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Abstract

The concept of microgrids is considered a promising building block for realizing the
modern and future power system much due to its ability to integrate distributed energy
resources, energy storage systems, and controllable loads. However, to utilize the full
potential of microgrids, they need to be controlled and managed optimally. Therefore,
this thesis aims to develop optimal control methods to perform the energy management
of a grid-connected microgrid. Following an extensive literature review on microgrid
energy management systems, the first phase of this work developed a microgrid simulation
platform in MATLAB/Simulink. This platform utilized a variable-step phasor solving
method to simulate a grid-connected microgrid comprising a photovoltaic (PV) system, a
variable load, a static load, and a battery, including a degradation model.

In the second phase of this work, two energy management strategies were developed
to determine the battery charging and discharging power set-points. As a first step, a
simple heuristic method was developed to work as a reference for comparison. Further, an
optimization-based scheduling algorithm based on the model predictive control (MPC)
approach was proposed. The overall problem was formulated using mixed-integer linear
programming (MILP), which can effectively be solved using commercially available solvers
resulting in significant improvements in solution quality and computational burden. In this
work, the power converter efficiency and battery capacity were considered time-varying by
updating the values at each sample time and assuming them constant over the prediction
horizon. Consequently, the resulting energy management strategy was cast as a multi-
objective MILP problem incorporated in an MPC framework to account for disturbances
and to capture some of the nonlinear dynamics of the system.

Finally, the proposed control approaches were investigated through an extensive case study
over a two-month simulation period using actual PV, load, and electricity price data. For all
cases, the MILP-MPC control algorithm succeeded in reducing the daily cost of the energy
drawn from the main grid compared to the heuristic algorithm. Furthermore, depending
on the chosen settings, the results showed that the MILP-MPC energy management
strategy managed to determine the reference values for the battery power in a way that:
(1) minimized the purchased energy during peak times; (2) maximized self-consumption
of locally produced PV power; (3) made good use of the battery, keeping it within its
limits and reducing its degradation. Thus, the result is a flexible algorithm that can be
tuned depending on the overall control objective. Moreover, the two-month simulation
was performed within an appropriate execution time using a short sample time of five
minutes, which enables real-time operation.
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Sammendrag

Mikronett anses som lovende byggesteiner for å realisere fremtidens smarte kraftsystem
siden de legger til rette for å integrere distribuerte energikilder, energilagringssystemer, og
kontrollerbare laster. For å utnytte det fulle potensialet av mikronett er det avgjørende
at de styres og kontrolleres optimalt. Derfor er formålet med denne masteroppgaven
å utvikle optimale kontrollmetoder for energistyringen i et nettilknyttet mikronett.
Etter en omfattende litteraturstudie om energistyringssystemer (EMS) for mikronett,
utviklet den første fasen av dette masterprosjektet en mikronettsimuleringsplattform i
MATLAB/Simulink. Denne plattformen benyttet en fasorbasert løsningsmetode med
variabel steglengde for å simulere et nettilknyttet mikronett bestående av et solcelleanlegg,
en variabel last, en statisk last, og et batteri med en nedbrytningsmodell.

I den neste fasen av dette masterprosjektet ble det utviklet to energistyringssystemer
for å kontrollere mikronettets batteri. Først ble det utviklet en enkel heuristisk metode
som skulle fungere som en referanse for sammenligning. Videre ble det designet en
optimaliseringsbasert algoritme basert på modellprediktiv kontroll (MPC). Det overordnede
problemet ble formulert ved hjelp av blandet lineær heltallsoptimering (MILP). Denne
typen optimeringsproblemer kan effektivt løses ved hjelp av kommersielt tilgjengelige
programvarer for å oppnå mer nøyaktige resultater med lavere løsningshastighet. Metoden
inkluderer variabel kraftelektronikk-virkningsgrad og batterikapasitet ved å oppdatere
verdiene for hvert nye tidssteg og anse dem som konstante utover predikeringshorisonten.
Dermed kan den utviklede kontrollalgoritmen anses som et multi-objektivt MILP-problem
innlemmet i et MPC rammeverk for å kompensere for forstyrrelser og for å inkludere noe
av den ikke-lineære dynamikken i systemet.

Avslutningsvis ble de foreslåtte kontrollmetodene undersøkt gjennom en omfattende
casestudie over en to-måneders simuleringsperiode ved bruk av faktiske data for
solkraftproduksjon, laster, og elektrisitetspriser. I alle beregningene lyktes MILP-MPC
kontrollalgoritmen i å redusere de daglige energikostnadene sammenliknet med den
heuristiske metoden. Videre viste resultatene at MILP-MPC kontrollalgoritmen klarte å
fastsette referanseverdier for batteriet på en måte som: (1) minimerte innkjøp av energi
fra det overordnede strømnettet ved pristopper; (2) maksimerte forbruk av egenprodusert
solkraft; (3) utnyttet batteriet på en god måte innenfor dets grenser slik at nedbrytingen
av batteriet ble minimert. Dermed kan det konkluderes med at det utviklede optimale
energistyringssystemet er en fleksibel algoritme som kan konfigureres avhengig av det
overordende styringsmålet. I tillegg ble en to-måneders simulering gjennomført med et kort
tidssteg på fem minutter innenfor en passende kjøretid, noe som muliggjør sanntidsdrift.
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1 Introduction

The purpose of this chapter is to provide a background and a motivation for the thesis and

use this to formulate the overall problem. Further, this chapter will describe the thesis’

objectives, state the methodology adopted to achieve the objectives, limit the scope of the

research, highlight the contributions, and, finally, outline the contents of the report.

This master’s thesis builds upon the work conducted by the author during the execution of

the specialization project [1]. In order to give proper context to the present work, some

elements in the background section have been reproduced here. The motivation remains as

originally defined.

1.1 Background and motivation

The power system is currently in the middle of a significant transition. Traditionally, the

power system has been based on a centralized structure with large-scale power generation

that is transmitted in several stages to the end consumer [2], as illustrated in Figure 1.1.

Some advantages associated with this structure are unidirectional power flows and few

generating units with a reliable and predictable supply. Moreover, the traditional power

system has an inherent ability to regulate frequency due to the high inertia provided by

the large synchronous generators. These systems are therefore easy to adjust to changing

demand cycles and have historically managed to deliver power to consumers in a reliable,

secure, and safe way.
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Figure 1.1: Overview of the traditional power system and the future power system [3].

However, due to technological advancements and the demand for a more sustainable

future, the power system is currently undergoing massive changes that challenge the

conventional grid structure. One of the main changes is the large-scale deployment of

variable and unpredictable renewable energy sources (RES). Introducing RES to the power

system will result in a more decentralized structure, where generation also happens at

the distribution level closer to the end consumer, which is made evident in Figure 1.1.

This leads to lower transmission losses but also bidirectional power flows [4]. Moreover, as

opposed to the controllable generation in the conventional power system, RESs do not

allow the adjustment of production to demand. Hence, energy storage systems (ESS)

will have a central role in the future power system. Other changes to the power system

include increased use of information and communication technology (ICT) and more active

consumers [5]. The traditional power system has a limited ability to face these changes,

and it is thus necessary to rethink the way the power system is organized.

The concept of microgrids is considered a promising building block for realizing the modern

and future power system. Microgrids are small-scale power systems that can operate

either connected to the main grid, or while islanded. They typically comprise local control

systems, distributed generation units (DGs), distributed energy storage systems (ESS),

and controllable loads [6]. The result is a more active low-voltage distribution side that
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participates in the operation of the power system. This can be advantageous for integrating

RESs, optimizing operation, providing a secure power supply, and meeting challenges

related to variable generation, bidirectional power flows, and more active consumers.

However, to fully utilize the benefits microgrids bring, they need to be controlled and

managed optimally. This can be a challenging task and a prerequisite for optimal operation

of a microgrid is a properly designed energy management system (EMS). An EMS is an

inter-disciplinary system that utilizes ICT to ensure optimal coordination between the

microgrid units to supply reliable, sustainable, and high-quality energy in a cost-efficient

way. This system must be capable of supervising, planning, and controlling the microgrid

operation to manage not only technical but also economic and environmental issues [7, 8].

Based on the above background and motivation, this work intends to contribute to the

area of research by developing, implementing, and testing a microgrid EMS. The next

subsection will formulate the overall problem of this thesis, including the components of

the studied microgrid and the requirements placed on its EMS.

1.2 Problem formulation

Motivated by the microgrid challenges related to optimal control and management, the

purpose of this master’s thesis is to develop optimal control methods that can be used in

the energy management of a microgrid. The microgrid considered in this thesis comprises a

PV system, residential loads, and a battery. Along with the coordination of the microgrid

generation and demand, the proposed energy management system should be able to:

• Account for the variable and unpredictable nature of the PV system, the residential

loads, and the electricity prices in the daily operation.

• Simultaneously present solutions to multiple objectives, including minimization of

the daily operating costs, maximization of locally produced PV, and making good

use of the battery, keeping it within its limits and reducing its degradation.

• Incorporate battery models that include nonlinearities associated with power

conversion losses and battery capacity degradation.

• Control and operate the microgrid in real-time, and not just present a day-ahead

schedule. In this context, the EMS should reach an appropriate trade-off between

accuracy and computational efforts.



1.2 Problem formulation 4

• Apply methods that are long-term in nature over a specified prediction horizon

instead of considering the present time only.

Generally, optimization-based methods improve the overall performance of the microgrid

operation when compared to heuristic methods. However, solving optimization-based

techniques offline for day-ahead scheduling of the microgrid units often results in constraint

violations and poor performance in real-time scenarios. One way to address this challenge,

is to solve the optimization problem within a model predictive control (MPC) framework,

i.e., dynamically adjust the schedule according to real-time conditions. MPC includes

several features suitable for addressing the requirements listed above. Some of these

features are [9, 10, 11]:

• Optimization-based. It enables a microgrid optimization problem to be formulated and

solved by the controllers using several solving algorithms. In this way, an appropriate

solving algorithm can be implemented to effectively handle the constraints associated

with microgrids, at the same time as the optimization of multiple objectives is made

possible.

• Feedback mechanism. It enables the system to compensate for errors in generation,

demand, and electricity price forecasts. In addition, the feedback mechanism allows

the system model to be updated every sample time. In this way, the current battery

capacity and power electronic efficiencies can be used in the control.

• Receding prediction horizon. It considers the future behaviour of the system in the

control, and it is thus long-term in nature.

• Dynamic operation. It is suitable for making real-time control decisions.

MPC can incorporate any optimization method, and selecting a suitable method can be a

challenging task. Based on the extensive review of energy management methods performed

in Chapter 2 of this thesis, mixed-integer linear programming (MILP) is selected due to

less computational effort, compatibility with available solvers, and a guaranteed optimal

solution without noticeable loss of accuracy compared to nonlinear methods. MILP has

been successfully incorporated with MPC in several previous studies [12, 13, 14], and some

deficiencies observed in these studies are:

• Concerning the battery modeling, the battery capacity is often assumed constant,

while in reality, it decreases as the battery is used. This is a valid assumption for a
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short period of time, but it will affect the results in the long run. Considering the

variable battery capacity in the problem formulation involves high nonlinearities.

• Although much work aims at limiting battery degradation, few evaluate the

performance of the proposed algorithm in terms of battery aging. The algorithms

are often investigated and verified in a microgrid simulation platform where the

incorporated battery model neglects degradation, making it difficult to properly

evaluate how the schedule provided by the EMS will affect the battery.

• Simulations are typically performed for one day, which does not show the long-term

effects.

• Sampling times ranging from 15 minutes to 2 hours are commonly used. A shorter

sampling time is preferable because it allows the EMS to observe and respond to

small changes in the load, generation, and electricity price throughout the day.

• The power converter efficiency is often neglected or assumed constant while in

reality, it depends on the battery power. Considering the variable efficiency of power

converters in the problem formulation involves high nonlinearities.

1.3 Goal and objectives

Based on the above problem formulation, the overall goal of this thesis is to

Develop a microgrid energy management control approach that combines MPC

with MILP to effectively account for uncertainties and to capture some of the

nonlinear dynamics of the system by updating the system model every time

step.

Four secondary objectives are derivated for the main goal:

• Perform a literature review to investigate the state of the art in EMS to select a

method applicable for controlling the microgrid considered in this thesis.

• Create a microgrid simulation platform in MATLAB/Simulink suitable for

implementing and testing an EMS. The simulation platform should include a battery

degradation model to properly evaluate how the EMS affects the battery.

• Propose and implement two energy management strategies, namely a high-level

optimization algorithm for a grid-connected microgrid using MPC in combination
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with MILP and a heuristic management strategy for comparison.

• Investigate the performance of the proposed control approaches through an extensive

case study over a two-month simulation period using actual PV and load data from

Skagerak Energilab and electricity price profiles from Nordpool.

1.4 Methodology

A step-by-step methodology was applied to achieve the objectives of this thesis. The

methodology included the following steps:

1. Perform a thorough literature review of microgrid energy management systems to

obtain a solid theoretical foundation and to understand the main gaps and challenges.

2. Choose the MILP-MPC control approach for controlling the microgrid based on the

literature review.

3. Implement a phasor microgrid simulation platform in MATLAB/Simulink by

modifying and combining elements from two existing models, namely the microgrid

component library developed by an application engineer at the MathWorks, Jonathan

LeSage[15], and the SimSES battery model developed by Maik Naumann and Nam

Truong at the Technical University of Munich [16].

4. Design and implement a MILP-MPC control approach by formulating and solving a

MILP energy management optimization problem over a receding horizon using the

Optimization Toolbox in MATLAB.

5. Design and implement a heuristic control method as a reference for comparing the

performance of the proposed MILP-MPC algorithm.

6. Propose seven case studies to assess the dynamic performance of the developed

control algorithms for a two-month simulation time.

7. Collect real-life data from Skagerak Energilab and Nordpool

8. Analyze the results of the case study and conclude the work.

To aid in the investigation of the developed control methods, actual PV and load data

were provided by Skagerak Energilab [17]. Skagerak Energilab is a testing facility for local

production, storage, and distribution of electrical energy located in Skien in Norway. In
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particular, this testing facility comprises a PV system, residential loads, and a battery that

are combined to make up a virtual microgrid. The project is run by Lede in collaboration

with ABB, Kontorbygg AS, and Odds Ballklubb.

1.5 Scope and main assumptions

To achieve the objectives of the master’s thesis in time, the scope is limited by the following

assumptions and limitations:

• The microgrid model is built for performing high-level optimization, meaning that

the control of frequency, power quality, and voltage stability is assumed ideal and

performed at a lower control level. The higher control level also works with long-term

behavior and transients are therefore neglected.

• The developed microgrid model is grid-connected. Hence, island mode and related

issues are not considered in the model development.

• The well-known SimSES battery model has been used to simulate the complete

behaviour of the battery including degradation. It is outside the scope to build

new models. Moreover, no verification of the SimSES battery model is conducted

because it was extensively verified by Maik Naumann in his doctoral dissertation

[18]. SimSES has also successfully been used in several publications [19, 20, 21, 22].

• Developing a forecasting algorithm to predict the PV production, load demand, and

electricity prices is outside the scope. Instead, an error function is developed to

simulate uncertainty in forecasts by adding errors to the actual values. These errors

are modelled with a gradient uncertainty level in which the forecast error increases

when the prediction horizon becomes larger.

• A comprehensive cost analysis including battery investment and net present value is

outside the scope. However, energy costs are calculated and discussed.

1.6 Relation to Specialization Project

During the fall of 2020, the author wrote a specialization project titled "Energy Management

of Microgrids - fundamentals, modeling, and simulations"[1]. The specialization project

provided a solid foundation for the master’s thesis by gaining insight into the theory,
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modeling, and simulation of a microgrid and its energy management system. The master’s

thesis takes this work further by developing a more sophisticated EMS and incorporating

a more realistic battery model into the simulation platform.

Some sections in this thesis contain material reused from the specialization project, where

most of the material is modified. The sections including some reused material are listed

below and will not be further referenced in the running text:

• The background and motivation in Section 1.1.

• Parts of Sections 2.1.1 and 2.2 about control of microgrids and the microgrid energy

management system.

• The model description of the PV system, the loads, and the utility point-of-connection

in Sections 3.2.2, 3.2.3, and 3.2.4.

1.7 Key contributions

The key contributions of this master’s thesis are:

• The generation of guidelines and suggestions of energy management strategies.

• The development of a microgrid simulation platform in MATLAB/Simulink suitable

for implementing and testing energy management strategies. This platform utilizes

a variable-step phasor solving method to simulate a grid-connected microgrid

comprising a PV system, a variable load, a static load, and a complete battery

model including degradation and power-dependent converter efficiencies

• The design of a flexible, multi-objective MILP-MPC energy management strategy

that effectively accounts for uncertainties in load, PV, and electricity price forecasts

in addition to dealing with nonlinearities associated with power conversion losses

and battery capacity degradation.

• The presentation of simulation results showing the effectiveness of the proposed

MILP-MPC algorithm where it successfully used real data to perform a two-month

simulation using a five minutes sample time within a short execution time.
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1.8 Structure of the report

The master’s thesis is organized into different chapters, and the main purpose of each

chapter is described below.

• Chapter 2 presents information on microgrid control and management and performs

an extensive review of existing energy management methodologies.

• Chapter 3 develops a microgrid simulation platform in MATLAB/Simulink

compatible with the implementation and testing of an EMS.

• Chapter 4 proposes two microgrid energy management strategies: one simple heuristic

algorithm and a more sophisticated MILP-MPC algorithm.

• Chapter 5 investigates the performance of the proposed control methods through an

extensive case study in MATLAB/Simulink.

