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Abstract

The Poynting effect is a phenomenon investigated by John Henry Poynting that proved steel
wires to lengthen when subjected to torsion. This thesis include the preparations to perform
experiments and finite element analysis (FEA) for different materials in order to document the
Poynting effect. The thesis consist of a study on the Seth-Hill Family (SH) of generalized strain
tensors. With this as fundamental principle, together with finite strain theory, a constant strain
triangle (CST) element is investigated using finite element method (FEM). The triangle element
is build up by two formulations: traditional strain and Assumed Natural Strain (ANS). These
formulations together with SH strain is still considered at an experimental phase, and further
investigation and optimization is needed.

Based on a model presented in a previous master thesis, a method for solving the equations is
implemented and extended for this thesis. The method includes usage of open-source software for
mesh generation and data visualisation. A simple nonlinear model consisting of these theoretical
aspects is computed by a Python FEM solver. The numerical results from the FEM solver is
presented to verify and investigate the Poynting effect. The results presents that the Poynting
effect can be proven for several materials.

To perform experimental work for investigation of the Poynting effect, calculations of maximum
torque and rotational angle was conducted. A suggested setup to perform the experimental work
is presented in the thesis. The experiment could not be completed due to Covid-19 restrictions in
the laboratory, and is presented as a suggestion for continuation of this thesis.
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Sammendrag

Poynting effekten er et fenomen utforsket av John Henry Poynting, som beviser at tynne st̊alrør
forlenges n̊ar de blir utsatt for torsjon. Denne avhandlingen inneholder numeriske undersøkelser
av deformasjon og tøyning ved hjelp av elementmetoden (FEM), samt forberende arbeid for å
kunne gjennomføre eksperiment for å undersøke Poynting effekten. Det var ønsket å avdekke om
fenomenet er gyldig for flere materialtyper. Avhandlingen innebærer studie av Seth-Hill fami-
lien, en samling av generaliserte tøyningsuttrykk. Sammen med endelig tøyning er et konstant
trekantelement undersøkt ved hjelp av elementmetoden. Trekantelementet er bygd opp ved bruk
av tradisjonell og antatt naturlig tøyningsformulering. Dette er anerkjente metoder, som sammen
med tøyningsutrykkene i Seth-Hill familien utgjør det teoretiske aspektet i oppgaven. Uttrykkene
er ikke veletablert for denne bruk og ytterligere optimalisering og verifisering burde gjennomføres.

Basert p̊a en modell presentert i en tidligere utgitt masteravhandling, er det tatt i bruk en metode
for å gjennomføre studien. Røret ble kun undersøkt som et to-dimensjonalt system. Metoden
inkluderer åpen kildekode for generering av mesh og visualisering. En enkel ikke-lineær modell
er utarbeidet gjennom en elementmetode løser. De numeriske resultatene er presentert for å un-
dersøke og verifisere Poynting effekten. Resultatene viser at Poynting effekten er gyldig for flere
materialtyper.

For å gjennomføre eksperimentelt arbeid i undersøkelsen av Poynting effekten ble det utført kalku-
lasjoner av maksimal torsjon for hvert materiale, samt maksimal vridningsvinkel. Forslag til oppsett
og gjennomførelse av eksperimentet er presentert. Det ble ikke anledning til å gjennomføre eksper-
imentet i tidsforløpet grunnet Covid-19 begrensinger i laboratoriet for denne avhandlingen og det
er dermed inkludert som videreføring av dette arbeidet.
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Preface

This master thesis is completed for the Department of Mechanical and Industrial Engineering
(MTP) at Norwegian University of Science And Technology (NTNU). The study is based on
previous research of Bjørn Haugen and Carlos Felippa. The thesis examines the characteristics
of finite element method (FEM) and has been both educational and engaging. The thesis was
completed during the spring of 2021. During this period, a global pandemic affected the world.
Adapting to new working methods and restrictions in consideration, the ambitions and original
plans for the thesis were influenced. Due to critical increase in infection during the final phase
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workshop at the University and the experiment could not be executed as planned.
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1 Introduction

When drilling in rough soil, different conflicts can be experienced. If the drill bit get stuck while
the drilling continues, the bore will be exposed to large torsion. This may cause a lengthening or
compression of the bore rod. For these kind of cases it will be beneficial to know what happens to
the length of the rod. This is the main motivation for this thesis.

John Henry Poynting experimented with steel wires exposed to twisting and wanted to investigate
the change in dimension for the wires while in the elastic region.[1, 2] The study of this phenomenon
proved that the wires lengthen when twisted, as alternative c) in Figure 1.0.1 indicate. This effect
is dependent on material properties and the strain measure used. By the use of this effect and
strain calculations, the goal will be to establish a numerical model for calculating the strain in
elements for different materials.

Figure 1.0.1: Cylinder exposed to torsion
[3]

This is a complex problem. To make it admissible and understandable a smaller element consisting
of three sub-elements will be examined. The composition of this element will be formed as a triangle
and the problem will only be considered in 2D.

In order to perform calculations for this fixed-end problem, some theoretical aspects need to be
addressed. These include the main theory about strain and deformations, as well as the Seth-Hill
Family (SH) with different expressions for strains.

There are two strategies to follow for investigation of the finite element strain. Traditional strain
formulation uses a constant triangle formulation to obtain the local coordinates of the element. This
formulation is based on the element strain displacement. The other strategy includes the Assumed
Natural Strain (ANS) formulation. This formulation is based on a triangle set-up including three
bars along each side of the element.

This thesis will include both traditional strain formulation and ANS-formulations in collaboration
with Seth-Hill Family of finite strain measures. The theory and formulations in this thesis will be
based on Carlos Felippa’s methodology. [4]

1.1 Thesis outline

The aim of this thesis is to investigate the Poynting effect for pipes in a selection of materials
subjected to free-end torsion, and implement a simple nonlinear model using finite strain measures.
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2 Theoretical background

2.1 Finite element method

The finite element method (FEM) is a method widely used to solve complex problems. The
method is based on giving a numerical solution to partial differential equations. With use of FEM
the system viewed will be divided into subsystems consisting of smaller parts called finite elements.
The finite elements are obtained by constructing a mesh for the object. [5, 6]

The method is commonly used to make a problem more admissible and understandable. The
finite elements can be used to solve the problem numerically. The problem can be set up by a
set of algebraic equations. When the differential equations are solved for the elements, they can
be assembled into the total system again. The solution for the elements is also applicable for the
entire system.

The use of FEM in a study or analysis is usually referred to as finite element analysis (FEA).

2.2 Continuum mechanics

The Total Lagrange (TL) description is a kinematic description of geometrically nonlinear finite
element analysis (FEA) and is used for this fixed-end problem. In TL analysis the configuration
is not changed, it is kept equal to the base configuration through the analysis. The stresses and
strains can be measured with respect to this base configuration. [7]

2.2.1 Tensor notation

To determine the motion of a solid body a specific notation will be used in this thesis. This is
called tensor notation and is an objective characteristic of a body. The tensors describe the motion
of the body which is in a Cartesian frame. For the torsion problem in this thesis, the tensors are
expressed in 2D. [8]

The main concept consider the tensor to be independent of the frame however the components
depend on change in the frame. [8]

Different notations are used in continuum mechanics for tensor and matrix. For clearance, one
notation will be followed in this thesis and is presented here:

x,E : Matrix notation

x,E : Tensor notation

2.2.2 Finite strain theory

Finite strain theory is a well known theory in continuum mechanics that considers large strains
when a configuration is exposed to deformation, rotation or both. This will be explained more
detailed in the upcoming sections.

2.2.3 Deformation gradient tensor

The configuration, that often is a body or an element, is during the analysis linked by a coordinate
system - a Cartesian global frame. Each element is given a base frame and a reference frame
with axes. When the elements are exposed to deformation, they can be expressed in terms of its
coordinates x, see Figure 2.2.1. The free-end torsion problem in this study is only considered in
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two-dimensional space and coordinates referring to the third axis (x3) is consequently not included
in the equations.

The transformation will track the location of the base particle K0(B) to Kt(B). The displacement
vector of the particle can be expressed by the following equation [7]:

u =

[
u1
u2

]
=

[
x1 −X1

x2 −X2

]
= x−X (2.2.1)

The deformation gradient is expressed as F and represent the local deformation at each component
coordinate x. This is obtained by taking the partial derivative of x with respect to the undeformed
configuration’s coordinate X, see Figure 2.2.1. [9, 10]

dx =
∂x

∂X
dX = F (X, t)dX (2.2.2)

By use of tensor notation for the deformation gradient, it can be expressed as Equation (2.2.3). F
can also be arranged as a matrix, as seen in Equation (2.2.4).

F : Fij =
∂xi
∂Xj

(2.2.3)

F =

[
∂x1

∂X1

∂x1

∂X2
∂x2

∂X1

∂x2

∂X2

]
(2.2.4)

Figure 2.2.1: Deformation of a continuum body
[10]

The material gradient is a second order tensor that characterizes the local deformation at a material
point at position X. The material coordinates xi are by the TL description defined as seen in
Equation (2.2.5), where u(X, t) represent the displacement field and b(t) the displacement vector
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representing rigid-body translation. It is common to superimpose the coordinate system for the
deformed and undeformed configurations such that b = 0. [10]

u(X, t) = b(t) + x(X, t)−X (2.2.5)

U(x, t) = x−X(x, t) (2.2.6)

∇xu = ∇xx− I = F − I (2.2.7)

The inverse of the deformation gradient F−1 can be expressed as:

F−1 =

[
∂X1

∂x1

∂X1

∂x2
∂X2

∂x1

∂X2

∂x2

]
(2.2.8)

The purpose of these matrices is that they can be used to relate the coordinate differentials.

dX = F−1dx (2.2.9)

The displacement gradient G with respect to the reference configuration can be expressed by:

Gij =
∂ui
∂Xj

(2.2.10)

G = F − I =

[
∂u1

∂X1

∂u1

∂X2
∂u2

∂X1

∂u2

∂X2

]
(2.2.11)

2.2.4 Polar decomposition of the gradient tensor

Polar decomposition theorem claim that any deformation can be expressed as pure deformation
followed by a rotation, or a rotation followed by deformation. This is illustrated in Figure 2.2.1.
[7]

The tensors F and G describes the deformation measure in nonlinear continuum mechanics. The
gradient tensor F can be decomposed into a product of two second order tensors.[11] Mathemati-
cally it can be described by the following equation

F = RU = V R


U = right stretch tensor

V = left stretch tensor

F = deformation gradient tensor

R = proper orthogonal tensor (rotation)

(2.2.12)

The calculation of F is dependent on whether the configuration is first subject to rotation or
deformation, as illustrated in Figure 2.2.2.
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Figure 2.2.2: Left Right Stretch
[10]

2.3 Seth-Hill Family of strains

The Seth-Hill Family (SH) consists of generalized strain tensors. It was proposed in 1964 by B.
Seth, who was the first to show that the Green and Almansi strain tensors are special cases of
a more general strain measure. In 1968, Rodney Hill extended the idea. The Seth-Hill Family
of strain measures can be expressed as Green-Lagrangian strain, Biot strain, Hencky strain, and
Almansi strain. All the equations are based on the main SH equation in Equation (2.3.1). [4]

ε(m) =
1

m
(λm − 1) (2.3.1)

The different strain measure equations are connected to different values of m, known as the measure
index.[4] The correspondence between value of m and equation is displayed in table 1.

Finite strain measure Values of m

Green m = 2
Biot m = 1

Hencky m = 0
Swainger m = -1
Almansi m = -2

Table 1: Finite strains

If m > 0 : Strain will not go to infinite under compression, and therefore not converge
If m < 0 : Strain will not go to infinite under tension, and therefore not converge

2.3.1 Seth-Hill strain using traditional formulation

The 1D finite strain measure using traditional formulation can be expressed as:

ε(m) =
1

m
((1 + g)m − 1) (2.3.2)
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Taylor series expansion about g = 0 gives:

g − (m− 1)
g2

2
+ (m− 1)(m− 2)

g3

6
−H.O (2.3.3)

The higher order parts of the Taylor series will not be included.

A generalized strain tensor can describe how a particular result may be extended for obtaining
better agreement with experimental data. [12]

2.3.2 Seth-Hill strain using ANS-formulation

The 1D finite axial strain measure using ANS formulation can be expressed as:

ε(m) =
1

m
((λ)m − 1) (2.3.4)

The axial strain for ANS-element can be written in terms of the stretch λ where λ = L
L0

. Variation
of strain is associated with variation in L. The first and second length derivative of the strain
equation is given by Equation (2.3.5) and Equation (2.3.6) respectively.

ε
(m)
Ld

=
∂ε

∂Ld
=
Lm−1

Lm0
(2.3.5)

ε
(m)

L2
d

=
∂2ε

∂2Ld
=

(m− 1)Lm−2

Lm0
(2.3.6)

These equations will be used as base for each strain equations in the Seth-Hill Family. The separate
SH equations for ANS-formulation are presented in Sections 3.4.2 to 3.4.6.
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3 Triangle element

3.1 Strain gauge rosette

When investigating an element a common way to measure the strain is by use of strain gauges on
the element. The strain gauge can only measure the strain in one direction. If several directions
are desired to be measured the gauges must be placed at each bar in the element. When two or
more strain gauges are placed at one location on the stressed element, it is referred to as strain
gauge rosette. The most common types are presented in Figure 3.1.1. [13]

Figure 3.1.1: Typical strain gauge rosette configurations
[13]

To obtain the strain in the relevant pipe, only one element from the pipe is examined in this free-end
torsion problem. This element is shaped as an equilateral triangle. The element is replaced by three
side bars in order to obtain the strain, see Figure 3.1.2 for illustration. To obtain strain values in
three nonaligned directions, strain gauge are placed on each bar. This result in a formation similar
to strain gauge rosette, as demonstrated in Figure 3.1.3. The rosette gauge is a delta configuration
with θ = 0 and 120 degrees. [4, 13]

i j

k

i j

k

Figure 3.1.2: From element to three side-bars

x

y

a

b

c

i j

k

Figure 3.1.3: Equilateral triangle with strain gauge

7



3.2 Principal stretches

The deformations in the element are based on the change in length of each side bar of the element.
These are the principle stretches in the element which can be determined by Equation (3.2.1).

λ =
L

L0


λ > 1 extended

λ = 1 unstretched

λ < 1 compressed

(3.2.1)

To investigate the stretch in the element, a node can be moved and the stretch can be measured
in the new element consisting of node i,j,k’ (see Figure 3.2.1).

x axis

y axis

i j

k k’

Figure 3.2.1: Equilateral triangle with node displacement

3.3 Traditional strain for triangle element

This section will include the mathematical aspects of the implementation of a simple nonlinear
model in Python using traditional strain formulation. This is done to obtain the numerical results.
The goal is to implement a model to calculate the generalized strain equations of the Seth-Hill
Family and compare them in a plot.

The constant strain triangle formulation is used to find the local coordinates of the element. This
method is further explained in appendix A. The nodes of the element are placed in a Cartesian
coordinate system. To simplify the equations, node i and j are located on the x-axis. The location
of the nodes are inserted in vector ex and ey.

ex = [xi, xj , xk]

ey = [yi, yj , yk]
(3.3.1)

The strain components are defined as εxx, εyy and γxy and is arranged as a 3-component strain
vector ε:

ε =

ε1ε2
ε3

 =

 εxx
εyy

εxy + εyx

 =

εxxεyy
γxy

 (3.3.2)

To obtain the strain equations, it is necessary to compute the strains over the element. This
will be achieved through cyclic permutation of the nodes i,j,k and partial derivation of the area
coordinates, explained in Appendix A. The partial derivatives of the area coordinates represents the
strains over the element. These are gathered in the element strain displacement matrix, Bε. The
displacement vector, v, consist of the displacement coordinate of each node. Equation (3.3.3) and
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Equation (3.3.5) represents the element strain displacement matrix and the displacement vector
respectively.

Bε =

∂Ni

∂X 0
∂Nj

∂X 0 ∂Nk

∂X 0

0 ∂Ni

∂Y 0
∂Nj

∂Y 0 ∂Nk

∂Y
∂Ni

∂Y
∂Ni

∂X
∂Nj

∂Y
∂Nj

∂X
∂Nk

∂Y
∂Nk

∂X

 (3.3.3)

N =
Ai
A

(3.3.4)

vT =
[
ui vi uj vj uk vk

]
(3.3.5)

Through matrix multiplication of Bε with the displacement vector v, which consists of the displace-
ment coordinate of each node, we could compute the linear strain, meaning Biot strain, described
in section Section 3.3.3. Equation (3.3.6) and Equation (3.3.7) represents the calculations of the
strains over the element.

ε = Bεv (3.3.6)

εxxεyy
γxy

 =

∂Ni

∂X 0
∂Nj

∂X 0 ∂Nk

∂X 0

0 ∂Ni

∂Y 0
∂Nj

∂Y 0 ∂Nk

∂Y
∂Ni

∂Y
∂Ni

∂X
∂Nj

∂Y
∂Nj

∂X
∂Nk

∂Y
∂Nk

∂X



ui
vi
uj
vj
uk
vk

 =

 u,x
v,y

u,y + v,x

 (3.3.7)

To obtain the nonlinear strain equations, it is necessary to modify the element strain displacement
matrix, Bε. The partial derivatives of the area coordinates will be arranged by a 4x6 matrix. The
modified displacement gradient, Bgv, can be defined as:

Bgv =


∂Ni

∂X 0
∂Nj

∂X 0 ∂Nk

∂X 0

0 ∂Ni

∂X 0
∂Nj

∂X 0 ∂Nk

∂X
∂Ni

∂Y 0
∂Nj

∂Y 0 ∂Nk

∂Y 0

0 ∂Ni

∂Y 0
∂Nj

∂Y 0 ∂Nk

∂Y

 (3.3.8)

By inserting Equation (3.3.8) into Equation (3.3.7) we can compute the strain equation for solving
the nonlinear strains. This is illustrated in Equation (3.3.9).


