'m','ft')ˆ(0.69))*(gp - gp0);
X(4) = distdim(hTVD,'m','ft')*(gp - ECD);
X(5) = log((w/d B - w0/d B)/(4 - w0/d B));
X(6) = log(r/r0);
X(7) = -H;
X(8) = log(Fj/Fj0);

end
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B.9 Finding the Dataset Φ(t)

function DataSet = CreateDataSet(N,t,InterData)
% Creating the moving window data set
% Creating a data set of N steps, from timestep t.

global PPFG
DataSpread = 2; % Spread in the historical data

% measurements
% Spread of historic data if desired
SetHeight = t-N*DataSpread:DataSpread:t-DataSpread;

%% Constants and variables
h0MD = table(ones(length(SetHeight),1)*InterData{1,2}); % Normalized MD
h0TVD = table(ones(length(SetHeight),1)*InterData{1,2});% Normalized TVD
hMD = InterData(SetHeight,2); % Measured depth [m]
hTVD = zeros(height(hMD),1); % True Vertical Depth [m]
ECD = InterData(SetHeight,14); % ECD at bit [ppg]
gp = zeros(height(hMD),1); % Initilalize PP gradient
gp0 = 9; % Point of normalization of PP[ppg]
w = InterData(SetHeight,8); % Weight on Bit [klbf]
w0 = 0; % Bit weight threshold before

% the bit is effective
r = InterData(SetHeight,10); % Surface RPM [RPM]
r0 = 100; % Point of normalization of RPM
q = InterData(SetHeight,12); % Mud flow [L/min]
d B = 12.25; % Bit outer diameter [in]
H = 0; % Bit tooth wear
rho = 14.6; % Mud Weight
A T = (15ˆ2 + 15ˆ2 + 15ˆ2 + ... % Total area flow [inˆ2]

15ˆ2 + 16ˆ2 + 16ˆ2 + ...
16ˆ2)*pi*(1/(4*32ˆ2));

Cd = 0.95; % Discharge coefficient
LPMtoGPM = 0.26417; % Conversion factor for L/min

% to gallons/min
PD = (8.311e-5).*... % Bit pressure drop [lbs/inˆ2]

(rho.*(q{:,:}.*LPMtoGPM).ˆ2)./...
((Cdˆ2)*(A Tˆ2));

Fj = 0.01823.*Cd.*(q{:,:}.*LPMtoGPM).*... % Jet impact force [lbf]
(rho.*PD).ˆ.5;

Fj0 = 1000;
%% Converting From Measured Depth to Total Vertical Depth
for i = 1:height(hMD)

h0TVD{i,1} = MDtoTVD(h0MD{i,1});
hTVD(i) = MDtoTVD(hMD{i,1});

end

%% Finding approximate PP gradient corresponding to given depth
for i = 1:height(hMD)

[ ~, PPindex] = min( abs(PPFG.depth(:) - hMD{i,1}));
gp(i) = PPFG.MLPP(PPindex,1);

end
%% Defining Data Set Table
DataSet = table('Size',[N 10],'VariableTypes',...

{'datetime','double','double','double','double',...
'double','double','double','double','double'});

DataSet.Properties.VariableNames = ...
{'Time','ROP','X1','X2','X3','X4','X5','X6','X7','X8'};

%% Drilling Parameters
DataSet.Time = InterData(SetHeight,1);
DataSet.ROP = InterData(SetHeight,3);
DataSet.X1(:) = 1; % Dummy value
DataSet.X2 = distdim(h0TVD{:,:}-hTVD(:),'m','ft');
DataSet.X3 = (distdim(hTVD(:),'m','ft').ˆ(0.69)).*(gp(:) - gp0);
DataSet.X4 = distdim(hTVD(:),'m','ft').*(gp(:) - ECD{:,:});
DataSet.X5 = log((w{:,:}./d B - w0(:)./d B)./(4 - w0(:)./d B));
DataSet.X6 = log(r{:,:}./r0(:));
DataSet.X7(:) = -H;
DataSet.X8 = log(Fj./Fj0);
end
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B.10 Extended Kalman Filter

if NewMeasurement
y = [hwell; ROPwell - ROPest];

% Calculate the Kalman gain matrix
K = P prd * Cd' * inv( Cd * P prd * Cd' + Rd );

% Correct the state and covariance error estimate
x hat = x prd + K * (y - Cd * x prd);
P hat = ...
(eye(2) - K*Cd) * P prd * (eye(2) - K*Cd)' + K * Rd * K';

else
% If there are no new measurements
% use only the predicted estimate
x hat = x prd;
P hat = P prd;

end

% Linearized df/dx around x = x hat
Ad = [ 1+dt*(-a(2) + ...