• Chapter 6 gives the main conclusions and provides suggestions for further work.
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2 Literature review on microgrid Energy

Management Systems

This chapter will first give a definition of microgrids and provide an overview of typical

control approaches for microgrid operation. Next, the microgrid energy management system

is introduced, and its role in the microgrid control structure is defined. Finally, an extensive

review of energy management strategies is conducted to select an appropriate method for

controlling the microgrid considered in this thesis.

2.1 Microgrids and the modern energy system

Several steps must be taken before the traditional grid structure can be transformed into

a smarter, greener, and more efficient modern grid. These steps include the deployment of

distributed generation units (DGs), with emphasis on renewable energy sources (RESs).

Further, the issues associated with a high penetration of DGs can be mitigated by

connecting energy storage systems (ESSs), more active consumers, increased use of

information and communication technology (ICT), and the development of new control

systems. A microgrid comprising the above-mentioned components can result in a more

efficient, reliable, and greener way of organizing the power system.

Relevant literature gives several definitions of what a microgrid is, and even though the

different definitions vary to some extent, they all include the same key characteristics. For

the purpose of this thesis, the microgrid definition established by the Conseil International

des Grandes Réseaux Électriques (CIGRÉ) is used:

"Microgrids are electricity distribution systems containing loads and distributed

energy resources, (such as distributed generators, storage devices, or controllable

loads) that can be operated in a controlled, coordinated way either while

connected to the main power network or while islanded [23]."

In other words, a microgrid is a small-scale power system that can operate either in a non-

autonomous way while connected to the main grid, or in an autonomous way while islanded.

It is connected to the main grid at the point of common coupling (PCC), and consists

of local control systems, DGs, distributed ESSs, and controllable and non-controllable

loads [6]. Moreover, a microgrid has clear electrical boundaries and acts as one single
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controllable entity with respect to the main grid. Figure 2.1 depicts a typical microgrid.

Figure 2.1: A basic AC microgrid comprising generation, storage, power electronic
converters, and loads. Inspired by Figure 1.3 in [24].

There are several advantages to configuring a power system as a microgrid. The

configuration will be essential in the shift towards a smarter grid and will work as a

beneficial solution for pilot projects, enabling the testing of modern smart grid technologies

[25]. Microgrids also facilitate the implementation of renewable DGs such as wind turbines,

photovoltaic (PV) systems, and small-scale hydropower [6, 26]. Moreover, the ability to

switch to island mode of operation when faults and contingencies occur in the main grid

improves reliability from the end-user perspective. With autonomous control structures

and local generation and storage of energy, microgrids alleviate the dependency and,

consequently, the stress on the existing grid. In addition, if managed and coordinated

optimally, local generation and storage of energy mitigate distribution losses and costs.

However, to utilize the full potential of microgrids, several challenges must be addressed.

Central technical challenges found in the current literature consist of:

• Bidirectional power flow. Unlike conventional grids, generation in microgrids also

happens at the distribution level closer to the end consumer. This causes bidirectional

power flows, giving rise to complications in protection systems and undesired flow

behavior [6, 25].

• Low inertia. The absence of synchronous generators in microgrids with a high number

of power electronic converters results in low inertia. Microgrids thus have no inherent
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stability mechanism, and adequate control mechanisms must be implemented to

avoid large frequency and voltage deviations in island mode [6, 27].

• Uncertainty. Microgrids experience a significant uncertainty associated with demand

and generation since the use of RES ties generation to environmental conditions.

Therefore, to obtain a reliable and economical operation, the control system should

include forecasts of generation, demand, and electricity prices [9].

• Coordination between entities. Coordinating the microgrid units becomes additionally

challenging when considering factors such as power balance, component failure

rates, weather forecast, and uncertain and variable load and generation profiles.

Additionally, it must be confirmed that all components are compatible with each

other [9, 26].

• Stability. The control systems in the microgrid may lead to local oscillations. In

addition, the transition between grid-connected and island mode of operation causes

issues in terms of stability [25].

To effectively cope with these challenges, the control system must guarantee a reliable

operation of the microgrid. The next subsection gives an overview of the microgrid control

system and selects a control area for further investigation.

2.1.1 Control of microgrids

Controls are crucial in the operation of microgrids. The microgrid control system must

be able to handle the aforementioned characteristics of microgrids while simultaneously

ensuring a reliable and economical operation. Desirable features of the control system

include frequency and voltage regulation in both operational modes; control of currents

and voltages in the DG units by tracking references and appropriately damping oscillations;

seamless transition between operational modes; optimizing the microgrid operating costs;

sharing power among the microgrid units; and more [26, 28].

The microgrid operation can be managed through several control architectures, as

illustrated by Figure 2.2. A control system is centralized if there is a central controller

that sends control signals to each controllable agent based on data from the microgrid

components and the external grid. The control is decentralized when local control

of each microgrid unit is performed without exchanging information with other units,
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except for some leader agents that transmit and receive information through the center.

When the local controllers utilize a communication network to exchange information

and find a cooperative solution to the overall control problem, the control system is

distributed. Finally, a compromise between a fully centralized and a fully decentralized

control architecture can be obtained by implementing a hierarchical control scheme,

where centralized and non-centralized methods can be utilized within each hierarchy level

[7, 28, 29, 30, 31].

Figure 2.2: Overview of the centralized, decentralized, and distributed control
architectures [29].

The hierarchical control strategy has been widely accepted as the standardized control

approach for microgrids [26, 31, 32, 33], much due to the different time scales present in

the microgrid. Although this hierarchy is commonly used, the definition of the layers given

by relevant literature differs slightly. For this thesis, the representation in Figure 2.3 is

used. This figure shows that the hierarchical control strategy consists of the following

three layers with their designated response times and roles in controlling the microgrid:

1. Primary control operates in a decentralized manner and consists of local controllers

implemented in the power converter interfaces of the microgrid components. This

control layer performs control functions that require a fast response time, such as

converter output control, power-sharing, and island detection.

2. Secondary control operates at a slower speed than the primary control layer and

aims at correcting steady-state deviations by adjusting the voltage and frequency
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reference points of the primary control. In addition, this control layer is responsible

for synchronization and power exchange with the external grid.

3. Tertiary control is the highest control level and controls the long-term behavior

of the microgrid. This layer introduces intelligence to the system by optimizing the

microgrid operation.

Figure 2.3: Hierarchical control structure for a microgrid. Inspired by Figure 2 in [7].

Based on the given description of microgrid control, the selected focus of this thesis is the

energy management system (EMS). The microgrid EMS has been subject to extensive

research in recent years, and its definition and functions within the hierarchical control

structure vary slightly from work to work. In the control structure presented in Figure 2.3,

both the secondary and the tertiary control levels are implemented in the EMS, following

the work conducted in [7], [32], and [33]. Other work, such as [26], places the energy

management functions in the secondary control level and defines tertiary control only for

the grid-connected mode of operation.

2.2 Microgrid Energy Management Systems

A prerequisite for optimal operation of a microgrid is a properly designed energy

management system (EMS). An EMS is an inter-disciplinary system that utilizes ICT to
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ensure optimal coordination between the microgrid units to supply reliable, sustainable,

and high-quality energy in a cost-efficient way [7, 8]. To achieve this, the EMS performs

several functions such as data monitoring, data analytics, forecasting, optimization, and

real-time control, as illustrated by Figure 2.4 [34].

Figure 2.4: Microgrid energy management functions [34].

The microgrid energy management functions help the EMS to optimize operation while

satisfying the system constraints. Historical and forecasted data is constantly monitored

and analyzed to obtain better insight into the microgrid operation. This insight can be

employed to adjust forecasts and optimization models to improve performance. In addition,

data analysis can be useful when designing new control policies and developing better

forecasting algorithms to predict demand, generation, and electricity prices. Furthermore,

the monitored data sets, the insight obtained from the data analytics, and the forecasted

data are used to solve decision-making strategies to achieve optimized microgrid operation.

Finally, the output of the optimization is used to perform real-time control of the microgrid.

Since the optimization is the brain of the EMS, methods to achieve an optimal microgrid

operation will be the focus of the remaining literature review.

2.3 Review of energy management methods

The methods used in microgrid energy management systems range from simple rule-based

algorithms to complex multi-parametric optimization techniques. In the following review,
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two main groups of methods are considered, namely methods based on heuristics and

methods based on the optimization of some criteria. In addition, the set of control

approaches known as model predictive control (MPC) will be discussed.

The objective of the review is to find a suitable method for scheduling the battery in

the microgrid considered in this thesis, i.e., a grid-connected microgrid comprising a PV

system, residential loads, and a battery.

2.3.1 Heuristic methods

Heuristic methods are based on a set of algorithms that use rules to perform the energy

management in the microgrid [9]. These methods are characterized for being simple,

reliable, and computationally efficient, which has made them popular and widely used in

small microgrids.

Hysteresis band control (HBC) is one of the most common heuristic methods [9]. HBC

is used in [35] and [36] to control the operation of ESSs to follow a hysteresis band

whose limits are defined according to the state of charge (SOC). The operation of HBC is

straightforward when only one ESS is considered. The ESS handles the unbalance between

generation and demand in the microgrid if the SOC is between its upper and lower limit. If

the SOC reaches one of its limits, the ESS is disconnected, and other units or the external

grid must be used in its place. This method is fast, simple, and suitable for real-time

control. However, considering several ESSs and adding more rules to the problem quickly

increase the complexity of the algorithm. Moreover, the solution is sub-optimal in terms

of cost minimization.

The first step towards optimization is to apply a fuzzy approach where the rules are

determined from a fuzzy logic controller, such as in [37] and [38]. Fuzzy logic controllers

can simplify the microgrid management and control when the addition of heuristic rules

makes the energy management problem challenging to solve.

Heuristic methods are also commonly used as a reference for comparing the performance of

a developed algorithm. An example of this can be found in [39], where the advantages of the

proposed dynamic programming algorithm are highlighted by comparing its performance

to a simple ruled-based management strategy. Moreover, in [12] a heuristic algorithm is

used as one of four energy management strategies to control a grid-connected microgrid.

The heuristic algorithm led to cost savings, but not as much as the other strategies.
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To conclude, the primary features of heuristic methods are simplicity and computational

speed. However, the solution provided by these methods is not optimal. In addition,

heuristic methods consider the present time only and are not long-term in nature. Another

important issue is that the inclusion of many details and additional features quickly makes

the problem too complicated to be solved using traditional heuristic methods. To overcome

these issues, optimization-based methods can be considered.

2.3.2 Optimization-based methods

Optimization-based methods are characterized by the technique of solving an optimization

problem to design a control input. The microgrid optimization problem is commonly

formulated as an objective function to be minimized over a set of inputs restricted by

constraints [40]. The solution to this problem provides optimal operating points for the

microgrid units along with different time frames.

In the optimization problem formulation, the objective function is the output to be

minimized or maximized. One or more objective functions can be included in the microgrid

optimization problem, resulting in either a mono-objective or a multi-objective problem

[41]. In a mono-objective microgrid optimization problem, the objective function typically

corresponds to the operating costs of the microgrid, while in a multi-objective problem,

a solution to the technical, economic, and environmental problems is simultaneously

presented [8]. Figure 2.5 lists some of the costs commonly included in the microgrid

objective function, and it is based on the microgrid EMS literature reviews performed in

[34], [41], and [42].
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Figure 2.5: Common objective functions in the energy management optimization problem.

Additionally, the microgrid energy management optimization problem is subject to a

number of constraints that can be formulated as equality expressions or inequality

expressions [40]. These constraints define the microgrid operational framework by reflecting

the limits of the microgrid units required for a safe and economic operation. Examples

include maximum and minimum limits for charge and discharge of storage devices, power

balance constraints, and generation power output limits [34, 42].

The microgrid optimization problem can take different forms depending on the complexity

of the system, the objective function, the constraints, and the types of variables involved.

Therefore, an appropriate optimization technique must be chosen according to the

complexity of the problem. Various techniques have been proposed in the literature

to solve the microgrid optimization problem, and the following subsections briefly describe

some of these techniques.

2.3.2.1 Linear and nonlinear programming methods

The model of the microgrid must be included in the optimization problem as a constraint.

If the model or other constraints are nonlinear, nonlinear programming (NLP) can be used

to solve the problem. An NLP formulation is used in [43] to optimize the scheduling of

an energy system where nonlinear functions represent the combined cooling and power

generation system. An issue with NLP is its inability to handle discrete variables such
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as binary variables. This is problematic in a microgrid system where both continuous

and discrete-valued dynamics interact. Physical quantities, such as power flows, can be

represented using continuous variables, while the discrete features of microgrid units, such

as the ON/OFF state of generating units and the charge/discharge state of storage units,

can be captured using binary decision variables [12].

Adding binary variables to the NLP problem transforms it into a mixed-integer nonlinear

programming (MINLP) problem. An example of this can be found in [44], where binary

variables were included to handle the ON/OFF states of the photovoltaic, wind, biomass,

gas-turbine, and fuel cell generators in the microgrid. Although MINLP is able to capture

the microgrid dynamics well, the resulting nonlinear problem is generally non-convex.

Hence, the existence of a global optimal solution cannot be guaranteed, which can lead

to less ideal economic effects. Moreover, no exact solution technique exists and the

introduction of binary variables seriously increases run time [9, 12]. Solving an MINLP

problem can therefore be quite complex and computationally demanding, and the authors

in [45] argue that obtaining a global optimal solution to the large-scale non-convex MINLP

problem in a sufficient computational time is still an unsolved problem.

An efficient way to mitigate the problems related to MINLP is to use a linear approximation

of the objective function and constraints to form a mixed-integer linear programming

(MILP) problem. This was done in [46], where the quadratic curve of the fuel costs was

approximated using a piece-wise linear function. In [47], the thermal constraints were

linearized to enable the formulation of the energy management problem as a MILP problem.

Consequently, the problem can be solved using powerful commercially available solvers

like GAMS and CPLEX [9], which can provide solutions even for short execution times.

Moreover, the linear objective function and constraints of a MILP problem result in a

convex feasible region, which guarantees a global optimal solution [9].

A possible issue with the MILP formulation is that it requires the objective function

and constraints to be linear. This generally implies simplifications of the problem where

the variables can be forced to change their nature to meet the requirements. However,

the results of the MILP algorithm proposed in [48] show that the linearizations and

approximations produce accurate solutions when compared with a nonlinear three-phase

OPF formulation, with an error in the objective function close to 2% and a maximum

error in the voltage close to 1%. Moreover, comparisons between MILP and MINLP
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optimization approaches were performed in [45] and [49]. These papers showed that the

solution time of MILP is faster than that of MINLP due to the relatively simple equations

involved in MILP. Hence, MILP is generally more suitable for real-time control where short

execution times are essential. In addition, it was shown that in the case where MINLP

gave an optimal solution, this was similar to that given by MILP, which confirms that

MILP leads to little loss of accuracy compared to MINLP.

2.3.2.2 Dynamic programming

Dynamic programming (DP) can also be used to solve the microgrid optimization problem.

DP is a methodology that makes decisions in stages by breaking the optimization problem

into simpler sub-problems in a recursive manner [9]. These sub-problems are optimally

solved and superimposed to form the optimal solution to the overall problem.

In contrast to heuristic methods that make decisions based on simple rules, DP methods

make decisions based on costs. Hence, they can optimize operation based on a cost

function. This contrast is highlighted in [39], where both a DP algorithm and a simple

rule-based algorithm are used to perform energy management in the microgrid. The

rule-based algorithm guarantees operation of the system within its constraints, but it does

not optimize the use of solar power. In contrast, the DP algorithm utilizes a cost function

to optimize the microgrid operation, which provides around 13% higher economic gain

than the rule-based management.

An important advantage of DP is that the performance index and the constraints can

be both linear and nonlinear, convex and concave, differential and not. DP is used in

[50] to solve a nonlinear optimization problem to maximize the daily economic benefit

of a microgrid. The objective function is composed of the energy cost and the battery

degradation cost, and it is expressed as a nonlinear function of the battery SOC. Moreover,

the power injected into the grid is curtailed through a nonlinear constraint to help mitigate

over-voltage problems caused by reverse power flows.

The biggest limitation of using DP is the “curse of dimensionality”. Dividing the problem

into sub-problems and storing intermediate results consume memory. This is highlighted

in [51], where DP is used to co-optimize the operation of a battery for arbitrage and

frequency regulation. The results were reasonable. However, a disk space of 60 Terabytes

was required to store the values for all possible states over a one-day simulation period.
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The high number of recursive functions also makes the implementation complex, and no

general formulation of DP is available except for in simple cases [9]. These drawbacks

make DP challenging to implement in a real-time controller.

2.3.2.3 Meta-heuristic approaches

Meta-heuristics are a family of methodologies where heuristic techniques are combined

to approximate the best solution to an optimization problem using biological evolution,

genetic algorithms, and statistical mechanisms [8]. These methods can quite quickly obtain

highly accurate approximated optimal solutions to the microgrid optimization problem for

various cost functions and constraints. They can especially be an option in the case of

non-convex problems or high numbers of variables and constraints [7]. In these cases, the

complexity of the associated control problem increases, making it difficult to find a solution

using classical methods. An example can be found in [52], where meta-heuristic methods

were applied to solve a MINLP problem to plan natural gas and electricity distribution

networks optimally.

A wide range of meta-heuristic approaches has been utilized in microgrid control. A

review of some of these approaches can be found in [53], where the most representative

ones are: tabu search (TS), genetic algorithms (GA), particle swarm optimization (PSO),

and artificial neutral networks (ANN). PSO was applied in [54] to find real-time optimal

energy management solutions for an islanded hybrid microgrid. The results demonstrate

that PSO can be used to solve an extensive solution space while incorporating multiple

objectives such as minimizing the cost of generated electricity, maximizing micro-turbine

operational efficiency, and reducing environmental emissions.