∂u
∂X
∂v
∂X
∂u
∂Y
∂v
∂Y

 =


∂Ni

∂X 0
∂Nj

∂X 0 ∂Nk

∂X 0

0 ∂Ni

∂X 0
∂Nj

∂X 0 ∂Nk

∂X
∂Ni

∂Y 0
∂Nj

∂Y 0 ∂Nk

∂Y 0

0 ∂Ni

∂Y 0
∂Nj

∂Y 0 ∂Nk

∂Y



ui
vi
uj
vj
uk
vk

 =


u,x
v,x
u,y
v,y

 (3.3.9)

For solving the nonlinear analysis with the Seth-Hill Family strains, it is beneficial to arrange the
displacement gradient, Bgv, as a four-component vector, g [7]:

gT =
[
g1 g2 g3 g4

]
=
[
∂u
∂X

∂v
∂X

∂u
∂Y

∂v
∂Y

]
(3.3.10)
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By inserting the partial derivative of g into Bgv, the displacement gradient matrix used for calcu-
lations of tangent stiffness is obtained, see Equation (3.3.11).

Bgv =


∂g1
∂ui

∂g1
∂vi

∂g1
∂uj

∂g1
∂vj

∂g1
∂uk

∂g1
∂vk

∂g2
∂ui

∂g2
∂vi

∂g2
∂uj

∂g2
∂vj

∂g2
∂uk

∂g2
∂vk

∂g3
∂ui

∂g3
∂vi

∂g3
∂uj

∂g3
∂vj

∂g3
∂uk

∂g3
∂vk

∂g4
∂ui

∂g4
∂vi

∂g4
∂uj

∂g4
∂vj

∂g4
∂uk

∂g4
∂vk

 (3.3.11)

3.3.1 Tangent stiffness

The tangent stiffness is established by the variation of the internal forces, f , with respect to the
displacement, v. To build the tangent stiffness, it is convenient to start with the strain energy and
variation of strains.

Strain energy is obtained by use of Equation (3.3.12). The m in ε(m) indicate the applicable SH
strain.

u =
1

2
ε(m)TCε(m)

δu =
1

2
δε(m)TCε(m) +

1

2
ε(m)TCδε(m)

δu = δε(m)TCε(m)

(3.3.12)

Where the constitutive stiffness matrix, C, for isotropic linear elastic material is:

C =
E

1− υ2

1 υ 0
υ 1 0
0 0 1−υ

2

 (3.3.13)

Variation of the strains can be described as:

δε =
∂ε

∂g

∂g

∂v
δv = BεgBgvδv

where: Bεgij =
∂εi
∂gj

and Bgvij =
∂gi
∂vj

(3.3.14)

Matrix Bεg presented in Equation (3.3.14) depend on which strain formulation used from the Seth-
Hill Family, while matrix Bgv depend on the element size (i.e. 3 or 4 nodes). The matrix contains
the gradients of Cartesian strain with respect to displacement gradient.

Bεg(m) =


∂ε1
∂g1

∂ε1
∂g2

∂ε1
∂g3

∂ε1
∂g4

∂ε2
∂g1

∂ε2
∂g2

∂ε2
∂g3

∂ε2
∂g4

∂ε3
∂g1

∂ε3
∂g2

∂ε3
∂g3

∂ε3
∂g4

 (3.3.15)

If we insert Equation (3.3.14) into Equation (3.3.12), the internal force expression can be obtained:

δu = δεTCε = δvTBT
gvB

T
εgCε = δvTBT

gvB
T
εgs = δvT f (3.3.16)

where the stresses for linear material are defined as:

s = Cε (3.3.17)
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f =

∫
V

BT
gvB

T
εgs dV (3.3.18)

Stiffness from gradients of the forces:

∆f =
∂f

∂v
∆v = K∆v (3.3.19)

f = BT
gvB

T
εgs

δf = δBT
gvB

T
εgs︸ ︷︷ ︸

1

+ BT
gvδB

T
εgs︸ ︷︷ ︸

2

+ BT
gvB

T
εgδs︸ ︷︷ ︸

3

(3.3.20)

The material stiffness matrix and geometric stiffness matrix is obtained by the variation of the
internal force vector. From the third therm in Equation (3.3.20) the material stiffness, K3, can be
obtained.

δs = C
∂ε

∂g

∂g

∂v
= CBεgBgvδv (3.3.21)

K3 = BT
gvB

T
εgCBεgBgv (3.3.22)

Further, the geometric stiffness can be obtained from the second therm, in Equation (3.3.20).

δBεgs =
∂BT

εg

∂g
s
∂g

∂v
δv (3.3.23)

K2 = BT
gv

∂BT
εg

∂g
sBgvδv = BT

gvSBgv (3.3.24)

The first therm in Equation (3.3.20) will be neglected, as the expression leads to a zero division.

δBgv =
∂Bgv

∂v
δv = 0 (3.3.25)

The tangent stiffness for traditional strain formulation is generated by adding the geometric and
material stiffness matrices.

Kt = K2 + K3 (3.3.26)

3.3.2 Green Lagrangian Strain

The strains can be developed by use of the Green equations for the three directions. The Green
strain tensor is widely used due to its simplicity, thus easy to compute. This method is good for
small to moderate strains and rotations. [4] For the Green Lagrangian element, Equation (3.3.27)
is used to calculate the Green strain for the problem. [7]

By inserting Equation (3.3.10) in Equation (3.3.2) we get

εG1 = g1 +
1

2
(g21 + g22)

εG2 = g4 +
1

2
(g23 + g24)

εG3 = g2 + g3 + g1g3 + g2g4

(3.3.27)

11



The first derivatives of the Green Lagrangian strain equations is given by Equation (3.3.28).

dεG1 = (1 + g1)dg1 + g2dg2

dεG2 = (1 + g4)dg4 + g3dg3

dεG3 = g3dg1 + (1 + g4)dg2 + (1 + g1)dg3 + g2dg4

(3.3.28)

The second derivatives of the Green Lagrangian strain equations is given by Equation (3.3.29).

d2εG1 = d2g1 + d2g2

d2εG2 = d2g4 + d2g3

d2εG3 = d2g1 + d2g2 + d2g3 + d2g4

(3.3.29)

3.3.3 Biot strain

The Biot strain is a generalization of engineering strain and is the simplest generalization of
linearized strains. It is adequate for initial stress problems and hyperelasticity. This method is
quite popular, but will cause self straining for large rotations. [4] To compute the strain, the element
strain displacement matrix, BB

ε , is multiplied with the displacement vector, u. To calculate the
Biot strain, Equation (3.3.30) is used.

εB1 = g1

εB2 = g4

εB3 = g2 + g3

(3.3.30)

The first derivatives of the Biot strains is given by Equation (3.3.31).

dεB1 = dg1

dεB2 = dg4

dεB3 = dg2 + dg3

(3.3.31)

The second derivatives of the Biot strain is given by Equation (3.3.32).

d2εB1 = 0

d2εB2 = 0

d2εB3 = 0

(3.3.32)

3.3.4 Hencky strain

Hencky strain will be a common choice to use for finite elastoplasticity. It is a logarithmic strain
and can cause complications to compute in 3D. This method is prone to singularities, and therefore
often replaced by logarithmic free equations. To compute the Hencky strain, Equation (3.3.33) is
used. [4]

εH1 = log (1 + g1)

εH2 = log (1 + g4)

εH3 = log (1 + g2 + g3)

(3.3.33)
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Equation (3.3.34) represents the first derivatives of the Hencky strains.

dεH1 =
1

(1 + g1)
dg1

dεH2 =
1

(1 + g4)
dg4

dεH3 =
1

(1 + g2 + g3)
dg2 +

1

(1 + g2 + g3)
dg3

(3.3.34)

The second derivatives of the Hencky strain equations is given by Equation (3.3.35).

d2εH1 = − 1

(1 + g1)2
d2g1

d2εH2 = − 1

(1 + g4)2
d2g4

d2εH3 = − 1

(1 + g2 + g3)2
d2g2 −

1

(1 + g2 + g3)2
d2g3

(3.3.35)

3.3.5 Swainger strain

To develop the strain equations for Swainger strain, Equation (3.3.36) is used. This method is
rarely used, due to its difficulties to compute in 3D. It is the counterpart to the more popular
method, Engineering strain. [4]

εS1 =
g1

(1 + g1)

εS2 =
g4

(1 + g4)

εS3 =
g2 + g3

(1 + g2 + g3)

(3.3.36)

The first derivatives of Swainger strain is given by Equation (3.3.37).

dεS1 =
1

(1 + g1)2
dg1

dεS2 =
1

(1 + g4)2
dg4

dεS3 =
1

(1 + g2 + g3)2
dg2 +

1

(1 + g2 + g3)2
dg3

(3.3.37)

The second derivatives of the Swainger strain equations is given by Equation (3.3.38).

d2εS1 = − 2

(1 + g1)3
d2g1

d2εS2 = − 2

(1 + g4)3
d2g4

d2εS3 = − 2

(1 + g2 + g3)3
d2g2 −

2

(1 + g2 + g3)3
d2g3

(3.3.38)
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3.3.6 Almansi strain

The Almansi strain is fitted for flow-like behaviour, but imprecise for elasticity. It is relatively
easy to compute, but can cause complexity for matrix inversion. This method is the counterpart
to the Green-strain, and not commonly used in Lagrangian form. The Almansi strain is calculated
by Equation (3.3.39). [4]

εA1 = −1

2
((1 + g1)2 − 1)

εA2 = −1

2
((1 + g4)2 − 1)

εA3 = −1

2
((1 + g2 + g3)2 − 1)

(3.3.39)

Equation (3.3.40) represents the first derivatives of Almansi strain.

dεA1 =
1

(1 + g1)3
dg1

dεA2 =
1

(1 + g4)3
dg4

dεA3 =
1

(1 + g2 + g3)3
dg2 +

1

(1 + g2 + g3)3
dg3

(3.3.40)

The second derivatives of the Almansi strain is given by Equation (3.3.41).

d2εA1 = − 3

(1 + g1)4
d2g1

d2εA2 = − 3

(1 + g4)4
d2g4

d2εA3 = − 3

(1 + g2 + g3)4
d2g2 −

3

(1 + g2 + g3)4
d2g3

(3.3.41)
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3.4 Assumed Natural strain (ANS) for triangle element

The Assumed Natural Strain (ANS) formulation was first introduced by William in 1969.[14] The
method was based on construction of four-node plane stress element where he assumed constant
shear strain to be independent of the direct strains. During the following years, new approaches was
made including developments of reduced and selective integration methods. The different methods
concerns use of elements known as high-performance elements. High-performance elements is
a general description for elements attaining special attributes which makes them desirable for
problems concerning displacement, coarse mesh and can be extended to non-linear and dynamic
problems. [15] This paper will follow the ANS-formulation from Militello and Felippa. [15, 16]

The strain, unit vector and inward normal which are used for the triangle element is defined as
illustrated in Figure 3.4.1. The natural coordinate strains are selected to be strains along the three
bars of the element. Three natural coordinate strains are obtain from this. The strains along a
side i-j can be defined from the displacement v and the unit vector ei.

i j

k

εi

εjεk

(a) Side edge strain

i j

k

ei

ejek

(b) Unit vectors

i j

k

ni

njnk

(c) Inward normals

Figure 3.4.1: Representation of side element

The unit vectors can be arranged in a vector as Equation (3.4.1) presents. The vector arrangement
for inward normal’s are presented in Equation (3.4.2). These vectors will be used to arrange the
tangent stiffness matrix for the element.

ei =

[
eix
eiy

]
(3.4.1)

ni =

[
−eiy
eix

]
(3.4.2)

The definition of the natural strain is expressed as seen in Equation (3.4.3). Where v is the
displacement vector as illustrated in Equation (3.3.5).

εn =
∂vi
∂ei

(3.4.3)

The subscript n and c represent Natural and Cartesian respectively.

For clearance, the notation used:

εc : Cartesian strain

εn : Natural strain

ei : Field vector

The natural coordinate strain εn can be expressed in therms of the global Cartesian components
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as:

εn =
∂u

∂x
e2kx +

∂v

∂y
e2ky +

(
∂u

∂y
+
∂v

∂x

)
ekxeky

= εxxe
2
kx + εyye

2
ky + γxyekxeky

(3.4.4)

Side edge length for each bar in the triangle is defined along each side, as indicated in Figure 3.4.2.

i j

k

Li

LjLk

Figure 3.4.2: Side edge length

The variation of the natural strains is achieved by partial derivation of each side edge strain with
respect to the length of the bar. This gives the expression in Equation (3.4.7), and arranged as a
matrix in Equation (3.4.10)

εn =

ε1ε2
ε3

 (3.4.5)

εc =

εxxεyy
γxy

 (3.4.6)

δεn =
∂εn
∂L

∂L

∂v
δv = BεlBlvδv (3.4.7)

Where the variation of strain with respect to the length is arranged as:

∂εn
∂L

= Bεl =

 ∂ε1
∂L1

0 0

0 ∂ε2
∂L2

0

0 0 ∂ε3
∂L3

 =


L1

∂L2
01

0 0

0 L2

∂L2
02

0

0 0 L3

∂L2
03

 (3.4.8)

And the variation of the length with respect to the displacement is:

∂L

∂v
= Blv =

−eT1 eT1 0
0 −eT2 eT2

eT3 0 −eT3

 (3.4.9)

By combining these equations the variation of strain can be established as:

δεn =


L1

∂L2
01

0 0

0 L2

∂L2
02

0

0 0 L3

∂L2
03


−eT1 eT1 0

0 −eT2 eT2
eT3 0 −eT3

 δv (3.4.10)
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3.4.1 Tangent stiffness

The tangent stiffness is a stiffness build up with respect to the internal forces. Thus, it it necessary
to start looking at the internal energy before the tangent stiffness can be established.

Internal energy expressed in terms of Cartesian strains is presented in Equation (3.4.11).

u =
1

2

∫
εTc CcεdV =

1

2
εTc CcεA0t (3.4.11)

Transformation between Cartesian and Natural strains can be accomplished by use of a transfor-
mation matrix. This matrix is defined by the unit vectors for each bar as seen in Equation (3.4.13).

εn = Tεncεc (3.4.12)

Where the transformation matrix Tεnc is defined as:

Tεnc =

e2
1x e2

1y e1xe1y

e2
2x e2

2y e2xe2y

e2
3x e2

3y e3xe3y

 (3.4.13)

The inverse relationship defines the Cartesian strain:

εc = Tεcnεn (3.4.14)

where:
Tεcn = T−1

εnc (3.4.15)

Matrix Tεnc is non-singular and the inverse relationship which gives Tεcn can be established
numerically:

ε1 = εxx cos2 θi + εyy sin2 θi + γxy sin θi cos θi

ε2 = εxx cos2 θj + εyy sin2 θj + γxy sin θj cos θj

ε3 = εxx cos2 θk + εyy sin2 θk + γxy sin θk cos θk

(3.4.16)

The strain transformation is utilised on the stress-strain constitutive matrix. The correct trans-
formation could be found through evaluating the virtual work:

δεTc σ = δεTc Cεc = δεTnTT
εcnCTεcnεn (3.4.17)

Cn = TT
εcnCTεcn (3.4.18)
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x

y

εk

εi

εj

i

j

k

θi

θj

θk

Figure 3.4.3: Triangle

Further the transformation matrix in Equation (3.4.15) is established as shown in Equation (3.4.19).

ε1ε2
ε3

 =

cos2 θi sin2 θi cos θi sin θi
cos2 θj sin2 θj cos θj sin θj
cos2 θk sin2 θk cos θk sin θk

εxxεyy
γxy

 (3.4.19)

where:

cos θi =
ejx − eix

L0
, and sin θi =

ejy − eiy
L0

(3.4.20)

The initial length and deformed length is settled by the following formulas:

L0 =
√
X2
i + Y 2

i (3.4.21)

Ld =
√

(Xi + Ui)2 + (Yi + Vi)2 (3.4.22)

Where Xi = xj − xi and Yi = yj − yi. This represents the length of the bar connecting between
node i to node j. X and Y represents the coordinate of the node, while U and V is the displacement
of the node. The same equation for initial and deformed length is used to establish the remaining
bars of the triangle element.

Xi Xj X
′

j

xj − xi ui

i j j’

Figure 3.4.4: Definition of length and displacement

Internal energy can now be expressed as:

u =
1

2
εTnTT

εcnCcTεcnεnA0t =
1

2
εTnCnεnA0t (3.4.23)

Internal forces from first variation of internal energy

δu =
1

2
δεTnCnεnA0t+

1

2
εTnCnδεnA0t = δεTnCnεnA0t = δεTnsnA0t (3.4.24)
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Express the variation of the strains with respect to variations in nodal degrees of freedom.

