
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
artin G

ulbrandsen Aalien
D

evelopm
ent and O

ptim
ization of a Contact Tracing W

earable

Martin Gulbrandsen Aalien

Development and Optimization of a
Contact Tracing Wearable

Master’s thesis in Electronic Systems Design
Supervisor: Carsten Wulff

June 2021

M
as

te
r’s

 th
es

is

Martin Gulbrandsen Aalien

Development and Optimization of a
Contact Tracing Wearable

Master’s thesis in Electronic Systems Design
Supervisor: Carsten Wulff
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Preface

In 2016, I started studying Electrical Engineering, and I knew right a way that I had
found a career path I wanted to proceed. I finished my bachelor’s degree with a spe-
cialization in Electronics in 2019. After the bachelor’s degree, I was eager to learn more
before heading off into the working life, so I went for a master’s degree in Electronic Sys-
tems Design at the Norwegian University of Science and Technology. This master’s thesis
marks the end of my 2-years long degree. My master’s thesis work has been conducted
during the COVID-19 pandemic, and it has greatly impacted my choice of work. Hope-
fully, I have made a contribution that can help reduce the spread of infectious diseases,
like COVID-19.

This thesis is structured for two-sided print, meaning that all the chapters starts at odd
page numbers. The software developed for this thesis is included in the attachments on
Inspera.

Acknowledgment

I would first like to thank my main supervisor Carsten Wulff for his invaluable help. He
has always been available for questions and discussions which have brought my work
to a higher level.

I would also like to thank Nordic Semiconductor for lending me the equipment I needed
for my work.

In addition, I would like to thank my friend, Martin Falang, for peer-reviewing my code
during development, implementing the GAENS cryptography library and creating the
appearance model of the wearable.

i

Problem Description

At the time of writing this thesis, the whole world is affected by the Coronavirus Dis-
ease 2019 pandemic. Contact tracing is one of the measures taken to reduce the spread
of infection. Digital Exposure Notification Systems (ENSs) makes contact tracing more
efficient and accurate than a manual approach. Most ENSs require individuals to own
and wear a smartphone. However, many people do not own, know how to use, or are
not able to carry a smartphone around at all times.

The aim of this thesis is to develop and optimize a small, specialized, non-internet-
connected wearable for contact tracing. The wearable should have a battery life of sev-
eral months on a single coin cell battery. The software shall be based on Google/Apple
Exposure Notification System, and the Wearable Exposure Notification Service. Such a
solution can make it easier for more people to take part in the existing ENSs, and reduce
the spread of infection.

iii

Abstract

The wearables market for healthcare and activity monitoring is rapidly evolving. Lately,
it has gained attention as an alternative method to perform contact tracing to help re-
duce the spread of Coronavirus Disease 2019 (COVID-19) [1]. Several governments and
companies have already developed smartphone applications for doing contact tracing,
so-called Exposure Notification Systems (ENSs) [2]. However, a large portion of the
population does not own or use a smartphone.

In this thesis a low-power, specialized, non-internet-connected contact tracing wearable
is introduced. The wearable is intended for adaptation into the already established ENSs.
It is based on the Google/Apple Exposure Notification System, which is used in several
European countries [2, 3]. To make it possible for the non-internet-connected wearable
to participate in an ENS, it will support the Wearable Exposure Notification Service,
which Bluetooth Special Interest Group released a preliminary specification draft of in
December 2020 [1].

An engineering prototype of the wearable was designed and optimized, based on a Proof
of Concept (PoC) prototype. The PoC, without optimizations, achieved an average cur-
rent consumption of approximately 532µA. The optimization analysis of the engineering
prototype indicates that it should be possible to achieve an average current of 42.17µA,
with the optimizations suggested in this thesis. By powering the wearable with a CR2032
coin cell battery, one can expect a battery life of about 197 days.

A Printed Circuit Board (PCB) for the engineering prototype was designed with a cir-
cular shape. It has a diameter of 26mm, and a height of approximately 8mm with its
components. The major components on the board are a nRF52833 System-on-Chip, a
32Mb external flash memory, an accelerometer and a battery holder for a CR2032 coin
cell battery. A casing for the PCB was also designed in the shape of a circular tag, and is
28.5mm in diameter, and has a height of 11mm.

The software and hardware developed for the low-power, non-internet-connected wear-
able contributes to realizing a wearable that can participate in already existing ENSs
and reduce the spread of infectious diseases like COVID-19.

v

Sammendrag

Markedet for kroppsbårne elektroniske enheter for helse- og aktivitets-monitorering er
i kraftig utvikling. Nylig har det fått oppmerksomhet som en alternativ måte å gjen-
nomføre smittesporing på for å redusere spredningen av Coronavirus Disease 2019
(COVID-19) [1]. Flere lands myndigheter og firmaer har allerede utviklet applikasjoner
til smarttelefoner for smittesporing [2]. Et problem med denne løsningen er at en stor
andel av befolkningen ikke eier eller bruker smarttelefoner.

I denne masteroppgaven introduseres en spesialisert, ikke-internett-tilkoblet, kropps-
båren elektronisk enhet for smittesporing med lavt strømforbruk. Den kroppsbårne
elektroniske enheten er ment for å bli tatt i bruk i de allerede etablerte systemene for
eksponeringsvarsling. Enheten er basert på Google/Apple Exposure Notification System
som er systemet for eksponeringsvarsling som er tatt i bruk av flere europeiske land [2,
3]. For å gjøre det mulig for en ikke-internett-tilkoblet, kroppsbåren elektronisk enhet
å delta i et system for eksponeringsvarsling vil enheten støtte Wearable Exposure No-
tification Service, som Bluetooth Special Interest Group lanserte et foreløpig utkast av
spesifikasjonene av i desember i 2020 [1].

En teknisk prototype av den kroppsbårne elektroniske enheten ble designet og optim-
alisert, basert på en Proof of Concept (PoC)-prototype. PoC-prototypen oppnådde et
gjennomsnittlig strømtrekk på tilnærmet 532µA, uten optimaliseringer. Analysene av op-
timaliseringene for den tekniske prototypen, som er foreslått i denne masteroppgaven,
indikerer at det skal være mulig å oppnå et gjennomsnittlig strømtrekk på 42.17µA. Ved
å drive enheten med et CR2032 knappebatteri kan man forvente å oppnå en batteri-
levetid på rundt 197 dager.

Kretskortet for den tekniske prototypen ble designet med en sirkulær form, og har en dia-
meter på 26mm og en høyde på cirka 8mm medregnet komponenter. Den kroppsbårne
elektroniske enheten består av en nRF52833 Bluetooth-modul, et 32Mb eksternt flash-
minne, et akselerometer og en batteriholder for et CR2032 knappebatteri. En innkapsling
med form av en tag ble designet, og den har en diameter på 28.5mm og en høyde på
11mm.

Program- og maskinvaren utviklet for den spesialiserte, ikke-internett-tilkoblede, kropps-
bårne elektroniske enheten med lavt strømforbruk, bidrar til å realisere en kroppsbåren
enhet som kan delta i allerede eksisterende system for eksponeringsvarsling, og redusere
spredningen av smitte av sykdommer som COVID-19.

vii

Contents

Preface . i
Problem Description . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
1 Introduction . 1

1.1 Specialization Project . 2
1.2 Scope and Limitations . 3
1.3 Key Contributions . 3
1.4 Organization of the Thesis . 4

2 Background . 5
2.1 Spread of Infection . 5
2.2 Contact Tracing . 6

2.2.1 Centralized Versus Decentralized Architectures 6
2.3 Exposure Notification System . 6
2.4 Google/Apple Exposure Notification System 7

2.4.1 How it Works . 7
2.4.2 Cryptography Specification . 7
2.4.3 Positive Diagnosis . 10
2.4.4 Bluetooth Specification . 10

2.5 Wearable Exposure Notification Service . 11
2.5.1 Characteristics . 13

2.6 Device Information Service . 13
2.6.1 Characteristics . 13

2.7 Device Time Service . 14
2.7.1 Characteristics . 14

2.8 Zephyr . 14
2.9 CR2032 Coin Cell Battery . 14
2.10 Three Phases of Prototyping . 15

2.10.1 Alpha Phase . 15
2.10.2 Beta Phase . 16
2.10.3 Pilot Phase . 16

3 Methodology . 17
3.1 Approach . 17

ix

x M. G. Aalien: A Contact Tracing Wearable

3.1.1 Tools . 18
4 Software Development . 19

4.1 Implementation . 19
4.1.1 External Flash Memory Communication 19
4.1.2 Random Interval . 21
4.1.3 Bluetooth and Cryptography Implementation 22

4.2 Confirming the Functionality of the Implementation 23
5 Storage Requirements . 25

5.1 Memory Estimations . 25
6 Current Consumption Estimations and Measurements 29

6.1 PoC Prototype Current Consumption . 29
6.2 GAENS Current Consuming Operations . 30
6.3 WENS Current Consuming Operations . 31
6.4 Estimations and Measurements . 31

6.4.1 Non-connectable GAENS Advertising 31
6.4.2 Connectable WENS Advertising . 32
6.4.3 Scanning . 33
6.4.4 Sleep mode . 34
6.4.5 Connections . 34
6.4.6 Randomized Rotation of GAENS Service Data 35
6.4.7 External Memory . 36

6.5 Total Current Consumption . 38
7 Optimization . 39

7.1 Disabling Serial Communication . 39
7.2 Accelerometer . 41
7.3 Scan and Advertise Adjustments . 42
7.4 Reducing Transmit Power . 44

8 Hardware Implementation . 47
8.1 Wearable Designs . 47

8.1.1 Wristbands . 47
8.1.2 Access Cards . 47
8.1.3 Tag . 48
8.1.4 Bracelet . 48
8.1.5 Embedded Into Clothing . 48

8.2 Choosing a Design . 48
8.3 Selection of Hardware Components . 49

8.3.1 BLE SoC . 49
8.3.2 Antenna . 49
8.3.3 External Memory . 50
8.3.4 Battery Holder . 50
8.3.5 Accelerometer . 50

8.4 Circuit Schematic Design . 51
8.4.1 Serial Peripheral Interface . 51
8.4.2 Programming and Debugging . 51
8.4.3 Antenna Matching Network . 52
8.4.4 Changes to the Reference Layout . 52

8.5 PCB Design . 52
9 Results and Discussion . 53

Contents xi

9.1 Functionality of the Software . 53
9.2 Optimizations . 54

9.2.1 Considerations . 56
9.2.2 Memory Compression . 59

9.3 Hardware . 60
9.3.1 Battery Holder . 61
9.3.2 Remove Optional Crystal . 61
9.3.3 Visual Feedback . 62
9.3.4 Antenna Placement . 62

10 Future Work . 65
10.1 Finish WENS Implementation . 65
10.2 Test Advertising and Scanning Parameters . 65
10.3 Finish Wearable Hardware Design . 65
10.4 Accelerometer Interrupt Trigger Parameters 66
10.5 Transmit Power . 66
10.6 Device Firmware Update . 66
10.7 Antenna . 66

11 Conclusion . 67
Bibliography . 69
A Bluetooth Low Energy Overview . 73

A.1 Bluetooth Low Energy . 73
A.1.1 Generic Access Profile . 73
A.1.2 Connections . 74
A.1.3 Advertising . 74
A.1.4 Scanning . 75
A.1.5 Generic Attribute Profile . 76

B PoC Prototype Schematics . 77
C BLE Services . 79

C.1 Wearable Exposure Notification Service . 79
C.2 Device Time Service . 80
C.3 Device Information Service . 81
C.4 Battery Service . 81

D Rotation of RPI, AEM and BLE Address . 83
E Scan Window Simulation . 85
F Average Current Consumption . 87

F.1 Accelerometer . 87
F.2 Scan and Advertise Interval Adjustments . 88
F.3 Transmit Power Reduction . 88

G Engineering Prototype Schematics . 89
H Layers . 91

H.1 All Layers . 91
H.2 Top Layer . 92
H.3 Mid-Layer 1 . 93
H.4 Mid-Layer 2 . 94
H.5 Bottom Layer . 95

I Code Documentation . 97

Figures

1.1 The PoC prototype that was designed prior to this master’s thesis. 2

2.1 An illustration of how the cryptography specification should work [9]. . . 8
2.2 The Bluetooth services and their respective characteristics required by

WENS. 12

4.1 A diagram of the modules and public functions in the software imple-
mentation. 20

4.2 A simplified state diagram of the implementation after the initialization
is finished. 22

4.3 A screenshot of the terminal window displaying a received advertising
packet from a device with the Smittestopp app active. All the values are
written in their hexadecimal value. 23

4.4 A screenshot from nRF Connect showing that the smartphone receives
the GAENS advertising packets from the development kit. 23

4.5 A screenshot form nRF Connect showing that the smartphone receives
the WENS connectable advertising packets from the development kit. The
UUID is just a temporary value used for testing, as the UUID is not defined
yet by Bluetooth SIG. 24

4.6 A screenshot form nRF Connect showing that the smartphone can connect
to the development kit and get access to the services. 24

5.1 The statistical average number of packets received with different advert-
ise intervals for a 300ms scan window. The figure is generated from the
script in Appendix E. 26

6.1 This measurement shows the current profile of the PoC prototype, pro-
grammed with the GAENS and WENS implementation described in Chapter 4. 30

6.2 Current consumption of one non-connectable GAENS advertising packet
transmitting at 0dBm transmit power and is 31 bytes long. 32

6.3 Current consumption of one connectable WENS advertising packet trans-
mitted at 0dBm transmit power and with 7 bytes of payload. 33

6.4 Current consumption of one 300ms scanning interval. 33
6.5 Current consumption during sleep mode with "wake on RTC" enabled. . . 34
6.6 Current consumption during rotation of GAENS service data. 36

7.1 This measurement shows the current profile of the nRF52833 develop-
ment kit with the GAENS and WENS implementation after disabling serial
communication. 40

xiii

xiv M. G. Aalien: A Contact Tracing Wearable

7.2 A histogram showing the average current consumption of each isolated
operating of the BLE SoC and the external memory averaged over 24 hours. 40

7.3 A screenshot of the nRF Connect app, when scanning and filtering for
GAENS advertisement packets. It is done when being around people who
use the Norwegian Smittestopp app. 42

7.4 Packet collision probability for different advertise intervals (0.1s to 5s)
and number of nodes [21]. 43

7.5 A comparison of 0dBm and -12dBm transmit power for non-connectable
GAENS advertising. 45

8.1 An appearance model of the wearable. 49
8.2 An illustration of the SPI configuration between the BLE SoC, the external

memory and the accelerometer. 51
8.3 The pi matching networks to match both the BLE SoC and the chip an-

tenna to 50Ω. 52

9.1 This histogram shows the 24-hour average current consumption of each
isolated operating of the BLE SoC, the external memory and the acceler-
ometer after combining all the optimization methods. 55

9.2 The expected number of days of operation for the optimized wearable,
based on the average hours it is used per day. 56

9.3 The figure of a continuous discharge of CR2032 coin cell battery, from
"High pulse drain impact on CR2032 coin cell battery capacity", with the
different FEPs for the external memory [13]. The figure illustrated the
significant impact the FEP of the wearable has on the effective capacity
the wearable can obtain from a CR2032 coin cell battery. 58

9.4 The engineering prototype PCB designed in Altium Designer. 60
9.5 A production drawing of the engineering prototype with its tag-formed

shape. 61
9.6 On the left the antenna PCB design is shown from 2D mode in Altium

Designer, and on the right the same design is shown in 3D mode. 62

A.1 The BLE channels. 75

C.1 A screenshot from the nRF Connect application showing the WENS and
its characteristics. As the WENS specification is still only preliminary, the
UUIDs is not defined in the specifications. The UUIDs used for the char-
acteristics is just temporary values used for testing. 79

C.2 A screenshot from the nRF Connect application showing the DTS and its
characteristics. The service came in 2020, so the nRF Connect application
does not recognize the UUIDs because it is quite new [11]. 80

C.3 A screenshot from the nRF Connect application showing the DIS and its
characteristics. The characteristics hold temporary values set by me, and
can easily be updated. 81

C.4 A screenshot from the nRF Connect application showing a temporary im-
plementation of the BAS. The Battery Level characteristic holds the num-
ber of what percentage is left of the battery capacity (0x64=100%). This
service is not mandatory according to the WENS specification, and is not
discussed further [1]. 81

Tables

2.1 A complete advertising packet according to the GAENS specification. . . . 11
2.2 A table showing the structure of a connectable WENS advertising packet. 12
2.3 All the characteristics of the WENS that will be used, and their corres-

ponding description according to the specification [1]. 13
2.4 All the characteristics of the DIS that will be used, and their corresponding

description according to the specification [10]. 13
2.5 All the characteristics of the DTS that will be used, and their correspond-

ing description according to the specification [11]. 14

5.1 The size of each record that is being stored using GAENS. 25
5.2 An estimate for how many transmitters that are in range under different

situations during a day. This gives an average of 8 transmitters in range
[1]. 26

5.3 Estimation of minimum memory size without compression. 27

6.1 A table showing the current consumption contributions of each isolated
operation averaged over all time. 38

9.1 The calculation of the average current of each operation isolated opera-
tion averaged over all time where the wearable is using all optimization
techniques that is discussed in this thesis. 54

F.1 The calculation of the average current of each operation isolated oper-
ation averaged over all time where the wearable is using an accelero-
meter to reduce the current consumption. The average current contribu-
tion from the accelerometer is 3µA, and it is assumed that the wearable
is not in use for 10 hours a day on average. 87

F.2 The calculation of the average current of each operation isolated opera-
tion averaged over all time where the wearable is optimized by adjusting
the advertise and scan intervals. 88

F.3 The calculation of the average current of each operation isolated opera-
tion averaged over all time where the wearable is optimized by reducing
the transmit power for GAENS advertising packets from 0dBm to -12dBm. 88

xv

Code Listings

4.1 An overlay file to overwrite the default hardware description of the nRF52833
to get the correct pinout and settings for UART and SPI. 21

D.1 The C function for rotating the RPI, AEM and BLE address. It also chacks
if the TEK has expired and updates the keys if it has. 83

E.1 A Python script for determining the average number of advertising pack-
ets that will be received by the wearable with different scan windows and
advertise intervals. 85

xvii

Acronyms

AEM Associated Encrypted Metadata.

AEMK Associated Encrypted Metadata Key.

AES Advanced Encryption Standard.

API Application Programming Interface.

BAS Battery Service.

BLE Bluetooth Low Energy.

Bluetooth SIG Bluetooth Special Interest Group.

BMS Bond Management Service.

COVID-19 Coronavirus Disease 2019.

CRNG Cryptographic Random Number Generator.

CS Chip Select.

DIS Device Information Service.

DTS Device Time Service.

ENS Exposure Notification System.

FEP Functional End Point.

GAENS Google/Apple Exposure Notification System.

HKDF Hashed Message Authentication Code (HMAC)-based Key Derivation Function.

LED Light Emitting Diode.

MISO Master In Slave Out.

MOSI Master Out Slave In.

NFC Near Field Communication.

xix

xx M. G. Aalien: A Contact Tracing Wearable

PCB Printed Circuit Board.

PI Proximity Identifier.

PoC Proof of Concept.

PPK Power Profiler Kit.

RPI Rolling Proximity Identifier.

RPIK Rolling Proximity Identifier Key.

RSSI Received Signal Strength Indicator.

RTC Real Time Clock.

RTOS Real-Time Operating System.

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2.

SCLK Serial Clock.

SoC System-on-Chip.

SPI Serial Peripheral Interface.

SWD Serial Wire Debug.

TEK Temporary Exposure Key.

UART Universal Asynchronous Receiver-Transmitter.

USB Universal Serial Bus.

UUID Universally Unique Identifier.

WENS Wearable Exposure Notification Service.

Chapter 1

Introduction

In December 2019, in Wuhan City, China, a "Pneumonia of unknown cause" was dis-
covered [4]. The disease was later named Coronavirus Disease 2019 (COVID-19) and is
caused by a virus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2). The outbreak of the virus resulted in a global pandemic. The highly contagious virus
proved to cause severe illness to a significant portion of the infected individuals. It is of
critical importance to slow the spread of the virus, as the consequences can be fatal. To
slow the spread of the virus, governments have implemented different measures, such
as the use of face masks, lockdowns, close-contact restrictions and contact tracing.

The wearables market for healthcare and activity monitoring is rapidly evolving, and
has gained attention lately as an alternative method to do contact tracing to help reduce
the spread of COVID-19. Several governments and companies have already developed
smartphone applications for doing contact tracing [2]. However, many people do not
own or use a smartphone. This is a limitation of smartphone applications as a digital
contract tracing technology, because of the lack of coverage. By including wearables
to the digital contact tracing solutions that is already in use, one would increase the
coverage and efficiency of the systems.

Most contact tracing smartphone applications use Bluetooth. This is done by devices
broadcasting their IDs, and scanning to look for other devices nearby. Google and Apple
were early in standardizing how an Exposure Notification System (ENS) should oper-
ate by introducing their Google/Apple Exposure Notification System (GAENS) [3]. The
Norwegian Smittestopp app is based on GAENS, and several other European countries
have adopted the standard as well [2].

In December 2020 Bluetooth Special Interest Group (Bluetooth SIG) published a draft
describing a Wearable Exposure Notification Service (WENS) [1]. The draft describes a
Bluetooth service that makes it possible for wearables to participate in the already estab-
lished ENSs. It is reasonable to believe that this Bluetooth service draft will eventually
be a part of the existing ENSs.

By combining the use of GAENS and WENS into a small wearable device, even more
people can participate in the already established ENSs.

1

2 M. G. Aalien: A Contact Tracing Wearable

1.1 Specialization Project

Prior to this master’s thesis, a Proof of Concept (PoC) prototype of a contact tracing
wearable was developed in a specialization project named "A Contact Tracing Wearable".
The project presented a low-cost, specialized, non-internet-connected, contact tracing
wearable using Bluetooth Low Energy (BLE). The schematics for the PoC prototype can
be seen in Appendix B, and Figure 1.1 shows a picture of it. The PoC prototype was
made with the purpose of helping to track and minimize the spread of COVID-19 without
having to use a smartphone. This is similar to what was introduced with the publication
of WENS [1].

Figure 1.1: The PoC prototype that was designed prior to this master’s thesis.

The PoC prototype was meant to be used on an institutional basis, and function without
any use of a smartphone at all. Instead of using a smartphone to do the contact expos-
ure risk calculations, the PoC prototype system used internet-connected hubs. However,
after the WENS was introduced, it opened up the possibility to design a wearable for
everybody, not only on an institutional basis. Even though the PoC prototype system
works differently to GAENS and WENS, there are some similarities, and the PoC pro-
totype wearable can be used for a solution based on GAENS and WENS, without any
modifications.

The PoC prototype wearable uses the nrf52833 BLE SoC from Nordic Semiconductor. It
also has an external flash memory chip and a battery holder for an CR2032 battery. The
PoC prototype has castellated holes and a header for debugging purposes. The length
of the PoC prototype is 29.5mm, the width is 25.2mm and the height is approximately
10mm. Making it small enough to be embedded into a wearable. Nevertheless, there are

Chapter 1: Introduction 3

several things that can be optimized further.

1.2 Scope and Limitations

The objective of this thesis consists of several tasks. One of which is to develop software
based on the specification documentation of GAENS and WENS. It should be verified that
the software works according to the specification. Having the software working as inten-
ded, the current consumption of a minimum viable product solution should be estimated
and/or measured. The estimation and measurements of the current consumption will
be used to determine the main contributing processes to the current consumption.

After the main contributing processes to the current consumption have been found,
methods to reduce the average current consumption should be investigated. The goal is
to achieve a realistic battery life of the wearable so that it lasts for several months on a
single CR2032 coin cell battery.

The findings from the optimization methods and previous work, will be used to develop
an optimized version of the PoC prototype, which will be referred to as an engineering
prototype. The engineering prototype should have the main functionality of a contact
tracing wearable and be visually representative for a desired final product.

There are some limitations to the tasks. The full WENS specification is not official yet,
so an implementation of it will not be complete. It should however be implemented to a
point where it can take part in the other aspects of the study. Another limitation of the
scope of the work is that the engineering prototype hardware will be designed, but not
manufactured. The manufacturing of it is planned in future work.

1.3 Key Contributions

This thesis presents a low-power, specialized, non-internet-connected contact tracing
wearable solution that has the potential to participate in already established ENSs to
help reduce the spread of COVID-19. The key contributions of this thesis are:

• A software solution based on GAENS and WENS was developed for Nordic Semi-
conductors BLE System-on-Chip (SoC)s.
• A Printed Circuit Board (PCB) for the contact tracing wearable was designed. To-

gether with the components, the circular PCB had a diameter of 26mm and a
height of 8mm.
• An engineering prototype of a wearable suitable for contact tracing was intro-

duced. The wearable is shaped as a tag, and has a diameter of 28.5mm, a height
of 11mm, and a small mount hole.
• Optimization methods were presented, which decreases the current consumption

from approximately 532µA to 42.17µA. Giving the wearable an estimated lifetime
of 197 days on a CR2032 coin cell battery.

4 M. G. Aalien: A Contact Tracing Wearable

1.4 Organization of the Thesis

In Chapter 2 the background, information about the material that will be used in the
development and optimization of the contact tracing wearable is presented. The back-
ground chapter is followed by a description of the development and optimization meth-
odology, in Chapter 3. In Chapter 4 the implementation of the wearable’s hardware and
software are described. In Chapter 5 the storage requirements of the wearable are de-
termined. This is followed by current consumption estimations and measurements in
Chapter 6, and optimizations in Chapter 7. After looking into the possible optimization
strategies, the hardware design for the engineering prototype is explained in Chapter 8.
The results are presented and discussed in Chapter 9. In Chapter 10, tasks that need to
be investigated in the future are listed. Lastly, the conclusion of the thesis is presented
in Chapter 11.

Chapter 2

Background

In this chapter, some key background topics for this thesis is covered. Such as the prin-
ciples of infection, why contact tracing is important, how contact tracing works, and
how contact tracing is implemented. In addition, a few key topics is introduced, like the
relevant BLE services, Zephyr, empirical facts on coin cell batteries and a definition of
the phases of product prototyping.

Throughout this thesis, there will be made several references to Bluetooth-specific ter-
minology. Background theory about BLE was covered in the specialization project, and
is included in Appendix A.

2.1 Spread of Infection

An individual infected with COVID-19 can spread the disease to other individuals through
a number of different transmission routes [5]. The disease is most commonly spread dur-
ing close contact. Infection mainly occurs through exposure to respiratory droplets when
an individual is in close contact with someone who is infected with COVID-19. When
infected individuals talk, sing, breath, sneeze, etc., they produce respiratory droplets
containing the virus which will be exposed to other individuals in close contact. The
risk of infection increases with the time people spend in close contact with infected
individuals. This is why social distancing is crucial to reduce the spread.

An individual can be infectious even before the individual develops symptoms [6]. Mean-
ing it is important to identify and isolate infected individuals as soon possible. By linking
the close contacts, one can notify people who have a risk of being infected, so that they
can quarantine themselves to prevent further transmission of the disease.

5

6 M. G. Aalien: A Contact Tracing Wearable

2.2 Contact Tracing

Contact tracing is the process of identifying and managing the individuals that have
been exposed to a disease to avoid onward transmission [7]. Individuals exposed to the
disease are typically quarantined or isolated for the maximum incubation period from
the date of the most recent exposure.

Contact tracing can be performed in a number of different ways. At the beginning of the
COVID-19 pandemic, the contact tracing was performed manually by the authorities.
This involves contacting the infected individuals and asking for their close contacts and
whereabouts in the last couple of days. This technique is error-prone, as it is difficult
to remember all the persons one meets, and the exact time one has been to a location.
The technique is also time demanding, meaning it takes time to determine an infected
individual’s close contacts, and contact them. With more and more infected individuals,
this process could grow at a tremendous rate, putting an unbearable workload on the
individuals performing the contact tracing.

To make contact tracing easier than manually contacting those who are at risk of being
infected, there have been launched digital contact tracing solutions from local companies
and governments all over the world. This automates the contact tracing process and
makes it significantly faster than doing manual contact tracing. It makes it possible to
notify individuals that have a risk of being infected earlier, which could reduce the spread
of the disease.

2.2.1 Centralized Versus Decentralized Architectures

Two main architectures have been designed for wireless contact tracing applications,
centralized and decentralized architectures [8]. With centralized architectures the main
information, such as temporary IDs and timestamps, is stored and processed on a central
server. Usually, the centralized architectures perform the risk analysis (calculating the
probability of infection) on the central server. While with a decentralized architecture,
the information is stored and processed on the user’s devices. The decentralized solution
only contacts a central server to download the temporary IDs or report an infection.
The decentralized architectures, in contrast to the centralized architectures, perform
the risk analysis on the user’s devices. Meaning that the central server on decentralized
architectures does not store any data about the user’s contacts.

2.3 Exposure Notification System

Digital contact tracing technologies have two main tasks, logging encounters and report-
ing infections. Exposure Notification Systems (ENSs) defines how to do the logging of
encounters, while the infection reporting is being delegated to the individual implement-
ations. In Norway, and several other European countries, the Google/Apple Exposure
Notification System (GAENS) protocol is being used [2].