0.69*a(3)*((gp - gp0)/(x hat(1)ˆ0.31))...
+ a(4)*(gp-ECD))*ROPest dt
0 1 ];

% Predict next state estimate and covariance error
x prd = x hat + dt*[ROPest + x hat(2);0];
P prd = Ad * P hat * Ad' + Qd ;
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B.11 Successive Linearization based MPC

%% Model Predictive Controller (SLMPC)
if T > StartSetpointRegulation

% Linearization %
At = [1 + dt*ROPest*(a(4)*(gp-ECD) - a(2) ...

+ 0.69*a(3)*((gp - gp0)/(x hat(1)ˆ0.31))) dt;0 1];

Bt = [dt*ROPest*(a(5)/(w - w0)) dt*ROPest*(a(6)/r);0 0];

Ct = [ROPest*(a(4)*(gp-ECD) - a(2) ...
+ 0.69*a(3)*((gp - gp0)/(x hat(1)ˆ0.31))) 1];

Dt = [ROPest*(a(5)/(w - w0)) ROPest*(a(6)/r)];

% QP-formulation %
f0 = [x hat(1) + dt*(ROPest + x hat(2) );x hat(2)];
g0 = ROPest + x hat(2) ;
x0 = [x hat(1);x hat(2)];
x op = x0; % Using x0 as operating point
u op = [w;r]; % Using last applied w,r as

% operating point

F = f0 - At*x op - Bt*u op;
G = g0 - Ct*x op - Dt*u op;

P = FindP(At,Ct,Np);
H = FindH(At,Bt,Ct,Dt,Np);
E = FindE(At,Ct,Np);
Delta = FindDelta(Np,Nu);

U 1 = repmat(u op,[Np 1]); % Repeats the u op over
% the whole horizon

% Collecting all constant terms, including the reference ROP
M = E*F + ones(Np*Ny,1)*G- yref(T-StartSetpointRegulation:...

T-StartSetpointRegulation+Np*Ny-1);

% Weighting matrices for the objective function before
% augmentation
H tilde = H'*Q*H + R;
c tilde = H'*Q'*(P*x0 + M) - R'*Uref;

% Building the inequality constraints Az <= b
A1 = [inv(Delta);-inv(Delta)];
I1 = eye(Np*Nu);
Idu = repmat(eye(Np*Nu),2,1);
I2 = eye(Np);

b1 = [dUub + Delta\U 1;-dUlb - Delta\U 1;];
b2 = Uub - repmat([WOBmargin;RPMmargin],Np,1);
b3 = [Delta\U 1;-Delta\U 1];
b4 = ones(Np*Ny,1)*MaxROP - P*x0 - E*F - ones(Np*Ny,1)*G;

Aineq = ...
[A1 zeros(height(A1),2*width(I1) + width(I2));
I1 -I1 zeros(height(I1),width(I1) + width(I2));
A1 zeros(height(A1),width(I1)) -Idu zeros(height(A1),width(I2));
H zeros(height(H),2*width(I1)) -I2];

bineq = [b1;b2;b3;b4];

% Upper and lower bounds on U and slack variables
AugUlb = [Ulb; zeros(Np*Nu,1); zeros(Np*Nu,1); zeros(Np,1)];
AugUub = ...

[Uub; ones(Np*Nu,1)*inf; ones(Np*Nu,1)*inf;ones(Np,1)*inf];
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% Building the quadratic weighting matrix
Gamma = ...
[H tilde zeros(height(H tilde),width(Su)+width(Sdu)+width(Sy));
zeros(height(Su),width(H tilde)) Su ...
zeros(height(Su),width(Sdu)+width(Sy));
zeros(height(Sdu),width(H tilde)+width(Su)) Sdu...
zeros(height(Sdu),width(Sy));
zeros(height(Sy),width(H tilde)+width(Su)+width(Sdu)) Sy];

% Building the linear weighting matrix
Zeta = [c tilde; rho u; rho du; rho y];

% Solving the open loop optimization problem
tic;
[U,lambda,exitflag,output] = quadprog(Gamma,Zeta...