δεn =
∂εn
∂L

∂L

∂v
δv = BεlBlvδv (3.4.25)

We insert this into the variation of the internal energy

δu = δεTnsnA0t = δvTBT
lvB

T
εlsnA0t = δvT fint (3.4.26)

This defines the internal forces as
fint = BT

lvB
T
εlsnA0t (3.4.27)

where the natural coordinate stresses are

sn = Cnεn (3.4.28)

The stiffness matrix is derived from the variation of the internal forces

δfint =
∂fint
∂v

δv = Kδv (3.4.29)

This consist of three terms

δfint = δBT
lvB

T
εlsnA0t︸ ︷︷ ︸
1

+ BT
lvδB

T
εlsnA0t︸ ︷︷ ︸
2

+ BT
lvB

T
εlδsnA0t︸ ︷︷ ︸
3

(3.4.30)

The third stiffness therm defines the material stiffness matrix:

δsn = Cnδεn = CnBεlBlvδv (3.4.31)

K3 = BT
lvB

T
εlCnBεlBlvA0t (3.4.32)

The second stiffness term expression defines a part of the geometric stiffness:

δBεl =
∂BT

εl

∂Li
δLi (3.4.33)

When the multiplication with s is included, this can be expressed as

δBT
εls =

∂BT
εl

∂Li
sδLi =


∂ε1

∂L2
1
s1 0 0

0 ∂ε2

∂L2
2
s2 0

0 0 ∂ε3

∂L2
3
s3


δL1

δL2

δL3

 = B[εi,LiLi
si]Blvδv (3.4.34)

This gives us

K2 = BT
lvB[εi,LiLi

si]Blv (3.4.35)

The first therm of the variation of the internal forces, gives the remaining expression of the geo-
metric stiffness matrix.
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It is wanted to express the variation of BT
lv with respect to nodal degrees of freedom. Before this

can be accomplished, the equation must be expressed with respect to δαi.

BT
lv =

−e1 0 e3

e1 −e2 0
0 e2 −e3

 (3.4.36)

This gives

δBT
lv =

∂BT
lv

∂αi
δαi =

−n1 0 0
n1 0 0
0 0 0

 δα1 +

0 0 0
0 −n2 0
0 n2 0

 δα2 +

0 0 n3

0 0 0
0 0 −n3

 δα3

=

−n1 0 n3

n1 −n2 0
0 n2 −n3

δα1 0 0
0 δα2 0
0 0 δα3

 (3.4.37)

The following term is defined:

SHN = BT
εlsn (3.4.38)

Combined with Equation (3.4.37) gives

δBT
lvB

T
εlSHN =

−n1 0 n3

n1 −n2 0
0 n2 −n3

δα1 0 0
0 δα2 0
0 0 δα3

SHN1

SHN2

SHN3


=

n1 0 n3

n1 n2 0
0 n2 n3

SHN1 0 0
0 SHN2 0
0 0 SHN3

δα1

δα2

δα3

 (3.4.39)

The rotation δαi can be expressed with respect to the nodal degrees of freedom.

δαi =
1

Li

[
−nTi nTi

] 
δu1
δv1
δu2
δv2

 (3.4.40)

When combining for all side edges:

δα1

δα2

δα3

 =

 1
L1

0 0

0 1
L2

0

0 0 1
L3

−nT1 nT1 0
0 −nT2 nT2

nT3 0 −nT3



δu1
δv1
δu2
δv2
δu3
δv3

 (3.4.41)

By combining Equation (3.4.39) and Equation (3.4.41), the stiffness expression term 1 can be
written. (skriv om)

δBlvBεls =

−n1 0 n3

n1 −n2 0
0 n2 −n3


SHN1

L1
0 0

0 SHN2

L2
0

0 0 SHN3

L3


−nT1 nT1 0

0 −nT2 nT2
nT3 0 −nT3

 δv
= BT

k SHNBkδvA0t

(3.4.42)
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This gives

K1 = BT
k SHNBkA0t (3.4.43)

The tangent stiffness matrix is given by combining the expressions:

KT = K1 + K2 + K3 (3.4.44)

3.4.2 Green Lagrangian strain

The bar strain equation for green Lagrangian strain is:

εG =
1

2
(λ2 − 1) (3.4.45)

Following the first length derivative is:

εGLd
=
Ld
L2
0

(3.4.46)

and second length derivative:

εGL2
d

=
1

L2
0

(3.4.47)

3.4.3 Biot strain

The strain equation for Biot strain using bar element theory is represented in Equation (3.4.48).

εB = λ− 1 (3.4.48)

The first derivative of Biot strain is:

εBLd
=

1

L0
(3.4.49)

And the second length derivative can be given by following expression:

εBL2
d

= 0 (3.4.50)

3.4.4 Hencky strain

Hencky strain is characterized by following logarithmic equation:

εH = log(λ) (3.4.51)

The first length derivative can be expressed by:

εHLd
=

1

Ld
(3.4.52)

Second length derivative:

εHL2
d

=
−1

L2
d

(3.4.53)
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3.4.5 Swainger strain

The bar strain equation for Swainger strain is:

εS = 1− 1

λ
(3.4.54)

That gives following equation for first length derivative:

εSLd
=
L0

L2
d

(3.4.55)

and for second length derivative

εSL2
d

=
−2L0

L3
d

(3.4.56)

3.4.6 Almansi strain

To calculate the Almansi strain, the transformation matrix needs to be defined by deformed ge-
ometry. The Almansi strain equation for bar element is:

εA =
1

2
(1− 1

λ2
) (3.4.57)

Following the first length derivatives is:

εALd
=
L2
0

L3
d

(3.4.58)

And the second length derivative:

εAL2
d

=
−3L2

0

L4
d

(3.4.59)

3.4.7 2D motion of ANS element

εNG =
ui − ui−1

L0
+

1

2
(
ui − ui−1

L0
)2 +

1

2
(
vi − vi−1

L0
)2 (3.4.60)

ũ1

ṽ1

ũ2

ṽ2

u1

v1

u2

v2

Figure 3.4.5: Local and global displacements

To go from global displacements to local, use following transformation matrix:

Tlg =

[
exx exy
eyx eyy

]
(3.4.61)
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ex =

[
c
s

]
(3.4.62)

ey =

[
−s
c

]
(3.4.63)

where c = cos θi and s = sin θi.

The local displacements is obtained by following equation:

vb = Tlgv
T (3.4.64)

v
′T
b =

[
u
′

1 v
′

1 u
′

2 v
′

2 u
′

3 v
′

3

]
(3.4.65)

g with loacal displacement

εNG = g1loc +
1

2
g21loc +

1

2
g22loc (3.4.66)

A strain expression is developed for each bar of the triangle and gathered in the following strain
vector

εNG =

εGaεGb
εGc

 (3.4.67)

εC = TεNCεN (3.4.68)

First derivative of each element is gathered in a B-matrix, one matrix for each element:

Bεg =
[
1 + g1 g2

]
(3.4.69)

A new B-matrix, for g in local system from displacements in local:

Bgvl
=

[
− 1
L0

0 1
L0

0

0 − 1
L0

0 1
L0

]
(3.4.70)

B-matrix, for g in local system from displacements in global G:

BgvG
= Bgvl

TlG (3.4.71)

TlG =


C S 0 0
−S C 0 0
0 0 C S
0 0 −S C

 (3.4.72)

Compute the natural strain-displacement matrix for ANS element:

Bnv = BεgBgvG
=
∂ε

∂g

∂g

∂v
(3.4.73)
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Bnv =

 ∂ε1∂u1

∂ε1
∂v1

∂ε1
∂u2

∂ε1
∂v2

0 0

0 0 ∂ε2
∂u2

∂ε2
∂v2

∂ε2
∂u3

∂ε2
∂v3

∂ε3
∂u1

∂ε3
∂v1

0 0 ∂ε3
∂u3

∂ε3
∂v3

 (3.4.74)

To go from natural strain-displacement to Cartesian strain displacement matrix for the ANS ele-
ment, need to perform the following equation:

Bcv = T−1
cvnvBnv (3.4.75)
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4 Numerical generated stiffness matrix

A numerical test can be executed to generate the stiffness matrix. This method can be used to verify
the results of the tangent stiffness matrix. The stiffness matrix is expressed by Equation (4.0.1).

Kij =
∂fi
∂vj

(4.0.1)

In this method, a small variation ∆ is added to the displacement vector, vj at each node. An
internal force, f+ where the variation is added, and an internal force f− where the variation is
subtracted needs to be established. The forces are recalculated for each displacement added to the
nodes of the element.

f+ = fi(v + ∆vj) (4.0.2)

f− = fi(v −∆vj) (4.0.3)

The stiffness matrix is generated by performing Equation (4.0.4) for each variation of the displace-
ment. Where the force vector represents the rows of the matrix, and the displacements represents
the columns.

Kij =
f+ − f−
2∆vj

(4.0.4)

The matrix obtained from this test will be compared with the tangent stiffness matrix for each
strain equation in SH for both traditional and ANS formulation.
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5 Numerical Method

This section will include the mathematical aspects of the implementation of a simple nonlinear
model to obtain the numerical results. To accomplish this, open-source software such as Gmsh
and ParaView will be utilized. Gmsh is a software that generates mesh for three-dimensional finite
element problems. [17] ParaView is a data analysis and visualization application. [18]

The method used to obtain the numerical results is based on the method Nyg̊ard used in his Master
thesis [19] and will follow four steps by use of open-source software:

1. Gmsh

2. MeshIO

3. FEM solver

4. ParaView

Gmsh will be utilized to define the geometry and to generate the mesh for the model. MeshIO is a
Python module for mesh Input/Output which is utilized for data formatting. The implementation
of SH strain and a nonlinear load control solver will be introduced as a Python code, while the
result obtained from the Python solver will be visualised in ParaView.

5.1 Gmsh

Gmsh is a three-dimensional finite element mesh generator. It is a meshing tool with parametric
input and advanced visualization capabilities. The Gmsh Application Programming Interface
(API) can be integrated to function with the preferred application. For the FEM problem, the
Gmsh API will be following Python API and therefore be integrated into the numerical code using
Python programming language. [20]

There are two default CAD kernels in Gmsh used to create geometry. One is called “OpenCAS-
CADE” kernel and the other is “Built-in” kernel. The “OpenCASCADE” kernel will be used
for this problem, to allow for scripting in Python. This is useful when defining the geometry of
the model. Defining the SetFactory to “OpenCASCADE” is the first step when creating a model
numerically or directly in Gmsh.

The initial step for solving a FEM problem is to define the geometry. The geometry of the
cantilever will be defined numerically in a “.geo” file. A geometry created by Gmsh is defined by
use of Boundary Representation. [20] A surface is created by lines, which are created by points. To
create the geometry it is consequently necessary to start with the points, in this case representing
the corners of the 2D-cantilever.

To create the geometry of the cantilever, the length in x-direction and y-direction is established as
dx, dy. The corners framing the cantilever will be arranged as points. This is necessary because
the lines framing the total cantilever need to be established by points. The points are identified
with a “tag”. This is their identification number displayed in the parenthesis which make them
easier to obtain when creating the lines.

1 SetFactory("OpenCASCADE");

2 dx = 1000.0;

3 dy = 20.0;

4

5 Point (1) = {0.0 ,0.0 ,0.0};

6 Point (2) = { dx ,0.0 ,0.0};

7 Point (3) = { dx , dy ,0.0};

8 Point (4) = {0.0, dy ,0.0};

After establishing the corners of the 2D cantilever, the lines framing the geometry can be created.
These have a tag-number similar to the points. Line(1) represent a line connecting Point(1) and
Point(2).
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1 Line (1) = {1,2};

2 Line (2) = {2,3};

3 Line (3) = {3,4};

4 Line (4) = {4,1};

When all lines are established, a Curve Loop connecting the four lines into a 2D entity can be
specified. This is used to create the plane surface of the geometry, as the code below indicate.

1 Curve Loop (1) = {1,2,3,4};

2 Plane Surface (1) = {1};

To establish where on the cantilever the load and boundary conditions shall be applied, Physical
Curves can be created. They are not numbered like the points and lines were, but given strings
as labels. This will later be referred to as setname when the boundary conditions will be applied
in the Python code explained in Section 5.3. The physical curves are placed to lines, meaning
Physical Curve(”fixedEnd”) is referring to the line where the fixed boundary condition will be
applied, which for this case is line 4. The boundary conditions will be applied in the main Python
code. The physical surface is defined from Plane Surface(1), establishing a physical surface. This
will represent the entire model.

1 Physical Curve("fixedEnd") = {4};

2 Physical Curve("LoadX") = {2};

3 Physical Curve("LoadY") = {2};

4 Physical Surface("domain") = {1};

Figure 5.1.1: Gmsh cantilever model

After the entire model is fully created in the “.geo”-file, the file can be opened in the Gmsh
program. In Figure 5.1.1, the model with the physical curves and surface is displayed. The mesh
will be generated here. The Global mesh size factor is set to 0.3 for the model in Figure 5.1.2.

Figure 5.1.2: Meshed instance in Gmsh

After the mesh is created in Gmsh, the mesh data can be saved to a file. The saved file will be
created as a “.msh”-file, and will be imported in the Python solver.

5.2 MeshIO

MeshIO is a Python module installed for direct use in coding. This module allows for input and
output for mesh values, and will be valuable when performing data formatting of the mesh.

In the generated mesh file from Gmsh, MeshIO can be used to transform the mesh file into a data
structure that a programming language, such as Python can read. An example of how MeshIO is
used in the Python solver to read the mesh file:

1 import meshio

2 # Reading mesh data

3 msh = meshio.read(filename=meshfile)
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The “msh” referred to here, is later used to connect the meshed geometry to the wanted output
in ParaView, which for this problem is Strain and Displacement. This is further explained in
Section 5.4. The “.msh”-file is often a text file consisting of data describing the formatting of the
element type and size of mesh. This data is converted into a Python mesh object by MeshIO. This
mesh object will contain all the information about the mesh. In MeshIO, elements are described as
cells and the nodes as points. The MeshIO object is structured with the following data information:

• Cell data and sets

• Point data and sets

• Geometrical and psychical data

The use of cell and point data to extract displacement and strain results will be further explained in
Section 5.4. To extract and use the information from the mesh object it is necessary to construct
some particular functions in the Python solver. The extract set function is created to extract
and hold information about a given set of data, i.e. the collection of all nodes. This function
returns the element connectivity array of a set. This set is critical when calculating the system
stiffness matrix and for applying the loads and boundary conditions. From the data sets, the
element coordinates and nodal coordinates can be extracted through the extract element coords and
extract nodal coords functions. This information is essential when computing the system stiffness
matrix and strain of the element. Further, the function extract dof indx is necessary to establish
for converting the point data into correct degree of freedom indices. The reviewed functions are
included in Appendix B.4.

5.3 FEM solver

The FEM solver, uses a nonlinear load control to perform a solution. The solution to the nonlinear
geometrically analysis is based on the work of Haugen’s PhD.[21] The method is solved by the
following structure:

1. Define element-type and problem with the appropriate number of degree of freedom (DOF)

2. Read mesh data and select number of steps and iterations

3. Assemble the tangent stiffness matrix, Kt, for the system

4. Establish the load factor ψ and add external load P(ψ) to the problem

5. Calculate the residual force, r(ψ,v)

6. Solve matrix equation Kv = f

7. Update global displacement state v̂

8. Solve Seth-Hill Family strain ε

A nonlinear load control algorithm is used to compute a solution to the geometrically structured
problem. Step three to seven are performed in a loop for nonlinear problems. This algorithm
allows for drift errors, causes the computed solutions to not drift away from the equilibrium path.
Newton’s method is used as the iterative solution, this method allows for large increments. A
geometrically nonlinear structure often reaches a maximum load level, where the structure would
not handle increases in load before it reaches a significant change in the geometry. These limits are
often described as critical points, and can be characterized by a singular tangent stiffness matrix.
[21]
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ψ

v

Drift error

Figure 5.3.1: Equilibrium path

Figure 5.3.1 illustrates the numerically trace of the equilibrium path, by an incremental method
using the force residual, r, to reach the equilibrium state.

Before performing a solution, it is necessary to determine which element type the algorithm should
use. The solver allows for two element types:

1. Traditional strain

2. Assumed Natural Strain (ANS)

The theory and implementation of the two element types are described in Section 3.3 and Sec-
tion 3.4.

Considering our problem, a two-dimensional cantilever, with a fixed end and subjected to shear
load in the other end, the degree of freedom is set to two. The selection of DOF allows for solving
a numerous of different geometrically problems and makes the solver applicable for 3D-problems
as well.

The “.msh”-file generated in Gmsh is imported to the solver, using MeshIO, and a maximum
number of steps and iteration is established for solving the nonlinear load control.

The tangent stiffness matrix, Kt, for the system is developed by the function assemble k, included
in Appendix B.4. Together with the functions reviewed in Section 5.2, the function returns the
system tangent stiffness matrix. The function is applicable for different setnames, which is in our
case set to “domain” representing the entire geometry.

The tangent stiffness is defined from the change in internal forces with respect to the displacements.
It is said to be consistent if it is the gradient of the internal forces with respect to the degrees
of freedom. The importance of the tangent stiffness is to obtain convergence through an iterative
solution algorithm. It is wanted to get the equilibrium path for the solution, not only convergence,
which is strongly dependent on the tangent stiffness. [21]

The external load P is applied to the structure by the function add load, included in Appendix B.4.
This function makes it possible to apply load to a given set. For our problem, a load is applied to
“LoadX” and “LoadY”, corresponding to a load in both x- and y-direction. The load is dependent
on the load factor ψ. The load applied is given from the calculations made in Section 6.2. The
load factor is determined by Equation (5.3.1), where i is the step number during the iterations and
n represents the total number of steps.

ψ =
(i+ 1)

n
(5.3.1)

A requirement for a nonlinear geometrically analysis is that the finite element and the global
nodes are in equilibrium. For this solution, the force residual r, is established to achieve the
correct equilibrium path. The requirement for the solution is that the finite element internal force
vector f , is in a self-equilibrium state with respect to the deformed element geometry. [21]

r(ψ,v) = P(ψ)− f(v) = 0 (5.3.2)
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The force residual is determined by subtracting the internal force from the external force, P, as
in Equation (5.3.2). Where the internal force f is dependent on the current displacement of the
nodes v, and the external force P is a function of the loading parameter ψ. The global equilibrium
is achieved when the force residual equals zero. [21]

K∆v = r(ψ,v) (5.3.3)

After establishing the force residual, the matrix equation in Equation (5.3.3) could be solved for
the incremental displacement v. Then the global displacement state is updated for each iteration of
the solution until the force residual reaches equilibrium. The updating of the global displacement
state can be written as:

v̂ = v̂ + ∆v (5.3.4)

Where v̂ represents the current total displacement state for both element and global level. And
∆v the incremental displacement vector for an element.