Although complex microgrid energy management problems can be solved using meta-

heuristics instead of classical optimization methods, these methods also have some

disadvantages. These disadvantages include not guaranteeing the global optimality of a

solution, long calculation times, complex formulation, and obtaining different results at

each run due to the inherently uncertain behavior [7, 8, 53].

2.3.3 Model Predictive Control

The aforementioned methods are often used offline to perform day-ahead scheduling of

the microgrid units. This implies that the optimal power dispatch for each sample time
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of the next day is completed in one calculation based on forecasts of generation and

demand. The schedule produced by this static and open-loop method is highly dependent

on the accuracy of the forecasts and may not remain optimal in real-time scenarios. One

way to address this problem is to dynamically adjust the schedule according to real-time

conditions, namely to solve the optimization problem within a model predictive framework.

The term model predictive control (MPC) does not refer to a specific control strategy but

rather to a wide range of control methods that explicitly use a system model to obtain the

optimal control signals by minimizing an objective function. The model predictive control

family is essentially defined by the three following characteristics [9, 10, 11]:

1. Explicit use of a model to predict future system outputs.

2. Calculation of a control sequence through the minimization of an objective function

over a finite time horizon.

3. Use of the receding horizon principle, stating that only the first element in the

calculated control sequence is applied to the system at each time step. The horizon

is displaced towards the future at the next time step, and a new optimal control

sequence is calculated using new predicted values. Hence, a feedback mechanism is

obtained, resulting in closed-loop control.

The control decision imposed by the MPC may not result in the optimal operation for

the microgrid at the current time instant, but it results in the optimal operation in the

forecasted time horizon based on the forecasted system behavior.

The methodology of all the controllers belonging to the MPC family is characterized by

the following strategy [10], as illustrated in Figure 2.6.
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Figure 2.6: MPC strategy [9].

1. The dynamic system model predicts the future outputs for the prediction horizon,

Np, at each sample time t. These predicted outputs y(t+ k|t) for k = 1...Np depend

on the known values of past inputs and outputs, on the current state, and on the

future control signals u(t+ k|t), k = 0, ..., Np − 1.

2. The sequence of future control signals, u(t + k|t), is computed by optimizing a

determined criterion.

3. Although a complete sequence of Np future control signals is computed, only the

first element, u(t|t), is sent to the process. The rest of the elements are discarded

because at the next sample time, a new output y(t+ 1) is already known. Step 1 is

repeated with this new value and all the sequences are brought up to date. Further,

the control sequence u(t+1|t+1) is calculated (which may be different from u(t+1|t)

due to the new information available) using a receding horizon.

2.3.3.1 Model Predictive Control in microgrids

The above description of MPC includes several features that make it a good candidate for

microgrid control. These features can be summarized as follows:

• It provides a receding prediction horizon with a feedback mechanism, which helps

the system to react more robustly to uncertainty in generation and demand.

• It enables an objective function to be formulated and optimized by the controllers.
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• It can handle the constraints associated with power systems, such as storage capacity,

ramp rates, and minimum up and down times of generators.

• It considers the future behavior of the system in the optimization, which is useful

when planning and allocating resources of microgrids that integrate forecasts of

renewable generation and demand.

• It handles multi-variable systems well, which is useful for managing the operation of

multiple microgrid units in a coordinated way.

• It is suitable for making real-time control decisions.

Figure 2.7 depicts a general diagram of a grid-level MPC. The different MPC algorithms

differ by the model used to represent the system, the objective function to be minimized,

and the solving algorithm utilized in the minimization [55].

Figure 2.7: General diagram of a grid-level MPC. Adapted from [55].

The system model is built upon the system states with possible forecasts, where an

expression for future predictions is formulated based on current and past states. The

objective function should reflect the concerns of the control objectives, and can result in

either a mono-objective or a multi-objective problem including several costs, as depicted

in Figure 2.5. For solving the optimization problem, an MPC algorithm can incorporate

any solving algorithm (LP, MINLP, MILP, meta-heuristics, etc.) depending on the type of

model used and the cost function employed [9, 55].

Although MPC has several features suitable for microgrid operation and control, it also

comes with some drawbacks. The use of a receding horizon requires high computational
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efforts since an optimization problem is solved at each sample time [10]. This especially

holds for the constrained case or when using long prediction horizons. The calculation

time depends on the model formulation and the optimization method used. Moreover, an

MPC controller also has a more complex derivation than classical controllers. Another

important issue is the need for an appropriate system model [11].

2.3.3.2 Previous studies addressing MPC in microgrids

The surveys in [11] and [55] show that MPC is emerging as a hot topic in the world of

microgrid control. This is also reflected in the frequent publications of research on the

topic. A short review of previous studies applying MPC in microgrid economic operation

optimization is performed in the following paragraphs to gain insight into the main gaps

and challenges.

A generic MPC is proposed in [56] to manage thermal storage tanks in buildings. The

algorithm considers short-term load forecasts and a dynamic model of the storage tanks. For

computational efficiency, the optimization problem is approximated by a meta-heuristic

algorithm that cannot guarantee an optimal solution but converges close to it. The

computation time is also kept low by linearizing the system model to avoid computationally

demanding nonlinearities.

The work conducted in [57] applies MPC to coordinate the operation of a wind/solar

subsystem and a battery to provide enough energy to a water desalination system to meet

the desired water production demand. The resulting optimization problem is nonlinear

and non-convex, yielding sub-optimal solutions. However, the algorithm still performs

better than the reference control. Moreover, a large sample step of one hour is used, not

allowing the algorithm to quickly adjust the schedule according to the variable real-time

water demand and PV and wind conditions.

Another approach to microgrid MPC is taken in [58], where MPC is employed in the lower

layer of a two-layer structure to control the battery to ensure that the microgrid accurately

follows the power references given by the upper layer. This allows the lower layer to use a

very short sample time of one minute and, consequently, effectively observe and respond

to small changes in demand and generation. This is an improvement compared to much of

the research published in the context of microgrid EMS, which tends to use sampling times

ranging from 15 minutes to 2 hours. The results obtained from experimental studies show
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that the algorithm is capable of real-time control and that it succeeded in simultaneously

reducing the daily costs of the microgrid and increasing the self-consumption of renewable

energy sources.

The work in [12] solves the optimization problem for a grid-connected microgrid using

a MILP technique. It incorporates a feedback control law by implementing the MILP

algorithm in a model predictive framework. This MILP-MPC approach is tested both

through simulations and experiments, with a 1 hour and 15 minute sample time, respectively.

The results show that the operational costs are improved compared to when the MILP

problem is solved open-loop due to uncertainties in generation and demand. However,

the proposed algorithm does not consider battery degradation and assumes a constant

power electronic efficiency. Therefore, the results are less realistic and may lead to battery

references that validate the constraints in the long run.

A MILP-MPC energy management methodology was also developed in [13]. The developed

algorithm considers multiple objectives, including minimizing energy costs, microgrid

power profile shaping for utilities, and battery usage costs. The battery usage costs avoid

unnecessary charging-discharging actions that would reduce battery life. In addition,

battery management is enhanced through the concept of incremental red-zone power rates.

However, the simulation process considers a relatively long sample time of 30 minutes over

the three-day simulation period. Furthermore, the algorithm does not update the battery

model by calculating the actual battery degradation, i.e., the battery capacity is assumed

constant in the optimization.

Battery degradation is considered in the MILP-MPC approach proposed in [14]. This

algorithm updates the battery model daily based on real measurements, enabled by the

closed-loop MPC approach. Once the actual usable battery capacity is known, the battery

is utilized to minimize the microgrid operation costs while avoiding redundant charging-

discharging actions since those actions significantly reduce battery lifetime. However, the

case study considers a short simulation period of three days where the results are not

evaluated in terms of battery degradation. In addition, the algorithm completely neglects

power electronic losses.
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2.3.4 Discussion of methods

This section will shortly summarise and discuss the energy management methodologies

considered in the above literature review before selecting a method for the work conducted

in this thesis. Figure 2.8 presents an overview of the considered methods.

Figure 2.8: Energy management methodologies in microgrids.

The literature review argued that optimization-based methods improve the overall

performance when compared to heuristic methods. This claim will be further investigated

in the thesis by developing both a simple rule-based method and a more advanced

optimization-based method to thoroughly investigate their differences.

Although optimization-based methods generally result in reduced costs and improved

microgrid operation, solving these methods offline often result in constraint violations

and poor performance in real-time scenarios due to the inability to handle forecast

errors. Therefore, the optimization problem should be solved within a model predictive

framework. MPC can incorporate any of the discussed optimization algorithms, i.e., linear

and nonlinear programming, dynamic programming, and meta-heuristics. Selecting a

suitable method can be challenging. To aid in this choice, Table 2.1 briefly presents the

main advantages and disadvantages of each of the reviewed optimization-based energy

management methodologies.
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Table 2.1: Comparative analysis of optimization-based energy management methodologies
in microgrids.

Method Advantages Disadvantages

MILP

• Convex feasible region, i.e.,
can guarantee a global

optimal solution.
• Powerful solvers exist, resulting
in reduced computational effort.

• Limited capabilities for
applications with not
differentiable and/or

continuous objective functions.
• Linearizations might
lead to loss of accuracy.

MINLP • Captures the nonlinear
microgrid dynamics well.

• Complex and computationally
demanding to solve.

• Non-convex feasible region,
i.e., cannot guarantee a
global optimal solution.

DP

• Can solve more complex
problems that can be

discretized and sequenced.
• The performance index
and the constraints can

hold all the natures (linear
or nonlinear, convex or concave,

differential or not).

• The curse of dimensionality.
• Complex implementation.
• Long calculation times.

Meta-
heuristics

• Can obtain approximated
optimal solutions to complex,
nonlinear problems with many

variables and constraints.

• Non-convergence to
global optimum.

• Complex formulation.
• Different results at each run.

• Long calculation times.

DP has successfully been combined with MPC and used to control microgrids with any type

of constraints (linear/nonlinear, convex/concave, differential) in previous studies. However,

the implementation is complex, and implementing it within a model predictive framework

is increasingly difficult. In addition, DP suffers from the "curse of dimensionality," which

will be even worse when implemented with MPC, and it is thus less suitable for real-time

control. Meta-heuristic methods are also very powerful, but their disadvantages make

them less ideal for MPC. These disadvantages include non-convergence to global optimum,

high computational effort, intractable adjustment of parameters, and complex formulation.

Linear and nonlinear programming methods are considered in multiple successful MPC

examples in current literature. Section 2.3.2.1 argued that there are several advantages to

keeping the problem linear. Therefore, MILP is a good option due to less computational

effort, compatibility with available solvers, and a guaranteed optimal solution without

noticeable loss of accuracy compared to MINLP.
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Incorporating MILP in an MPC framework can potentially reduce some of the disadvantages

related to the linearization and simplifications of the microgrid optimization problem

required to utilize a MILP technique. Despite this, much of the MILP-MPC work considered

in the above literature review comprised of linearities and were solved with implicit MPC

to obtain the control objectives without updating the system model. The following bullet

points sum up some of the deficiencies observed in current literature:

• Concerning the battery modeling, the battery capacity is assumed constant in most

work, while in reality it decreases as the battery is used. This is a valid assumption

for a short period of time, but it will affect the results in the long run. Considering

the variable battery capacity in the problem formulation involves high nonlinearities.

• Although much work aims at limiting battery degradation, few evaluate the

performance of the proposed algorithm in terms of battery aging. The algorithms

are often investigated and verified in a microgrid simulation platform where the

incorporated battery model neglects degradation, making it difficult to properly

evaluate how the schedule provided by the EMS will affect the battery.

• Simulations are typically performed for one day, which does not show the long-term

effects.

• Sampling times ranging from 15 minutes to 2 hours are commonly used. A shorter

sampling time is preferable for real-time control because it allows the EMS to observe

and respond to small changes in the load, generation, and electricity price throughout

the day.

• The power converter efficiency is often neglected or assumed constant while in reality

it depends on the battery power. The result is less realistic results in terms of how

much power the battery can deliver or absorb.

Based on the above discussion, this thesis aims at developing a control approach that

combines MPC with MILP to effectively account for uncertainties and to capture some of

the nonlinear dynamics of the system by updating the system model every sample time.

2.4 Summary

This chapter has provided a microgrid definition formulated by CIGRÉ and showed that

microgrids are essential in realizing the smart, green, and efficient power system of the



2.4 Summary 30

future. However, although the introduction of microgrids results in multiple benefits, there

are several challenges to address before their full potential can be utilized. Motivated by

the microgrid challenges related to optimal control and management, energy management

systems were selected as the focus of this thesis. Further, this chapter conducted an

extensive review of energy management methods to choose an appropriate method for

solving the energy management optimization problem. In this review, two main groups

of methods were considered, namely heuristic and optimization-based, in addition to the

set of control approaches known as model predictive control. Based on this review, the

MILP-MPC approach was selected to control the microgrid considered in this thesis.
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3 The microgrid model

This chapter presents a microgrid simulation platform in MATLAB/Simulink suitable for

implementing and testing an energy management system. It also gives the resources used

to develop this model. Section 3.1 defines the goal of the simulation platform and selects

a suitable solving system method. Section 3.2 describes the model and its components,

comprising a complete battery model including degradation and power-dependent converter

efficiencies, a PV model, load models, and the modeling of the utility point-of-connection.

3.1 Solving system method

The microgrid model is developed using MATLAB/Simulink. Simulink has libraries with

electrical components and can build and run simulations of electrical systems, control

systems, and more. As a first step in the model development, an appropriate electrical

circuit solving method must be chosen. The Simulink powergui block allows the choice

between the three following solving system approaches [59, 60]:

• Continuous, which uses a variable-step solver from Simulink.

• Discretization of the electrical system for a solution at fixed time steps.

• Continuous or discrete phasor solution.

The aim of developing a microgrid simulation platform in this thesis is to enable the

implementation and testing of an energy management system belonging to the higher

control level of the microgrid operation. The higher control level works with the long-term

behavior of the system, and it is thus little dependent on the fast dynamics’ transient

behavior. This means that it is no need to calculate the system state in detail every split

second. Moreover, since all AC devices in the microgrid work with a frequency of 50 Hz

and the simulation speed is essential, the phasor solution is a suitable solving system

approach for the microgrid model developed in this thesis.

3.2 Model description

This section will describe the microgrid simulation model and its components. The

developed microgrid model is depicted in Figure 3.1 and is of a three-phase AC grid-

connected microgrid, which implies that the main grid performs the voltage and frequency
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regulation. A variable time-step is selected to simulate the model, which means that

the step size varies during the simulation. The step size is reduced to increase accuracy

when model states are changing rapidly, and the step size is increased to avoid taking

unnecessary steps when model states are changing slowly. Although the model is simple,

it contains key elements of a microgrid and is still representative of a physical application.

The simplicity of the model is also suitable for the purpose of testing an EMS.

The microgrid simulation model consists of a photovoltaic (PV) panel, a static load, a

variable load, and a battery. The PV panel, the static load, and the variable load are

modeled using the microgrid library developed by application engineer at the MathWorks,

Johnathan LeSage [15]. The blocks in this microgrid library are built using components

from Simscape Electrical, which is a MATLAB/Simulink library developed to provide

components for modeling and simulating electronic, mechatronic, and electrical power

systems [61]. The battery is built using the SimSES software tool developed by Maik

Naumann and Nam Truong at the Technical University of Munich [16]. Further details on

the microgrid components are provided in the following subsections.

Figure 3.1: Simulink model of a three-phase AC grid-connected microgrid.

3.2.1 Battery model

Optimal usage of the battery has an important role in cost optimization, and harsh usage

will decrease its lifetime significantly. Aging effects directly affect the usable battery

capacity. Therefore, the complete modeling of a battery should include an aging model
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to properly evaluate how the schedule provided by the EMS will affect the battery. The

battery model included in the aforementioned microgrid library neglects degradation and

is thus not applicable for meeting the model requirements of this thesis.

Therefore, the open-source software tool SimSES (software for techno-economic simulation

of stationary energy storage systems) is used to simulate the battery in this thesis [16].

SimSES applies a modular, flexible, and abstract approach to modeling energy storage

systems, allowing the user to select the system structure and technology. Furthermore,

it incorporates several aging models, which enables the estimation of the energy storage

degradation. The tool has been used to analyze various battery fields of application in

several publications [19, 20, 21, 22], where it has proven to achieve results with sufficient

accuracy for techno-economic considerations within an appropriate execution time.

A comprehensive documentation of all scripts and functions is included in the source code

[62]. Moreover, an extensive verification of the SimSES model was conducted by Maik

Naumann in his doctoral dissertation [18]. Hence, only the basics about SimSES that

are relevant for the work conducted in this thesis are presented in the following, and

no verification is performed. All SimSES scripts implemented in this work are listed in

Appendix B together with the corresponding modifications and settings used.

3.2.1.1 SimSES implementation in Simulink

The SimSES software uses object-oriented programming to create an encapsulated model

of an energy storage system with the relevant technical parameters and functions. To

enable compatibility to Simulink, SimSES uses MATLAB’s System Object structure, which

is designed specifically for implementing and simulating dynamic systems with inputs

that change over time. The SimSES System Object is included in the Simulink microgrid

model by using a MATLAB System block, as depicted in Figure 3.2. More details on how

System Objects can be included in the Simulink environment can be found in [63].
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Figure 3.2: Integration of the SimSES battery model in Simulink.

The SimSES System Object block is initialized by the initialization script attached in

Appendix A. This script uses the SimSES functions and scripts listed in Appendix B to

create a system object representing a battery with the relevant technical parameters and

functions. Furthermore, the system object requires two inputs, namely the sample time

and a reference power signal provided by the EMS and its control algorithms. The inputs

are used to compute updated battery states and outputs at each sample time. Sections

3.2.1.2 and 3.2.1.3 describe the outputs and the equations used to compute them.

