
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Thea H
olm

edal
Im

plem
enting robotic offline program

m
ing w

ith the Yaskaw
a M

otom
an G

P25-12

Thea Holmedal

Implementing robotic offline
programming with the Yaskawa
Motoman GP25-12

Master’s thesis in Mechanical Engineering
Supervisor: Lars Tingelstad

June 2021M
as

te
r’s

 th
es

is

Thea Holmedal

Implementing robotic offline
programming with the Yaskawa
Motoman GP25-12

Master’s thesis in Mechanical Engineering
Supervisor: Lars Tingelstad
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Preface

This Master´s thesis represents the concluding work of a five-year integrated mas-
ter degree at The Department of Mechanical and Industrial Engineering, with a
specialization within Robotics and Automation. This thesis has been developed
during spring 2021, while it reflects this final year in total, incorporating insight
obtained during the fall of 2020 as well.

The robotic laboratory at Perleporten, NTNU, has been a vital part of this project.
I want to thank NTNU for providing such excellent facilities, allowing their stu-
dents to experiment and test the theory in practice.

I want to express my gratitude to my supervisor Lars Tingelstad for allowing me to
explore robotic offline programming with his guidance, knowledge, and patience.
I would also like to thank Vebjørn Bergsholm Bjørhovde for the many valuable
discussions we had throughout the semester.

Lastly, I want to thank my fellow students on the 5th floor at Perleporten. With
COVID-19 and the circumstances being what they are, the positive and light-
spirited environment has been invaluable.

Summary

The manufacturing industry is changing. Products are being produced faster,
demands are changing faster, and personalized items are desired. This is enabled
by, e.g., cyber-physical systems, the Internet of Things, machine learning, and
artificial intelligence, and represents such a significant era that it is being referred
to as the fourth industrial revolution, or, Industry 4.0

Industry 4.0 differs from Industry 3.0 with how systems are digitally connected and
can share and receive information constantly. The ultimate goal is autonomous
systems capable of making decisions based on the received information.

A major challenge lies within making the existing infrastructure and systems inter-
operable, where the open platform communication OPC UA has been suggested
as the solution. While the OPC UA protocol may solve the problem of inter-
operability, the automation industry is faced with a different problem; the rapid
change in demand.

Robotic automation was a vital part of Industry 3.0 as it enabled mass-production,
providing an efficiency not possible to achieve with human labour. However,
the new demands introduced with Industry 4.0 requires a change in the robotic
automation industry; it must adapt to a high-mix, low-volume production.

Robots are mainly programmed in two ways; online or offline. Online program-
ming directly involves the robot while programming and therefore requires pro-
duction to stop. Robotic offline programming is a method for programming robots
from a computer, allowing for production to continue. The reduction in produc-
tion downtime is an invaluable advantage with offline programming, which es-
sentially enables production compatible with the requirements posed by Industry
4.0.

This thesis concerns the implementation of offline programming with the robot
manipulator Yaskawa Motoman GP25-12. The simulation software Visual Com-
ponents was used to design a digital representation of the robot cell at Perleporten
and program a trajectory to be sent to the physical robot. An OPC UA server
was developed in order to communicate with the simulation software. The third
and final software implemented was the Moto library, used to communicate with

iv Summary

the robot controller.

Two methods of implementation were developed. The first method incorporates
all three software components in one Python script that allows for sending tra-
jectory points directly to the robot controller from Visual Components while the
simulation is running. The second method writes trajectory points from sim-
ulation to file, where a separate Python script was developed for sending the
trajectory points to the robot controller. The success of the first method proved
difficult to analyze as it, with the suggested solution, was not possible to obtain
joint feedback from the physical robot.

The success of the second method was examined by comparing the trajectory from
simulation with the trajectory performed by the physical robot. Different configu-
rations within the scripts were tested. The best result displayed minor deviations
between the offline programmed trajectory and the trajectory performed by the
physical robot.

The thesis has shown that the implementation of offline programming with the
Yaskawa Motoman GP25-12 is possible. However, the suggested solutions need
modifications. Further work includes solving the issue of speed in the script en-
countered when sending trajectory points to the robot controller and the require-
ment for the physical robot to be in its zero position before receiving trajectory
points.

Sammendrag

Produksjonsindustrien er i endring. Produkter produseres raskere, etterspørsel
endres raskere og tilpassede varer er ettertraktet. Dette er muliggjort av for
eksempel cyber-fysiske systemer, tingenes internett, maskinlæring og kunstig in-
telligens, og representerer en så betydelig epoke at den blir referert til som den
fjerde industrielle revolusjonen, eller Industri 4.0

Industri 4.0 skiller seg fra Industri 3.0 med hvordan systemer er koblet digitalt
og kontinuerlig kan dele og motta informasjon. Det endelige målet er autonome
systemer som er i stand til å ta beslutninger basert på mottatt informasjon.

En stor utfordring ligger i det å gjøre eksisterende infrastruktur og systemer in-
teroperable, der kommunikasjonsprotokollen OPC UA er blitt foreslått som løs-
ningen. Mens OPC UA protokollen kan løse problemet med interoperabilitet,
står automatiseringsindustrien overfor et annet problem; den raske endringen i
etterspørsel.