After the equilibrium state or the maximum number of iterations is reached, the SH strain can
be calculated for the triangle element model. The strain is calculated as point strain, meaning for
each node of the total number of elements. To eliminate duplication of strain results for elements
sharing nodes, a function in python is established to avoid such error of the result. The function
used to calculate the point strain is calculate point strain, and is attached in Appendix B.4. The
SH strain is defined by the total displacement state v̂, determined from the nonlinear load control
solver.

5.4 ParaView

ParaView is an open-source data-analysis and visualisation application. [18] The results from
the Python solver is written to a “.vtu”-file. The “.vtu”-file can be opened in ParaView where
a visual representation of the results can be studied. The displacements, strain of the elements
and deformed geometry are presented in ParaView. To get a visible representation is desirable,
as it is convenient to view the results in relation to another and to check if the results meet the
expectations. To present the results from the Python solver, explained in Section 5.3, it is necessary
to format the results into the correct data format. The results are formatted as follows:

1 # Format results

2 tot_disp = tot_disp.reshape ((msh.points.shape [0], 2))

3 disp = tot_disp[:, 0:2]

4 disp_3D = np.zeros((disp.shape[0], 3))

5 disp_3D [: ,0:2] = disp [: ,0:2]

After the data is formatted to the correct shape, the element and node data is extracted from
the mesh object created by the MeshIO module in Section 5.2. The Displacement and Strain is
added as point data, meaning the result is accessible at each node. The point data containers is
represented as Python dictionaries, consisting of result data arrays. The result is added by the
following commands:

1 msh.point_data['Displacements '] = disp_3D

2 msh.point_data['Strain '] = point_strain

MeshIO is utilized to write the results to the “.vtu”-file for post-processing in ParaView. The
command meshio.write() writes the results to a new “.vtu”-file for each step of the iteration.
ParaView allows for opening all the files in one group, making the results retrieved from the
iterations accessible in one model. The “.vtu”-file can be accessed by:

1 # Write results to file for post -processing

2 num_dofs.append(tot_disp.size)

3 tip_defs.append(disp.max())

4 meshio.write(filename =( destination / (file + str(step +1) + '.vtu')), mesh=msh)
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Opening the “.vtu”-file in ParaView, the model created in the “.geo”-file is accessed, and the model
in Figure 5.4.1 is accessed.

Figure 5.4.1: ParaView model

ParaView allows for different application of model properties to include in the model, such as cell
and point data. The numerical results from the Python solver in Section 5.3, is available as model
properties. In Figure 5.4.2a a selection of the different model properties that could be applied to
the model is displayed. The wanted property is selected and applied to the model, and the result
data is processed and visualised through colour-maps and filters added to the model.

(a) ParaView Model properties (b) Warp Vector properties

Figure 5.4.2: ParaView Model properties

Through filters and model properties ParaView modifies the displayed cells and points. The filter
Warp by Vector is favorable for displaying displacement and deformation in geometry. The filter is
accessed by adding it to model properties, see Figure 5.4.2b. The filter creates a vector and applies
it as warp to the nodes of the elements of the model. It also allows for different scale factors, to get
a greater visualisation of deformation and displacement pattern. In Figure 5.4.3 model properties
is added to the model with colour-maps and filters.

Figure 5.4.3: Meshed ParaView model with displayed strain
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6 Experimental Method

Experimental work will be executed to investigate the fixed-end torsion problem. This will provide
a better understanding of the Poynting effect as well as to give a better basis for the numerical
model. To perform the experiment, it is necessary to establish a setup for a test rig. The concept
of the test rig is further explained in Section 6.3.

Due to the size of the test rig the test specimens must be chopped to a size of maximum 200 cm.
It is crucial that the pipe should not exceed yield, as it is wanted to perform the test in the elastic
regime. In Section 6.2 the calculations of the maximum torque and twist angle are reviewed.

6.1 Materials used for the testing

The experimental investigation on Poynting effect will include pipes of different materials. In
order to perform a more credible test, both isotropic and anisotropic materials should be included.
An isotropic material has identical material properties and strength in all directions, while an
anisotropic material has varying properties in the different orientations. This makes anisotropic
materials a good choice of material in many cases as they often provide great strength in a favorable
orientation. [22]

The selected materials for the pipe is represented in Table 2 and are materials that are commonly
used for thin-walled pipes in the industry. Hardox400 is commonly used as solid cylinders. This
material is included to provide more variation by use of a steel type with high yield strength. This
type of configuration may be included in the experimental work as well.

Material
Modulus of elasticity
E [GPa]

Poisson’s ratio νb
Yield strength σy
[MPa]

Stainless steel 200 0.29 215

Duplex steel 200 0.32 400

High-strength steel 200 0.29 700

Hardox400 210 0.30 1000

Aluminum 6063-T6 70 0.33 214

Glass Fiber 72 0.30 207

Carbon Fiber 238 0.28 207

Table 2: Material properties
[23–30]

6.2 Calculation of maximum torque moment

Before the test could be executed, it was important to calculate allowable moment of twist. This
is to avoid twisting the pipe to yield during the experiment, considering that the material should
stay in the elastic regime. The cross section of the pipe is illustrated in Figure 6.2.1.
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(a) Hollow cross section
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(b) Solid cross section

Figure 6.2.1: Cross section

To calculate the maximum torque moment for the pipe, Equation (6.2.1) is used. [31]

Tmax =
τmaxJ

R
=
τmaxπ

16D
[D4 − d4] (6.2.1)

where J is the polar moment of inertia, τmax is the maximum shear stress for the tube and R is
the radius. In Equation (6.2.3)

As the Hardox400 comes as solid cylinder, the maximum torque will be calculated using the
following equation:

Tmax =
π

16
τmaxD

3 (6.2.2)

The polar moment of intertia for a pipe and for a solid sylinder is given by Equation (6.2.3) and
Equation (6.2.4) respectively.

Jpipe =
π(D4 − d4)

32
(6.2.3)

Jsolid =
πD4

32
(6.2.4)

The angle of twist can be calculated by Equation (6.2.5). For our problem, a pipe under torsional
loading, the angle of twist is the angle which fixed end of shaft rotates with respect to the free
end. [32]

θ =
LT

JG
=

LT
π(D4−d4)

32 G
(6.2.5)

The modulus of rigidity can be calculated using Equation (6.2.6).

G =
E

2(1 + ν)
(6.2.6)

In our case, of pure shear stress, we can use the Von Mises criterion to find a relationship between
the shear strength and tensile strength at yield. The von Mises criterion becomes:

σ =
σy√

3
≡ τmax (6.2.7)
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Material Dimension [mm] Torsion [Nm] Angle θ

304 Stainless steel Ø19 x 1.20 69.768 0.337 rad — 19.30°

Duplex Ø10.3 x 1.73 39.949 1.184 rad — 67.84°

High-strength steel Ø42.4 x 2.0 1 978.37 0.492 rad — 28.19°

Hardox400 Ø40 7 255.197 0.715 rad — 40.97°

Aluminum

Ø6 x 1 2.713 3.13 rad — 179.34°

Ø8 x 1 5.140 2.347 rad — 134.47°

Ø10 x 1 8.343 1.878 rad — 107.60°

Ø12 x 1 12.322 1.565 rad — 89.67°

Glass fiber
Ø11 x 4 26.111 1.246 rad — 71.39°

Ø16 x 12 95.741 1.284 rad — 73.57°

Carbon fiber
Ø 4 x 3 1.496 0.643 rad — 36.84°

Ø 5 x 3 2.858 0.514 rad — 29.45°

Table 3: Torque and angle of twist for the different material types of the pipe
[24, 33–37]

6.3 Test rig

The setup of the test rig must be established to complete the experiment on Poynting effect.
Numerous concepts and solutions of the test rig was considered during a brainstorming process.
The final concept of the test rig was the composition that fulfilled the criteria of what the test rig
should be dimensioned for:

• Test pipe shall be fixed in one end

• Test pipe shall be exposed for torque

• It shall allow for axial lengthening, or measure axial force

• The tube shall not be exposed to other forces than the torque - meaning no out-of-plane
twisting or deflection

The laboratory at the university has a fastening structure available for use in this experiment.
This structure consist of a load frame and a high-strength steel beam fastened to the frame. The
beam allows for mounting of a coupling to fasten the test specimen, satisfying the criteria that the
specimen should be fixed in one end. The setup of the load frame is illustrated in Figure 6.3.1.
Further, it was necessary to establish and include components concerning the torque application
and support of the test specimen. Section 6.3.4 will include the selection of components and the
final concepts of the test rig is explained in Section 6.3.5.
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Figure 6.3.1: Load frame

6.3.1 Clamping devices

To fasten the test specimen, various clamping mechanism was considered. It is favorable to choose
a fastening that would fit for cylindrical structures. The choice of clamping devices considered
different types of chucks. These mechanisms are great for glass fiber and carbon fiber pipes, as it
would not be necessary to glue or weld the test specimen to the clamping devices to get it fully
clamped. The chucks also allows for easy fastening and change of test specimens.

(a) Lathe chuck

[38]
(b) Drill chuck

[39]

Figure 6.3.2: Chucks

A lathe chuck, illustrated in Figure 6.3.2a, could be used as the clamping devices for the fastening
structure for the test specimen. The represented chuck consist of four separately adjustable jaws.
It is commonly used for clamping of cylindrical and asymmetrical work pieces on turning lathes.
The selected chuck can fasten test specimens with a maximum diameter of 45 mm. [38]

Another clamping method in consideration for this problem included to utilize a drill chuck, as
seen in Figure 6.3.2b. It would be favorable to select a keyless drill chuck for easy fastening and
removal of test specimen. These chucks comes in different design, making them applicable for
various problems. [39]
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Figure 6.3.3: Clamping device
[40]

Figure 6.3.3 represents a possible set-up of the clamping device for a test machine. For this design,
the test specimen would be clamped in both ends. It is applicable for cylindrical test specimens.
This set up also allows for rotation and torque application at the free end of the test specimen.

6.3.2 Torque applicator

There are several methods to apply the torque on the specimen. The setup could include a rod
to be connected to the test specimen as an extension of the test setup. The torque would be
applied on the rod, which by a connection propagates the torsion to the test specimen. It would
be beneficial to be able to apply the torsion gradually. Three suggested torque applications are
included here, a worm drive, a socket wrench and a crank wheel.

The first suggested torque applicator is by use of a worm drive as illustrated in Figure 6.3.4a. The
worm drive consist of a shaft with threads called a worm, and a worm wheel which will be rotated
by rotation of the worm. [41] The rod could be fastened in the hole on the worm wheel. The torque
would be applied by rotating the worm on top of the worm wheel. The size of the worm drive
applicable for this problem is dependent on the rod size, and not the size of the test specimen.
Though, the rod would rather be larger than smaller than the test specimen. A Worm Gear Sets
A65 from Morat with inner diameter 32 mm would be a good choice.

(a) Worm drive (b) Dimensions

Figure 6.3.4: Worm drive
[42]

Another application that could be used for torque application is a socket wrench, often called
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ratchet as illustrated in Figure 6.3.5a. This could be placed at the end of the rod and allows to
twist and release the rod easily. The benefits of a ratchet is the ability for it to be connected to
the rod continuously. There is no need to remove the wrench from the rod and reposition it to
be able to apply the torsion. A ratchet has a various selection of belonging sockets which come
in different sizes. This makes the ratchet a good choice for torsion application as the socket can
be chosen depending on the rod size, and a socket with size of approximately 32 mm could be a
good choice for the current rod. The ratchet would be managed manually. The ratchet allows easy
locking at a given rotation angle.

(a) Ratchet [43] (b) Crank wheel

Figure 6.3.5: Torque applicators

A crank wheel could be a good solution to apply the torque. The gears would allow for gradually
application of the torque, as is common for the two previously discussed suggestions. The rod
could be placed in the inner hole of the crank wheel, and it would be crucial to keep them fully
fastened to avoid slippage when the torque is applied. A chain could be placed around the crank
wheel and be connected to another smaller wheel where the rotation would be conducted. By use
of a smaller wheel, less power is necessary to apply the torsion. It would be beneficial to fasten the
additional wheel on another rod beside the structure, to make sure the chain is horizontal during
the test. The crank wheel solution is illustrated in Figure 6.3.5b.

6.3.3 Measurement

The lengthening and stretch of the test specimen must be measurable. A measure of the change in
length, would lead to a complex setup of test specimen and torque applicator. Considering that the
setup must allow for change in length. To avoid such complexity, the stretch would be considered
as the measured value, and two measuring methods was considered.

A load cell attached to the test specimen could be utilized as a measure equipment. For this fixed-
end torsion problem, a S-type load cell would be the best fit. These types of load cells are mainly
used for measuring tensile forces. The load cell consist of a spring element, that is elastically
deformed under loading and recovers when the load is removed. The deformations or strain is then
picked up by strain gauges that is installed on the spring elements and converts the data into an
electrical output. For this case, the load cell would work as a force transducer, and the results is
displayed in Newton. [44]
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Figure 6.3.6: S-type load cell SN20
[44]

Another method to measure the strain and deformation is to use natural frequency as a measure
method. A eigenfrequency analysis can determine the shape of the current mode. When a structure
is vibrating at a certain frequency, the structure will deform into a corresponding shape, referred
to as eigenmode. [45] The measurement could be conducted by measuring the eigenfrequencies
before and after the applied torque. The change in frequency can determine how much tension the
test specimen is exposed to, as well as the current shape. To measure the frequency a cell phone or
other frequency measure tools could be used when the test specimen is “pluched” or hit to create
a audible sound.

6.3.4 Components

A thrust ball bearing, single direction, is chosen as the connecting component between the test
specimen and torque applicator. It is a critical component, considering it would not allow radial
loading and out-of-plane twisting of test specimen. A thrust ball bearing with single direction is
designed to handle axial load only. A 51106 thrust ball bearing from the SKF catalogue is chosen.
[46] The dimensions and technical specifications of the bearing is displayed in Figure 6.3.7 and
Table 4.

Figure 6.3.7: Thrust ball bearing
[46]
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Dimensions

d 30mm
D 47mm
H 11mm
d1 ≈ 47mm
D1 ≈ 32mm
r1,2 min.0.6mm

Table 4: Dimensions of thrust bearing
[46]

The bearing is designed to accommodate the following loading parameters: [46]

• Dynamic load rating C = 19kN

• Static load rating C0 = 43kN

Considering the dimensions and technical specification of the selected bearing and that the torque
would be applied manually, one can assume that the bearing would be sufficiently dimensioned for
this experiment. Further it was necessary to design and manufacture a bearing case and structure
to couple the bearing to the test specimen and make it applicable to the torque problem.

To ensure the bearing case to stay rigid, a beam of high-steel is attached between the case and
load frame. This would provide fastening of the test specimen and assure that it is not exposed
to other forces than the applied torque. The beam would be fastened to the the load frame with
bolts. It is critical that the test specimen is fastened enough to keep the material in stretch during
testing.

The most ideal torque applicator for this problem is to use the worm drive, described in Sec-
tion 6.3.2. This would allow to stop the rotation during testing, and ensure that it would stay in
the set position. The set-up of the bearing casing and torque applicator is illustrated in Figure 6.3.8.

Figure 6.3.8: Bearing case and torque applicator connected

6.3.5 Concepts

The setup of the test rig could be separated into two main concepts. The difference between the to
concepts is based on which measurement method is used. Common for the concepts is the bottom
part consisting of the torque applicator and the fastening structure as explained in Section 6.3.4.
The test specimen would be clamped in lathe chucks as this allows for easy change and use of
different outer diameters of test specimen, and is consequently the better choice. The upper part
of the test rig would be modified relative to the selected measurement.
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The concept concerning eigenfrequency as measure method would consist of few components. A
steel plate would be fixed to the upper beam and connected to the upper chuck on the clamping
device. This stops the rotation of the specimen. The concept is illustrated in Figure 6.3.9.

Figure 6.3.9: Total set up of test rig using eigenfrequency measurement method

The concept using a load cell to measure the stretch is illustrated in Figure 6.3.10. This concepts
concern a more complex upper part of the test rig. The upper chuck would be connected to a rod
for this concept. It is crucial that the rod should be threaded to be able to connect the load cell
to the rod. An additional beam placed between the upper chuck and the load cell would stop the
rotation of the rod. This is crucial as the load cell do not tolerate rotation or twisting. The middle
beam consist of an opening allowing for the rod to move in axial direction, and two arms connected
to the load frame on each side. This beam does not need to be in a high-strength material because
it is not part of the support structure of the test rig.

