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Abstract

This thesis investigates the potential profits of a hydropower producer participating in the
intraday market. It explores if forecasting the intraday market using fundamental drivers
and machine learning can improve the intraday bidding. The study is motivated by the in-
traday market in NO3 recently seeing increased volumes. Recent studies have also found
relations between the intraday market and fundamental drivers, while others have started
building tools to predict the intraday prices based on this.

An optimization and simulation framework is proposed for the intraday bidding and hydro-
power scheduling problem. The framework uses a rolling-horizon approach to go through
the intraday market from it opens until it closes. At each hourly time-step, a two-stage
stochastic mixed-integer program will accept profitable limit orders from the real order
book, considering the production plan, the water value and future trading opportunit-
ies. Scenarios of future trading opportunities are generated by forecasting the intraday
premium, volume and occurrence of trades for each product. The forecasting is done with
random forest regression or neural networks, and uses fundamental drivers as input vari-
ables.

For a case study with a hydropower producer in the bidding zone NO3, and 256 days
in 2020, the benefit of participating in the intraday market converges to around 3 % for
the bidding model without forecasting. The bidding model with forecasting does on aver-
age outperform the bidding model without forecasting. However, more data and testing is
needed to reach a conclusion on the performance of this model. This uncertainty is mostly
due to the different performance of the forecasting methods under different market con-
ditions. Testing the bidding model outside of the abnormal year 2020, and development
of the forecasting methods is therefore identified as the most important improvements to
obtain more reliable results.
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Sammendrag

Denne masteroppgaven undersøker den potensielle fortjenesten for en vannkraftprodusent
fra NO3 som deltar i intradagsmarkedet. Oppgaven utforsker om forecasting av intradags-
markedet ved hjelp av markedsdrivere og maskinlæring kan forbedre budgivningen. Stud-
ien er motivert av at intradagsmarkedet for NO3 nylig har sett økte volumer. Nyere studier
har også funnet sammenhenger mellom intradagsmarkedet og markedsdrivere, mens andre
har begynt å bygge verktøy for å forecaste intradagsprisene basert på markedsdriverne.

Et optimaliserings- og simuleringsrammeverk for intradagshandel og produksjonsplanleg-
ging er utviklet. Rammeverket bruker en rolling-horizon approach til å gå gjennom intrad-
agsmarkedet fra det åpner til det stenger time for time. Hver time vil et to-trinns stokastisk
blandet heltallsproblem akseptere lønnsomme ordre fra den faktiske ordreboka, basert på
produksjonsplanen, vannverdien og fremtidige handelsmuligheter. Scenarier for fremtidige
handelsmuligheter genereres ved å forecaste intradagspremiumen, volumet og forekom-
sten av handler for hvert produkt. Forecastingen utføres med random forest regresjon eller
nevrale nettverk, og bruker markedsdrivere som inputvariabler.

For en casestudie med en vannkraftprodusent i NO3, og 256 dager i 2020, konvergerer
fortjenesten ved å delta i intradagsmarkedet til rundt 3 % for budmodellen uten forecasting.
For budmodellen med forecasting er det behov for mer arbeid og data for å konkludere på
ytelsen av modellen. Dette er til tross for at denne modellen i gjennomsnitt presterer bedre
enn budgivningsmodellen uten forecasting for de testede dagene i 2020. Denne usikker-
heten skyldes for det meste den forskjellige ytelsen til forecastingsmodellene under forskjel-
lige markedsforhold. Testing av budmodellen utenfor det unormale året 2020, og utvikling
av forecastingsmetodene blir derfor identifisert som de viktigste forbedringene for å gjøre
resultatene mer pålitelige.
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Chapter 1

Introduction

This thesis is a continuation of the work done in the specialization project [1]. Below is
the introduction from the specialization project with changes that reflect the modelling
improvements made in the master’s thesis.

The last few years has seen increased volumes in the intraday market for NO3 (see 2.1).
This is tied to increased penetration of wind power in the Nordics. The wind power produ-
cers rely on forecasts to bid in the energy markets, and because of the uncertainty of the
forecasts, the post-spot markets are needed to make sure their commitments matches their
actual production. Another reason for the increased volumes is that the intraday markets
for the Nordics have recently been coupled with other European intraday markets through
Single Intraday Coupling (SIDC) [2]. Some of these markets have high penetration of vari-
able renewable energy, and therefore higher volumes in their intraday markets. For flexible
hydropower producers in NO3, this means more opportunities to supply balancing services
and take advantage of the different prices in the markets. The reservoirs and the flexible
production units make them able to wait for the better prices and respond quickly when
balancing services are needed. The ability to change production plans close to delivery or
in real-time, is a scarce resource that is becoming more and more important in this market
setting with a lot of variable production. Offering balancing services should in principle
therefore be more lucrative than just selling power in the day-ahead market. This thesis
focuses on modelling the intraday market, and the balancing market is left for future work.

Since the spot market has been, and still is the dominant power market, bidding strategies
for the intraday market is not much developed. The literature on intraday bidding optimiz-
ation for hydropower producers is lacking and the few models [3–6] that exist found little
benefit of trading in the intraday market. However, there are different types of models [7,
8] which have found benefits and therefore shows a potential for the intraday market. The
first is an optimization model with full foresight and the latter simulates through the real or-
der book, but also uses optimization to develop bidding curves that can be used as decision
support. Other recent simulation models in the literature that uses an order book is [9, 10].
The benefit of optimization is that it handles the temporal structure and the combination
of the resource and bidding problem well, while the benefit of simulating through an order
book is that it imitates the real structure of the continuous order book and that actual mar-
ket prices can be used. Another recent development is studies on how fundamental drivers
impacts the intraday price. Wind power, demand and spot prices, to mention some, has
by numerous studies [11–17] been found to be fundamental drivers for the intraday price.
Forecasting the intraday price based on these variables using machine learning methods
[18–22] is also a recent development in the literature that could be adapted to improve the
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Chapter 1: Introduction 2

decision making in bidding problems.

The specialization project [1] preceding this thesis developed a simulation and optimiz-
ation framework that combines hydropower scheduling, intraday bidding in the real order
books and intraday forecasting with fundamental drivers. This combination was a gap in
the literature, with the main challenges being combining optimization and simulation in
a framework, and linking the intraday forecasting to the bidding in the order books. Also,
since most of the literature on the intraday market covers price modelling, volume model-
ling was an important gap to fill, both for forecasting and use in an intraday bidding model.
To predict and restrict the volume of orders in the future intraday market scenarios should
give a more realistic representation of the future trading opportunities.

In the specialization project, this approach for a case study in NO3 found it profitable
to participate in the intraday market, but the main forecasting model did not improve the
intraday bidding. The goal of this thesis is therefore to continue this work by improving the
bidding and forecasting frameworks, to be able to better evaluate the benefit of participating
in the intraday market when using fundamental drivers to forecast it. The main improve-
ments in this thesis are the spot market and order book modelling, the general forecasting
framework, and the shift to use machine learning methods for the forecasting. The findings
of this thesis suggest that more data and testing is needed to conclude on the performance
of the bidding model with forecasting, despite the main model on average outperforms the
bidding model without forecasting for the days tested in 2020. This is mostly due to the
uncertain performance of the forecasting methods in different market conditions.

The rest of the paper is organized as follows. Section 2 gives the theoretical background
for this study. Section 3 presents modelling of the bidding problem, while 4 covers the
elements relevant to forecasting. Section 5 gives an overview of the case study and problems
that will be solved. Section 6 contains the results and discussions, while section 7 gives the
conclusion.



Chapter 2

Background

2.1 Hydropower scheduling

This thesis will cover reservoir hydropower. This is a unique technology since the variable
production cost is almost zero. What differentiates reservoir hydropower from renewable
energy sources like wind and solar is that one also can decide when to produce the power.
The cost of production can therefore be represented by an opportunity cost, the expected
marginal value of having an extra unit of water in the reservoir, which is called the water
value. The limitations of the power plant that will impact the water value is the production
capacity and efficiency of the production unit, and the size of the reservoir. The external
factors are the uncertain market prices and reservoir inflow, and also environmental con-
straints. The hydropower producer wants to trade power at good prices, produce at an
efficient production level, and without spilling water. A watercourse can also have several
production units and reservoirs. Then these elements are connected and will impact each
other. This thesis will cover a simple watercourse with only one production unit, one reser-
voir and no environmental constraints.

With the flexibiliy of the reservoir and production unit, and the generally low ramping/start-
up costs, hydropower can store water for when the market needs it the most. This should
coincide with selling power at the best possible prices. Long-term hydropower wants to ad-
just to supply and demand trends in the market - medium-term it wants to conserve water
between yearly spring floods - and short term it wants to take advantage of for example de-
mand spikes or the uncertain production of renewable energy sources. For the short-term,
buying power is also an alternative, and the power producer can reduce its commitments
by buying power if the prices are lower than the cost of the already sold power. The time
resolution and level of detail in the modelling will increase towards shorter term problems.
Long-term, seasonal or short-term models are usually also coupled in a hierarchy. The long
term model will find watervalues, which can be used by the seasonal model to calculate new
watervalues, which can again be used by the short term model. This is called price coup-
ling, while other alternatives are volume or demand coupling [23]. At the end we have a
watervalue for a given day that will depend on the level of the reservoir and can be given
as cuts. For a hydropower plant with a large reservoir, using a constant daily watervalue
is a valid assumption since production will not affect the water level that much. The final
goal of short term hydropower scheduling, which this thesis focuses on, is to optimize the
revenue of the power sold to and bought from the different markets, minus the value of the
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Chapter 2: Background 4

water resources used and the costs of production and trading.

2.2 Power markets

The objective of the Nordic power market is to be a competitive market where the mar-
ket participants can decide their own dispatch by bidding in the markets. The wholesale
power markets is where power producers trade their physical power. In the Nordic setting
it consists of the day-ahead, intraday and balancing markets. These markets are connec-
ted to power delivery at the same hours, but the opening hours, market mechanisms and
delivered services differs between the markets.

2.2.1 Day-ahead market

In the day-ahead market, which is a daily auction also referred to as the spot market, parti-
cipants can buy or sell power deliveries for the next day by bidding on hourly products. Com-
plex bid combinations of hourly products are possible. The Nordic system is part of Single
Day-Ahead Coupling (SDAC), which by the time of writing consists of most European coun-
tries [24]. Market participants are divided into geographical bidding zones where the power
flow between the zones are restricted by transmission capacities decided by the transmission
system operators (TSOs). When the market is cleared, bids on exchanges in all zones are
matched by taking into account the transmission capacities between zones. Prices, volumes
and flows are decided for each hour and bidding zone. The goal of SDAC is to maximize the
social welfare of the whole system, and the hourly price in each zone is therefore the mar-
ginal cost of power in the zone. At Nord Pool, participants can bid up to 12:00 CET/CEST
the day before delivery, and the result of the market clearing is published at 12:42 or later
[25].

2.2.2 Intraday market

As electricity on the power grid is not storable, there has to be equilibrium between produc-
tion and consumption to keep the system stable. With uncertainty in both production and
consumption, it is necessary with possibilities for market participants to adjust their com-
mitments after the day-ahead market is cleared. The first opportunity for rebalancing comes
in the intraday market. The background section on the intraday market from the special-
ization project [1] preceding this thesis, is presented below with some small changes and
additions.

The intraday market a Norwegian power producer can participate in has historically been
run by Nord Pool. It is called Elbas and uses a continuous double auction mechanism. For
a given hourly product, market participants can make buy and sell orders at chosen prices
and volumes, which are continuously either matched with previous orders or stored in the
order book to be evaluated against future orders. Nord Pool today offers limit orders, block
orders for consecutive production hours, iceberg orders, fill-or-kill orders and immediate-
or-cancel orders [26]. Similar order types can be found at EPEX Spot, which launched for
the Nordic region in May 2020 [27].



