
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

ge
ni

ør
vi

te
ns

ka
p

In
st

itu
tt

 fo
r m

as
ki

nt
ek

ni
kk

 o
g

pr
od

uk
sj

on

Morten Melby Dahl

Expanding the ROS2 communication
architecture.

Data bridging by utilization of network sockets.

Masteroppgave i Produktutvikling og Produksjon
Veileder: Lars Tingelstad

Juni 2021M
as
te
ro
pp

ga
ve

Morten Melby Dahl

Expanding the ROS2 communication
architecture.

Data bridging by utilization of network sockets.

Masteroppgave i Produktutvikling og Produksjon
Veileder: Lars Tingelstad
Juni 2021

Norges teknisk-naturvitenskapelige universitet
Fakultet for ingeniørvitenskap
Institutt for maskinteknikk og produksjon

Preface

This thesis completes my master’s degree in Mechanical Engineering at the Nor-
wegian University of Science and Technology.

Having completed a pre-project that involved implementing a mobile KUKA KMR
iiwa robot with the Robotic Operating System (ROS2), the theme of multi-robot
control became a subject of interest. During research on implementing robotic
fleets in ROS2, a discussion on this exact topic was found with no solution. Do-
ing further research, it appeared that solving the issues that allowed for robotic
fleet control in ROS2 would also open up for layering communication, enabling
the development of robotic fleet control and control system architectures that
correspond to commonly used Distributed Control Systems.

The writing in this thesis assumes the reader possesses basic knowledge of robotics,
programming, and computer networking. It is also advantageous to have knowl-
edge about the robotic operating system ROS2.

Summary

The thesis investigates how the robotic operating system, ROS2, can be used
as a factory-wide communication architecture and development platform by in-
cluding the ability to separate different communication channels utilizing built-in
features and socket programming. To do this, a stack named ros2_socket_bridge
is developed using the combination of socket and ROS2 programming.

It is desired to have the program be scenario-independent and work for any task
that the user desires. This includes the ability to process real-time data with
minimal delay. In addition, the ability to connect devices using Bluetooth adds
to the overall usability.

After a working prototype was developed, improvements were implemented to
make the stack usable for large-scale information layering and robot control. Prac-
tical and performance testing was done to uncover flaws in the software, and
finally, ros2_socket_bridge is compared to a different project with similar goals.

Sammendrag

Denne masteroppaven undersøker hvordan et operativsystem for roboter, ROS2,
kan bli brukt til å styre hovedkommunikasjonen i moderne fabrikker. Dette gjøres
ved å implementere mulighet for å lage forskjellige kommunikasjonsnivåer ved
kobinert bruk av innebyggde ROS2 funksjoner og socket programmering. Pro-
gramvaren blir navngitt ros2_socket_bridge.

Det er ønskelig at programvaren kan brukes i mange ulike oppsett, og derved er
fleksibelt. Det må ha muligheten til å prossesere sanntidsinformasjon uten tillegg
av betydelig forsinkelse forbundet med prosseseringstid.

En prototype ble utviklet og testet hvorav flere funksjoner ble forbedret og imple-
mentert. Eksempelvis ble Bluetooth implementert som et mulig kommunikasjon-
smedium. Testing ble gjort i både praktisk- og ytelsessammenheng, og til slutt
ble ros2_socket_bridge sammenliknet med et prosjekt som har liknende mål.

Contents

Preface i

Summary iii

Sammendrag v

1. Introduction 1
1.1. Control systems in Industry 4.0 . 1
1.2. Robotics vendors and factory connectivity 2
1.3. ROS2 . 2

1.3.1. Data Distribution Service 3
1.3.2. RTPS protocol . 4
1.3.3. ROS2 implementation of DDS 4

1.4. Problem introduction . 5
1.5. Related work . 5

1.5.1. A ROS2 based communication architecture for control in
collaborative and intelligent automation systems 5

1.5.2. Robotics Middleware Framework 6
1.5.3. Free_fleet . 6
1.5.4. ros2/domain_bridge . 7

1.6. Problem definition . 7

2. Method 9
2.1. Design considerations . 9

2.1.1. Topic visibility restrictions 9
2.1.2. Network security . 12
2.1.3. Adaptability . 13

2.2. Development . 14
2.2.1. Version 1 - Primitive robot-specific server-client program . 14
2.2.2. Version 2 - Over-advanced topic streaming setup 15
2.2.3. Version 3 - Generalized version with serializer and cryptog-

raphy . 15
2.2.4. Version 4 - Unproven working program 16

viii Contents

2.2.5. Version 5 - Proven working program 16
2.2.6. Version 6 - Improved program with shutdown handling and

Bluetooth . 16
2.3. Software architecture . 17

2.3.1. User setup . 18
2.3.2. Server-client relationship . 22
2.3.3. Connection modes . 22
2.3.4. Encryption key generation 25
2.3.5. Bluetooth channel checker 26

2.4. Performance experiments . 26
2.4.1. Setup . 27
2.4.2. Performance considerations 30
2.4.3. Result interpretation . 30

3. Results 33
3.1. Robot simulation dataset . 33
3.2. Message processing time . 33

3.2.1. Serialization and encryption 34
3.2.2. Decryption and deserialization 37

3.3. Processing time versus message size 39
3.3.1. Simulated robot . 40
3.3.2. Controlled publisher . 41

3.4. Maximum publishing rate versus message size 42
3.4.1. Internal communication tests 42
3.4.2. External communication tests 45
3.4.3. Summary . 48

4. Discussion 49
4.1. Benchmarking . 49

4.1.1. Measuring method . 49
4.1.2. Maximum publishing rates 50

4.2. Usability . 51
4.2.1. Internal and local network transmissions 51
4.2.2. Bluetooth transmission . 51
4.2.3. Software setup . 51

4.3. Further work . 51
4.3.1. Optimization of initialization message and callback function 51
4.3.2. Integration of services and actions 52
4.3.3. Remove the need to set specific topic sockets 53
4.3.4. Test the viability of low-powered devices 53

Contents ix

5. Conclusion 55
5.1. Comparison to ‘ros/domain_bridge’ 55

5.1.1. Communication method . 55
5.1.2. Pros and cons . 56
5.1.3. Significance in practice . 56

A. ReadTheDocs 59
A.1. Front Page . 60
A.2. Quick-start guide . 61
A.3. Internal workings . 63
A.4. Testing and benchmaking . 65
A.5. License . 69

List of Figures

1.1. Hierarchical layout of a DCS. 2
1.2. DDS communication architecture 3
1.3. How ROS2 implements the DDS communication architecture. . . . 4

2.1. Comparison of UDP and TCP headers 11
2.2. Three different use cases using the same software. 14
2.3. How the software is initialized. 18
2.4. Server and client booting information 20
2.5. Hierarchical DCS setup using ros2_socket_bridge. 22
2.6. Server-client local connection modes 23
2.7. External server-client connection across the internet. 24
2.8. Bluetooth connection mode. 25
2.9. Message processing bottlenecks . 26
2.10. Performance experiment setup using a simulated robot 28
2.11. Performance experiment setup using a custom publisher with set

data size and rate . 29
2.12. Performance experiment setup using Bluetooth as a communication

medium. 29

3.1. Results gathered form the time it took to serialize and encrypt
different messages. 35

3.2. Results gathered form the time it took to decrypt and deserialize
different messages . 38

3.3. Packing time versus message size for messages used by the simu-
lated robot . 40

3.4. Packing time versus message size using a custom publisher at a
publishing rate of 50Hz . 41

3.5. Internal transmission of messages using UDP 43
3.6. Internal transmission of messages using TCP 44
3.7. Local network transmission of messages using UDP 45
3.8. Local network transmission of messages using TCP 46
3.9. Wireless transmission of messages using Bluetooth 47

xii List of Figures

4.1. Two nodes connected to the same service node. 52
4.2. Two nodes communicating using an action. 53

List of Tables

2.1. Variables available to the user. 21
2.2. Hardware information of the computers used for experiments . . . 30

3.1. Sample information gathered from transferring messages. 33
3.2. Results gathered form the time it took to serialize and encrypt

different messages. 36
3.3. Results gathered form the time it took to decrypt and deserialize

different messages. 39
3.4. A summary of peak publishing speeds for all message sizes and

protocols. 48

Chapter 1.

Introduction

This chapter intends to introduce the reader to Industry 4.0, control system ar-
chitecture, the Robot Operating System 2, and its advantages and disadvantages.
Once a general understanding is achieved, the problems which this thesis intends
to solve are introduced. Related work is presented, and a solution is proposed.

1.1. Control systems in Industry 4.0
The ongoing change in industry, known as the fourth industrial revolution, changes
how factories are operated. Cyber-physical production systems are becoming
the norm of modern manufacturing [1], where digitization and the Internet of
Things (IoT) are at the center of how factories are constructed and controlled.
Labor-intensive production line jobs are being equipped with more efficient robots,
which cooperate by communicating over the IoT to continuously report the state
of different processes to a centralized hub [2]. The system can be connected to
other factories over the internet, bringing logistics directly into the manufacturing
process.