Chapter 2: Background 7

2.4 Google/Apple Exposure Notification System

GAENS is a framework and protocol specification on how to facilitate digital contact
tracing developed by Google and Apple [3]. The protocol is a decentralized reporting-
based protocol that uses BLE and privacy-preserving cryptography.

2.4.1 How it Works

If a smartphone has an application for ENS that is using GAENS, the device will generate
random IDs for your phone. These random IDs change about every 15 minutes, so that
they cannot be used to identify a person or the person’s location. The ENS application
will run in the background and advertise the random IDs, so-called Rolling Proximity
Identifiers (RPIs), and scan for other devices nearby that are also advertising their re-
spective RPIs. The received RPIs is stored on the device. The device will periodically
check all the random IDs that are associated with COVID-19 cases and compare them to
their own list. If there is a match, the user gets a notification with instructions from the
public health authority about what to do. Typically, this means testing and isolation.

2.4.2 Cryptography Specification

The GAENS cryptography specification addresses how the ENS data should be encrypted
before it is sent over BLE [9]. To ensure the privacy of the users of the devices, the GAENS
uses pseudorandom identifiers, called RPIs. Each of the RPI is derived from a Temporary
Exposure Key (TEK) and a discretized representation of time. The RPI changes a random
time interval larger than 10 minutes and less than 20 minutes. It is changed at the same
time as the Bluetooth randomized address to prevent wireless tracking. In addition to the
RPI, there are also some data about the wearable named Associated Encrypted Metadata
(AEM) that is to be sent together with the RPI. The AEM can be decrypted later when
the user test positive.

The cryptography of GAENS is dependent on four external functions. The first external
function is a Cryptographic Random Number Generator (CRNG), which is essentially a
function where one inputs the size of the desired cryptographic number you want to
retrieve, and it returns a cryptographic random number of the same size. The CRNG is
a random generator with properties that makes it suitable for use in cryptography. The
function is used for generating the 16-byte TEK.

Another one of the external cryptographic functions is called Hashed Message Authen-
tication Code (HMAC)-based Key Derivation Function (HKDF). The purpose of HKDF is
to derive an encryption key from a pass phrase. The pass phrase in the GAENS specific-
ation is the TEK. The HKDF function is used to generate the Rolling Proximity Identifier
Key (RPIK) and Associated Encrypted Metadata Key (AEMK).

The RPIK and a discretized representation of time (in 10-minute intervals), EN IntervalNumber,
is used as input to a function called Advanced Encryption Standard (AES) to encrypt the
data and generate the RPI. The RPI, metadata and the AEMK is then used as input to

8 M. G. Aalien: A Contact Tracing Wearable

an AES in Counter Mode (AES-CTR) to generate the AEM to be sent over BLE together
with the RPI.

To better illustrate how the cryptography is organized, the operations are illustrated in
Figure 2.1. The figure is based on the GAENS cryptography specification [9].

Temporary Exposure Key

HKDF HKDF

RPI Key AEM Key

AES AES-CTR

RPI AEM

MetadataENIntervalNumber

BLE Payload

Figure 2.1: An illustration of how the cryptography specification should work [9].

In the following sections the cryptography implementation, and the generation of the
RPI and the AEM is explained.

ENIntervalNumber

In the GAENS protocol, the time is discretized in 10-minute intervals that are enumer-
ated starting from Unix Epoch Time. The number of the interval is called EN IntervalNumber,
and is encoded as a 32-bit unsigned little-endian value. Equation (2.1) gives the func-
tion for getting a number for each 10-minute time window, where ninterval is equal to
10.

EN IntervalNumber(Timestamp) =
Timestamp
60 · ninterval

(2.1)

TEKRollingPeriod

The T EKRoll ingPeriod is the duration of which an Temporary Exposure Key (TEK)
is valid (in multiples of 10 minutes). The GAENS documentation specifies that the key
validity should be 24 hours, making T EKRoll ingPeriod equal to 144.

Chapter 2: Background 9

Temporary Exposure Key

When the first TEK is generated, it is associated with an EN IntervalNumber, i, which
is the time from which the key is valid. The EN IntervalNumber, i, is defined by Equa-
tion (2.2). The value is to be stored together with the TEK.

i =
�

EN IntervalNumber(Time at Ke y Generation)
T EKRoll ingPeriod

�

· T EKRoll ingPeriod (2.2)

The TEK is generated from the CRNG, and is 16 bytes long. This is done as shown in
Equation (2.3). Using 16 bytes long TEK makes the risk for false positives low. Since the
TEK roll daily, the device needs to store one key per day.

teki = CRNG(16) (2.3)

Rolling Proximity Identifier Key

A Rolling Proximity Identifier Key (RPIK) needs to be generated before the RPI, since
the key is used for generation of the RPI. The RPIK is generated using HKDF as shown
in Equation (2.4).

RPIKi = HKDF(teki , NU LL, U T F8(”EN − RPIK”), 16) (2.4)

Rolling Proximity Identifier

When the RPIK is generated one can derive a RPI as shown in Equation (2.5).

RPIi, j = AES128(RPIKi , PaddedData j) (2.5)

Where:

• j is the Unix Epoch Time at the moment the roll occurs
• PaddedData j is a 16 bytes long sequence constructed as:

◦ PaddedData j[0...5] = UTF8("EN-RPI")
◦ PaddedData j[6...11] = 0x000000000000
◦ PaddedData j[12...15] = EN IntervalNumber(j)

10 M. G. Aalien: A Contact Tracing Wearable

Associated Encrypted Metadata Key

The RPI is not the only data that needs to be broadcasted. The BLE packets need to
include some Associated Encrypted Metadata (AEM) according to the GAENS specifica-
tion. Before encrypting the metadata, a key is needed. The Associated Encrypted Metadata
Key (AEMK) is generated by Equation (2.6).

AEMKi = HKDF(teki , NU LL, U T F8(”EN − AEMK”), 16) (2.6)

Associated Encrypted Metadata

The AEM is encrypted as shown in Equation (2.7).

AEMi, j = AES128 − C TR(AEMKi , RPIi, j , Metadata) (2.7)

The RPI and AEM is used in the BLE broadcast packets. In this way, the contact tracing
can be done while preserving the user’s privacy.

2.4.3 Positive Diagnosis

If a participant in a GAENS test positive, the person can register it. When the positive
diagnosis is registered, a set of TEKs and their respective EN IntervalNumber, i, is
uploaded to a diagnosis server. These TEKs are the keys the user has used when the user
could have been exposing others. This is typically the TEKs from the past 14 days. The
set of TEKs is referred to as diagnosis keys. Otherwise, as long as the user does not test
positive, the keys will never leave the device.

The diagnosis server distributes the diagnosis keys from all the users that have tested
positive to all the other devices participating in the ENS. The participants in the ENS
periodically fetch the list of diagnosis keys from the diagnosis server to see if they have
a match with the RPIs they have received.

2.4.4 Bluetooth Specification

The GAENS Bluetooth specification provides the details on the BLE behavior of the ex-
posure notification service [3]. The service is registered with a 16 bit Universally Unique
Identifier (UUID) by the Bluetooth SIG. Devices participating in the ENS will broadcast
and scan for the UUID. The service data shall contain the RPI and the AEM.

The structure of the BLE advertising packet can be seen in Table 2.1. The packet is 31
bytes long, which is the maximum length of an BLE advertising packet. It has three types
of data, namely flags, complete 16-bit service UUID and service data. The flags section
specifies general discovery mode. The complete 16-bit service UUID section of the packet

Chapter 2: Background 11

includes the GAENS UUID, 0xFD6F. In the service data section, the data relevant for the
GAENS is located. This includes the RPI and the AEM. The AEM is structured as follows:

• Byte 0: Versioning

◦ Bits 7:6: Major version (01)
◦ Bits 5:4: Minor version (00)
◦ Bits 3:0: Reserved for future use

• Byte 1 - Transmit power level

◦ This is the measured radiated transmit power of the BLE packets. The field
ranges from -127dBm to +127dBm.

• Byte 2 - Reserved for future use
• Byte 3 - Reserved for future use

Flags Complete 16-bit Service UUID Service Data
Length Type Flags Length Type UUID Length Type Service data
0x02 0x01 0x1A 0x03 0x03 0xFD6F 0x17 0x16 0xFD6F RPI AEM

Table 2.1: A complete advertising packet according to the GAENS specification.

According to the GAENS Bluetooth specification, the recommended broadcasting inter-
val is 200-270 milliseconds. The advertising packets shall be non-connectable.

As mentioned, the RPI and the AEM have to rotate at a random time interval. This goes
for the Bluetooth address too. This is due to that all the information is device-dependent,
so to avoid any privacy issues they have to rotate synchronously. If they are not changed
synchronously they can be linked, and that would make it possible to track the device.
The rotation interval should be a random value that is greater than 10 minutes and less
than 20 minutes. Making the average rotation period 15 minutes.

The device will also have to scan for other devices broadcasting the GAENS UUID. The
discovered packets will be stored on the device until they expire. Along with the dis-
covered packets, the RSSI value has to be stored with their respective packets. This is
used for distance estimation between the devices, and is used in the exposure risk cal-
culations. There are no exact scanning interval and window that are specified by the
documentation, but the device should scan often enough and long enough to discover
ENS advertisements nearby within 5 minutes.

2.5 Wearable Exposure Notification Service

Wearable Exposure Notification Service (WENS) specification draft was released 03.12.2020
by Bluetooth Special Interest Group (Bluetooth SIG). The specification defines "a stand-
ardized method to enable a non-Internet-connected wearable device to operate in a man-
ner complementary with one or more deployed Client-based Exposure Notification Systems
(ENSs), therefore enabling significantly more individuals to participate in an ENS. The
methods defined in this specification are applicable for the containment of a wide variety of
infections, including SARS-CoV-2." [1].

12 M. G. Aalien: A Contact Tracing Wearable

Although the specification is a working draft, the potential in the Bluetooth service is
substantial. Given the situation the world finds itself in by the time of writing, it is a
good chance that it will be taken into use. It would make it possible for many more
individuals to participate in the already established ENSs. Meaning that the coverage
will increase.

The WENS specification states that it requires two other services, the Device Time Service
(DTS) and the Device Information Service (DIS). The DTS is used for keeping track of
time, and setting the time if it has drifted. While the DIS provides information about
the device itself. All the three services together make up the profile that can be seen
in Figure 2.2. In addition to those services, the specification also strictly recommends
Battery Service (BAS) and Bond Management Service (BMS), but since they are not
mandatory, they will not be discussed further.

The wearable have to broadcast connectable advertising packets for other devices to con-
nect to it and access the services. The structure of each connectable advertising packet
is shown in Table 2.2.

Flags Complete 16-bit Service UUID
Length Type Flags Length Type Service data
0x02 0x01 0x06 0x03 0x03 0xFF00

Table 2.2: A table showing the structure of a connectable WENS advertising packet.

WENS has six mandatory characteristics, and two characteristics where one has to se-
lect at least one of them, making it a total of seven mandatory characteristics. The two
characteristics that one can choose to support are the Temporary Key List characteristic
and the ENS Advertisement List characteristic. Since the wearable will be capable of
generating its own PIs, the Temporary Key List characteristic will be used, and the ENS
Advertisement List characteristic will not be further discussed.

Profile

Wearable Exposure
Notification Service

ENS Log

WEN Features

ENS Identifier

ENS Settings

Temporary Key List

Record Access
Control Point

WEN Status

Device Time Service Device Information Service

Device Time Feature

Time Change Log
Data

Device Time Control
Point

Device Time

Device Time
Parameters

Record Access
Control Point

Firmware Revision
String

Hardware Revision
String

Model Number String

Manufacturer Name
String

Figure 2.2: The Bluetooth services and their respective characteristics required by
WENS.

Chapter 2: Background 13

2.5.1 Characteristics

The seven characteristics of the WENS all have their different purposes. In Table 2.3 the
characteristics are described.

Characteristic Description

ENS Log

The ENS Log characteristic provides a mechanism for transferring a set of ENS Records
to a client, such as a smartphone. The characteristic allows segmentation to make it
possible to transfer a large amount of data through notifications. It can transfer a full
ENS Record, multiple ENS records or a part of an ENS record.

WEN Features This characteristic provides information about the supported features of the wearable.
ENS Identifier The ENS Identifier characteristic represents the ENS that is in use by the WENS wearable.

ENS Settings
The ENS Settings characteristic provides information about the settings specific to the ENS.
The settings can be changed through this characteristic.

Temporary Key
List

The Temporary Key List characteristic is representing a list of timestamps and temporary key
pairs. This is for enabling the client to read the recently used temporary keys used to generate
PIs and the client can also provide a schedule of temporary keys that the wearable
can use.

Record Access
Control Point

This characteristic is a control point that is used for basic management functionality for a
record database. The characteristic enables functionality like counting records, clearing
records and transmitting records based on filtering criteria.

WEN Status
This characteristic shares similarity with a control point, except that this characteristic
also can be read by a client.

Table 2.3: All the characteristics of the WENS that will be used, and their corresponding
description according to the specification [1].

2.6 Device Information Service

This service provides information about the device, and is one of the two additional
services required by WENS [1, 10]. The DIS makes information such as manufacturer,
model number, hardware revision and firmware revision, accessible by a client.

2.6.1 Characteristics

The documentation of DIS specifies many characteristics to choose from [10]. Only four
of them are mandatory according to the WENS specification [1]. Table 2.4 describes the
mandatory characteristics. All the characteristics has mandatory read property so that
they can be read by a client.

Characteristic Description
Manufacturer
Name String

This string represents the name of the manufacturer of the device.

Model Number
String

The Model Number String characteristic represents the model number that is
assigned by the device vendor.

Hardware Revision String This characteristic represents the hardware revision of the hardware within the device.
Firmware Revision String This characteristic represents the firmware revision for the firmware within the device.

Table 2.4: All the characteristics of the DIS that will be used, and their corresponding
description according to the specification [10].

14 M. G. Aalien: A Contact Tracing Wearable

2.7 Device Time Service

The DTS is also required by WENS. The service exposes the device’s Real Time Clock
(RTC) to the client for time synchronization.

2.7.1 Characteristics

The DTS documentation specifies six characteristics, and the WENS specification states
that all of them should be used [1, 11]. The characteristics are explained in Table 2.5.

Characteristic Description
Device Time
Feature

This characteristic provides a description of the supported features of the device.

Device Time
Parameters

The Device Time Parameters characteristic is used for revealing the device’s
behavioral thresholds and its capabilities.

Device Time
This characteristic is the device’s time, and is used for indicating and reading
the device time. The characteristic also reveals the time status.

Device Time
Control Point

This control point characteristic is used for executing supported procedures
on the server.

Time Change
Log Data

This characteristic is used to send Time Change Log Data records.

Record Access
Control Point

This characteristic is used to retrieve Time Change Log Data, and can be used to
filter out what parts of the records one would want to retrieve.

Table 2.5: All the characteristics of the DTS that will be used, and their corresponding
description according to the specification [11].

2.8 Zephyr

On an embedded platform, it is common to program directly on the microcontroller
unit without any operating system. However, there do exist Real-Time Operating Sys-
tem (RTOS), like Zephyr, that provide a low-level operating system [12]. This allows the
developer to focus on the actual features, and reuse existing open source code. Zephyr is
a RTOS for resource-constrained, connected and embedded devices. It is a Linux Found-
ation project and supports more than 200 boards. The RTOS is written in C. Nordic
Semiconductor is one of the contributors to the project, so the Zephyr RTOS supports
their BLE SoCs. The RTOS includes relevant source code, like a BLE API, mbedT LS
cryptography library and power management features.

2.9 CR2032 Coin Cell Battery

The CR2032 coin cell battery is one of the most common coin cell batteries, and is often
used to power small electronics devices. In 2011 an investigation was performed by
Energizer and Nordic Semiconductor for estimating the battery capacity of a CR2032

Chapter 2: Background 15

coin cell battery for wireless applications [13]. The rest of this section is based on the
findings from their investigation called, "High pulse drain impact on CR2032 coin cell
battery capacity".

The basic equation for battery life is shown in Equation (2.8). However, in a real-life
implementation it is not as simple as that. The actual capacity of a battery is dependent
on how it is used. A battery like CR2032 is rated by draining a small stable current of
about 200µA. The capacity changes when pulses of high peak currents are drawn. When
designing an ultra low power wireless solution the focus is often on making sure the
average current consumption is low, but focusing only on the average current assumes
that the capacity of the battery would be equal for all other conditions, which is not true.

Bat ter y l i f et ime (h) =
Bat ter y capaci t y (mAh)

Average current consumption (mA)
(2.8)

One of the major factors to the batteries’ available capacity is the rate of discharge. The
higher the rate of discharge is, the smaller the effective capacity of the battery gets.
Coin cell batteries are often used for applications which draws a small, stable amount
of current, which results in a long battery life. Such applications as traditional watches.
Unlike traditional watches, the current in wireless devices is drawn in short bursts of
currents in the range of 10-80mA. This will impact the effective capacity of the battery.

The actual capacity for a low-power wireless application such as this has to be tested in
the future, but one can expect around 200mAh.

2.10 Three Phases of Prototyping

There are many ways to look at the timeline in product prototyping, and one of them
is by dividing the timeline into three phases; alpha phase, beta phase and pilot phase
[14]. These three phases will be used to explain the progress of the work in this thesis.
Each phase represents a step forward along the product roadmap. What stage you find
yourself in along the process requires different tools, methods and decisions. In the next
sections the three phases are explained.

2.10.1 Alpha Phase

In the alpha phase, one seeks to answer the question if the product will work or not,
and how it will look and be used. In this phase, one typically creates a PoC prototype
to find out if the product will work. In addition to the PoC prototype, an appearance
model prototype is often created as well. The appearance model prototype often lacks
functionality, but is visually representative of the desired final look of the product.

16 M. G. Aalien: A Contact Tracing Wearable

2.10.2 Beta Phase

In the beta phase, the product is becoming fully formed. This includes that the product
is functional and visually representative. In the beta phase, one works on improving and
refining the product design and functionality based on earlier iterations of the product,
like the PoC prototype. There are often created two new versions of the product in this
phase; the engineering prototype and the production prototype. They are somewhat
different in their purpose. The engineering prototype is a direct successor from the PoC
prototype, and it should begin to look like the desired appearance as well. This prototype
is meant to be deployed and tested by potential customers for demonstrating the viability
of the product in an operational environment.

If the engineering prototype is successful, the next step is to create a production proto-
type. This is the successor to the engineering prototype. The production prototype is the
last prototype that is created before the product is released for mass-production tooling.
The product should be fully functional and have a virtually indistinguishable appearance
from the final product.

2.10.3 Pilot Phase

The last phase of prototyping is essentially the final product, which is the start of mass
production, and is often called the pilot. It is still referred to as a prototype because it
needs final product testing, certification, quality reviews and approvals.

Chapter 3

Methodology

In this chapter, the approach to answer the problem description is outlined, and the tools
required to develop a solution are presented.

3.1 Approach

Previous to this master’s thesis, the author conducted a specialization project on the
same topic. As a result of the specialization project, a PoC prototype of the wearable’s
hardware and software was designed. This can be counted as a part of the alpha phase
of the product prototyping. It showed that there is possible to design a small wearable
that can be used for contact tracing.

According to the three phases of prototyping from Section 2.10, what is left from the
alpha phase is developing the appearance model. As the appearance of the wearable does
not affect the software implementation for the engineering prototype, it was decided
to do the software implementation and optimization before designing the appearance
model.

Implementing the software for the engineering prototype started of by reading the doc-
umentation of the GAENS and WENS to get familiar. This was followed by creating a
diagram of the modules and public functions that was required, before the actual soft-
ware was implemented in the Zephyr RTOS environment. The code was documented
using Doxygen, and Jira Kanban board was used to keep track of the tasks that needed
to be done.

In the specialization project, it was found that the wearable needed an external memory
module for storing ENS records. The required storage space was something that needed
to be calculated before optimizations. Based on the software implementation, and the
specification documents, the storage requirements was determined. This was important
because the choice of external memory affects the current consumption of the device.

After having implemented the software, and determined the storage requirements, the
current consumption of the PoC prototype was measured when it was programmed with

17

18 M. G. Aalien: A Contact Tracing Wearable

the software. This set the base for the optimizations. It was also necessary to know what
processes that contributed the most to the current consumption. This was done by isol-
ating all the processes, and measuring or estimating each of their current contributions.

With the results from the current consumption estimation and measurements, methods
for reducing the current consumption was investigated.

After investigating different optimizations methods, and implementing them in soft-
ware, the appearance model was created. The appearance model marked the end of
the alpha phase.

When the appearance model was finished, the beta phase of the product development
was entered. The software implementation, optimization methods, and the appearance
model laid the foundation for development of the hardware for the engineering proto-
type.

3.1.1 Tools

To develop and optimize the engineering prototype, several tools were used. For the soft-
ware development, the Zephyr RTOS environment were used to aid the development.
By reusing and modifying existing open source code, it was possible to speed up the
development.

The functionality of the software was tested on nRF52833 development kits from Nordic
Semiconductor and the PoC prototype to validate that everything works as it should.
The BLE communication was monitored using the nRF Connect application from Nordic
Semiconductor. With nRF Connect, one can for example see the content and interval
of advertising packets in the application. In nRF Connect there are several apps for
different purposes. The app that is called "Bluetooth Low Energy" was used for scanning
for advertising packets, connecting to devices and interacting with the characteristics
and services. The "Power Profiler" app was used together with a Power Profiler Kit (PPK)
to measure the current consumption of the development kit. Nordic Semiconductor’s
"Online Power Profiler for BLE" was used to validate the measurements [15]. This was
used during the estimation and optimization of the wearable.

For designing the hardware of the engineering prototype, Altium Designer is used. Al-
tium Designer is one of the most comprehensive end-to-end solutions for PCB designers.
Altium Designer was used to designing the hardware of the PoC prototype as well, and
was proven as a suitable tool to develop such a solution.

Chapter 4

Software Development

In this chapter, the software implementation of a combined solution of GAENS and
WENS is presented and verified.

4.1 Implementation

The software for the wearable has to comply with the GAENS specifications from Google
and Apple, and the WENS specification from the Bluetooth SIG. The specification doc-
uments explain the implementation in detail, but leaves some room for individual vari-
ations. A diagram of the different modules and public functions required for the imple-
mentation is illustrated in Figure 4.1. It gives an overview that makes it easier to develop
the software in a structured manner. The diagram is merely a template to assist the de-
velopment, and does not give an exact view of how the real implementation will be.
The software is implemented in Zephyr RTOS, as it is widely used and supports Nordic
Semiconductor’s BLE SoCs. The Zephyr development environment is set up following
their getting started guide.

In the next section, how the external memory communication is configured is covered.
This is followed by an explanation of how the random rotation interval between 10 and
20 minutes is calculated. Both sections explain parts of the implementation that is not
covered by the documentation. While in Section 4.1.3 the WENS and GAENS part of the
implementation is presented.

4.1.1 External Flash Memory Communication

In Zephyr there are drivers for many products. The flash memory chip on the PoC pro-
totype, N25Q032A13ESC40G, is a NOR flash memory, which Zephyr has a driver for
[16]. The library drivers/flash.h needs to be included to access the flash memory
API. In addition to that, three configuration options need to be defined in the pro-
ject’s configuration files. The three configurations is CONFIG_FLASH=y, CONFIG_SPI=y and
CONFIG_SPI_NOR=y. This enables the flash memory API, the SPI and configures the SPI

19

20 M. G. Aalien: A Contact Tracing Wearable

Main

main()

Scan

scan_start()

scan_set_parameters()

scan_stop()

Connection

connection_init()BLE

ble_init()

Storage Manager

storage_read()

storage_erase()

storage_write_entry()

External Memory Driver

extmem_read()

extmem_erase()

extmem_write()

extmem_init()

Wearable Exposure Notification Service

ENS Log

WEN Features

ENS Identifier

Temporary Key List

WEN Status

RACP

ENS Settings

Advertise

advertise_start()

advertise_change_gaens_service_data()

advertise_stop()

ENS Crypto

crypto_aemk()

crypto_rpik()

crypto_init()

crypto_rpi()

crypto_en_interval_number()

crypto_tek()

crypto_aem()

Device Time Service

Time Change Log Data

RACP

Device Time

Device Time Parameters

Device Time Control Point

Device Time Feature

Device Information Service

Manufacturer Name String

Hardware Revision String

Model Number String

Firmware Revision String

GAENS

gaens_init()

Time

set_current_time()

get_current_time()

Figure 4.1: A diagram of the modules and public functions in the software implement-
ation.

Chapter 4: Software Development 21

for a NOR flash memory. To actually communicate with the external memory, one has
to overwrite the default hardware describing files to get the pinout and settings set cor-
rectly. This goes for the UART communication as well, where the TX pin will be rerouted
to one of the pins on the PoC prototype’s header for easier accessibility and debugging.
The overlay file that is used for configuring the SPI and UART communication is showed
in Code listing 4.1.

Code listing 4.1: An overlay file to overwrite the default hardware description of the
nRF52833 to get the correct pinout and settings for UART and SPI.

1 /* This file consist of overlays which overwrite the corresponding entries in the
2 hardware-describing nrf52833dk_nrf52833.dts (Device Tree Source) file. */
3
4
5 /* An overlay of uart0 to enable logging on P0.15 */
6 &uart0 {
7 compatible = "nordic,nrf-uarte";
8 status = "okay";
9 current-speed = <115200>;

10 tx-pin = <15>;
11 rx-pin = <8>;
12 rts-pin = <5>;
13 cts-pin = <7>;
14 };
15
16 /* An overlay of SPI3 to enable the N25Q32 external memory */
17 &spi3 {
18 status = "okay";
19 sck-pin = <31>;
20 miso-pin = <29>;
21 mosi-pin = <30>;
22 cs-gpios = <&arduino_header 2 GPIO_ACTIVE_LOW>; /* <28> */
23 N25Q032: N25Q032A13ESC40G@0 {
24 compatible = "jedec,spi-nor";
25 spi-max-frequency = <80000000>;
26 reg = <0>;
27 label = "N25Q032";
28 jedec-id = [20 BA 16];
29 size = <33554432>;
30 };
31 };

4.1.2 Random Interval

The Bluetooth address, together with the RPI and AEM, has to change about every 15
minutes. The interval should be larger than 10 minutes and less than 20 minutes. To
achieve this without using too much power, one can set up a Real Time Clock (RTC)
timer interrupt to trigger when it is time to shift the Bluetooth address, RPI and AEM.
This can be done by using the CRNG function to retrieve a random 32-bit number and
performing the operation as showed in Equation (4.1).

tr = CRNG(4)mod (Tu − Tl − 1) + Tl + 1 (4.1)

Where:

22 M. G. Aalien: A Contact Tracing Wearable

• tr is the random rotation interval larger than 10 minutes and less than 20 minutes.
• CRNG(4) is the cryptographic random number generator specified with 32-bit

length.
• Tu is the upper limit of the desired interval (1200 seconds).
• Tl is the lower limit of the desired interval (600 seconds).

4.1.3 Bluetooth and Cryptography Implementation

The rest of the code is mostly Bluetooth or cryptography-related. As both are covered and
described in the specification documents provided by Google, Apple and Bluetooth SIG,
the code will not be described in detail [1, 3, 9]. The cryptography code implementation
was implemented and verified by a friend of mine, Martin Falang, while the rest of the
implementation is done by myself. The Doxygen-generated documentation of the code
can be viewed in Appendix I. The implementation results in the state diagram that is
illustrated in Figure 4.2. The state diagram is a simplified version of the implementation,
but it shows the overall basic processes.

Scan Advertise WENS Advertise GAENS Sleep

No

Yes

Received
GAENS
packet?

No

Yes

Connection
request?

Change Bluetooth
Address, RPI and

AEM

Write record to
external memory Connect

In connection

ConnectWrite record to
external memory

In connection

Figure 4.2: A simplified state diagram of the implementation after the initialization is
finished.

The non-connectable GAENS advertising is set up with the suggested parameters from
the documentation. The specification suggests a minimum advertise interval of 200ms
and a maximum interval of 270ms. The scan interval is 1 minute, and the scan window
is configured to be 300ms. For the connectable WENS advertising, 1s advertise interval
is used.

Chapter 4: Software Development 23

4.2 Confirming the Functionality of the Implementation

After developing the software and flashing a development kit with it, the solution had
to be tested. To test if the wearable was able to filter out and receive GAENS advertising
packets from the Smittestopp app, the wearable was placed near a smartphone with
Smittestopp active. The wearable was set up to print the received packets in the terminal
window. In Figure 4.3 a screenshot from the terminal window can be viewed. It displays
the received GAENS service data (RPI + AEM), the sequence number that is assigned by
the wearable, the timestamp for which the packet was received and the RSSI value. The
wearable attempts to store the record and writes it successfully to the external memory.
This shows that the scanning works as it should, and the received records from nearby
ENS-participating devices are stored successfully.

Figure 4.3: A screenshot of the terminal window displaying a received advertising packet
from a device with the Smittestopp app active. All the values are written in their hexa-
decimal value.

Verifying that the GAENS advertising packets is configured properly can be done with
the nRF Connect application. As many people are using the Smittestopp app, the RPI was
configured to be only ones and the AEM to be only twos, so that the advertising packets
from the wearable can be separated from all the other GAENS advertising packets nearby.
In Figure 4.4 a screenshot from the nRF Connect application is shown. It displays that it
receives the GAENS non-connectable advertising packet every 203ms, with the correct
UUID and service data. This illustrates that it works according to the specification. The

Figure 4.4: A screenshot from nRF Connect showing that the smartphone receives the
GAENS advertising packets from the development kit.