Chapter 2: Background 5

In 2018, Single Intraday Coupling (SIDC) was launched in 14 countries in the Nordics
and Central Europe, and then expanded to 22 countries in 2019 [2]. This initiative gave
cross-border intraday trading to these countries by implementing a shared order book. With
this solution, the order book for a bidding zone will show all the orders from different
power exchanges and zones as long as there is available transmission and ramping capacity
for the order to be delivered. Normally the transmission capacity is first given when the
intraday market opens, and then updated continuously as the market develops. For some
transmission borders the capacity can be allocated explicitly or through capacity auctions
as changes to the system happens.

The opening times of the intraday market varies between the bidding zones and products.
For a Norwegian participant, one can start trading a product the day before delivery at 14:00
CET/CEST, until one hour before delivery. At first one can trade within the bidding zone -
and from 15:00 with the Nordics, Baltics and Poland, from 18:00 with Germany, from 21:00
with the Netherlands and from 22:00 with the remaining countries [28].

2.2.3 Other markets

The other markets are less relevant for this thesis. Balancing markets are the last opportunity
to achieve equilibrium in the supply and demand of power. Balancing is done in real-time
by the TSO, which has the responsibility to pre-acquire enough of the different balancing
services to ensure stability of the system. The last markets are the financial markets. In
these markets participants can manage risk by trading long or short-term financial products
without physical delivery.

2.2.4 NO3 market volumes

This section will give insight into the development of the intraday market and why this
market could become a more important part of the Norwegian power market than it is now.
The work from the specialization project [1] is presented below with some major changes
and additions.

Table 2.1 shows the development of the day-ahead, intraday and tertiary balancing mar-
ket volumes in GWh for NO3, which is the bidding zone relevant for this thesis. The in-
creased intraday volumes in 2019 could be tied to the doubling of wind production in NO3
from 2018 to 2019 [29]. More wind power, which is variable and hard to forecast precisely
should increase the need for flexibility in NO3. The volume increase in 2019 could also
be linked to the launch of Single Intraday Coupling (SIDC) [2], which made it easier to
trade with other bidding zones and power exchanges in the intraday market. NO3 which is
hydropower dominated and therefore very flexible could offer its flexibility in the intraday
market to less flexible bidding zones or to bidding zones with more developed intraday
markets. The intraday marked volumes for NO3 are still only around 1% (ca. 0.29 TWh vs
27.4 TWh) of the total volumes if regulating power is not considered. In comparison, the
number for the Nordic countries is 2.3% (8.2 vs 352) [30]. For the German market, which in
addition has intraday auctions and quarter-hourly trading, the number is around 19% (53.7
vs 226.4) [31]. In these calculations the volumes are not double counted if both the buyer
and seller is in the same area. Germany is an interesting market since they with marked
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design managed to reduce the volume in the balancing market even when the renewable
energy share increased [32]. Koch and Hirth [32] found that 17% of the balancing energy
decrease could be explained by quarter-hourly products. Quarter-hourly products is coming
to the Nordic markets around 2023 for the intraday and tertiary balancing market [33]. This
shows that future market design could also be an important driver for the intraday market.
Another driver that could accelerate the use of the intraday market is higher transmission
capacities from the Nordics to Europe, because of new sea interconnectors [34].

2015 2016 2017 2018 2019 2020
Buy DAM 21751 25706 25166 26970 27387 26742
Sell DAM 14766 19814 21547 19086 22179 26080
Buy IDM 31.8 46.8 51.0 52.0 109.4 130.0
Sell IDM 88.5 67.9 70.4 81.9 182.1 143.5
Down BM 110.3 221.1 329.8 288.6 397.6 543.6
Up BM 62.3 91.4 108.9 87.8 119.9 113.6

Table 2.1: Day-ahead (DAM), intraday (IDM) and tertiary balancing market (BM) volumes in GWh for NO3.
Source Nord Pool.

The analysis in Appendix A on the Nord Pool ticker data shows who NO3 trades with in
the intraday market from 2018 to 06.2020. Most notably most of the trades are with other
bidding zones and at much better prices than the spot price, both when selling and buying
power. This reinforces the notion that there is a need for flexibility in the intraday market
of other bidding zones and that the intraday market is a good opportunity for participants
in NO3 to make more profits. The big contrast between the high profitability and the low
volumes shows that either participants in NO3 lack the tools to trade in the intraday market
in a cost effective way, or that bottlenecks in the transmission system limits the opportunities
to trade. Also, Germany and Denmark being the most profitable areas to trade with shows
a potential for when other areas increase their variable production, as these are areas with
high amounts of renewable energy [35].

2.3 Related litterature

In this section the relevant literature on the intraday bidding problem will be presented.
It will cover the literature that involves reservoir hydropower and optimization, but men-
tion other types of models when relevant. It will also cover relevant price modelling and
prediction methods used in the literature. A review of the state of art and related work
was carried out in the specialization project [1]. This is amended with new papers on price
forecasting that have become available since, and more details on price forecasting as this
is more relevant for this thesis than in the specialization project.

2.3.1 Intraday bidding problem

The intraday bidding problem for a hydropower producer is not much discussed in the
literature. The few papers and models that exist, models the full intraday market, but in
different ways. The model of Faria and Fleten [3]) models the day-ahead and intraday
markets as a two-stage stochastic mixed-integer program. The intraday stage in this paper
has collapsed the whole intraday market into one trading opportunity per product. They
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optimize the day-ahead bidding by including scenarios of the trading possibilities in the in-
traday market. This bidding strategy is called coordinated bidding. The relevant challenges
of coordinated bidding are covered in Aasgård et al. [36], which is price forecasting and
scenario generation. They also emphasise that there is lost potential in not incorporating
the post-spot markets in the day-ahead bidding, but that the existing models did not find
significant benefits of coordinated bidding. Fodstad et al. [7], which compares trading in
the day-ahead market with coordinated bidding with full foresight found that coordinated
bidding gave 6.4-7.9% increase in profits for the German intraday market. Coordinated
bidding is not a focus for this project, and will be left for future work.

The work done in [4–6] models bidding in the intraday market after day-ahead set-
tlement. The model of Engmark and Sandven [4] is a multistage stochastic mixed-integer
program. It has a rolling-horizon approach through the intraday market where the intra-
day scenarios are generated at the start of the day, while the balancing market scenarios
are updated for each step of the rolling-horizon. The next model is Akersveen and Graabak
[5], which is a multistage stochastic linear program that models the intraday market us-
ing a scenario tree. This paper also discusses and tests different modelling assumptions
and choices for the problem. The last model is Bovim and Naess [6], which uses stochastic
dynamic programming for the intraday problem. To reduce the problem size, they aggreg-
ate the problem into 6 stages and 4 products. Their model also have 5 price states and 4
production levels.

2.3.2 Price modelling

Price modelling forms the basis for the intraday market modelling and prediction. Weron
[37] describes five different approaches for electricity price forecasting, which can be used
alone or combined into hybrid methods. The paper gives a good overview over these meth-
ods, and gives examples on how these methods are used in the literature. Even though most
of the examples are about predicting the spot market, they are also valid for the intraday
market. The five approaches are as follows:

• Multi-agent methods: Focuses on the participants in the market, how they interact and
how equilibrium between supply and demand is reached.
• Fundamental methods: Uses relations between fundamental drivers to find the price.
• Reduced-form methods: Replicates the statistical characteristics of the system, like for

example price movement with spikes and volatility.
• Statistical methods: Finds relations between previous prices and system variables and

uses it to predict the price.
• Computational intelligence: Uses machine-learning and -intelligence to solve problems

the traditional methods struggle with.

Intraday modelling for bidding problem

In this section we will present the price, volume and bidding models used in the reviewed
intraday bidding and production planning models. What most of the optimization models
have in common is that they use stochastic price processes. The models of Faria and Fleten
[3]), Aïd et al. [38], Bovim and Naess [6] and Akersveen and Graabak [5]models the price
either as ARMAX processes, Brownian motions or Markov processes. The only optimization



Chapter 2: Background 8

model that do not use a stochastic price process is the model of Engmark and Sandven [4].
They instead use the historical intraday premium to volume data to make price scenarios.

When it comes to the volume and bid acceptance, the models also differ. In some of
the models, only the price is modelled and the volume a participant bids into the market
will be accepted and will only be restrained by the resource and cost problems of the full
models. This is the case for [6, 38]. [4, 5] on the other hand, have some sort of acceptance
rate which gives the chance of the bid being accepted, while [3] restrict the volume as a
percentage of the capacity of the plant. [4, 5] also models the price as an order book, where
the participants can bid at different price levels.

The second type of models that have been reviewed have very different price models, and
these papers all uses simulations instead of optimization. The first model, Dideriksen et al.
[8], simulates through each new arrival of orders in the intraday order books. At each point
in time it uses the marginal cost curve of the hydropower plant to decide what orders to
accept. They found profits of 2 % compared to only considering the day-ahead market. The
two last models uses fundamentals combined with statistics or machine learning to predict
the price. Koch [9] uses linear regression to predict the balancing market from information
in the power system. They use for example the time of day and wind forecast deviations,
and if the predicted balancing market price is worse than some prices in the order book,
these orders are accepted. The last model, Bertrand and Papavasiliou [10], uses machine
learning to make decisions about what orders to accept in a point in time from the order
books of the different production hours. Variables for the machine learning are the storage
level, time to closure and flexibility of the market from the dayahead curve.

The use of fundamental drivers, statistics and intelligent price prediction methods, is also
something that has been seen more in general intraday market analysis in recent years. With
higher amounts of intermittent power in the system, the dynamics of these sources might
start to dominate the market - a market that previously had low liquidity and was hard to
predict due to the nature of unforeseen power events. The development presented below
supports the inclusion of fundamentals into the price processes of optimization models.

Intraday modelling based on fundamental drivers

The goal of this section is to cover the development in the field of intraday modelling. The
literature only covers price modelling, so modelling of the intraday volume is identified as
a huge gap in the literature. The section will cover how fundamental drivers together with
statistics and computational intelligence is used to describe or predict the intraday price.
What parameters and exogenous variables that are used in the different methods, will also
be mentioned. Only the intraday part of the papers presented are mentioned in this section.
Shinde and Amelin [39], which gives an overview of the intraday market, points to many
of the papers mentioned below.

The first fundamental models looks at the volume weighted intraday price or premium
of each production hour and tries to describe it using some sort of regression models. The
simplest models doing this are Hagemann [11], Kiesel and Paraschiv [12], Karanfil and Li
[13], Soysal et al. [14], Ziel [15] and Hu et al. [16]. These models often uses present and
previous/lagged market or exogenous variables to describe the intraday price. Using pre-
vious intraday price information to predict the future intraday price makes most of them
autoregressive models. The exogenous variables they use are often the demand, and actual
and forecasted production from different sources. The analysis is often evaluating the coef-
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ficients the regression model gives for each variable to find the impact the variable has on
the intraday price. One example of such a model is Hu et al. [16]. They analyse how the
wind, non-wind and load forecast errors, together with outages and intraday transmission
capacity impacts the intraday price premium in the Swedish market areas. The key findings
in this paper is that the wind forecast error impacts the premium, and that the unplanned
power plant outages does not. Berger et al. [17] also uses a similar model to the previous
ones, but instead of evaluating the coefficients of the regression variables, they evaluate the
regression model performance on an out-of-sample dataset in terms of mean squared error.
The authors highlights the changes in demand and onshore wind infeed as intraday price
drivers in the German intraday market.