The load cell would be connected to the upper beam by an additional rod. This could be fastened
by a cap nut at the top of the beam. This beam represent the support of the test rig in combination
with the lower beam and should be in a high strength material. The cap nut is fastened to apply
stretch in the material of the specimen. Before the experiment can be executed the material is
preloaded to a certain tension, measured by the load cell.
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Figure 6.3.10: Total set up of test rig using load cell measurement method
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7 Numerical Results

This section will include the numerical results obtained from a study on the variation of the SH
strains for triangle element. In addition, the numerical results from the Python FEM solver using
a nonlinear load control. The results from the FEM solver is based on a two-dimensional cantilever
model subjected to shear load, illustrated in Figure 5.4.1. The results will include solutions of the
two element types introduced in Section 3:

1. Traditional strain

2. Assumed Natural Strain (ANS)

7.1 Seth-Hill Family

From the theory in Section 3 for a triangle element using SH, a comparison of the SH strains
were conducted in Python for one element as illustrated in Figure 3.2.1. A relation between the
generalized strains is represented in Figure 7.1.1. The Python code for plotting the strain results is
further explained and represented in Appendix B. The SH over the triangle element were plotted
in a displacement range from −400 to 1000, where Equation (7.1.1) was used as the displacement
of the element.

vT =
[
0.0 0.0 1.0 0.0 0.5 1.0

]
(7.1.1)

Figure 7.1.1: Plot with comparison of Seth-Hill Family strain

Reading from the plot in Figure 7.1.1 an observation is that the Engineering strain, with a measure
index m = 1 represents a linearized strain. The Green strain computes the highest values for strain.
This was predicted considering its measure index m = 2, which is the highest value of the measure
index in the SH. Following the Hencky, Swainger and Almansi strain computes lower values of
strain than the engineering strain respectively, with a measure index of m = 0, m = −1, and
m = −2.
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Figure 7.1.2: Plot with comparison of Seth-Hill family as first derivatives

In Figure 7.1.2 the SH strains are plotted as first derivatives as a function of strain. The first
derivatives of the strain is computed in order to obtain an expression for the tangential stiffness
of the element, by Equation (4.0.1). For this case, the engineering strain is defined by a constant
value of 1. The Green strain represents a linearlized strain. While Hencky, Swainger and Almansi
is visualized by a quadratic equation.

Figure 7.1.3: Plot with comparison of Seth-Hill Family as second derivatives

The relation between the second derivatives of SH strain is represented in Figure 7.1.3. The
second derivatives is necessary to compute as it is a part of the second therm of Equation (3.4.30)
and Equation (3.3.20), building the tangent stiffness matrix, Kt. The second derivative of Biot
and Green corresponds to a constant value of 0 and 1 respectively. While Hencky, Swainger and
Almansi are represented by a quatratic expression.
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7.2 Triangle element

uk

fky

Figure 7.2.1: Triangle element with node displacement

The Poynting effect could be proven through study of a single triangle element. The test was
performed using traditional formulation for Green strain. This was conducted by applying a
displacement at one node, while the others are fixed, illustrated in Figure 7.2.1. The displacement
was added and gradually increased through a given number of iterations. The applied displacement
and topology used for this study is listed below:

1 ex = np.array ([0. ,1. ,0.5])

2 ey = np.array ([0. ,0. ,1.])

3

4 E = 2.1e11

5 nu = 0.3

6

7 C = np.array([

8 [ 1.0, nu, 0.],

9 [ nu , 1.0, 0.],

10 [ 0., 0., (1.0-nu)/2.0]]) * E/(1.0-nu**2)

11

12 dispVecEpsX = np.array ([[0.0] ,[0.0] ,[0.0] ,[0.0] ,[0.1] , [0.0]])

The results of the test is represented in Figure 7.2.2.

Figure 7.2.2: Plot of tension in the element
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7.3 Python FEM solver

This section will include the numerical results obtained by the Python FEM solver in Section 5.
The external force, P, is applied to the nodes of the free end. The force is applied iterative, with
a load factor. The magnitude of the force depends on the choice of material and the maximum
moment of twist calculated in Section 6.2. The material properties for the different materials used
in the test is presented in Table 2. This method allows for a more accurate result and available
results and behaviour of model through each iteration. The results from the FEA will included
displacement and strain data. The tests are completed with different mesh sizes and the following
parameters are used:

• Mesh size factor: 0.3, 0.2, 0, 1

• Material properties of 304 Stainless Steel and Aluminum

• DOF= 2

• Number of steps, nsteps = 10

• Number of iterations, niter = 5

7.3.1 Traditional strain

To obtain the numerical solution using traditional formulation, the tangent stiffness for the actual
SH-strain is used in the main Python FEM solver. A mesh is generated for the geometry using
Gmsh. The mesh-file is selected in the solver. The material properties are inserted for 304 Stain-
less steel, Aluminum and Carbon Fiber in separate runs of the code, collected from Table 2 in
Section 6.1. The applied force for the cantilever is 500N applied in x- and y-direction.

The solution is obtained for different mesh sizes using the same geometry and force. The results
are obtained for the different SH-strain equations and are displayed in Table 5, Table 6 and Table 7
for mesh size 0.3, 0.2 and 0.1 respectively. An illustration of how the displacement and strain result
affect the cantilever is displayed in Figure 7.3.1.

(a) Displacement (b) Strain

Figure 7.3.1: Results for Carbon Fiber using Green strain equation
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Material Seth-Hill Family strain

Green Biot Hencky Swainger Almansi

304 Stainless steel, Fx = Fy = 500N

Strain εx 2.4 0.12 0.14 0.15 0.16

Strain εy 2.4 0.071 0.053 0.0049 0.0040

Strain ε 3.4 0.19 0.24 0.013 0.013

Displacement X 2.9 120 130 140 150

Displacement Y 1700 7800 7800 7800 7900

Displacement 1900 7800 7800 7800 7900

Aluminum, Fx = Fy = 500N

Strain εx 22 0.34 0.34 0.04 0.37

Strain εy 22 0.22 0.22 0.067 0.091

Strain ε 31 0.54 0.54 0.58 0.67

Displacement X 3.4 340 340 510 530

Displacement Y 4500 23000 23000 23000 23000

Displacement 4600 23000 23000 23000 23000

Carbon Fiber, Fx = Fy = 500N

Strain εx 1.6 0.097 0.11 0.12 0.13

Strain εy 1.6 0.058 0.054 0.047 0.038

Strain ε 2.3 0.16 0.18 0.2 0.21

Displacement X 2.6 99 110 110 120

Displacement Y 1500 6500 6500 6500 6600

Displacement 1700 6500 6500 6500 6600

Table 5: Numerical results for traditional strain using mesh size 0.3
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Material Seth-Hill Family strain

Green Biot Hencky Swainger Almansi

304 Stainless steel, Fx = Fy = 500N

Strain εx 1.7 0.13 0.14 0.32 0.16

Strain εy 1.7 0.062 0.058 0.089 0.057

Strain ε 2.5 0.14 0.15 0.41 0.18

Displacement X 2.7 100 110 140 140

Displacement Y 1500 6700 6700 8300 6900

Displacement 1700 6700 6700 8300 6900

Aluminum, Fx = Fy = 500N

Strain εx 1.6 0.37 0.5 0.65 0.43

Strain εy 1.6 0.2 0.16 0.44 0.39

Strain εx 2.2 0.42 0.6 1.5 70

Displacement X 3.9 290 360 540 640

Displacement Y 3900 1900 2000 2100 1800

Displacement 4000 1900 2000 2100 1800

Carbon Fiber, Fx = Fy = 500N

Strain εx 1.2 0.11 0.12 0.24 0.13

Strain εy 1.2 0.05 0.048 0.1 0.06

Strain εx 1.7 0.12 0.13 0.26 0.26

Displacement X 2.6 85 91 150 120

Displacement Y 1400 5600 5600 6300 6200

Displacement 1500 5600 5600 6300 6200

Table 6: Numerical results for traditional strain using mesh size 0.2
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Material Seth-Hill Family strain

Green Biot Hencky Swainger Almansi

304 Stainless steel, Fx = Fy = 500N

Strain εx 0.42 0.075 0.079 0.072 0.092

Strain εy 0.42 0.031 0.029 0.02 0.027

Strain ε 0.6 0.083 0.085 0.077 0.1

Displacement X 2.3 57 60 63 73

Displacement Y 1100 3700 3700 3700 4200

Displacement 1200 3700 3700 3700 4200

Aluminum, Fx = Fy = 500N

Strain εx 4.3 0.21 0.24 2.3 0.45

Strain εy 4.3 0.1 0.081 6.8 0.42

Strain ε 6.1 0.24 0.26 9.6 9700

Displacement X 3.1 150 180 220 2900

Displacement Y 220 1000 1000 10000 11000

Displacement 230 1000 1000 10000 11000

Carbon Fiber, Fx = Fy = 500N

Strain εx 0.26 0.063 0.066 0.051 0.46

Strain εy 0.26 0.025 0.024 0.018 0.34

Strain ε 0.37 0.07 0.071 0.055 11000

Displacement X 2.1 48 51 56 260

Displacement Y 970 3200 3200 3000 3800

Displacement 1100 3200 3200 3000 3900

Table 7: Numerical results for traditional strain using mesh size 0.1

7.3.2 Assumed Natural strain

The test results are obtained by different mesh sizes and materials. The SH strain is solved using
the theory from Section 3.4. The results from the test using different mesh sizes is represented in
Table 8, Table 9 and Table 10.

(a) Displacement (b) Strain

Figure 7.3.2: Results for Stainless Steel using Green strain equation
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Material Seth-Hill Family strain

Green Biot Hencky Swainger Almansi

304 Stainless steel, Fx = Fy = 500N

Strain εx 2.4 0.022 7.8 1 0.64

Strain εy 2.4 0.012 7.2 1.2 0.61

Strain ε 3.4 0.036 9.7 1.5 0.75

Displacement X 2.9 1.8 73000 13000 3.1× 1030

Displacement Y 170 600 280000 38000 3.0× 1038

Displacement 190 630 28000 43000 3.1× 1038

Aluminum, Fx = Fy = 500N

Strain εx 22 0.043 8.9 1.0 0.6

Strain εy 22 0.02 7.7 1.8 0.5

Strain ε 31 0.063 10 1.8 0.71

Displacement X 3.1 2.6 2.3× 105 9.2× 1015 4.7× 10148

Displacement Y 4500 650 4.6× 105 1× 1018 3.7× 10183

Displacement 4600 690 5.1× 105 5.6× 1019 1.9× 10183

Carbon Fiber, Fx = Fy = 500N

Strain εx 1.6 0.02 8.0 1.0 0.61

Strain εy 1.6 0.011 7.7 1.0 0.51

Strain ε 2.3 0.033 10 1.4 0.71

Displacement X 2.6 1.7 6400 1.7× 105 3.4× 1019

Displacement Y 1500 590 23000 5.1× 104 8.3× 1015

Displacement 1700 620 24000 3.4× 105 3.4× 1019

Table 8: Numerical results for assumed natural strain using mesh size 0.3
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Material Seth-Hill Family strain

Green Biot Hencky Swainger Almansi

304 Stainless steel, Fx = Fy = 500N

Strain εx 1.7 0.024 6.0 1.4 0.51

Strain εy 1.7 0.011 6.1 1.0 0.52

Strain ε 2.5 0.027 8.5 1.5 0.71

Displacement X 2.7 1.7 4.2× 104 1.3× 104 5.8× 1018

Displacement Y 1500 590 2.6× 105 4.2× 104 2.6× 1016

Displacement 1700 620 2.7× 105 4.4× 104 7.9× 1018

Aluminum, Fx = Fy = 500N

Strain εx 1.6 0.038 7.9 1.0 0.51

Strain εy 1.6 0.019 6.9 1.0 0.5

Strain ε 2.2 0.047 9.4 1.4 0.71

Displacement X 3.9 2.2 3.6× 104 6.1× 1010 0

Displacement Y 3900 640 5.8× 105 2.7× 1010 5.6× 10153

Displacement 4000 680 5.8× 105 6.1× 1011 6.2× 10153

Carbon Fiber, Fx = Fy = 500N

Strain εx 1.2 0.022 6.5 6.5 0.75

Strain εy 1.2 0.0096 6.7 1.0 0.5

Strain ε 1.7 0.025 9.3 1.4 0.79

Displacement X 2.6 1.7 4.6× 104 1× 104 9.3× 106

Displacement Y 1400 580 2.5× 105 3.2× 104 1× 109

Displacement 1500 610 2.6× 105 3.3× 104 1.1× 109

Table 9: Numerical results for assumed natural strain using mesh size 0.2
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Material Seth-Hill Family strain

Green Biot Hencky Swainger Almansi

304 Stainless steel, Fx = Fy = 500N

Strain εx 0.42 0.02 10 1 0.51

Strain εy 0.42 0.0077 9.2 1 0.59

Strain ε 0.6 0.022 14 27 0.97

Displacement X 2.3 1.5 3.1× 105 1.2× 104 1.2× 10118

Displacement Y 1100 550 5.2× 105 2.9× 104 1.2× 10117

Displacement 1200 580 5.9× 105 3.2× 104 1.1× 10122

Aluminum, Fx = Fy = 500N

Strain εx 4.3 0.034 8.3 1.0 0.68

Strain εy 4.3 0.015 9.4 1.0 0.59

Strain ε 6.1 0.038 12 2.3 0.73

Displacement X 3.1 1.9 1.6× 105 1.2× 1018 3.9× 10101

Displacement Y 2200 620 1.7× 105 1.4× 1018 5.2× 10113

Displacement 2300 650 2.0× 105 1.9× 1018 5.3× 10113

Carbon Fiber, Fx = Fy = 500N

Strain εx 0.25 0.092 9.3 1.0 0.6

Strain εy 0.25 0.0071 9.0 1.1 0.89

Strain ε 0.36 0.0021 13 2.8 1.2

Displacement X 2.1 1.4 4.9× 104 2.8× 109 9.9× 1017

Displacement Y 970 530 1.9× 105 1.3× 109 4.0× 1017

Displacement 1100 560 1.9× 105 3.1× 109 5.7× 1021

Table 10: Numerical results for assumed natural strain using mesh size 0.1

7.3.3 Cantilever

To further study the displacement and strain, a cantilever with different geometry was considered.
This cantilever has same length as the one described in Section 5.1. The height is increased,
resulting in a more robust cantilever. The mesh size 0.3 was used for this model and the meshed
geometry is displayed in Figure 7.3.3.

Figure 7.3.3: Meshed cantilever

The method described in Section 5 is followed for this cantilever. The load is increased to 1000N
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and applied in y-direction. Number of steps and iterations are increased to be able to run the solver
longer to obtain convergence. The strain result for the cantilever using Green strain equation is
displayed in Figure 7.3.4 and plotted in Figure 7.3.5. The numerical results are presented in
Table 11 and Table 12 for traditional and ANS formulation respectively.

Figure 7.3.4: Strain result for cantilever using Green strain

Material Seth-Hill Family strain

Green Biot Hencky Swainger Almansi

304 Stainless steel, F = 1000N

Strain εx 0.012 0.011 0.011 0.011 0.011

Strain εy 0.0048 0.0046 0.0046 0.0046 0.0046

Strain ε 0.013 0.013 0.013 0.013 0.013

Displacement X 5.8 5.8 5.8 5.8 5.8

Displacement Y 40 40 40 40 40

Displacement 40 40 40 40 40

Table 11: Numerical results for traditional strain using for updated cantilever geometry

Material Seth-Hill Family strain

Green Biot Hencky Swainger Almansi

304 Stainless steel, F = 1000N

Strain εx 0.0045 0.0044 0.0044 0.0044 0.0044

Strain εy 0.0055 0.0055 0.0054 0.0054 0.0054

Strain ε 0.0085 0.0086 0.0086 0.0087 0.0087

Displacement X 5.8 5.8 5.8 5.8 5.8

Displacement Y 40 40 40 40 40

Displacement 40 40 40 40 40

Table 12: Numerical results for assumed natural strain using for updated cantilever geometry
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Figure 7.3.5: Plot of strain result for cantilever with load 1000 N
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8 Discussion

The study of the triangle element involved forcing displacement in one node while the remaining
were fixed. By forcing the displacement in a node the element would be deformed into a larger or
shorter element depending on the applied displacement. The change in geometry anticipates the
behavior of the element and result in a measurable tension. The tension is plotted in Figure 7.2.2
and indicate increasing value of the internal force with respect to the displacement of the node.
The measured force is the vertical force in the free node. The result display increase in tension
and proves the Poynting effect to be real.

Prior solving of the numerical method, testing and verification concerning the stiffness matrix of the
SH strains were conducted. The wanted outcome was to obtain identical tangent stiffness matrix
for the element formulations. The verification of stiffness matrix for Green strain was successful,
meaning both traditional and ANS are correctly implemented. The verification concerning the
other SH strains were not achieved and requires further research and implementation. Possible
factors that may have interrupted the results will be discussed additionally. Verification of stiffness
matrix could also be conducted through a closer inspection of iterations concerning the remaining
SH strains.

The displacement result was obtained through the FEM solver and vary for each SH strain. The
number of iterations before convergence is accomplished varies according to the difficulty of the
SH equation. This result in running the solver longer before the wanted strain value is obtained,
subjecting the cantilever to higher displacement. Numerous tests were performed with different
materials and mesh sizes to optimize and get a greater understanding of the results. The result
present a distinctive difference for Aluminum where the values of displacement are extremely high.
This could be explained due to the low Young’s modulus compared to the other materials. The
value difference of the displacement for the SH strains is distinctive in ANS formulation. Almansi
indicate extreme values of displacement in this formulation and is struggling to obtain decent strain
values. In traditional formulation solving Hencky strain cause difficulties, due to the mathematical
aspect of the equation. Logarithm development of matrices should be further investigated.

The strain obtained from the FEM solver resulted in more dissimilarities concerning the traditional
and ANS formulation. Green strain for traditional and ANS formulation achieved identical results,
which demonstrate why it is widely used for geometrically nonlinear FEM. Green appeared to
give the most accurate solution as predicted, and the results signify that this strain equation
was fully developed and successfully implemented for each formulation. The strain depend on
material properties and the results show this variation. They vary according to mesh size, though
not drastically. The strain was generally low for each material with any mesh size. The strain
obtained from the numerical FEM solver show the influence in material properties and how they
affect the results.

The remaining strain equations in the SH family gave more variations between traditional and
ANS formulation. The traditional formulation resulted in similar values for each SH strain, though
with a distinctive difference to the results for Green strain. Similar results would initially be the
wanted outcome of the solver, though the difference to Green strain indicate that the results are
not correct. Accordingly, the structure of these strain equations are deficient. This result was
anticipated as these equations are less used in FEM for nonlinear problems, and is the reason
the ANS formulation was included for this fixed-end problem. Though, the numerical results for
strain using ANS formulation indicate faults in this formulation as well. Hencky strain computes
strain results deviating from the other strain equations, while the remaining SH strain equations
achieves comparable results. These result indicate that an optimization would be necessary for
this formulation.