WENS advertising packets should be connectable, and it should be possible to connect to
the wearable and access the characteristics. This can also be tested in the nRF Connect

24 M. G. Aalien: A Contact Tracing Wearable

app. Figure 4.5 shows that the wearable advertises connectable packets every 1002ms.
The UUID (0xFF00) is just a temporary ID selected for testing purposes, as the service
UUID has not been released yet.

Figure 4.5: A screenshot form nRF Connect showing that the smartphone receives the
WENS connectable advertising packets from the development kit. The UUID is just a
temporary value used for testing, as the UUID is not defined yet by Bluetooth SIG.

In Figure 4.6 one can see that the computer is connected to the development kit and has
access to six services. Generic Attribute and Generic Access are default services that are
required. nRF Connect does not recognize two of the services, the DTS (0x1847) and
the WENS (0xFF00). This is because the DTS is a new service, and the WENS UUID is
a temporary one used for testing purposes. In Appendix C the characteristics of each of
the services is shown.

Figure 4.6: A screenshot form nRF Connect showing that the smartphone can connect
to the development kit and get access to the services.

Since the WENS’ UUIDs has not been released yet, temporary ones is used for testing
purposes. It was chosen not to finish implementing all the functionality of the charac-
teristics because the documentation is only preliminary, and their functionality is not
relevant for the rest of this thesis. This is something that is saved for future work.

Chapter 5

Storage Requirements

The GAENS require memory space to store all the ENS records for 14 days. In this
chapter, the storage requirements of the wearable will be calculated.

5.1 Memory Estimations

The ENS data received from nearby transmitters will need a place to be stored. The BLE
SoC cannot provide enough storage space alone. Hence, an external memory is needed.
Using GAENS, one record entry takes up 34 bytes, as represented in Table 5.1.

Field Bytes
Sequence Number 3
Timestamp 4
Length 2
ENS Data 22
RSSI 3
Total 34

Table 5.1: The size of each record that is being stored using GAENS.

An external memory unit adds a significant contribution to the wearable’s power con-
sumption, size, and price. This makes the choice of what external memory chip to use
important. Before one starts looking into what external memory chip to use, one has to
estimate how much data needs to be stored, and how the external memory chip will be
used.

How many people you meet on average every day will impact the required storage. A
person who meets many others will receive more packets than those who meets few. Es-
timating how many transmitters are nearby is difficult, as everyone lives different lives.
For most people, one can divide a typical day into different types of social settings. The
WENS specification suggests those to be home, work, commute and social. In Table 5.2
one can see the table from the WENS specification. This is their scenario:

25

26 M. G. Aalien: A Contact Tracing Wearable

"An example is shown below of a working adult who lives with a family of five people. From
7 p.m. to 7 a.m., this person is home and within range of at most four other devices, perhaps
less while sleeping. The rest of the day involves activities with more people nearby, although
even in crowded scenarios, there is a limit to how many people will typically be within a
2-meter radius. Even on crowded subways, a device held on the body will have a limit to
how many other devices it can successfully receive." [1]

Transmitter in Range Hours per Day
Home 4 12
Work 12 8
Commute 14 2
Social 10 2

Table 5.2: An estimate for how many transmitters that are in range under different
situations during a day. This gives an average of 8 transmitters in range [1].

How many packets are received per scan interval on average is dependent on several
factors. For the calculations, there is made the assumption that there are no packet
collisions, and that all the packets advertised by nearby ENS devices will be received
successfully. The scan interval is 300ms and the advertising interval is between 200ms
and 270ms. The device will try to advertise if it has available resources, and most of the
time it can advertise immediately, but not always. For the calculations, 205ms will be
used as an average value.

A simulation was developed in order to decide the statistical average number of packets
that will be received by a device during a scan window if only one advertising device
is nearby, advertising at a specific advertising interval. In Figure 5.1 the resulting graph
from the simulation is shown. The simulation shows that a scan interval of 300ms and
an advertise interval of 205ms give an average number of received packets per device
nearby of 1.46 packets. Assuming no collision, all packets are received successfully, and
an average of 8 devices nearby, this results in receiving around 12 advertisement packets
per scan window on average.

Figure 5.1: The statistical average number of packets received with different advertise
intervals for a 300ms scan window. The figure is generated from the script in Appendix E.

Chapter 5: Storage Requirements 27

The Python script used to perform the simulation is shown in Appendix E. It works
by simulating a scan window and a nearby device advertising at specific advertising
intervals, and by shifting the timing of the advertising packets one can find the average
number of received packets for all cases of timing shifts.

In Table 5.3 one can see the numbers used for estimation of memory requirements for
a contact tracing device. This table is slightly different from the one suggested in the
WENS specification. Instead of using the RPI interval (which is variable), and an expec-
ted number of receptions per RPI interval that is not explained, an estimation of how
many packets being received per scan window (which is fixed) is used. With the spe-
cifications in Table 5.3 the device would require a minimum memory size of 4113kB.
This corresponds to about 32Mb. This means that a 32Mb external flash memory should
be sufficient.

Value Unit
Scan Off Time 60 Seconds
Scan On Time 300 ms
Advertisement Interval 205 ms
RPI Interval ∼15 minutes
Average Number of Transmitters in Range 8 devices
Estimated Receptions per Scan Window 12 records
Records per Day 17280 records
Storage per Day 588 kB
Days of Storage 7 days
Minimum Memory Size 4113 kB

Table 5.3: Estimation of minimum memory size without compression.

In the calculations, it is assumed that the records are stored on the wearable for 7 days.
In reality, it could be shorter, because one would want to connect the wearable to a
client, such as a smartphone, to upload the records to it every day or two. The 144 TEKs
and their corresponding EN IntervalNumber, that needs to be stored, is disregarded in
the calculations, as their required storage space is insignificant when compared to the
ENS records.

Chapter 6

Current Consumption Estimations
and Measurements

With wearables powered by batteries, it is important to keep the current consumption
as low as possible. There are many techniques that can be used to achieve low power
consumption. From a hardware design perspective, this generally means developing a
minimalist design with components suitable for low power consumption. However, how
the hardware is put into use is equally important. The software needs to be efficient
and put the device into low-power modes when possible, otherwise, battery capacity is
wasted. To come up with an ideal solution, one first needs to figure out what the device
needs to do.

To start off, the current consumption of the PoC prototype is measured. This will give a
base for how much current an unoptimized solution would draw. Next, the current con-
suming operations that the wearable is required to perform is measured on a nRF52833
development kit, to isolate the contributions of each of the operations which later can
be used for optimization calculations for the engineering prototype.

6.1 PoC Prototype Current Consumption

Before any estimation of the current consumption contribution of each operation, the
total consumption for the PoC prototype is measured. To do so, the PoC prototype was
flashed with the software described in Chapter 4, and connected to the PPK. The res-
ulting current consumption graph of the PoC prototype is showed in Figure 6.1. The
average current consumption is approximately 532µA. If it was powered by a CR2032
coin cell battery, with 200mAh capacity, it would last for close to 16 days. This is far less
than the desired battery life, which is several months.

29

30 M. G. Aalien: A Contact Tracing Wearable

Figure 6.1: This measurement shows the current profile of the PoC prototype, pro-
grammed with the GAENS and WENS implementation described in Chapter 4.

6.2 GAENS Current Consuming Operations

The GAENS contribution to the power consumption comes in the form of BLE commu-
nication and cryptography operations that need to be performed at certain intervals.
In addition, it contributes in the form of writing to the external memory to store ENS
records. The following is the required operations that will contribute the most to the
current consumption for GAENS:

• Bluetooth

◦ Non-connectable advertising

− Suggested advertisement interval is 200ms (min) - 270ms (max).

◦ Scanning

− Suggested scan on time 300ms.
− Suggested scan off time is 60 seconds.
− Store received GAENS advertisement packets.

• Cryptography

◦ Generate new RPI and AEM in a randomized interval larger than 10 minutes
and less than 20 minutes.
◦ Generate new RPIK, AEMK and TEK every 24 hours.

• Memory operations

◦ Store ENS records.

Chapter 6: Current Consumption Estimations and Measurements 31

6.3 WENS Current Consuming Operations

From WENS most of the energy consumption comes in the form of BLE communications
and memory operations. It needs to advertise connectable advertisement packets for
devices to connect, and during connections data is exchanged over BLE and ENS records
are read and manipulated. The following is the required operations for WENS with its
corresponding suggested parameters:

• Bluetooth

◦ Connectable advertising

− There is not specified a required or suggested interval, but since it is not
critical to connect with it immediately 1 second will be used.

◦ Connections

− During connections one will typically read and write to the different
characteristics, and transfer ENS records.

− It will also read and manipulate the external memory’s data.

6.4 Estimations and Measurements

Nordic Semiconductor offers a PPK for the current consumption of their BLE SoC on
their development kits. To be able to calculate the power consumption during different
circumstances and parameters, it is necessary to find out how much current the BLE
SoC consumes during the different operations. The different operations that contribute
to the current consumption are as follows:

• Scanning
• Advertising
• Connections
• Sleep mode
• Randomized rotation of GAENS service data
• External memory

In the next sections, all the operations will be looked into. Their average current con-
sumption and duration will be measured or estimated. All the estimations and meas-
urements are conducted with 3.0V power supply for the nRF52833 BLE SoC at 0dBm
transmit power.

6.4.1 Non-connectable GAENS Advertising

In Figure 6.2 one can see the current consumption during a non-connectable packet.
The packet is configured to transmit with 0dBm transmit power and has 31 bytes of
payload. The average current for each non-connectable advertising packet is 3.00mA,

32 M. G. Aalien: A Contact Tracing Wearable

and it takes 3.1ms to transmit. This corresponds well with the online power profiler
from Nordic Semiconductor. The large spike in the current is possibly caused by the PPK
shunt resistor switching to increase the resolution. However, the spike does not make
too much impact on the measurement and is disregarded.

Figure 6.2: Current consumption of one non-connectable GAENS advertising packet
transmitting at 0dBm transmit power and is 31 bytes long.

6.4.2 Connectable WENS Advertising

During connectable advertising, the radio both transmits and scans for a response. This
means the radio switches several times during connectable advertising, since it has to
advertise and scan on all the three advertise channels. In Figure 6.3 the current con-
sumption of a connectable advertisement packet can be seen. The advertisement packet
consists of 7 bytes of data, as shown earlier in Table 2.2.

Most likely, the radio switching causes the PPK to measure inaccurately. As mentioned,
the PPK switches resistance when the current changes significantly in order to obtain a
higher resolution. It could be that the current changes too fast back and forth for the PPK
to follow. When compared to the online power profiler, there is a significant difference
in the current consumption [15]. This is confirmed by using a multimeter to verify the
measurements. A more accurate solution would be to use the estimate from the online
power profiler. The online power profiler says that a connectable advertisement takes
3.78ms and has an average current during transmission of 2.70mA.

Chapter 6: Current Consumption Estimations and Measurements 33

Figure 6.3: Current consumption of one connectable WENS advertising packet trans-
mitted at 0dBm transmit power and with 7 bytes of payload.

6.4.3 Scanning

In Figure 6.4 one can see one period of scanning for 300ms. The current consumption is
quite stable at 5.65mA. According to the nRF52833 specification, the SoC will use 6.0mA
when receiving at 1Mbps BLE mode [17]. This confirms that the PPK measurements are
quite accurate, but for further calculations 6.0mA will be used.

Figure 6.4: Current consumption of one 300ms scanning interval.

34 M. G. Aalien: A Contact Tracing Wearable

6.4.4 Sleep mode

A wearable participating in an ENS will spend most of its time in a low power state, such
as sleep mode. The wearable has a limited battery capacity, so one would want to spend
as much time in the lowest power state that it can as possible. The average sleep mode
current for nRF52833 is measured to be around 2.4µA. In Figure 6.5 one can see the
current consumption during sleep mode. The measured current corresponds well with
both the online power profiler and the nRF52833 product specification [15, 17]. The
current consumption could have been closer to 2.0µA, but the GAENS implementation
requires "wake on RTC" to be enabled in order to wake up the device for changing the
RPI, BLE address and AEM at a randomized rotation interval, which increases it slightly.

Figure 6.5: Current consumption during sleep mode with "wake on RTC" enabled.

6.4.5 Connections

It is difficult to say exactly how much current is drawn during connections as there is no
solution to test this against. One factor is how often one would connect the wearable to
a smartphone, and another one is how it is used, which is controlled by the user. It is also
dependent on the smartphone that is connected to the wearable (i.e. if it is supporting
data packet length extension and 2Mbps PHY).

However, it is possible to make some assumptions and get a rough estimate. As the
wearable will spend very little of its time in connections, it should not make too much
of a difference. For the estimations, the online power profiler will be used.

It is important that the wearable has a high transmit throughput to increase the ease of
use, because much of the connection time would be spent transferring records for the
client to process. The parameters used for calculating the current consumption during

Chapter 6: Current Consumption Estimations and Measurements 35

connections are:

• Data Packet Length Extension

◦ By enabling Data Packet Length Extension, one increases the allowable pay-
load size of application data while connected to 251 bytes. This significantly
increases throughput, as the default is 27 bytes.

• 2 Mbps PHY

◦ Using 2 Mbps mode opposed to the default 1 Mbps mode.

• Slave latency 0
• 251 byte TX payload

◦ This is the maximum number of bytes that can fit in one event.

• 128 byte RX payload

◦ As the wearable will mostly be receiving smaller packets from the client, in
the form of operation codes, 128 bytes would be an overestimate for how
much it will receive in reality.

• Connection interval 7.5ms

◦ This is the shortest connection interval that is allowed, which enables faster
communication.

• 0 dBm radio TX power
• 2µA idle current

When inserting these settings into the online power profiler one gets an average current
of 2.02mA, a TX throughput of 267.73kbps, and a RX throughput of 136.53kbps. The
time it takes to transfer all the ENS records over BLE is given by Equation (6.1). If using
an external memory chip of 32 Mb, as estimated in Table 5.3, and assuming it is full,
it would take approximately 120 seconds to transfer all the records. To make room for
other operations to be performed as well, one can estimate that the connections last for
three minutes a day. It is important to notice that if one connects to a client each day,
the external memory would not be full of new records, so three minutes should be a
significant overestimate.

Complete record t rans f er t ime =
Size o f records

Throughput
(6.1)

6.4.6 Randomized Rotation of GAENS Service Data

According to the GAENS Bluetooth specification, the BLE address shall change at a ran-
domized rotation timeout interval larger than 10 minutes and less than 20 minutes.
When the BLE address changes, the RPI and AEM also has to change immediately, so
that they cannot be linked. This is done by the _rotate_rpi_handler as shown in Ap-
pendix D. Zephyr changes the advertising BLE address automatically when stopping and
starting to advertise.

36 M. G. Aalien: A Contact Tracing Wearable

Assuming that the randomized rotation timeout interval is truly random, it will execute
the handler every 15 minutes on average. This will contribute to the current consump-
tion.

To determine how much it will affect the current consumption, one has to find out the
average current when executing the handler, and how long it takes before the device is
put back to sleep. In Figure 6.6 one can see the current consumption during the rotation
of GAENS service data.

Figure 6.6: Current consumption during rotation of GAENS service data.

The graph does not show any major spikes, and the current consumption seems to cor-
respond with the nRF52833 product specification [17]. The rotation of GAENS service
data and BLE address takes approximately 5.5 ms and consumes 3.0mA on average.

6.4.7 External Memory

The external memory unit will also add to the current consumption. The contribution
depends on the implementation and the characteristics of the chip. The most important
factor to consider is the current the external memory consumes when it is not doing
anything, since most of the time it will not be in use. The external memory will only be
used if the device receives GAENS advertising packets from nearby devices, and during
connections, to read out or make changes to the records.

The flash memory chip on the PoC prototype is probably not the most optimal solution.
It does not support sleep modes, which results in a high average current consumption.
So, to find a more suitable example to use for power consumption estimations, DigiKey
was searched for memory chips with the following criteria:

• Part Status: Active

Chapter 6: Current Consumption Estimations and Measurements 37

• Memory Type: Non-Volatile

◦ It is important that memory can retain stored information after power is
removed so that one does not lose any records unintentionally.

• Memory Size: 32Mbit

◦ According to memory usage estimations.

• Memory Format: FLASH
• Memory Interface: SPI
• Voltage Supply: ∼3V
• In stock

The top result, sorted after stock, is W25Q32JVZPIQ [18]. This chip supports low power
modes and fulfills every criterion. It is also among the lowest priced ones. Based on
the criteria, W25Q32JVZPIQ is chosen as an example for further calculations. The flash
memory chip support power-down mode with a power consumption of 1µA. It takes 5ms
to wake up the device from power-down mode, but that should not be a problem for this
WENS and GAENS implementation. One can wake it up at the beginning of scanning
windows and connections so that it is accessible when it is needed, and power it back
down again when the operations are finished. The standby current is 10µA.

Read operations can be performed at different speeds, 50MHz, 80MHz and 104MHz.
These speeds are significantly higher than what the nRF BLE SoCs support. Those have
a maximum data rate of 8Mbps. During 50MHz read operations, the memory chips con-
sume 8mA, so that can be used as an estimate, even though it could be lower than that
because of the decrease in data rate. Writing to the memory uses 20mA.

As the records will be placed consecutively in memory, it is enough to send one in-
struction and address when reading and writing because the address is automatically
incremented so that one allows for a continuous stream of data. Though for reading
and transferring data over Bluetooth, one cannot read all the data at once, because the
BLE SoC does not have enough memory to buffer the data all at once before it is trans-
mitted. The time that is not spent reading from the memory during connections, the
external memory chip will spend in standby mode. The reason that it will be in standby
mode is so that the wearable can respond quickly upon request for ENS records.

Writing operations can be done one page at a time (256 bytes), so the operation codes
and addresses that are required in the SPI transactions to read and write will not be
considered for calculations, as they are not significant.

Given that the device will receive around 12 records per scan window, it will have to
write 360 bytes to storage every scan window. According to the datasheet it takes 0.4ms
to program a page, and 360 bytes would take up a little less than two pages, but to
approximate let say it takes up two. This means that storing the received packets in
each scan window takes 0.8ms at 20mA.

During connections, the BLE TX throughput and RX throughput were estimated to be
267.73 kbps and 136.53 kbps. This means that reading and writing from the external
memory is significantly faster with its 8Mbps. As the size of the memory is 32Mb and
the SPI data rate is 8Mbps, one can read the whole memory in 4 seconds. However, as

38 M. G. Aalien: A Contact Tracing Wearable

mentioned, these readings will have to be performed in bursts because the data cannot
be buffered on the BLE SoC before transferring the data over BLE. Assuming that one
reads the whole memory each day, it will spend 4 seconds a day reading the external
memory at 8mA. This should be an overestimate, as the memory will most likely not be
filled each day. In addition to this, let us say that the client chooses to clear all ENS data
each day by writing to the WEN Status characteristic of the WENS. A chip erase requires
20mA and takes 10 seconds.

6.5 Total Current Consumption

Now that all the largest contributors to the current consumption have been accounted
for, measured or estimated, one can put their contributions together and estimate the
total current consumption of the wearable, averaged over 24 hours. In Table 6.1, the
current contribution of each isolated operation averaged over 24 hours is showed. The
current consumption of the BLE SoC is 92.14µA, and the current consumption of the
external flash memory is 3.97µA. This makes the total consumption 96.11µA. Powered
by a CR2032 coin cell battery, with an estimated battery capacity of 200mAh, one can
expect around 87 days of operation.

BLE SoC
Current (mA) Duration (ms) Interval (ms) Average Current (µA)

Non-Connectable GAENS Advertising 3 3.1 205 45.3659
Connectable WENS Advertising 2.7 3.78 1000 10.2060
Scanning 6 300 60000 30.0000
Connections 2.02 180000 86400000 4.2083
Rotation of GAENS Keys and Identifier 3 5.5 900000 0.0183
Sleep 0.0024 84154343.41 86400000 2.3376

92.1361
External Memory
Write 20 0.8 60000 0.2667
Read 8 4000 86400000 0.3704
Erase 20 10000 86400000 2.3148
Standby 0.01 166000 86400000 0.0192
Power-Down 0.001 86218848 86400000 0.9979

3.9690

Total (µA): 96.1051

Table 6.1: A table showing the current consumption contributions of each isolated op-
eration averaged over all time.

An important note is that this is not the current consumption of the unoptimized PoC
prototype from Figure 6.1. The external memory is different, and the device does not go
to sleep between the operations, which it should do. Why the PoC prototype does not
enter sleep mode is discussed further in Section 7.1.

Chapter 7

Optimization

In the previous chapter, the average current consumption of the unoptimized PoC pro-
totype was found to be approximately 532µA. In this chapter some techniques to reduce
the current consumption, and increase the battery life, will be investigated. The meas-
urements are done using the PPK together with a nRF52833 development kit.

7.1 Disabling Serial Communication

Having serial communication active, such as SPI or UART, will prevent Zephyr RTOS
from putting the wearable in sleep mode when it has nothing to do, because it waits
for possible communication. This is what is happening in Figure 6.1, where one can see
that the wearable is not put in sleep mode in between advertising and scanning packets.
Not putting the device into sleep mode increases the power consumption drastically and
has to be avoided. To fix this issue, one has to disable the serial communication after
finishing the operations done to the external memory.

The resulting current consumption curve for the nRF52833 development kit after dis-
abling serial communication can be viewed in Figure 7.1. With the serial communication
disabled, the Zephyr can put the device in sleep mode in between the BLE communic-
ation operations. The development kit does not have an external memory that would
otherwise contribute to the current consumption. After this optimization, the current
consumption for the engineering prototype would be closer to the estimated current
consumption from Table 6.1, 96.11µA.

The current consumption of the separate operations can be compared in a histogram
to see what of the operations contributes the most to the consumption. The histogram
can be seen in Figure 7.2. The histogram shows that the BLE advertising and scanning
are the major contributors to the current consumption. The non-connectable advertising,
connectable advertising and scanning consume 89.04% of the total current consumption
and is probably the most important operations to optimize for current consumption.

39

40 M. G. Aalien: A Contact Tracing Wearable

Figure 7.1: This measurement shows the current profile of the nRF52833 development
kit with the GAENS and WENS implementation after disabling serial communication.

Non
-C

on
ne

cta
ble

Adv
er

tis
in

g

Con
ne

cta
ble

Adv
er

tis
in

g

Sc
an

ni
ng

Con
ne

cti
on

Rot
ati

on
of

Key
s an

d Id
en

tifi
er

Sle
ep

Ex
ter

na
l M

em
or

y W
rit

e

Ex
ter

na
l M

em
or

y Rea
d

Ex
ter

na
l M

em
or

y Er
as

e

Ex
ter

na
l M

em
or

y St
an

db
y

Ex
ter

na
l M

em
or

y Po
wer

-D
ow

n

0

10

20

30

40

A
ve

ra
ge

C
ur

re
nt

(µ
A

)

Figure 7.2: A histogram showing the average current consumption of each isolated op-
erating of the BLE SoC and the external memory averaged over 24 hours.

Chapter 7: Optimization 41

7.2 Accelerometer

A large part of the day it is not necessary to perform contact tracing. When the wearable
is not worn, the wearable could be put into a lower power state, instead of operating
as normal. One way of determining if the wearable is worn is using an accelerometer.
When the wearable has not been moving for some time, the wearable can be put into
sleep mode until it is moving again. However, an accelerometer would add size to the
wearable, and increase the cost. Also, it is important that the accelerometer does not
add more to the power consumption than it saves. If an accelerometer with low power
consumption, low cost and small size is found, the power consumption could be reduced.

There exist ultra low-power accelerometers that are suitable for an application like a
contact tracing wearable. To give an example it was searched for active, in stock, accel-
erometers on DigiKey, and a component called LIS331DLH was found [19]. This is an
ultra low-power accelerometer with a current consumption of 250µA in normal mode,
10µA in low-power mode and 1µA in power-down mode. With those numbers, it should
be possible to reduce the overall power consumption of the contact tracing device. The
sensor supports setting an acceleration-triggered interrupt with a specific trigger value
in terms of magnitude and duration, even if the accelerometer is in power-down mode
(wake on acceleration). As the wearable does not need to know anything about the
acceleration itself, other than it happened and was larger in magnitude and longer in
duration as specified in the LIS331DLH interrupt configuration registers, no data needs
to be transferred other than an interrupt on a pin. The interrupt can be used to wake
up the wearable from sleep. When waking up, the wearable starts a timer for putting
the device into power-down mode again, and the timer is reset each time the wearable
receives an interrupt from the accelerometer. By doing so, the wearable should be in
sleep mode when it is not used, and active when it is used.

With the accelerometer operating as explained, it will be in power-down mode almost
all the time. It will consume some more energy when being configured, and when trig-
gering interrupts. Since the power-down current consumption is 1µA and the current
consumption in low-power mode is 10µA for the example accelerometer LIS331DLH,
and the device spend most of the time in power-down mode, one can estimate that the
average current consumption of the accelerometer is around 3µA.

A regular person sleeps around 8 hours each day. When sleeping, one would most likely
not need to wear the contact tracing wearable. In addition to that, one does not need to
wear it all the time at home either, especially during weekends with the family and no
one else around. So one can estimate that the wearable will not be used for at least 10
hours a day on average.

If the wearable sleeps 10 hours a day on average the advertising, scanning, reading and
writing to the external memory will be reduced by 10/24 · 100 = 41.67%. While the
BLE SoC and the external memory will spend more time in sleep mode, hence increas-
ing the sleep mode current contribution slightly, but that is not significant and will not be
considered. The realistic reduction in power consumption is slightly less than 41.67%,
because of the current consumption the of the accelerometer itself. The current con-
sumption of the wearable with only an accelerometer as optimization technique can be
seen in Table F.1. The current consumption is reduced from 96.11µA to 63.18µA, which

42 M. G. Aalien: A Contact Tracing Wearable

is a reduction of 34.26%.

7.3 Scan and Advertise Adjustments

There are no fixed restrictions to what the advertise and scan intervals should be. There
have been observed scan intervals up to 4 minutes and advertise intervals of 250ms for
GAENS implementations [20]. To test what advertisement interval is being used by the
Norwegian Smittestopp app, three smartphones with Smittestopp activated was placed
near a development kit. By using nRF Connect, the developement kit picked up their ad-
vertisement packets as shown in the screenshot in Figure 7.3. From the figure, it looks
like all the smartphones were using around 270ms advertise interval for their GAENS
advertisement packets. This interval will probably vary, because advertising intervals
are not exactly fixed, but with a minimum interval and a maximum interval. The min-
imum and maximum interval could be the same as the GAENS specification suggests.
The wearable has a low computational load and can most of the time advertise at the
minimum interval because the device does not have any high-priority task to do. Advert-
ising at an interval of 270ms, as opposed to 205ms (average), will decrease the power
consumption of GAENS non-connectable advertising by 24.07%.

Figure 7.3: A screenshot of the nRF Connect app, when scanning and filtering for GAENS
advertisement packets. It is done when being around people who use the Norwegian
Smittestopp app.

According to the GAENS Bluetooth specification, the device should have sufficient cov-

Chapter 7: Optimization 43

erage to discover nearby ENS devices within 5 minutes [3]. In the previous calculations
a scan interval of 1 minute, a scan window of 300ms and an advertise interval of 205ms
have been used. These are only recommended values picked from the WENS specific-
ation. With those numbers, the wearable will receive 1.46 packets from nearby ENS
devices on average per scan window. In 5 minutes there are 5 scan windows if 1 minute
scan intervals is used. This means that the wearable has on average 7.3 chances to
receive an advertisement packet from the nearby ENS in 5 minutes. One could argue
that this is more than enough. As long as the advertise interval is shorter than the scan
window, it will still get at least one chance at receiving a packet from each other ENS
wearable nearby.

How many attempts an advertise packet needs to be discovered by another ENS device
to discover the device within 5 minutes depends on the setting. In a crowded area with
several devices operating in the 2.4GHz band, there will be more packet collisions and
noise, so that receiving a packet is more difficult. A study was conducted upon determ-
ining the chances of packet collisions with various advertise intervals for a network of
BLE nodes of different sizes [21]. The study, "Detailed Examination of a Packet Collision
Model for Bluetooth Low Energy Advertising Mode", found the probabilities to be as illus-
trated in Figure 7.4. With those findings, one can make a better judgment on what scan
interval and window that is suitable for an advertise interval of 270ms.

Figure 7.4: Packet collision probability for different advertise intervals (0.1s to 5s) and
number of nodes [21].

In today’s society, there are many wireless devices around us most of the time. Exactly

44 M. G. Aalien: A Contact Tracing Wearable

how many depends on the situation. In public buildings and apartment blocks, you can
easily have 100 BLE devices within range. Let us assume it is 200 devices in range on
average, which would probably be an overestimate. All those devices use different ad-
vertise intervals, ranging from about 100ms to 2 seconds, depending on the situation. It
is assumed, for the following calculations, that the average scan interval of the devices in
range, is 300ms. With 200 devices in range and an average advertise interval of 300ms
there is a packet collision probability of around 40% according to Figure 7.4.