Another type of papers builds price prediction models with different types of methods
and fundamental variables. These papers often uses more complex methods, with prepro-
cessing, variable selection, out-of-sample testing, ensemble methods and comparing the
results with benchmark forecasting methods. The first two papers, Monteiro et al. [40] and
Andrade et al. [18], are on the Iberian intraday market which at the time had 6 intraday
auctions throughout the day. They respectively use machine learning and regression, and
for each auction they forecasts prices for all open products. Their key findings are that the
best intraday price prediction models only used previous day-ahead and intraday prices
as variables. This is interesting considering they included variables that other studies have
found to be price explanatory, like actual generation for different sources, demand and
weather, and their forecasts. Janke and Steinke [20], which forecasts the volume weighted
price distribution for the German market using quantile regression and neural networks,
also found the neighbouring prices to be the best variables. This is in contrast to the Lasso
regression model of Marcjasz et al. [41] for the German intraday market and the deep
learning methods of the next papers. They all use several exogenous variables in their best
models. Kolberg and Waage [19] compares different forecasting methods on the Swedish
intraday market. They use images of weather forecasts, day-ahead, intraday and regulat-
ing prices, transmission capacities, urgent market messages and time dummies. The deep
learning methods in this paper outperforms the other methods and the benchmark model
by 12-25%, but a breakdown of the most important variables was not given. Other papers
where the deep learning models performs the best are Oksuz and Ugurlu [21] and Scholz
et al. [22], which are for the Turkish and German intraday markets. The last model we will
mention is the unique model of Kulakov and Ziel [42] as it shows the importance of renew-
able energy in the intraday market. This model shifts the day-ahead market curve based
on wind and solar forecast errors to get the intraday price. This was done for the German
market and it outperformed the regression benchmark models in the paper.

Other details that are relevant for the choices made in this thesis will be mentioned
below. Firstly most of the papers on continuous intraday markets predicts one volume
weighted price per product. Either for the whole product [21] or for the X last hours of
each product [19, 20, 41]. The benefit of only predicting the last hours of a product is that
one can use previous prices from the day in the prediction. This is done by [19, 20, 22, 41].
Differently from the other models, [22] models quarter-hourly intervals of the last 4 hours
before production. It is also the only model that inputs times series of the previous develop-
ment of the product before predicting it, that uses order book data, and that uses frequently
updated wind production forecasts instead of the day-ahead forecast. A last detail is that
[21] finds that predicting the difference between the spot price and intraday price gives
much better results than directly forecasting the intraday price. That approach is therefore
used in this thesis.



Chapter 2: Background 10

Generally in these papers, the order of worst to best performance in terms of mean
squared error or mean average error, are regression methods and then different machine
learning methods. The order of the machine learning methods are random forest and gradi-
ent boosting, simpler neural networks like multi-layer perceptrons, and at last recurrent
neural networks like long short-term memory or gated recurrent unit. The reason why the
recurrent neural networks performs the best is that they can directly model the temporal
structure of the data, which is important for time series data. This indicates that the dynam-
ics in the intraday market are very complex, and that non-linear and intelligent methods are
needed to more accurately predict it. In this thesis machine learning will therefore be used
for the intraday market forecasting, but modelling the temporal structure will be left for
future work. Out of the variables discussed, the day-ahead price, wind power production
and congestion variables will be used in this thesis to predict the intraday market.



Chapter 3

Bidding problem

This section will describe the framework and modelling choices made for the hydropower
producer participating in the power markets.

3.1 Market modelling

This thesis will model a hydropower producer that controls one power plant and that par-
ticipates in the day-ahead and intraday market. Each day will be modelled independently,
which means that we ignore the fact that markets between the days are constantly over-
lapping. The model first finds the spot commitments day-ahead and uses this as a starting
point for trading in the intraday market. The balancing market is ignored to reduce the
modelling complexity, so the hydropower producer has to cover its potential imbalances
before the intraday market closes (more on risk in section 3.3.2). One strength of the as-
sumption of excluding the balancing market is that the hydropower producer usually does
not need balancing services. Except for unexpected downtime, it does not have imbalances
incur after the close of the intraday market, like a wind producer would. The weakness
however, is that the hydropower producer would like to offer balancing services in the bal-
ancing markets. This is especially the case for the Norwegian market, where at the moment
there is more liquidity in the balancing markets than in the intraday market (see table 2.1).
Regardless, modelling of all markets would be needed to find out what the best trading
strategy over different markets is, but that is out of the scope of this thesis.

3.2 Day-ahead model

To be able to model the intraday market, the hydropower producer needs to have a starting
point of commitments decided in the day-ahead market. The specialization project [1] used
the actual/historical production as a starting point for the intraday market. The problem
with this is that it includes the scheduling decisions happening after the spot market trading.
The modelled hydropower plant is also part of the portofolio of Trønderenergi, so other
power plants could impact the dispatch decisions. The day-ahead model chosen for this
thesis finds the spot commitments assuming the hydropower producer has perfect foresight

11
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and therefore bids perfectly in the spot market, not considering the post-spot markets. The
prices are fixed to the actual spot prices that occurred in the market and the model only
decide on the sold volume for each hourly product. The first benefit of this is that the
spot commitments now only are decided based on the modelled power plant and the spot
market. The second benefit is that one can use the same hydropower modelling for both the
spot and intraday models, so the dispatch decisions are based on the same information in
both markets. A last benefit is that the intraday profit is no longer affected by the accuracy
of the spot market bidding of the power producer. In reality, a part of the intraday profit
could be from adjusting non-optimal spot commitments, so that aspect is ignored in this
thesis.

See the day-ahead model objective function 3.1. It optimizes the revenue from selling
power at different hourly products m ∈ M = {0, 23} of the next day. It also optimizes the
water value of the reservoir at the end of the day and minimizes the startup costs of the
production unit throughout the day. Trading costs at Nord Pool are not included in the
modelling. The full spot market model can be found in appendix B.2, and the notation in
appendix B.1. The general modelling choices and notation is the same as for the intraday
market, so this will be covered in the section about the intraday modelling.

max z =
∑

m∈M

PriceDA
m pm +Watervalue ∗ rm=23 −

∑

m∈M star tup

C star tupam (3.1)

3.3 Intraday model

The intraday bidding problem in this thesis integrates the use of the historical/real order
book, forecasting, and production planning into an optimization and simulation framework.
This combination is inspired by the models presented in the literature review that combines
some of these elements, but as far as we know this work is the first attempt at combining
all of them. Simulating through the real order book uses the actual prices in the market
and gives a more realistic representation of the continuous intraday structure - forecasting
should improve the bidding decisions - and an optimization framework should handle the
temporal structure and the combination of the resource problem, intraday bidding and
forecasting well.

With the continuously changing order books towards production and the uncertainty of
the market development and inflow, the intraday bidding problem is a multi-stage stochastic
programming (MSP) problem. The hydropower producer all throughout the day has to eval-
uate if the production schedule can be optimized by accepting orders that are in the order
book now, or wait for better orders later. It also has to consider arbitrage opportunities.
As the water in the reservoir and the production capacity are limited resources, accepted
orders will impact the trading one can do later. The scheduling decisions also have to be
made under the uncertainty of the market development and the inflow. In this thesis only
the intraday market has uncertainty, while the inflow is modelled deterministically with the
actual/historical inflows.

When wanting to bid in the real-time order book and using updated forecasts throughout
the day, the full intraday bidding problem cannot be solved by running the MSP once. There-
fore, this thesis uses a rolling horizon approach to solve a sequence of two-stage stochastic
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mixed integer programming (TSMIP) problems. The first stage of the TSMIP is to decide
what orders to accept from the real-time order book, the trading opportunity at an exact
moment, and the second stage is to decide what orders to accept from the forecasted or-
der book scenarios, which should represent the trading opportunities for a product for the
rest of the day until the product closes. The rolling horizon approach simulates through
the intraday market in 32 hourly steps, from 14:00 day-ahead when the market opens, to
22:00 day-of, which is the last trading opportunity. At each hourly step of the rolling horizon
approach, the model is fed the latest market data (real-time and forecasted order books),
and the updated resource variables (previous commitments and initial reservoir for the first
production hour) that depends on decisions taken earlier in the market. Then the TSMIP
model is solved, before this procedure is repeated. A big difference between this modelling
and the previous optimization models [4–6] is that we separate between the realized (real
order book) and forecasted price(forecasted order book), whereas they used a price model
to represent different market scenarios. Separating between realized and forecasted price
was done before by the intraday simulation model of Koch [9].

Figure 3.1 shows a diagram of the different steps of the day-ahead and intraday bidding
models, and the information flow between the models. Disregarding the general hydro-
power modeling, the only information the day-ahead model needs is the reservoir level
from the day before, the spot market information, the deterministic inflow and the daily
constant watervalue. After solving the problem it will send the decided commitments, and
the reservoir level from the day before as inputs to the intraday model. Then the intraday
model, the TSMIP, will be solved based on the initial spot commitments, initial reservoir
and real-time and forecasted order books for the hour 14:00-15:00 day-ahead. The accep-
ted orders from the real-time order book will be added to the spot commitments, and the
rolling horizon will go to the next step which is 15:00-16:00 day-ahead to solve the new
bidding problem. This procedure will continue until all intraday products are closed. The
initial reservoir, which is for the first product/production hour, is only hourly updated as
products start to close, which is after the hour 22:00-23:00 day-ahead. The bidding model
only needs the initial reservoir since it calculates the reservoir development for the rest of
the hours inside the TSMIP.

Figure 3.1: Market modelling of the day-ahead and intraday models with inputs and outputs.

Assume the model is at an arbitrary time between 14:00 day-ahead and 22:00 day-of
production, which is the opening time of the intraday market. Depending on the time, the
model can trade in all products that have not closed yet. Trading in the real-time order
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book closes one hour before production, so trading in the forecasted order book should
close before this. If a product is about to close, there is no future trading opportunity. In this
thesis trading in forecasted order books therefore closes two hours before production, that is
one hour before the real-time order book closes. Figure 3.2 shows how the market changes
as the rolling horizon approach goes through the 32 hourly steps of the intraday market.
It shows what real-time and forecasted products are open to trade with at different times
during the day. For example during the hour 14 day-ahead one can trade in all products in
the real-time and forecasted order books. And during the last hour of the market, hour 21
day-of, one can only trade in the product 23 in the real-time order book as all other real-
time products have closed and there is no future trading opportunities. The initial reservoir
is from the hour before the first open real-time product of the time step.

Figure 3.2: Example illustrative of the products one can bid in for some time steps.

The following sections will present the details of the general TSMIP modelling for an
arbitrary time-step of the intraday market. The last sections are on the real-time order book
modelling and on the different bidding models used in this thesis.

3.3.1 General intraday modelling

The hydropower producer is assumed to be a price taker in the bidding problem, so it can
only accept orders that are already in the order book. Not being able to place orders for
others to accept, loses some trading opportunities, but it simplifies the modelling a lot. It
is also assumed that accepted orders will not impact how the market develops, they will
only be removed from the order book. This assumption would be valid for small trades in a
liquid market, but since the intraday market of NO3 lacks liquidity at certain times this is an
important simplification. Together, these assumptions avoids realistic but complex market
mechanics and makes it possible to use the historical/real-time order book without having
to build a complicated order book/market model with it.