A challenge with the implementation is that SimSES simulates batteries using a fixed

sample time, while the rest of the microgrid model uses a variable time step. Therefore,

a rate transition block is required at the inputs of the SimSES block to handle the data

transfer between the two dynamics. Moreover, a Three-Phase Dynamic Load block from

the component library in Simscape Electrical is included to convert the output power of

the SimSES block into the three-phase phasor signal required by the microgrid model.

3.2.1.2 SimSES battery energy storage system model

SimSES enables the use of either an equivalent circuit battery model or a power flow

battery model. Since the aim of the model is to work with the high-level optimization

and long-term behavior of the microgrid, the power flow battery model will be used in

this thesis. Several battery types can be selected for calculation in the model, and the

parameters of the power flow model vary depending on the type selected. This thesis

considers a lithium-ion battery because this is the battery type used in Skagerak Energilab.
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Figure 3.3: Illustration of the coupling-topology of the AC connected battery energy
storage system. Inspired by Figure 1 in [22].

Figure 3.3 shows the coupling-topology of the AC connected battery energy storage system

(BESS) considered in SimSES. The BESS is controlled by a reference power signal provided

by the EMS and its control algorithms. This reference signal is compared to the power

limits of the inverter, Prated,inv, and the battery, Prated,batt, as follows:

|Pbatt| 6 Prated,batt (3.1)

|PBESS| 6 Prated,inv (3.2)

Consequently, the power output from the BESS is limited to the nominal power of the

inverter. After checking the power limits, the battery model computes maximum power

based on the operation voltage range of the cell, the state of charge (SOC), and the state

of health (SOH). Finally, the system response to the power reference is determined.

The modeled system equations for the SimSES AC-coupled BESS are given in the following

paragraphs. More details can be found in [16] and its MATLAB source code [62].

State of charge

The state of charge (SOC) is the amount of charge left in the battery and it is directly

related to the available energy. It is not possible to measure the SOC and it thus has to

be estimated. In the SimSES model the SOC is estimated by the following equation:
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SOC(k) =
Ebatt(k)

Ecap(k)
(3.3)

where SOC(k) is the state of charge at sample step "k", Ebatt(k) is the energy stored in

the battery at sample step "k", and Ecap(k) is the total capacity of the battery at sample

step "k". Ecap does not remain constant, but continuously decreases over time due to

aging effects. The degradation of Ecap is estimated by the degradation model described in

Section 3.2.1.3.

The energy stored in the battery is calculated by (3.4) depending on if the battery is

charging or discharging.

Ebatt(k) =

 Ebatt(k − 1) +
√
ηbatt · Pbatt(k) ·∆t− ESD, Pbatt(k) > 0

Ebatt(k − 1) + Pbatt(k)·∆t√
ηbatt

− ESD Pbatt(k) < 0
(3.4)

where Ebatt(k) and Ebatt(k − 1) are the energies stored in the battery at sample steps "k"

and "k-1" respectively, ηbatt is the battery round-trip efficiency which is assumed equal for

charging and discharging, ∆t is the sample time, Pbatt(k) is the power flow in and out of

the battery at sample step "k" (positive for charging, negative for discharging), and ESD

is the self-discharge of the battery.

The SOC is kept within its boundaries by the charge limits:

SOCmin 6 SOC 6 SOCmax (3.5)

Power electronics

The relationship between the input power of the battery, Pbatt, and the input power of the

inverter, PBESS, is given by:

Pbatt(k) =

 ηinv · PBESS(k), PBESS(k) > 0

1
ηinv
· PBESS(k), PBESS(k) < 0

(3.6)

where ηinv is the inverter efficiency.

The battery round-trip efficiency given by the manufacturers does not include the battery

inverter efficiency. Therefore, SimSES includes power electronics efficiency models to
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represent the power loss in the inverter. These models include both a fixed efficiency model

and functions based on experimental results. In addition, SimSES offers the possibility to

implement new efficiency functions based on own investigations.

In this thesis, the inverter efficiency is modeled with the power dependent efficiency curve

shown in Figure 3.4, which is described by (3.7) [64].

ηinv =
p

p+ p0 + k · p2
where p =

|Pout|
Prated,inv

(3.7)

with k = 0.0345 and p0 = 0.0072 for a high-efficiency inverter.

According to the efficiency curve, the inverter efficiency remains above 90% for an output

power of about 10% to 100% of the rated inverter power. The maximum efficiency equals

ηinv = 96.9% for an output power of 0.45·Prated,inv.

Figure 3.4: Generic inverter efficiency curve [64].

3.2.1.3 SimSES battery degradation model

The structure of the SimSES battery degradation model is depicted in Figure 3.5. The

model differentiates between cyclical and calendrical aging processes for battery degradation.

Calendrical aging occurs when the battery is idle and leads to constant capacity fade over

time, while cyclical aging occurs during load periods where each cycle contributes to a

gradual reduction of the storage capacity.
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Figure 3.5: SimSES battery degradation model [16].

The inputs to the battery degradation model are the idle and load aging influence

parameters. The idle parameters include the SOC and the temperature and are used to

estimate the calendrical aging. The load parameters include the particular properties of a

cycle, such as temperature, cycle throughput (Ah-count), relative power (C-rate), cycle

SOC-range, and depth of cycle (DOC), and are used to estimate cyclical aging.

The aging influence parameters are inputs to the half-cycle counting battery stress

characterization method. This cycle-counting algorithm detects half-cycles by counting

zero-crossings of the battery power. Every time a zero-crossing occurs, the end of a half-

cycle is declared. Further, the algorithm obtains the depth of cycle (DOC) by computing

the difference in SOC from the beginning to the end of the detected cycle. The outputs of

the half-cycle counting method are used to estimate the battery calendrical and cyclical

degradation, given by (3.8) and (3.9), respectively.

∆Ccal =
0.2 · Erated

tcal
(3.8)

where ∆Ccal is capacity degradation due to calendrical aging, and tcal is the time period

until 20% of the battery capacity is diminished just by calendrical aging.

∆Ccyc =
0.2 · Erated

kcyc(DOC) ·DOC
(3.9)

where ∆Ccyc is capacity degradation due to cyclical aging, DOC is the depth of cycle, and

kcyc is the amount of equivalent full cycles until the battery degrades by 20% of its rated

capacity.
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The effects of the calendrical and cyclical aging are superimposed in the battery lifetime

model to estimate the overall battery capacity degradation and performance decrease.

Within this framework, the state of health (SOH) is an important indicator of battery

degradation. SOH is defined as the capacity fade over time related to the nominal battery

capacity, where SOH = 100 % represents a new battery and SOH = 0 % represents a

battery with no capacity left. SOH = 80 % is commonly assumed as the end-of-life criterion

[65]. A common expression used to estimate the SOH is (3.10).

SOH =
Ecap(k)

Erated
(3.10)

where Ecap is the total remaining battery capacity (which declines with time), and Erated

is the rated battery capacity.

3.2.2 PV model

The PV system is modeled using the Three-Phase Dynamic Load Block from the component

library in Simscape Electrical, as shown in Figure 3.6. The input to this block is PV power

profiles and not irradiance profiles. To ensure that the load block outputs source currents

and not load currents, the PV power is inverted when injected into the block.

Figure 3.6: Simulink model of the simplified PV system.

3.2.3 Load models

The microgrid developed in this work consists of two loads: one variable load and one

static load, where both are non-controllable. Non-controllable loads cannot reduce their

energy consumption, and their power demand should always be met. The static load does

not change with time and represents the base load of the system, while the variable load
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represents the residential homes. The total load demand, Pload, at each time interval "t"

can be expressed as the sum of the variable load, Plv, and the constant load, Plc:

Pload(t) = Plv(t) + Plc (3.11)

The Three-Phase Series RLC Load block from the component library in Simscape Electrical

is used to model the static load. The variable load is modeled using the Three-Phase

Dynamic Load block. The active and reactive power of this block can be controlled via

external control signals, which is useful when implementing demand-side management

strategies. Since demand-side management is outside the scope of this project, the variable

load is controlled by a dynamic load control to account for the case of a non-unity power

factor, as shown in Figure 3.7. Then the dynamic load control ensures that the active

power input is scaled to generate the desired load.

Figure 3.7: Simulink model of a variable load with dynamic load control.

3.2.4 Utility point-of-connection

The microgrid connection to the main grid is modeled as a three-phase ideal voltage

source with a root-mean-squared voltage of 20 kV and a frequency of 50 Hz. A 20/0.4 kV

step-down transformer is set after this block to reduce the voltage to a value suitable for

microgrid operation. The microgrid in this work is designed to operate grid-connected

where the main grid helps maintain the voltage, frequency, and power balance. Future

work can adapt the model to also work islanded by adding a switch between the utility

point-of-connection and the microgrid and adapt the battery model to help the microgrid

maintain voltage and frequency when islanded.
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3.3 Summary

This chapter has presented a microgrid simulation platform comprising a PV panel, a

variable load, a static load, and a battery suitable for implementing and testing an energy

management system. The simulation platform is developed in MATLAB/Simulink and

has the following key characteristics:

• The model is simulated using a variable-step phasor solving method to enhance

simulation speed and to include a sufficient level of detail.

• The model is of a three-phase grid-connected microgrid which implies that the voltage

and frequency regulation is performed by the main grid. Future work can adapt the

model to also work islanded.

• The PV panel, the variable load, and the static load are modeled using the microgrid

library developed by application engineer at the MathWorks, Johnathan LeSage

[15]. Although the loads are non-controllable, it is possible to control the variable

load via external control signals which enables the implementation of a demand-side

management strategy in future work.

• The battery model is built using the SimSES software tool developed by Maik

Naumann and Nam Truong at the Technical University of Munich [16]. The model

includes a lithium-ion battery model, a variable power converter efficiency model,

and a degradation model.
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4 The Energy Management System

The purpose of this chapter is to develop energy management strategies to determine the

charging and discharging power set-points of the battery in the microgrid model developed

in Chapter 3. Section 4.1 develops a heuristic algorithm based on simple rules. This

algorithm will work as a reference for comparison. Section 4.2 develops a control approach

that combines model predictive control with mixed-integer linear programming. The overall

optimization problem is formulated by defining constraints and a multi-objective cost

function. Finally, this chapter describes the implementation of the proposed algorithm in

the microgrid simulation platform developed in Chapter 3.

4.1 Heuristic method

As a first step, a heuristic method is developed to perform the energy management in the

microgrid and to work as a reference for evaluating the performance of the optimization

algorithm proposed in Section 4.2. The heuristic algorithm determines the battery power

reference based on a series of rules designed to ensure that the system always operates

within the defined constraints. This simple heuristic method only considers the present

time, and it is not long-term in nature over a specified prediction horizon. Moreover, no

cost function is considered in the algorithm.

Figure 4.1 shows a flowchart of the heuristic algorithm, where the sign convention of the

power flows are given by Figure 4.2. The heuristic algorithm receives energy and power

information from the EMS. This information is used to compute the net power. First,

the sign of the net power is checked. If the net power is negative, there is not enough

PV power to supply the loads, and the battery should discharge to meet the demand.

However, the battery cannot discharge if it violates either the minimum SOC constraint

or the maximum discharge power rate. Then, the load demand must be met by power

from the main grid. In the opposite case, if the net power is positive, there is an excess of

PV power available that can be used to charge the battery. However, this is only possible

if the SOC has not already reached its maximum limit. In addition, the battery cannot

charge at a higher rate than the maximum charge power rate. Appendix C includes the

script of the heuristic algorithm implemented in this thesis.
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Figure 4.1: Flowchart for the heuristic algorithm.

4.2 Optimization-based method

In accordance with the literature review performed in Section 2.3, the aim of this section

is to develop a scheduling algorithm that combines model predictive control (MPC)

with mixed-integer linear programming (MILP) to determine the optimal charging and

discharging power set-points of the battery. In the following sections, the overall MILP

optimization problem will be formulated by defining constraints and a multi-objective

cost function, before the MPC approach is applied to solve the problem. Finally, the

implementation of the developed algorithm into the Simulink microgrid model is described.

4.2.1 Constraints

This section introduces the model constraints of the optimization problem. These

constraints define the microgrid operational framework and reflect the limits of the

microgrid components. Positive convention for power flows in the constraints are defined

by Figure 4.2.
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Figure 4.2: Illustration showing positive sign convention for power flows in the microgrid.
Inspired by Figure 1 in [22].

4.2.1.1 Battery

The battery model in the optimization problem needs to indicate the available energy in

the battery, which is generally estimated as the state of charge (SOC). The discrete model

expressed by (4.1) estimates the SOC based on the data of the previous time instant.

SOC(k) =

 SOC(k − 1) + ηch·Pbatt(k)
Ecap(k)

·∆t, Pbatt(k) > 0

SOC(k − 1) + Pbatt(k)
ηdis·Ecap(k)

·∆t, Pbatt(k) < 0
(4.1)

where SOC(k) and SOC(k − 1) denote the state of charge at time instants "k" and "k-1"

respectively, Pbatt(k)∆t
Ecap(k)

is the change in battery energy during time interval ∆t, ηch/ηdis is

the battery charging/discharging efficiency, and Ecap(k) is the total capacity of the battery

at time instant "k". Ecap does not remain constant, but continuously decreases over time

due to aging effects.

The battery is charging if Pbatt is positive and discharging if Pbatt is negative. A binary

variable defined by (4.2) is introduced to the model to represent this logical condition and

avoid simultaneous charging and discharging of the battery.

δb(k) =

 0, for charging

1, for discharging
(4.2)
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Then, following the power flow directions given by Figure 4.2, the battery power can be

represented as:

Pbatt(k) = Pch(k) · (1− δb(k))− Pdis(k) · δb(k) (4.3)

where Pch(k) and Pdis(k) represent the power transferred to/from the battery during

charging and discharging at time instant "k", respectively.

Finally, combining both the charging and discharging properties of the battery into one

equation, the SOC of the battery is:

SOC(k) = SOC(k − 1) +
ηch · Pch(k)

Ecap(k)
·∆t− Pdis(k)

ηdis · Ecap(k)
·∆t (4.4)

The SOC range should be limited to maximize the battery lifetime by avoiding deep

discharge or overcharge. The following constraint reflects the minimum and maximum

SOC limits:

SOCmin ≤ SOC(k) ≤ SOCmax (4.5)

Finally, (4.4) and (4.5) can be combined to form one overall SOC constraint:

SOCmin−SOC(k−1) ≤ ηch · Pch(k)

Ecap(k)
·∆t− Pdis(k)

ηdis · Ecap(k)
·∆t ≤ SOCmax−SOC(k−1) (4.6)

In addition, (4.7) is often added as a constraint in the optimization problem to prevent the

battery schedule from draining all the stored energy in the battery. (4.7) addresses this by

ensuring that the SOC at the end of the horizon is the same as the SOC at the beginning

of the horizon. In this way, the continuity of the battery operation is maintained. However,

the negative effects of omitting (4.7) may be small when a receding horizon approach is

employed [66]. Including (4.7) may also lead to unnecessary cycling of the battery. This is

further investigated in the case study performed in Chapter 5.

SOC(N) = SOC(0) (4.7)
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where SOC(N) is the battery energy level at the end of the horizon N and SOC(0) is the

battery energy level at the beginning of the horizon N .

Lastly, constraints on the battery power are added to reflect the maximum power that can

be charged/discharged by the battery over a fixed time interval. Considering the binary

variable defined by (4.2), the battery power constraints for discharging and charging can

be expressed as:

δb(k)Pmin
dis ≤ Pdis(k) ≤ δb(k)Pmax

dis (4.8)

(1− δb(k))Pmin
ch ≤ Pch(k) ≤ (1− δb(k))Pmax

ch (4.9)

4.2.1.2 Interaction with the main grid

In the grid-connected mode of operation, the microgrid can either sell or buy energy

to/from the main grid. To model this possibility and avoid simultaneous selling and buying

of energy, a binary variable defined by (4.10) is added to the optimization problem.

δg(k) =

 0, for selling energy to the grid

1, for buying energy from the grid
(4.10)

Then, following the power flow directions given by Figure 4.2, the microgrid’s interaction

with the main grid can be represented as:

Pgrid(k) = Psell(k) · (1− δb(k))− Pbuy(k) · δb(k) (4.11)

where Psell(k) and Pbuy(k) represent the power transferred to/from the grid at time instant

"k", respectively.

Constraints (4.12) and (4.13) are included in the problem formulation to limit the maximum

power that can be drawn from the grid and the maximum power that can be fed into the

grid, respectively.

0 ≤ Pbuy(k) ≤ δg(k)Pmax
buy (4.12)
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0 ≤ Psell(k) ≤ (1− δg(k))Pmax
sell (4.13)

4.2.1.3 Power balance

The balance between power production and consumption in the microgrid must be met at

every time instant. This is ensured by always satisfying (4.14), where power conversion

efficiencies and positive power directions are included as defined in Figure 4.2.

ˆPload(k) = P̂pv(k) + ηinv(k) · Pdis(k)− Pch(k)

ηinv(k)
+ Pbuy(k)− Psell(k) (4.14)

where ˆPload(k) and P̂pv(k) are the forecasted load and PV output curves, respectively. The

battery inverter efficiency, ηinv(k), varies depending on the battery power as described by

(3.7) in Chapter 3.

4.2.2 Objective function

An objective function must be formulated in the optimization problem to achieve optimized

microgrid operation. This thesis considers a multi-objective optimization problem, where

the goal is to achieve an optimal solution for several competing objectives. The following

subsections will first describe each of the objectives before the overall objective function is

presented.