The control of factories using IoT is usually done using Distributed Control Sys-
tems (DCS). A DCS is made up of digital field busses and decentralized control
computers, assisted by a central control computer for monitoring and controlling
[3]. The DCS is commonly split into five levels [4], as shown in Figure 1.1. Using
this architecture allows for simple implementation and removal of robots, micro-
controllers (µC), and other hardware in the control system by simply modifying
behavior trees based on available units.

2 Chapter 1. Introduction

Figure 1.1.: Hierarchical layout of a DCS.

1.2. Robotics vendors and factory connectivity
To fulfill the requirements of an industry 4.0 factory, a communication system that
connects different robotic and control systems are required. Common robotics
vendors such as KUKA, ABB, Univeral Robots, and others often come with their
own operating systems and different ways of connecting to the IoT. Buying robots
from a single vendor brings advantages as systems interface with each other [5],
but it leaves the factory with the disadvantage of a vendor lock-in. A way of
leaving this vendor lock is to utilize the open-source and free robotics middleware,
Robotic Operating System 2 (ROS2).

1.3. ROS2
As ROS2 is open-source, there is no vendor lock-in, and the applications are multi-
domain and multi-platform. It also features multiple community-made stacks for
interfacing with robots of the aforementioned vendors. This provides a sturdy
development platform for many industrial applications, although the development
of ROS2 is still in its infancy. The predecessor of ROS2 is ROS(1), which had
the same intentions for being an open-source robotics software, but did not use
the same internal communication architecture [6]. Programs running on ROS1
and ROS2 cannot cross-communicate with each other unless a package named
‘ROS1_bridge’ is utilized. ROS2 is updated in distributions with names where
the first letter is correlated to the release version. The latest released version of
ROS2 is ‘Foxy Fitzroy’, with ‘Galactic Geochelone’ being next in line.

Using ROS2 allows for the use of open-source stacks such as Navigation2 which

1.3. ROS2 3

allow for robot navigation [7], while MoveIt2 provides advanced kinematics, mo-
tion planning, and collision checking to manipulator robots [8]. Additional stacks
allow for Simultaneous localization and mapping (SLAM), integration of machine
learning algorithms, and much more.

The communication architecture of ROS2 is built on the Data Distribution Service
(DDS) standard.

1.3.1. Data Distribution Service

DDS is an industry-standard developed by the Object Management Group for
use as a Data-Centric Publish-Subscribe model [9]. DDS builds upon complex
network communication, allowing the users to take advantage of the advanced
architecture in a simple, user-friendly way. Multiple vendors have built software
to comply with the DDS standard, such as RTI, ADLINK Technologies, Twin
Oaks Software, and eProxima. The user decides the spesific DDS software to be
used by ROS2.

Figure 1.2.: DDS communication architecture

Figure 1.2 shows a simplified model of the publish-subscribe communication ar-
chitecture used by DDS. Multiple participants can communicate with each other
over topics, which are denoted by the arrows. The arrows lead to the global data
space, which is an area of the network where the topics are hosted. Each topic
can only have a single message type, as exemplified by the Position and State
messages.

4 Chapter 1. Introduction

1.3.2. RTPS protocol

DDS utilizes a Real-Time Public-Subscribe (RTPS) protocol. This protocol uses
the UDP (User Datagram Protocol) as a backbone, which is one of the core mem-
bers of the internet protocol suite. UDP is a simple protocol where messages are
sent without any confirmation algorithm to ensure that the receiver has received
the data, leading to low reliability and high speed. By adding what DDS calls
Quality of Service (QoS), the RTPS protocol allows the user to adjust reliability
settings for their specific program [10]. For faster transmission with low latency
and reliability requirements, QoS is set to simulate UDP. If reliability is a require-
ment above speed, the protocol can be adjusted to simulate TCP (Transmission
Control Protocol), which features a triple handshake to ensure data integrity. QoS
essentially allows the user to decide what level of reliability to speed is wanted for
the current information stream.

1.3.3. ROS2 implementation of DDS

The ROS2 implementation of DDS changes some of the names previously used.
In Figure 1.2, ‘participant’ has been renamed ‘node’. The ‘global data space’
will be known as the ‘ROS domain’. The domain is set by using an assigned ID,
ROS_DOMAIN_ID. This ID is set in the terminal before launching or running ROS2
programs. Nodes running in terminals with the same ID can discover each other,
even though the programs run on different computers. The only requirement is
that they are connected to the same network that has UDP multicasting enabled.
An example of how ROS2 implements the DDS model is shown in Figure 1.3.

Figure 1.3.: How ROS2 implements the DDS communication architecture.

1.4. Problem introduction 5

1.4. Problem introduction
The DDS method of communicating is excellent when there is a single robot being
controlled, but problems arise when multiple robots or sensors of similar nature
are present on the same ROS domain. By default, the namespace of topics that
contain odometry, laser-scanner data, joint positions, and frame transforms are
the same. Changing the namespace of topics manually could cause confusion
and clutter. This is why the subject of robotic fleet control has been a theme
of discussion in the ROS2 community for years [11]. This also limits the use of
ROS2 in a DCS factory setup, as there is no way of layering information while
simultaneously transferring specific data between the layers.

The information clutter problem is a restriction when implementing multiple
robots or sensors in a factory setup. However, this problem is not sourced in
the use of DDS. One of the features of DDS is the ability to assign partitions as a
part of the QoS settings [12]. Partitions are simply a second layer added on top of
the global data space (which is shown in Figure 1.2). Partitions allow participants
to subscribe to topics with an additional layer setting, solving namespace clutter
problems. The problem with using partitions comes from the fact that it is in use
by lower levels of ROS2 DDS, and is not available to users.

Making direct changes to how ROS2 implements DDS is complex and comes with
a multitude of possible issues. The compatibility of software between different
DDS vendors is already a restriction in ROS2. Making these changes would induce
multiple problems, not only with DDS compatibility but also with already existing
packages.

Instead of making internal software changes, a new ROS-based program could add
to the communication layer and provide ways to sort the network. This would
solve the main challenge that ROS2 has to overcome to be used as a DCS.

1.5. Related work

1.5.1. A ROS2 based communication architecture for control in
collaborative and intelligent automation systems

Erős, Dahl, Bengtsson, et al. [13] proposed a factory implementation of what
they called ROS hubs. Each hub is a singular robot running ROS1 or ROS2
with its accompanying communication node, which communicates robot states to
a centralized controller. Their design mainly focused on implementing specific
robots in a network running both ROS1 and ROS2 to interface with Sequence
Planner [14]. The Sequence Planner software is made to model operations and
sequences, controlling the planned sequences with cooperation from an operator.

6 Chapter 1. Introduction

The article does not mention the use of different domains and how the nodes are
set up. The only description of overall system architecture is the fact that addi-
tional sorting nodes are created. These nodes take information from each ‘hub’,
and sort it according to state. This state information is subscribed to by the se-
quence planner software, which then creates a command message. This command
message is parsed by a node running on the ‘hub’, which is then converted to
robot movement or state. There are no set communication boundaries except for
the use of ROS1 bridges.

The idea of making robot hubs that connect to a central node is optimal in the
form of reducing clutter and having only vital information streams to the global
planner. Each ‘hub’ can be complex in its internal workings, but the information
is communicated in a readable way for all systems involved. This article focuses
on the integration of specific software, which makes the general application of
their system harder.

1.5.2. Robotics Middleware Framework

The Robotics Middleware Framework (RMF) is an application developed to man-
age mobile robot fleets in ROS2. It does so by creating paths on a map where
robots can traverse, integrating door and elevator control. A simple controller
which converts paths to velocity movements of individual robots provides basic
navigation. This navigation is very basic and lacks features such as SLAM and
real-time path planning.

This is a great software to control robot fleets for navigating large spaces and
executing pick-and-place tasks. This software currently has no way of implement-
ing manipulator robots and does not currently allow for implementing custom
pathfinding algorithms or costmaps. It is still under heavy development and has
currently not been applied outside simulations.

1.5.3. Free_fleet

The free_fleet software is developed to control multiple robots using the old ROS1
‘Navigation’ path planning. Robot states are communicated over their own topics
using special messages. These messages are transferred to a server running ROS2
and RViz. Goal poses are sent from the ROS2 server to the individual clients
which handle them using ‘Navigation’.

This solves the cluttered namespace problem by having robots running on ROS1
and only transferring the customized robot state messages. The downside is that
additional robots have to be implemented on ROS1, as the client software has
not been implemented for ROS2. This is also only a solution for the specific

1.6. Problem definition 7

goal of navigating multiple mobile robots, and does not provide any flexibility for
different processes. In addition, having to use the older ROS1 software also has
limitations in future-proofing and development.

1.5.4. ros2/domain_bridge

The domain_bridge stack saw its release on GitHub in late February, at the same
time as the work on this thesis started. As the name implies, it is developed with
the main intention of transmitting messages across domains within the network.
Internally, the program takes in a ”from” and ”to” domain. In each domain, a
node is created. In the domain where messages are transmitted to, a publisher
is created. In the ”from” domain, a subscriber is created within the node. The
callback function of this subscriber is to publish the same message on the publisher
in the ”to” domain.

This is a seemingly smart and convenient way of transmitting topics across do-
mains, which allows for the separation of data, as this thesis also intends. This
package is created for the ‘Galactic’ version of ROS2 and later. As it is newly
created and is for a yet-to-be-released version of ROS2, it has not seen much use.
The ”bridge” is limited to topics on the local network.