The goal of the TSMIP is to trade and optimize the production schedule so that the re-
source use of water is as good as possible at the end of the day. This includes the revenue
from intraday trading in the real-time order books, the value of the reservoir at the end
of the day and the costs of ramping up production from zero between production hours.
Equations 3.2, 3.3 and 3.4 shows the objective function of the bidding problem at an ar-
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bitrary time step during the intraday market. The part 3.2 is the revenue from accepting
orders in the real-time order book. The model can decide how much volume v it wants to
accept at the price of the order Price, from the different buy or sell orders in the market.
The summation is over all open hourly products M , and all orders O. This thesis assumes
no intraday trading costs. The part 3.3 shows the revenue from accepting orders in the
forecasted order book for open products M pred , while 3.4 is the value of the reservoir at the
end of the day minus the startup costs of the generator throughout the day. The parts 3.3
and 3.4 are summed up over all the forecasted intraday scenarios S with the probability ρ.
A more thorough explanation of the notation can be found in appendix B.1. The scenario
generation for the forecasted order books is explained in chapter 4.

max z =
∑

m∈M

(
∑

o∈Obuy,real
m

Pricebuy,real
mo vbuy,real

mo −
∑

o∈Osel l,real
m

Pricesel l,real
mo vsel l,real

mo ) (3.2)

+
∑

s∈S

ρ(
∑

m∈M pred

(
∑

o∈Obuy,pred
sm

Pricebuy,pred
smo vbuy,pred

smo −
∑

o∈Osel l,pred
sm

Pricesel l,pred
smo vsel l,pred

smo ) (3.3)

+Watervalue ∗ rs,m=23 −
∑

m∈M star tup

C star tupasm) (3.4)

Each order in both the real-time and predicted order books is represented in the model
with a volume parameter and a volume variable. The variable v is the amount our model
accepts from the order, while the parameter V gives the actual volume of the order. This is
handled in the restrictions 3.5, 3.6, 3.7 and 3.8.

0≤ vbuy,real
mo ≤ V buy,real

mo ∀ m ∈ M , o ∈ Obuy,real
m (3.5)

0≤ vsel l,real
mo ≤ V sel l,real

mo ∀ m ∈ M , o ∈ Osel l,real
m (3.6)

0≤ vbuy,pred
smo ≤ V buy,pred

smo ∀ s ∈ S, m ∈ M , o ∈ Obuy,pred
sm (3.7)

0≤ vsel l,pred
smo ≤ V sel l,pred

smo ∀ s ∈ S, m ∈ M , o ∈ Osel l,pred
sm (3.8)

3.3.2 General hydropower modelling

In this section the hydropower modelling will be presented. The problem consist of one
reservoir and one production unit. Most of the hydropower restrictions are for all products
M and for all scenarios S. See Appendix B.1 for the explained notation. The hydropower
modelling is kept the same as in the specialization project [1]. Therefore, that work with
some small changes is presented below.

The hydropower model is connected to the bid model via the restriction that consist of
3.9 and 3.10, which states that for each scenario and product/production hour, the model
has to produce the same amount of power that it has committed to in the spot and intraday
market. The commitments consist of the previous commitments V ini t ial , and the accepted
orders from the real-time and predicted order books. Restriction 3.11 is a special case for
the products that are still open, but that the model does not predict since the products are
about to close. As shown in restriction 3.11 and figure 3.2, bidding in forecasted order books
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of products start to close at t = 8, which is the hour 22:00-23:00. Because of the possibility
of negative prices in the markets, the production have to equal the commitments, instead
of being greater than.

psm = V ini t ial
m +
∑

o∈Obuy,real
m

vbuy,real
mo −
∑

o∈Osel l,real
m

vsel l,real
mo (3.9)

+
∑

o∈Obuy,pred
m

vbuy,pred
smo −
∑

o∈Osel l,pred
m

vsel l,pred
smo ∀ s ∈ S, m ∈ M pred (3.10)

i f t > 7 : psm = V ini t ial
m +
∑

o∈Obuy,real
m

vbuy,real
mo −
∑

o∈Osel l,real
m

vsel l,real
mo ∀ s ∈ S, m= t − 8 (3.11)

The restrictions represented by 3.9, 3.10 and 3.11 also lets the hydropower producer
speculate in the intraday market. The production bounds presented later in equation 3.15
limits the production between 0 and the maximum production capacity. For equation 3.11,
which represents the last hour of trading for a product, this means that the commitments
have to be inside the production capacity. But for the restriction represented by 3.9 and
3.10 the model can commit to higher or lower production capacity as long as it expects
to cover these positions later in the intraday market. This is represented by trading in the
forecasted order books. Even though hydropower producers are generally risk-averse and
would likely not take this risk in the real world, this is a wanted behaviour when testing
a forecasting method. A bad forecasting method will make the model accept orders that it
will have to cover later at worse prices, and we do not want the production capacitity of
the generator to reduce the impact and visibility of this behaviour.

Kong et al. [23] presents the following equation that shows that production is a product
of gravity, generator and turbine efficiency, net head and discharge : p = G ∗ ηgen(p) ∗
ηtur b(hnet , q) ∗ hnet ∗ q. Also the net head is a complex function of the gross head minus
the main head losses, which are the penstock/main tunnel, canal intake and tailrace head
losses. The non-linearitiess makes this modelling clearly too complex for an optimization
model. This is why it is common to model this relation with a piece-wise linear approxima-
tion of the production to discharge (PQ) curve. This can be for different or for a fixed head
level. This thesis will do the latter to keep the restrictions linear.

The PQ-curve goes from Qmin and Pmin to Qmax and Pmax . The area between 0 and Qmin is
infeasible for production. In the modelling this is handled with a binary variable, u, called
the production status that keeps the production and discharge either at 0 or inside the
PQ-curve. Constraints 3.12 shows that the discharge is a sum of the minimum possible
discharge times the production status, the sum of the discharge segments in the PQ curve
and the spillage. Each discharge segment has a maximum value that constrains it, as can
be seen in constraint 3.13. This thesis models the PQ-curve with 10 discharge segments.

um ∗Qmin +
∑

j∈J

qsegment
smj + qspil lage

sm = qsm ∀ s ∈ S, m ∈ M (3.12)

0≤ qsegment
smj ≤Qsegment,max

j ∀ s ∈ S, m ∈ M (3.13)

Constraint 3.14 models the production as a sum of the minimum possible production
times the production status and the sum of the discharge segments times their equivalent



Chapter 3: Bidding problem 17

PQ-efficiencies ε. Constraint 3.15 shows that the production is bounded by the minimum
and maximum possible production times the production status. The production status in
this thesis has been chosen to be the same regardless of the scenario.

um ∗ Pmin +
∑

j∈J

ε j ∗ qsegment
smj = psm ∀ s ∈ S, m ∈ M (3.14)

Pmin ∗ um ≤ psm ≤ Pmax ∗ um ∀ s ∈ S, m ∈ M (3.15)

The reservoir balance modelling is given by constraint 3.16. The reservoir volume is
determined by the reservoir volume in the previous hour, the deterministic inflow and the
discharge. The discharge and inflow, which are in m3/s, are transformed to the hourly
discharge format of the reservoir. Constraint 3.17 initialises the reservoir balance with the
reservoir volume of the hour before the first open product. In reality, when bidding day-
ahead, there are still intraday markets open for the previous day, which means that the
initial reservoir is not final. This is a consequence of the overlapping of the intraday days
that we model separately. This thesis assumes that the first initial reservoir is known and
we initialise it from the historical reservoir. In addition the reservoir is restricted by a lower
and upper bounds as seen in 3.18.

rsm = rs,m−1 + F ∗ L ∗ (Im − qsm) ∀ s ∈ S, m ∈ M res (3.16)

rsm = Rini t ial ∀ s ∈ S, m= max(t-8, 0)− 1 (3.17)

Rmin ≤ rsm ≤ Rmax ∀ s ∈ S, m ∈ M (3.18)

The reservoir volume of the final product is also represented in the objective function
3.4. Timed with the watervalue it gives the final value of the reservoir. An important sim-
plification here is the constant water value of the reservoir throughout the day. This is only
a valid simplification for medium and large reservoirs. The reservoir for our case study is
small/medium so the use of water value cuts would improve this modelling, but also make
the problem more complex and time consuming. Another detail is that water time delays
are not represented as the model only consists of one reservoir and one production unit.

Hydropower plants have relatively low start up/shut-down cost compared with many
other power generating technologies. However, it is still important to include these costs
in the model, since the wear and tear of the generator should be accounted for to reduce
unnecessary and costly production changes. The startup cost is assumed to be 150 =C and
the binary startup variable a is connected to the production status by constraint 3.19. Since
we do not want the model to take advantage of the fact that the horizon is one day at a
time, the startup cost is coupled to the previous day or product, and to the next day. For
this to be possible, restriction 3.20 and 3.21 initialises the production statuses. The start-up
costs are also included in the objective function 3.4.

am ≥ um − um−1 ∀ m ∈ M star tup (3.19)

um = U ini t ial ∀ m= max(t-8, 0)− 1 (3.20)

um = U last ∀ m= 23+ 1 (3.21)
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3.3.3 Real-time order book

As the real-time order book is continuous, it has to be discretized to fit the hourly modelling
above. What was done in the specialization project [1] is to take a snapshot of the order
book at minute 55 of every hour. This is pessimistic modelling of the intraday market as
many good orders will not be available exactly when the snapshot was taken. Only parts of
the intraday opportunities is therefore represented. This is a problem since the forecasting
is done for the whole market and becomes much more optimistic than the trading oppor-
tunities in the real-time order book. This leads to the model trading based on forecasted
prices that will not materialise in the pessimistic real-time order book, which can lead to
non-optimal trades. This snapshot model will be used for the analysis in section 5.3.1 to
find the realistic benefit of intraday trading, but is not the main model of this thesis. It has
all the mathematical elements presented in the sections above.

In this thesis optimistic modelling of the real-time order book was implemented. The
concept is to aggregate all orders during the hour and letting the bidding model choose
from all of them. This gives too unrealistic intraday profits because of arbitrage, so we add
a condition that forces the model to either just accept buy orders or just accept sell orders for
each product. This reduces the arbitrage possibilities, but the benefit of intraday trading will
still be exaggerated. The reason for this is that the bidding model can choose or arbitrage
between orders that was not available at the same time. The benefit of this modelling is that
the forecast now is pessimistic compared to the exaggerated real-time order book, so it will
not overestimate the future trading opportunities. Besides the exaggerated benefits, another
downside is that it adds the restrictions 3.22, 3.23 and 3.24 and more binary variables to
the problem, buying and sel l ing. Restriction 3.22 sets buying to 1 if the model is buying
from a product m, while restriction 3.23 does the same for selling. Restriction 3.24 limits
the possibility to only do one of them. The constant 1000 MW is chosen high enough over
the production capacity of 37 MW, so that it does not affect the models ability to speculate
as described in section 3.3.1.

∑

o∈Obuy,real
m

vbuy,real
mo ≤ buyingm ∗ 1000 ∀ m ∈ M (3.22)

∑

o∈Osel l,real
m

vsel l,real
mo ≤ sel l ingm ∗ 1000 ∀ m ∈ M (3.23)

buyingm + sel l ingm ≤ 1 ∀ m ∈ M (3.24)

Another order book assumption is that all orders are collected as single orders even if
they are part of more complex order types. Block orders are possible to differentiate from
single orders, so it would be possible in future work to either remove them or model block
orders properly. The latter could add unnecessary complexity to the problem. Other types
of orders are not possible to differentiate from single orders in our raw order book data.

Another detail that could impact the results is the updating of orders. Orders can either
be updated when they are partly accepted or when the bidder wants to change the price or
volume of their order. When aggregating for a whole hour, this can lead to several versions
of the same order. This thesis chooses to use the first order if this is the case and delete the
others. This is possible to do since changed orders most often have the same order ID. Some
market participants uses different order IDs when changing orders, thus the aggregation can
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not identify that some orders are just different versions of each other. Then all the versions
of the same orders are kept. Changed orders is not an issue when using snapshots.

3.3.4 Different intraday bidding models

This section will give a short summary of the variations of the TSMIP intraday bidding
models that will be used in this thesis.

The main model is the intraday bidding model with the hourly aggregated order book,
and restrictions to only buy or sell described in section 3.3.3. It consist of all of the math-
ematical equation presented in the sections above. The next model is the bidding model
that uses hourly snapshot. It consist of all of the mathematical equation presented in the
sections above, except for the equations 3.22, 3.23 and 3.24. The main difference between
the snapshot and aggregation model is how the raw order book data is processed.