With a packet collision probability of 40% on average through the day, it implies that
there is a 40% risk of each advertisement packet not reaching another device in range,
disregarding other disturbances. If one treats the event of a packet collision as inde-
pendent events, the probability of two consecutive packet collisions occurring is the
probability of the first collision times the probability of the second collision. That means
that there is a 16% probability of two consecutive advertisement packets both collid-
ing with other advertisement packets and get lost, and a 6.4% probability that three
consecutive packets will be lost. So if an ENS device has three chances of receiving an
advertisement packet from another ENS device nearby within 5 minutes, there is a 6.4%
risk that it will not receive any of them, but a 93.6% probability that it will receive at
least one of them. Those odds should be sufficient. That could be done by scanning for
300ms every 100s (1m and 40s). Since the scan window, in this case, is longer than the
270ms advertisement interval, the device should have at least one chance at receiving
an ENS advertisement packet from nearby devices in each scan window. By extending
the scan interval from 1 minute to 1 minute 40 seconds, the scan current consumption
is reduced by 40%.

The WENS’ connectable advertising current consumption can also be reduced more. It
has no strictly specified advertising interval that needs to be used. Until now in the cal-
culations 1 second advertise interval has been used, but it could also be increased to for
example 1.5 seconds or 2 seconds. It will then of course take more time to connect to the
wearable. By using 1.5 second advertisement interval one would reduce the connectable
advertisement average current by 33.33%, and increasing it to 2 seconds would reduce
it by 50%. Increasing it to more than 2 seconds could make it difficult to connect to.

In Table F.2 the calculation of the current consumption of the wearable optimized with
adjusting the scanning and advertising intervals is shown.

7.4 Reducing Transmit Power

The purpose of contact tracing is to determine your close contacts and notify those who
have a risk of being infected. As one does not care for those people that are far away,
because there are little to no risk of getting infected by a person that is far away from you,
there is no point in transmitting ENS BLE packets that reach people far away from you.
In other words, the transmit power could perhaps be reduced while the functionality of
the ENS stays the same.

There are multiple different configurations that can be done to the transmit power. One
could change the transmit power for all radio communication, change transmit power

Chapter 7: Optimization 45

only for non-connectables or other configurations. What is the best solution needs to be
tested. It could be that these parameters will be more strictly set by the specification in
the future.

Since the connectable advertising packets are transmitted with a relatively long interval,
it could be wise to not reduce the transmit power beyond 0dBm because it would make
it even more difficult to connect to the wearable. Also, you would want a stable connec-
tion during connections, meaning that reducing the transmit power for communication
during connections probably should be avoided.

For the GAENS non-connectable advertising packets, the transmit power could possibly
be reduced without making any sacrifices to the accuracy of the ENS. A paper, "Range
of Bluetooth Low Energy Beacons in Relation to Their Transmit Power", suggests that even
with -12dBm transmit power the BLE communication sustains for several meters, even
through thick walls [22]. Though it is important to notice that their testing were per-
formed with few other obstructions around. Having the BLE device in the pocket, or
sitting on it, will reduce the range of the device significantly. However, being able to com-
municate using -12dBm BLE transmit power through with the devices placed 4 meters
apart with a 182cm thick concrete wall between them, and also being able to commu-
nicate at more than 7 meters apart through a 166cm thick drywall, should suggest that
-12dBm transmit power will work for the GAENS broadcasting as well.

In Figure 7.5 the difference in current consumption between 0dBm and -12dBm GAENS
non-connectable advertising is compared. There is a significant reduction. The average
current for the approximately 3.1s long advertising sequence has dropped from 3.0mA
to 2.3mA. In other words, the non-connectable GAENS advertising operation current
contribution, has dropped by 23.33%. The current consumption of the wearable, only
optimized by reducing the transmit power for GAENS advertising, is shown in Table F.3.

Figure 7.5: A comparison of 0dBm and -12dBm transmit power for non-connectable
GAENS advertising.

Chapter 8

Hardware Implementation

In this chapter, the process of designing the hardware for the engineering prototype
is discussed. That includes the selection of design, introducing the appearance model,
selecting components and presenting the development of the PCB.

8.1 Wearable Designs

As a part of the alpha phase of the prototyping timeline, an appearance model needs
to be designed. This will set the base for the design of the electronics hardware. The
PoC prototype gives an indication of the size of a final contact tracing wearable design.
There are many possibilities to the design to make it convenient for the end-user. In the
following sections, possible designs that have been considered for the wearable will be
evaluated, and one of the designs will be chosen for the engineering prototype.

8.1.1 Wristbands

The initial idea for the wearable was to design it as a wristband. However, after a market
analysis was performed in the specialization project, it was found that some people
would rather have a different design. Many already use wristwatches, which leaves less
room for a contact tracing wearable. Some were also worried that wrist-worn devices
might introduce a greater risk of getting infected. Another point is that a wrist-worn
device is difficult to design so that it fits all end-users.

8.1.2 Access Cards

Many public buildings and workplaces already require one to wear an access card around
in the building. By embedding the electronics required to perform contact tracing inside
the access card, one can participate in an ENS without the users having to wear an-
other wearable. Access cards would most likely require more hardware and software to

47

48 M. G. Aalien: A Contact Tracing Wearable

function as both contact tracing devices and access cards if the cards is used to open
doors.

8.1.3 Tag

Tags have become a popular design choice for small electronic wearables, especially for
Radio-Frequency Identification (RFID) devices. A tag is a small capsuled device, which
is often flat, round and has a hole in it so that you can connect it too for example key
rings.

A recent example of such a design is Apple’s AirTag. Apple’s AirTag was released in April
2021, and after the release iFixit did a teardown of the device to look inside [23]. The
AirTag has a nRF52832 BLE SoC, 32Mb serial NOR flash and is driven by a CR2032 coin
cell battery. In addition to this it has several other components as well such as an ultra-
wideband transceiver and an audio amplifier. In other words, it has all the necessary
components to serve as a contact tracing wearable, and more. It shows a possible design
of a contact tracing wearable in the form of a tag, and gives a picture of how small it is
possible to design such a solution.

A tag can be worn in many ways as it is small. One could for example connect it to key
rings, pants, a bracelet or just have it in your pocket.

8.1.4 Bracelet

A bracelet design is simple, and is one of the possible designs where it is possible to create
a single solution that would most likely fit all. However, not everyone is comfortable
wearing something around the neck all day.

8.1.5 Embedded Into Clothing

A convenient wearable is a wearable you do not feel that you are wearing. From the
market analysis performed in the specialization project, some people wished to have a
contact tracing wearable embedded into clothing for convenience. It would also be easier
to make people who suffer from dementia wear a contact tracing wearable, because they
often do not understand, or forget why they have to wear the device. A solution that is
embedded into clothing would most likely have to be designed in cooperation with a
clothing company, and would possibly introduce issues with changing batteries.

8.2 Choosing a Design

There are pros and cons with all the possible design variations. Designing the wearable
as a tag is the option that seems the most promising. It is a small design and could be
worn in many ways. When it was decided to go for a design similar to a tag, the author

Chapter 8: Hardware Implementation 49

of this thesis asked a friend of his, Martin Falang, to create an appearance model using
Fusion 360, with instructions on the desired look. The resulting appearance model is
shown in Figure 8.1. With the appearance model developed, the alpha phase of the
prototyping timeline is finished.

Figure 8.1: An appearance model of the wearable.

8.3 Selection of Hardware Components

In the Chapter 7 it was found that an accelerometer could reduce the current consump-
tion significantly. Hence, an optimized solution of the wearable should include an accel-
erometer. From earlier it was also found that the required components of the wearable is
the BLE SoC, and its circuitry, a 32Mb external flash memory supporting SPI, a CR2032
battery holder and an antenna.

8.3.1 BLE SoC

The nRF52833 BLE SoC is chosen for the development of the engineering prototype.
The reasons are the same as for the selection of the chip for the PoC prototype. It is one
of the more feature-rich BLE SoC and does not have as many constraints as some of the
less complex ones. The BLE SoC can be replaced in the future if it turns out that the full
software implementation and requirements allow it.

8.3.2 Antenna

The engineering prototype needs a compact, reliable and low-cost antenna. There are
two common antenna solutions, using a chip antenna or a PCB trace antenna [24].
Both solutions have pros and cons. Chip antennas are in general small of size and are
available with all kinds of configurations. They are also more resistant to environmental

50 M. G. Aalien: A Contact Tracing Wearable

interference than PCB trace antennas. The main drawback of chip antennas is that they
often result in a higher cost. PCB trace antennas are embedded in to the PCB. This
means that they have a low profile. While it has a low profile, it usually occupies more
area than a chip antenna. PCB trace antennas are also more difficult to design and are
highly susceptible to changes to the board layout, which means it may require tuning
after each change.

The PoC prototype has a PCB trace antenna, which works quite well. However, the PCB
trace antenna takes up a large portion of the PCB area. For the engineering prototype, a
chip antenna will be used instead. It is easier to design and takes up less area. The chip
antenna that will be used is the 2450AT18A100E chip antenna from Johanson Techno-
logy [25]. This is the same antenna that is used inside Nordic Thingy, which suggests
that it should be suitable [26].

8.3.3 External Memory

As mentioned in Section 6.4.7, the external memory chip in the PoC prototype design
is not optimal, and has to be replaced. During the optimization research, it was also
discovered that the external flash memory chip that was used in the optimization calcu-
lation is not optimal either. This is because of its narrow voltage operating range. The
Functional End Point (FEP) of the W25Q32JVZPIQ is 2.7V which is a lot higher than the
FEP of the BLE SoC with its 1.7V [17, 18]. This restricts the battery lifetime a great deal.
This is further discussed in Section 9.2.1.

The same search parameters as in Section 6.4.7 are used to find a new, more suitable
external flash memory chip. Except this time the focus were on finding one with a wider
operating range. The search led to the AT45DB321E-MHF-T chip [27]. This 32Mb SPI
flash memory has a FEP of 2.3V, which would improve the battery life of the wearable.
The new flash memory chip also has approximately the same current consumption as
the one used in the optimization calculations.

8.3.4 Battery Holder

The battery holder on the PoC prototype, Harwin S8421-45R, is simple and does not
add that much to the size of the wearable, since the battery needs to be there anyway
[28]. The same battery holder will be used for the engineering prototype.

8.3.5 Accelerometer

The ultra low-power accelerometer from Section 7.2 used in the optimization calcula-
tions, LIS331DLH, seems promising. It has a wide supply voltage range and meets all
the other requirements discussed in Section 7.2. The same accelerometer will be used
in the hardware design for the engineering prototype.

Chapter 8: Hardware Implementation 51

8.4 Circuit Schematic Design

With all the components selected, the circuit schematic can be designed in Altium De-
signer. The circuit schematics of the engineering prototype can be found in Appendix G.
In the following sections, some comments about the design choices are discussed.

8.4.1 Serial Peripheral Interface

Both the accelerometer and the external memory chip supports SPI communication. This
means that they can share some of the communication lines. The SPI protocol specifies
four logic signals, Serial Clock (SCLK), Master Out Slave In (MOSI), Master In Slave Out
(MISO) and Chip Select (CS) (active low). In a SPI system, the master supplies the clock
to the slaves. The accelerometer and the external memory can be connected together as
illustrated in Figure 8.2.

BLE SoC

SCLK
MOSI
MISO
CS1
CS2

SCLK
MOSI
MISO

CS

SCLK
MOSI
MISO

CS

Accelerometer

External Memory

Figure 8.2: An illustration of the SPI configuration between the BLE SoC, the external
memory and the accelerometer.

8.4.2 Programming and Debugging

The wearable needs connection points so that it can be flashed with code and debugged.
The PoC prototype solved this by using a pin header and castellated holes. The pin header
is large and is something one would want to avoid. The castellated holes are probably
one of the connection point types that requires the least space. However, castellated
holes are quite expensive to manufacture. For the engineering prototype, small circular
pads, called testing points, will be used. These points can be used to monitor the board’s
circuitry when it is being tested, but they can also be used to inject signals into the PCB,
like flashing.

The connection points that are required are the ones used for Serial Wire Debug (SWD),
ground and power. The SWD pins on the BLE SoC, SWDIO and SWDCLK, can be used for
debugging and flashing the device. One would also want some other pins in the case of
more extensive testing. The P0.18/RESET on the BLE SoC could be useful too, as reset
functionality can be a good tool for testing. In addition, a couple of other pins could
be good to have available too, for example for using UART communication. P0.15 and
P0.17 were selected for this purpose because of their location near the SWD pins.

52 M. G. Aalien: A Contact Tracing Wearable

8.4.3 Antenna Matching Network

The circuitry around the BLE SoC is based on a reference layout for the nRF52833 QDAA
QFN40 [17]. In the reference layout there is a pi matching network to match the BLE
SoC to 50Ω. It also has the beginning of the transmission line. The chip antenna also has
to be matched to 50Ω. That is done according to the datasheet of the 2450AT18A100E
chip antenna [25]. The matching networks are shown in Figure 8.3.

Figure 8.3: The pi matching networks to match both the BLE SoC and the chip antenna
to 50Ω.

8.4.4 Changes to the Reference Layout

Nordic Semiconductor supplies several reference layouts for the nRF52833 QDAA QFN40
to use [17]. None of them are ideal for the engineering prototype. The reference layouts
comes with different configurations for DC/DC, Universal Serial Bus (USB) and Near
Field Communication (NFC). For the engineering prototype, DC/DC converter function-
ality is desirable because without it the power consumption would increase drastically.
Both USB and NFC are not required. The USB will not be in use, so the USB pins can
be assigned to ground. When the USB is not in use, the VDDH and VDD can be connected
together. The NFC pins are left disconnected.

8.5 PCB Design

The PCB was designed with the goal of being small and fit into a circular tag design.
The appearance model is circular, and so is the CR2032 coin cell battery, so the shape
of the PCB was chosen to be circular as well. The coin cell battery holder is the largest
part of the design and is placed on the back of the PCB. This makes room for all the
other components on the top layer. The connection points are placed along the edge
of the board on the top layer so that they are easily accessed. The accelerometer and
the external memory chip share some of the same pins, so it was chosen to put them
close together. Since the power supply is placed on the backside of the PCB the bottom
layer was chosen to be a power plane, while the other three planes are all ground. The
finished PCB is presented in Section 9.3, together with the other results.

Chapter 9

Results and Discussion

In this chapter, the results of the work will be presented and discussed. First, the func-
tionality of the engineering prototype will be looked into. This is followed by the results
of combining all the optimizations methods, to see what the final estimated current
consumption and lifetime of the device is. At the end of the chapter, the final hardware
design is introduced and examined.

9.1 Functionality of the Software

The functionality of the software were already verified in Section 4.2, as it had to
be tested before the rest of the work was conducted. The GAENS cryptography and
Bluetooth specification were successfully implemented on the prototype wearable. The
wearable was able to receive advertise packets from the Norwegian Smittestopp app,
and store the records. It was also able to advertise GAENS packets and encrypt the RPI
and AEM according to the GAENS specification, so that it is ready to be used together
with Smittestopp in the future.

The WENS was partly implemented and tested. The wearable advertised the connect-
able packets at the specified interval, and it was possible to connect to the wearable
and view it services. When connected to the wearable, the smartphone can request to
read out the characteristics, and also write to them. It was not important to complete
the implementation of the functionality of the characteristics to verify that the solution
would work, nor performing the current measurements and estimations. Finishing the
development of WENS will have to be done in the future when the final specification
comes. Considering the situation the world finds itself in, it is likely that the WENS will
be finalized and taken into use by existing ENSs, so that wearable can participate a well.

The findings in this thesis suggests that the wearable can take part in already existing
ENSs, given that they support WENS. The software implementation for the wearable is
not complete, but the main framework is. After a final publication of the WENS comes,
it can be completed. The software is documented, and peer-reviewed, so it should have
a good enough quality for further development by someone with experience in BLE and

53

54 M. G. Aalien: A Contact Tracing Wearable

C-programming.

9.2 Optimizations

Without any optimizations, it was found that the PoC prototype had an average current
consumption of around 532µA through measurements. This was significantly improved
by disabling serial communications when it is not used. That gave an estimated av-
erage current consumption of 96.11µA for the engineering prototype, as calculated in
Table 6.1.

There was suggested several other optimization methods too:

• Use an accelerometer to determine if the wearable is worn.
• Increasing GAENS advertising interval to an average of 270ms.
• Increasing WENS advertising to 2s.
• Increasing scan interval to 100s.
• Reduce the GAENS advertising transmit power to -12dBm.

By combining all those current consumption reduction techniques, one can achieve an
even greater reduction. The combination of all the optimizations results in the average
current consumption of each isolated operation as shown in Figure 9.1. The numbers
are the average current consumption when it is averaged over all time. This gives a total
average current consumption for the engineering prototype of 42.17µA. The calculations
are showed in Table 9.1. With the assumption that the CR2032 delivers an effective
200mAh, this implies a battery life of around 197 days. An estimated battery life of 197
days is more than half a year, which is well within the requirements of the problem
statement. Even though it is only an estimated value, it should indicate that "a battery
life of several months on a single coin cell battery" is achievable.

BLE SoC
Current (mA) Duration (ms) Interval (ms) Average Current (µA)

Non-Connectable GAENS Advertising 2.3 3.1 270 15.4043
Connectable WENS Advertising 2.7 3.78 2000 2.9768
Scanning 6 300 100000 10.5000
Connections 2.02 180000 86400000 4.2083
Rotation of GAENS Keys and Identifier 3 5.5 900000 0.0183
Sleep 0.0024 84804976 86400000 2.3557

35.4634
External Memory
Write 20 0.8 60000 0.1556
Read 8 4000 86400000 0.2160
Erase 20 10000 86400000 2.3148
Standby 0.01 166000 86400000 0.0192
Power-Down 0.001 86218848 86400000 0.9979

3.7035

Total: 42.1670

Table 9.1: The calculation of the average current of each operation isolated operation
averaged over all time where the wearable is using all optimization techniques that is
discussed in this thesis.

Chapter 9: Results and Discussion 55

Non
-C

on
ne

cta
ble

Adv
er

tis
in

g

Con
ne

cta
ble

Adv
er

tis
in

g

Sc
an

ni
ng

Con
ne

cti
on

Rot
ati

on
of

Key
s an

d Id
en

tifi
er

Sle
ep

Ex
ter

na
l M

em
or

y W
rit

e

Ex
ter

na
l M

em
or

y Rea
d

Ex
ter

na
l M

em
or

y Er
as

e

Ex
ter

na
l M

em
or

y St
an

db
y

Ex
ter

na
l M

em
or

y Po
wer

-D
ow

n

Acc
ele

ro
mete

r

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

C
ur

re
nt

(µ
A

)

Figure 9.1: This histogram shows the 24-hour average current consumption of each
isolated operating of the BLE SoC, the external memory and the accelerometer after
combining all the optimization methods.

56 M. G. Aalien: A Contact Tracing Wearable

9.2.1 Considerations

The current consumption analysis done in this thesis is an estimate of much current
the device will draw from the power supply on average. There are several assumptions
to the calculations, but most of them are based on overestimates. In this section, some
factors affecting the current consumption are discussed.

Variations in Usage of the Wearable

With a solution using an ultra low-power accelerometer, there could be large variations
in the actual lifetime of the device. This is due to how the device is being used. Everyone
lives different lives, meaning some will be using the wearable more than others. In the
calculations there are made the assumption of the wearable not being used for 10 hours
a day on average. The less the wearable is in use, the longer it will be running. For the
combined optimization solution, the expected battery life of the wearable is shown in
Figure 9.2. It shows how the expected battery life varies with the average amount of
hours per day the device is in use. If the device is used 24 hours a day it will have a
battery life of about 130 days, while if it is not used 16 hours a day on average you can
expect about 280 days of battery life. This also shows the great effect the accelerometer
has on reducing the current consumption and increasing the battery life, even when the
other optimizations are implemented.

Figure 9.2: The expected number of days of operation for the optimized wearable, based
on the average hours it is used per day.

Chapter 9: Results and Discussion 57

Possible Accelerometer Issues

A potential issue with using an accelerometer as a sensor to determine if the wearable is
worn or not, is that the user could sit still for a while and not trigger the accelerometer
even though the wearable is worn. If that happens, the wearable will stay in sleep mode
while the user is wearing it. This could lead to situations where someone walks by, or sits
next to the user, while the wearable still is in sleep mode. Meaning that the wearable
will not advertise nor receive advertising packets from the other person. So this has
to be tested in the future to see if it is an issue. Considering that accelerometers are
often used for similar low-power purposes, they should also work for the contact tracing
application as well. The parameters for magnitude and duration of the acceleration used
for interrupt generation also need to be determined through testing.

Another uncertainty regarding the calculations in this thesis, is the average current con-
sumption used for the accelerometer (3µA). It could be that the use of the wearable
will significantly affect the current consumption. One can not be sure what the actual
current consumption of it is before it is tested.

External Memory Selection

After looking into the effects of high current drains on the CR2032 coin cell battery
it was found that the FEP of the external memory used in the optimization calcula-
tions (W25Q32JVZPIQ), which was 2.7V, should have been lower [18]. The FEP of the
NRF52833 is 1.7V, which means that there is a big difference in their FEP [17]. The
external memory chip would make the wearable stop operating when the voltage of the
CR2032 drops below 2.7V, which limits the accessible capacity from the battery signi-
ficantly. By selecting an external memory chip with a lower FEP, but still in the 3.0V
operating range, one can extend the battery life of the wearable.

A more suitable SPI flash memory was found when designing the hardware for the en-
gineering prototype. Namely, the AT45DB321E-MHF-T, which is also a 32Mb SPI flash
memory [27]. The AT45DB321E-MHF-T also has approximately the same current con-
sumption as the one used in the optimization calculations. The main difference is that
it has an operating range from 2.3V to 3.6V. The FEP is notably lower than the one used
in the optimization calculations, and closer to the FEP of the BLE SoC. In Figure 9.3
the impact the FEP has on the obtainable capacity from the CR2032 coin cell battery,
is illustrated. With an FEP of 2.3V instead of 2.7V the expected battery capacity is far
greater.

Transmit Power

In Section 7.4 it was mentioned that the non-connectable GAENS advertising did not
need to use 0dBm transmit power, and that for the connectable WENS advertising and
connection communication it should keep the transmit power at 0dBm. Considering that
when one wants to connect to a device one generally is close to the device, one could
argue that the wearable possibly could get away with reducing the transmit power for

58 M. G. Aalien: A Contact Tracing Wearable

Figure 9.3: The figure of a continuous discharge of CR2032 coin cell battery, from "High
pulse drain impact on CR2032 coin cell battery capacity", with the different FEPs for
the external memory [13]. The figure illustrated the significant impact the FEP of the
wearable has on the effective capacity the wearable can obtain from a CR2032 coin cell
battery.

connections and connectable advertising as well. Doing so would reduce the average
current consumption further. The effects of reducing the transmit power have to be
looked into in the future.

External Memory Erase

Another thing that will reduce the current consumption is that the external memory most
likely will not be erased each day. When the wearable is connected to a client, the records
are transferred to the client using the WENS. However, it is generally not necessary to
delete all the records upon every connection. The records will be automatically deleted
by the device after 14 days. It is also useful to leave the records on the device if more
than one client bonds with the wearable. If only the 14 days old records is erased every
day, the average current consumption of the external memory erase operation will be
reduced to 1/14 of the value used in the calculations. Changing it from 2.315µA to
0.165µA. This reduces the total current consumption by 2.15µA, which is significant.

Time Spent in Connections

In Section 6.4.5 there were made several assumptions to the factors regarding connec-
tions. How much time will be spent in connection with a client will vary from user to
user. The numbers used in the calculations are most likely an overestimate, meaning that
the average current consumption from connections should be less. It was assumed that

Chapter 9: Results and Discussion 59

one would spend three minutes in connection with a client, and transfer all the records,
each day. The external memory would probably not be filled with new ENS records each
day, as it is intended to be able to hold records for 14 days.

Device Information Service and Device Time Service

The two services, DIS and DTS, was chosen not to be considered for the current con-
sumption analysis because they will be used, and their characteristics accessed, during
connections. Meaning that they are already indirectly included in the current consump-
tion analysis.

9.2.2 Memory Compression

The WENS specification defines how ENS records should be transmitted on-air, but it
does not have any restrictions on how the records are stored internally on the wearable.
With lossless compression, it is possible to store the same records on the wearable, only
taking up less space [1]. The RPI changes on average every 15 minutes, this means that
it is likely that the wearable will pick up several equal RPIs. Instead of storing all the
identical records separately, they can be compressed by storing one larger record for
each RPI. This means that the common information only will be stored once, while the
information that varies, such as the RSSI and the timestamps, will be store in relation to
the common information. This will save a significant amount of space. When the wear-
able is to transmit the records to the client it can convert the compressed records into
regular records according to the WENS specification, hence, truly lossless compression.
How much the storage requirements is reduced is dependent on if the wearable will
be receiving multiple packets from the same transmitters. For example at home or at
work people will be around the same persons for a while, indicating that the lossless
compression could save storage space.

The Optimization’s Effect on Storage Requirements

The optimization measures in increasing the scan interval and the advertising interval
will reduce the memory storage requirements as the wearable will receive fewer packets.
The same goes for an implementation using an accelerometer to turn the device off when
it is not used. When the wearable is sleeping, it will not be receiving any packets. If
the wearable is regularly connected to a smartphone for uploading the records to it, the
memory requirements will drastically go down as well. Instead of storing the information
for all 14 days, they can be transferred to a client to store them for the wearable. If the
wearable would reliably upload the data every 2 days, one could reduce the storage by
a factor of 7. This again depends on the implementation. As mentioned in Section 9.2.1,
it could be beneficial to keep the records on the wearable in case the wearable will be
connected to more than one client.

60 M. G. Aalien: A Contact Tracing Wearable

9.3 Hardware

The hardware was successfully designed according to the specifications. The resulting
engineering prototype of the PCB can be seen with a top view in Figure 9.4a, with a side
view in 3D in Figure 9.4b and from the bottom in 3D in Figure 9.4c. In Appendix H the
PCB print of all the layers in the PCB design can be seen.

The 3D model of the PCB was imported into Fusion 3D and the appearance model was
adjusted to serve as a casing for the PCB. The resulting production drawing of the engin-
eering prototype can be seen in Figure 9.5. The PCB itself is around 26mm in diameter
and approximately 8mm high. With the casing, the wearable has a diameter of 28.5mm
and a height of 11mm. In addition, there is a mounting point along the edge of the wear-
able so that it could be connected to a key ring or something similar. With this design it
is small enough to be used as a wearable, and can be worn in many ways.

(a) A top view of the engineering prototype.

(b) A side 3D view of the engineering prototype.
(c) A bottom 3D view of the engineering prototype.

Figure 9.4: The engineering prototype PCB designed in Altium Designer.

Chapter 9: Results and Discussion 61

Figure 9.5: A production drawing of the engineering prototype with its tag-formed
shape.

9.3.1 Battery Holder

The battery holder is the largest component of the wearable and can probably be re-
placed by building the casing of the wearable to hold the battery itself. The AirTag is
an example of a solution where the casing serves as a battery holder [23]. The battery
holder is not especially bulky, but the diameter could possibly be reduced by a couple of
millimeters, and the height might be reduced as well.

9.3.2 Remove Optional Crystal

In the circuitry schematics for the engineering prototype shown in Appendix G, one
can see that there is an optional crystal oscillator. It can be removed to save cost, since
crystal oscillators are costly, and it would reduce the size of the wearable. The reason it
is included in the design is that it significantly increases the accuracy of the clock. The
internal oscillator has an accuracy of ±500ppm, while the optional one has an accuracy
of ±40ppm. In 30 days 2592000 seconds pass. With an accuracy of ±500ppm, the time
can fluctuate up to 1296s (21 minutes 36 seconds). While with an accuracy of ±40ppm
the time can fluctuate up to 104 seconds (1 minute 44 seconds). All the ENS records are
timestamped, and have to be accurate within the 10-minute resolution, because the time
in GAENS is discretized in 10-minute intervals. If the error is corrected each time the
wearable is connected to a client, both with and without the optional crystal oscillator
should be accurate enough.

62 M. G. Aalien: A Contact Tracing Wearable

9.3.3 Visual Feedback

As the design of the wearable is minimalist to save cost and power consumption, there
is no visual feedback from it. This means that one needs to add a feedback solution
to enable the user to find out if the device is powered on, and have battery capacity
left. It could for example be in the form of Light Emitting Diodes (LEDs), or the BAS.
Either way, some additional changes have to be done to the PCB, and it would add to
the current consumption.

An issue with LEDs is that it has to be visible to the user. That implies that the casing
has to be adapted so that the LEDs are visible. LEDs does not show the battery capacity,
but it could serve as an indicator for showing if the wearable is powered on or not. The
LED can be toggled on and off, so that the average current will be low.

The BAS needs a way of measuring the voltage of the coin cell battery to tell the battery
capacity. This can be done using different methods, such as using the comparator, low-
power comparator or the analog-to-digital converter on the nRF52833. Using the BAS,
together with one of the methods for measuring voltage, one could check the battery
capacity by connecting to the wearable.