1.6. Problem definition
In order to make ROS2 applicable to being a large part of a factory operating
system, a better communication architecture has to be established. By providing
developers with the ability to create multiple communication layers, developing
more advanced ROS2-based control systems becomes practical.

The goal of this thesis will be;

• Make ROS2 more applicable as a factory operating system by creating a
stack which allows users to order data in a simple, flexible and ordered
manner.

• Make the stack based on ROS2 programming features such as publishers
and subscribers, supported by features enabled by socket programming.

Chapter 2.

Method

This chapter will explain the process and considerations taken when implementing
a communication architecture on top of the already existing systems in ROS2. To
complement topics of discussion, theory is weaved in to give the reader insight
into why certain choices are made.

2.1. Design considerations
Designing a communication architecture to interface any type of robot or software
comes with multiple design features that should be considered.

One of the most important factors when implementing a system that allows ev-
ery possible ROS2 program to be plugged in is simplicity and flexibility. The
system should stay as close to the ROS2 architecture as possible by utilizing do-
mains, messages, subscribers, and publishers. As the software is created in the
form of ROS2 nodes, developers can implement the nodes in their launch files to
automatically start transferring topics.

2.1.1. Topic visibility restrictions

Having multiple robots and control systems implemented in a factory without
restricting the number of visible topics would increase the amount of work required
when implementing new systems. As an example - simulating a single Turtlebot3
robot and making it navigate using Navigation2 will create a total of 58 topics.
Adding additional mobile robots on the same domain would require renaming all
these topics not to confuse the navigation software.

The simplest way to avoid this problem would be to utilize the domain assignation
using ROS_DOMAIN_ID to restrict robots and their control computer to the

10 Chapter 2. Method

same domain. This brings with it its own issue - how does one allow specific
topics to exist outside the domain without using partitions? A simple solution
would be to utilize the same method that DDS uses to send and receive data -
sockets.

Socket programming

Socket programming opens methods for computers to establish communication
without the use of physical connections. As the name implies, a socket is a
point of connection. Programs running on the same or different computers can
communicate by sending information to a specific port and IP address, often
called just an address when put together. Ports are identified by a port number,
which can be anything between 0 and 65535. Picking which port to use for
communication should have some considerations taken into account. Ports 0 to
1023 are used for known services, 1024 to 49151, known as registered ports, are
registered for use through applications signed by the Internet Assigned Numbers
Authority (IANA). Ports 49152-65535 are assigned as Dynamic/Private, having
no assigned use case [15]. Keeping this in mind, using dynamic ports for self-
programmed software is the least likely to already be bound by running processes.
Assigned ports can be used as long as the computer in question is not running any
of the applications assigned. A list of which applications are registered to specific
ports can be easily found on Wikipedia.

Knowing what a port is, determining what protocol to use is also an important
consideration. Of all existing transport-layer protocols, TCP and UDP are the
most commonly used [15]. Message headers always contain an address, which is a
combination of the receiving computers IP address and the port where the message
is sent to. Message headers using UDP contain the address, in combination with
segment length and checksum information (as shown in Figure 2.1a). There is no
way to ensure that the message sent arrived at its intended destination or arrived
intact. If reliability is a concern, TCP provides a way of ensuring that the receiver
has received the whole and intact message. This is done by a three-way handshake.
The message to be sent has a sequence number which is a number used to track the
data contents of the message. Once the receiver gets the message, it generates a
sequence number and sends it back. If the sequence number matches, the original
sender confirms that the message is correct [16]. Of course, the disadvantage is
that this takes more time than using a simple one-way UDP message.

Selecting protocol is dependent on the nature of the data which is to be sent. For
cases where speed is prioritized over reliability, UDP is preferred. If reliability is
essential, TCP should be used. Reliability comes at the cost of speed and header
size, as shown in Figure 2.1.

2.1. Design considerations 11

(a) UDP header

(b) TCP header

Figure 2.1.: Comparison of UDP and TCP headers. Made by Saha [17], used
with permission.

The protocol act as a wrapper around the message, ensuring that it gets sent
to the correct destination. The message itself is a byte object. Bytes are what
computers use to store information about characters, and they need to be decoded
to be readable. That also means that data that is to be sent needs to be encoded
into bytes. To encode objects which are more complex than strings, we need to
perform serialization.

Serialization

In order to send items using sockets, the data has to be sent as a byte object.
Converting data to bytes is known as serialization. Using Python, the conversion
from string to byte object is simple;
>>> msg = 'Hello, world!'.encode('utf-8')
>>> msg
b'Hello, world!'

The encoding language is data-specific. MP3 is commonly used for music, MP4
for video, and UTF-8 for standard text. For encoding more uncommon letters,
for example Arabic, UTF-16 would be the most space-saving encoding system.

Serializing and encoding strings is one thing, but objects and other data types
require more intricate methods. Two common packages used for serialization in
Python is ‘JSON’ and ‘pickle’. JSON, or ‘JavaScript Object Notation’, converts
standard objects into a human-readable text format while pickle converts the
object to a byte string. Here is an example where a list is encoded;

12 Chapter 2. Method

>>> import json, pickle
>>> data = [1,2,3]
>>> json_example = json.dumps(data)
>>> pickle_example = pickle.dumps(data)
>>> json_example
'[1, 2, 3]'
>>> pickle_example
b'\x80\x04\x95\x0b\x00\x00\x00\x00\x00\x00\x00]\x94(K\x01K\x02K\x03e.'

Using JSON is faster, gives human-readable data, and has no security loopholes,
but misses one vital feature. It is limited to standard Python objects, such as lists,
strings, libraries, etc. Pickle has no limitation and can serialize any Python object
[18]. Unfortunately, pickle has a security flaw where a malicious actor could run
Python code during de-serialization [19]. This means that any messages received
over the internet to be de-serialized have to come from a trusted source.

2.1.2. Network security

As the software will be developed to be usable across networks and in factories,
network security is vital. As serialization opens up the possibility of a malicious
actor passing in code, we need to ensure that a trusted system sends the data
we are receiving. To achieve this, encryption will be implemented by using the
‘cryptography’ Python package.

Cryptography

Cryptography is essentially the distortion of data using a key that only the user
knows about. If you do not have the key, it is virtually impossible to read or
create data that is encrypted in the same manner. The Python package ‘Cryp-
tography’ has many tools to manage encryption and decryption, allowing for safe
transportation of messages.

More specifically, the Fernet function is used. It utilizes the Advanced Encryption
Standard (AES), which is known for its speed and security. AES is used in Cipher
Block Chaining mode, which is essentially a way of converting blocks of plaintext
into ciphertext using a key [20]. Each block consists of 128, 192 or 256 bytes
of plaintext, sourced from the byte object we want to encrypt. The bytes are
placed in a matrix format, so that we can move around values and perform matrix
operations in the encryption process.

To simply explain the process, each byte is replaced by values in a lookup table.
Once this is done, all the column values are mixed around. Next, all the rows
are converted to vectors and multiplied by a set matrix. Now that the text is
sorted in a seemingly random way, a ‘round-key’ is added. This is done for all of

2.1. Design considerations 13

the plaintext blocks, and we end up with a seemingly random ciphertext. All of
these randomization actions are sourced in an encryption key. These operations
provide non-linearity to the ciphertext, making it practically impossible to invent
a mathematical function that decrypts the message. The only way to reverse the
encryption process is to acquire the key used and precisely follow the encryption
process backward. Here is an example of what an encrypted object looks like;
>>> from cryptography.fernet import Fernet
>>> key = Fernet.generate_key()
>>> f = Fernet(key)
>>> msg = b'Super secret message'
>>> msg_encrypted = f.encrypt(msg)
>>> msg_encrypted
b'gAAAAABgUKlooXlptV1hIovyl2wct4JwDRMI-rNyj58jg89inHTDdWfnUXJG_-bGFoDAcOAVBgzfAs c

2BKte4KoMW_JKi2qe0Cnu19-AvADQ5v-2l42mcLnY='↪→

>>> msg_decrypted = f.decrypt(msg_encrypted)
>>> msg_decrypted
b'Super secret message'

Not only does encryption prevent anyone without the key from reading messages,
but it also prevents messages generated using the wrong key from getting through
the decryption function. Here is an example where ‘malicious code’ is encrypted
using the wrong key;
>>> from cryptography.fernet import Fernet
>>> real_key = Fernet.generate_key()
>>> fake_key = Fernet.generate_key()
>>> f_real = Fernet(real_key)
>>> f_fake = Fernet(fake_key)
>>> malicious_code_encrypted = f_fake.encrypt(b'Malicious code')
>>> received_msg = malicious_code_encrypted
>>> received_msg_decrypted = f_real.decrypt(received_msg)
raise Exception(cryptography.fernet.InvalidToken)

If a malicious actor sends a message which is either encrypted using the wrong
key or not encrypted at all, an error is raised, and the malicious message does not
get through to the next steps in the code. This will keep any malicious code from
being deserialized by pickle.

2.1.3. Adaptability

To be used as a basis for a large-scale control system of robot fleets amongst other
uses, the software must be adaptable. This would include the ability to create
a big network between different domains in any way the user desires. Changing
a few settings would provide the user with a range of use-cases. Three different
examples of use cases are shown in Figure 2.2. The only difference between the
three cases is the amount of server-node pairs connected and topics transferred.