These two models can also be run without forecasting. Then the amount of scenarios
is set to one, and the elements regarding the forecasted order books are removed. The
mathematical elements removed are 3.3, 3.7, 3.8 and 3.10. The last model variation is to
run the two models without forecasting at a higher frequency than hourly. The TSMIP stays
exactly the same, but the modelling framework slightly changes from what is presented in
figure 3.1. If for example the bidding model is run frequently using new snapshots every
minute, the accepted orders will be added to the initial commitments between every model
run. However, the initial reservoir will still be updated as described in figure 3.1, which is
hourly when markets are closing.
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Forecasting

This section will present the forecasting methodology used to generate the forecasted order
books. First the general concept and motivation is presented before the modelling steps of
the forecasting is covered.

4.1 Concept and motivation

In the forecasting, the trading opportunities in the order books will be represented by the
actual trades that happened in the market(Elbas ticker data [43]). The continuous order
book data will therefore not be used in the forecasting. Representing the trading opportun-
ities in the order books with the actual trades in the market is a simplification for several
reasons. One of them is that the hydropower producer is a price taker in this thesis, so all
the trades in the ticker data will not be available when the hydropower producer is trading
in the order book data. The intraday market forecasts will therefore be more optimistic than
the trading opportunities in the full continuous order book data. However, the forecasted
intraday market will still be less optimistic that the order book modelling chosen in section
3.3.3.

The general forecasting concept in this thesis is to predict the daily volume and volume
weighted price for each open product, and then adjust the volume based on how much
time has passed in the intraday market. This is done for the trades where NO3 is buying
and selling to get one buy order and one sell order per product. This gives a model that
can be used regardless of the time step of the intraday market the model is in. Predicting
one order (only volume weighted price over period) per product per day is what is done in
most of the forecasting literature in section 2.3.2. Choosing a similar concept for this thesis
makes it possible to use the same methods as those used in the forecasting literature. The
only differences are that the forecasting has to be done for buying and selling, and for the
price and volume, which is new in this thesis.

The motivation for forecasting two-sided trading opportunities comes from the analysis
of the ticker data for NO3 in appendix A. It shows that NO3 mostly trades with other bidding
zones and that NO3 both buys and sells at better prices than the spot price of NO3. This
means that different trading opportunities can appear in different bidding zones at the same
time, which would not be possible to represent with one price and one volume. Also some
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market situations could lead to volatility and therefore arbitrage opportunities during the
day. Another reason is that some variables, like transmission capacity from Germany to
NO3 is only relevant for the buying opportunities of NO3, while the transmission capacity
from NO3 to Germany is only relevant for NO3 selling. A more complex version of this
was attempted in the specialization project [1], where one buy order and one sell order
per product was forecasted for each bidding zone and put into the forecasted order book.
This was unsuccessful probably because the bidding zones were forecasted independently
of each other in the stochastic scenarios.

4.2 Modelling steps

Forecasting consists of many steps including variable selection, preprocessing of the data,
choosing and training the forecasting method, and at last use of the final model in a fore-
casting setting. This section will present the steps used to develop the forecasting model in
this thesis.

4.2.1 Data and feature engineering

A forecasting model is built by finding relations between inputs and outputs in historical
data. The model is then used to forecast the output for a known input. In this thesis, the
inputs are the spot price and the fundamental market drivers, while the outputs are the
daily volumes and volume weighted prices of intraday products. Table 4.1 is a summary of
the data sets used in the forecasting model.

Data set Source Resolution Assumed available
Elbas ticker data Nord Pool [43] Continuous Continuosly
Spot prices ENTSOE [44] Hourly Before IDM opens
Initial intraday capacity ENTSOE [45] Hourly 14:00 Day-ahead
Day-ahead wind forecast SKM Market Predictor Hourly 12:00 Day-ahead
Day-ahead wind forecast ENTSOE [46] Hourly 18:00 Day-ahead
Intraday wind forecast ENTSOE [46] Hourly 08:00 Day of production
Wind production ENTSOE [47] Hourly After production hour

Table 4.1: Market data used in the prediction model.

Outputs: Intraday variables NO3: Buy and sell volume [MWh], trade occurrence
[binary], and premium [€/MWh]

The Elbas ticker data from Nord Pool is filtered to keep the trades where NO3 is one of
the participants. One data set is made for when NO3 is the buyer and one where NO3 is the
seller in the trades. The trades in each data set are then aggregated for each production hour
so that one is left with a total volume and a volume weighted price for each product. Then
the buy and sell intraday price premiums, premium= priceI D− pricespot

NO3, are found using
the volume weighted intraday prices and the NO3 day-ahead price for each production hour.
The premiums are used to isolate the price deviations in the intraday market from the initial
spot price in NO3. This approach was used successfully by Oksuz and Ugurlu [21], which
found modelling the premium around the spot price gave better results than modelling the
intraday price directly. Preliminary tests in this thesis came to the same conclusion. When
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the buy and sell premiums have been predicted, they will just be added to the spot price to
represent the buy and sell intraday prices.

As the intraday market for NO3 lacks liquidity, there are many products with 0 total
volume. A challenge is therefore to represent this structure in the forecast. The approach
that works the best is to separate the volume into two parts. The first element is the oc-
currence of a trade, which is set to 0 if no trades happened for a product, and to 1 if one
or more trades happened. When predicting the occurrence one will get a value between 0
and 1, and by using this as a probability one can generate a random number to say if the
value should be 1 or 0. The second element is predicting the volume if there is an event,
which is the same approach as for the premium. The input data to this model is therefore
all products in the historical data with trading volume other than zero. On the other hand,
the input to the occurrence model is all historical products in the dataset, since it here is
also relevant with products without trades.

In total there is therefore 2*3=6 forecasting models to predict the intraday market. For
the buy and sell order separately, for premiums, volumes and occurrence of trades/volumes.
If volume*occurrence is other than 0, the order is kept and will be used in the forecast.

Inputs: Fundamental market drivers in 4 key bidding zones: Wind production, wind
production forecast error, spot premium and intraday capacity

The analysis in appendix A found that NO3 mostly trades with other price areas. We
therefore assume that variables from other bidding zones are the most important for de-
scribing the trading opportunities of a hydropower producer in NO3. Variables from the 4
most profitable areas to trade with are chosen, which are Germany, DK1, SE3 and Finland
(see A). The reason why other studies have not taken this approach is that they generally
have studied bigger and more liquid markets with less flexibility than NO3.

The first variables chosen are wind related. Relations between the intraday market and
the wind production have by numerous studies been found to be price explanatory [11–13,
15–17]. We therefore use the hourly wind production and forecast errors as variables in
the prediction model. The hourly wind production for a bidding zone can be used directly
from the data source. The wind forecast error however, er rorarea = F DA

area− Parea, is the day-
ahead wind production forecast minus the actual wind production. These are the elements
used when analysing the historical data to find the relations. Differently, when predicting
future market prices and volumes, the actual hourly production is not known, so it has to
be substituted with the latest wind production forecast. We have wind production forecasts
from the day-ahead at 12:00 and 18:00, and intraday at 08:00. These are used to interpolate
what the forecast would have been at a given time step of the intraday market. For hours
after 08:00 intraday, the wind production forecast from 08:00 is used. The assumption is
that the intraday market forecast should become more accurate as more accurate wind
production forecasts closer to the production hours are being used. It is also convenient
that most of the trades happens close to the production hour(see section 4.2.2), when the
wind forecasts are more accurate. This will be tested by comparing intraday bidding results
when using the first forecast of the day, updated forecasts every hourly time step, or the
actual production (see section 5.3.4). Frequently updated wind forecasts have been used by
[22] before, while other forecasting papers used the day-ahead wind forecasts [18, 20, 21,
40–42] in the prediction. In addition to yearly growth, the wind production data in table
4.1 shows strong seasonality. These are both factors that could impact the performance of
the forecasting model.
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The next variables are related to congestion between NO3 and the bidding zones chosen,
and are assumed known before the intraday market opens. The spot premium, can be de-
scribed by spot_premiumarea = pricespot

area − pricespot
NO3. The assumption is that since NO3

trades with different price areas, the intraday price premiums should be connected to the
spot price of these bidding zones. Since the spot premium between bidding zones is also
an indication of the level of congestion in the system, there could also be complex relations
between the spot premiums and the expected trading volume. The spot premium has not
been used before in the intraday literature because other studies have been less interested
in variables from other bidding zones than the one they study.

The second congestion variable is the initial intraday capacity between NO3 and the
bidding zone. This is the excess capacity not used in day-ahead market, and should also in-
dicate a level of congestion that could be connected to the intraday premiums and trading
volumes. To get the initial intraday capacity between two areas, routes are made connect-
ing several border capacities together. The route with the highest capacity could be found
using optimization, but in this thesis it is found manually. For each bidding zone, several
likely routes are chosen, the maximum capacity of each route is calculated and the highest
capacity from this is kept. One example: If the capacity from NO3 to SE2 is 500 MW, and
the capacity from SE2 to SE3 is 300 MW, the capacity from NO3 to SE3 is 300 MW. If this
is the route with the highest capacity from NO3 to SE3, we use the capacity of this route.
The fundamental driver for NO3 buying is the capacity from the area to NO3, and the fun-
damental driver for NO3 selling is the capacity from NO3 to the area. The initial intraday
capacities between borders have been used directly before by [16, 19].

In total this leads to 15 price and volume explanatory variables used in this thesis. 4
areas * 4 variables - 1. Data for the day-ahead wind forecast in Finland is not available, so
the wind forecast error for Finland can not be calculated. While the outputs are forecasted
separately, the 15 inputs covered in this section are the same for the premium, volume and
occurrence models.

The priority in this thesis was not to test as many price explanatory variables as possible,
so better variables than the ones chosen probably exist. Other variables that could have
been included based on findings in the literature review, are previous intraday prices [18,
20, 40] and load information [14, 16, 17]. Intraday prices from previous days is somewhat
already represented by the day-head price, intraday trades from the same product are hard
to include in our general modelling framework, and load information is less interesting
since we do not have updated load forecasts throughout the day. In addition [21] used the
spot price to describe the premium, which is intuitive since there should be a link between
their order of magnitude, and [17, 19, 22, 41] used dummy calendar variables that should
identify daily, weekly or seasonal patterns. Future work could also include the analysis of
variables from more bidding zones that are less profitable to trade with, and more variables
from NO3 should definitely be tested.

4.2.2 Pre- and post-processing of data

Removing bad data

The first data processing step is to look through the data sets for inaccurate or missing
data. In this thesis, if that is the case, the production hour is removed from the data set.
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When running the bidding model, data from all hours/products of the day are needed.

Normalization

Regression and machine learning generally performs better when the input data is in
the same order of magnitude. Options are to normalize the data by rescaling it between the
values 0 and 1 or to standardize the data by rescaling it to have a mean of 0 and a standard
deviation of 1. The downsides of each method is that normalization is sensitive to outliers,
while standardization makes the assumption of a Gaussian distribution. Preliminary tests
found normalization to work best for the problem in this thesis, and is therefore used.

Volume adjustments

To reduce the number of input variables in the forecasting model, the hourly relations
are modelled outside of the forecasting model. The specialization project [1] found no clear
relations between the premium and the hour of day, but found that the total trading volume
of products coincided with the usual load patterns. This therefore has to be adjusted since
we do not want the forecasting model to predict high volumes during the night. This is
done by finding the average daily volume pattern in the historical data, and use it to make
the volumes independent of hour of day. Then, after the forecasting is done, the volume
forecasts are adjusted based on what hour of day they are for.