,Aineq,bineq,[],[],AugUlb,AugUub);
stop = stop + toc;
TimerTicker = TimerTicker + 1;

% Applying only the first control input to the system
w = U(1);
r = U(2);
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B.12 Initializing the MPC and Drilling Coefficients

%% Initialize MPC
%%
% Length of Simulation
n = 4000;

% Prediction Horizon and Number of States, Inputs and Outputs
Np = 10;
Nx = 2;
Nu = 2;
Ny = 1;

%% Upper and Lower Bounds
MaxROP = 30; % Max ROP constraint can be delivered by

% by Halliburton "Max ROP" software.
WOBmargin = 5; % WOB margin to avoid excessive wear and tear on bit
HardWOB UB = 25; % Max WOB tolerance
HardWOB LB = 2; % Minimum WOB tolerance
RPMmargin = 15; % RPM margin to avoid excessive wear and tear on bit
HardRPM UB = 180; % Max RPM tolerance
HardRPM LB = 100; % Minimum RPM tolerance

Ulb = zeros(Np*Nu,1);
Uub = zeros(Np*Nu,1);
Ulb(1:2:end) = HardWOB LB; % Lower bound on WOB
Ulb(2:2:end) = HardRPM LB; % Lower bound on RPM
Uub(1:2:end) = HardWOB UB; % Upper bound on WOB
Uub(2:2:end) = HardRPM UB; % Upper bound on RPM
dUlb = zeros(Np*Nu,1);
dUub = zeros(Np*Nu,1);
dUlb(1:2:end) = -.5; % Lower bound on WOB rate of change
dUlb(2:2:end) = -.5; % Lower bound on RPM rate of change
dUub(1:2:end) = .5; % Upper bound on WOB rate of change
dUub(2:2:end) = .5; % Upper bound on RPM rate of change

%% Input Reference Values
Uref = zeros(Np*Nu,1);
Uref(2:2:end) = 142.22; % High RPM desirable for proper hole cleaning

%% Weighting Matrices
Q = eye(Np*Ny)*1e4; % Weight on ROP
r1 = 10; % Weight on WOB
r2 = 10; % Weight on RPM
R1 = [r1 0;0 r2];
R = diag repeat(R1,Np);

% Weight matrices for slack on inputs U

s u1 = 1; % Weight on WOB slack
s u2 = 1e6; % Weight on RPM slack
Su = diag repeat(diag([s u1 s u2]),Np); % Quadratic weight matrix
rho u = repmat([s u1;s u2],Np,1)*0; % Linear weight matrix

% Weight matrices for slack on rate of change of inputs dU

s du1 = 1e6; % WOB rate of change slack
s du2 = 1e6; % RPM rate of change slack
Sdu = diag repeat(diag([s du1 s du2]),Np); % Quadratic weight matrix
rho du = repmat([s du1;s du2],Np,1)*0; % Linear weight matrix

% Weight matrices for slack on Max ROP.
Sy = eye(Np)*1e6; % Quadratic weight matrix
rho y = ones(Np,1)*0; % Linear weight matrix

%% Drilling Plan
yref = ones(n,1)*20;
yref(200:1500) =35;
yref(1501:2000) =45;
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%% InitDrillingCoefficients()
% Initializing the Drilling Coefficients for both "Real well" and the Model

% Initialization for "Real well" coefficients
% based on 200 datapoints from actual drilled well
DataSet = CreateDataSet(200,t,InterData);
RegSol = FindDrillingCoefficients(DataSet,EstimationMethod);
awell(1) = RegSol(1);
awell(2) = RegSol(2);
awell(3) = RegSol(3);
awell(4) = RegSol(4);
awell(5) = RegSol(5);
awell(6) = RegSol(6);
awell(7) = RegSol(7);
awell(8) = RegSol(8);

% Initialization of Model coefficients by guess.
a = [1.5,0.000053,0.0009,0.000008,0.6,0.5,0.9,0.59];
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