14 Chapter 2. Method

Figure 2.2.: Three different use cases using the same software.

2.2. Development
The stack was developed as an open-source project using continuous integration.
During development, the code was updated on a GitHub1 repository. A fictional
version number is applied to each major iteration to provide the reader with some
insight into development stages.

2.2.1. Version 1 - Primitive robot-specific server-client program

The first version was a simple and primitive server-client relationship that tested
the viability of use in ROS2. The program was created to transfer robot-specific
messages across domains, such as LaserScan and Odometry, based on the type of
robot set in the configuration file. The robot type was set on the client, and a
message was created and sent to the server to enable it to do its corresponding
setup and start the communication. This avoids the need to configure both server
and client, as the server setup comes automatically from setting up the client.
Communication was one-way, as messages were sent from client to server. This
version had a very specified use-case and required scenario-specific code, which
proved unsustainable for more advanced setups.

The first version served as an excellent proof-of-concept for further development.
Several concepts were kept in the next version, such as the server-client setup and
an initialization message.

1https://github.com/MortenMDahl/ros2_socket_bridge

https://github.com/MortenMDahl/ros2_domain_bridge
https://github.com/MortenMDahl/ros2_socket_bridge

2.2. Development 15

2.2.2. Version 2 - Over-advanced topic streaming setup

Stepping into the development phase at version 2, many modifications have been
made to how the program is set up. The user can specify topics to be transferred,
adjust QoS settings and choose transmission protocol. This was done using a
‘str_to_class’-function which can convert strings that are received into objects
defined in the code. The server-client relationship now allows for two-way commu-
nication, enabling streaming from server to client and vice versa, but only using
UDP. A specialized serialization script was written for outgoing and incoming
messages. It would parse messages into strings, send them, and de-serialize on
arrival. This would require manual creation of a serialization script for every mes-
sage type, and for users who add their own custom message types to also create a
serializer and de-serializer function. Topics that were received on the server side
were prefixed with the robot name. The idea is that the use case would mainly
be the ‘control center setup’ shown in Figure 2.2. All topics to be received or
transmitted are assigned as their own object, a ‘BridgeObject’. The BrigeObject
contains all the settings for each topic set in the configuration file, in addition to
its belonging publisher or subscriber.

This version had many useful traits, but it was still too specified for general use.
Creating a custom serialization and deserialization function for each message to
be transmitted is cumbersome and requires work for each custom message to be
implemented.

2.2.3. Version 3 - Generalized version with serializer and
cryptography

This version implements pickle, which is a Python object serialization library.
It generalizes the serialization of message objects, removing the need for a cus-
tom serializer script having to be made by the user. Due to security risks using
pickle, the cryptography Python package was also introduced. In order to be
able to communicate between server and client, both sides need to have the same
cryptographic key.

Version 3 closes in on being usable as a general communication architecture. There
are still some features missing, such as the ability to set the process name as a
prefix for published topics and avoiding setup errors when one-way communication
is required.

16 Chapter 2. Method

2.2.4. Version 4 - Unproven working program

Changes between version 3 and 4 is mainly code cleanup and generalization, mak-
ing it more straightforward for a new user to read and use the program. Practical
settings such as topic namespace prefixes, a script to generate a random cryp-
tographic key, and a readme file were added. Only a single scenario was tested,
where a mobile robot transmits its laser scan and odometry topics to a server.
The server transmits the goal pose back to the robot.

A thorough testing phase is needed to uncover any flaws in the software.

2.2.5. Version 5 - Proven working program

Between version 4 and 5, testing of different scenarios and bug fixing was done.
The testing unveiled multiple flaws, such as errors when the list of topics to be
transmitted is empty. A buffer was needed when transferring large messages with
TCP. Clearer error messages are given to the user if an exception occurs. If a topic
is stale for a set amount of time, the user is warned. Multiple different scenarios
were tested, with messages going both ways between server and client.

2.2.6. Version 6 - Improved program with shutdown handling
and Bluetooth

Shutdown handling was added, which closes the sockets and threads used on
the server. This allows a new initialization message to be passed in from the
client without resetting the server. In addition, the ability to use Bluetooth
as a communication method was added through additional socket programming.
This allows devices that are not connected to the network but still possess a
Bluetooth adapter to receive and send messages. To accompany the introduction
of Bluetooth and the challenges that come with it, a script that shows the user
the MAC address of the Bluetooth adapter and which ports are busy was made.
This was very useful to acquire the MAC address and choose ports quickly as
was discovered when experimenting. Setting the server_ip to this MAC address
automatically sets the server and client to ‘Bluetooth mode’.

At this stage, the newly created stack was named ros2_socket_bridge. This will be
the reference used when implying the software stack created as part of this thesis.
The project was organized using the Black code formatting method to provide
users with a consistent and organized experience when exploring the source code.

2.3. Software architecture 17

2.3. Software architecture
The architecture and setup process is shown in Figure 2.3. The server is started
and waits for a message from a client on a set port. When the client is started,
it reads a setup file from which it creates an initialization message to send to the
server. The initialization message is sent from the client to the server, and both
parties create BridgeObjects for each topic to be transmitted or received. Each
BridgeObject contains information about the topic to be transmitted, whether it
is to be received or sent, and a callback function that sends the message based on
protocol, and either a subscriber or publisher.

All the BridgeObjects are then connected to each other, and transmission of topics
starts. When a message is received on a topic that is set to be transmitted, the
subscriber calls the callback function belonging to the BridgeObject. This callback
function serializes, encrypts, and sends the message to the receiving socket, which
is running on a thread. The message is received, decrypted, deserialized, and
published to its belonging topic.

18 Chapter 2. Method

Figure 2.3.: How the software is initialized.

2.3.1. User setup

The way a user learns to use the program is explained in a readme-file located in
the GitHub2 repository, with more detailed documentation hosted on ReadThe-
Docs3. It includes a detailed installation guide, setup guide and example scenarios.
The user has a few settings to tweak in order to use the software. The settings,

2https://github.com/MortenMDahl/ros2_socket_bridge
3https://ros2-socket-bridge.readthedocs.io/

https://github.com/MortenMDahl/ros2_socket_bridge
https://ros2-socket-bridge.readthedocs.io/
https://ros2-socket-bridge.readthedocs.io/
https://github.com/MortenMDahl/ros2_socket_bridge
https://ros2-socket-bridge.readthedocs.io/

2.3. Software architecture 19

their location, and a short description is listed in Table 2.1.

To set up the client-server relationship, the IP of the computer running the server
has to be set in the launch file of both server and client. The server needs to know
which port to use as a main communication line with the client. The user also has
to set whether or not to use a namespace in front of the incoming topics for both
server and client. The last thing required in the launch files is the encryption key
to be used. This has to match with both the server and client in order to be able
to encrypt and decrypt messages.

The server is only dependent on its IP and the port it should listen to. All the
other settings, such as topics to transmit, the message type of these topics, the
QoS it uses, the port used for transfer, and the protocol of that port, are all
client-side settings. This brings with it the advantage that only the client needs
to be rebuilt and recompiled when tweaks to the settings are done.

Booting the server and client displays information about the connection process,
gives the user what address is selected, and displays a warning if topics are stale.
An example of the booting process is shown in Figure 2.4.

20 Chapter 2. Method

(a) Server booting information.

(b) Client booting information.

Figure 2.4.: Server and client boot information. A single stale topic named
‘/topic’ is being transmitted from server to client. As the topic is stale, warnings
are triggered client-side.

2.3. Software architecture 21

Table 2.1.: Variables available to the user.
File Variable Description

Server
‘src/rdb_server/config/bringup.yaml’ server_ip IP of the computer where

the server node is running.
‘src/rdb_server/launch/server.launch.py’ name Name of the process or

robot to be communi-
cated.

server_port Port used for the main
communication between
server and client.

use_name Whether or not to use
name as a topic prefix.

use_encryption Whether or not to encrypt
and decrypt messages

encryption_key Key used for encryption
and decryption. Must
match with the client.

Client
‘src/rdb_client/config/bringup.yaml’ server_ip IP of the computer where

the server node is running.
server_port Port used for the main

communication between
server and client.

*_topics Topic which are to be re-
ceived or transmitted.

*_msg_types The message type of top-
ics. Example: LaserScan

*_ports Ports used for communica-
tion. Bound on the server.

*_protocols Which protocol is to be
used for communicating
the topic. TCP or UDP.

*_qos QoS which is to be used
for the publisher and sub-
scriber.

‘src/rdb_client/launch/client.launch.py’ name Name of the process or
robot to be communi-
cated.

use_name Whether or not to use
name as a topic prefix.

use_encryption Whether or not to encrypt
and decrypt messages

encryption_key Key used for encryption
and decryption. Must
match with the server.

22 Chapter 2. Method

2.3.2. Server-client relationship

The software works by enabling a server-client relationship. The only meaningful
difference between a server and a client is that ports are bound on the computer
running the server. This also requires some under-the-hood changes to the code
used for communicating, but it makes no difference to the user. It is the placement
difference of the client and server which allows for cross-domain or even cross-
network communication. This allows for the creation of custom communication
architectures, much like the five layers of a DCS. Figure 2.5 shows an example of
how this can be done.