The second volume adjustment is based on how much time has passed in the intraday
market. We do not want to predict the full volume of a product just before the product closes.
Again the specialization project [1] found no important relations between the premiums
and the time left of trading for a product. For the volume it was found that the trading
volume increases towards delivery of the product. This pattern is found in the historical
data separately for buying and selling, and for every hourly product. See figure 4.1 for
the volume and premium relations to the trading time of the product 00:00-01:00. After
the forecast, the volume is adjusted based on these patterns. One example: We make a
prediction 4 hours before delivery for a product. The historical data says that, on average,
70 % of the volume is in the last 4 hours before delivery for this product. Therefore the
forecasted volume for this product is reduced by 30 %.

Figure 4.1: Empirical analysis of the relation between the intraday market and the trading time for daily product
0 (00:00-01:00). The market for this product opens at -10 (14:00) and closes at -1 (23:00). NO3 selling is orange,
and buying is blue. Elbas ticker data from 2018-06.2020.
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4.2.3 Train, validate and test

The standard way of testing a forecasting method is to split the available data into three in-
dependent data sets - training, validation and testing data. The training data is the historical
data the forecasting method will find relations between to build a forecasting model. The
concept is to avoid overfitting the prediction model to the training data by evaluating and
changing the model based on results for the validation data. When the prediction model is
final, the model can be evaluated on the testing data that is independent. This will also be
done for this thesis, where the training and validation data will be used to develop both the
forecasting and intraday bidding models and frameworks, while the testing data will only
be used as a final evaluation.

4.2.4 Forecasting methods

The goal of this thesis is to choose a forecasting method that can well describe the dynamics
in the intraday market, and that gives forecasts that works well in the intraday bidding
problem. The forecasting methods evaluated in this thesis are well covered in the intraday
forecasting literature, especially in [19, 21, 22].

Simple models are needed to compare against the main models chosen for this thesis.
The benchmark forecasting method for the intraday price is to predict the spot price, which
equates to predicting a zero premium, or to predict the average intraday premiums in the
historical data. For the volume, randomly sampled volumes from the historical data is used.
This is a very basic benchmark that the forecasting methods should be able to beat. Other
simple methods tested are simple linear regression and linear regression with least absolute
shrinkage and selection operator (LASSO). The latter uses regularization to avoid overfit-
ting and to only include the most relevant input variables. The tool used for these methods
are the scikit learn models with default parameters [48, 49].

The main model in this thesis is the machine learning method random forest regression
(RF). This method generates several random decision trees and uses ensemble learning to
choose the best "average" prediction from these trees. Also here the scikit learn tool with
default parameters is used [50]. In addition, the feature selection tool [51] of scikit learn
can be used to evaluate the importance of every variable in the random forest training.

The next model tested is the neural network method multi-layer perceptron (MLP). This
method has a neural network with non-linear transformation functions between the inputs
and the outputs of the model. The model chosen has two hidden layers with 15 (one per
variable) and 4 (one per bidding zone) neurons in each layer with relu activation. A struc-
ture with 30 and 8 neurons in the two hidden layers performed better, but the amount of
neurons is kept low to reduce the time use of the forecasting method. This model is built
with the module tensorflow keras sequential model [52], with the Adam or SGD optimizer,
the loss function mean squared error, batch sizes of 200, and a number of epochs/iterations
between 10 and 30. More complicated neural networks like recurrent neural networks were
evaluated in the preliminary testing, but they are not kept as they only performed a little
better, gave forecasts with similar characteristics and were notably slower than the MLP.
These are the recurrent neural networks long short-term memory (LSTM) and gated recur-
rent unit (GRU).
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The forecasting in this thesis is modelled as a regression problem where no temporal
structure of the data is taken advantage of. That is, even though we predict a time series
from time series data, the outputs are separate point forecasts based on single data points
from different variables. It could have been possible to indirectly include the temporal struc-
ture in all of the methods above by splitting up the time series and input them as independ-
ent variables. The recurrent neural networks are also able to use the temporal structure
directly, which is why these methods performs well in the literature [19, 21, 22] compared
to other methods. Temporal structures was not modelled in this thesis, either directly or
indirectly as it increases the number of variables and makes the forecasting more time con-
suming.

4.2.5 Scenario generation

The final step is to use the data and forecasting method for generating different intraday
market scenarios. Forecasting consists of first fitting the model to the previous historical
data and then use the model to predict a future intraday market scenario based on the
known input variables at the time. When a model has been fitted it will output the same
forecast for the same input variables, so a unique fitted model is therefore needed for every
scenario. In this thesis we randomly sample 20 % of the historical data that is before the
forecasting day, and use this to fit the forecasting model. This random sampling makes the
models and the resulting forecasts different from each other.

Ideally one would make new forecasting models for every hourly time step, so that the
latest historical data is included in the model. With a high number of scenarios, many hourly
time steps and fitting the data already being time consuming, simplifications have to be
made so that testing in this thesis can be done in a reasonable amount of time. A simpli-
fication that does not seem to impact the results too much, is implemented, which is to fit
the forecasting models of each scenario once a month. The downside is that on the last day
of the month, one will use a forecasting model that is not fitted based on data from the 30
last days. Forecasting of days early in the month are less impacted by this simplification as
they only lack data from the last couple of days.
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Case study

5.1 Research setting and data

The hydropower plant that will be used for the testing in this thesis is Søa [53], which is
owned by TrønderEnergi. The watercourse first goes through two regulated reservoirs with
a total of 67 mill m3, and then to a production unit with a capacity of 37 MW . One of the
simplifications made in this thesis is to merge the two reservoirs into one, which will only
change the accuracy of the reservoir development when the reservoirs are spilling. The data
needed for the hydropower plant is the production-discharge curve, the reservoir head level
to volume relations, the daily watervalues, and historical/actual inflows, reservoir levels
and production. The historical/actual data is used to initialize each day independently, and
also to check that our hydropower modelling behaves similarly to the historical data. The
hydropower plant is in the bidding zone NO3, so the market data used will be relevant for
this area. In addition to the data presented in forecasting section 4.2.1, data that describes
the full development of the intraday order books in NO3 is provided by TrønderEnergi.

As mentioned in the forecasting section 4.2.3, the data is split into training, validation
and testing data. The training data is chosen to be 2018 and 2019, the validation data
the first half of 2020 and the the independent testing data the second half of 2020. The
bidding model will be run for the validation and testing data. The reason for only running
the bidding problem in 2020 is because of data availability of order book data and wind
production forecasting data, so backtesting the bidding model all the way back to 2018
is not possible. A consideration to make when evaluating the results is that 2020 is an
abnormally wet year, which leads to average spot prices in NO3 of around 10 €/MWh,
while it is around 40€/MWh for the two previous years. Predicting the intraday market in
2020 based on data from 2018 and 2019, might therefore not give the most reliable results.
However, as the model moves into 2020, more and more data from 2020 will be used in
the training. Table 5.1 gives an overview of the average spot price, intraday premium and
volume for the days in each period.

NO3 spot [€] Buy prem [€] Sell prem [€] Buy vol [MW] Sell vol [MW]
Training 41.30 -2.60 1.08 9.1 15.1
Validation 12.20 -2.48 1.52 21.0 22.4
Testing 9.30 -1.44 2.00 11.0 13.3

Table 5.1: Average spot price, premium and volume for the training, validation and testing data.
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Production hours with bad or missing data is also removed. When fitting a forecasting
model for 02.01.2020, out of the 17520 hours in 2018-2019, 17295 hours can be used
for the buy and sell occurrence models, 5502 hours can be used for the buy premium and
volume models, and 7210 hours can used for the sell premium and volume models (see
section 4.2.1). Most of the production hours removed are because of NO3 not buying or
selling in the intraday market for those production hours. For the bidding model, whole days
have to be removed if data is missing. For the first half of 2020, 131 days is modelled, and
for the second half 125 days. Most of the days removed are days where the reservoir spills,
which is not modelled realistically in our model with aggregated reservoirs and no spillage
curve. Days where the reservoir development deviates too much from the historical data,
is therefore removed. Other reasons for removing days are summer-time shifts or missing
capacity, order book and wind forecast data.

The models are built with Python 3.8. The optimization problem is built with Pyomo 5.7
and solved with Gurobi 9.0.3. And the forecasting is done with scikit learn 0.23.2 or Keras
Tensorflow 2.3. The full models are also run with multiprocessing to reduce the time use.

5.2 Forecasting problems

The following section will present the tests related to the forecasting methods outside of
the bidding model. These tests are not independent from each other, and the result of one
test can be used to build the general forecasting and intraday bidding models used in the
other tests.

5.2.1 Forecasting methods

First we test how the different forecasting methods presented in section 4.2.4 perform in
terms of mean squared error between the average forecast and the historical data. Mean
squared error is chosen as it is used in most of the machine learning methods, which are
optimized for this loss function. Mean squared error compared to the mean absolute error
better handles big error values in the data sets. This forecast testing is only done for the
buy and sell premiums. The characteristics of the volumes, with low amount of occurrences,
makes the mean squared error less meaningful. Also, volume forecasting for the intraday
market is not done in the literature, so we would have nothing to compare the results to.
The volume forecasts will therefore be evaluated directly in the bidding model.

5.2.2 Variable selection

The second forecasting test is variable selection for the random forest tree regression method
- for the premium, volume and occurrence models. Preliminary testing on the validation
data finds that the forecasts of random forest regression performs the best for the bidding
model, and that variable selection is important. The feature selection tool [51] of scikit learn
with the estimator RandomForestRegressor, is therefore used to evaluate the importance of
each variable for the training data.
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5.3 Intraday bidding problems

The following section will present the tests that are run with the intraday bidding model.
The intraday bidding model consist of many different elements, and testing is needed to
see how the bidding model behaves for different modelling choices. These tests will be
used to decide on important modelling decisions for this thesis, and also to evaluate the
performance of the bidding model. The different bidding models used in the different tests
are briefly presented in section 3.3.4.

The intraday bidding models will be evaluated as done in the specialization project [1].
They will be evaluated based on the profits from participating in the intraday market, which
is a sum of the revenue from the intraday trades, the change in watervalue of the final reser-
voir and the change in startup-costs compared to only considering day-ahead commitments.
The profits are divided by the initial spot revenues to get a percentage benefit.

Bene f i t [%] =
Pro f i t

Ini t ial spot revenue
∗ 100

5.3.1 Order book

As discussed in section 3.3.3, the order book can be modelled in different ways. Part of the
case study will be to test how our modelling with aggregation and the restriction to only
buy or sell compares to the snapshot approach, and the approach that would give correct
results, which would be to run the the optimization model after each new order arrival. The
latter is of course not doable practically, but taking snapshots or aggregate every 15, 5 or
1 minute, and run the model at these time steps instead of every hour should give a good
estimate of what the solution converges towards. To reduce the time-use of these models,
this is only done for intraday bidding models without forecasting.

5.3.2 Forecasting methods

The next step is to test how the different forecasting methods perform in the intraday
bidding model. Models will be run without forecasting, with the benchmark forecasting
methods and the machine learning methods; random forest regression and multi-layer per-
ceptrons. The two benchmark models both uses random sampled volumes from the his-
torical data, and the spot price or the average spot premiums from the historical data.
The machine learning models are also run with premium forecasts from the method and a
volume forecast from the benchmark, and then with both premium and volume forecasts
with the methods.

5.3.3 Scenarios

The most unstable model will also be run with different amount of scenarios to see how
many scenarios are needed for a reliable results over the whole period. This is done for the
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bidding model with random forest regression models for the premium and volume, since
this model gives the most variability in the forecasts.