4.2.2.1 Grid cost function

The first objective is to minimize the total cost of variable-priced electricity. This objective

can be expressed as the difference between the economic cost of buying energy from the

grid and the monetary income of selling energy to the grid:

Jgrid =
N−1∑
k=0

(cbuy(k) · Pbuy(k)− csell(k) · Psell(k)) ∆t (4.15)

where N is the optimization step horizon, cbuy(k) is the price of buying energy from the

main grid at time instant "k", csell(k) is the price of selling energy to the main grid at time

instant "k", Psell(k)/Pbuy(k) are the power flows to/from the grid, and ∆t is the sample

time.
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4.2.2.2 Battery cost function

Minimizing the grid cost function will lead to savings in the energy bill. However, frequent

cycling of the battery will shorten its lifetime. Therefore, every charge or discharge cycle

accumulates an additional cost, and it is desirable to reduce the number of cycles during

the day. Consequently, in addition to the grid cost function, a cost function representing

the opportunity costs of battery cycles should be included in the optimization problem.

The opportunity costs of battery cycles can be calculated using (4.16), where the change

in battery energy, ∆Ebatt, is multiplied by a battery cost weight, cb, to penalize battery

cycles. The size of cb can be defined in several ways, which will be discussed further in

Case 1 of the case study performed in Chapter 5.

Jbattery =
N−1∑
k=0

∆Ebatt(k) · cb (4.16)

where ∆Ebatt(k) is the absolute change in battery energy from one time step, k-1, to the

next time step, k. ∆Ebatt(k) is calculated by the following expression:

∆Ebatt(k) = |Ebatt(k)− Ebatt(k − 1)| =
(
ηch · Pch(k) +

Pdis(k)

ηdis

)
·∆t (4.17)

Combining (4.16) and (4.17), the final expression for the battery cost function is:

Jbattery =
N−1∑
k=0

(
ηch · Pch(k) +

Pdis(k)

ηdis

)
·∆t · cb (4.18)

The battery cost function reduces battery degradation by ensuring that only activities

that generate higher profitability than the cycle opportunity costs are executed. In this

way, battery degradation awareness is introduced into the optimization model.

4.2.2.3 Global cost function

Each of the two aforementioned objectives is formulated as a term in the following global

cost function:

J = Jgrid + Jbattery (4.19)



4.2 Optimization-based method 49

The two objectives of the global cost function are conflicting, and a single solution that

simultaneously optimizes each objective may not exist. Consequently, a trade-off between

saving energy costs and reducing battery degradation must be made. Energy costs are

saved by utilizing the battery constantly to charge and discharge at all peaks in the energy

price. However, frequent cycling of the battery will increase its degradation and lead to

an earlier reinvestment of the battery. A trade-off between these conflicting objectives

can be made by selecting a suitable value for the battery cost, cb. As this value increases,

the proposed algorithm will perform a lower number of charging-discharging actions. The

effect of varying this value is investigated through the case study in Chapter 5.

4.2.3 Model Predictive Control using mixed-integer linear

programming

Combining the constraints and the objective function defined in the previous sections, the

overall optimization problem can be formulated as

minimize J (4.19)

subject to storage model (4.4),

storage constraints (4.6), (4.7), (4.8), (4.9),

grid constraints (4.12), (4.13),

power balance (4.14),

binary variables (4.2), (4.10)

(4.20)

This problem is characterized as a mixed-integer nonlinear programming (MINLP) problem

with a non-convex cost function due to the nonlinear dynamics of the battery capacity

and power electronic efficiencies. Solving this MINLP optimization problem generates

an optimal battery schedule. However, this schedule will be subject to uncertainties; the

system model will be imperfect, forecast errors will be present, and the system state will

not evolve as predicted. The single optimization problem yields an open-loop solution,

which does not account for these uncertainties.

Alternatively, the optimization problem can be solved within a model predictive control

(MPC) framework. In this way, a feedback control mechanism is implemented, which

potentially compensates for the uncertainties. In addition, the MPC approach enables
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the power converter efficiency and battery capacity to be computed and updated prior to

the optimization at each sample time and then considered constant over the prediction

horizon. In this way, the optimization problem is transformed into a MILP problem, which

is preferred over the corresponding MINLP formulation due to, e.g., less computational

effort, access to available solvers, and a guaranteed optimal solution without noticeable

loss of accuracy compared to MINLP. A more detailed discussion of the MILP and MINLP

approaches can be found in the literature review conducted in Section 2.3.

This thesis thus proposes a control approach that combines MPC with MILP to effectively

account for uncertainties and to capture some of the nonlinear dynamics of the system

by updating the system model every time step. With the general concept of MPC being

described in Section 2.3.3, this section will describe the MPC controller developed for

the microgrid considered in this thesis. Figure 4.3 depicts a block diagram of the MPC

controller, and the following paragraphs describe the four steps that characterize the MPC

strategy utilized in the controller.

Figure 4.3: Overview of the MPC controller.

Step 1: Formulate the optimization problem

At the current point in time, an optimization problem is formulated for a selected prediction

horizon, Np, based on updated values of the system states and power electronic efficiencies

as well as forecasts of the future PV production, load demand, and electricity prices. The

current system states, SOH(0) and SOC(0), are updated using the SimSES battery model.

Further, the power electronic efficiency is updated using the formula expressed by (3.7).

It is important to notice that the efficiency and the SOH are considered constant over
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the prediction horizon to keep the problem linear and enable the use of a MILP solving

technique.

As illustrated in Figure 4.3, the proposed MPC-based EMS allows the implementation of

a forecasting module to predict the load demand, the PV production, and the electricity

prices at each time step k = 1, ..., Np of the chosen prediction horizon. However, proposing

such a module is outside the scope of this thesis. Instead, Section 5.1.3 gives an alternative

way of simulating forecast errors.

In order to solve the overall optimization problem expressed by (4.20), it must be

reformulated into a form that can be solved using an available MILP solver. In this

thesis, it is contemplated to use the intlinprog solver in MATLAB, and the optimization

problem must thus be reformulated into the matrix form given by (4.21). The rewriting of

the constraints into vectors and matrices is performed in Appendix D.1.

minimize
u

JTu

subject to u(intcon) are integers,

Aineq · u ≤ bineq,

Aeq · u = beq,

lb ≤ u ≤ ub

(4.21)

where

• The decision variables are collected in the vector

u(k) =
[
Pdis(k) Pch(k) Pbuy(k) Psell(k) δb(k) δg(k)

]
for k = 0, ..., Np − 1

• The objective function J (4.19) is written as a vector with linear coefficients.

• The inequality constraints (4.6), (4.8), (4.9), (4.12), and (4.13) are represented using

the matrix Aineq, the vector bineq, and the decision vector u.

• The equality constraint (4.14) is represented using the matrix Aeq, the vector beq,

and the decision vector u.

• The upper and lower limits of the decision variables, (4.2), (4.8), (4.9), (4.10), (4.12),

and (4.13), are collected in lb and ub.
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• intcon is a vector containing the integer constraints. The values in intcon indicate

the components of the decision vector u that are integer-valued.

Step 2: Solve the optimization problem

By solving the MILP problem in (4.21), the optimal input sequence for the prediction

horizon Np is obtained as

uopt(k) =
[
((uopt(0))T ((uopt(1))T · · · (uopt(Np − 1))T

]
where each vector uopt(0), uopt(1), ..., uopt(Np − 1) is the future optimal input sequence for

the sample times k = 0, 1, ..., Np − 1, respectively.

Step 3: Execute the control set-points

Although a complete sequence of Np future control signals is computed, only the first

element, uopt(0), is applied to the system, and the remaining optimal values in uopt(k) are

discarded.

Step 4: Shift the prediction horizon

At the next sample time, the prediction horizon is shifted, and a new optimal sequence,

uopt(k), is obtained by repeating steps 1-3. This includes estimating the new state of

the system, recalculating the power electronic efficiencies, obtaining new forecasts, and

finally using this updated information to solve a new optimization problem. By this

receding horizon approach, a feedback mechanism is created where the new optimal plan

can potentially compensate for any disturbances that have meanwhile acted on the system.

4.2.4 Simulink implementation

This section will shortly describe how the MILP-MPC algorithm is implemented in Simulink.

First, the MILP optimization algorithm is formulated as a MATLAB function using the

MILP solver intlinprog. Further, a MATLAB Function block is used to implement the

optimization function in Simulink, as shown in Figure 4.4. A discrete update method is

selected for the MATLAB Function block, which means that the block is sampled at a

rate specified in the block’s Sample Time property. The optimization is thus rerun every

sampling period, and a feedback mechanism (MPC) is created.
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Figure 4.4: Exterior view of MATLAB Function block for optimization based energy
management with all input and output flows.

It must be noticed that the code generator in the MATLAB Function block does not

support the intlinprog function. To overcome this problem, the optimization function must

be declared as extrinsic in the code generator script. The MILP optimization function

and the code generator script are given in Appendices D.2 and D.3, respectively.

All inputs to the MATLAB Function block are initialized by the initialization script given

in Appendix A. The inputs to the block are:

• Estimated values of SOH and SOC from the SimSES battery block.

• The prediction step horizon.

• The sample time, i.e. how often the MILP optimization function is called in Simulink.

• Forecasted data of energy costs, PV production, and load demand, generated by the

forecast error function attached in Appendix E.

• The nominal battery capacity.

• Power electronic efficiency, which is updated at each sample time step according to

the formula given by (3.7).
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4.3 Summary

In this chapter, two energy management strategies were developed to determine the

charging and discharging power set-points of a battery energy storage system in a grid-

connected microgrid. As a first step, a simple rule-based method was developed to work as

a reference for comparison. Further, an optimization-based scheduling algorithm based on

the model predictive control approach was proposed. In the model formulation, the defined

nonlinear problem was rewritten as a mixed-integer linear problem by considering the

power converter efficiencies and the battery capacity constant over the prediction horizon.

Then, the receding horizon principle was applied to determine the optimal input sequence,

where the MPC controller updates the system model at each sample time. Consequently,

the resulting energy management strategy was cast as a multi-objective MILP problem

incorporated in a model predictive framework to account for disturbances and to capture

some of the nonlinear dynamics of the system. Finally, the proposed MILP-MPC algorithm

was implemented in the microgrid simulation platform developed in Chapter 3 by utilizing

a MATLAB Function block.
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5 Simulation results and discussion

This chapter investigates the performance of the proposed control approaches through an

extensive case study over a two-month simulation period using actual PV and load data

from Skagerak Energilab and electricity price profiles from Nordpool. Section 5.1 presents

the parameters, data, and forecasting method used in the simulation process. Section

5.2 presents, comments, compares, and discusses the results of seven simulation cases

to analyze the performance of the developed MILP-MPC based control method. Section

5.3 studies the algorithms’ effects on the microgrid in terms of voltage, frequency, and

operational limits. In addition, the computational approach is evaluated.

5.1 Parameters, data and forecasting

The microgrid parameters and data used in the simulation process were collected from

Skagerak Energilab during September and October 2020 [17]. Skagerak Energilab is a

testing facility for local production, storage, and distribution of electrical energy located

in Skien in Norway. In particular, this testing facility comprises a PV system, loads, and

a battery that are combined to make up a virtual microgrid. The project is run by Lede

in collaboration with ABB, Kontorbygg AS, and Odds Ballklubb.

Figure 5.1 depicts a schematic of Skagerak Energilab illustrating how it can be considered

a virtual microgrid. The blue arrow and the red box show how the PV panel from Segment

1 is virtually connected to the 0.4 kV busbar in Segment 2, which also has a battery

connected. In reality, there is a power flow between the two segments, as illustrated by the

green arrow. However, it is possible to operate the virtual microgrid isolated from the rest

of the 11 kW system and the utility grid. The boxes marked with PoM1, PoM2, PoM3,

PoM4, PoM5, PoM6, and PoM7 are the measurement points of the system.
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Figure 5.1: Schematic of Skagerak Energilab [67].

The next sections give the parameters and data obtained from the Skagerak Energilab

testing facility in addition to the rest of the simulation parameters and forecasting options

considered in the simulations.

5.1.1 Parameters

Table 5.1 lists the microgrid parameters used in the simulation process.
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Table 5.1: Microgrid parameters used in the simulation process.

Parameter Value
Microgrid voltage 400 V

Microgrid frequency 50 Hz
Pbuy,max 1000 kW
Psell,max 1000 kW
Base load 10 kW

Battery type Lithium-ion
Battery capacity 1000 kWh

Initial SOC 50 %
SOCmin 20 %
SOCmax 80 %
Pbatt,min 400 kW
Pbatt,max 400 kW
Prated,inv 400 kW

Battery round trip efficiency, ηbatt 94 %
Inverter efficiency, ηinv ηinv = p

p+p0+k·p2 where p = |Pout|
Prated,inv

PV panel type REC295TP2 and REC300TP2
PV area 4400 m2

Maximum PV power 800 kW(p)
Simulation time 2 months
Sample time 5 min

The simulation process considered a two-month simulation time to investigate the capability

of the algorithm to control the microgrid operation for an extended period of time. The

PV, load, and electricity price profiles varied noticeably over the two months, providing a

solid foundation for an interesting and challenging case study. The sample time was set to

five minutes as a compromise between computational effort and control performance. A

large sample time may lead to deficient control performance, while a small sample time

can result in a high computational effort.

The SOC range should be limited to maximize the battery lifetime by avoiding deep

discharge or overcharge. Experiments show that charging lithium-ion batteries to 85%

provides a longer service life than charging them to 100% [68]. Fully discharging batteries

is also not recommended because many cell chemistries cannot tolerate deep discharge,

and cells may be permanently damaged if fully discharged. Therefore, the minimum and

maximum SOC limits considered in this thesis are 20% and 80%, respectively.
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5.1.2 Data

The simulation process considered the PV and load output power at Skagerak Energilab

for September and October 2020 [17], as shown in Figure 5.2. These data sets have a

one-minute time resolution, and missing data points were filled using linear interpolation.

Figure 5.2: PV and load output power at Skagerak Energilab for September and October
2020 [17].

In addition to the data from Skagerak Energilab, the simulation process utilized the

real-time electricity market price data reported by Nordpool for September and October

2020 [69]. This data has a one-hour time resolution, and it is depicted in Figure 5.3. In

this real-time pricing scheme for buying energy from the main grid, the cost per kWh

depends on the time of using that kWh. The price received for selling energy to the main

grid was assumed equal to the price of buying energy for all cases except for Case 2. In

Case 2, the selling price was set to 50% of the buying price.

Figure 5.3: Hourly spot price reported by Nordpool for September and October 2020
[69].

5.1.3 Forecasting

The PV, load, and electricity price data presented in the previous sections are not known

by the energy management system in advance. Therefore, the MILP-MPC control strategy

proposed in Chapter 4 allows the implementation of a forecast module to predict these
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outputs. However, proposing such a module is outside the scope of this thesis. Instead, an

error function was developed to simulate uncertainty in forecasts by adding errors to the

actual values. These errors were modeled with a gradient uncertainty level in which the

forecast error increases when the prediction horizon becomes larger. A similar forecast

error function has also been used by other researchers [70], and it should be sufficient for

testing how the feedback mechanism of the MPC handles uncertainties in forecasts. Most

cases studied in the case study in Section 5.2 consideres a forecast error that increased

from 10% to 20% over the prediction horizon. In addition, one of the cases investigates

how the MPC handled different forecast errors. Appendix E includes the MATLAB script

used to model forecast errors.

5.2 Case study

To investigate the capability of the developed energy management system and microgrid

model for dealing with different scenarios, the following cases have been proposed and

simulated:

• Case 0a: Heuristic reference case

• Case 0b: MILP-MPC reference case

• Case 1: Impact of battery cost

• Case 2: Impact of selling price

• Case 3: Impact of end of the day SOC constraint

• Case 4: Impact of prediction horizon

• Case 5: Impact of forecast accuracy

Each case tests the impact of varying one parameter in the optimization problem. Table

5.2 gives an overview of the parameter values considered in each case.
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Table 5.2: Parameters used in the case study.

Case Selling price Battery
weight

Forecast
error

Prediction
horizon

SOC(end)
= SOC(0)1

0 Equal to
buying price 0 10-20% 8h No

1 Equal to
buying price 0-0.2 10-20% 8h No

2 50% of
buying price 0 10-20% 8h No

3 Equal to
buying price 0 10-20% 8h Yes

4 Equal to
buying price 0 10-20% 4-24h No

5 Equal to
buying price 0 0-40% 8h No

1 This condition states whether the end of the day SOC constraint
expressed by (4.7) is included in the optimization problem or not.

The following subsections give the simulation results of the proposed cases. All cases were

simulated for a time period of two months, and the numerical results are plotted with

different time resolutions depending on the studied variables and the case objectives. A

two-day time resolution is considered when plotting the battery SOC, the electricity price,

and the PV, load, battery, and grid powers. A two-month time resolution is used when

plotting the battery SOH. Finally, the total grid energy costs for the two months are used

to find the daily average energy costs for each scenario.

5.2.1 Case 0a: Heuristic reference case

A heuristic case is included in the case study to provide a broader base for comparison

where the results of the optimization-based MILP-MPC algorithm can be compared to the

results of a simple rule-based heuristic algorithm that does not optimize a cost function. In

this way, the advantages of utilizing an optimization-based energy management technique

to schedule the battery are highlighted. The heuristic algorithm is described in Section

4.1, the corresponding MATLAB script is attached in Appendix C, and the values of the

battery constraints are selected as given by Table 5.1. Figure 5.4 shows the simulation

results of the heuristic case for the first two days of the simulation period.
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Figure 5.4: Results of the heuristic reference case for the first two days of the two-month
simulation period.

From Figure 5.4, it can be observed that the battery charges only when there is an excess

of PV power available, which is expected because the defined rules do not allow the battery

to charge from the main grid. There is enough excess PV power to charge the battery

to its maximum SOC limit (i.e., 80%) during the first day, as opposed to the second day

when the battery barely charges. On days where the load demand is higher than the PV

power generation, the heuristic algorithm will not charge the battery at all. This is the

case at Skagerak Energilab for most days in September and October 2020, as shown in

Figure 5.2, which implies that the battery is idle most of the time.