Figure 2.5.: Hierarchical DCS setup using ros2_socket_bridge.

2.3.3. Connection modes

It is possible to transfer topics between local domains existent on the network and
transfer to different networks. Currently, the IPv4 protocol is set, but users could
easily enable IPv6 by changing a single variable in the socket creation code of
both server and client. It is also possible to connect two devices using Bluetooth.

2.3. Software architecture 23

Local network

On the local network, IPv4 addresses which typically starts with 192.168.x.x is
used (Figure 2.6b). If the server and client are located on the same computer,
the IP address can be passed in as 127.0.0.1 (Figure 2.6a). The server and client
nodes should be located in different domains, as the domains are network-wide.
It is also possible to transfer topics between computers on a network where UDP
multicasting is disabled, allowing for communication between ROS2 nodes that
natively cannot discover each other. This is due to the direct communication
(unicasting) nature of socket communication which does not require multicasting
to be enabled, unlike DDS.

(a) Communicating messages across do-
mains locally on the computer.

(b) Communicating messages across do-
mains using different computers on the same
network.

Figure 2.6.: Server-client local connection modes.

External network through port forwarding

One way of connecting two computers over the internet is to use port forwarding.
The external IP of the computers has to be found, and port forwarding has to
be enabled through the Internet Service Provider [21]. Once this is done, the
external IP with the set external port will redirect to a local IP and port where
messages are received. Additionally, exceptions have to be made in the firewall
on both ends to prevent the blocking of messages.

As the distance between the two connected network increase, so does the latency.
A common problem with communicating across the open internet is that messages

24 Chapter 2. Method

are forwarded using intermediary routers. An effect often called the “trombone
effect” could occur [22]. This is when the data messages are taken on detours
through different directions, making the path that data has to make excessively
far.

External network through a VPN tunnel

One of the more secure and easy to set up methods of connecting two networks
is through a VPN tunnel. This tunnel handles all the advanced low-level network
interfacing and grants the user simple access to which IP and port to use. Many
vendors offer specific VPN routers, such as Linksys and D-link. Certain local IP
addresses are automatically forwarded to computers on the connected network.

Unlike port forwarding, VPN vendors often have their own servers where messages
are passed through. This could help negate the trombone effect, depending on
the location of the servers relative to the two networks.

Figure 2.7.: External server-client connection across the internet. This can be
done with both port forwarding and a VPN tunnel.

Bluetooth connection

As Bluetooth programming is part of the standard socket library of Python, com-
municating messages across devices using Bluetooth was enabled. To set the server
and client to communicate using Bluetooth, the ‘server_ip’ has to be set to the
MAC address of the Bluetooth device attached to the server computer. Addition-
ally, any topics to be transmitted should have their protocol set to ‘BLUETOOTH’
instead of ‘TCP’ or ‘UDP’. The server and client devices first have to be manually
connected using Bluetooth, commonly available in system settings.

2.3. Software architecture 25

Figure 2.8.: Bluetooth connection mode.

Latency considerations

When dealing with systems dependent on information in real-time, it is important
to consider what effect the method of transferring messages has in slowing the
system down. In the case of steering and control processes, the combination of
input delays with regulators causes problems. Therefore, it is essential to consider
where controlling stacks are located and for this thesis to find out how the transfer
of topics causes delays. Dependent on the transfer method and the amount of
delay it causes, the need to have the controlling computer of a robot locally
should be considered. Independent of delays, commands such as goal positions
could be transferred from an external source. Any emergency stop mechanisms
should be independent of the external source and be locally placed on either the
control computer or the hardware.

2.3.4. Encryption key generation

A script to generate a random 32 url-safe base64-encoded bytes object is included
when downloading the package. The script generates a key and prints it together
with the time and date to a separate ‘key.txt’-file. This is done by using the
fernet.generate_key() function from the cryptography package. An example
of the generated ‘key.txt’-file is;

1 Key generated at 16/04/2021 14:54:53:
2

3 VdzT2kwMacThZWkBigjbtte9iRjW8djEJ10JiemVwLM=

26 Chapter 2. Method

2.3.5. Bluetooth channel checker

A custom script to show which Bluetooth channels are busy for communication
was implemented. Running the script returns the MAC address of the Bluetooth
adapter, which needs to be set as the server’s IP address and a list of busy channels
on this adapter. This helps the user select appropriate channels if Bluetooth is to
be used. An example of what the script returns is;

1 ---
2 Your Bluetooth adapters MAC address is:
3 80:32:53:E0:12:C0
4 ---
5 Busy Bluetooth channels [1-30]:
6 [3, 9, 10, 12, 14, 15, 16, 17]
7 ---

2.4. Performance experiments
There are two main limiting factors when transmitting sensor data from a robotic
system. The first is the real-time requirement of the system - that is the total
time delay created when communicating a message from origin to destination. The
second is potential bottlenecks created by the rate of incoming data. If the system
which readies messages to be transmitted is slower than the rate that messages
arrive, we get a bottleneck. The total time is shown in Figure 2.9, where a new
message can start to get processed once the data reaches the end of transmission
from outgoing to incoming.

Figure 2.9.: Message processing bottlenecks. Once a message reaches the end of
transmission, a new message can be taken in by the subscriber.

2.4. Performance experiments 27

According to Weyuker and Vokolos [23], both functional and performance testing
is essential to the results when developing system architectures. The functional
testing was done throughout development, and different setups were created to
test performance and find bottleneck-prone areas of the software.

2.4.1. Setup

Simulated robot

An experiment setup is created as shown in Figure 2.10. The Bridge computer
is responsible for running both server and client, taking data from topics that
are run to control a mobile robot using Navigation2. The Navigation2 stack
and Gazebo simulator is run on a separate simulation computer but share a do-
main with the bridge computer. A TurtleBot3 is simulated in Gazebo using the
‘nav2_bringup’ stack. Multiple topics which are vital to visualize and control the
robot is transmitted from one domain to another. At the same time, the time re-
quirement of serialization, encryption, decryption and deserialization is recorded
on the bridge computer by timing and writing to a file during transmission. The
robot is controlled using keyboard controls through the teleop_twist_keyboard
stack running on the bridge computer. The topics transferred will be referenced to
as ‘Laser’, ‘Transformation’, ‘Costmap’ and ‘Footprint’. Laser is the laser-scanner
sensor data, transformation is transformation matrices between different coordi-
nate systems on the robot, costmap is the weighted map used for path planning,
and footprint is the volume of which the robot takes up in space.

28 Chapter 2. Method

Figure 2.10.: Performance experiment setup using a simulated robot. The bridge
computer has two different terminals in separate ROS domains, and is running
both server and client. The simulation computer is running Navigation2 and
Gazebo to simulate messages coming from a mobile robot.

Controlled publishing

A second experiment setup is created as shown in Figure 2.11. Two different tests
are done in this setup - one which tests the time it takes to pack and unpack
messages based on the size of the message, and another to test the maximum
output rate at the destination domain based on message size. The messages
published by the simple_publisher is a ROS-style ‘String’ message. The size of
this message is set by adding a certain amount of letters equivalent to the number
of bytes requested, minus size required by the message object and serialization
wrapper as shown;
package = b'' + b'0'*(msg_size - (ros_msg_wrapper_size + pickle_wrapper_size))
msg = String(data=package)

2.4. Performance experiments 29

Figure 2.11.: Performance experiment setup using a custom publisher with set
data size and rate. The bridge computer has two different terminals in separate
ROS domains and runs both server and client. The simulation computer is running
the custom publisher from which the rate and size of messages are set.

This experiment was tested on all internal and external communication protocols,
including Bluetooth, as shown in Figure 2.12. Publishing rates at the origin and
destination (target) were noted as the publishing frequency increased. An upper
limit was discovered for all message sizes and protocols when the target publishing
rate was lower than the origin.

Figure 2.12.: Performance experiment setup using Bluetooth as a communication
medium.

30 Chapter 2. Method

2.4.2. Performance considerations

To eliminate performance influence by other programs running on the computer,
the CPU was set to performance mode by running sudo cpufreq-set -r -g
performance from the cpufrequtils package. Python automatically clears memory
leaks at random times, which costs processing power. To remove any impact of
this, automatic garbage collection in Python was disabled for the experiment by
running gc.disable() from the gc package which is available in the standard
Python library. The hardware of each computer is listed in Table 2.2.

Table 2.2.: Hardware information of the computers used for experiments
Computer Name Processor Clock speed Cores Threads
Bridge
Computer

Intel NUC Intel® Core™ i7-8705G 3.10-4.10 GHz 4 8

Simulation
Computer

Surface
Book
2-in-1

Intel® Core™ i5-6300U 2.40-3.00 GHz 2 4

2.4.3. Result interpretation

Looking at the average time it takes for a message to go through the two bottleneck-
prone areas of transmission and adding the time of three standard deviations gives
us the maximum time it takes for 99.73% of the messages to be processed (Equa-
tion 2.1) [24]. This is known as the Empirical Rule, and will then be used as an
approximate for the maximum message rate that can be transmitted. Three stan-
dard deviations are chosen due to the results being realistic at a high percentage of
incidence but not too high, bringing unrealistic handicaps to expected outcomes
in real-life scenarios. The results are hardware and message dependent but should
still give a pointer to expected performance on publicly available hardware.