5.3.4 Updated wind

At last we test to what degree the wind production relations are picked up by the forecasting
method (see 4.2.1). The assumption is that the actual wind production for a product should
have a more important relation to the intraday market than the wind forecast we substitute
it with. The intraday market forecast should become more accurate the closer we get to the
production hour, when the wind production forecast is at its most accurate. The first test is
therefore to see if it is better to predict the intraday market using the first wind production
forecasts of the day, or the actual production which would not be available at the time of
forecasting. If the latter is the case, a strong relation is confirmed and we can also test if it
improves the results to update the intraday market forecasts every hour based on the latest
wind production forecasts.
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Results and discussion

6.1 Forecasting

6.1.1 Methods and data

Table 6.1 shows the mean squared error results when forecasting the buy and sell premi-
ums with different methods and for different time periods. The tested forecasting methods
are the spot price, the average historical premiums, linear and Lasso regression, random
forest regression and multi-layer perceptrons. The random forest regression method has
performed variable selection and uses 12 of the variables, while the other methods uses all
the 15 variables presented in section 4.2.1. The three time periods are respectively in the
training, validation and testing data, and the historical data used to train the forecasting
models is from 01.01.2018 to the start of the time period for all the models. The results
show that the neural network model generally performs the best, but that the Lasso re-
gression and average spot premiums often performs similarly. Interestingly, the variable
selection in the Lasso regression chooses no variables and predicts the average premium in
the historical data instead, which indicates that the average buy or sell premium is a good
benchmark model. This also raises questions of how good the neural network model is, as
it only manages to beat this benchmark convincingly once(or twice*) - for the training data
and the buying premium. Otherwise, the model performance compared to each other seem
consistent with the literature.

S2 2019 / train S1 2020 / val S2 2020 / test
Method Buy prem Sell prem Buy prem Sell prem Buy prem Sell prem
Spot 12.24 10.80 12.74 13.12 9.36 22.00
Avg prem 12.16 9.98 7.54 12.06 10.18 20.43
Linear 13.71 12.77 10.98 16.30 14.77 27.86
Lasso 12.19 10.00 7.54 12.06 10.28 20.44
RF 11.60 10.70 8.20 13.10 9.52 27.77
MLP 10.18 10.03 7.60 11.98 10.11(8.22*) 20.42

Table 6.1: Mean squared error [€2] between the average premium forecasts and the actual premiums for different
forecasting methods and time periods (semesters). *10.11 is the solution when using the same model parameters
as in the training and validation data, but the model found a better solution for a different amount of epochs.

The performance also varies between the different periods. Especially the results for the
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testing data and the selling premium stands out. Table 5.1 shows that the intraday market
is quite different in this period, with a much higher sell premium than the historical data
used to predict it. This indicates that the performance of the forecasting framework can
be vulnerable to the market characteristics changing. Using a shorter horizon than back to
01.01.2018 could reduce this problem, but this would also give the forecasting model less
data to train on.

A last observation from the different forecasting methods is that random forest regression
gives much more variance between the different forecasts than the neural network forecasts.
This is true both for the premium, volume and occurrence models. This is of course also
in contrast with the benchmark and linear regression models, which have either none or
little variance. Variance should be good when generating scenarios, so that the scenarios
are different from each other and covers a bigger solution space.

6.1.2 Variable selection

Table 6.1 shows the importance factor of the exogenous variables when fitting them to buy
and sell premiums, volumes and trade occurrences for the random forest method and the
training data. The importance factor is the Gini importance, which indicates a higher im-
portance with a higher number. Simply put, it indicates the average quality of the splits
in all the decision trees when each variable/feature is used. The importance factor is then
normalized, so that the total importance for all the variables is 1 for each of the 6 forecast-
ing models. The results show that spot premium to Germany, DK1 and SE3 are important
variables for the premiums and that the transmission capacities are less important. For the
volume and trade occurrence training, the best variables are generally the wind variables
and the worst are generally the spot premiums and transmission capacities. This analysis
is used to remove the 3 worst input variables for each output variable, which improves the
results in the bidding model. Since the variable selection tool uses random forest regression,
the variables are only removed when using this method, and not when the neural network
model is used.

Figure 6.1: Variable importance for the random forest method and the training data. The importance factors sums
up to 1 for every output variable. The exogenous variables are the wind production, the wind production forecast
error, the spot premium and the capacities between NO3 and the bidding zone.
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6.2 Intraday bidding

6.2.1 Order book modelling

Table 6.2 shows that the calculated benefit of participating in the intraday market will
depend on the modelling of the order book. Hourly snapshots will give benefits of around
1 and 3 percent for the first and second half of 2020, since it includes less of the trades
in the order book modelling. The main modelling in this thesis, hourly aggregated order
books with the restriction to only buy or sell, gives benefits of around 4 and 8 percent. This is
because it gives the bidding model the ability to compare and arbitrage between trades that
was not available at the same time. With snapshots and aggregation at higher frequency, the
actual benefit of participating in the intraday market is found to converge towards around 2
and 5-6 percent for the two periods, or around 3 percent in total. It is important to remember
that these models are without forecasting. Running the bidding model with forecasting
once per minute to get more realistic results is very time consuming and not feasible for
this thesis. Fitting several forecasting models and running the optimization frequently is
very time consuming, and the same is true for testing different parameters and forecasting
methods.

Order book modelling S1 2020 / val S2 2020 / test
Hourly snapshots 1.06 3.13
15 min snapshot 1.33 3.98
5 min snapshot 1.46 4.11
Minute snapshots 1.63 4.60
Snapshot at every new trade
Minute agg buy or sell 2.63 6.39
5min agg buy or sell 3.19 6.90
15 min agg buy or sell 3.64 7.37
Hourly agg buy or sell 3.94 8.09

Table 6.2: Intraday benefit with different order book modelling for the validation and testing data. These models
are without forecasting.

The goal of including the real order book in the modelling was for the benefits of particip-
ating in the intraday market to be more realistic. We have above shown that it is possible
with our modelling framework to find a good approximation when the model is without
forecasting. With forecasting however, the complexity and time use of the problem forces
the order book modelling to be on an hourly time frame, and either pessimistic(snapshot)
or optimistic(aggregated). The choice of optimistic order book modelling in this thesis gives
exaggerated benefits of intraday trading, but this is less important since the main object-
ive is to be able to compare a bidding model with forecasting, to a bidding model without
forecasting. However, we would be more confident in the results of the forecasting if this
comparison could be done for bidding in the actual order book, rather than the optimist-
ic/aggregated version.

6.2.2 Forecasting methods

Table 6.3 show the percentage profit of participating in the intraday market when no or
different forecasting methods are used to generate the future order book scenarios. The
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table shows the results for the first and second half of 2020, and total benefits for all 256
days tested in 2020. To give some context to these numbers, the initial spot revenue found
by the day-ahead model in the first half of 2020 was 1.23 mill€, while it was 562 thousand
€for the second half of 2020. For both periods this gives a benefit of around 50 thousand
€for participating in the intraday market for the hydropower plant Søa. With the more
realistic modelling found in section 6.2.1, the benefits are around 30 thousand€per period,
which is still significant. With the same amount of days in both periods and similar spot
prices, it also shows that the production is much higher in the first half of 2020, almost
double that of the second half.

No forecast Spot Avg prem RF prem MLP prem RF both MLP both
S1 2020 3.94 4.01 4.02 4.13 4.10 4.32 4.08
S2 2020 8.09 8.03 7.99 8.04 8.08 7.75 8.13
Total 2020 5.24 5.27 5.27 5.36 5.35 5.40 5.35

Table 6.3: Percentage benefits of participating in the intraday market compared to only participating in the day-
ahead market, for different forecasting methods and for the first and second half of 2020. Spot, avg premium, RF
prem and MLP prem uses the forecasting method for predicting the premiums, but the volume benchmark model.

The results show that all the forecasting models improve the intraday bidding for the first
half of 2020, and that the full random forest model performs the best. This is interesting
since this is not the best performing model in terms of mean squared error as seen in section
6.1.1. One reason for why this model performs the best in the bidding model could be the
variance in the random forest forecasts of the premiums, volumes and occurrences. The
neural network model has less variance in the forecasts, so the importance of variance
could have been tested by adding random variance to the neural network forecasts, or even
the average premium models.

In the second half of 2020, most of the models perform worse than not predicting the
intraday market. The full random forest model now performs the worst, while the full neural
network model barely improves the bidding. So similarly to the mean squared error results
in section 6.1.1, the forecasts have become worse. The most likely explanation for this is
again the difference between the periods highlighted in table 5.1, with just half the volumes
in the second half of 2020 compared to the first half, and also vastly different buy and sell
premiums. Again this could mean that the forecasting models have to be adapted more to
the latest data, rather than fitting data back to 2018.

When it comes to the benefit of trading in the intraday market for both periods, the full
random forest method still performs the best for 2020, even though the full MLP model
gives a positive benefit in both periods. Another interesting metric is how many of the
256 days it would be better to just use the bidding model without forecasting in terms of
benefit/profits. For the random forest regression, it improves the bidding 95 days, worsen
it 87 days and bids the same 74 days compared to bidding without forecasting. For the
neural network model it improves the bidding 97, worsen it 87 and bids the same 72 days.
This result shows that bidding decisions influenced by the forecasting almost worsens the
bidding as many times as it improves it. But in total the forecasting slightly improves the
bidding.

More generally, these results suggest that the bidding models have to be tested on a
longer time period to better understand how the forecasting methods perform in different
market conditions. Especially testing the bidding model outside of the abnormal year 2020,
is important. How this modelling performs in a more liquid market than NO3, also war-
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rants further investigation. Other directions for future work are to improve the forecasting
to take advantage of the temporal structure in the time series data, to see the real poten-
tial of using recurrent neural network models. Including other exogenous variables in the
forecasting, and variables from more bidding zones, could also improve the performance
of the forecasting models. Compared to the most complex intraday forecasting models in
the literature, especially [19, 22], our forecasting frameworks are quite simple, and there
should be big room for improvements. However, the testing in this thesis has shown that
it already takes a lot of resources to first fit and forecast hundreds of scenarios with the
forecasting methods, and then run the bidding optimization. So with more complex fore-
casting frameworks this could become an issue in future work. The same is true for more
complex hydropower modelling. Future work could use water value cuts instead of a daily
constant water values, or make the production to discharge curve dependent on the head
level. A simpler addition to the model that would make the results more realistic without
increasing the resource use, is intraday trading costs.

The gap between the resources needed for a bidding model with forecasting, compared
to a bidding model without forecasting is also interesting. The bidding optimization without
forecasting does not need to handle all the forecasting data, fit the forecasting models or run
optimization with hundreds of scenarios. This means that the forecasting has to improve
the bidding to a certain degree before it would even be considered used by hydropower pro-
ducers. The slight benefits of forecasting found in this thesis, together with the uncertainty
in the forecasting performance in other time periods, would not justify using the bidding
model with forecasting over the model without forecasting. Another question is therefore
if our modelling framework can easily be adapted to be used in real life. This is possible
for the snapshot bidding model without forecasting. It could look at the order books at an
arbitrary point in time, run the optimization model, and have a bidding solution in no more
than a couple of seconds. This model is similar to the bidding framework of Dideriksen et
al. [8]. The big difference is that [8] uses optimization to calculate the bidding curves of
the hydropower plant after each change of the production plan, and would know almost
instantly if it should accept new order arrivals. For our snapshot model without forecasting,
the desired order could be gone by the time the optimization model is finished. This would
be an even bigger problem for a slower snapshot model that contains forecasted scenarios.
On the other hand, the aggregated bidding model with restrictions on buying and selling
used in this thesis, is practical to test the performance of forecasting in this thesis, but could
not be used in real life because of the aggregation of the order book.