Figure 5.4 also shows that the heuristic strategy never stores energy in the battery for

a long period of time. Instead, it prefers to use the stored energy to feed the microgrid

loads as soon as the demand exceeds the generation. By coincidence, this occurs when the

electricity price is high even if no cost function is minimized. In this way, the microgrid

avoids importing expensive energy from the grid during these periods. Moreover, the

results in Figure 5.4 show that the battery can serve the loads for approximately three

hours before the SOC falls from its maximum value (80%) to its minimum value (20%), as

seen on the first day. From this hour on, all power demand must be met by the main grid
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until more PV power is generated.

Table 5.3 shows the microgrid interaction with the main grid for the considered simulation

period, i.e., September and October 2020. Little excess PV power is available for these

months. Therefore, a large amount of energy is imported from the main electrical grid to

ensure that the load demand is always met. Moreover, the defined rules of the heuristic

algorithm do not allow the battery to discharge to the grid. Thus, all exported energy is

excess PV generation that could not be stored in the battery, and the microgrid exports

little energy to the main grid.

Table 5.3: Heuristic case: Total exchange with the main grid for the two-month simulation
period.

kWh NOK
Imported (purchased) 199857 24484
Exported (sold) -4409 -587
Total 195448 23897

Based on the above discussion, it can be concluded that the heuristic algorithm prefers

to utilize the PV generation internally instead of selling it to the utility grid, i.e. self-

consumption of locally produced PV power is prioritized. Moreover, the algorithm does

not schedule the battery to feed the microgrid loads strategically based on the peaks in

electricity price. Instead, the battery serves the loads as soon as the PV array generates

too little power. Furthermore, the heuristic algorithm always operates the battery within

its limits. The SOC never exceeds its minimum value of 20% or its maximum value of 80%,

and the power output of the battery is always within the ± 400 kW power constraint.

5.2.2 Case 0b: MILP-MPC reference case

This case will serve as a reference for the case study, where each case alters one parameter of

the reference case at a time, as indicated in Table 5.2. This enables a thorough investigation

of how each parameter of the proposed MILP-MPC algorithm affects the optimal battery

schedule.

The MILP-MPC reference case considers the PV and load data shown in Figure 5.2, the

electricity price profile in Figure 5.3, and the microgrid parameters listed in Table 5.1. The

price received for selling energy to the grid is set equal to the buying price. A prediction

horizon of 8 hours is considered, where the forecast error increases from 10% to 20% over
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the prediction horizon. Moreover, the battery cost cb is zero in the reference case, which

means that the objective function only includes the grid cost function.

Figure 5.5 shows the results of the optimal dispatch provided by the MILP-MPC reference

case for the two first days of the simulation period. As expected, the operation of the

battery is mainly scheduled by the electricity price, in which the battery charges when the

price is low and discharges when the price is high.

Figure 5.5: Results of the MILP-MPC reference case for the two first days of the
two-month simulation period.

The results in Figure 5.5 show that the battery charges at off-peak times (hours 9, 15,

22, and 37) when the price of buying electrical energy from the main grid is low. Later,

this stored energy is used to serve the microgrid loads at peak tariff times (hours 16, 33,

and 43) to avoid importing expensive energy from the main grid. In addition, since the

reference case assumes equal selling and buying prices, the algorithm also wants to sell

energy to the main grid at peak tariff. Therefore, the battery outputs as much power as

allowed by the power limits (400 kW) during peak periods to both feed the loads and

obtain a high selling reward for exporting energy to the main grid.

From Figure 5.5, it can also be observed that the excess PV power is not used to charge
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the battery. Instead, it is sold to the main grid to obtain a revenue due to the high selling

price considered in this case. Therefore, in contrast to the heuristic case, the MILP-MPC

reference case does not prioritize self-consumption of locally produced PV power.

The microgrid interaction with the main grid for the MILP-MPC reference case is given

in Table 5.4. By comparing the results presented in this table to the results from the

heuristic case in Table 5.3, it can be seen that the MILP-MPC reference case both exported

and imported a higher amount of energy than the heuristic case while still obtaining

lower total energy costs. Therefore, it can be concluded that the MILP-MPC algorithm

managed to use the grid energy more optimally, i.e., when it was cheaper. This highlights

the advantage of implementing an optimization-based energy management system in the

microgrid.

Table 5.4: MILP-MPC reference case: Total exchange with the main grid for the
two-month simulation period.

kWh NOK
Imported (purchased) 221263 25473
Exported (sold) -21988 -3041
Total 199275 22431

5.2.3 Case 1: Impact of battery cost

This case investigates the effects of varying the value of the battery cost, cb, in the objective

function. A higher battery cost should reduce the number of cycles during the day and

thus reduce battery degradation.

The battery cost can be selected in several ways. One option is to choose a fixed battery

cost per kWh. However, since the electricity price varies a lot over the year, the ratio

between the grid cost and the battery cost in the objective function will vary a lot when

considering a fixed battery cost. The result is long periods where this ratio is too small for

the battery to be cycled, even for high peaks in the electricity price. Also, [70] argues that

a fixed battery cost does not effectively reduce the charging and discharging frequency.

Therefore, this thesis considers the battery cost as a percentage of the grid cost.

In this case, four scenarios where the battery cost is increased from 0% to 20% of the grid

cost is simulated, i.e., cb=0, cb =0.05, cb=0.1 and cb=0.2. If a higher percentage than this

is used, cycling the battery will be very expensive, and the battery will thus be idle most
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of the time. Figure 5.6 depicts the simulation results of the scenario where the battery

cost is 5% of the grid cost.

Figure 5.6: Case 1: Results obtained for the scenario when the battery cost is 5% of the
grid cost, i.e., cb = 0.05.

In the MILP-MPC reference case, where no battery cost was considered, even a slight

difference between the electricity prices at different time slots cycled the battery. However,

as expected, the results in Figure 5.6 show that introducing a battery cost function to the

optimization problem prevents such redundant behavior. In this case, the battery will only

export energy to the grid if the savings made by selling the stored energy are higher than

the battery cost of cycling that energy. Moreover, the battery is less likely to charge from

the grid if the algorithm does not see a very significant peak in the predicted electricity

price. The battery is, for instance, no longer charging during the low price period at hour

37.

Figure 5.7 depicts the SOH development for different battery costs over the two-month

simulation period. As expected, the battery degrades less for high battery costs due to

the reduced number of cycles. Moreover, the results show that the heuristic case has a

similar SOH development as the MILP-MPC reference case (cb = 0) for the first 25 days

when the PV generation is high. However, for the last 35 days, little excess PV power
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is available. Therefore, the heuristic algorithm barely cycles the battery, and the SOH

decreases at a lower rate because all degradation originates from calendrical aging.

Figure 5.7: Case 1: Battery SOH development for scenarios with different battery costs
for a two-month simulation period.

The total energy costs of each scenario have been averaged over the 60 simulated days

and are presented in Figure 5.8. Expectedly, the energy costs increase when battery

costs are included because the battery is no longer cycled at all peaks in the electricity

price. However, since higher battery costs prolong battery lifetime (i.e., postpone battery

reinvestment), increased energy costs do not necessarily mean that the total long-term

microgrid costs are higher. For example, the scenario with cb = 0.2 has a final SOH

value close to the heuristic case but much lower costs. It will therefore result in a more

economically favorable battery schedule at the same time as the battery needs reinvestment

at a later point. This result highlights the advantage of utilizing an optimization-based

energy management method over a heuristic method.
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Figure 5.8: Case 1: Daily average energy costs for scenarios with different battery costs.

The above discussion clearly shows the conflicting objectives of the global cost function.

The grid cost function wants to cycle the battery as much as possible to reduce costs

related to the energy exchange with the main grid, while the battery cost function aims at

reducing the number of battery cycles to limit battery degradation. However, it can be

concluded that introducing the battery cost function to the optimization problem improves

the overall result because battery degradation is limited while the daily energy costs barely

increase and are still much lower than for the heuristic case.

5.2.4 Case 2: Impact of selling price

Case 2 investigates the effects of considering a different pricing scheme for selling energy

to the main grid. Instead of assuming equal selling and buying prices, this case sets the

selling price to 50% of the buying price. This should make the algorithm less likely to sell

electricity to the main grid because a smaller reward is obtained. Figure 5.9 shows the

results obtained for the two first days of the simulation period.
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Figure 5.9: Case 2: Results obtained when the selling price is set to 50% of the buying
price.

From Figure 5.9, it can be observed that the battery receives minimal charging from the

main grid. It only charges from the grid at hour 24 when the electricity price is low.

Instead, the battery stores energy during periods of excess PV generation and uses this

energy to meet the load demand at a later point when the electricity price is higher. In

this way, the PV power is utilized within the microgrid.

By comparing case 2 to the heuristic case, it can be seen that the two cases have a similar

behavior where self-consumption of locally produced PV power is prioritized. Both cases

prefer to use excess PV power to charge the battery. However, a difference is observed in

the way the battery uses its stored energy to feed the microgrid loads. While the battery

feeds the loads as soon as the demand exceeds the generation in the heuristic case, the

MILP-MPC strategy does not discharge the battery until the electricity price is high to

avoid buying expensive energy from the main grid. The result is a lower total energy

cost for the two months considered, where the costs are reduced from 24191 NOK in the

heuristic case (when csell = 0.5 · cbuy) to 23299 NOK in case 2.

Since less reward is obtained from selling energy to the main grid, the algorithm avoids
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exporting energy. By comparing Table 5.5 with Table 5.4, it can be seen that the exported

energy has been reduced from 21988 kWh in the MILP-MPC reference case to 8455 kWh in

case 2, which corresponds to a 61.6 % reduction percentage. Less energy is also imported in

case 2 because the battery prefers to use excess PV power for charging instead of charging

from the grid. Therefore, it can be concluded that the microgrid interacts less with, and

consequently alleviate stress on, the main electrical grid in case 2.

Table 5.5: Case 2: Total exchange with the main grid for the two-month simulation
period.

kWh NOK
Imported (purchased) 206893 23913
Exported (sold) -8440 -614
Total 198453 23299

The results in Figure 5.10 show that the SOH decreases less, i.e. the battery lifetime

is prolonged, when a lower selling price is considered. This is because the algorithm no

longer prioritizes to cycle the battery at all peaks in the electricity price. Instead, the

battery mostly charges when excess PV power is available and discharges to feed the loads

when the electricity price is high. It can also be observed that for a high battery cost, the

evolution of the SOH is very similar regardless of the selling price scheme implemented.
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Figure 5.10: Case 2: Battery SOH development for scenarios with different selling price
and battery weight for a two-month simulation period.

It makes no sense to compare the daily average energy costs of Case 2 with the costs of

the other cases, because a lower selling price is assumed. Therefore, this case will naturally

have higher costs, since a lower selling reward is obtained per kWh exported.

5.2.5 Case 3: Impact of end of the day SOC constraint

Section 4.2.1.1 suggested that the negative effects of omitting the end of the day SOC

constraint expressed by (4.7) may be small when a receding horizon approach is employed.

Therefore, case 3 investigates the impact of this constraint within a model predictive

framework.

First, the battery behavior for the MILP-MPC reference case where the final SOC constraint

is not included will be studied for a three-day simulation period. Figure 5.11 depicts these

simulation results.
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Figure 5.11: Case 3: Results without the end of the day SOC constraint for the first
three days of the two-month simulation period.

The results in Figure 5.11 show that the SOC level at the end of the first day (hour 24) is

equal to the initial SOC level (i.e., 50%) due to a predicted peak in the electricity price.

This result occurs even though the optimization problem does not include the end of the

day SOC constraint. At the end of the second day (hour 48), the battery is drained to

its minimum SOC level (i.e., 20 %). This is because the foresight of the MILP-MPC

algorithm expects the price to decrease more, and to obtain higher economic benefits,

the algorithm waits for the low price at hour 51 to charge the battery. Therefore, it can

also be assumed that the final SOC at day three (hour 72) is not 50% because it is more

economically favorable to charge the battery at a later time.

Next, the battery behavior will be studied for a scenario where the end of the day SOC

constraint expressed by (4.7) is included in the optimization problem. This constraint

forces the algorithm to prepare the battery for the next day. It also generalizes the optimal

dispatch of the system and maintains the continuity of the battery operation. Figure 5.12

shows the corresponding simulation results.
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Figure 5.12: Case 3: Results with the end of the day SOC constraint for the first three
days of the two-month simulation period.

From Figure 5.12, it can be observed that the SOC equals the initial SOC at the end of

all three days (hours 24, 48, and 72). The results for the first day are the same as in the

reference case because this case met the final SOC constraint in the first place. On the

second and the third day, the battery behavior is also similar, except for the charging at

the end of the day. To obtain this result, the battery charges without taking the electricity

price into account, and the battery is charged at a less ideal time. This also leads to an

instant discharge when the next day starts because savings are made from selling the

stored energy at the higher electricity price and then recharging the battery with cheaper

energy from the grid at hour 51. However, if a lower selling price was considered, the

battery would not be instantly emptied at the beginning of day three.

Ultimately, the algorithm does what it is told to do; if it is told to always charge the

battery to 50% at the end of the day, it will do so. But then it will also use this energy

on the next day to obtain economic benefits. Thus, the number of charging-discharging

actions increases, and the battery degradation is escalated. However, it is also possible to

implement the SOC constraint differently. For example, it could be expensive to empty

the battery at the end of the day. Then, instead of completely draining the battery at
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hour 42, it could discharge to 50% and keep this level to the end of the day. This would

also lead to fewer battery cycles than the results in Figure 5.12, which would increase

battery lifetime. However, then the microgrid loses the revenue it could have obtained by

discharging completely at hour 42.

Based on the above discussion, it is expected that the SOH decreases more when the

optimization problem includes the SOC(N) = SOC(0) constraint due to a higher amount of

battery cycles. This expectation is confirmed by the results in Figure 5.13, which depicts

the SOH development for the heuristic case, the MILP-MPC reference case, and case 3 for

the two-month simulation period.

Figure 5.13: Case 3: Battery SOH development for the two-month simulation period.

The total energy costs for each scenario have been averaged over the 60 simulated days

and are presented in Figure 5.14. Expectedly, the energy costs increase when the end

of the day SOC constraint is included because the battery is cycled at less ideal times.

Including this constraint thus results in both higher daily energy costs and reduced battery

lifetime. However, the difference between the two cases is not that big, and both perform

better than the heuristic case.
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Figure 5.14: Case 3: Daily average energy costs.

Lastly, based on the results obtained in case 3, it can be concluded that the MPC mitigates

the negative effects of omitting the end of the day SOC constraint expressed by (4.7).

However, it is worth pointing out that this relies on the ability of the forecasting algorithm

to predict the PV power production, load demand, and electricity price accurately. If the

forecasting is very inaccurate, the unfortunate situation where the battery is empty at a

critical time may occur.

5.2.6 Case 4: Impact of prediction horizon

This case tests the influence of the prediction horizon on the MPC, i.e., how far into the

future the data is available and will be optimized over at each time step. The prediction

horizon is increased from 4 to 24 hours in four different scenarios.

The results presented in Figure 5.15 illustrate how the horizon length affects the controller

behavior. By comparing the two subfigures, it can be observed that when a longer

prediction horizon is considered, the controller cycles the battery more carefully and tends

to store more energy. The scenario with a 24 hours prediction horizon only cycles the

battery for significant peaks in the electricity price, as opposed to the scenario with a

4 hours prediction horizon where the battery is cycled even for minor variations. This

can be explained by the fact that longer prediction horizons give the controller a larger

vision into the future, and it can thus better anticipate future events. Therefore, for long
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(a) 4 hours prediction horizon.

(b) 24 hours prediction horizon.

Figure 5.15: Case 4: Results for different prediction horizons for the first two days of
the two-month simulation period.
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prediction horizons, the controller will not discharge the battery at hour 6 because it sees

a peak in the electricity price at hour 15 and expects to obtain a higher economic benefit

by discharging to the grid at this hour instead.

To better compare the scenarios with different prediction horizons, Figure 5.16 depicts the

battery SOC for each scenario. These plots substantiate what has already been discussed,

namely that the battery is cycled more for shorter prediction horizons. However, for short

horizons, the algorithm does not prioritize fully charging and discharging the battery to its

minimum and maximum SOC limits of 20% and 80%. Therefore, less energy is exchanged

by the battery. In addition, the results in Figure 5.16 show that the SOC profiles are very

similar for the scenarios with 8 and 16 hours prediction horizon.

Figure 5.16: Case 4: Battery SOC development for scenarios with different prediction
horizon for the first two days of the two-month simulation period.

Since the number of charging-discharging actions is higher when the controller considers a

4 hours horizon length, a natural expectation is that the battery will age quicker for this

scenario. However, the results in Figure 5.18 indicate the opposite. A possible explanation

is that the battery is rarely charged/discharged to its maximum/minimum value in this

scenario. Therefore, the number of full cycles is lower, and the battery degrades less.
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Furthermore, the results in Figure 5.18 give no clear connection between the horizon length

and the SOH development. A shorter prediction horizon does not automatically lead to

a longer battery lifetime. The SOH development is also very similar for all scenarios.

Therefore, it can be argued that other factors, such as the battery cost, are more important

for reducing battery degradation.

Figure 5.17: Case 4: Battery SOH development for scenarios with different prediction
horizon for a two-month simulation period.

The daily average energy costs are presented in Figure 5.18 for all scenarios. As discussed

above, longer horizons give the optimization the urge to store electricity for future electricity

price peaks instead of directly selling it. The result is lower daily energy costs. However,

the cost differences between the scenarios are marginal.
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Figure 5.18: Case 4: Daily average energy costs for scenarios with different prediction
horizon.