P (µ− 3σ ≤ X ≤ µ+ 3σ) ≈ 99.73% (2.1)

The average was calculated using Equation 2.2, while the standard deviation was
calculated using Equation 2.3.

µ = 1
n

n∑
i=1

xi (2.2)

σ =

√√√√ n∑
i=1

(xi − µ)2 (2.3)

2.4. Performance experiments 31

These results should then be tested by having an experiment that record the
output and input publication rate on origin and goal domains to see at which rate
the bottleneck occurs.

All the experiments are hardware-dependent, as they all depend on processing-
and transmission time of messages to test their limits. Variability is also found in
the router’s signal strength, which links the two computers in experiments where
server and client are not on the same computer. The experiment testing Bluetooth
transmission is dependent on both the Bluetooth version of both devices and signal
strength.

Chapter 3.

Results

3.1. Robot simulation dataset
The dataset is composed of multiple messages from different common topics of
varying size, listed in Table 3.1. The samples were gathered by running a simulated
Turtlebot3 robot in circles over the course of 12 hours at a simulation speed of
∼ 0.3× real-time.

Table 3.1.: Sample information gathered from transferring messages.
Message Sample size Serialized message size [bytes]
LaserScan 140,862 3416
TF 1,389,059 752 ± 106
Costmap 24,852 4358
Published footprint 101,968 1132

3.2. Message processing time
The robot simulation dataset was processed, and the time requirement for serial-
ization, encryption, deserialization and decryption was transferred to graphs and
tables to give a better understanding of which process takes up the most process-
ing time. The setup used in this experiment is explained in Section 2.4.1 on page
27.

34 Chapter 3. Results

3.2.1. Serialization and encryption

The results gathered from serializing and encrypting messages are shown in Figure
3.1 and listed in Table 3.2. It is apparent that encryption is what contributes
to the processing time of outgoing messages. Despite this, the total processing
time is around 0.2 ms for all messages. Using the Empirical rule, the theoretical
publishing rate limit stays above 2 kHz for all outgoing topics.

Figure 3.1 shows time of the process on the x-axis, while the y-axis shows the
amount of messages at the same time duration at an accuracy of three decimal
places. The black vertical line shows the average, while the grey area shows the
standard deviation.

3.2. Message processing time 35

(a) Laser messages (b) Transformation messages

(c) Costmap messages (d) Robot footprint messages

Figure 3.1.: Results gathered form the time it took to serialize and encrypt
different messages.

36 Chapter 3. Results

Table 3.2.: Results gathered form the time it took to serialize and encrypt dif-
ferent messages.

Variable Message type
Laser TF Costmap Footprint

Serialization
Mean (µ) [ms] 0.032 0.039 0.056 0.044

Standard deviation (σ) [ms] 0.005 0.003 0.026 0.007
Encryption

Mean (µ) [ms] 0.152 0.142 0.196 0.141
Standard deviation (σ) [ms] 0.01 0.004 0.045 0.012

Total
Mean (µ) [ms] 0.184 0.181 0.252 0.185

Standard deviation (σ) [ms] 0.011 0.005 0.05 0.014
µ+ 3σ [ms] 0.217 0.196 0.402 0.227

Theoretical subscription rate limit [Hz] 4608 5102 2487 4405

3.2. Message processing time 37

3.2.2. Decryption and deserialization

The results gathered from decrypting and deserializing messages are shown in
Figure 3.2 and listed in Table 3.3. As with serialization and encryption, the
encryption part contributes to the highest increase in processing time. On the
receiving part of the program, the theoretical publishing rate limit still stays
above 2 kHz for all message types.

As with serialization and encryption, the x-axis of Figure 3.2 shows the processing
time. The y-axis shows the number of messages recorded at this time step at an
accuracy of three decimal places. The black vertical line shows the average, while
the grey box shows the standard deviation.

38 Chapter 3. Results

(a) Laser messages (b) Transformation messages

(c) Costmap messages (d) Robot footprint messages

Figure 3.2.: Results gathered form the time it took to decrypt and deserialize
different messages

3.3. Processing time versus message size 39

Table 3.3.: Results gathered form the time it took to decrypt and deserialize
different messages.

Variable Message type
Laser TF Costmap Footprint

Decryption
Mean (µ) [ms] 0.333 0.252 0.242 0.299

Standard deviation (σ) [ms] 0.023 0.007 0.042 0.023
Deserialization

Mean (µ) [ms] 0.066 0.061 0.059 0.074
Standard deviation (σ) [ms] 0.011 0.004 0.024 0.013

Total
Mean (µ) [ms] 0.40 0.313 0.301 0.373

Standard deviation (σ) [ms] 0.025 0.008 0.046 0.025
µ+ 3σ [ms] 0.475 0.337 0.439 0.448

Theoretical publishing rate limit [Hz] 2105 2967 2277 2232

3.3. Processing time versus message size
To compare message processing time to the size of the message, both message size
(x-axis) and processing time (y-axis) was plotted against each other. The semi-
transparent areas are the extrapolated standard deviation between data points.
This was done in two experiments - one where the dataset from the simulated
robot is used (Section 2.4.1, page 27), and one where the publisher publishes
messages at a controlled rate and size (Section 2.4.1, page 28).

40 Chapter 3. Results

3.3.1. Simulated robot

The results shown in Figure 3.3 is generated from data taken when simulating a
Turtlebot3 and transferring messages. These results lack the expected linearity
between message size and processing time.

Figure 3.3.: Packing time versus message size for messages used by the simulated
robot. The x-axis values corresponds to the message sizes in Table 3.1

3.3. Processing time versus message size 41

3.3.2. Controlled publisher

To get data under a more controlled environment results shown in Figure 3.4 were
gathered using a custom publisher publishing messages of varying size at 50Hz.
50Hz was chosen due to its regularity in normal operation and the fact that this
rate is very low compared to the maximum rates of the software.

In this result, we can see that the handling time increases with message size,
and that decryption and deserialization have a big standard deviation relative to
serialization and encryption. The time required to decrypt and deserialize also
increases faster than serialization and encryption, making it apparent that the
bottleneck is on the receiving end of the communication.

Figure 3.4.: Packing time versus message size at a publishing rate of 50Hz.
Custom messages were published at a rate of 50 Hz with a size varying from 1 to
10 kB at 1 kB intervals.

42 Chapter 3. Results

3.4. Maximum publishing rate versus message size
Adjusting the message size and publishing rate allowed for publishing rate bench-
marking between two domains. This was done by increasing the publishing rate
at the original domain by set intervals until the publishing rate at the goal domain
reached an apex which was lower than the original domain. The point of this apex
varies by message size, as shown in this experiment.

The setup during this experiment is of the ‘Controlled publisher’ type.

For the graphs in this section, the x-axis is the publishing rate at the original
domain where messages are taken. The y-axis is the publishing rate at the target
domain, i.e. where messages are transferred to. There would be no loss in an
ideal situation, and all the protocols and message sizes would follow a linear line.

3.4.1. Internal communication tests

The internal communication tests were conducted while transmitting messages
internally on the Bridge computer using an IP-address of ‘127.0.0.1’. Both server
and client was running on the same computer.

3.4. Maximum publishing rate versus message size 43

UDP

As shown in Figure 3.5, the maximum publishing frequency reaches its highest
rate at around 2300 Hz for 10 kB, 2950 Hz for 5 kB and 3300 Hz for 2.5 kB.

Figure 3.5.: Internal transmission of messages using UDP

44 Chapter 3. Results

TCP

As shown in Figure 3.6, the maximum publishing frequencies are slightly increased
at around 2800 Hz for 10 kB, 3400 Hz for 5 kB and 3600 Hz for 2.5 kB.

Figure 3.6.: Internal transmission of messages using TCP

3.4. Maximum publishing rate versus message size 45

3.4.2. External communication tests

The external communication tests were conducted while transmitting messages
using a router on the local network. The IP address of the server was set to its
static IP address on the network. In the case of Bluetooth, both computers were
disconnected from the local network and connected using Bluetooth. The server
and client were running on different computers.

UDP

In Figure 3.7 we see publishing rates capped at around 900 Hz for 10 kB, 1700 Hz
for 5 kB and 1950 Hz for 2.5 kB.

Figure 3.7.: Local network transmission of messages using UDP

46 Chapter 3. Results

TCP

In Figure 3.8 we again see an increase in the publishing cap at around 900 Hz for
10 kB, 1800 Hz for 5 kB and 2050 Hz for 2.5 kB.

Figure 3.8.: Local network transmission of messages using TCP

3.4. Maximum publishing rate versus message size 47

Bluetooth

In Figure 3.9, we see that relative to using the local network, Bluetooth is very
slow. Rates peaks at around 5 Hz for 10 kB, 11 Hz for 5 kB and 22 Hz for 2.5 kB.

Figure 3.9.: Wireless transmission of messages using Bluetooth

48 Chapter 3. Results

3.4.3. Summary

A summary of all the maximum publishing rates is listed in Table 3.4. Transferring
messages internally on the computer gives the highest publishing rate cap, while
local network transmissions are slightly behind. Surprisingly, TCP is marginally
better in both scenarios. Transferring using Bluetooth is slow and not suited for
real-time commands but is still useful for transmitting sensor data with a low
measuring rate.