6.2.3 Scenarios

The stability test for the bidding model with the full random forest model (RF both) and the
validation data can be seen in figure 6.2. It shows that the average forecast quickly stabilizes,
but that the variance is still quite high also as the number of scenarios increases more. This
is a consequence of trading in the order book being very sensitive to the scenarios. There
is also a lot of randomness both in the random forest regression method, and in how we
choose the 20 % of data to fit each forecasting model. Running the bidding model twice
with 300 forecasted scenarios and taking the average benefit is decided to be sufficient for
our needs. Increasing the number of scenarios over 600 would still give a high variance, but
most importantly, it would be too time consuming to test different forecasting methods and
parameters. Also the neural network models in this thesis will be run with 300 scenarios.
Remember that the full random forest model is our most variable model, so 300 scenarios
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should be sufficient also for the neural network model.

Figure 6.2: Benefit of intraday trading with full random forest regression and different scenarios for the validation
data. The bidding model is run two times for each amount of scenarios.

6.2.4 Updated wind

The first wind test for the validation data finds no benefit in predicting the intraday market
using the actual production (4.3 %) rather than using the first wind production forecast
of the day (4.32 %). This indicates that the relations between the intraday market and the
wind production is not fully picked up by the forecasting model. Updating the intraday
market forecasts every hour is therefore not needed in this thesis, since the wind is our
only variable that updates throughout the day. Instead, all the models in this thesis uses
the same forecast for all time steps (but not for all products), the forecast generated when
the intraday market opens. Updating the forecasts every hour actually performs even worse
(4.17 %), probably because the bidding model now changes strategy every hour based
on the new forecast. It would take a lot of scenarios for the general characteristics of the
scenarios to be similar every time.

One thing that can improve the forecasting model training based on the wind is to ac-
count for the seasonality and the yearly growth of the wind production. This was unsuccess-
fully attempted in the preliminary testing by including one-hot encoded calendar dummy
variables in the forecasting models. Another alternative is to just remove the seasonality and
yearly growth from the wind production data before inputting it to the forecasting model.
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Conclusion and future work

The goal of this thesis was to incorporate bidding in the real order book, forecasting, and
hydropower scheduling into an optimization and simulation framework in a best possible
way. This was achieved with the modelling from the specialization project [1], which uses
a rolling-horizon approach to go through the intraday market from it opens until it closes.
At each hourly time-step, a two-stage stochastic mixed-integer program will accept prof-
itable limit orders from the real order books, considering the production plan, the water
value and future trading opportunities in the forecasted order books. This general frame-
work was kept, but important changes where made to be able to better evaluate the benefit
of participating in the intraday market when using fundamental drivers to forecast it. The
first change was to use perfect spot trading. The other changes were related to forecasting,
which was to change the order book modelling, improve the forecasting framework, and
to improve the forecasting by using machine learning methods. Scenarios of future trading
opportunities are now generated by forecasting the intraday premium, volume and occur-
rence of trades for each product. The forecasting is done with random forest regression or
neural networks, and uses fundamental drivers as input variables.

For a case study with a hydropower producer in NO3, and 256 days in 2020, the bene-
fit of participating in the intraday market converges to around 3 % for the bidding model
without forecasting. For the bidding model with forecasting, more work and data is needed
to conclude on the performance. This is despite this model on average outperforming the
bidding model without forecasting for the days tested in 2020. This uncertainty is mostly
due to the different performance of the forecasting methods under different market condi-
tions. Testing the models outside of the abnormal year 2020 and development of the fore-
casting methods, is identified as important factors to make the results more reliable. This
could be taking advantage of the temporal structures of the time series data with the neural
network models LSTM or GRU, or testing more exogenous variables from different bidding
zones as input variables. Another result is that the wind relations were not well picked up
by the forecasting methods, so updating the forecasts every hour was not necessary. This
also shows room for improvement in the forecasting methods.

One of the biggest challenges of combining intraday bidding, forecasting and hydro-
power scheduling into a framework, is the resources needed to fit the forecasting models
and run the bidding model with many scenarios. Only fitting the forecasting methods once
a month, is the implemented simplification that did not impact the results to much, but re-
duced the resource use a lot. Simpler forecasting methods was also used for similar reasons.
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The order book modelling on the other hand, impacts the benefit of intraday trading a lot.
We are forced towards hourly modelling of the order book, either optimistic(aggregation) or
pessimistic(snapshot), and away from the actual benefit of trading in the intraday market.
This thesis has shown that hourly aggregating of the order book still works well to compare
a bidding model with forecasting, to a model without. For bidding models without fore-
casting, the resources needed decreases a lot. The bidding model can therefore be run at
a higher frequency, and can be used to estimate the actual benefit of intraday trading. The
snapshot bidding model without forecasting can also easily be adapted to be used in real
life, which is not the case for the aggregation bidding model with forecasting.
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Appendix A

NO3 trading counterparts

This analysis was conducted in the specialization project [1].

The first thing we notice when looking at the Elbas ticker data for NO3, is that most of
the trades happens with other price areas, most of them outside of Norway. From table A.1,
we see that OPX, DK1, SE3 and FI are the most profitable areas to trade with. For each price
area, we have calculated the total volume NO3 has bought and sold to that area and the
volume weighted price of those trades. To find the area that was the most profitable to trade
with, we define profitability as trades happening at better prices than the NO3 day-ahead
price. Sellers in NO3 want positive premiums, while buyers wants the intraday price to be
lower than the day-ahead price. For each trade we multiply the premium with the volume
and aggregate the trades for each price area.

In the ticker data from Nord Pool, OPX are the market participants that uses other power
exchanges than Nord Pool. In this thesis we consider OPX to be Germany, even though
traders marked OPX can be in all market areas. This is especially true after EPEX SPOT
launched their intraday market for the Nordics. Doing some analysis on the Elbas ticker
data for OPX, we find that 60% of the volume is with Nord Pool participants in German
areas. Another indication is that 28% of the volume of OPX is in quarter hour products
which is only available in Germany, Austria and Slovenia. For EPEX SPOT this number is
around 15% for the continuous intraday market, and around 25% if the intraday auctions
also are included [31]. In this thesis we therefore group the OPX trades with the German
areas AMP, TTG and 50Hz. This simplification is also motivated by the fact that Germany is
the only central European country we have wind forecasts for.
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Profits [=C] Volumes [MWh] Prices [=C/MWh]
Area Total Sell profit Buy profit Total Sell qty Buy qty Sell price Buy price
OPX 685897 388596 -297301 200773 126770 74004 34,91 25,93
DK1 187359 29997 -157362 53358 15666 37692 32,20 21,08
SE3 90486 54842 -35644 49955 35269 14685 35,24 32,65
FI 81174 45236 -35938 40620 26584 14036 35,53 30,45

AMP 59250 33016 -26234 17952 12182 5770 35,76 25,92
DK2 52525 28573 -23953 21488 15343 6145 34,59 29,32
SE1 42874 15263 -27611 24015 11836 12179 28,60 24,39
SE4 40721 29806 -10915 14371 10595 3776 34,33 31,98
SE2 21732 -8191 -29923 67577 38810 28767 28,24 26,25
NO5 21074 15121 -5953 20279 12945 7334 27,84 20,40
NO4 20472 7287 -13184 24430 9447 14984 28,75 31,02
TTG 16760 9449 -7310 4935 3472 1463 34,32 20,47
EE 15760 11707 -4053 6569 4773 1796 39,53 35,98
NL 13576 6854 -6722 2949 1706 1243 36,61 23,19

50HZ 10336 4381 -5954 2642 1553 1089 39,46 24,89
LV 7947 574 -7373 3404 979 2425 36,44 30,18
LT 6260 1915 -4345 3844 2590 1254 32,57 36,93

NO1 5891 3201 -2690 6119 4103 2016 31,04 27,09
NO2 3755 -3479 -7234 21232 12155 9077 30,15 31,77
BE 1995 1198 -796 494 342 153 25,78 15,29
FR 1460 1034 -426 487 316 171 34,35 26,08
AT 191 195 5 67 48 19 22,99 35,28

NO3 0 -2414 -2414 13193 6597 6597 28,35 28,35

Table A.1: Areas most profitable to trade with for NO3 if profitability is defined as intraday price premium times
the volume. All trades from 2018 to 06.2020 in Elbas ticker data from Nord Pool included.



Appendix B

Mathematical modelling

B.1 Notation

Sets and indices

t ∈ {0,31} - time steps in the intraday market. 0 represents the first time step after
the intraday market opens, the hour 14:00-15:00 day-ahead. 31 represents the hour 21:00-
22:00 intraday, which is the last time one can bid in the intraday market (for product 23:00-
00:00). 30 represents the hour 20:00-21:00 intraday, which is the last time one can bid in
the forecasted order book.

m - Index for market/product/production hour

M = {max(t-8, 0), 23} - all open products at time step t

M pred = {max(t-7, 0), 23} - products that should be predicted at time step t

M res = {max(t-7, 0)-1, 23} - products relevant for the reservoir coupling at time step t

M star tup = {max(t-7, 0), 23+1} - products relevant for startup coupling at time step t

M status = {max(t-7, 0)-1, 23+1} - products relevant for production status at time step t

s ∈ S - predicted orderbook scenarios

o - index for orders

Obuy,real
m and Osel l,real

m - buy and sell orders in the real-time order book for each product
m

Obuy,pred
sm and Osel l,pred

sm - buy and sell orders in the predicted order book for each product
m and scenario s

j ∈ J - power-discharge curve segments

Parameters
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Watervalue - constant watervalue for the day

PriceDA
m - price in the spot market for product m, used in the perfect spot model

Pricebuy,real
mo , Pricebuy,real

mo - prices in real-time orderbook for product m and scenario s

V buy,real
mo , V sel l,real

mo - maximum volumes in real-time order book

Pricebuy,pred
smo , Pricesel l,pred

smo - prices in forecasted order book

V buy,pred
smo , V sel l,pred

smo - maximum volumes in forecasted orderbook

V ini t ial
m - initial committed volume for product, includes spot commitment and intraday

commitments from previous time steps

ρ - probability of scenarios

ε j - efficiency of production discharge segment

C star tup - start-up cost for turbine [€]

Rini t ial - initial reservoir volume

Rmin, Rmax - minimum and maximum reservoir volume

Pmin, Pmax - minimum and maximum production, when producing

Qsegment,max
j - maximum discharge for each power-discharge segment j

Qmin - minimum discharge, when producing

U ini t ial , U last - initial and last production status for coupling to previous day or hour, and
coupling to next day

F - 3600/106, conversion factor between m3/s and Mm3/hour

L - length of time step in hours

Im - deterministic inflow for product m

Variables

vbuy,real
mo , vsel l,real

mo , vbuy,pred
smo , vsel l,pred

smo - volumes accepted from order books

rsm - reservoir volume for scenario and product

psm - production commitment for scenario and product

qsm - discharge for scenario and product

qspil lage
sm - spillage for scenario and product

qsegment
smj - discharge for discharge segment j, scenario s and product m
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um - binary production status variable

am - binary startup variable, 1 if startup from product m-1 to m

buyingm, sel l ingm - binary buying and selling variables, 1 if the bidding model is selling
or buying in the order book for a product m

B.2 Perfect spot trading

max z =
∑

m∈M PriceDA
m pm +Watervalue ∗ rm=23 −

∑

m∈M star tup C star tupam

um ∗Qmin +
∑

j∈Jqsegment
mj + qspil lage

m = qm ∀ m ∈ M

0≤ qsegment
mj ≤Qsegment,max

j ∀ m ∈ M

um ∗ Pmin +
∑

j∈J ε j ∗ qsegment
mj = pm ∀ m ∈ M

Pmin ∗ um ≤ pm ≤ Pmax ∗ um ∀ m ∈ M

rm = rm−1 + F ∗ L ∗ (Im − qm) ∀ m ∈ M res

r−1 = Rini t ial

Rmin ≤ rm ≤ Rmax ∀ m ∈ M

am ≥ um − um−1 ∀ m ∈ M star tup

u−1 = U ini t ial

u24 = U last
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