The results of case 4 are not entirely as expected, and it is worth pointing out that the

energy management system does not utilize an actual forecasting algorithm for predicting

the future PV generation, load demand, and electricity prices. Therefore, the results

might not properly capture that the prediction accuracy and, thus, the correctness of the

controller operation generally decrease for long prediction horizons. However, the results

of case 4 are similar to the results obtained for different prediction horizons in [70], which

utilized a similar forecast error function.

5.2.7 Case 5: Impact of forecast accuracy

Case 5 incorporates different forecast accuracies to explore how well the feedback mechanism

of the MILP-MPC algorithm handles errors in predicted PV generation, load demand,

and electricity price. Four scenarios with increasing forecast error from 0% to 40% were

simulated, and the corresponding results for the battery SOC are depicted in Figure 5.19.
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Figure 5.19: Case 5: Battery SOC development for scenarios with different forecast
errors for the first two days of the two-month simulation period.

From Figure 5.19 it can be observed that the battery operation changes slightly with

increasing forecast errors but that the general form of the SOC curves is maintained.

The main difference is the increased ripple in the SOC for higher errors. This occurs

because an increased error leads to a more noticeable difference between the predicted

and the actual values. The compensating action of the feedback mechanism reduces this

difference by quickly charging or discharging the battery, which results in a ripple in the

SOC. Moreover, Figure 5.19 shows that the algorithm does not charge the battery at

hour 37 for the scenario of perfect forecasting, while it does so for all the other cases. A

possible explanation is that the added error makes the electricity price seem lower than it

is. Therefore, the algorithm thinks it can save more costs by charging the battery at hour

37 than it actually can.

The development of the battery SOH over two months is depicted in Figure 5.20 for all

scenarios. These results show that the SOH develops very similarly for all scenarios, and

it can thus be concluded that the MPC can handle forecasting errors in a satisfactory way.

It is also worth pointing out that the worst SOH development occurs when the forecasting

is perfect. This makes sense because the battery cost is zero, meaning that the algorithm
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only considers the grid cost function when optimizing. Consequently, the battery tends

to be used more, and since the forecasting is perfect, the battery is fully charged and

discharged at all the correct times.

Figure 5.20: Case 5: Battery SOH development for scenarios with different forecast
errors for a two-month simulation period.

Figure 5.21 depicts the daily average energy costs for all scenarios. The results show that

the costs have no significant change with increasing forecast errors, and that the lowest

costs are naturally obtained when the algorithm perfectly sees the development of PV,

load and cost profiles. However, perfect forecasting is an unfeasible case that rarely occurs

in real cases.
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Figure 5.21: Case 5: Energy profit for a month for scenarios with different forecasting
errors.

Overall it can be concluded that the model is robust to uncertainty in forecasting. Since

the model handles forecast errors as high as 30-40%, it is reasonable to assume that it could

also operate satisfactorily when a real forecasting algorithm is implemented. Especially

since the short sample time of five minutes allows the algorithm to constantly adjust the

battery operation according to the actual values of PV, load, and costs. Implementing a

forecasting module could be interesting for future work.

5.3 Microgrid operational limits and computational

approach

This chapter has so far investigated the performance of the proposed energy management

system for multiple cases. In this section, the effects of this performance on the microgrid

will be discussed in terms of voltage, frequency, and operational limits. In addition, the

computational approach is evaluated.

5.3.1 Microgrid operational limits

Figure 5.22 depicts the microgrid voltage and frequency for five of the simulated cases with

the acceptable ±10% deviation limits drawn in, and Figure 5.23 shows a more zoomed-in
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version of the same results to observe how the deviations look like. These figures show that

the microgrid voltage and frequency stay within ±10% of their operating values of 400 V

and 50 Hz, respectively. Therefore, it can be concluded that the voltage and frequency

regulation performed by the main grid is satisfactory and that the developed algorithms

affected the frequency and voltage little.

Figure 5.22: Microgrid voltage and frequency for five of the simulation cases with their
acceptable ranges of ±10%.
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Figure 5.23: Microgrid voltage and frequency for five of the simulation cases zoomed in
to capture the minor deviations.

The simulated cases also demonstrated the capability of the developed microgrid model in

other areas. For all cases, the battery operated within its limits and behaved as expected.

When the battery charged, the SOC increased, and when it discharged, the SOC decreased.

In addition, the SOH decreased over the two months at a rate that could be expected

from the parameters selected and the resulting battery behavior. Moreover, simultaneous

charging and discharging of the battery never occurred. Neither did simultaneous export

and import of grid power.

Beyond the above paragraph, the SimSES battery model will not be further verified in this

thesis because an extensive verification was conducted by Maik Naumann in his doctoral

dissertation [18]. In addition, the SimSES model has been used to analyze various battery

fields of application in several publications [19, 20, 21, 22], where it has proven to achieve

results with sufficient accuracy for techno-economic considerations within an appropriate

simulation time.
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5.3.2 Computational approach

The proposed energy management system used mixed-integer linear programming (MILP)

to formulate the overall optimization problem. The method can effectively be solved

using the intlinprog function included in MATLAB’s Optimization Toolbox. This

function utilizes the branch-and-bound technique for solving the optimization problem

by constructing a sequence of subproblems that attempt to converge to a solution of the

MILP. This solving technique guarantees that the solution is global once found. However,

the method requires both the constraints and the objective function to be linear, which is

not compatible with the nonlinear dynamics of the battery capacity and power electronic

efficiencies. Therefore, the MILP method was implemented within a model predictive

framework to effectively account for uncertainties and to capture some of the nonlinear

dynamics of the system by updating the system model every time step. As a result, the

developed algorithm proved to work successfully for two months of simulations using real

PV, load, and electricity price data that varied a lot over the months. Some days had

excess PV power and other days had not, which created an interesting and challenging

foundation for the case study.

Moreover, the proposed methodology successfully controlled the microgrid using a short

sample time of five minutes. This short sample time enabled the proposed methodology

to observe and respond to small changes in the load, generation, and electricity price

throughout the day. Even if a short sample time was used, the model had a low execution

time. Table 5.6 shows the average execution time for a two-month simulation of the

heuristic method and the MILP-MPC method with four different prediction horizons. It

can be reasonably observed that a larger prediction horizon increases the computation

time. Therefore, the reference case in this thesis utilized a prediction horizon of 8 hours.

However, it must be noted that the execution time will vary slightly from simulation

to simulation, even if the same settings are used because it dependents on the overall

processor activity. Additionally, the first simulation is always slower than the following

ones due to the compilation of the model into runnable code. Nevertheless, the results in

Table 5.6 gives an indication of the algorithms’ computational effectiveness.
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Table 5.6: Execution time of scenarios with different prediction horizon for a two-month
simulation period.

Prediction horizon Computation time
Heuristic 27 sec

4h 3 min, 44 sec
8h 7 min, 12 sec
16h 34 min, 4 sec
24h 1 hour, 43 min, 43 sec

5.4 Summary

This chapter has presented, commented, compared, and discussed the results of seven

simulation cases to investigate the performance of the developed MILP-MPC based control

method. Depending on the chosen settings, the results showed that the proposed MILP-

MPC energy management strategy managed to determine the reference values for the

battery power in a way that: (1) minimized the purchased energy during peak times; (2)

maximized self-consumption of locally produced PV power; (3) made good use of the

battery, keeping it within its limits and reducing its degradation. The result is a flexible

algorithm that can be tuned depending on the overall control objective. It is also possible

to vary multiple parameters at a time to obtain a trade-off between several objectives.

The main effect of tuning each parameter is as follows:

• Battery cost: Introduces battery degradation awareness to the model. As this value

increases, the proposed algorithm will perform a lower number of charging-discharging

actions.

• Selling price: Affects how the microgrid interacts with the main grid. If a low

selling price is selected, the microgrid avoids selling energy to the main grid and

self-consumption of PV power is increased.

• End of the day SOC constraint: The inclusion of this constraint ensures that the

battery can give the same performance every day. However, it is argued that the

constraint is unnecessary when MPC is used.

• Prediction horizon: The horizon length can be chosen depending on the availability

and accuracy of forecasts and on the requirements placed on the computational

speed.

• Forecasting: The model formulation allows the implementation of a forecasting
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module to predict the load demand, PV power, and electricity price. The feedback

mechanism of the algorithm proved to react well to high errors in forecasting accuracy.

Moreover, for all simulation cases, the MILP-MPC algorithm succeeded in reducing the daily

cost of the energy drawn from the main grid when compared to the heuristic algorithm.

This demonstrated the benefit of utilizing an optimization-based energy management

strategy for controlling the microgrid operation.

The control algorithm also affected the microgrid voltage and frequency little for all of

the simulated cases, and it never violated the limits of the microgrid components. In

addition, it successfully used real data to perform a two-month simulation using a five

minutes sample time within a short execution time. Therefore, it can be assumed that the

algorithm would work well in real-time operation.
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6 Conclusion and further work

This final chapter presents the main conclusions of the work conducted in this master’s

thesis, as well as suggestions for further work.

6.1 Conclusion

This thesis concentrated on the implementation of an energy management system (EMS) for

a grid-connected microgrid. The overall goal of the thesis was to develop a control approach

that combines model predictive control (MPC) with mixed-integer linear programming

(MILP) to effectively account for uncertainties and to capture some of the nonlinear

dynamics of the system by updating the system model every time step. Four secondary

objectives were derivated to obtain the main goal, and the following paragraphs conclude

each of these objectives.

First, a literature review on microgrid EMSs was performed to obtain a solid theoretical

foundation and to identify the main gaps and challenges. The main part of this

literature review included an extensive investigation of methods for solving the energy

management optimization problem. Based on this investigation, it was concluded that

solving a MILP problem within an MPC framework would be a suitable approach for

controlling the microgrid considered in this thesis. In addition to selecting the MILP-

MPC approach, the literature review generated guidelines and suggestions for energy

management methodologies.

Next, a microgrid simulation platform suitable for testing energy management strategies

was implemented in MATLAB/Simulink. This platform was created by modifying and

combining two existing models to build a grid-connected microgrid model comprising a

PV system, a variable load, a static load, and a battery including a degradation model.

Moreover, the model was simulated using a variable-step phasor solving method to enhance

simulation speed and to include a sufficient level of detail. A key element of the developed

simulation platform was the SimSES battery energy storage system comprising a lithium-

ion battery model, a power electronic efficiency model, and a degradation model. This

enabled a more detailed and realistic study on how the proposed EMS affected the battery.

However, the model only supported the grid-connected mode of operation. Therefore,

further work could consider modifying the model to also support island mode.
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Further, two energy management strategies were implemented in the developed microgrid

simulation platform, namely a high-level optimization algorithm using MPC in combination

with MILP and a heuristic management strategy for comparison. The proposed MILP-

MPC algorithm utilized predictions of the system’s future behavior, including PV,

load, and electricity price forecasts, to decide the microgrid operation. Furthermore,

a feedback mechanism was introduced (MPC) to compensate for potential forecast errors

and uncertainties. In addition, the algorithm took the nonlinearities associated with

power electronic efficiencies and battery degradation into account by considering them

constant over the prediction horizon. The mathematical formulation of the microgrid

optimization problem was straightforward, reproducible, and can be used and enhanced to

other microgrids. In conclusion, the resulting energy management strategy was cast as a

flexible, multi-objective MILP problem incorporated and solved in an MPC framework to

account for uncertainties and to capture some of the nonlinear dynamics of the system.

Finally, the performance of the proposed control approach was investigated through an

extensive case study over a two-month simulation period using actual PV and load data

from Skagerak Energilab and electricity price profiles from Nordpool. For all cases, the

MILP-MPC control algorithm succeeded in reducing the daily cost of the energy drawn

from the main grid compared to the heuristic algorithm. Furthermore, depending on the

chosen settings, the results showed that the proposed MILP-MPC algorithm managed to

determine the reference values for the battery power in a way that: (1) minimized the

purchased energy during peak times; (2) maximized self-consumption of locally produced

PV power; (3) made good use of the battery, keeping it within its limits and reducing

its degradation. Thus, the result is a flexible algorithm that can be tuned depending on

the overall control objective. Moreover, the two-month simulation was performed within

an appropriate execution time using a short sample time of five minutes, which enables

real-time operation. However, no real forecasting algorithm was implemented in the EMS,

and the data prediction was performed in a less realistic fashion.

Based on the above paragraphs it can be concluded that this thesis managed to obtain its

overall goal, namely to design an efficient energy management system for a grid-connected

microgrid by repeatedly solving a mixed-integer linear programming problem within a

model predictive framework.
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6.2 Further work

There are multiple ways of taking the system proposed in this thesis further. This section

will provide some of the proposals for further work.

• Incorporate a forecasting algorithm in the EMS. Although the proposed control

structure enables the implementation of forecasting algorithms to predict the

PV production, load demand, and electricity prices, this thesis did not utilize

actual forecasting algorithms. Instead, an error function was developed to simulate

uncertainty in forecasts by adding errors to the actual values. Therefore, an essential

step in further work would be to implement actual forecasting algorithms in the

EMS and investigate how this would affect the results.

• Experimental verification. Further work could consider verifying the MILP-MPC

control approach experimentally to: (1) ensure that it can be applied in a real system

without any difficulties; (2) observe the system response when using a real battery;

(3) ensure that the proposed strategy will operate correctly in the presence of a real

communication system that can introduce a time-lag in the control signals.

• Consider grid losses in the optimization. The proposed MILP-MPC algorithm

neglects grid losses, which should be a valid assumption for a small microgrid.

However, further work can reformulate the algorithm to include grid constraints

and check its effect. An interesting angle to this could be to combine MPC with an

optimal power flow approach. It is not clear whether the use of optimal power flow

will influence the outcome of an MPC problem drastically.

• Implement a demand-side management strategy. Demand-side management is an

emerging application in microgrids for exploiting timely interactions between utilities

and their customers to improve the reliability and sustainability. Therefore, a way to

take the system proposed in this thesis further, could be to implement a demand-side

management strategy.

• Add more controllable units and apply a decentralized approach. The EMS proposed

in this thesis only considers one controllable unit, namely the battery, and it thus

utilizes a centralized approach. Further work could include more controllable units,

e.g. a controllable load with a demand-side management strategy, and apply a

decentralized approach.
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• Further develop the microgrid simulation platform. The microgrid model could for

instance be modified to allow island operation. The adaptation is relatively easy,

and can be performed by adding a switch between the utility point-of-connection

and the microgrid. In addition, the battery model should be adapted to help the

microgrid maintain voltage and frequency when islanded. In this way, an EMS that

handles both operational modes can be implemented and tested. However, if island

operation is intended for a longer period of time, additional DG units must be added

to ensure that the load demand is always met.
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Appendix

A Initialization script

This script initializes the microgrid simulation platform and the optimization algorithm.

The initialization of the SimSES battery model is adapted from [62] to enable the

implementation of the SimSES battery in the Simulink microgrid model.

%% Clear workspace

clc; clear; close all;

%% Import data

days = 60;

data_all = xlsread('pvLoadPriceData_2months');

pvData = data_all(1:1441*days,1); % 1 = PV from Skagerak

costData = data_all(1:1441*days,3); % 2 = TOU, 3 = Nordpool elspot

loadData = data_all(1:1441*days,4); % 4 = Load from Skagerak

time = data_all(1:1441*days,5); % 5 = Time in seconds

% Global helping variables for conversion

global gvarYEARS2SECONDS gvarDAYS2SECONDS gvarKWH2WS

gvarYEARS2SECONDS = 3600 * 24 * 365; % convert between years and seconds

gvarDAYS2SECONDS = 3600 * 24; % convert between days and seconds

gvarKWH2WS = 3600e3; % convert between kWh and Ws

%% Simulation parameters

% Simulation parameters _inputSim_.

% Sample time, simulated time and logging flags are set here.

inputSim.simStart = 0 * gvarDAYS2SECONDS; % starting time of simulation [s]

inputSim.simEnd = days/365 * gvarYEARS2SECONDS; % end time of simulation [s]

inputSim.sampleTime = 5*60;

% sample time of simulation [s]

inputSim.saveResults = false; % TRUE: the variables will be saved in a .mat-file
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inputSim.logAgingResults = false;

% TRUE: all output values of _detectStress_ are logged

%% Technical parameters

% Technical parameters _inputTech_.

% Check fieldnames of variable to set desired values.

inputTech = techParam(); % generates standard struct for required parameters

% Battery data

inputTech.batteryNominalEnergy=1000*gvarKWH2WS; % nominal battery capacity [Ws]

inputTech.powerElectronicsRatedPower = 400e3 ; % rated battery inverter power [W]

inputTech.startSOC = 0.5; % initial SOC at starting step

inputTech.sohCapacityStart = 1; % initial SOH of storage capacity

inputTech.agingModelType = 'Lib_Rosenkranz'; % aging model

inputTech.batteryType = 'Lib_Rosenkranz'; % battery type

% Compute load and PV array power output

Ppv_out = pvData;

loadFluc = loadData;

loadBase = 10e3; % Base load of microgrid [W]

run('createTechParam.m')

%% Optimization parameters

% Optimization parameters _inputOpt_.