A study concerning an updated geometry of the cantilever was performed in the FEM solver. This
was conducted to examine how the geometry influenced the strain due to the result for the initial
geometry. The study was completed using Stainless Steel with a bigger width of the cantilever
making the model more resistant. In addition, the applied force was increased and only applied in
one direction, resulting in a shear load. The results show identical displacement for both element
formulations, thus the applied load was not sufficiently high. The load should be additionally
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increased as the updated geometry result in a drastically more resistant model. The strain results
for the cantilever are similar for all equations of SH strain, though deviate between the element
formulations. As the implementation of SH in traditional formulation seem to have weak links,
the results obtained from ANS formulation are more reliable. The strain value increase for the
iterative solution as the plot in Figure 7.3.5 illustrate. The result indicate that the applied load
was too low for this model, thus similar strain values within the SH equations are obtained.

Considering the SH strains could not be implemented correctly, a few disturbances and factors
should be further investigated. For Almansi strain using ANS formulation the constitutive matrix
C must be updated for each iteration. The matrix is dependent on the coordinates and should be
implemented for the deformed geometry. These factors were taken into account and implemented,
though the Almansi strain could still not provide a correct solution. For Green strain, these factors
were not considered as it is dependent on a consistent constitutive matrix. A suggestion for the
remaining SH strains would be a combination of a consistent and updated C-matrix. Further
research should include optimization of the transformations between the natural and Cartesian
coordinates for ANS element.

Concerning the traditional formulation, several factors should be researched. Green strain is as-
sumed to be implemented successfully, though the remaining SH strains need to be further in-
vestigated. The formulated equations require additional mathematical development and several
aspects of matrix operation should be considered. A known deficiency for Hencky strain involve
diagonalization and principal logarithms of matrices.

Due to unpredicted circumstances the experiment could not be conducted, consequently the results
could not be obtained. The main motive for the experiment was to obtain results to compare with
the numerical results, in order to investigate the Poynting effect. In addition, it was desired to
study the strain behaviour for different materials with contrasting material properties while in the
elastic region. Two concepts were presented and the ideal concept would be using the load cell as
measurement tool. The load cell would likely give the most accurate measurements, and be the
most accessible measure device.

Use of the numerical method was valuable for this thesis. By creating a model and generating
a mesh through Gmsh an adequate foundation of the problem was accomplished. Some obsta-
cles occurred regarding the “.msh”-file, as it generated duplicate sets of elements. This may have
interrupted the solved results. The MeshIO function was essential for solving the Python prob-
lem. It operates by collecting the mesh information constructed in Gmsh, and formatting it into
accessible Python objects. This is a critical function for solving the FEA. The nonlinear load con-
trol allows for more accurate results and greater understanding of the behavior. Implementation
of this iterative method proved to be educational and applicable for problems concerning FEM.
Post-processing the results using ParaView appeared to be convenient for the thesis. It allows
for a greater understanding and visualisation of the results. Some complications were met when
formatting the results to the “.vtu”-file. The wanted outcome was to apply the strain results to
the element as cell data. This data format did not allow for post-processing strain results relative
to coordinates. As a result, the strain needed to be applied as point data and additional functions
were established to prevent duplication of node data. The use of MeshIO and ParaView provided
a strong platform for formatting and visualisation of data, and proved to be relevant for the thesis
using FEA.
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9 Conclusion

The study of behavior in the Seth-Hill Family of generalized strain regarding a triangular element
was successfully completed. The implementation included the original SH strains as well as the first
and second derivative of the equations. The results indicate that the SH strains are cases of a more
general strain measure which are optimal for use in strain measurement. Through investigation of
the triangle element, the Poynting effect was achieved.

The results achieved during the numerical approach of the fixed-end problem by use of Python
FEM solver indicated faulty result for the strain. The implementation and testing of Green strain
was successfully carried out. This was an anticipated outcome, as Green is widely used for FEA.
Concerning the remaining equations of SH strain, proceeding examination is necessary to obtain
reliable results.

Traditional and ANS formulation gave varying values for displacement of the cantilever. The
results show that the cantilever would lengthen when subjected to shear load, and imply that the
Poynting effect is achieved by use of SH strain. The study indicate that the Poynting effect is
applicable for several materials.

The experiment could not be executed due to Covid-19 restrictions. Consequently, fundamental
results for strain measure to prove the Poynting effect was not obtained.

9.1 Further work

Further work must be carried out to accomplish more accurate results for the SH strains. This
work consider both FEM solver and experimental work. The current FEM solver allows for elastic
deformation, and expanding it to include plastic deformation would be practical to get a more
comprehensive understanding of the SH strains. A closer inspection of iterations of SH strain
could indicate which generalized strain produces the most accurate result. It would be necessary
to compute a more efficient and advanced testing method. Reconstruction and optimization of the
code is essential to be prioritised.

Additional study on SH strain using traditional and ANS formulation should be accomplished.
These are still considered to be in a experimental phase, and additional research and documentation
is essential. Further work should include expanding the notation and make it applicable for 3D-
problems.

A total arrangement of the test rig must be established and assembled to execute the experiment.
Further research should include development of more advanced testing methods of Poynting effect.
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A Constant Strain Triangle (CST)

x axis

y axis

1(x1, y1) 2(x2, y2)

3(x3, y3)

Figure A.0.1: Constant strain triangle

The local coordinates of a triangle element can be associated as area coordinates, triangular coor-
dinates or by barycentric coordinates. The mathematical aspect is quite favorable and extensively
used in computer algorithms dealing with polygonal geometry elements, such as the finite element
method. [47]

The area at the triangle is given by the cross product of the side edge vector:

2A = e12 × e13 =

[
x2 − x1
y2 − y1

]
×
[
x3 − x1
y3 − y1

]
= (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) (A.0.1)

=


1 (x2y3 − x3y2)

1 (x1y3 − x3y1)

1 (x1y2 − x2y1)

= det

1 x1 y1
1 x2 y2
1 x3 y3

 (A.0.2)

If we let the top point be an internal point (x, y), we have:

2A1 = det

1 x y
1 x2 y2
1 x3 y3

 = (x2y3 − x3y2)︸ ︷︷ ︸
a1

+x (y2 − y3)︸ ︷︷ ︸
b1

+y (x3 − x2)︸ ︷︷ ︸
c1

(A.0.3)

Through cyclic permutation of the nodes we have:

ai = xjyk − xkyj (A.0.4)

bi = yj − yk (A.0.5)

ci = xk − xj (A.0.6)

2Ai = ai + bix+ ciy (A.0.7)
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The area coordinates is given by partial derivatives, ζi = Ai

A . The area coordinate ζi have unit value
at node i and are zero at the line between j − k. The partial derivatives at the area coordinates,
is computed in Equation (A.0.8) and Equation (A.0.9)

∂ζi
∂x

=
bi
2A

=
yj − yk

2A
(A.0.8)

∂ζi
∂y

=
ci
2A

=
xk − xj

2A
(A.0.9)

j k

i

ζi

ζi = 1

ζi ↑

ζi = 0

Ai

Figure A.0.2: Area coordinates of a triangle

The strains can be computed from the area coordinates. The relation is explained in Equa-
tion (A.0.10)

 εxεy
γxy

 =

 u,x
v,y

u,y + v,x

 =
1

2A

b1 0 b2 0 b3 0
0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3



u1
v1
u2
v2
u3
v3

 (A.0.10)

Since the strains over the element will be constant, the computation to get the stiffness matrix of
the element is simple:

ke =

∫
v

BTCB dV = AhBTCB (A.0.11)

In Equation (A.0.11), h is thickness at the element and the constitutive matrix for plane stress is
given by Equation (A.0.12).

C =
E

(1− υ2)

1 υ 0
υ 1 0
0 0 1

2 (1− υ)

 (A.0.12)
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B Code

B.1 Traditional Strain

B.1.1 Function zeta partials x and y

1 def zeta_partials_x_and_y(ex ,ey):

2 """

3 Compute partials of area coordinates with respect to x and y.

4 :param list ex: element x coordinates [x1 , x2 , x3]

5 :param list ey: element y coordinates [y1 , y2 , y3]

6 """

7

8 tmp = np.array ([[1,ex[0],ey[0]],

9 [1,ex[1],ey[1]],

10 [1,ex[2],ey [2]]])

11

12 A2 = np.linalg.det(tmp) # Double of triangle area

13

14 cyclic_ijk = [0,1,2,0,1] # Cyclic permutation of the nodes i,j,k

15

16 zeta_px = np.zeros (3) # Partial derivative with respect to x

17 zeta_py = np.zeros (3) # Partial derivative with respect to y

18

19 for i in range (3):

20 j = cyclic_ijk[i+1]

21 k = cyclic_ijk[i+2]

22 zeta_px[i] = (ey[j] - ey[k]) / A2

23 zeta_py[i] = (ex[k] - ex[j]) / A2

24

25 return zeta_px , zeta_py

Listing 1: Partial derivatives ζi

B.1.2 Function get B matrix linear

1 def get_B_matrix_linear(ex,ey):

2 """

3 Compute the element strain displacement matrix for a triangle element

4 :param list ex: element x coordinates [x1 , x2 , x3]

5 :param list ey: element y coordinates [y1 , y2 , y3]

6 :return mat Be: element strain displacement matrix [3 x 6]

7 """

8 zi_px , zi_py = zeta_partials_x_and_y(ex ,ey)

9

10 Be = np.array([

11 [zi_px[0], 0, zi_px[1], 0, zi_px[2], 0],

12 [ 0, zi_py[0], 0, zi_py[1], 0,zi_py [2]],

13 [zi_py[0], zi_px[0], zi_py [1], zi_px[1], zi_py [2], zi_px [2]]])

14

15 return Be

Listing 2: Element strain displacement matrix Bε

B.1.3 Function get Disp grad

1 def get_Disp_grad(ex,ey):

2 """

3 Compute the Displacement gradient matrix for a triangle element

4

5 :param list ex: element x coordinates [x1 , x2 , x3]

6 :param list ey: element y coordinates [y1 , y2 , y3]

7 :return mat Disp_grad: element strain displacement matrix [4 x 6]

8 """

9

10 zi_px , zi_py = zeta_partials_x_and_y(ex ,ey)

11

12 Disp_grad = np.array([

13 [zi_px[0], 0, zi_px[1], 0, zi_px[2], 0],
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14 [ 0, zi_px[0], 0, zi_px[1], 0, zi_px [2]],

15 [zi_py[0], 0, zi_py[1], 0, zi_py[2], 0],

16 [ 0, zi_py[0], 0, zi_py[1], 0, zi_py [2]]])

17

18 return Disp_grad

Listing 3: Displacement gradient matrix Bgv

B.1.4 Function get Disp grad Vec

1 def getDisp_grad_Vec(ex ,ey,dispVec):

2 """

3 Compute the displacement gradient vector for a triangle element.

4 :param list ex: element x coordinates [x1 , x2 , x3]

5 :param list ey: element y coordinates [y1 , y2 , y3]

6 :return gVec: element strains [epsXX ,epsYY ,gammaXY]

7 """

8 Dispmat = get_Disp_grad(ex,ey)

9 gVec = Dispmat @ dispVec

10 return gVec

Listing 4: Displacement gradient g

B.1.5 Function get StrainVec trad

1 def get_strainVec_trad(ex,ey ,dispVec , m):

2 """ Compute the strain vector for Seth -hill family strain """

3

4 for i in range (3):

5 gVec = get_Disp_grad_Vec(ex ,ey,dispVec)

6 eVec = np.zeros (3)

7 Bmat = get_B_matrix_linear(ex,ey)

8

9 if m ==2: #Green

10 eVec [0] = gVec [0]+ (gVec [0]**2 + gVec [1]**2) /2.0

11 eVec [1] = gVec [3]+ (gVec [3]**2 + gVec [2]**2) /2.0

12 eVec [2] = gVec [1]+ gVec [2] + gVec [0]* gVec [2] + gVec [1]* gVec [3]

13

14 elif m == 1: #Biot

15 eVec = Bmat @ dispVec

16

17 elif m == 0: #Hencky

18 eVec [0] = math.log(1 + gVec [0])

19 eVec [1] = math.log(1 + gVec [3])

20 eVec [2] = math.log(1 + gVec [1] + gVec [2])

21

22 elif m == -1: #Swainger

23 eVec [0] = gVec [0] / (1 + gVec [0])

24 eVec [1] = gVec [3] / (1 + gVec [3])

25 eVec [2] = (gVec [1]+ gVec [2]) / (1 + gVec [1]+ gVec [2])

26

27

28 elif m == -2: #Almansi

29 eVec [0] = ((1 + gVec [0])**-2 - 1) * -1/2

30 eVec [1] = ((1 + gVec [3])**-2 - 1) * -1/2

31 eVec [2] = ((1 + gVec [1]+ gVec [2])**-2 - 1) * -1/2

32

33 return eVec

Listing 5: Seth-Hill strain ε

B.1.6 Function get StrainVec trad FD

1 def get_strainVec_trad_FD(ex ,ey,dispVec , m):

2 """ Compute the strain vector for the first derivative of Seth -hill family

strain """

3

4 for i in range (3):

5 gVec = get_Disp_grad_Vec(ex ,ey,dispVec)

6 eVec = np.zeros (3)
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7

8 if m ==2: #Green

9 eVec [0] = (gVec [0]+ 1) + gVec [1]

10 eVec [1] = (gVec [3]+ 1) + gVec [2]

11 eVec [2] = gVec [2] + (1 + gVec [0]) + (1 + gVec [3]) + gVec [1]

12

13 elif m == 1: #Biot

14 eVec [0] = 1

15 eVec [1] = 1

16 eVec [2] = 1

17

18 elif m == 0: #Hencky

19 eVec [0] = 1 / (1 + gVec [0])

20 eVec [1] = 1 / (1 + gVec [3])

21 eVec [2] = 1 / (1 + gVec [1] + gVec [2])

22

23 elif m == -1: #Swainger

24 eVec [0] = 1 / (1 + gVec [0]) **2

25 eVec [1] = 1 / (1 + gVec [3]) **2

26 eVec [2] = 1 / (1 + gVec [1] + gVec [2]) **2

27

28

29 elif m == -2: #Almansi

30 eVec [0] = ( -2 * (1 + gVec [0])**-3 ) * - 1/2

31 eVec [1] = ( -2 * (1 + gVec [3])**-3 ) * - 1/2

32 eVec [2] = ( -2 * (1 + gVec [1] + gVec [2])**-3 ) * - 1/2

33 return eVec

Listing 6: First derivative of Seth-Hill strain dε

B.1.7 Function get StrainVec trad SD

1 def get_strainVec_trad_SD(ex ,ey,dispVec , m):

2 """ Compute the strain vector for the second derivative of Seth -hill family

strain """

3

4 for i in range (3):

5 gVec = get_Disp_grad_Vec(ex ,ey,dispVec)

6 eVec = np.zeros (3)

7

8 if m ==2: #Green

9 eVec [0] = 2

10 eVec [1] = 2

11 eVec [2] = 4

12

13 elif m == 1: #Biot

14 eVec [0] = 0

15 eVec [1] = 0

16 eVec [2] = 0

17

18 elif m == 0: #Hencky

19 eVec [0] = - 1 / (1 + gVec [0]) **2

20 eVec [1] = - 1 / (1 + gVec [3]) **2

21 #eVec [2] = 4

22 eVec [2] =- 1 / (1 + gVec [1] + gVec [2]) **2

23

24 elif m == -1: #Swainger

25 eVec [0] = - 2 / (1 + gVec [0]) **3

26 eVec [1] = - 2 / (1 + gVec [3]) **3

27 eVec [2] = - 2 / (1 + gVec [1] + gVec [2]) **3

28

29

30 elif m == -2: #Almansi

31 eVec [0] = ( 6 * (1 + gVec [0])**-4 ) * - 1/2

32 eVec [1] = ( 6 * (1 + gVec [3])**-4 ) * - 1/2

33 eVec [2] = ( 6 * (1 + gVec [1] + gVec [2])**-4 ) * - 1/2

34

35 return eVec

Listing 7: Second derivative of Seth-Hill strain d2ε
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B.1.8 Function get B eg matrix trad

1 def get_B_eg_matrix_trad(ex, ey , dispVec , m):

2 """

3 Compute the B_eg matrix for traditional strain.

4 Consist of partial derivative of strain with respect to g

5 """

6 g = np.zeros (4)

7 g = tri3.get_Disp_grad_Vec(ex , ey, dispVec)

8

9 if m == 2:

10 Beg_mat = np.array ([[1 + g[0], g[1], 0, 0],

11 [0, 0, g[2], 1 + g[3]],

12 [g[2], 1 + g[3], 1 + g[0], g[1]]])

13

14 if m == 1:

15 Beg_mat = np.array ([[1, 0, 0, 0],

16 [0, 0, 0, 1],

17 [0, 1, 1, 0]])

18

19 if m == 0:

20 Beg_mat = np.array ([[1/(1+g[0]), 0, 0, 0],

21 [0, 0, 0, 1 / (1+g[3])],

22 [0, 1/(1+g[1]+g[2]) ,1/(1+g[1]+g[2]), 0]])

23

24

25 if m == -1:

26 Beg_mat = np.array ([[ (1 + g[0])**-2, 0,

0, 0],

27 [ 0, 0,

0, (1 + g[3])**-2],

28 [ 0, 1*(1+g[1]+g[2])**-2, 1*(1+g[1]+g[2])