9.3.4 Antenna Placement

The antenna has some restrictions regarding its placements. All the constraints come
from the 2450AT18A100E datasheet [25]. In the schematics design it was made sure that
the antenna was matched to 50Ω with its matching circuit, but another requirement is
that the antenna has to be placed at some distance to the ground plane. It should also not
be any power or signal planes beneath the antenna either. In the datasheet the antenna
is placed on a square corner with 4mm distance to the top layer ground plane. For the
circular wearable, it is not possible to have a square at the edge of the board. The design
of the antenna is shown in Figure 9.6.

Figure 9.6: On the left the antenna PCB design is shown from 2D mode in Altium De-
signer, and on the right the same design is shown in 3D mode.

Chapter 9: Results and Discussion 63

The antenna is placed 3mm away from the top layer ground plane. Deviating from the
reference layout introduces risk, as it is likely that the antenna performance will suffer.
However, in this application, the range of the communication is not a key parameter, so a
trade-off is possible. Although, the antenna performance and electromagnetic emissions
will have to be confirmed by measurements.

Chapter 10

Future Work

In this chapter, possible future tasks that have to be investigated in the future is presen-
ted.

10.1 Finish WENS Implementation

The WENS needs to be fully implemented in a final solution. This is something that could
to be done when a final version of the service is published by Bluetooth SIG.

10.2 Test Advertising and Scanning Parameters

In this thesis it is done estimates on what advertising and scanning parameters for both
the WENS and GAENS should use. These are subject to be changed by Google, Apple or
Bluetooth SIG in the future. For now there is room for individual implementations, so
more practical testing in public should be conducted to find the optimal parameters so
that the contact tracing is reliable, but does not use excessive power.

10.3 Finish Wearable Hardware Design

According to the product development timeline, the engineering prototype needs to be
manufactured and tested so that a production prototype can be designed in the future,
and later the pilot.

65

66 M. G. Aalien: A Contact Tracing Wearable

10.4 Accelerometer Interrupt Trigger Parameters

For a contact tracing wearable with an accelerometer to be beneficial, the wearable has
to use the correct interrupt trigger parameters for the accelerometer. These parameters
have to be found through testing.

10.5 Transmit Power

Whether the transmit power can be lower than 0dBm for connectable WENS advertising,
non-connectable GAENS advertising and connections has to be investigated. It is possible
to make a considerable amount of current consumption savings by reducing the transmit
power.

10.6 Device Firmware Update

For a final product it would be beneficial, or necessary, to add support for BLE device
firmware update so that the wearable’s software can be updated without having to con-
nect physically to the device.

10.7 Antenna

The antenna and its circuitry have to be tested and modified if necessary.

Chapter 11

Conclusion

An engineering prototype of a low-power, non-internet-connected wearable for contact
tracing, based on GAENS and WENS, has been developed and optimized. The software
were tested on a PoC prototype, and it had a current consumption of approximately
532µA. The optimization analysis of the engineering prototype indicates that it should be
possible to achieve an average current consumption of 42.17µA, with the optimizations
suggested in this thesis. By powering the wearable with a CR2032 coin cell battery, one
can expect a lifetime of the contact tracing wearable of about 197 days. This shows that
it should be possible to achieve a battery life of several months.

The PCB for the engineering prototype was designed with a circular shape, and has
a diameter of 26mm and a height of approximately 8mm with its components. The
wearable has a nRF52833 BLE SoC, a 32Mb external flash memory, an accelerometer and
a battery holder for a CR2032 coin cell battery. A casing for the PCB was also designed
in the shape of a circular tag, and is 28.5mm in diameter and has a height of 11mm.
Indicating that the design is small enough to be used as a wearable.

The software and hardware developed for the engineering prototype contributes to real-
izing a wearable that can participate in already existing ENSs and reduce the spread of
infectious diseases like COVID-19.

67

Bibliography

[1] Bluetooth SIG, Wearable exposure notification service, https://www.bluetooth.
com/wp-content/uploads/2020/12/WENS_2020-12-03.pdf [Accessed: 27.03.2021],
Dec. 2020.

[2] Folkehelseinstituttet (FHI), Om smittestopp, https://www.fhi.no/om/smittestopp/
om-smittestopp/ [Accessed: 03.05.2021], Dec. 2020.

[3] Google and Apple, Exposure notification bluetooth specification, https://blog.
google/documents/70/Exposure_Notification_-_Bluetooth_Specification_
v1.2.2.pdf [Accessed: 22.05.2021], Apr. 2020.

[4] World Health Organization (WHO), Listings of who’s response to covid-19, https:
//www.who.int/news/item/29-06-2020-covidtimeline [Accessed: 11.06.2021],
Jun. 2020.

[5] P. Wang, ‘Mechanisms of sars-cov-2 transmission and pathogenesis,’ Trends in Im-
munology, Oct. 2020. DOI: 10.1016/j.it.2020.10.004.

[6] X. He, E. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. Lau, J. Y. Wong, Y. Guan, X. Tan,
X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong, Y. Wu, L. Zhao and
G. Leung, ‘Temporal dynamics in viral shedding and transmissibility of covid-19,’
Nature Medicine, vol. 26, May 2020. DOI: 10.1038/s41591-020-0869-5.

[7] World Health Organization (WHO), Contact tracing in the context of covid-19,
https://apps.who.int/iris/bitstream/handle/10665/332049/WHO-2019-
nCoV-Contact_Tracing-2020.1-eng.pdf [Accessed: 03.06.2021], May 2020.

[8] V. Shubina, A. Ometov and E. S. Lohan, ‘Technical perspectives of contact-tracing
applications on wearables for covid-19 control,’ Oct. 2020. DOI: 10.1109/ICUMT51630.
2020.9222246.

[9] Google and Apple, Exposure notification cryptography specification, https : / /
blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_
v1.2.1.pdf [Accessed: 22.05.2021], Apr. 2020.

[10] Bluetooth SIG, Device information service 1.1, https://www.bluetooth.com/
specifications/specs/device-information-service-1-1/ [Accessed: 03.06.2021],
Nov. 2011.

[11] Bluetooth SIG, Device time service 1.0, https://www.bluetooth.com/specifications/
specs/device-time-service-1-0/ [Accessed: 03.06.2021], Dec. 2020.

[12] The Linux Foundation, The zephyr project, https://www.zephyrproject.org/.

69

https://www.bluetooth.com/wp-content/uploads/2020/12/WENS_2020-12-03.pdf
https://www.bluetooth.com/wp-content/uploads/2020/12/WENS_2020-12-03.pdf
https://www.fhi.no/om/smittestopp/om-smittestopp/
https://www.fhi.no/om/smittestopp/om-smittestopp/
https://blog.google/documents/70/Exposure_Notification_-_Bluetooth_Specification_v1.2.2.pdf
https://blog.google/documents/70/Exposure_Notification_-_Bluetooth_Specification_v1.2.2.pdf
https://blog.google/documents/70/Exposure_Notification_-_Bluetooth_Specification_v1.2.2.pdf
https://www.who.int/news/item/29-06-2020-covidtimeline
https://www.who.int/news/item/29-06-2020-covidtimeline
https://doi.org/10.1016/j.it.2020.10.004
https://doi.org/10.1038/s41591-020-0869-5
https://apps.who.int/iris/bitstream/handle/10665/332049/WHO-2019-nCoV-Contact_Tracing-2020.1-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/332049/WHO-2019-nCoV-Contact_Tracing-2020.1-eng.pdf
https://doi.org/10.1109/ICUMT51630.2020.9222246
https://doi.org/10.1109/ICUMT51630.2020.9222246
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://blog.google/documents/69/Exposure_Notification_-_Cryptography_Specification_v1.2.1.pdf
https://www.bluetooth.com/specifications/specs/device-information-service-1-1/
https://www.bluetooth.com/specifications/specs/device-information-service-1-1/
https://www.bluetooth.com/specifications/specs/device-time-service-1-0/
https://www.bluetooth.com/specifications/specs/device-time-service-1-0/
https://www.zephyrproject.org/

70 M. G. Aalien: A Contact Tracing Wearable

[13] P. Hoffman and K. Furset, High pulse drain impact on cr2032 coin cell battery ca-
pacity, https://www.dmcinfo.com/Portals/0/Blog%20Files/High%20pulse%
20drain%20impact%20on%20CR2032%20coin%20cell%20battery%20capacity.
pdf [Accessed: 06.05.2021], 2011.

[14] Inertia Engineering, The three phases of product prototyping, https://inertiaengineering.
com/three-phases-prototyping/ [Accessed: 11.03.2021].

[15] Nordic Semiconductor, Online power profiler for ble, https://devzone.nordicsemi.
com/nordic/power/w/opp/2/online-power-profiler-for-ble [Accessed:
19.04.2021].

[16] Micron, N25q032a13esc40g, https://www.micron.com/products/nor-flash/
serial-nor-flash/part-catalog/n25q032a13esc40g [Accessed: 23.03.2021],
May 2018.

[17] Nordic Semiconductor, Nrf52833, https://infocenter.nordicsemi.com/index.
jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52833.html [Accessed: 10.06.2021],
Jun. 2021.

[18] Winbond, W25q32jv, https://www.winbond.com/resource-files/w25q32jv%
20revg%2003272018%20plus.pdf [Accessed: 08.04.2021], Mar. 2018.

[19] STMicroelectronics, Lis331dlh, https://media.digikey.com/pdf/Data%20Sheets/
ST%20Microelectronics%20PDFS/LIS331DLH(TR).pdf?src-supplier=Digi-
Key [Accessed: 04.05.2021], Jul. 2009.

[20] D. J. Leith and S. Farrell, ‘Measurement-based evaluation of google/apple ex-
posure notification api for proximity detection in a commuter bus,’ PLOS ONE,
vol. 16, no. 4, pp. 1–16, Apr. 2021. DOI: 10.1371/journal.pone.0250826. [On-
line]. Available: https://doi.org/10.1371/journal.pone.0250826.

[21] M. Ghamari, E. Villeneuve, C. Soltanpur, J. Khangosstar, B. Janko, R. S. Sherratt
and W. Harwin, ‘Detailed examination of a packet collision model for bluetooth
low energy advertising mode,’ IEEE Access, vol. 6, pp. 46 066–46 073, 2018. DOI:
10.1109/ACCESS.2018.2866323.

[22] Q. A. Budan, A. Naderi and D. L. Deugo, ‘Range of bluetooth low energy beacons
in relation to their transmit power,’ Int’l Conf. Internet Computing and Internet of
Things | ICOMP’17 |, 2017, https://csce.ucmss.com/cr/books/2017/LFS/
CSREA2017/ICM3063.pdf [Accessed: 09.05.2021].

[23] iFixit, Airtag teardown: Yeah, this tracks, https://www.ifixit.com/News/50145/
airtag-teardown-part-one-yeah-this-tracks [Accessed: 10.05.2021], May
2021.

[24] Altium Designer, Embedded rf design: Ceramic chip antennas vs. pcb trace antennas,
https://resources.altium.com/p/embedded- rf- design- ceramic- chip-
antennas-vs-pcb-trace-antennas [Accessed: 08.04.2021], Feb. 2018.

[25] Johanson Technology, 2450at18a100, https://www.mouser.com/datasheet/2/
611/2450AT18A100-277016.pdf [Accessed: 04.05.2021], Jul. 2018.

[26] Nordic Semiconductor, Nordic thingy:91, https://infocenter.nordicsemi.
com/topic/ug_thingy91/UG/thingy91/hw_description/nRF52840.html [Ac-
cessed: 11.03.2021], Nov. 2020.

https://www.dmcinfo.com/Portals/0/Blog%20Files/High%20pulse%20drain%20impact%20on%20CR2032%20coin%20cell%20battery%20capacity.pdf
https://www.dmcinfo.com/Portals/0/Blog%20Files/High%20pulse%20drain%20impact%20on%20CR2032%20coin%20cell%20battery%20capacity.pdf
https://www.dmcinfo.com/Portals/0/Blog%20Files/High%20pulse%20drain%20impact%20on%20CR2032%20coin%20cell%20battery%20capacity.pdf
https://inertiaengineering.com/three-phases-prototyping/
https://inertiaengineering.com/three-phases-prototyping/
https://devzone.nordicsemi.com/nordic/power/w/opp/2/online-power-profiler-for-ble
https://devzone.nordicsemi.com/nordic/power/w/opp/2/online-power-profiler-for-ble
https://www.micron.com/products/nor-flash/serial-nor-flash/part-catalog/n25q032a13esc40g
https://www.micron.com/products/nor-flash/serial-nor-flash/part-catalog/n25q032a13esc40g
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52833.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52833.html
https://www.winbond.com/resource-files/w25q32jv%20revg%2003272018%20plus.pdf
https://www.winbond.com/resource-files/w25q32jv%20revg%2003272018%20plus.pdf
https://media.digikey.com/pdf/Data%20Sheets/ST%20Microelectronics%20PDFS/LIS331DLH(TR).pdf?src-supplier=Digi-Key
https://media.digikey.com/pdf/Data%20Sheets/ST%20Microelectronics%20PDFS/LIS331DLH(TR).pdf?src-supplier=Digi-Key
https://media.digikey.com/pdf/Data%20Sheets/ST%20Microelectronics%20PDFS/LIS331DLH(TR).pdf?src-supplier=Digi-Key
https://doi.org/10.1371/journal.pone.0250826
https://doi.org/10.1371/journal.pone.0250826
https://doi.org/10.1109/ACCESS.2018.2866323
https://csce.ucmss.com/cr/books/2017/LFS/CSREA2017/ICM3063.pdf
https://csce.ucmss.com/cr/books/2017/LFS/CSREA2017/ICM3063.pdf
https://www.ifixit.com/News/50145/airtag-teardown-part-one-yeah-this-tracks
https://www.ifixit.com/News/50145/airtag-teardown-part-one-yeah-this-tracks
https://resources.altium.com/p/embedded-rf-design-ceramic-chip-antennas-vs-pcb-trace-antennas
https://resources.altium.com/p/embedded-rf-design-ceramic-chip-antennas-vs-pcb-trace-antennas
https://www.mouser.com/datasheet/2/611/2450AT18A100-277016.pdf
https://www.mouser.com/datasheet/2/611/2450AT18A100-277016.pdf
https://infocenter.nordicsemi.com/topic/ug_thingy91/UG/thingy91/hw_description/nRF52840.html
https://infocenter.nordicsemi.com/topic/ug_thingy91/UG/thingy91/hw_description/nRF52840.html

Bibliography 71

[27] Adesto Technologies, At45db321e, http://www.adestotech.com/wp-content/
uploads/doc8784.pdf?src-supplier=Digi-Key [Accessed: 11.03.2021], Mar.
2019.

[28] Harwin, S8421-45r, https://www.harwin.com/products/S8421- 45R/ [Ac-
cessed: 10.06.2021].

[29] C. Gomez, J. Oller Bosch and J. Paradells, ‘Overview and evaluation of bluetooth
low energy: An emerging low-power wireless technology,’ Sensors (Basel, Switzer-
land), vol. 12, pp. 11 734–53, Dec. 2012. DOI: 10.3390/s120911734.

[30] K. Townsend, C. Cufí, Akiba and R. Davidson, Getting Started with Bluetooth Low
Energy. Sebastopol, CA, 2014, ISBN: 1491949511.

http://www.adestotech.com/wp-content/uploads/doc8784.pdf?src-supplier=Digi-Key
http://www.adestotech.com/wp-content/uploads/doc8784.pdf?src-supplier=Digi-Key
https://www.harwin.com/products/S8421-45R/
https://doi.org/10.3390/s120911734

Appendix A

Bluetooth Low Energy Overview

This is an excerpt from the specialization project, covering theory about Bluetooth Low
Energy (BLE).

A.1 Bluetooth Low Energy

BLE is the low power version of Bluetooth. It is used in applications where energy
consumption is important. BLE is a wireless communication protocol operating in the
2.4GHz Industrial, Scientific and Medical (ISM) band [29]. The ISM band is unlicensed
and legal to use worldwide. The BLE protocol is widely used for Internet of Things ap-
plications as well as for beacons, computer peripherals, lighting, gaming peripherals and
wearables.

A.1.1 Generic Access Profile

The Generic Access Profile (GAP) defines the general topology of the BLE network stack
[29]. It controls connections and advertising in BLE. It is what makes the device vis-
ible and determines how two devices can interact with each other. GAP specifies four
different roles; central, peripheral, broadcaster and observer.

The broadcaster role sends non-connectable advertising packets periodically to anyone
willing to receive them. Broadcasting makes it possible to transmit data to multiple
devices at the same time. The observer role, on the other hand, repeatedly scans for non-
connectable advertising packets. A central device is a device that discovers and listens
to other devices that are advertising. The central device can connect to a peripheral
device. While a peripheral device is a device that advertises and accepts connections
from central devices. A device can operate in multiple roles at the same time.

73

74 M. G. Aalien: A Contact Tracing Wearable

A.1.2 Connections

If a central device observes a peripheral device when scanning, a connection request
packet from the central device can be sent. This is called initiating. This triggers the
forming of a connection between the two devices if the request is accepted. The connec-
tion is established once the device receives a packet from the peer device. The central is
controlling the parameters and the timing of events within the connection. A connection
is simply exchange of data between a central and a peripheral at predefined intervals.

A connection event is when the central and the peripheral device exchange data by send-
ing data packets to each other. The connection events lasts until neither of the two has
more data to send.

Three of the most important parameters that defines the connection is connection inter-
val, slave latency and supervision timeout. The connection interval defines the interval in
which two BLE devices will wake up the radio and exchange data. Slave latency is the
parameter which allows a peripheral device to skip connection events. The value of the
parameter is the number of consecutive connection events it is allowed to skip before
compromising the connection. The supervision timeout parameter is the maximum time
between two received data packets before the connection is considered lost.

Connections are for transmitting data in both directions. Also, broadcasting only sup-
ports sending two advertising payloads. Connections, on the other hand, can periodically
exchange a larger amount of data.

A.1.3 Advertising

When advertising, a device sends out packages of useful data for other devices to re-
ceive and process. There are 40 channels in BLE, and each of them is separated by
2MHz (center-to-center). Three of the channels are reserved for advertising, as shown
in Figure A.1. Advertising is performed on the three channels reserved for advertising,
one at a time. Advertising packets are used for two things. It is used for broadcasting
data to applications which does not need a full connection establishment, and it is also
used to discover peripherals and connect to them.

According to "Getting started with Bluetooth Low Energy" on can classify advertising pack-
ets according to three properties; connectability, scannability and directability [30].

Connectability:

• Connectable: A scanner can initiate a connection upon reception of an advertising
packet.
• Non-connectable: A scanner can not initiate a connection upon reception of an

advertising packet.

Chapter A: Bluetooth Low Energy Overview 75

Figure A.1: The BLE channels.

Scannability:

• Scannable: A scanner can issue a scan request upon a reception of an advertising
packet.
• Non-scannable: A scanner can not issue a scan request upon reception of an ad-

vertising packet.

Directability:

• Directed: A directed advertising packet contains the advertiser’s and the scanners
Bluetooth address in its payload, and no user data. This means it is connectable.
• Undirected: An undirected advertising packet can contain user data in its payload,

and is not targeted to a specific scanner.

A.1.4 Scanning

When scanning, a device listens to the three advertising channels one at a time. For a
scanning device to discover another device, the device has to scan the channel the other
device is advertising on. This has to happen simultaneously. In order to increase the
possibility for this to happen, or to make it happen quicker, the scanning and advertise-
ment parameters can be adjusted. There exists two types of scanning procedures, passive
scanning and active scanning. Using passive scanning, the advertiser is never aware of
if any scanners actually received the packets. In other words, the scanner does not re-
spond to advertising packets. While active scanning, on the other hand, responds to the
advertising packets with a scan response packet. This makes it possible for the advertiser
to double the effective payload it can transfer to the scanner.

76 M. G. Aalien: A Contact Tracing Wearable

A.1.5 Generic Attribute Profile

The Generic Attribute Profile (GATT) describes the details of how data is transferred once
devices have a BLE connection [29]. It defines how two BLE devices transfer data using
services and characteristics by using the generic data protocol called Attribute Protocol
(ATT). ATT is used to store services, characteristics and related data using a lookup table
with 16-bit IDs for each entry in the table. The IDs are Universally Unique Identifiers
(UUIDs) which is used to describe and determine the services, characteristics or types
that are available. GATT is used after a connection is established. There are two roles
defined by GATT, server and client. The server is the device that exposes its data, while
a client interfaces with the server and reads or controls the servers’ behavior.

Attributes: The attributes are the data that is exposed by a server and defines the struc-
ture of this data. Services and characteristics are types of attributes

Services: The services is a grouping of one or more attributes. Services are meant to
group together related attributes that satisfies the functionality of the server.

Characteristic: The characteristic is the part of a service that represents the data or
information that the server wants to expose to the client.

Profiles: Profiles are a broader definition from services. They define the behavior of
the client and server. Everything from services, characteristics, connections and
security.

Appendix B

PoC Prototype Schematics

On the following page, the PoC prototype schematics is shown. The circuit diagram has
been designed in Altium Designer.

77

78 M. G. Aalien: A Contact Tracing Wearable

11

22

33

44

D
D

C
C

B
B

A
A

1
1

nR
F

52
83

3-
Q

D
AA

 P
ro

to
ty

pe
 v0

.1
1.

0
01

/1
2/

20
20

Ti
tle

:

Si
ze

:
D

at
e:

Re
vi

sio
n:

Sh
ee

t
of

A
4

D
es

ig
ne

d
by

: M
ar

tin
 G

. A
al

ie
n

Pr
oj

ec
t:

Co
nt

ac
t T

ra
ci

ng
 P

ro
je

ct

P1
.0

9

P0
.0

0/
X

L1
P0

.0
1/

X
L2

D
EC

1
1

V
SS

25

A
N

T
24

D
EC

6
26

D
EC

3
27

X
C

1
28

X
C

2
29

V
D

D
30

P0
.0

0/
X

L1
2

P0
.0

1/
X

L2
3

P0
.0

4/
A

IN
2

4

P0
.0

5/
A

IN
3

5

P0
.1

1
7

P0.28/AIN433 P0.29/AIN534 P0.30/AIN635 P0.31/AIN736

DEC438

VSS37

VDD40

DCC39

SWDCLK 20SWDIO 19

P0.15 14

P0.17 15

nR
F5

28
33

V
D

D
8

D- 12

V
D

D
H

9

V
BU

S
10

DECUSB 11

D+ 13

VDD 18

P0
.0

9/
N

FC
1

22

P1
.0

9
6

P0.18/RESET 16

D
EC

5
21

P0
.1

0/
N

FC
2

23

P0.03/AIN131 P0.02/AIN032

P0.20 17

VSS41

U
1

nR
F5

28
33

-Q
D

A
A

P0
.0

4/
A

IN
2

P0
.0

5/
A

IN
3

P0
.1

1

C1
6

12
pF

C1
5

12
pF

X
2

32
.7

68
kH

z

O
pt

io
na

l

X
1

32
M

H
z

C
1

12
pF

C
2

12
pF

C1
0

10
0p

F

X
C

1
X

C
2

V
D

D
_n

R
F

C1
3

1.
0µ

F

L5
15

nH

C
9

N
.C

.
D

EC
3

V
D

D
_n

R
F

C
7

10
0n

F

C
8

82
0p

F

C1
1

10
0n

F

V
D

D
_n

R
F

C1
2

1.
0µ

F

P0
.0

9/
N

FC
1

P0
.1

0/
N

FC
2

C1
4

47
nF

D
EC

4_
6

DEC4_6

V
D

D
_n

R
F

C
6

4.
7µ

F

P0.02/AIN0
P0.03/AIN1

P0.28/AIN4
P0.29/AIN5
P0.30/AIN6
P0.31/AIN7

L6
10
µH

P0.18/RESET

SWDCLK
SWDIO

P0.15
P0.17

P0.20

C
5

10
0n

F

D
EC

1

G
N

D

V
D

D
_n

R
F

2 1+

-BT
1

3V

S#
1

D
Q

1
2

W
#/

V
PP

/D
Q

2
3

V
SS

4

D
Q

0
5

C
6

H
O

LD
#/

D
Q

3
7

V
C

C
8

U
2

N
25

Q
03

2A
13

ES
C4

0G

G
N

D

V
D

D
_n

R
F

P0
.3

1/
A

IN
7

P0
.3

0/
A

IN
6

P0
.2

9/
A

IN
5

P0
.2

8/
A

IN
4

SW
D

 &
 U

A
RT

 H
ea

de
r

Po
w

er
 S

up
pl

y

Ex
te

rn
al

 3
2M

bi
t F

la
sh

 M
em

or
y

C
hi

p
M

at
ch

in
g

N
et

w
or

k

R
F

C
3

1.
0p

FL1 4.
7n

H
C

4
1.

2p
FL2 2.

2n
H

G
N

D
G

N
D

1
1

2
2

3
3

4
4

5
5

6
6

J1 M
22

-5
33

06
05

G
N

D

V
D

D
_n

R
F

SW
D

CL
K

SW
D

IO
P0

.1
7

P0
.1

5

A
N

T

C1
7

1.
2p

F

PIBT101 PIBT102
COB

T1

P
I
C
1
0
1
 P
I
C
1
0
2

COC
1

P
I
C
2
0
1
 P
I
C
2
0
2

COC
2 PIC301 PIC302

COC
3

PIC401 PIC402
COC4

PIC501 PIC502
COC

5

PIC601 PIC602
COC

6

PIC701 PIC702
COC

7

PIC801 PIC802
COC

8

P
I
C
9
0
1

P
I
C
9
0
2
 COC
9

P
I
C
1
0
0
1
 P
I
C
1
0
0
2

COC
10

PIC1101 PIC1102
COC

11

PIC1201 PIC1202
COC

12

PIC1301 PIC1302
COC

13
PIC1401 PIC1402

COC
14

P
I
C
1
5
0
1

P
I
C
1
5
0
2

COC
15 P
I
C
1
6
0
1

P
I
C
1
6
0
2

COC
16

PIC1701 PIC1702
COC

17

P
I
J
1
0
1

P
I
J
1
0
2

P
I
J
1
0
3

P
I
J
1
0
4

P
I
J
1
0
5

P
I
J
1
0
6
 COJ

1

PI
L1
01

PI

L1
02

COL
1

PI
L2

01

PI
L2
02

COL
2

PIL501

PIL502

COL
5 PIL601

PIL602

COL
6

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
5

P
I
U
1
0
6

P
I
U
1
0
7

P
I
U
1
0
8

P
I
U
1
0
9

P
I
U
1
0
1
0

PIU1011 PIU1012
PIU1013 PIU1014

PIU1015 PIU1016
PIU1017 PIU1018

PIU1019 PIU1020

P
I
U
1
0
2
1

P
I
U
1
0
2
2

P
I
U
1
0
2
3

P
I
U
1
0
2
4

P
I
U
1
0
2
5

P
I
U
1
0
2
6

P
I
U
1
0
2
7

P
I
U
1
0
2
8

P
I
U
1
0
2
9

P
I
U
1
0
3
0

PIU1031 PIU1032 PIU1033 PIU1034 PIU1035 PIU1036 PIU1037 PIU1038 PIU1039 PIU1040 PIU1041

COU
1

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8
 COU
2

PIX101 PIX103
COX

1

PIX201 PIX202
COX

2

PIC1701
PI

L2
02

NLA

NT
NLR

F

PIC501

P
I
U
1
0
1

NLD
EC1

P
I
C
1
0
0
1

P
I
U
1
0
2
7
 NLD

EC3

P
I
C
9
0
2

PIC1302
PIC1401

PIL501

P
I
U
1
0
2
6

PIU1038 NLDEC406

PIBT101

P
I
C
1
0
2

P
I
C
2
0
2

PIC301
PIC401

PIC502

PIC602

PIC702

PIC802

P
I
C
9
0
1

P
I
C
1
0
0
2

PIC1102

PIC1202

PIC1301
PIC1402

P
I
C
1
5
0
2

P
I
C
1
6
0
2

PIC1702

P
I
J
1
0
6

P
I
U
1
0
1
0

P
I
U
1
0
2
5

PIU1037
PIU1041

P
I
U
2
0
4

P
I
X
1
0
2

P
I
X
1
0
4

PIC302
PI

L1
01

P
I
U
1
0
2
4

PIC402
PI

L1
02

PI
L2

01

PIC801

P
I
U
1
0
2
1

PIL502

PIL601

PIL602

PIU1039 PIU1011 PIU1012
PIU1013

P
I
U
2
0
3

P
I
U
2
0
7

P
I
C
1
5
0
1

P
I
U
1
0
2

PIX201

NL
P0
00
00
XL
1

P
I
C
1
6
0
1

P
I
U
1
0
3

PIX202

NL
P0
00
10
XL
2

PIU1032 NLP00020AIN0 PIU1031 NLP00030AIN1

P
I
U
1
0
4

NL
P0

00
40

AI
N2

P
I
U
1
0
5

NL
P0

00
50

AI
N3

P
I
U
1
0
2
2
 NL
P0
00
90
NF
C1

P
I
U
1
0
2
3
 NL
P0
01
00
NF
C2

P
I
U
1
0
7

NL
P0

01
1

P
I
J
1
0
5

PIU1014

NLP
001

5
P
I
J
1
0
4

PIU1015

NL
P0
01
7

PIU1016 NLP00180RESET PIU1017 NLP0020
 PIU1033

P
I
U
2
0
1
 NL
P0

02
80

AI
N4

PIU1034

P
I
U
2
0
2

NL
P0

02
90

AI
N5

PIU1035

P
I
U
2
0
5

NL
P0

03
00

AI
N6

PIU1036

P
I
U
2
0
6

NL
P0

03
10

AI
N7

P
I
U
1
0
6

NL
P1

00
9

P
I
J
1
0
2

PIU1020

NL
SW

DC
LK

P
I
J
1
0
3

PIU1019

NL
SW
DI
O

PIBT102

PIC601

PIC701

PIC1101

PIC1201

P
I
J
1
0
1

P
I
U
1
0
8

P
I
U
1
0
9

PIU1018

P
I
U
1
0
3
0

PIU1040

P
I
U
2
0
8

P
I
C
1
0
1

P
I
U
1
0
2
8

PIX101

NLX
C1

P
I
C
2
0
1

P
I
U
1
0
2
9

PIX103

NLX
C2

Appendix C

BLE Services

C.1 Wearable Exposure Notification Service

Figure C.1: A screenshot from the nRF Connect application showing the WENS and
its characteristics. As the WENS specification is still only preliminary, the UUIDs is not
defined in the specifications. The UUIDs used for the characteristics is just temporary
values used for testing.