% Check fieldnames of variable to set desired values

T_min = inputSim.sampleTime/60; % Optimization time step = simulation time step

stepAdjust = (inputSim.sampleTime)/(time(2)-time(1));

N = (numel(time(1:stepAdjust:end))-1); % Number of time slots

Np_hour = 8; % Prediction horizon in hours

Np = (60*Np_hour)/T_min; % Prediction horizon in steps

tvec = (1:N)'*inputSim.sampleTime;

% Adjust data

pvDataOpt = repmat(pvData(2:stepAdjust:end),2,1);

loadDataOpt = repmat(loadData(2:stepAdjust:end),2,1) + loadBase;

costDataOpt = repmat(costData(2:stepAdjust:end),2,1);
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% Forecast error

pv_param = [0.1, 0.2]; % e.g. [0.1, 0.2] gives forecast with 10-20% error

load_param = [0.1, 0.2];

cost_param = [0.1, 0.2];

% Create forecasts

[CostForecast,PpvForecast,PloadForecast] = genForecasts(N,Np,pvDataOpt,

loadDataOpt,costDataOpt,tvec,pv_param,load_param,cost_param);

% Price signals

inputOpt.price_sell = -1; % If -1 is selected selling price = buying price

inputOpt.battery_weight = 0;

% Battery data for optimization

eta = [0.9 0.9]; % Initial converter charging and discharging efficiency

inputOpt.PERatedPower = inputTech.powerElectronicsRatedPower;

% Rated power for power electronics [W]

inputOpt.SOCinit = inputTech.startSOC; % Initial SOC

inputOpt.SOCmax = 0.8; % Upper limit for SOC

inputOpt.SOCmin = 0.2; % Lower limit for SOC

inputOpt.Pb_ch_max = 400e3; % Max charging rate [W]

inputOpt.Pb_ch_min = 0; % Min charging rate [W]

inputOpt.Pb_dis_max = 400e3; % Max discharging rate [W]

inputOpt.Pb_dis_min = 0; % Min discharging rate [W]

inputOpt.eta_b = inputTech.etaBatt; % Battery efficiency

inputOpt.SOHinit = inputTech.sohCapacityStart; % Initial battery SOH

% Grid data for optimization

inputOpt.grid_sell_max = 1000e3; % Max limit of grid power to sell [W]

inputOpt.grid_sell_min = 0; % Min limit of grid power to sell [W]

inputOpt.grid_buy_max = 1000e3; % Max limit of grid power to buy [W]

inputOpt.grid_buy_min = 0; % Min limit of grid power to buy [W]

%% Clear workspace

clear cost_param load_param pv_param

clear costDataOpt loadDataOpt pvDataOpt

clear data_all i N Np_hour T_min stepAdjust tvec
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B SimSES scripts

This section lists all scripts and functions used to simulate the SimSES battery model. All

material can be found in [62], and the functions and settings of the battery are initialized

in the initialization script.

Folder: @storage_SO (system object of battery model)

• calcAging.m

• calcPowerResidual.m

• characterizeStress.m

• setPowerStorageEquivalentCircuit.m

• setPowerStoragePowerFlow.m

• setReplacement.m

• setupEtaBatt.m

• setupEtaPowerElectronics.m

• storage_SO.m

Folder: @stressCharacterization

• detectHalfCycles.m

• stressCharacterization.m

Folder: 03_TechParameters

• createAgingModel.m

• createBatteryData.m

• createPowerElectronicsData.m

Folder: 05_MiscFunctions

• calcCRateDOC.m

• convtime.m

• returnDataHashCode.m
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• subdir.m

• verifyDataHashCode.m

Folder: 06_CoreFunctions

• LiB_Rosenkranz_CalAging.m

• LiB_Rosenkranz_CycAging.m

• callMethodAgingModels_AverageValues.m

• combAgingType_Superposition.m

No folder:

• techParam.m

• addRequiredPaths.m

• createTechParam.m

C Heuristic algorithm

This section includes the heuristic algorithm script.

function Pref = fcn(PV, load, SOC)

Pnet = PV-load;

Pdis_max = 400e3;

Pch_max = 400e3;

SOCmin = 0.2;

SOCmax = 0.8;

if Pnet < 0 % if discharging

if SOC < SOCmin % lower soc constraint

Pbatt = 0;

else

if abs(Pdis_max) < abs(Pnet) % battery discharging power constraint

Pbatt = -Pdis_max;

else

Pbatt = Pnet;
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end

end

else % if charging

if SOC > SOCmax % upper soc constraiint

Pbatt = 0;

else

if Pnet > Pch_max % battery charging power constraint

Pbatt = Pch_max;

else

Pbatt = Pnet;

end

end

end

Pref = Pbatt;

D Optimization-based algorithm

D.1 Matrix form of the MILP optimization problem

The matrix form of the MILP optimization problem is given by:

minimize
u

JTu

subject to u(intcon) are integers,

Aineq · u ≤ bineq,

Aeq · u = beq,

lb ≤ u ≤ ub

(D.1)

where the decision variables are collected in the vector

u(k) =
[
Pdis(k) Pch(k) Pbuy(k) Psell(k) δb(k) δg(k)

]
for k = 0, ..., Np − 1

and the constraint matrices are given below.

Constraint matrices for bounded constraints, i.e., (4.2), (4.8), (4.9), (4.10), (4.12), and

(4.13):
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lb =



Pmin
dis 1

Pmin
ch 1

Pmin
buy 1

Pmin
sell 1

0

0


, ub =



Pmax
dis 1

Pmax
ch 1

Pmax
buy 1

Pmax
sell 1

1

1


, 1 =



1

1

1

1

1

1


Constraint matrices for the equality constraint, i.e., (4.14):

Aeq =
[
ηinv,dis1 − 1

ηinv,ch
1 −1 0 0

]
, beq =

[
Pload − PPV

]
Constraint matrices for the inequality constraints, i.e., (4.6), (4.8), (4.9), (4.12), and (4.13):

Aineq =



1 0 0 0 −Pmax
dis 1 0

−1 0 0 0 Pmin
dis 1 0

0 1 0 0 Pmax
ch 1 0

0 −1 0 0 −Pmin
ch 1 0

0 0 1 0 0 −Pmax
buy 1

0 0 −1 0 0 Pmin
buy 1

0 0 0 1 0 Pmax
sell 1

0 0 0 −1 0 −Pmin
sell 1

− T
ηdis

φ Tηchφ 0 −1 0 0
T
ηdis

φ −Tηchφ 0 −1 0 0



, bineq =



0

0

Pmax
ch 1

Pmin
ch 1

0

0

Pmax
sell 1

−Pmin
sell 1

(SOCmax − SOC)1

(−SOCmin + SOC)1



φ =



1 0 · · · 0 0

1 1 · · · 0 0
...

...
...

...

1 1 · · · 1 0

1 1 · · · 1 1
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D.2 MILP optimization script

This subsection includes the MILP optimization script. Reoptimizing this every sample

time creates a feedback mechanism (MPC).

function [Pgrid,Pbatt,Ebatt,eta] = optimize_microgrid(Np,T,Ppv,Pload,Cost,

SOC,Ecap_remaining,inputOpt,eta)

% Np = prediction step horizon

% T = time between optimization calls/sample time

% Ppv, Pload, Cost = forecasted data generated by genForecasts.m

% SOC = current state-of-charge of the battery

% Ecap_remaining = current/remaining battery capacity

% inputOpt = struct containing objective data such as constraints,

% objective weights, and costs

% eta = variable power electronic efficiency

% Use current battery capacity to update SOC-limits

Eb_init = SOC*Ecap_remaining;

% SOC at the beginning of the new optimization

inputOpt.Eb_max = inputOpt.SOCmax*Ecap_remaining; % Upper limit for SOC

inputOpt.Eb_min = inputOpt.SOCmin*Ecap_remaining; % Lower limit for SOC

% Update power electronic efficiency

inputOpt.efficiency_ch = eta(1); inputOpt.efficiency_dis = eta(2);

% Initialize battery parameters

Ebatt = zeros(Np,1); Ebatt(1) = Eb_init;

% Selling price:

if inputOpt.price_sell == -1

Cf = Cost;

else

Cf = inputOpt.price_sell*Cost;

end

% Defining matrices

I = eye(Np,Np);

Z = zeros(Np,Np);

Phi = tril(ones(Np,Np));
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Tau = ones(Np,1);

Zcol = zeros(Np,1);

% Defining matrices for inequality constraints

A_ineq = [I Z Z Z -inputOpt.Pb_dis_max*I Z

-I Z Z Z inputOpt.Pb_dis_min*I Z

Z I Z Z inputOpt.Pb_ch_max*I Z

Z -I Z Z -inputOpt.Pb_ch_min*I Z

Z Z I Z Z -inputOpt.grid_buy_max*I

Z Z -I Z Z inputOpt.grid_buy_min*I

Z Z Z I Z inputOpt.grid_sell_max*I

Z Z Z -I Z -inputOpt.grid_sell_min*I

-T*Phi/inputOpt.eta_b T*inputOpt.eta_b*Phi Z Z Z Z

T*Phi/inputOpt.eta_b -T*inputOpt.eta_b*Phi Z Z Z Z];

b_ineq = [Zcol; Zcol; inputOpt.Pb_ch_max*Tau; -inputOpt.Pb_ch_min*Tau;

Zcol; Zcol; inputOpt.grid_sell_max*Tau; -inputOpt.grid_sell_min*Tau;

(inputOpt.Eb_max-Eb_init)*Tau; (-inputOpt.Eb_min+Eb_init)*Tau];

% Defining matrices for equality constraint

A_eq = [inputOpt.efficiency_dis*I -I/inputOpt.efficiency_ch I -I Z Z];

b_eq = [Pload-Ppv];

% Defining matrices for bounded constraints

lb = [inputOpt.Pb_dis_min*Tau;

inputOpt.Pb_ch_min*Tau;

inputOpt.grid_buy_min*Tau;

inputOpt.grid_sell_min*Tau;

Zcol;

Zcol];

ub = [inputOpt.Pb_dis_max*Tau;

inputOpt.Pb_ch_max*Tau;

inputOpt.grid_buy_max*Tau;

inputOpt.grid_sell_max*Tau;

Tau;

Tau];

% Defining objective function and integers

vec1 = inputOpt.battery_weight*Cost*T;

vec2 = inputOpt.battery_weight*Cost*T;
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vec3 = Cost*T;

vec4 = -Cf*T;

vec5 = Zcol;

vec6 = Zcol;

f = [vec1; vec2; vec3; vec4; vec5; vec6];

% Indicate which decision variables that are integers

intcon = [4*Np+1:5*Np, 5*Np+1:6*Np];

% Solve the MILP optimization problem

options = optimoptions('intlinprog','Display','off');

x = intlinprog(f,intcon,A_ineq,b_ineq,A_eq,b_eq,lb,ub,[],options);

% Execute the control set points by applying the receding horizon principle

Pdis = x(1:Np); % Battery discharging power

Pch = x(Np+1:2*Np); % Battery charging power

Pbuy = x(2*Np+1:3*Np); % Buying power from grid

Psell = x(3*Np+1:4*Np); % Selling power to grid

delta_b = x(4*Np+1:5*Np); % Binary variable for battery

delta_g = x(5*Np+1:6*Np); % Binary variable for grid

Ebatt(2:Np) = Ebatt(1:Np-1)+T*inputOpt.eta_b*Pch(1:Np-1)

-T*Pdis(1:Np-1)/inputOpt.eta_b;

% Update power electronic efficiency

Rch = Pch(2)/inputOpt.PERatedPower;

eta(1) = Rch/(Rch+0.072+0.0345*Rch^2);

Rdis = Pdis(2)/inputOpt.PERatedPower;

eta(2) = Rdis/(Rdis+0.072+0.0345*Rdis^2);

% Output powers

Pbatt = Pch - Pdis;

Pgrid = Pbuy - Psell;

end

D.3 Code generator script

This subsection includes the script necessary for implementing the MILP optimization script

in the Simulink microgrid modeling platform. The code generator script is implemented in

the MATLAB Function block depicted in Figure 4.4.
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function [optVec,SOCopt,eta] = fcn(SOC,Np,Ecap_remaining,T,Cost,Ppv,

Pload,inputOpt,eta)

%#codegen

% Initialize

optVec = 0;

SOCopt = 0;

Pbatt = zeros(Np,1);

Ebatt = zeros(Np,1);

% Declare function (contains intlinprog) as extrinsic

coder.extrinsic('optimize_microgrid');

[~,Pbatt,Ebatt,eta] = optimize_microgrid(Np,T,Ppv,Pload,Cost,SOC,

Ecap_remaining,inputOpt,eta);

SOCopt = Ebatt(1);

optVec = Pbatt(1);

E Script for generating forecasts

This section includes the error function developed to simulate uncertainty in forecasts by

adding errors to the actual values. These errors are modelled with a gradient uncertainty

level in which the forecast error increases when the prediction horizon becomes larger.

function [CostForecast,PpvForecast,PloadForecast] = genForecasts(N,Np,

pvData,loadData,costData,tvec,pv_param,load_param,cost_param)

% N = number of steps in optimization

% Np = number of steps in prediction horizon

% pvData, loadData, costData = data prepared with size of N

% tvec = vector containing N time signals

% pv_param, load_param, cost_param = selected forecast error

loadData = loadData';

pvData = pvData';

costData = costData';

% Construct forecast vectors for optimization (N x M) matrix

pv_out = []; load_out = []; cost_out = [];
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p = 1;

for i = 1:N

% Create a vector with Np random values

pv_ranV = randn(1,Np);

load_ranV = randn(1,Np);

cost_ranV = randn(1,Np);

% Choose a sequence of Np values

if (i+(Np-1)) <= N

pv_seq = pvData(1,i:i+(Np-1));

load_seq = loadData(1,i:i+(Np-1));

cost_seq = costData(1,i:i+(Np-1));

else

pv_seq = [pvData(1,i:(i+(Np-1)-p)),pvData(1,1:p)];

load_seq = [loadData(1,i:(i+(Np-1)-p)),loadData(1,1:p)];

cost_seq = [costData(1,i:(i+(Np-1)-p)),costData(1,1:p)];

p = p+1;

end

pv_sigma=[0 linspace(pv_param(1),pv_param(2),Np-1).*pv_seq(2:Np)];

load_sigma=[0 linspace(load_param(1),load_param(2),Np-1).*load_seq(2:Np)];

cost_sigma=[0 linspace(cost_param(1),cost_param(2),Np-1).*cost_seq(2:Np)];

% Adding the forecasted sequences to the output matrices

pv_out = [pv_out; pv_seq+pv_ranV.*pv_sigma/2];

load_out = [load_out; load_seq+load_ranV.*load_sigma/2];

for j = 1:Np

if j == 1

cost_pred(j) = cost_seq(j)+cost_ranV(j)*cost_sigma(j)/2;

elseif cost_seq(j) == cost_seq(j-1)

cost_pred(j) = cost_pred(j-1);

else

cost_pred(j) = cost_seq(j)+cost_ranV(j)*cost_sigma(j)/2;

end

end
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cost_out = [cost_out; cost_pred];

end

PpvForecast.time = tvec;

PpvForecast.signals.values = pv_out(1:N,:);

PpvForecast.signals.dimensions = Np;

PloadForecast.time = tvec;

PloadForecast.signals.values = load_out(1:N,:);

PloadForecast.signals.dimensions = Np;

CostForecast.time = tvec;

CostForecast.signals.values = cost_out(1:N,:);

CostForecast.signals.dimensions = Np;

end

F Script for plotting results

This section includes the script used for plotting the results.

%% Adjust data

time_hr = distP.PV.Time./3600;

time_day = time_hr/24;

Cost = gridPrice.Data;

if inputOpt.price_sell == -1

Cf = 0;

else

Cf = inputOpt.price_sell*Cost;

end

SOC = ESS_SOC.Data(:);

SOH = ESS_SOH.Data(:);

Ppv = distP.PV.Data*1000;
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Pload = distP.Load.Data*1000;

Pgrid = distP.Grid.Data*1000;

Pbatt = distP.ESS.Data(:)*1000;

%% Plot results

figure(1);

subplot(3,1,1);

hold on

grid

xlim([0,24*days]);

ylim([0,900]);

xlabel('Time [hrs]');

ylabel('Power [kW]');

plot(time_hr,Ppv(:,1)./1e3,'Color','#0072BD');

plot(time_hr,Pload(:,1)./1e3,'Color','#A05A4C');

legend('PV','Load')

% Plot battery and grid power + electricity prices

subplot(3,1,2);

hold on

grid

%ylim([-500,1100]);

xlabel('Time [hrs]');

colororder({'k','k'})

yyaxis left

ylabel('Power [kW]');

xlim([0,24*days]);

ylim([-700,1050]);

agrid = area(time_hr,Pgrid./1e3);

agrid.FaceColor = [0.4863 0.6941 0.6863];

agrid.EdgeColor = [0.4863 0.6941 0.6863];

abatt = area(time_hr,Pbatt./1e3);

abatt.FaceColor = [0.6275 0.3529 0.2980];

abatt.EdgeColor = [0.6275 0.3529 0.2980];

if inputOpt.price_sell == -1

yyaxis right

xlim([0,24*days]);
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ylim([-(700/15),70]);

ylabel('Electricity Price [ re /kWh]');

plot(time_hr,Cost(:,1),'Color','#0067a6','LineWidth',1);

legend ('Grid', 'Battery ','Electricity Price');

else

yyaxis right

xlim([0,24*days]);

ylim([-(700/15),70]);

ylabel('Electricity Price [ re /kWh]');

plot(time_hr,Cost(:,1),'Color','#0067a6','LineWidth',1);

plot(time_hr,Cf,'--','Color','#0067a6','LineWidth',1);

legend ('Grid', 'Battery ');

legend ('Grid', 'Battery ','Buying Price','Selling Price');

end

subplot(3,1,3);

hold on

grid

xlabel('Time [hrs]');

colororder({'k','k'})

ylabel('State of Charge [%]');

xlim([0,24*days]);

ylim([0,100]);

plot(time_hr,SOC*100);

%% Plot SOH

figure(2);

hold on

grid

xlim([0,days]);

ylim([99.50,100])

xlabel('Time [days]');

ylabel('State of Health [%]');

plot(time_day,SOH*100);
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