**-2, 0]])

29

30 if m == -2:

31 Beg_mat = np.array ([[(1 + g[0]) ** -3, 0, 0, 0],

32 [0, 0, 0, (1 + g[3]) ** -3],

33 [0, (1 + g[1] + g[2]) ** -3, (1 + g[1] + g[2]) ** -3,

0]])

34

35 Beg = Beg_mat.astype(float)

36

37 return Beg

Listing 8: Bεg matrix

B.1.9 Function get internal force trad

1 def get_internal_force_trad(ex, ey, dispVec , C, m):

2 """ Compute the internal forces for green strain """

3

4 B_gv = tri3.get_Disp_grad(ex ,ey)

5 B_eg = get_B_eg_matrix_trad(ex,ey ,dispVec , m)

6

7 eps = tri3.get_strainVec_trad(ex,ey ,dispVec , m)

8 s = C @ eps

9

10 fe = B_gv.T @ B_eg.T @ s

11 return fe

Listing 9: Internal force fint

B.1.10 Function get material stiffness matrix trad

1 def get_material_stiffness_matrix_trad(ex, ey , dispVec , C, m):

2 """

3 Compute the material stiffness matrix for traditional seth -hill strain , K3

4 """

5 B_gv = tri3.get_Disp_grad(ex ,ey)

6 B_eg = get_B_eg_matrix_trad(ex,ey ,dispVec , m)

7
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8 K3 = B_gv.T @ B_eg.T @ C @ B_eg @ B_gv

9 return K3

Listing 10: Material stiffness matrix K3

B.1.11 Function get S matrix

1 def get_S_matrix(ex , ey, dispVec , C, m):

2 """

3 Compute the S-matrix for green strain.

4 Hver kolonne i s matrisen er et produkt av B_eg.T*s / g

5 """

6

7 eps = tri3.get_strainVec_trad(ex, ey, dispVec , m)

8 g = np.zeros (4)

9 g = tri3.get_Disp_grad_Vec(ex , ey, dispVec)

10

11 s = C @ eps

12 if m == 2:

13 B_eg1 = np.array([

14 [1, 0, 0],

15 [0, 0, 0],

16 [0, 0, 1],

17 [0, 0, 0]])

18

19 B_eg2 = np.array([

20 [0, 0, 0],

21 [1, 0, 0],

22 [0, 0, 0],

23 [0, 0, 1]])

24

25 B_eg3 = np.array([

26 [0, 0, 1],

27 [0, 0, 0],

28 [0, 1, 0],

29 [0, 0, 0]])

30

31 B_eg4 = np.array([

32 [0, 0, 0],

33 [0, 0, 1],

34 [0, 0, 0],

35 [0, 1, 0]])

36

37 if m == 1:

38 B_eg1 = np.array([

39 [0, 0, 0],

40 [0, 0, 0],

41 [0, 0, 0],

42 [0, 0, 0]])

43

44 B_eg2 = np.array([

45 [0, 0, 0],

46 [0, 0, 0],

47 [0, 0, 0],

48 [0, 0, 0]])

49

50 B_eg3 = np.array([

51 [0, 0, 0],

52 [0, 0, 0],

53 [0, 0, 0],

54 [0, 0, 0]])

55

56 B_eg4 = np.array([

57 [0, 0, 0],

58 [0, 0, 0],

59 [0, 0, 0],

60 [0, 0, 0]])

61

62 if m == 0:

63 B_eg1 = np.array([

64 [ -1/(1+g[0])**2, 0, 0],

65 [0, 0, 0],
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66 [0, 0, 0],

67 [0, 0, 0]])

68

69 B_eg2 = np.array([

70 [0, 0, 0],

71 [0, 0, 1/(1+g[1]+g[2])],

72 [0, 0, 0],

73 [0, 0, 0]])

74

75 B_eg3 = np.array([

76 [0, 0, 0],

77 [0, 0, 0],

78 [0, 0, 1/(1+g[1]+g[2])],

79 [0, 0, 0]])

80

81 B_eg4 = np.array([

82 [0, 0, 0],

83 [0, 0, 1],

84 [0, 0, 0],

85 [0,-1/(1+g[3])**2, 0]])

86

87 if m == -1:

88 B_eg1 = np.array([

89 [ -2*(1+g[0])**-3, 0, 0],

90 [0, 0, 0],

91 [0, 0, 0],

92 [0, 0, 0]])

93

94 B_eg2 = np.array([

95 [0, 0, 0],

96 [0, 0, -2*(1+g[1]+g[2])**-3],

97 [0, 0, 0],

98 [0, 0, 0]])

99

100 B_eg3 = np.array([

101 [0, 0, 0],

102 [0, 0, 0],

103 [0, 0, -2*(1+g[1]+g[2])**-3],

104 [0, 0, 0]])

105

106 B_eg4 = np.array([

107 [0, 0, 0],

108 [0, 0, 0],

109 [0, 0, 0],

110 [0, -2*(1+g[3])**-3, 0]])

111

112 if m == -2:

113 B_eg1 = np.array([

114 [-3 * (1+g[0])**-4, 0, 0],

115 [0, 0, 0],

116 [0, 0, 0],

117 [0, 0, 0]])

118

119 B_eg2 = np.array([

120 [0, 0, 0],

121 [0, 0, -3*(1+g[1]+g[2])**-4],

122 [0, 0, 0],

123 [0, 0, 0]])

124

125 B_eg3 = np.array([

126 [0, 0, 0],

127 [0, 0, 0],

128 [0, 0, -3*(1+g[1]+g[2])**-4],

129 [0, 0, 0]])

130

131 B_eg4 = np.array([

132 [0, 0, 0],

133 [0, 0, 0],

134 [0, 0, 0],

135 [0, -3*(1+g[3])**-4, 0]])

136

137 S1 = B_eg1 @ s

138 S2 = B_eg2 @ s
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139 S3 = B_eg3 @ s

140 S4 = B_eg4 @ s

141

142 S = np.array ([[S1[0], S2[0], S3[0], S4[0]],

143 [S1[1], S2[1], S3[1], S4[1]],

144 [S1[2], S2[2], S3[2], S4[2]],

145 [S1[3], S2[3], S3[3], S4 [3]]])

146

147 Smat = S.astype(float)

148 return Smat

Listing 11: S matrix

B.1.12 Function get geometric stiffness matrix trad

1 def get_geometric_stiffness_matrix_trad(ex , ey, dispVec , C, m):

2 """

3 Geometric stiffness matrix for traditional strain

4 """

5 B_gv = tri3.get_Disp_grad(ex ,ey)

6 S = get_S_matrix(ex ,ey,dispVec , C, m)

7

8 K2 = B_gv.T @ S @ B_gv

9 return K2

Listing 12: Geometric stiffness matrix K2

B.2 Assumed Natural strain

B.2.1 Function get length initial

1 def get_length_initial(ex, ey, dispVec):

2 """ Compute the intitial length of the ANS element """

3 L0 = np.zeros (3)

4

5 L0i = math.sqrt((ex[1]-ex[0]) **2 + (ey[1]-ey[0]) **2)

6 L0j = math.sqrt((ex[2]-ex[1]) **2 + (ey[2]-ey[1]) **2)

7 L0k = math.sqrt((ex[0]-ex[2]) **2 + (ey[0]-ey[2]) **2)

8

9 L0[0] = L0i

10 L0[1] = L0j

11 L0[2] = L0k

12

13 return L0

Listing 13: Initial length for bar L0

B.2.2 Function get length deformed

1 def get_length_deformed(ex, ey, dispVec):

2 """ Compute the deformed length of the ANS element """

3 L = np.zeros (3)

4

5 Li = math.sqrt( ((ex[1]-ex[0]) + (dispVec [2]- dispVec [0]))**2 + ((ey[1]-ey[0])

+ (dispVec [3]- dispVec [1]))**2)

6 Lj = math.sqrt( ((ex[2]-ex[1]) + (dispVec [4]- dispVec [2]))**2 + ((ey[2]-ey[1])

+ (dispVec [5]- dispVec [3]))**2)

7 Lk = math.sqrt( ((ex[0]-ex[2]) + (dispVec [0]- dispVec [4]))**2 + ((ey[0]-ey[2])

+ (dispVec [1]- dispVec [5]))**2)

8

9 L[0] = Li

10 L[1] = Lj

11 L[2] = Lk

12

13 return L

Listing 14: Deformed length for bar L

B.2.3 Function get Triangle element transformation matrix
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1 def get_Triangle_element_transformation_matrix(ex, ey, dispVec):

2 """ Compute the Transformation matrix for triangle element """

3 L0 = get_length_initial(ex, ey , dispVec)

4

5 Ci = (ex[1] - ex[0])/L0[0]

6 Si = (ey[1] - ey[0])/L0[0]

7 Cj = (ex[2] - ex[1])/L0[1]

8 Sj = (ey[2] - ey[1])/L0[1]

9 Ck = (ex[0] - ex[2])/L0[2]

10 Sk = (ey[0] - ey[2])/L0[2]

11

12 T_nc = np.array ([ [ Ci**2, Si**2, Ci*Si],

13 [ Cj**2, Sj**2, Cj*Sj],

14 [ Ck**2, Sk**2, Ck*Sk] ])

15 return T_nc

Listing 15: Transformation matrix between Cartesian and Natural strain Tnc

B.2.4 Function get Triangle element transformation matrix deformed

1 def get_Triangle_element_transformation_matrix_deformed(ex, ey, dispVec):

2 """ Compute the Transformation matrix for triangle element , with deformed length

"""

3 L = get_length_deformed(ex, ey, dispVec)

4

5 Ci = float(( ex[1] + dispVec [2] - ex[0] - dispVec [0] ) / L[0])

6 Si = float(( ey[1] + dispVec [3] - ey[0] - dispVec [1] ) / L[0])

7 Cj = float(( ex[2] + dispVec [4] - ex[1] - dispVec [2] ) / L[1])

8 Sj = float(( ey[2] + dispVec [5] - ey[1] - dispVec [3] ) / L[1])

9 Ck = float(( ex[0] + dispVec [0] - ex[2] - dispVec [4] ) / L[2])

10 Sk = float(( ey[0] + dispVec [1] - ey[2] - dispVec [5] ) / L[2])

11

12 T_nc = np.array ([ [ Ci**2, Si**2, Ci*Si],

13 [ Cj**2, Sj**2, Cj*Sj],

14 [ Ck**2, Sk**2, Ck*Sk] ])

15 return T_nc

Listing 16: Transformation matrix between Cartesian and Natural strain with deformed length
Tnc

B.2.5 Function get Triangle element lambda vector

1 def get_Triangle_element_lambda_vector(ex, ey , dispVec):

2 """ Compute the lambda vector for ANS element """

3 Lambda = np.zeros (3)

4 L0 = get_length_initial(ex , ey , dispVec)

5 L = get_length_deformed(ex , ey, dispVec)

6

7 for i in range (3):

8 Lambda[i] = L[i] / L0[i]

9 i += 1

10 return Lambda

Listing 17: Principal stretch for bar λi

B.2.6 Function get NaturalCoordinates strain

1 def get_NaturalCoordinates_strain(ex, ey , dispVec , m):

2 """ Calculate the Seth -Hill Natural Coordinate strains for ANS element """

3 e_n = np.zeros (3)

4

5 for i in range (3):

6 Lambda = get_Triangle_element_lambda_vector(ex, ey , dispVec)

7

8 if m == 2: #Green

9 e_n[i] = 1/2 * (Lambda[i]**2 - 1)

10 i += 1

11

12 elif m == 1: #Biot

13 e_n[i] = Lambda[i] - 1
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14 i += 1

15

16 elif m == 0: #Hencky

17 e_n[i] = math.log(Lambda[i])

18 i += 1

19

20 elif m == -1: #Swainger

21 e_n[i] = 1 - 1/ Lambda[i]

22 i += 1

23

24 elif m == -2: #Almansi

25 e_n[i] = (1 - (1/ Lambda[i]**2))*1/2

26 i += 1

27 return e_n

Listing 18: Natural Coordinate Seth-Hill strain εn

B.2.7 Function get NaturalCoordinates strain FD

1 def get_NaturalCoordinates_strain_FD(ex, ey, dispVec , m):

2 """ Calculate the first derivative of Natural Coordinate strains for ANS element

"""

3 e_n = np.zeros (3)

4

5 for i in range (3):

6 L0 = get_length_initial(ex , ey , dispVec)

7 L = get_length_deformed(ex , ey, dispVec)

8

9 if m == 2: #Green

10 e_n[i] = L[i] / L0[i]**2

11 i += 1

12

13 elif m == 1: #Biot

14 e_n[i] = 1 / L0[i]

15 i += 1

16

17 elif m == 0: #Hencky

18 e_n[i] = 1 / L[i]

19 i += 1

20

21 elif m == -1: #Swainger

22 e_n[i] = L0[i] / L[i]**2

23 i += 1

24

25 elif m == -2: #Almansi

26 e_n[i] = L0[i]**2 / L[i]**3

27 i += 1

28 return e_n

Listing 19: First derivative of Natural Coordinate Seth-Hill strain dεn

B.2.8 Function get NaturalCoordinates strain SD

1 def get_NaturalCoordinates_strain_SD(ex, ey, dispVec , m):

2 """ Calculate the second derivative of Natural Coordinate strains for ANS

element """

3 e_n = np.zeros (3)

4

5 for i in range (3):

6 L0 = get_length_initial(ex , ey , dispVec)

7 L = get_length_deformed(ex , ey, dispVec)

8

9 if m == 2: #Green

10 e_n[i] = 1 / L0[i]**2

11 i += 1

12

13 elif m == 1: #Biot

14 e_n[i] = 0

15 i += 1

16

17 elif m == 0: #Hencky
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18 e_n[i] = - 1 / L[i]**2

19 i += 1

20

21 elif m == -1: #Swainger

22 e_n[i] = -2 * L0[i] / L[i]**3

23 i += 1

24

25 elif m == -2: #Almansi

26 e_n[i] = -3 * L0[i]**2 / L[i]**4

27 i += 1

28 return e_n

Listing 20: Second derivative of Natural Coordinate Seth-Hill strain d2εn

B.2.9 Function get CartesianCoordinates strain

1 def get_CartesianCoordinates_strain(ex , ey, dispVec , m, n):

2 """ Calculate the Seth -Hill Cartesian Coordinate strains for ANS element """

3 e_c = np.zeros (3)

4

5 for i in range (3):

6 if n == 0: #Natural coordinate strain

7 e_n = get_NaturalCoordinates_strain(ex , ey, dispVec , m)

8 if n == 1: #First derivative of natural coordinate strain

9 e_n = get_NaturalCoordinates_strain_FD(ex, ey , dispVec , m)

10 if n == 2: #Second derivative of natural coordinate strain

11 e_n = get_NaturalCoordinates_strain_SD(ex, ey , dispVec , m)

12

13 T_nc = get_Triangle_element_transformation_matrix(ex, ey, dispVec)

14 T_cn = np.linalg.inv(T_nc)

15 e_c = T_cn @ e_n

16 return e_c

Listing 21: Cartesian Coordinate Seth-Hill strain εc

B.2.10 Function get B lv matrix

1 def get_B_lv_matrix(ex,ey, dispVec):

2 """ Compute the B_lv matrix , consisting of unit vectors along side edge lengths

"""

3 L = bar.get_length_deformed(ex, ey, dispVec)

4

5 e1x = float (( ex[1] + dispVec [2] - ex[0] - dispVec [0] ) / L[0])

6 e1y = float (( ey[1] + dispVec [3] - ey[0] - dispVec [1] ) / L[0])

7 e2x = float (( ex[2] + dispVec [4] - ex[1] - dispVec [2] ) / L[1])

8 e2y = float (( ey[2] + dispVec [5] - ey[1] - dispVec [3] ) / L[1])

9 e3x = float (( ex[0] + dispVec [0] - ex[2] - dispVec [4] ) / L[2])

10 e3y = float (( ey[0] + dispVec [1] - ey[2] - dispVec [5] ) / L[2])

11

12 B_lv = np.array ([[ -e1x , -e1y , e1x , e1y , 0, 0 ],

13 [ 0, 0, -e2x , -e2y , e2x , e2y ],

14 [ e3x , e3y , 0, 0, -e3x , -e3y ] ])

15 return B_lv

Listing 22: Blv matrix

B.2.11 Function get B el matrix

1 def get_B_el_matrix(ex,ey, dispVec , m):

2 """ B_el matrix consisting of partial derivative of natural strain with respect

to length """

3 e_n = bar.get_NaturalCoordinates_strain_FD(ex, ey, dispVec , m)

4

5 B_el = np.array ([ [e_n[0], 0, 0 ],

6 [ 0, e_n[1], 0 ],

7 [ 0, 0, e_n [2]] ])

8 return B_el

Listing 23: Bεl matrix
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B.2.12 Function get interal force ANS

1 def get_internal_force_ANS(ex,ey , dispVec , C, m):

2 """ Compute the Internal Force vector for ANS element """

3 B_lv = get_B_lv_matrix(ex ,ey, dispVec)

4 B_el = get_B_el_matrix(ex ,ey, dispVec , m)

5

6 eps_n = bar.get_NaturalCoordinates_strain(ex , ey , dispVec , m)

7 #Transformation between Cartesian and Natural strain

8 if m == -2:

9 T_nc = bar.get_Triangle_element_transformation_matrix_deformed(ex , ey,

dispVec)

10 T_cn = np.linalg.inv(T_nc)

11 else:

12 T_nc = bar.get_Triangle_element_transformation_matrix(ex , ey, dispVec)

13 T_cn = np.linalg.inv(T_nc)

14 C_n = T_cn.T @ C @ T_cn

15 s_n = C_n @ eps_n

16

17 f_int = B_lv.T @ B_el.T @ s_n

18 return f_int

Listing 24: Internal force vector fint

B.2.13 Function get material stiffness ANS K3

1 def get_material_stiffness_ANS_K3(ex,ey, dispVec , C, m):