Table 3.4.: A summary of peak publishing speeds for all message sizes and pro-
tocols.

(a) A summary of speeds with a 10kB
message.

Message size: 10 kB
Protocol Peak publishing rate [Hz]

Internal External
UDP 2300 900
TCP 2800 900

Bluetooth - 5

(b) A summary of speeds with a 5kB
message.

Message size: 5 kB
Protocol Peak publishing rate [Hz]

Internal External
UDP 2950 1800
TCP 3400 1800

Bluetooth - 11

(c) A summary of speeds with a 2.5kB
message.

Message size: 2.5 kB
Protocol Peak publishing rate [Hz]

Internal External
UDP 3300 1950
TCP 3600 2050

Bluetooth - 22

Chapter 4.

Discussion

4.1. Benchmarking

4.1.1. Measuring method

As all the areas of the code that affect the performance of the software are de-
pendent on receiving an information stream, the timing measurements had to be
taken in real-time whilst running the code. This prevented the use of function
testing, and an in-code timer had to be implemented.
import timeit
import random
Function we want to measure
def foobar(x):

randomlist = []
n = random.randint(0,30)
if len(randomlist) < x:

randomlist.append(n)
else:

return randomlist.sort()

Example of function testing:
%timeit foobar(100)

Example of a manual in-code timer:
start = timeit.default_timer()
foobar(100)
print(timeit.default_timer()-start)

This slightly affects the results, as creating a timer and writing the results to a
file while running requires some processing power. Timeit commonly runs the
function multiple times and generates both an average and standard deviation,
which in this case is done manually from the data file.

Despite this slight source of decreased performance, the expected publishing rate

50 Chapter 4. Discussion

from experiments was close to the actual measured rates.

4.1.2. Maximum publishing rates

Surprisingly, TCP was the fastest protocol to use for both internal and external
tests. This was an unexpected result, as messages using sent using TCP has an
additional handshake and buffer procedures included in its process;

TCP UDP

data_stream =
obj.connection.recv(1024)↪→

buf += data_stream
if b"_split_" not in buf:

continue
else:

buf_decoded = buf.decode()
split =

buf_decoded.split("_split_")↪→

data = split[0].encode("utf-8")
buf = split[1].encode("utf-8")

try:
if self.encrypt:

data = self.fernet.decr c
ypt(data)↪→

msg = pickle.loads(data)
if msg != None:

obj.publisher.publish(m c
sg)↪→

warn = 1
else:

continue

data, addr = obj.soc.recvfrom(self c
.BUFFER_SIZE)↪→

if self.encrypt:
data = self.fernet.decrypt(data)

msg = pickle.loads(data)
if msg != None:

obj.publisher.publish(msg)
warn = 1

else:
continue

The handshake process is automatic, while the buffer is included in the code.
As explained earlier and shown in Figure 2.9, the extra time required for buffer
processing may occur while the subscriber is processing a new message. This
would then affect the results less, as the receiving end would be waiting for a new
message instead of processing at this time if there had been no buffer.

4.2. Usability 51

4.2. Usability
The usability is rooted in how well the software can complete its task. This
includes both performance and the ability for a new user to set up the software.

4.2.1. Internal and local network transmissions

Looking at the benchmarking experiments which were done on commercially avail-
able hardware, large messages had a limit of ∼900 Hz. Messages published when
simulating a TurtleBot3 had a publishing rate of anywhere from 5 to 50 Hz, which
is well within the performance of this software.

4.2.2. Bluetooth transmission

The publishing rate could be a problem when using Bluetooth, as larger messages
had a limit of ∼5 Hz. Using Bluetooth would be most suited to low-power devices
which monitor at a low rate and is not an option for real-time control or when a
high publishing rate is required.

4.2.3. Software setup

Using the provided documentation and examples, setting up the software should
be trivial to any novice ROS2 user. ReadTheDocs documentation is included in
Appendix A.

4.3. Further work

4.3.1. Optimization of initialization message and callback
function

As the ability to serialize and encrypt messages has been implemented, the act of
creating and sending BridgeObjects from the client to the server during initial-
ization should be possible. This would save time during server initialization, but
this is not dependent on the total performance. Multiple BridgeObjects could be
defined, custom to either sending or receiving data. This would reduce their size
and customize the callback function based on protocol, making this a possible
performance improvement.

52 Chapter 4. Discussion

4.3.2. Integration of services and actions

ROS2 is not limited to using topics as the only means of communication. Two
different communication forms based on topics, services and actions, are also
available. Typically, topics are continual information streams, while services only
publish when requested. The request and answer are node-specific, meaning that
multiple nodes have access to the same service, but only the node that sent the
request gets an answer. Figure 4.1 shows two nodes connected to the same service
node.

Figure 4.1.: Two nodes connected to the same service node.

Transmitting service requests is not as simple as transmitting a message. In order
to even send a request, a service server has to be started. This server processes
the request by putting the request through a function, which returns the answer.
To transmit these messages across domains, the server or client of this stack would
have to create a service that imitates incoming requests, calls the request in the
local domain and returns the answer to the original domain.

One of the main issues to overcome is the fact that service servers and clients are
created with set ‘.srv’ messages in mind. Having a service that has no set request
or answers messages is uncommon, if at all possible. The previously explored
‘ros/domain_bridge’ package, which is similar to this stack in many ways, has
not found a solution to this issue.

Actions are built on both topics and services and therefore also pose a challenge
to transmit across domains. An action is built on one or more services with the
ability to provide constant feedback while a request is processed. Figure 4.2 shows
two nodes connected by an action.

4.3. Further work 53

Figure 4.2.: Two nodes communicating using an action.

Implementing actions should be trivial once a method to implement services has
been found.

This should be one of the main focus areas for the future of this software, as
services and actions are widely used in multiple packages and are practical in
many applications. The current workaround would be to establish two topics
where one would be dedicated to requests, and a subscriber to the requested topic
would send an answer on a response topic that is subscribed to by the original
sender.

4.3.3. Remove the need to set specific topic sockets

To establish an initial connection between the server and client, a port needs to
be specified. Without doing this, the client has no way of knowing where to send
data. However, when establishing the remaining connections, it is possible to
bind each BridgeObject to port 0. This causes an automatic port assignment to
an available port, and removes the need for the user to set the ports manually. If
this is to be done, the ports each BridgeObject binds to will have to be sent to
the client over the main server-client connection.

This is possible and brings practicality to users but requires a rework of how the
initialization procedure is performed.

4.3.4. Test the viability of low-powered devices

Utilizing low-powered computers such as Raspberry Pi could be viable, as the
transfer speeds on relatively high-performance publicly available hardware is way

54 Chapter 4. Discussion

past requirements for most topics. This should be tested further.

Chapter 5.

Conclusion

The thesis set out to create a ROS2-based stack which further improves the DDS-
based communication architecture. This was achieved by utilizing socket program-
ming combined with built-in features of ROS2 such as publishers and subscribers.
The major achievements can be itemized as follows;

• Created an open-source stack for ROS2 named ‘ros2_socket_bridge’ which
transmit topics across domains or networks. This acts as an information
bridge, enabling the creation of communication layers.

• Tested both practical and performance use of the stack, with benchmarks
testing different configurations and real-life scenarios.

• Enabled Bluetooth transmission of ROS2-style messages by additional use
of socket programming.

5.1. Comparison to ‘ros/domain_bridge’
The most comparable competitor to ‘ros2_socket_bridge’ would be
‘ros/domain_bridge’. The stacks are created with many similar goals in mind,
but have a different approach.

5.1.1. Communication method

Domain_bridge (DB) creates nodes in both domains, adds a subscriber and a
publisher to the ‘from’ and ‘to’ domain respectively, and makes the callback on
the ‘from’ domain subscriber to publish the incoming message on the ‘to’ domain.
Ros2_socket_bridge (SB) also uses nodes in different domains, but instead of
using internal ROS2-communication to transfer the messages, socket programming
is used.

56 Chapter 5. Conclusion

5.1.2. Pros and cons

ros/domain_bridge

DB uses a straightforward way of transmitting messages, utilizing the simplicity
of subscribers and publishers already existing in ROS2. With this comes a simple
setup that only requires the topic name with ‘from’ and ‘to’ domain. This is
optimal if simple internal topic transmission is the goal.

The developers of DB do not mention any tests done to explore the performance
and reliability of the stack. In addition, it is developed for the ‘Galactic’ version of
ROS2, and therefore not usable with earlier distributions. As this stack only uses
subscribers and publishers, it is a requirement that the network that is running
the bridge has multicasting enabled. This means that nodes can discover each
other on the network, not just locally on the computer.

ros2_socket_bridge

SB uses sockets as the communication driver for its transmission of topics across
domains. With this comes the ability to transmit on the local network and across
the internet and use radio waves in the form of Bluetooth. As communication be-
tween nodes happens using sockets, having multicasting enabled is not a require-
ment. The stack has been thoroughly tested in both practical and performance
use. It has been developed for the ‘Foxy’ version of ROS2, with little constrain-
ing it from being forward and backward compatible, as no significant changes are
being done to the way topics are being communicated.