79

80 M. G. Aalien: A Contact Tracing Wearable

C.2 Device Time Service

Figure C.2: A screenshot from the nRF Connect application showing the DTS and its
characteristics. The service came in 2020, so the nRF Connect application does not re-
cognize the UUIDs because it is quite new [11].

Chapter C: BLE Services 81

C.3 Device Information Service

Figure C.3: A screenshot from the nRF Connect application showing the DIS and its
characteristics. The characteristics hold temporary values set by me, and can easily be
updated.

C.4 Battery Service

Figure C.4: A screenshot from the nRF Connect application showing a temporary im-
plementation of the BAS. The Battery Level characteristic holds the number of what
percentage is left of the battery capacity (0x64=100%). This service is not mandatory
according to the WENS specification, and is not discussed further [1].

Appendix D

Rotation of RPI, AEM and BLE
Address

Code listing D.1: The C function for rotating the RPI, AEM and BLE address. It also
chacks if the TEK has expired and updates the keys if it has.

1 /**
2 * @brief Work handler for changing the RPI, AEM and update advertise data.
3 *
4 * @param unused Not in use, but required.
5 */
6 static void _rotate_rpi_handler(struct k_work *unused)
7 {
8 // Stop advertising
9 if (advertise_stop() < 0)

10 {
11 LOG_ERR("Failed to pause the advertising");
12 return;
13 }
14
15 // Stop the timer
16 k_timer_stop(&_rpi_rotation_timer);
17
18 // Check if the Temporary Exposure Key has expired
19 if (gaens_tek_expired() == 1)
20 {
21 if (gaens_update_keys() < 0)
22 {
23 LOG_ERR("Failed to update TEK");
24 return;
25 }
26 }
27
28 // Update RPI
29 if (gaens_update_rpi() < 0)
30 {
31 LOG_ERR("Failed to update the RPI");
32 return;
33 }
34
35 // Encrypt AEM
36 uint8_t aem[AEM_LENGTH];
37 if (gaens_encrypt_metadata(metadata, AEM_LENGTH, aem) < 0)
38 {
39 LOG_ERR("Failed to encrypt the metadata");
40 return;

83

84 M. G. Aalien: A Contact Tracing Wearable

41 }
42
43 // Change advertise data
44 if (advertise_change_gaens_service_data(current_rpi, RPI_LENGTH, aem,
45 AEM_LENGTH) < 0)
46 {
47 LOG_ERR("Failed to change the gaens service data to advertise");
48 return;
49 }
50
51 // Get random rotation interval between 10 and 20 minutes
52 uint32_t random_time;
53 if (_gaens_random_rotation_interval(&random_time) < 0)
54 {
55 LOG_ERR("Failed to fetch random rotation interval");
56 return;
57 }
58
59 // Start a timer that will trigger in random_time
60 k_timer_start(&_rpi_rotation_timer, K_SECONDS(random_time),
61 K_SECONDS(random_time));
62
63 // Start advertising
64 if (advertise_start() < 0)
65 {
66 LOG_ERR("Failed to resume advertising");
67 return;
68 }
69
70 LOG_INF("Successfully updated RPI and AEM");
71 }

Appendix E

Scan Window Simulation

Code listing E.1: A Python script for determining the average number of advertising
packets that will be received by the wearable with different scan windows and advertise
intervals.

1 import matplotlib.pyplot as plt
2 import numpy as np
3
4 SCAN_WINDOW = 300 # Scan window (ms)
5 ADV_INTERVAL_LOWER = 50 # Lower bound advertise interval (ms)
6 ADV_INTERVAL_UPPER = 500 # Upper bound advertise interval (ms)
7
8 result = []
9

10 # Simulate all the different advertise intervals from lower bound to upper bound
11 for adv_interval in range(ADV_INTERVAL_LOWER, ADV_INTERVAL_UPPER):
12 # Initialize the total amount of packets found inside the scan
13 # window to zero before every simulation
14 total = 0
15
16 # Create a list of all packets that possibly can fall inside
17 # the scan window
18 packets = np.arange(-SCAN_WINDOW, SCAN_WINDOW + 1, adv_interval)
19
20 # Step forward in time until the pattern repeat itself
21 for step in range(0, adv_interval):
22 # Sum how many of the packets were inside the scan window
23 total += sum(0 < x < SCAN_WINDOW for x in packets)
24
25 # Move all packet 1ms forward in time
26 packets = [n + 1 for n in packets]
27
28 # Append the average number of packets that were inside the scan interval
29 # to result for that advertise interval
30 result.append(total / adv_interval)
31
32 # Plot graph from the lower bound advertise interval to the upper bound
33 plt.figure()
34 plt.title(f"Average Number of Packets Received,\nScan Window = {SCAN_WINDOW}ms")
35 plt.ylabel(f"Number of Packets")
36 plt.xlabel(f"Advertise Interval (ms)")
37 plt.plot(range(ADV_INTERVAL_LOWER,ADV_INTERVAL_UPPER), result)
38 plt.grid()
39 plt.savefig(f"avg_packets_received.png")

85

Appendix F

Average Current Consumption

F.1 Accelerometer

BLE SoC
Current (mA) Duration (ms) Interval (ms) Average Current (µA)

Non-Connectable GAENS Advertising 3 3.1 205 26.4634
Connectable WENS Advertising 2.7 3.78 1000 5.9535
Scanning 6 300 60000 17.5000
Connections 2.02 180000 86400000 4.2083
Rotation of GAENS Keys and Identifier 3 5.5 900000 0.0183
Sleep 0.0024 84154343.41 86400000 2.3376

56.4812
External Memory
Write 20 0.8 60000 0.1556
Read 8 4000 86400000 0.2160
Erase 20 10000 86400000 2.3148
Standby 0.01 166000 86400000 0.0192
Power-Down 0.001 86218848 86400000 0.9979

3.7035

Total: 63.1847

Table F.1: The calculation of the average current of each operation isolated operation
averaged over all time where the wearable is using an accelerometer to reduce the cur-
rent consumption. The average current contribution from the accelerometer is 3µA, and
it is assumed that the wearable is not in use for 10 hours a day on average.

87

88 M. G. Aalien: A Contact Tracing Wearable

F.2 Scan and Advertise Interval Adjustments

BLE SoC
Current (mA) Duration (ms) Interval (ms) Average Current (µA)

Non-Connectable GAENS Advertising 3 3.1 270 34.4444
Connectable WENS Advertising 2.7 3.78 2000 5.1030
Scanning 6 300 100000 18.0000
Connections 2.02 180000 86400000 4.2083
Rotation of GAENS Keys and Identifier 3 5.5 900000 0.0183
Sleep 0.0024 84804976 86400000 2.3557

64.1298
External Memory
Write 20 0.8 60000 0.2667
Read 8 4000 86400000 0.3704
Erase 20 10000 86400000 2.3148
Standby 0.01 166000 86400000 0.0192
Power-Down 0.001 86218848 86400000 0.9979

3.9690

Total: 68.0988

Table F.2: The calculation of the average current of each operation isolated operation
averaged over all time where the wearable is optimized by adjusting the advertise and
scan intervals.

F.3 Transmit Power Reduction

BLE SoC
Current (mA) Duration (ms) Interval (ms) Average Current (µA)

Non-Connectable GAENS Advertising 2.3 3.1 205 34.7805
Connectable WENS Advertising 2.7 3.78 1000 10.2060
Scanning 6 300 60000 30.0000
Connections 2.02 180000 86400000 4.2083
Rotation of GAENS Keys and Identifier 3 5.5 900000 0.0183
Sleep 0.0024 84154343.41 86400000 2.3376

81.5508
External Memory
Write 20 0.8 60000 0.2667
Read 8 4000 86400000 0.3704
Erase 20 10000 86400000 2.3148
Standby 0.01 166000 86400000 0.0192
Power-Down 0.001 86218848 86400000 0.9979

3.9690

Total: 85.5197

Table F.3: The calculation of the average current of each operation isolated operation
averaged over all time where the wearable is optimized by reducing the transmit power
for GAENS advertising packets from 0dBm to -12dBm.

Appendix G

Engineering Prototype Schematics

On the following page, the engineering prototype schematics is shown. The circuit dia-
gram has been designed in Altium Designer.

89

90 M. G. Aalien: A Contact Tracing Wearable

11

22

33

44

D
D

C
C

B
B

A
A

1
1

E
ng

in
ee

rin
g

Pr
ot

ot
yp

e
1.

0
08

/0
6/

20
21

Ti
tle

Si
ze

:

D
at

e:

R
ev

is
io

n:

Sh
ee

t
of

A
4

Pr
oj

ec
t:

D
ev

el
op

ed
 b

y:

C
on

ta
ct

 T
ra

ci
ng

 P
ro

je
ct

M
ar

tin
 G

. A
al

ie
n

P1
.0

9

P0
.0

0/
X

L1
P0

.0
1/

X
L2

D
EC

1
1

V
SS

25

A
N

T
24

D
EC

6
26

D
EC

3
27

X
C1

28
X

C2
29

V
D

D
30

P0
.0

0/
X

L1
2

P0
.0

1/
X

L2
3

P0
.0

4/
A

IN
2

4

P0
.0

5/
A

IN
3

5

P0
.1

1
7

P0.28/AIN433 P0.29/AIN534 P0.30/AIN635 P0.31/AIN736

DEC438

VSS37

VDD40

DCC39

SWDCLK 20SWDIO 19

P0.15 14

P0.17 15
nR

F5
28

33
V

D
D

8
D- 12

V
D

D
H

9

V
BU

S
10

DECUSB 11

D+ 13

VDD 18

P0
.0

9/
N

FC
1

22

P1
.0

9
6

P0.18/RESET 16
D

EC
5

21

P0
.1

0/
N

FC
2

23

P0.03/AIN131 P0.02/AIN032

P0.20 17

VSS41

U
1

nR
F5

28
33

-Q
D

A
A

P0
.0

4/
A

IN
2

P0
.0

5/
A

IN
3

P0
.1

1

C1
6

12
pF

C1
5

12
pF

X
2

32
.7

68
kH

z

O
pt

io
na

l
X

1
32

M
H

z
C

1

12
pF

C
2

12
pF

C1
0

10
0p

F

X
C1

X
C2

V
D

D
_n

RF

C1
3

1.
0µ

F

L4
15

nH

C
9

N
.C

.
D

EC
3

V
D

D
_n

RF C
7

10
0n

F

C
8

82
0p

F

C1
1

10
0n

F

V
D

D
_n

RF

C1
2

1.
0µ

F

P0
.0

9/
N

FC
1

P0
.1

0/
N

FC
2

C1
4

47
nF

D
EC

4_
6

DEC4_6
R

F
V

D
D

_n
RF C

6
4.

7µ
F

P0.02/AIN0
P0.03/AIN1

P0.28/AIN4
P0.29/AIN5
P0.30/AIN6
P0.31/AIN7

L3
10
µH

C
3

1.
0p

FL1 4.
7n

H
C

4
1.

2p
FL2 2.
2n

H

P0.18/RESET

SWDCLK
SWDIO

P0.15
P0.17

P0.20

C
5

10
0n

F

D
EC

1

V
C

C
6

C
S

4

R
ES

ET
3

W
P

5
EP

9

SC
K

2

SI
1

SO
8

G
N

D
7

U
2

AT
45

D
B

32
1E

-M
H

F-
T

V
D

D
_n

RF

P0
.3

1/
A

IN
7

P0
.3

0/
A

IN
6

P0
.2

9/
A

IN
5

P0
.0

3/
A

IN
1

P0
.2

8/
A

IN
4

P0
.0

2/
A

IN
0

R
ES

15

G
N

D
12

SD
A

/S
D

I/S
D

O
6

SD
O

/S
A

0
7

V
D

D
_I

O
1

G
N

D
16

G
N

D
5

R
ES

10

IN
T1

11

V
D

D
14

SC
L/

SP
C

4

IN
T2

9

C
S

8

G
N

D
13

N
C

2

N
C

3

U
3

LI
S3

31
D

LH
TR

V
D

D
_n

RF

P0
.3

1/
A

IN
7

P0
.3

0/
A

IN
6

P0
.0

2/
A

IN
0

P1
.0

9

P0
.0

4/
A

IN
2

P0
.0

5/
A

IN
3

E1
A

24
50

AT
18

A
10

0E

L5 3.
9n

H
L6 2.

7n
H

C1
7

1.
0p

F

P0
.1

7

P0
.1

8/
RE

SE
T

P0
.1

5
1

TP
1

1

TP
2

1

TP
3

1

TP
4

1

TP
5

1

TP
6

1

TP
7

V
D

D
_n

RF

G
N

D

2 1+

-BT
1

S8
42

1-
45

R

V
D

D
_n

RF

SW
D

CL
K

SW
D

IO

Po
w

er
 S

up
pl

y

A
cc

el
er

om
et

er

Ex
te

rn
al

 F
la

sh
 M

em
or

y

Te
st

 P
oi

nt
s

PIBT101 PIBT102
COB

T1

P
I
C
1
0
1
 P
I
C
1
0
2

COC
1

P
I
C
2
0
1
 P
I
C
2
0
2

COC
2

PIC301 PIC302
COC

3
PIC401 PIC402

COC
4

PIC501 PIC502
COC

5

PIC601 PIC602
COC

6

PIC701 PIC702
COC

7

PIC801 PIC802
COC

8

P
I
C
9
0
1

P
I
C
9
0
2
 COC
9

P
I
C
1
0
0
1
 P
I
C
1
0
0
2

COC
10

PIC1101 PIC1102
COC

11

PIC1201 PIC1202
COC

12

PIC1301 PIC1302
COC

13
PIC1401 PIC1402

COC
14

P
I
C
1
5
0
1

P
I
C
1
5
0
2
 COC
15 P
I
C
1
6
0
1

P
I
C
1
6
0
2
 COC
16

P
I
C
1
7
0
1
 P
I
C
1
7
0
2

COC
17

PIE101
COE1

A

PI
L1

01

PI
L1

02

COL1

PI
L2
01

PI
L2

02

COL
2

PIL301

PIL302

COL
3 PIL401

PIL402

COL
4

PI
L5
01

PI

L5
02

COL
5

PIL601

PIL602
 COL

6

P
I
T
P
1
0
1

COT
P1

P
I
T
P
2
0
1

COT
P2

P
I
T
P
3
0
1

COT
P3

P
I
T
P
4
0
1

COT
P4

P
I
T
P
5
0
1

COT
P5

P
I
T
P
6
0
1

COT
P6

P
I
T
P
7
0
1

COT
P7

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
5

P
I
U
1
0
6

P
I
U
1
0
7

P
I
U
1
0
8

P
I
U
1
0
9

P
I
U
1
0
1
0

PIU1011 PIU1012
PIU1013 PIU1014

PIU1015 PIU1016
PIU1017 PIU1018

PIU1019 PIU1020

P
I
U
1
0
2
1

P
I
U
1
0
2
2

P
I
U
1
0
2
3

P
I
U
1
0
2
4

P
I
U
1
0
2
5

P
I
U
1
0
2
6

P
I
U
1
0
2
7

P
I
U
1
0
2
8

P
I
U
1
0
2
9

P
I
U
1
0
3
0

PIU1031 PIU1032 PIU1033 PIU1034 PIU1035 PIU1036 PIU1037 PIU1038 PIU1039 PIU1040 PIU1041

COU
1

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8

P
I
U
2
0
9

COU
2

P
I
U
3
0
1

P
I
U
3
0
2

P
I
U
3
0
3

P
I
U
3
0
4

P
I
U
3
0
5

P
I
U
3
0
6

P
I
U
3
0
7

P
I
U
3
0
8

P
I
U
3
0
9

P
I
U
3
0
1
0

P
I
U
3
0
1
1

P
I
U
3
0
1
2

P
I
U
3
0
1
3

P
I
U
3
0
1
4

P
I
U
3
0
1
5

P
I
U
3
0
1
6

COU
3

PIX101 PIX103
COX

1

PIX201 PIX202
COX

2

PIC501

P
I
U
1
0
1

NL
DE
C1

P
I
C
1
0
0
1

P
I
U
1
0
2
7
 NLD

EC3

P
I
C
9
0
2

PIC1302
PIC1401

PIL401

P
I
U
1
0
2
6

PIU1038 NLDEC406
PIBT101

P
I
C
1
0
2

P
I
C
2
0
2

PIC301
PIC401

PIC502

PIC602

PIC702

PIC802

P
I
C
9
0
1

P
I
C
1
0
0
2

PIC1102

PIC1202

PIC1301
PIC1402

P
I
C
1
5
0
2

P
I
C
1
6
0
2

PIL601

P
I
T
P
7
0
1

P
I
U
1
0
1
0

P
I
U
1
0
2
5

PIU1037
PIU1041

P
I
U
2
0
7

P
I
U
3
0
5

P
I
U
3
0
1
0

P
I
U
3
0
1
2

P
I
U
3
0
1
3

P
I
U
3
0
1
6

P
I
X
1
0
2

P
I
X
1
0
4

NLG
ND

PIC302
PI

L1
01

P
I
U
1
0
2
4

PIC402
PI

L1
02

PI

L2
01

PIC801

P
I
U
1
0
2
1

P
I
C
1
7
0
2

PI
L5
01

PIL602

PIE101
PI

L5
02

PIL301

PIL402

PIL302

PIU1039 PIU1011 PIU1012
PIU1013

P
I
U
2
0
9

P
I
U
3
0
2

P
I
U
3
0
3

P
I
C
1
5
0
1

P
I
U
1
0
2

PIX201

NL
P0
00
00
XL
1

P
I
C
1
6
0
1

P
I
U
1
0
3

PIX202

NL
P0
00
10
XL
2

PIU1032

P
I
U
2
0
8

P
I
U
3
0
7

NL
P0
00
20
AI
N0

PIU1031

P
I
U
2
0
5

NL
P0

00
30

AI
N1

P
I
U
1
0
4

P
I
U
3
0
1
1

NL

P0
00

40
AI

N2

P
I
U
1
0
5

P
I
U
3
0
9

NL

P0
00

50
AI

N3

P
I
U
1
0
2
2
 NL
P0

00
90

NF
C1

P
I
U
1
0
2
3
 NL
P0

01
00

NF
C2

P
I
U
1
0
7

NL
P0

01
1

P
I
T
P
1
0
1

PIU1014 NLP0015

P
I
T
P
2
0
1

PIU1015 NLP0017

P
I
T
P
3
0
1

PIU1016 NLP00180RESET PIU1017 NLP0020
 PIU1033

P
I
U
2
0
4
 NL
P0

02
80

AI
N4

PIU1034

P
I
U
2
0
3

NL
P0

02
90

AI
N5

PIU1035

P
I
U
2
0
1

P
I
U
3
0
6

NL
P0

03
00

AI
N6

PIU1036

P
I
U
2
0
2

P
I
U
3
0
4

NL
P0

03
10

AI
N7

P
I
U
1
0
6

P
I
U
3
0
8

NL
P1
00
9

P
I
C
1
7
0
1

PI
L2

02

NLR
F

P
I
T
P
5
0
1

PIU1020 NLSWDCLK

P
I
T
P
4
0
1

PIU1019 NLSWDIO

PIBT102

PIC601

PIC701

PIC1101

PIC1201

P
I
T
P
6
0
1

P
I
U
1
0
8

P
I
U
1
0
9

PIU1018

P
I
U
1
0
3
0

PIU1040

P
I
U
2
0
6

P
I
U
3
0
1

P
I
U
3
0
1
4

P
I
U
3
0
1
5

NL
VD
D0
nR
F

P
I
C
1
0
1

P
I
U
1
0
2
8

PIX101

NLX
C1

P
I
C
2
0
1

P
I
U
1
0
2
9

PIX103

NLX
C2

Appendix H

Layers

H.1 All Layers

PABT101

PABT102

COBT1

PAC102 PAC101 COC1

PAC202 PAC201

COC2

PAC302

PAC301

COC3
PAC402

PAC401

COC4

PAC502
PAC501

COC5

PAC601 PAC602
COC6

PAC702
PAC701 COC7 PAC802

PAC801 COC8

PAC901 PAC902 COC9
PAC1002 PAC1001 COC10

PAC1102
PAC1101

COC11 PAC1202

PAC1201 COC12 PAC1301 PAC1302 COC13
PAC1401 PAC1402 COC14 PAC1502

PAC1501

COC15
PAC1602
PAC1601

COC16

PAC1701
PAC1702 COC17

PAC1901

PAC1902 COC19

PAE101

PAE102

COE1

PAL101 PAL102

COL1
PAL201 PAL202

COL2

PAL301

PAL302

COL3 PAL402 PAL401
COL4

PAL502
PAL501 COL5
PAL602 PAL601 COL6

PATP101
COTP1

PATP201
COTP2

PATP301
COTP3

PATP401
COTP4 PATP501

COTP5 PATP601
COTP6 PATP701

COTP7 PAU1041
PAU1040 PAU1039 PAU1038 PAU1037 PAU1036 PAU1035 PAU1034 PAU1033 PAU1032 PAU1031

PAU1030

PAU1029
PAU1028
PAU1027

PAU1026

PAU1025
PAU1024
PAU1023
PAU1022

PAU1021

PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013 PAU1012 PAU1011
PAU1010

PAU109
PAU108
PAU107
PAU106

PAU105

PAU104
PAU103
PAU102

PAU101

COU1

PAU208

PAU207

PAU206

PAU205 PAU204

PAU203

PAU202

PAU201

PAU209
COU2

PAU3016 PAU3015 PAU3014

PAU309
PAU3010
PAU3011
PAU3012
PAU3013

PAU308 PAU307 PAU306

PAU301
PAU302
PAU303
PAU304
PAU305

COU3

PAX104 PAX101

PAX102 PAX103
COX1 PAX201 PAX202

COX2

PAU1013 PAU1012

PAC501
PAU101

PAC1001
PAU1027 PAC902

PAC1302
PAC1401

PAL401

PAU1026

PAU1038

PABT101

PAC102

PAC202

PAC301 PAC401

PAC502

PAC602

PAC702

PAC802

PAC901

PAC1002

PAC1102
PAC1202 PAC1301

PAC1402 PAC1502 PAC1602

PAC1902

PAL601

PATP701
PAU1010

PAU1025

PAU1037

PAU1041

PAU207 PAU305
PAU3010

PAU3012
PAU3013 PAU3016

PAX102

PAX104

PAC302 PAL101 PAU1024 PAC402 PAL102 PAL201

PAC801

PAU1021

PAC1702

PAL501

PAL602

PAC1901

PAU1011

PAE101

PAL502 PAL301
PAL402

PAL302

PAU1039
PAC1501

PAU102

PAX201
PAC1601

PAU103

PAX202 PAU1032

PAU208

PAU307

PAU1031

PAU205

PAU104

PAU3011

PAU105

PAU309

PAU1022
PAU1023

PAU107

PATP101

PAU1014

PATP201

PAU1015

PATP301

PAU1016 PAU1017

PAU1033

PAU204

PAU1034

PAU203

PAU1035

PAU201

PAU306

PAU1036

PAU202
PAU304

PAU106

PAU308

PAC1701

PAL202

PATP501

PAU1020

PATP401

PAU1019

PABT102

PAC601

PAC701

PAC1101 PAC1201

PATP601

PAU108
PAU109

PAU1018

PAU1030

PAU1040

PAU206

PAU301 PAU3014 PAU3015

PAC101

PAU1028

PAX101

PAC201

PAU1029

PAX103

91

92 M. G. Aalien: A Contact Tracing Wearable

H.2 Top Layer

PABT101

PABT102

COBT1

PAC102 PAC101 COC1

PAC202 PAC201

COC2

PAC302

PAC301

COC3
PAC402

PAC401

COC4

PAC502
PAC501

COC5

PAC601 PAC602
COC6

PAC702
PAC701 COC7 PAC802

PAC801 COC8

PAC901 PAC902 COC9
PAC1002 PAC1001 COC10

PAC1102
PAC1101

COC11 PAC1202

PAC1201 COC12 PAC1301 PAC1302 COC13
PAC1401 PAC1402 COC14 PAC1502

PAC1501

COC15
PAC1602
PAC1601

COC16

PAC1701
PAC1702 COC17

PAC1901

PAC1902 COC19

PAE101

PAE102

COE1

PAL101 PAL102

COL1
PAL201 PAL202

COL2

PAL301

PAL302

COL3 PAL402 PAL401
COL4

PAL502
PAL501 COL5
PAL602 PAL601 COL6

PATP101
COTP1

PATP201
COTP2

PATP301
COTP3

PATP401
COTP4 PATP501

COTP5 PATP601
COTP6 PATP701

COTP7 PAU1041
PAU1040 PAU1039 PAU1038 PAU1037 PAU1036 PAU1035 PAU1034 PAU1033 PAU1032 PAU1031

PAU1030

PAU1029
PAU1028
PAU1027

PAU1026

PAU1025
PAU1024
PAU1023
PAU1022

PAU1021

PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013 PAU1012 PAU1011
PAU1010

PAU109
PAU108
PAU107
PAU106

PAU105

PAU104
PAU103
PAU102

PAU101

COU1

PAU208

PAU207

PAU206

PAU205 PAU204

PAU203

PAU202

PAU201

PAU209
COU2

PAU3016 PAU3015 PAU3014

PAU309
PAU3010
PAU3011
PAU3012
PAU3013

PAU308 PAU307 PAU306

PAU301
PAU302
PAU303
PAU304
PAU305

COU3

PAX104 PAX101

PAX102 PAX103
COX1 PAX201 PAX202

COX2

PAU1013 PAU1012

PAC501
PAU101

PAC1001
PAU1027 PAC902

PAC1302
PAC1401

PAL401

PAU1026

PAU1038

PABT101

PAC102

PAC202

PAC301 PAC401

PAC502

PAC602

PAC702

PAC802

PAC901

PAC1002

PAC1102
PAC1202 PAC1301

PAC1402 PAC1502 PAC1602

PAC1902

PAL601

PATP701
PAU1010

PAU1025

PAU1037

PAU1041

PAU207 PAU305
PAU3010

PAU3012
PAU3013 PAU3016

PAX102

PAX104

PAC302 PAL101 PAU1024 PAC402 PAL102 PAL201

PAC801

PAU1021

PAC1702

PAL501

PAL602

PAC1901

PAU1011

PAE101

PAL502 PAL301
PAL402

PAL302

PAU1039
PAC1501

PAU102

PAX201
PAC1601

PAU103

PAX202 PAU1032

PAU208

PAU307

PAU1031

PAU205

PAU104

PAU3011

PAU105

PAU309

PAU1022
PAU1023

PAU107

PATP101

PAU1014

PATP201

PAU1015

PATP301

PAU1016 PAU1017

PAU1033

PAU204

PAU1034

PAU203

PAU1035

PAU201

PAU306

PAU1036

PAU202
PAU304

PAU106

PAU308

PAC1701

PAL202

PATP501

PAU1020

PATP401

PAU1019

PABT102

PAC601

PAC701

PAC1101 PAC1201

PATP601

PAU108
PAU109

PAU1018

PAU1030

PAU1040

PAU206

PAU301 PAU3014 PAU3015

PAC101

PAU1028

PAX101

PAC201

PAU1029

PAX103

Chapter H: Layers 93

H.3 Mid-Layer 1

PABT101

PABT102

COBT1

PAC102 PAC101 COC1

PAC202 PAC201

COC2

PAC302

PAC301

COC3
PAC402

PAC401

COC4

PAC502
PAC501

COC5

PAC601 PAC602
COC6

PAC702
PAC701 COC7 PAC802

PAC801 COC8

PAC901 PAC902 COC9
PAC1002 PAC1001 COC10

PAC1102
PAC1101

COC11 PAC1202

PAC1201 COC12 PAC1301 PAC1302 COC13
PAC1401 PAC1402 COC14 PAC1502

PAC1501

COC15
PAC1602
PAC1601

COC16

PAC1701
PAC1702 COC17

PAC1901

PAC1902 COC19

PAE101

PAE102

COE1

PAL101 PAL102

COL1
PAL201 PAL202

COL2

PAL301

PAL302

COL3 PAL402 PAL401
COL4

PAL502
PAL501 COL5
PAL602 PAL601 COL6

PATP101
COTP1

PATP201
COTP2

PATP301
COTP3

PATP401
COTP4 PATP501

COTP5 PATP601
COTP6 PATP701

COTP7 PAU1041
PAU1040 PAU1039 PAU1038 PAU1037 PAU1036 PAU1035 PAU1034 PAU1033 PAU1032 PAU1031

PAU1030

PAU1029
PAU1028
PAU1027

PAU1026

PAU1025
PAU1024
PAU1023
PAU1022

PAU1021

PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013 PAU1012 PAU1011
PAU1010