2 """ Compute the Material Stiffness Matrix , K3 for ANS element """

3

4 B_lv = get_B_lv_matrix(ex,ey , dispVec)

5 B_el = get_B_el_matrix(ex,ey , dispVec , m)

6

7 #Transformation between cartesian and natural strain

8 if m ==-2:

9 T_nc = bar.get_Triangle_element_transformation_matrix_deformed(ex , ey,

dispVec)

10 T_cn = np.linalg.inv(T_nc)

11

12 else:

13 T_nc = bar.get_Triangle_element_transformation_matrix(ex , ey, dispVec)

14 T_cn = np.linalg.inv(T_nc)

15

16 C_n = T_cn.T @ C @ T_cn

17

18 Km3 = B_lv.T @ B_el.T @ C_n @ B_el @ B_lv

19 return Km3

Listing 25: Material stiffness matrix K3

B.2.14 Function get B eLL s matrix

1 def get_B_eLL_s_matrix(ex,ey , C, dispVec , m):

2 """ Compute the B_[ell * s] matrix for ANS"""

3 eps_n = bar.get_NaturalCoordinates_strain(ex , ey , dispVec , m)

4

5 #Transformation between Cartesian and Natural strain

6 if m ==-2:

7 T_nc = bar.get_Triangle_element_transformation_matrix_deformed(ex , ey,

dispVec)

8 T_cn = np.linalg.inv(T_nc)

9 else:

10 T_nc = bar.get_Triangle_element_transformation_matrix(ex , ey, dispVec)

11 T_cn = np.linalg.inv(T_nc)

12

13 C_n = T_cn.T @ C @ T_cn

14 s_n = C_n @ eps_n

15

16 #second derivatives of Natural green strain

17 e_n = bar.get_NaturalCoordinates_strain_SD(ex , ey, dispVec , m)

18

19 B_ells = np.array ([[e_n [0]* s_n[0], 0, 0 ],
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20 [ 0, e_n [1]* s_n[1], 0 ],

21 [ 0, 0, e_n [2]* s_n[2] ] ])

22 return B_ells

Listing 26: B[εlls] matrix

B.2.15 Function get geometric stiffness ANS K2

1 def get_geometric_stiffness_ANS_K2(ex ,ey, dispVec , C, m):

2 """ Compute the Geometric Dtiffness matrix , K2 for ANS """

3 B_lv = get_B_lv_matrix(ex,ey , dispVec)

4 B_eLLs = get_B_eLL_s_matrix(ex,ey , C, dispVec , m)

5

6 Kg2 = B_lv.T @ B_eLLs @ B_lv

7 return Kg2

Listing 27: Geometric stiffness matrix K2

B.2.16 Function get B k matrix

1 def get_B_k_matrix(ex,ey ,dispVec):

2 """ Get the B_k matrix , consisting of inward normal vectors """

3

4 L = bar.get_length_deformed(ex, ey, dispVec)

5 nx1 = float(( ex[1] + dispVec [2] - ex[0] - dispVec [0] ) / L[0])

6 ny1 = float(( ey[1] + dispVec [3] - ey[0] - dispVec [1] ) / L[0])

7 nx2 = float(( ex[2] + dispVec [4] - ex[1] - dispVec [2] ) / L[1])

8 ny2 = float(( ey[2] + dispVec [5] - ey[1] - dispVec [3] ) / L[1])

9 nx3 = float(( ex[0] + dispVec [0] - ex[2] - dispVec [4] ) / L[2])

10 ny3 = float(( ey[0] + dispVec [1] - ey[2] - dispVec [5] ) / L[2])

11

12 B_k = np.array ([ [ ny1 , -nx1 , -ny1 , nx1 , 0, 0 ],

13 [ 0, 0, ny2 , -nx2 , -ny2 , nx2 ],

14 [ -ny3 , nx3 , 0, 0, ny3 , -nx3 ] ])

15

16 return B_k

Listing 28: Bk matrix

B.2.17 Function get geometric stiffness ANS K1

1 def get_geometric_stiffness_ANS_K1(ex ,ey, dispVec , C, m):

2 """ Compute the geometric stiffness matrix K1 for ANS -element """

3

4 L = bar.get_length_deformed(ex, ey, dispVec)

5 B_el = get_B_el_matrix(ex,ey , dispVec , m)

6 B_k = get_B_k_matrix(ex,ey,dispVec)

7 eps_n = bar.get_NaturalCoordinates_strain(ex , ey , dispVec , m)

8

9 #Transformation between cartesian and natural strain

10 if m ==-2:

11 T_cn = bar.get_Triangle_element_transformation_matrix_almansi(ex , ey ,

dispVec)

12 T_nc = np.linalg.inv(T_cn)

13 else:

14 T_cn = bar.get_Triangle_element_transformation_matrix(ex, ey, dispVec)

15 T_nc = np.linalg.inv(T_cn)

16

17 C_n = T_nc.T @ C @ T_nc

18 s_n = C_n @ eps_n

19

20 SHN = B_el.T @ s_n

21 S_hn = np.array ([ [SHN [0]/L[0], 0, 0 ],

22 [ 0, SHN [1]/L[1], 0 ],

23 [ 0, 0, SHN [2]/L[2] ] ])

24

25 Kg1 = B_k.T @ S_hn @ B_k

26 return Kg1

Listing 29: Geometric stiffness matrix K1
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B.2.18 Function get tangent stiffness ANS

1 def get_tangent_stiffness_ANS(ex ,ey, dispVec , C, m):

2 """ Compute the tanget stiffness matrix for ANS element """

3 Kg1 = get_geometric_stiffness_ANS_K1(ex,ey, dispVec , C, m)

4 Kg2 = get_geometric_stiffness_ANS_K2(ex,ey, dispVec , C, m)

5 Km3 = get_material_stiffness_ANS_K3(ex,ey , dispVec , C, m)

6

7 Kt = Kg1 + Kg2 + Km3

8 return Kt

Listing 30: Tangent stiffness matrix Kt

B.3 Numerical generated stiffness matrix

B.3.1 Function test internal force trad

1 def test_internal_force_trad(ex,ey, dispVec , C, m):

2 delta = 1.0e-6

3 K = np.zeros ((6,6))

4 disp_add = np.zeros (6)

5 disp_sub = np.zeros (6)

6

7 for i in range(len(dispVec)):

8 disp_add = copy.deepcopy(dispVec)

9 disp_add[i] = disp_add[i] + delta

10

11 disp_sub = copy.deepcopy(dispVec)

12 disp_sub[i] = disp_sub[i] - delta

13

14 f_add = tan3.get_internal_force_trad(ex, ey , disp_add , C, m)

15 f_sub = tan3.get_internal_force_trad(ex, ey , disp_sub , C, m)

16

17 for j in range(len(f_add)):

18 K[j,i] = ( f_add[j] - f_sub[j] ) / ( 2 * delta )

19 return K

Listing 31: Test of internal force vector for traditional strain

B.3.2 Function test internal force ANS

1 def test_internal_force_ANS(ex,ey , dispVec , C, m):

2 delta = 1.0e-6

3 K = np.zeros ((6,6))

4 disp_add = np.zeros (6)

5 disp_sub = np.zeros (6)

6

7 for i in range(len(dispVec)):

8 disp_add = copy.deepcopy(dispVec)

9 disp_add[i] = disp_add[i] + delta

10

11 disp_sub = copy.deepcopy(dispVec)

12 disp_sub[i] = disp_sub[i] - delta

13

14 f_add = tanBar.get_internal_force_ANS(ex , ey, disp_add , C, m)

15 f_sub = tanBar.get_internal_force_ANS(ex , ey, disp_sub , C, m)

16

17 for j in range(len(f_add)):

18 K[j,i] = ( f_add[j] - f_sub[j] ) / ( 2 * delta )

19 return K

Listing 32: Test of internal force vector for assumed natural strain

B.4 Python solver

B.4.1 Function assemble k
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1 def assemble_k(mesh , setname , elemtype , emat , dispVec):

2 '''
3 Assembles system stiffness matrix K_sys in dense form for given mesh with

defined domain -set

4

5 :param mesh: MeshIO object generated from .msh file

6 :param setname: string , setname of the domain as defined in Gmsh e.g. 'domain '
7 :param elemtype:integer , 0 for CSTh element , 1 for ANDES

8 :param emat: tuple , (E-modulus , Poisson)

9 :return: np.array (dofs , dofs), dense -matrix of the system stiffness

10 '''
11 ndofs_per_node = 2

12 num_dof = mesh.points.shape [0] * ndofs_per_node

13 elements = util.extract_set(mesh=mesh , setname=setname , connectivity=True)

14

15 k_sys = np.zeros((num_dof , num_dof))

16

17 for indx in range(elements.shape [0]):

18 ex, ey = extract_element_coords(mesh=mesh , elements=elements , indx=indx)

19 dof_indx = extract_dof_indx(elements=elements , indx=indx)

20

21 disp_element = dispvec[np.ix_(dof_indx)]

22 if elemtype == 0:

23 kt = tan.get_tangent_Stiffness_matrix_green(ex , ey, disp_element , C =

const.C_glob(emat[0], emat [1]))

24 elif elemtype == 1:

25 kt = bar.get_tangent_stiffness_ANS_green(ex,ey , disp_element , C = const

.C_glob(emat[0], emat [1]))

26 k_sys[np.ix_(dof_indx , dof_indx)] += kt

27

28 return k_sys

29

30 return k_sys

Listing 33: Assembling of stiffness matrix

B.4.2 Function add load

1 def add_load(mesh , setname , load_vec , load_magnitude , dof):

2 '''
3 Add load to an existing load_vector by lumping uniformly over given set of

nodes

4

5 :param mesh: MeshIO object of mesh generated by Gmsh

6 :param setname: string , name of the load set as defined in Gmsh e.g. '
freeEnd '

7 :param load_vec: np.array (dofs ,), existing load vector

8 :param load_magnitude: float , total load to be distributed among nodes in set

9 :param dof: integer , load direction

10 :return: np.array (dofs ,), new load vector

11 '''
12 ndofs_per_node = 2

13 nodes = extract_set(setname=setname , mesh=mesh , connectivity=False)

14 nodal_load = load_magnitude / nodes.__len__ ()

15 for node in nodes:

16 indx = int((node * ndofs_per_node) + dof)

17 load_vec[indx] += nodal_load

18

19 return load_vec

Listing 34: Load added to an existing load vector

B.4.3 Function extract set

1 def extract_set(mesh , setname , connectivity=True):

2 '''
3 Returns element connectivity array of given set

4 Array data = node IDs

5 If connectivity = False , returns list of node IDs stripped of duplicates

6

7 :param mesh: MeshIO object generated from .msh file
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8 :param setname: string , setname as defined in Gmsh e.g. 'domain '
9 :param connectivity: boolean , if True gives connectivity array

10 :return: np.array or list , nodal IDs in given set

11 '''
12

13 loc = None

14

15 for i in range(len(mesh.cell_sets[setname ])):

16 if mesh.cell_sets[setname ][i].size:

17 loc = i

18 print('Found cells (elements) with setname =', setname , 'at location ',
loc)

19

20 if loc is not None:

21 if connectivity:

22 return mesh.cells[loc].data

23 else:

24 return list(set(mesh.cells[loc].data.flatten ()))

25 else:

26 print('Found no cells (elements) with setname =', setname)

27 raise LookupError

Listing 35: Extract sets from the mesh file

B.4.4 Function set fixed dofs

1 def set_fixed_dofs(mesh , setname , k_sys , rhs , dofs=(0, 1, 2, 3, 4, 5)):

2 '''
3 Sets constrains in dense matrix of K_sys

4

5 :param mesh: MeshIO object of mesh generated by Gmsh

6 :param setname: string , name of the constraint set as defined in Gmsh e.g. '
fixedEnd '

7 :param k_sys: np.array (dofs , dofs)

8 :param dofs: tuple , components to be contrained for all nodes in set

9 :return: np.array (dofs , dofs), constrained system striffness matrix

K_sys

10 '''
11 ndofs_per_node = 2

12 nodes = extract_set(setname=setname , mesh=mesh , connectivity=False)

13 for node in nodes:

14 for dof in dofs:

15 indx = int((node * ndofs_per_node) + dof)

16 k_sys[indx , :] = 0.0

17 k_sys[:, indx] = 0.0

18 k_sys[indx , indx] = 1.0

19 rhs[indx] = 0.0

20

21 return k_sys

Listing 36: Set fixed dofs for the model

B.4.5 Function extract element coords

1 def extract_element_coords(mesh , elements , indx):

2 '''
3 Retrives the element coordinates in form np.array (3,) as used by other

functions

4

5 :param mesh: MeshIO object of mesh generated by Gmsh

6 :param elements: np.array(n, 3), connectivity array of elements

7 :param indx: integer , which element in the connectivity array to return

the coordinates of

8 :return: tuple (np.array (3,), np.array (3,), element global

coordinates

9 '''
10 elem = elements[indx]

11 i, j, k = elem[0], elem[1], elem [2]

12 ecoords = np.array([mesh.points[i], mesh.points[j], mesh.points[k]])

13 ex = ecoords [0:, 0]

14 ey = ecoords [0:, 1]
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15

16 return ex, ey

Listing 37: Extracts element coordinates from mesh

B.4.6 Function extract nodal coords

1 def extract_nodal_coords(mesh , nodeID):

2 '''
3 Helper function to extract nodal coordinates given a mesh and a nodeID

4

5 :param mesh: MeshIO object of mesh generated by Gmsh

6 :param nodeID: integer , node to retrieve

7 :return: tuple (x,y,z), global coordinates

8 '''
9 ncoords = mesh.points[nodeID]

10 x = ncoords [0]

11 y = ncoords [1]

12 z = ncoords [2]

13

14 return x, y, z

Listing 38: Extracts nodal coordinates from mesh

B.4.7 Function extract dof indx

1 def extract_dof_indx(elements , indx):

2 '''
3 Helper function to extract the global dof indexes given an element connectivity

array

4

5 :param elements: np.array(n, 4), connectivity array of elements

6 :param indx: integer , which element in the connectivity array to return

the global dof indexes of

7 :return: integer (6,) [ix,iy ,jx,jy,kx,ky]

8 '''
9 elem = elements[indx]

10 i, j, k = elem[0], elem[1], elem [2]

11

12 dof_indx = np.array([

13 i * 2, i * 2 + 1,

14 j * 2, j * 2 + 1,

15 k * 2, k * 2 + 1 ])

16

17 return dof_indx

Listing 39: Extracts index of the degree of freedom

B.5 Plot for Seth-Hill strain

B.5.1 Topology

1 ex = np.array ([0. ,1. ,0.5])

2 ey = np.array ([0. ,0. ,1.])

3

4 th = 0.1

5 ep = [1,th]

6

7 E = 2.1e11

8 nu = 0.3

9

10 D = np.array([

11 [ 1.0, nu, 0.],

12 [ nu , 1.0, 0.],

13 [ 0., 0., (1.0-nu)/2.0]]) * E/(1.0-nu**2)

14

15

16 dispVecEpsX = np.array ([[0.0] ,[0.0] ,[0.1] ,[0.0] ,[0.5] ,[0.0]])

17 dispVecEpsY = np.array ([[0.0] ,[0.0] ,[0.0] ,[0.0] ,[0.0] ,[0.1]])
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18 dispVecGammaXY = np.array ([[0.0] ,[0.0] ,[0.0] ,[0.0] ,[0.1] ,[0.0]])

Listing 40: node and displacement coordinates

B.5.2 Strain comparison plot

1 dispList = []

2 eps_greenList = []

3 eps_engList = []

4 eps_henckyList = []

5 eps_swaingerList = []

6 eps_almansiList = []

7

8 for i in range ( -400 ,1000):

9

10 dispX = i * dispVecEpsX * 0.001

11

12 green_eps = tri3.get_GreenStrainVec(ex ,ey,dispX)

13 eps = tri3.getStrainVec_linear(ex ,ey,dispX)

14 hencky_eps = tri3.get_HenckyStrain(ex,ey ,dispX)

15 swainger_eps = tri3.get_SwaingerStrain(ex,ey,dispX)

16 almansi_eps = tri3.get_AlmansiStrain(ex,ey,dispX)

17

18 eps_greenList.append(green_eps [0])

19 eps_engList.append(eps [0])

20 eps_henckyList.append(hencky_eps [0])

21 eps_swaingerList.append(swainger_eps [0])

22 eps_almansiList.append(almansi_eps [0])

23

24 dispList.append(i*0.001)

25

26 plt.figure(figsize =(20 ,10))

27 plt.plot(dispList , eps_engList ,color= 'orange ',linestyle= '-',label=r'Natural
strain ')

28 plt.plot(dispList , eps_greenList , color= 'green ',linestyle= '-',label=r'Green
strain ')

29 plt.plot(dispList , eps_biotList ,color= 'red',linestyle= '-',label=r'Biot strain ')
30 plt.plot(dispList , eps_henckyList ,color= 'black ',linestyle= '-',label=r'Hencky

strain ')
31 plt.plot(dispList , eps_swaingerList ,color= 'blue',linestyle= '-',label=r'Swainger

strain ')
32 plt.plot(dispList , eps_almansiList , color= 'pink',linestyle= '-',label=r'Almansi

strain ')
33

34 plt.title('Seth -Hill strain ')
35 plt.xlabel('\lambda = L/L0', fontsize =10)

36 plt.grid(True)

37 plt.axhline(y=0, color='black ')
38 plt.axvline(x=0, color='black ')
39 plt.ylabel('Strain ', fontsize =10)

40 plt.legend ()

41 plt.show()

Listing 41: Set up plot for strain
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