Setting up SB is more extensive than DB as IP for the server is required, ports
for both the main server-client communication and each topic to be transmitted
have to be set manually, together with the message type and QoS.

5.1.3. Significance in practice

DB is simpler to set up and achieves its purpose to the user if the goal is to
transmit topics across domains on the local network. SB has more flexibility in
its practical use-cases at the cost of setup time, such as Bluetooth integration and
not being restricted to the local network.

References

[1] T. H.-J. Uhlemann, C. Lehmann, and R. Steinhilper, “The digital twin:
Realizing the cyber-physical production system for industry 4.0,” Procedia
Cirp, vol. 61, pp. 335–340, 2017.

[2] A. Gilchrist, “Introducing Industry 4.0,” in Industry 4.0, Springer, 2016,
pp. 195–215.

[3] H. Smajic and N. Wessel, “Remote Control of Large Manufacturing Plants
Using Core Elements of Industry 4.0,” in. Jan. 2018, pp. 546–551, isbn:
978-3-319-64351-9. doi: 10.1007/978-3-319-64352-6_51.

[4] “An Overview Of Distributed Control Systems (DCS),” [Online]. Avail-
able: https://www.plantautomation-technology.com/articles/an-
overview-of-distributed-control-systems-dcs (visited on 05/19/2021).

[5] Hello Industrie 4.0. 2019. [Online]. Available: https://www.kuka.com/en-
us/future-production/industrie-4-0/industrie-4-0-introduction
(visited on 05/10/2021).

[6] M. Quigley, “ROS: an open-source Robot Operating System,” in ICRA
2009, 2009.

[7] S. Macenski, F. Martín, R. White, and J. Ginés Clavero, “The Marathon
2: A Navigation System,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020. [Online]. Available: https:
//github.com/ros-planning/navigation2.

[8] “The MoveIt Motion Planning Framework for ROS 2,” [Online]. Available:
https://github.com/ros-planning/moveit2 (visited on 05/31/2021).

[9] A. Corsaro and D. Schmidt, “The Data Distribution Service | The Communi-
cation Middleware Fabric for Scalable and Extensible Systems-of-Systems,”
in. Mar. 2012, isbn: 978-953-51-0101-7. doi: 10.5772/30322.

[10] W. Woodall, ROS on DDS, 2019. [Online]. Available: https://design.
ros2.org/articles/ros_on_dds.html (visited on 03/05/2021).

[11] “Restricting communication between robots,” [Online]. Available: https://
discourse.ros.org/t/restricting-communication-between-robots/
2931 (visited on 02/12/2021).

https://doi.org/10.1007/978-3-319-64352-6_51
https://www.plantautomation-technology.com/articles/an-overview-of-distributed-control-systems-dcs
https://www.plantautomation-technology.com/articles/an-overview-of-distributed-control-systems-dcs
https://www.kuka.com/en-us/future-production/industrie-4-0/industrie-4-0-introduction
https://www.kuka.com/en-us/future-production/industrie-4-0/industrie-4-0-introduction
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/moveit2
https://doi.org/10.5772/30322
https://design.ros2.org/articles/ros_on_dds.html
https://design.ros2.org/articles/ros_on_dds.html
https://discourse.ros.org/t/restricting-communication-between-robots/2931
https://discourse.ros.org/t/restricting-communication-between-robots/2931
https://discourse.ros.org/t/restricting-communication-between-robots/2931

58 References

[12] G. Pardo-Castellote, “OMGData-Distribution Service: architectural overview,”
in 23rd International Conference on Distributed Computing Systems Work-
shops, 2003. Proceedings., 2003, pp. 200–206. doi: 10.1109/ICDCSW.2003.
1203555.

[13] E. Erős, M. Dahl, K. Bengtsson, A. Hanna, and P. Falkman, “A ros2 based
communication architecture for control in collaborative and intelligent au-
tomation systems,” Procedia Manufacturing, vol. 38, pp. 349–357, 2019.

[14] M. Dahl, K. Bengtsson, P. Bergagard, M. Fabian, and P. Falkman, “se-
quence planner: Supporting integrated virtual preparation and commission-
ing,” pp. 5818–5823, Jul. 2017.

[15] K. E. Foltz and W. R. Simpson, “Enterprise considerations for ports and
protocols,” JSTOR, Tech. Rep., 2016.

[16] L. Chappell, “Inside the TCP handshake,” NetWare Connection, 2000.
[17] R. Saha, TELECOMMUNICATIONS ENGINEERING - Technical Note.

Jul. 2016.
[18] Programming Python: Powerful object-oriented programming.
[19] E. Sangaline. “Dangerous Pickles — Malicious Python Serialization,” [On-

line]. Available: https://www.networkworld.com/article/2224213/why-
the--trombone--effect-is-problematic-for-enterprise-internet-
access.html (visited on 05/25/2021).

[20] S. Bray, Implementing Cryptography Using Python, 1st ed. Wiley, 2020,
isbn: 1119612209,9781119612209.

[21] N. Verma, M. kashyap, and A. Jha, “Extending Port Forwarding Concept to
IoT,” in 2018 International Conference on Advances in Computing, Com-
munication Control and Networking (ICACCCN), 2018, pp. 37–42. doi:
10.1109/ICACCCN.2018.8748430.

[22] A. Gottlieb. “Why the ’trombone’ effect is problematic for Enterprise In-
ternet access,” [Online]. Available: https : / / www . networkworld . com /
article/2224213/why-the--trombone--effect-is-problematic-for-
enterprise-internet-access.html (visited on 05/24/2021).

[23] E. J. Weyuker and F. I. Vokolos, “Experience with performance testing of
software systems: issues, an approach, and case study,” IEEE transactions
on software engineering, vol. 26, no. 12, pp. 1147–1156, 2000.

[24] E. W. Grafarend, Linear and nonlinear models: fixed effects, random effects,
and mixed models. de Gruyter, 2006.

https://doi.org/10.1109/ICDCSW.2003.1203555
https://doi.org/10.1109/ICDCSW.2003.1203555
https://www.networkworld.com/article/2224213/why-the--trombone--effect-is-problematic-for-enterprise-internet-access.html
https://www.networkworld.com/article/2224213/why-the--trombone--effect-is-problematic-for-enterprise-internet-access.html
https://www.networkworld.com/article/2224213/why-the--trombone--effect-is-problematic-for-enterprise-internet-access.html
https://doi.org/10.1109/ICACCCN.2018.8748430
https://www.networkworld.com/article/2224213/why-the--trombone--effect-is-problematic-for-enterprise-internet-access.html
https://www.networkworld.com/article/2224213/why-the--trombone--effect-is-problematic-for-enterprise-internet-access.html
https://www.networkworld.com/article/2224213/why-the--trombone--effect-is-problematic-for-enterprise-internet-access.html

Appendix A.

ReadTheDocs

A.1. Front Page

A.2. Quick-start guide

A.3. Internal workings

A.4. Testing and benchmaking

A.5. License

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

ge
ni

ør
vi

te
ns

ka
p

In
st

itu
tt

 fo
r m

as
ki

nt
ek

ni
kk

 o
g

pr
od

uk
sj

on

Morten Melby Dahl

Expanding the ROS2 communication
architecture.

Data bridging by utilization of network sockets.

Masteroppgave i Produktutvikling og Produksjon
Veileder: Lars Tingelstad

Juni 2021M
as
te
ro
pp

ga
ve

	Preface
	Summary
	Sammendrag
	Introduction
	Control systems in Industry 4.0
	Robotics vendors and factory connectivity
	ROS2
	Data Distribution Service
	RTPS protocol
	ROS2 implementation of DDS

	Problem introduction
	Related work
	A ROS2 based communication architecture for control in collaborative and intelligent automation systems
	Robotics Middleware Framework
	Free_fleet
	ros2/domain_bridge

	Problem definition

	Method
	Design considerations
	Topic visibility restrictions
	Network security
	Adaptability

	Development
	Version 1 - Primitive robot-specific server-client program
	Version 2 - Over-advanced topic streaming setup
	Version 3 - Generalized version with serializer and cryptography
	Version 4 - Unproven working program
	Version 5 - Proven working program
	Version 6 - Improved program with shutdown handling and Bluetooth

	Software architecture
	User setup
	Server-client relationship
	Connection modes
	Encryption key generation
	Bluetooth channel checker

	Performance experiments
	Setup
	Performance considerations
	Result interpretation

	Results
	Robot simulation dataset
	Message processing time
	Serialization and encryption
	Decryption and deserialization

	Processing time versus message size
	Simulated robot
	Controlled publisher

	Maximum publishing rate versus message size
	Internal communication tests
	External communication tests
	Summary

	Discussion
	Benchmarking
	Measuring method
	Maximum publishing rates

	Usability
	Internal and local network transmissions
	Bluetooth transmission
	Software setup

	Further work
	Optimization of initialization message and callback function
	Integration of services and actions
	Remove the need to set specific topic sockets
	Test the viability of low-powered devices

	Conclusion
	Comparison to `ros/domain_bridge'
	Communication method
	Pros and cons
	Significance in practice

	ReadTheDocs
	Front Page
	Quick-start guide
	Internal workings
	Testing and benchmaking
	License