PAU109
PAU108
PAU107
PAU106

PAU105

PAU104
PAU103
PAU102

PAU101

COU1

PAU208

PAU207

PAU206

PAU205 PAU204

PAU203

PAU202

PAU201

PAU209
COU2

PAU3016 PAU3015 PAU3014

PAU309
PAU3010
PAU3011
PAU3012
PAU3013

PAU308 PAU307 PAU306

PAU301
PAU302
PAU303
PAU304
PAU305

COU3

PAX104 PAX101

PAX102 PAX103
COX1 PAX201 PAX202

COX2

PAU1013 PAU1012

PAC501
PAU101

PAC1001
PAU1027 PAC902

PAC1302
PAC1401

PAL401

PAU1026

PAU1038

PABT101

PAC102

PAC202

PAC301 PAC401

PAC502

PAC602

PAC702

PAC802

PAC901

PAC1002

PAC1102
PAC1202 PAC1301

PAC1402 PAC1502 PAC1602

PAC1902

PAL601

PATP701
PAU1010

PAU1025

PAU1037

PAU1041

PAU207 PAU305
PAU3010

PAU3012
PAU3013 PAU3016

PAX102

PAX104

PAC302 PAL101 PAU1024 PAC402 PAL102 PAL201

PAC801

PAU1021

PAC1702

PAL501

PAL602

PAC1901

PAU1011

PAE101

PAL502 PAL301
PAL402

PAL302

PAU1039
PAC1501

PAU102

PAX201
PAC1601

PAU103

PAX202 PAU1032

PAU208

PAU307

PAU1031

PAU205

PAU104

PAU3011

PAU105

PAU309

PAU1022
PAU1023

PAU107

PATP101

PAU1014

PATP201

PAU1015

PATP301

PAU1016 PAU1017

PAU1033

PAU204

PAU1034

PAU203

PAU1035

PAU201

PAU306

PAU1036

PAU202
PAU304

PAU106

PAU308

PAC1701

PAL202

PATP501

PAU1020

PATP401

PAU1019

PABT102

PAC601

PAC701

PAC1101 PAC1201

PATP601

PAU108
PAU109

PAU1018

PAU1030

PAU1040

PAU206

PAU301 PAU3014 PAU3015

PAC101

PAU1028

PAX101

PAC201

PAU1029

PAX103

94 M. G. Aalien: A Contact Tracing Wearable

H.4 Mid-Layer 2

PABT101

PABT102

COBT1

PAC102 PAC101 COC1

PAC202 PAC201

COC2

PAC302

PAC301

COC3
PAC402

PAC401

COC4

PAC502
PAC501

COC5

PAC601 PAC602
COC6

PAC702
PAC701 COC7 PAC802

PAC801 COC8

PAC901 PAC902 COC9
PAC1002 PAC1001 COC10

PAC1102
PAC1101

COC11 PAC1202

PAC1201 COC12 PAC1301 PAC1302 COC13
PAC1401 PAC1402 COC14 PAC1502

PAC1501

COC15
PAC1602
PAC1601

COC16

PAC1701
PAC1702 COC17

PAC1901

PAC1902 COC19

PAE101

PAE102

COE1

PAL101 PAL102

COL1
PAL201 PAL202

COL2

PAL301

PAL302

COL3 PAL402 PAL401
COL4

PAL502
PAL501 COL5
PAL602 PAL601 COL6

PATP101
COTP1

PATP201
COTP2

PATP301
COTP3

PATP401
COTP4 PATP501

COTP5 PATP601
COTP6 PATP701

COTP7 PAU1041
PAU1040 PAU1039 PAU1038 PAU1037 PAU1036 PAU1035 PAU1034 PAU1033 PAU1032 PAU1031

PAU1030

PAU1029
PAU1028
PAU1027

PAU1026

PAU1025
PAU1024
PAU1023
PAU1022

PAU1021

PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013 PAU1012 PAU1011
PAU1010

PAU109
PAU108
PAU107
PAU106

PAU105

PAU104
PAU103
PAU102

PAU101

COU1

PAU208

PAU207

PAU206

PAU205 PAU204

PAU203

PAU202

PAU201

PAU209
COU2

PAU3016 PAU3015 PAU3014

PAU309
PAU3010
PAU3011
PAU3012
PAU3013

PAU308 PAU307 PAU306

PAU301
PAU302
PAU303
PAU304
PAU305

COU3

PAX104 PAX101

PAX102 PAX103
COX1 PAX201 PAX202

COX2

PAU1013 PAU1012

PAC501
PAU101

PAC1001
PAU1027 PAC902

PAC1302
PAC1401

PAL401

PAU1026

PAU1038

PABT101

PAC102

PAC202

PAC301 PAC401

PAC502

PAC602

PAC702

PAC802

PAC901

PAC1002

PAC1102
PAC1202 PAC1301

PAC1402 PAC1502 PAC1602

PAC1902

PAL601

PATP701
PAU1010

PAU1025

PAU1037

PAU1041

PAU207 PAU305
PAU3010

PAU3012
PAU3013 PAU3016

PAX102

PAX104

PAC302 PAL101 PAU1024 PAC402 PAL102 PAL201

PAC801

PAU1021

PAC1702

PAL501

PAL602

PAC1901

PAU1011

PAE101

PAL502 PAL301
PAL402

PAL302

PAU1039
PAC1501

PAU102

PAX201
PAC1601

PAU103

PAX202 PAU1032

PAU208

PAU307

PAU1031

PAU205

PAU104

PAU3011

PAU105

PAU309

PAU1022
PAU1023

PAU107

PATP101

PAU1014

PATP201

PAU1015

PATP301

PAU1016 PAU1017

PAU1033

PAU204

PAU1034

PAU203

PAU1035

PAU201

PAU306

PAU1036

PAU202
PAU304

PAU106

PAU308

PAC1701

PAL202

PATP501

PAU1020

PATP401

PAU1019

PABT102

PAC601

PAC701

PAC1101 PAC1201

PATP601

PAU108
PAU109

PAU1018

PAU1030

PAU1040

PAU206

PAU301 PAU3014 PAU3015

PAC101

PAU1028

PAX101

PAC201

PAU1029

PAX103

Chapter H: Layers 95

H.5 Bottom Layer

PABT101

PABT102

COBT1

PAC102 PAC101 COC1

PAC202 PAC201

COC2

PAC302

PAC301

COC3
PAC402

PAC401

COC4

PAC502
PAC501

COC5

PAC601 PAC602
COC6

PAC702
PAC701 COC7 PAC802

PAC801 COC8

PAC901 PAC902 COC9
PAC1002 PAC1001 COC10

PAC1102
PAC1101

COC11 PAC1202

PAC1201 COC12 PAC1301 PAC1302 COC13
PAC1401 PAC1402 COC14 PAC1502

PAC1501

COC15
PAC1602
PAC1601

COC16

PAC1701
PAC1702 COC17

PAC1901

PAC1902 COC19

PAE101

PAE102

COE1

PAL101 PAL102

COL1
PAL201 PAL202

COL2

PAL301

PAL302

COL3 PAL402 PAL401
COL4

PAL502
PAL501 COL5
PAL602 PAL601 COL6

PATP101
COTP1

PATP201
COTP2

PATP301
COTP3

PATP401
COTP4 PATP501

COTP5 PATP601
COTP6 PATP701

COTP7 PAU1041
PAU1040 PAU1039 PAU1038 PAU1037 PAU1036 PAU1035 PAU1034 PAU1033 PAU1032 PAU1031

PAU1030

PAU1029
PAU1028
PAU1027

PAU1026

PAU1025
PAU1024
PAU1023
PAU1022

PAU1021

PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013 PAU1012 PAU1011
PAU1010

PAU109
PAU108
PAU107
PAU106

PAU105

PAU104
PAU103
PAU102

PAU101

COU1

PAU208

PAU207

PAU206

PAU205 PAU204

PAU203

PAU202

PAU201

PAU209
COU2

PAU3016 PAU3015 PAU3014

PAU309
PAU3010
PAU3011
PAU3012
PAU3013

PAU308 PAU307 PAU306

PAU301
PAU302
PAU303
PAU304
PAU305

COU3

PAX104 PAX101

PAX102 PAX103
COX1 PAX201 PAX202

COX2

PAU1013 PAU1012

PAC501
PAU101

PAC1001
PAU1027 PAC902

PAC1302
PAC1401

PAL401

PAU1026

PAU1038

PABT101

PAC102

PAC202

PAC301 PAC401

PAC502

PAC602

PAC702

PAC802

PAC901

PAC1002

PAC1102
PAC1202 PAC1301

PAC1402 PAC1502 PAC1602

PAC1902

PAL601

PATP701
PAU1010

PAU1025

PAU1037

PAU1041

PAU207 PAU305
PAU3010

PAU3012
PAU3013 PAU3016

PAX102

PAX104

PAC302 PAL101 PAU1024 PAC402 PAL102 PAL201

PAC801

PAU1021

PAC1702

PAL501

PAL602

PAC1901

PAU1011

PAE101

PAL502 PAL301
PAL402

PAL302

PAU1039
PAC1501

PAU102

PAX201
PAC1601

PAU103

PAX202 PAU1032

PAU208

PAU307

PAU1031

PAU205

PAU104

PAU3011

PAU105

PAU309

PAU1022
PAU1023

PAU107

PATP101

PAU1014

PATP201

PAU1015

PATP301

PAU1016 PAU1017

PAU1033

PAU204

PAU1034

PAU203

PAU1035

PAU201

PAU306

PAU1036

PAU202
PAU304

PAU106

PAU308

PAC1701

PAL202

PATP501

PAU1020

PATP401

PAU1019

PABT102

PAC601

PAC701

PAC1101 PAC1201

PATP601

PAU108
PAU109

PAU1018

PAU1030

PAU1040

PAU206

PAU301 PAU3014 PAU3015

PAC101

PAU1028

PAX101

PAC201

PAU1029

PAX103

Appendix I

Code Documentation

The following is the documentation of the software solution based on GAENS and WENS,
generated using Doxygen.

97

GAENS and WENS wearable implementation
v0.1

Generated by Doxygen 1.8.17

i

1 GAENS and WENS wearable implementation 1

1.1 Install Zephyr . 1

1.2 Comments . 1

1.2.1 Serial communication power consumption . 1

1.2.2 undefined reference to ‘mbedtls_hkdf’ . 1

2 Class Index 3

2.1 Class List . 3

3 File Index 5

3.1 File List . 5

4 Class Documentation 7

4.1 ens_identifier_t Struct Reference . 7

4.2 ens_log_t Struct Reference . 7

4.3 ens_settings_t Struct Reference . 7

4.4 features_t Struct Reference . 8

4.5 temp_key_list_t Struct Reference . 8

4.6 wen_features_t Struct Reference . 8

4.7 wen_status_t Struct Reference . 8

5 File Documentation 9

5.1 src/ble/advertise.h File Reference . 9

5.1.1 Detailed Description . 9

5.1.2 Function Documentation . 9

5.1.2.1 advertise_change_gaens_service_data() . 9

5.1.2.2 advertise_start() . 10

5.1.2.3 advertise_stop() . 10

5.2 src/ble/ble.h File Reference . 10

5.2.1 Detailed Description . 11

5.2.2 Function Documentation . 11

5.2.2.1 ble_init() . 11

5.3 src/ble/connection.c File Reference . 11

5.3.1 Detailed Description . 12

5.3.2 Variable Documentation . 12

5.3.2.1 conn_callbacks . 12

5.4 src/ble/connection.h File Reference . 12

5.4.1 Detailed Description . 12

5.5 src/ble/scan.h File Reference . 12

5.5.1 Detailed Description . 13

5.5.2 Function Documentation . 13

5.5.2.1 scan_set_parameters() . 13

5.5.2.2 scan_start() . 13

5.5.2.3 scan_stop() . 14

Generated by Doxygen

ii

5.6 src/ble/services/bs/bas.h File Reference . 14

5.6.1 Detailed Description . 14

5.6.2 Function Documentation . 14

5.6.2.1 bt_bas_get_battery_level() . 14

5.6.2.2 bt_bas_set_battery_level() . 14

5.7 src/ble/services/dis/dis.h File Reference . 15

5.7.1 Detailed Description . 15

5.8 src/ble/services/dts/dts.h File Reference . 15

5.8.1 Detailed Description . 15

5.9 src/ble/services/wens/wens.h File Reference . 15

5.9.1 Detailed Description . 16

5.9.2 Function Documentation . 16

5.9.2.1 wens_ens_identifier_indicate() . 16

5.9.2.2 wens_ens_log_notify() . 16

5.9.2.3 wens_ens_settings_indicate() . 18

5.9.2.4 wens_features_indicate() . 18

5.9.2.5 wens_get_ens_settings() . 18

5.9.2.6 wens_racp_indicate() . 20

5.9.2.7 wens_status_indicate() . 20

5.10 src/ble/uuid.h File Reference . 21

5.10.1 Detailed Description . 21

5.11 src/gaens/crypto.h File Reference . 22

5.11.1 Detailed Description . 22

5.11.2 Function Documentation . 23

5.11.2.1 crypto_aem() . 23

5.11.2.2 crypto_aem_decrypt() . 23

5.11.2.3 crypto_aemk() . 24

5.11.2.4 crypto_en_interval_number() . 24

5.11.2.5 crypto_init() . 25

5.11.2.6 crypto_rpi() . 25

5.11.2.7 crypto_rpi_decrypt() . 25

5.11.2.8 crypto_rpik() . 26

5.11.2.9 crypto_tek() . 26

5.12 src/gaens/gaens.h File Reference . 27

5.12.1 Detailed Description . 27

5.12.2 Function Documentation . 28

5.12.2.1 gaens_ble_addr_expired() . 28

5.12.2.2 gaens_decrypt_metadata() . 28

5.12.2.3 gaens_encrypt_metadata() . 28

5.12.2.4 gaens_get_rpi() . 29

5.12.2.5 gaens_get_rpi_decrypted() . 29

5.12.2.6 gaens_get_tek() . 30

Generated by Doxygen

iii

5.12.2.7 gaens_init() . 30

5.12.2.8 gaens_tek_expired() . 30

5.12.2.9 gaens_update_keys() . 31

5.12.2.10 gaens_update_rpi() . 31

5.13 src/main.c File Reference . 31

5.13.1 Detailed Description . 32

5.14 src/records/extmem.h File Reference . 32

5.14.1 Detailed Description . 32

5.14.2 Function Documentation . 32

5.14.2.1 extmem_erase() . 32

5.14.2.2 extmem_init() . 33

5.14.2.3 extmem_read() . 33

5.14.2.4 extmem_write() . 33

5.15 src/records/storage.h File Reference . 34

5.15.1 Detailed Description . 34

5.15.2 Function Documentation . 34

5.15.2.1 storage_delete_all() . 35

5.15.2.2 storage_read() . 35

5.15.2.3 storage_write_entry() . 35

5.16 src/time/time.h File Reference . 36

5.16.1 Detailed Description . 36

5.16.2 Function Documentation . 36

5.16.2.1 get_current_time() . 36

5.16.2.2 set_current_time() . 37

Index 39

Generated by Doxygen

Chapter 1

GAENS and WENS wearable implementation

This is an wearable implementation of Google/Apple Exposure Notification
System (GAENS) and Wearable Exposure Notification Service (WENS). The
implementation is created for Nordic Semiconductor's nRF52833 SoC.

1.1 Install Zephyr

To be able to build this project you need to install the Zephyr devlopment
environment. This can be done by following their [Getting Started Guide]("https://docs.zephyrproject.←↩

org/latest/getting_started/index.html").

1.2 Comments

This sections includes some comments regarding the implementation.

1.2.1 Serial communication power consumption

Having enabled serial communications disables zephyr to put the device in sleep
mode. In order to decrease the power consumption and enable sleep mode one has
to change CONFIG_SERIAL=y to CONFIG_SERIAL=n in prj.conf. This overwrites
UART_CONSOLE, STDOUT_CONSOLE and LOG_BACKEND_UART, which all will give a
warning, but those can be disregarded.

1.2.2 undefined reference to ‘mbedtls_hkdf’

Zephyr uses an own config file for defining MBEDTLS configurations and HKDF,
which is required by GAENS, is not included. To fix this error you need to add
the following to modules/crypto/mbedtls/configs/config-tls-generic.h in
your zephyr project:

#define MBEDTLS_HKDF_C

2 GAENS and WENS wearable implementation

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ens_identifier_t . 7
ens_log_t . 7
ens_settings_t . 7
features_t . 8
temp_key_list_t . 8
wen_features_t . 8
wen_status_t . 8

4 Class Index

Generated by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

src/main.c
The main module . 31

src/ble/advertise.h
Advertise library . 9

src/ble/ble.h
Bluetooth Low Energy library . 10

src/ble/connection.c
USB device core layer APIs and structures . 11

src/ble/connection.h
Connection handling module . 12

src/ble/scan.h
Bluetooth Low Energy scan module . 12

src/ble/uuid.h
UUID library . 21

src/ble/services/bs/bas.h
Battery Service library . 14

src/ble/services/dis/dis.h
Device Information Service . 15

src/ble/services/dts/dts.h
Device Time Service . 15

src/ble/services/wens/wens.h
WENS library . 15

src/gaens/crypto.h
Cryptography module . 22

src/gaens/gaens.h
Google/Apple Exposure Notification System cryptography module 27

src/records/extmem.h
External Memory module . 32

src/records/storage.h
Storage module . 34

src/time/time.h
Time module . 36

6 File Index

Generated by Doxygen

Chapter 4

Class Documentation

4.1 ens_identifier_t Struct Reference

Public Attributes

• uint16_t uuid
• char version [4]

The documentation for this struct was generated from the following file:

• src/ble/services/wens/wens.h

4.2 ens_log_t Struct Reference

Public Attributes

• unsigned int segmentation: 2
• unsigned int flags: 6
• uint8_t ∗ ens_payload

The documentation for this struct was generated from the following file:

• src/ble/services/wens/wens.h

4.3 ens_settings_t Struct Reference

Public Attributes

• uint8_t data_retention
• uint8_t temp_key_length
• uint16_t max_key_duration
• uint8_t ens_adv_length
• uint8_t max_adv_duration
• uint8_t scan_on_time
• uint16_t scan_off_time
• uint16_t min_adv_interval
• uint16_t max_adv_interval
• uint8_t self_pause_resume

The documentation for this struct was generated from the following file:

• src/ble/services/wens/wens.h

8 Class Documentation

4.4 features_t Struct Reference

Public Attributes

• unsigned int multiple_bonds_supported: 1
• unsigned int self_pause_resume_supported: 1
• unsigned int self_generation_of_temp_keys: 1
• unsigned int rfu: 13

The documentation for this struct was generated from the following file:

• src/ble/services/wens/wens.h

4.5 temp_key_list_t Struct Reference

Public Attributes

• uint32_t timestamp
• uint8_t temporary_key [16]

The documentation for this struct was generated from the following file:

• src/ble/services/wens/wens.c

4.6 wen_features_t Struct Reference

Public Attributes

• features_t wen_features
• uint16_t storage_capacity

The documentation for this struct was generated from the following file:

• src/ble/services/wens/wens.h

4.7 wen_status_t Struct Reference

Public Attributes

• uint8_t opcode
• uint8_t parameter [18]

The documentation for this struct was generated from the following file:

• src/ble/services/wens/wens.h

Generated by Doxygen

Chapter 5

File Documentation

5.1 src/ble/advertise.h File Reference

Advertise library.

#include <bluetooth/bluetooth.h>

Functions

• int advertise_change_gaens_service_data (uint8_t ∗rpi, uint8_t rpi_length, uint8_t ∗aem, uint8_t aem_length)

Function for changing the GAENS service data to advertise.
• int advertise_start ()

Function for starting to advertise.
• int advertise_stop ()

Function for stopping to advertise.

5.1.1 Detailed Description

Advertise library.

This is a library for controlling the BLE advertising.

5.1.2 Function Documentation

5.1.2.1 advertise_change_gaens_service_data()

int advertise_change_gaens_service_data (

uint8_t ∗ rpi,

uint8_t rpi_length,

uint8_t ∗ aem,

uint8_t aem_length)

Function for changing the GAENS service data to advertise.

10 File Documentation

Parameters

rpi A pointer to the Rolling Proximity Identifier.

rpi_length The length of the RPI.

aem A pointer to the Associated Encrypted Metadata.

aem_length The length of the AEM.

Returns

int Returns 0 on success, negative otherwise.

5.1.2.2 advertise_start()

int advertise_start ()

Function for starting to advertise.

Returns

int Returns 0 on success, negative otherwise.

5.1.2.3 advertise_stop()

int advertise_stop ()

Function for stopping to advertise.

Returns

int Returns 0 on success, negative otherwise.

5.2 src/ble/ble.h File Reference

Bluetooth Low Energy library.

Functions

• int ble_init (void)

Function for initializing the Bluetooth Subsystem.

Generated by Doxygen

5.3 src/ble/connection.c File Reference 11

5.2.1 Detailed Description

Bluetooth Low Energy library.

This is a library for initializing the BLE communication of the device.

5.2.2 Function Documentation

5.2.2.1 ble_init()

int ble_init (

void)

Function for initializing the Bluetooth Subsystem.

Returns

int Returns 0 on success, negative otherwise

5.3 src/ble/connection.c File Reference

USB device core layer APIs and structures.

#include "connection.h"
#include "advertise.h"
#include "scan.h"
#include "services/wens/wens.h"
#include <stddef.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/conn.h>
#include <bluetooth/hci.h>
#include <logging/log.h>
#include <sys/util.h>
#include <zephyr/types.h>

Macros

• #define LOG_MODULE_NAME connection

Functions

• LOG_MODULE_REGISTER (connection)
• static void _connected (struct bt_conn ∗connected, uint8_t err)
• static void _disconnected (struct bt_conn ∗disconn, uint8_t reason)
• void connection_init ()

Function for initializing the connection module.

Generated by Doxygen

12 File Documentation

Variables

• static struct bt_conn ∗ conn
• static struct bt_conn_cb conn_callbacks

5.3.1 Detailed Description

USB device core layer APIs and structures.

This file contains the USB device core layer APIs and structures.

5.3.2 Variable Documentation

5.3.2.1 conn_callbacks

struct bt_conn_cb conn_callbacks [static]

Initial value:
= {

.connected = _connected,

.disconnected = _disconnected,
}

5.4 src/ble/connection.h File Reference

Connection handling module.

Functions

• void connection_init ()

Function for initializing the connection module.

5.4.1 Detailed Description

Connection handling module.

This is a module for handling BLE connections.

5.5 src/ble/scan.h File Reference

Bluetooth Low Energy scan module.

#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>

Generated by Doxygen

5.5 src/ble/scan.h File Reference 13

Functions

• void scan_set_parameters (struct bt_le_scan_param parameters)

Function for changing scan parameters.

• int scan_start ()

Function for starting to scan.

• int scan_stop ()

Function for stopping to scan.

5.5.1 Detailed Description

Bluetooth Low Energy scan module.

This is a module for controlling the BLE scanning.

5.5.2 Function Documentation

5.5.2.1 scan_set_parameters()

void scan_set_parameters (

struct bt_le_scan_param parameters)

Function for changing scan parameters.

Parameters

parameters Scan parameters

5.5.2.2 scan_start()

int scan_start ()

Function for starting to scan.

Returns

int Returns 0 on success, negative otherwise

Generated by Doxygen

14 File Documentation

5.5.2.3 scan_stop()

int scan_stop ()

Function for stopping to scan.

Returns

int Returns 0 on success, negative otherwise

5.6 src/ble/services/bs/bas.h File Reference

Battery Service library.

#include <zephyr/types.h>

Functions

• uint8_t bt_bas_get_battery_level (void)

Read battery level value.
• int bt_bas_set_battery_level (uint8_t level)

Update battery level value.

5.6.1 Detailed Description

Battery Service library.

This is a library for the BLE Battery Service.

5.6.2 Function Documentation

5.6.2.1 bt_bas_get_battery_level()

uint8_t bt_bas_get_battery_level (

void)

Read battery level value.

Read the characteristic value of the battery level

Returns

The battery level in percent.

5.6.2.2 bt_bas_set_battery_level()

int bt_bas_set_battery_level (

uint8_t level)

Update battery level value.

Update the characteristic value of the battery level This will send a GATT notification to all current subscribers.

Generated by Doxygen

5.7 src/ble/services/dis/dis.h File Reference 15

Parameters

level The battery level in percent.

Returns

Zero in case of success and error code in case of error.

5.7 src/ble/services/dis/dis.h File Reference

Device Information Service.

5.7.1 Detailed Description

Device Information Service.

5.8 src/ble/services/dts/dts.h File Reference

Device Time Service.

5.8.1 Detailed Description

Device Time Service.

5.9 src/ble/services/wens/wens.h File Reference

WENS library.

#include "stdint.h"

Classes

• struct features_t
• struct wen_features_t
• struct wen_status_t
• struct ens_settings_t
• struct ens_log_t
• struct ens_identifier_t

Generated by Doxygen

16 File Documentation

Functions

• int wens_features_indicate (wen_features_t data)

Function for indicating the WEN Feature characteristic.

• int wens_get_ens_settings (ens_settings_t ∗settings)

Function for retreiving the ENS Settings.

• int wens_ens_log_notify (ens_log_t record)

Function for notifying ENS records on the ENS Log characteristic.

• int wens_ens_identifier_indicate (ens_identifier_t identifier)

Function for indicating ENS identifier characteristic.

• int wens_ens_settings_indicate (ens_settings_t settings)

Function for indicating ENS settings characteristic.

• int wens_racp_indicate (uint8_t data)

Function for indicating WEN features characteristic.

• int wens_status_indicate (wen_status_t status)

Function for indicating WEN status characteristic.

5.9.1 Detailed Description

WENS library.

This is a library for the Wearable Exposure Notification Service (WENS).

5.9.2 Function Documentation

5.9.2.1 wens_ens_identifier_indicate()

int wens_ens_identifier_indicate (

ens_identifier_t identifier)

Function for indicating ENS identifier characteristic.

Parameters

identifier ENS identifier.

Returns

int 0 in case of success or negative value in case of error.

5.9.2.2 wens_ens_log_notify()

int wens_ens_log_notify (

ens_log_t record)

Generated by Doxygen

5.9 src/ble/services/wens/wens.h File Reference 17

Function for notifying ENS records on the ENS Log characteristic.

Generated by Doxygen

18 File Documentation

Parameters

record ENS record.

Returns

int 0 in case of success or negative value in case of error.

5.9.2.3 wens_ens_settings_indicate()

int wens_ens_settings_indicate (

ens_settings_t settings)

Function for indicating ENS settings characteristic.

Parameters

settings ENS settings.

Returns

int 0 in case of success or negative value in case of error.

5.9.2.4 wens_features_indicate()

int wens_features_indicate (

wen_features_t data)

Function for indicating the WEN Feature characteristic.

Parameters

data The data to indicate.

Returns

int Returns 0 on success, negative otherwise.

5.9.2.5 wens_get_ens_settings()

int wens_get_ens_settings (

ens_settings_t ∗ settings)

Generated by Doxygen

5.9 src/ble/services/wens/wens.h File Reference 19

Function for retreiving the ENS Settings.

Generated by Doxygen

20 File Documentation

Parameters

settings The ENS Settings.

Returns

int Returns 0 on success, negative otherwise.

5.9.2.6 wens_racp_indicate()

int wens_racp_indicate (

uint8_t data)

Function for indicating WEN features characteristic.

Note

The data parameter is not supposed to be an uint8_t, but it is set to that temporarily until more of the RACP is
implemented.

Parameters

data RACP data.

Returns

int 0 in case of success or negative value in case of error.

5.9.2.7 wens_status_indicate()

int wens_status_indicate (

wen_status_t status)

Function for indicating WEN status characteristic.

Parameters

status WEN status.

Returns

int 0 in case of success or negative value in case of error.

Generated by Doxygen

5.10 src/ble/uuid.h File Reference 21

5.10 src/ble/uuid.h File Reference

UUID library.

#include <bluetooth/uuid.h>

Macros

• #define BT_UUID_GAENS_VAL 0xFD6F
• #define BT_UUID_GAENS BT_UUID_DECLARE_16(BT_UUID_GAENS_VAL)
• #define BT_UUID_WENS_VAL 0xFF00
• #define BT_UUID_WENS BT_UUID_DECLARE_16(BT_UUID_WENS_VAL)
• #define ENS_LOG_UUID 0xFF01
• #define BT_UUID_ENS_LOG BT_UUID_DECLARE_16(ENS_LOG_UUID)
• #define WEN_FEATURES_UUID 0xFF02
• #define BT_UUID_WEN_FEATURES BT_UUID_DECLARE_16(WEN_FEATURES_UUID)
• #define ENS_IDENTIFIER_UUID 0xFF03
• #define BT_UUID_ENS_IDENTIFIER BT_UUID_DECLARE_16(ENS_IDENTIFIER_UUID)
• #define ENS_SETTINGS_UUID 0xFF04
• #define BT_UUID_ENS_SETTINGS BT_UUID_DECLARE_16(ENS_SETTINGS_UUID)
• #define TEMPORARY_KEY_LIST_UUID 0xFF05
• #define BT_UUID_TEMPORARY_KEY_LIST BT_UUID_DECLARE_16(TEMPORARY_KEY_LIST_UUID)
• #define RACP_UUID 0x2A52
• #define BT_UUID_RACP BT_UUID_DECLARE_16(RACP_UUID)
• #define WEN_STATUS_UUID 0xFF06
• #define BT_UUID_WEN_STATUS BT_UUID_DECLARE_16(WEN_STATUS_UUID)
• #define BT_UUID_DTS_VALUE 0x1847
• #define BT_UUID_DTS BT_UUID_DECLARE_16(BT_UUID_DTS_VALUE)
• #define BT_UUID_DTS_FEATURE_VALUE 0x2B8E
• #define BT_UUID_DTS_FEATURE BT_UUID_DECLARE_16(BT_UUID_DTS_FEATURE_VALUE)
• #define BT_UUID_DTS_PARAMETERS_VALUE 0x2B8F
• #define BT_UUID_DTS_PARAMETERS BT_UUID_DECLARE_16(BT_UUID_DTS_PARAMETERS_VAL←↩

UE)
• #define BT_UUID_DTS_DEVICE_TIME_VALUE 0x2B90
• #define BT_UUID_DTS_DEVICE_TIME BT_UUID_DECLARE_16(BT_UUID_DTS_DEVICE_TIME_VAL←↩

UE)
• #define BT_UUID_DTS_CONTROL_POINT_VALUE 0x2B91
• #define BT_UUID_DTS_CONTROL_POINT BT_UUID_DECLARE_16(BT_UUID_DTS_CONTROL_POIN←↩

T_VALUE)
• #define BT_UUID_DTS_CHANGE_LOG_DATA_VALUE 0x2B92
• #define BT_UUID_DTS_CHANGE_LOG_DATA BT_UUID_DECLARE_16(BT_UUID_DTS_CHANGE_LO←↩

G_DATA_VALUE)
• #define BT_UUID_DTS_RACP_VALUE 0x2A52
• #define BT_UUID_DTS_RACP BT_UUID_DECLARE_16(BT_UUID_DTS_RACP_VALUE)

5.10.1 Detailed Description

UUID library.

This is a library for UUIDs that is not defined in Zephyr.

Generated by Doxygen

22 File Documentation

5.11 src/gaens/crypto.h File Reference

Cryptography module.

#include <stdint.h>

Macros

• #define TEK_ROLLING_PERIOD 144

The rolling period for changing Temporary Exposure Keys in units of 10 minutes. 144 therefore represents represents
24 hours.

• #define TEK_LENGTH 16

Length of a Temporary Exposure Key as specified in GAENS cryptography specifications (in bytes).

• #define RPIK_LENGTH 16

Length of a Rolling Proximity Identifier Key as specified in GAENS cryptograhy specifications (in bytes).

• #define RPI_LENGTH 16

Length of a Rolling Proximity Identifier as specified in GAENS cryptography specifications (in bytes).

• #define AEMK_LENGTH 16

Length of an Associated Encrypted Metadata Key as specified in GAENS cryptography specifications (in bytes).

Functions

• int crypto_init (void)

Initialize the crypto library. This initializes the keys used in the two AES encryptions for the RPI and AEM.

• int crypto_en_interval_number (uint32_t ∗output)

Generate an Exposure Notification Interval Number. This number specifies a 10 minute window, meaning each time
this number is incremented by 1, 10 minutes have passed.

• int crypto_tek (uint8_t ∗tek, uint8_t tek_len, uint32_t ∗tek_timestamp)

Derive a Temporary Exposure Key and timestamp from which the key is valid. The key will be valid from the value
specified in tek_timestamp and until a full TEK_ROLLING_PERIOD has occured.

• int crypto_rpik (const uint8_t ∗tek, const uint8_t tek_len, uint8_t ∗rpik, const uint8_t rpik_len)

Derive a Rolling Proximity Identifier Key from a Temporary Exposure Key.

• int crypto_rpi (const uint8_t ∗rpik, uint8_t ∗rpi)

Derive a Rolling Proximity Identifier from a Rolling Proximity Identifier Key.

• int crypto_rpi_decrypt (const uint8_t ∗rpik, const uint8_t ∗rpi, uint8_t ∗dec_rpi)

Decrypt a Rolling Proximity Identifier.

• int crypto_aemk (const uint8_t ∗tek, const uint8_t tek_len, uint8_t ∗aemk, const uint8_t aemk_len)

Derive Associated Encrypted Metadata Key from a Temporary Exposure Key.

• int crypto_aem (const uint8_t ∗aemk, uint8_t ∗rpi, const uint8_t ∗bt_metadata, const uint8_t bt_metadata_←↩

len, uint8_t ∗aem)

Encrypt bluetooth metadata using an Associated Encrypted Metadata Key. Here the current Rolling Proximity Identifier
is used as part of the encryption.

• int crypto_aem_decrypt (const uint8_t ∗aem, const uint8_t aem_len, const uint8_t ∗aemk, uint8_t ∗rpi, uint8←↩

_t ∗aem_dec)

Decrypt associated encrypted metadata based on a given RPI and AEMK used for encryption.

5.11.1 Detailed Description

Cryptography module.

This is a module for handling GAENS cryptography.

Generated by Doxygen

5.11 src/gaens/crypto.h File Reference 23

5.11.2 Function Documentation

5.11.2.1 crypto_aem()

int crypto_aem (

const uint8_t ∗ aemk,

uint8_t ∗ rpi,

const uint8_t ∗ bt_metadata,

const uint8_t bt_metadata_len,

uint8_t ∗ aem)

Encrypt bluetooth metadata using an Associated Encrypted Metadata Key. Here the current Rolling Proximity
Identifier is used as part of the encryption.

Parameters

aemk Pointer to Associated encrypted metadata key

rpi Pointer to a copy of current Rolling proximity identifier. It is important that this is a copy of of
current RPI as the encryption algorithm may change it. (Should be of length
RPI_LENGTH)

bt_metadata Pointer to bluetooth metadata to encrypt

bt_metadata_len Length of Bluetooth metadata to encrypt

aem Pointer to store the associated encrypted metadata in (should be of size
bt_metadata_len)

Returns

int 0 on success, negative otherwise

5.11.2.2 crypto_aem_decrypt()

int crypto_aem_decrypt (

const uint8_t ∗ aem,

const uint8_t aem_len,

const uint8_t ∗ aemk,

uint8_t ∗ rpi,

uint8_t ∗ aem_dec)

Decrypt associated encrypted metadata based on a given RPI and AEMK used for encryption.

Parameters

aem Pointer to associated encrypted metadata to encrypt

aem_len Length of aem (should be AEM_LENGTH)

aemk Pointer to associated encrypted metadata key which was used when encrypting

rpi Pointer to rolling proximity identifier used when encrypting

aem_dec Pointer to store decrypted metadata in

Generated by Doxygen

24 File Documentation

Returns

int 0 on success, negative otherwise

5.11.2.3 crypto_aemk()

int crypto_aemk (

const uint8_t ∗ tek,

const uint8_t tek_len,

uint8_t ∗ aemk,

const uint8_t aemk_len)

Derive Associated Encrypted Metadata Key from a Temporary Exposure Key.

Parameters

tek Pointer to temporary exposure key

tek_len Length of tek (should be TEK_LENGTH)

aemk Pointer to store associated encrypted metadata in

aemk_len Length of output (should be AEMK_LENGTH)

Returns

int 0 on success, negative otherwise

5.11.2.4 crypto_en_interval_number()

int crypto_en_interval_number (

uint32_t ∗ output)

Generate an Exposure Notification Interval Number. This number specifies a 10 minute window, meaning each time
this number is incremented by 1, 10 minutes have passed.

Parameters

output Pointer to where to store the exposure notification interval number

Returns

int 0 on success

Generated by Doxygen

5.11 src/gaens/crypto.h File Reference 25

5.11.2.5 crypto_init()

int crypto_init (

void)

Initialize the crypto library. This initializes the keys used in the two AES encryptions for the RPI and AEM.

Returns

int 0 on success, negative otherwise

5.11.2.6 crypto_rpi()

int crypto_rpi (

const uint8_t ∗ rpik,

uint8_t ∗ rpi)

Derive a Rolling Proximity Identifier from a Rolling Proximity Identifier Key.

Parameters

rpik Pointer to rolling proximity identifier key

rpi Pointer to store rolling proximity identifier key in (must be of the same length as rpik)

Returns

int 0 on success, negative otherwise

5.11.2.7 crypto_rpi_decrypt()

int crypto_rpi_decrypt (

const uint8_t ∗ rpik,

const uint8_t ∗ rpi,

uint8_t ∗ dec_rpi)

Decrypt a Rolling Proximity Identifier.

Parameters

rpik Pointer to rolling proximity identifier key used to encrypt the RPI

rpi Pointer to rolling proximity identifier to decrypt

dec_rpi Pointer to store decrypted RPI in (should be RPI_LENGTH)

Generated by Doxygen

26 File Documentation

Returns

int 0 on success, negative otherwise

5.11.2.8 crypto_rpik()

int crypto_rpik (

const uint8_t ∗ tek,

const uint8_t tek_len,

uint8_t ∗ rpik,

const uint8_t rpik_len)

Derive a Rolling Proximity Identifier Key from a Temporary Exposure Key.

Parameters

tek Pointer to temporary exposure key

tek_len Length of tek (should be TEK_LENGTH)

rpik Pointer to store rolling proximity identifier key in

rpik_len Length of output (should be RPIK_LENGTH)

Returns

int 0 on success, negative otherwise

5.11.2.9 crypto_tek()

int crypto_tek (

uint8_t ∗ tek,

uint8_t tek_len,

uint32_t ∗ tek_timestamp)

Derive a Temporary Exposure Key and timestamp from which the key is valid. The key will be valid from the value
specified in tek_timestamp and until a full TEK_ROLLING_PERIOD has occured.

Parameters

tek Output to store the temporary exposure key

tek_len Length of the output (should be TEK_LENGTH)

tek_timestamp Timestamp from which tek is valid (in units of 10 minutes)

Returns

int 0 on success, negative otherwise

Generated by Doxygen

5.12 src/gaens/gaens.h File Reference 27

5.12 src/gaens/gaens.h File Reference

Google/Apple Exposure Notification System cryptography module.

#include "crypto.h"
#include <stdint.h>

Macros

• #define AEM_LENGTH 4

Length (in bytes) of the associated encrypted metadata as specified in the GAENS Bluetooth specification.

• #define GAENS_SERVICE_DATA_LENGTH RPI_LENGTH + AEM_LENGTH

Length (in bytes) of the service data to be sent in contact tracing advertising packets as specified in the GAENS
Bluetooth specification.

Functions

• int gaens_init (void)

Initialize GAENS module. Must be run before attempting to use any of the other functions in this module.

• int gaens_get_rpi (uint8_t ∗rpi)

Get the current rolling proximity identifier (RPI).

• int gaens_get_rpi_decrypted (uint8_t ∗dec_rpi)

Get the current rolling proximity identifier decrypted.

• int gaens_get_tek (uint8_t ∗tek, uint32_t ∗tek_timestamp)

Get the current temporary exposure key (TEK) and the timestamp from which it is valid.

• int gaens_update_rpi (void)

Derive a new rolling proximity identifier (RPI) and store this for future use. The new RPI can be obtained by calling
the function gaens_get_rpi.

• int gaens_update_keys (void)

Updates the temporary exposure key (TEK), rolling proximity identifier key (RPIK), and associated encrypted metadata
key (AEMK). The current TEK and timestamp can be obtained by calling the function gaens_get_tek, while the
current RPIK and AEMK are internal to this module and cannot be extracted.

• int gaens_encrypt_metadata (const uint8_t ∗metadata, const uint8_t metadata_len, uint8_t ∗aem)

Encrypt metadata to be stored in exposure notification advertisement packets.

• int gaens_decrypt_metadata (const uint8_t ∗aem, const uint8_t aem_len, uint8_t ∗decrypted_aem)

Decrypt metadata encrypted with the current RPI and AEMK.

• int gaens_ble_addr_expired (void)

Check if 10 minutes have passed since the last time the Bluetooth address was changed, meaning the address must
be changed.

• int gaens_tek_expired (void)

Check if temporary exposure key (TEK) has expired, i.e. 24 hours have passed since the last TEK key was generated.

5.12.1 Detailed Description

Google/Apple Exposure Notification System cryptography module.

This is a module for handling GAENS cryptography.

Generated by Doxygen

28 File Documentation

5.12.2 Function Documentation

5.12.2.1 gaens_ble_addr_expired()

int gaens_ble_addr_expired (

void)

Check if 10 minutes have passed since the last time the Bluetooth address was changed, meaning the address
must be changed.

Note

When this function returns 1, the current RPI will not be valid and thus the function gaens_update_rpi
must be called in order to create a new valid RPI.

Returns

int 0 if less than 10 minutes have passed, 1 if 10 minutes or more have passed, negative on error

5.12.2.2 gaens_decrypt_metadata()

int gaens_decrypt_metadata (

const uint8_t ∗ aem,

const uint8_t aem_len,

uint8_t ∗ decrypted_aem)

Decrypt metadata encrypted with the current RPI and AEMK.

Parameters

aem Pointer to associated encrypted metadata to decrypt

aem_len Length of aem (should be AEM_LENGTH)

decrypted_aem Pointer to store decrypted output in

Returns

int 0 on success, negative otherwise

5.12.2.3 gaens_encrypt_metadata()

int gaens_encrypt_metadata (

const uint8_t ∗ metadata,

Generated by Doxygen

5.12 src/gaens/gaens.h File Reference 29

const uint8_t metadata_len,

uint8_t ∗ aem)

Encrypt metadata to be stored in exposure notification advertisement packets.

Parameters

metadata Pointer to metadata to encrypt

metadata_len Length of metadata to encrypt (should be AEM_LENGTH)

aem Pointer to store the associated encrypted metadata in (should be of length AEM_LENGTH)

Returns

int 0 on success, negative otherwise

5.12.2.4 gaens_get_rpi()

int gaens_get_rpi (

uint8_t ∗ rpi)

Get the current rolling proximity identifier (RPI).

Parameters

rpi Pointer to store the current RPI in. Must be of length RPI_LENGTH

Returns

int 0 on success, negative otherwise

5.12.2.5 gaens_get_rpi_decrypted()

int gaens_get_rpi_decrypted (

uint8_t ∗ dec_rpi)

Get the current rolling proximity identifier decrypted.

Parameters

dec_rpi Pointer to store the current decrypted RPI in. Must be of length RPI_LENGTH

Returns

int 0 on success, negative otherwise

Generated by Doxygen

30 File Documentation

5.12.2.6 gaens_get_tek()

int gaens_get_tek (

uint8_t ∗ tek,

uint32_t ∗ tek_timestamp)

Get the current temporary exposure key (TEK) and the timestamp from which it is valid.

Parameters

tek Pointer to store the current TEK in. Must be of length RPI_LENGTH

tek_timestamp Timestamp from which current TEK is valid (in units of 10 minutes)

Returns

int 0 on success, negative otherwise

5.12.2.7 gaens_init()

int gaens_init (

void)

Initialize GAENS module. Must be run before attempting to use any of the other functions in this module.

Note

This function should be called before starting advertising, in order to initialize the GAENS service data to
advertise.

Returns

int 0 on success, negative otherwise

5.12.2.8 gaens_tek_expired()

int gaens_tek_expired (

void)

Check if temporary exposure key (TEK) has expired, i.e. 24 hours have passed since the last TEK key was gener-
ated.

Note

When this function returns 1, the current TEK, RPIK and AEMK are no longer valid and thus the function
gaens_update_keys must be called in order to update these keys.

Returns

int 0 if TEK has not expired, 1 if TEK has expired, negative on error

Generated by Doxygen

5.13 src/main.c File Reference 31

5.12.2.9 gaens_update_keys()

int gaens_update_keys (

void)

Updates the temporary exposure key (TEK), rolling proximity identifier key (RPIK), and associated encrypted meta-
data key (AEMK). The current TEK and timestamp can be obtained by calling the function gaens_get_tek, while
the current RPIK and AEMK are internal to this module and cannot be extracted.

Note

This function should be called every time the function gaens_tek_expired returns 1, which happens
once every 24 hours.

Returns

int 0 on success, negative otherwise

5.12.2.10 gaens_update_rpi()

int gaens_update_rpi (

void)

Derive a new rolling proximity identifier (RPI) and store this for future use. The new RPI can be obtained by calling
the function gaens_get_rpi.

Note

This function should be called every time the function gaens_ble_addr_expired returns 1, which hap-
pens once every 10 minutes.

Returns

int 0 on success, negative otherwise

5.13 src/main.c File Reference

The main module.

#include "ble/ble.h"
#include "records/extmem.h"
#include <logging/log.h>
#include <zephyr.h>

Macros

• #define LOG_MODULE_NAME main

Generated by Doxygen

32 File Documentation

Functions

• LOG_MODULE_REGISTER (main)
• void main (void)

5.13.1 Detailed Description

The main module.

5.14 src/records/extmem.h File Reference

External Memory module.

#include <stdint.h>
#include <stdio.h>
#include <string.h>

Macros

• #define EXTMEM_SUBSECTOR_SIZE 4096
• #define EXTMEM_SECTOR_SIZE 65536
• #define EXTMEM_CHIP_SIZE 4194304

Functions

• int extmem_init (void)

Function for initializing the external memory.
• int extmem_read (uint32_t offset, uint8_t buf[], size_t len)

Function for reading from the external memory.
• int extmem_write (uint32_t offset, const void ∗data, size_t len)

Function for writing from the external memory.
• int extmem_erase (uint32_t offset, size_t size)

Function for erasing data on the external memory chip.

5.14.1 Detailed Description

External Memory module.

This is a module for communicating with the external NOR flash memory.

5.14.2 Function Documentation

5.14.2.1 extmem_erase()

int extmem_erase (

uint32_t offset,

size_t size)

Function for erasing data on the external memory chip.

The size of the area to e erased has to be a multiple of the EXTMEM_SUBSECTOR_SIZE or EXTMEM_SECTO←↩

R_SIZE. To erase the whole memory use EXTMEM_CHIP_SIZE.

Generated by Doxygen

5.14 src/records/extmem.h File Reference 33

Parameters

offset Erase area starting offset.

size Size of area to be erased.

Returns

int Returns 0 on success, negative otherwise.

5.14.2.2 extmem_init()

int extmem_init (

void)

Function for initializing the external memory.

Returns

int Returns 0 on success, negative otherwise.

5.14.2.3 extmem_read()

int extmem_read (

uint32_t offset,

uint8_t buf[],

size_t len)

Function for reading from the external memory.

Parameters

offset Offset (byte aligned) to read.

buf Offset (byte aligned) to read.

len Number of bytes to read.

Returns

int Returns 0 on success, negative otherwise.

5.14.2.4 extmem_write()

int extmem_write (

uint32_t offset,

Generated by Doxygen

34 File Documentation

const void ∗ data,

size_t len)

Function for writing from the external memory.

Parameters

offset Starting offset for the write.

data Data to write.
len Number of bytes to write.

Returns

int Returns 0 on success, negative otherwise.

5.15 src/records/storage.h File Reference

Storage module.

#include <stddef.h>
#include <stdint.h>

Macros

• #define SIZE_OF_ONE_ENTRY 34

Functions

• int storage_write_entry (int timestamp, const uint8_t gaens_service_data[], uint8_t rssi)

Function for writing an ENS log entry to the external memory.

• int storage_read (uint32_t offset, uint8_t buf[], size_t len)

Function for reading from the external memory.

• int storage_delete_all (void)

Function for erasing the whole external memory.

5.15.1 Detailed Description

Storage module.

This is a module for adding, reading and manipulating Exposure Notification records.

5.15.2 Function Documentation

Generated by Doxygen

5.15 src/records/storage.h File Reference 35

5.15.2.1 storage_delete_all()

int storage_delete_all (

void)

Function for erasing the whole external memory.

Returns

int Returns 0 on success, negative otherwise.

5.15.2.2 storage_read()

int storage_read (

uint32_t offset,

uint8_t buf[],

size_t len)

Function for reading from the external memory.

Parameters

offset Offset (byte aligned) to read.

buf Buffer that will be filled with the data that is read.
len Number of bytes to read.

Returns

int Returns 0 on success, negative otherwise.

5.15.2.3 storage_write_entry()

int storage_write_entry (

int timestamp,

const uint8_t gaens_service_data[],

uint8_t rssi)

Function for writing an ENS log entry to the external memory.

Parameters

timestamp The timestamp of the received advertisement packet.

gaens_service_data The rolling proximity identifier and associated encrypted metadata from the received
advertisement packet.

rssi The RSSI from the received advertisement packet.

Generated by Doxygen

36 File Documentation

Returns

int Returns 0 on success, negative otherwise.

5.16 src/time/time.h File Reference

Time module.

#include <stdint.h>

Functions

• int set_current_time (uint32_t current_time)

Set the current time.

• int get_current_time (uint32_t ∗time)

Get the current time.

5.16.1 Detailed Description

Time module.

This is a module for setting and getting the current time.

5.16.2 Function Documentation

5.16.2.1 get_current_time()

int get_current_time (

uint32_t ∗ time)

Get the current time.

Parameters

time Pointer to store the time in.

Returns

int 0 on success, negative otherwise

Generated by Doxygen

5.16 src/time/time.h File Reference 37

5.16.2.2 set_current_time()

int set_current_time (

uint32_t current_time)

Set the current time.

Parameters

current_time Time you want to set.

Returns

int 0 on success, negative otherwise

Generated by Doxygen

38 File Documentation

Generated by Doxygen

Index

advertise.h
advertise_change_gaens_service_data, 9
advertise_start, 10
advertise_stop, 10

advertise_change_gaens_service_data
advertise.h, 9

advertise_start
advertise.h, 10

advertise_stop
advertise.h, 10

bas.h
bt_bas_get_battery_level, 14
bt_bas_set_battery_level, 14

ble.h
ble_init, 11

ble_init
ble.h, 11

bt_bas_get_battery_level
bas.h, 14

bt_bas_set_battery_level
bas.h, 14

conn_callbacks
connection.c, 12

connection.c
conn_callbacks, 12

crypto.h
crypto_aem, 23
crypto_aem_decrypt, 23
crypto_aemk, 24
crypto_en_interval_number, 24
crypto_init, 24
crypto_rpi, 25
crypto_rpi_decrypt, 25
crypto_rpik, 26
crypto_tek, 26

crypto_aem
crypto.h, 23

crypto_aem_decrypt
crypto.h, 23

crypto_aemk
crypto.h, 24

crypto_en_interval_number
crypto.h, 24

crypto_init
crypto.h, 24

crypto_rpi
crypto.h, 25

crypto_rpi_decrypt

crypto.h, 25
crypto_rpik

crypto.h, 26
crypto_tek

crypto.h, 26

ens_identifier_t, 7
ens_log_t, 7
ens_settings_t, 7
extmem.h

extmem_erase, 32
extmem_init, 33
extmem_read, 33
extmem_write, 33

extmem_erase
extmem.h, 32

extmem_init
extmem.h, 33

extmem_read
extmem.h, 33

extmem_write
extmem.h, 33

features_t, 8

gaens.h
gaens_ble_addr_expired, 28
gaens_decrypt_metadata, 28
gaens_encrypt_metadata, 28
gaens_get_rpi, 29
gaens_get_rpi_decrypted, 29
gaens_get_tek, 30
gaens_init, 30
gaens_tek_expired, 30
gaens_update_keys, 30
gaens_update_rpi, 31

gaens_ble_addr_expired
gaens.h, 28

gaens_decrypt_metadata
gaens.h, 28

gaens_encrypt_metadata
gaens.h, 28

gaens_get_rpi
gaens.h, 29

gaens_get_rpi_decrypted
gaens.h, 29

gaens_get_tek
gaens.h, 30

gaens_init
gaens.h, 30

40 INDEX

gaens_tek_expired
gaens.h, 30

gaens_update_keys
gaens.h, 30

gaens_update_rpi
gaens.h, 31

get_current_time
time.h, 36

scan.h
scan_set_parameters, 13
scan_start, 13
scan_stop, 13

scan_set_parameters
scan.h, 13

scan_start
scan.h, 13

scan_stop
scan.h, 13

set_current_time
time.h, 36

src/ble/advertise.h, 9
src/ble/ble.h, 10
src/ble/connection.c, 11
src/ble/connection.h, 12
src/ble/scan.h, 12
src/ble/services/bs/bas.h, 14
src/ble/services/dis/dis.h, 15
src/ble/services/dts/dts.h, 15
src/ble/services/wens/wens.h, 15
src/ble/uuid.h, 21
src/gaens/crypto.h, 22
src/gaens/gaens.h, 27
src/main.c, 31
src/records/extmem.h, 32
src/records/storage.h, 34
src/time/time.h, 36
storage.h

storage_delete_all, 34
storage_read, 35
storage_write_entry, 35

storage_delete_all
storage.h, 34

storage_read
storage.h, 35

storage_write_entry
storage.h, 35

temp_key_list_t, 8
time.h

get_current_time, 36
set_current_time, 36

wen_features_t, 8
wen_status_t, 8
wens.h

wens_ens_identifier_indicate, 16
wens_ens_log_notify, 16
wens_ens_settings_indicate, 18

wens_features_indicate, 18
wens_get_ens_settings, 18
wens_racp_indicate, 20
wens_status_indicate, 20

wens_ens_identifier_indicate
wens.h, 16

wens_ens_log_notify
wens.h, 16

wens_ens_settings_indicate
wens.h, 18

wens_features_indicate
wens.h, 18

wens_get_ens_settings
wens.h, 18

wens_racp_indicate
wens.h, 20

wens_status_indicate
wens.h, 20

Generated by Doxygen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
artin G

ulbrandsen Aalien
D

evelopm
ent and O

ptim
ization of a Contact Tracing W

earable

Martin Gulbrandsen Aalien

Development and Optimization of a
Contact Tracing Wearable

Master’s thesis in Electronic Systems Design
Supervisor: Carsten Wulff

June 2021

M
as

te
r’s

 th
es

is

	Preface
	Problem Description
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Specialization Project
	Scope and Limitations
	Key Contributions
	Organization of the Thesis

	Background
	Spread of Infection
	Contact Tracing
	Centralized Versus Decentralized Architectures

	Exposure Notification System
	Google/Apple Exposure Notification System
	How it Works
	Cryptography Specification
	Positive Diagnosis
	Bluetooth Specification

	Wearable Exposure Notification Service
	Characteristics

	Device Information Service
	Characteristics

	Device Time Service
	Characteristics

	Zephyr
	CR2032 Coin Cell Battery
	Three Phases of Prototyping
	Alpha Phase
	Beta Phase
	Pilot Phase

	Methodology
	Approach
	Tools

	Software Development
	Implementation
	External Flash Memory Communication
	Random Interval
	Bluetooth and Cryptography Implementation

	Confirming the Functionality of the Implementation

	Storage Requirements
	Memory Estimations

	Current Consumption Estimations and Measurements
	PoC Prototype Current Consumption
	GAENS Current Consuming Operations
	WENS Current Consuming Operations
	Estimations and Measurements
	Non-connectable GAENS Advertising
	Connectable WENS Advertising
	Scanning
	Sleep mode
	Connections
	Randomized Rotation of GAENS Service Data
	External Memory

	Total Current Consumption

	Optimization
	Disabling Serial Communication
	Accelerometer
	Scan and Advertise Adjustments
	Reducing Transmit Power

	Hardware Implementation
	Wearable Designs
	Wristbands
	Access Cards
	Tag
	Bracelet
	Embedded Into Clothing

	Choosing a Design
	Selection of Hardware Components
	BLE SoC
	Antenna
	External Memory
	Battery Holder
	Accelerometer

	Circuit Schematic Design
	Serial Peripheral Interface
	Programming and Debugging
	Antenna Matching Network
	Changes to the Reference Layout

	PCB Design

	Results and Discussion
	Functionality of the Software
	Optimizations
	Considerations
	Memory Compression

	Hardware
	Battery Holder
	Remove Optional Crystal
	Visual Feedback
	Antenna Placement

	Future Work
	Finish WENS Implementation
	Test Advertising and Scanning Parameters
	Finish Wearable Hardware Design
	Accelerometer Interrupt Trigger Parameters
	Transmit Power
	Device Firmware Update
	Antenna

	Conclusion
	Bibliography
	Bluetooth Low Energy Overview
	Bluetooth Low Energy
	Generic Access Profile
	Connections
	Advertising
	Scanning
	Generic Attribute Profile

	PoC Prototype Schematics
	BLE Services
	Wearable Exposure Notification Service
	Device Time Service
	Device Information Service
	Battery Service

	Rotation of RPI, AEM and BLE Address
	Scan Window Simulation
	Average Current Consumption
	Accelerometer
	Scan and Advertise Interval Adjustments
	Transmit Power Reduction

	Engineering Prototype Schematics
	Layers
	All Layers
	Top Layer
	Mid-Layer 1
	Mid-Layer 2
	Bottom Layer

	Code Documentation