Robotautomatisering var en viktig del av Industri 3.0, da den muliggjorde masse-
produksjon, og ga en effektivitet som ikke var mulig å oppnå med menneskelig
arbeidskraft. Imidlertid krever endringen i etterspørsel, introdusert med Industri
4.0, at robotindustrien tilpasser seg; den må kunne implementeres i produksjon
med stor ending og lavt volum.

Roboter er hovedsakelig programmert på to måter; online eller offline. Online pro-
grammering involverer roboten direkte mens den programmeres, og krever derfor
at produksjonen stopper. Offline programmering er en metode for programmering
av roboter fra en datamaskin, slik at produksjonen kan fortsette. Reduksjonen i
nedetid for produksjonen er en uvurderlig fordel med offline programmering, som
i hovedsak muliggjør produksjon som er kompatibel med kravene fra Industry 4.0.

Denne oppgaven gjelder implementering av offline programmering med robot ma-
nipulatoren Yaskawa Motoman GP25-12. Simuleringsverktøyet Visual Compo-
nents ble brukt til å designe en digital representasjon av robotcellen på Perleporten
og for å programmere en bane som skulle implementeres med den fysiske roboten.
En OPC UA-server ble utviklet for å kommunisere med simuleringsverktøyet. Den
tredje og siste programvaren som ble implementert var Moto-biblioteket, brukt til

vi Sammendrag

å kommunisere med robotkontrolleren.

To implementeringsmetoder ble utviklet. Den første metoden inneholder alle de
tre komponentene i ett Python-skript som gjør det mulig å sende banepunkter
direkte til robotkontrolleren fra Visual Components mens simuleringen kjører.
Den andre metoden skriver banepunkter fra simulering til fil, hvor det ble utviklet
et eget Python-skript for å sende banepunktene til robotkontrolleren. Hvorvidt
den første metoden var suksessfull eller ikke, viste seg vanskelig å analysere da det
med den foreslåtte løsningen, ikke var mulig å lese leddposisjonene til den fysiske
roboten mens den beveget seg.

Suksessen til den andre metoden ble undersøkt ved å sammenligne banen fra
simulering med banen som ble utført av den fysiske roboten. Ulike konfigurasjoner
i skriptene ble testet. Det beste resultatet viste mindre avvik mellom den offline-
programmerte banen og banen som ble utført av den fysiske roboten.

Oppgaven har vist at implementering av offline programmering med Yaskawa Mo-
toman GP25-12 er mulig. Imidlertid trenger de foreslåtte løsningene forbedringer.
Videre arbeid inkluderer å løse spørsmålet om hastighet i skriptet man opplever
når man sender banepunkter til robotkontrolleren, og kravet om at den fysiske
roboten skal være i sin nullposisjon før den mottar banepunkter.

Contents

Preface i

Summary iii

Sammendrag v

1. Introduction 1
1.1. Objectives . 1
1.2. Outline of thesis . 2

2. Robot kinematics 3
2.1. Rotation and translation matrices 3
2.2. Robot kinematics . 8
2.3. Path and trajectory . 9
2.4. Forward kinematics . 11

2.4.1. Denavit-Hartenberg . 11
2.4.2. Product of Exponentials . 12

2.5. Inverse kinematics . 14
2.5.1. Analytical inverse kinematics 14
2.5.2. Numerical inverse kinematics 15

2.6. Velocity kinematics . 15
2.7. Singularities . 18
2.8. Kinematically redundant . 18

3. Aspects of the industry supporting robotic offline programming 19
3.1. Industry 4.0 . 19

3.1.1. Before Open Protocol Communications 21
3.1.2. OPC Classic . 22
3.1.3. OPC Unified Architecture 23

3.2. Robot Programming . 25
3.3. Simulation Software . 29

3.3.1. Manufacturer-dependent software 30
3.3.2. Manufacturer-independent software 31

viii Contents

4. System Description of Robot Cell at NTNU 35
4.1. Industrial robot controller . 35
4.2. Robot Software . 37
4.3. The robot manipulator . 38

4.3.1. Kinematic calculations . 39
4.4. Welding equipment . 43
4.5. Welding cell enclosure . 44

5. Development of the suggested solutions 45
5.1. Installations . 46
5.2. Virtual robot cell . 47
5.3. Testing the OPC UA communication 48
5.4. Offline programming from simulation to server 51

5.4.1. Developing the OPC UA server 52
5.4.2. Developing script for implementing OLP with robot controller 54

5.5. Testing of the finalized versions . 56
5.5.1. Sending position vectors directly to robot controller 56
5.5.2. Sending position vectors to robot controller from file 57

6. Results 59
6.1. Results from testing OPC UA server without constraints 59
6.2. Results from sending trajectory directly from Visual Components

to the robot controller . 60
6.3. Results from sending trajectory to file and then to robot controller 60
6.4. Checking the accuracy . 64

7. Discussion 67

8. Conclusion 73
8.1. Further Work . 74

A. System description of robot cell and Python code 81
A.1. Fronius TPS 400i . 81
A.2. Yaskawa Motoman GP25-12 . 81
A.3. Python script for calculating robot kinematics 84

B. Testing OPC UA connection 89

C. The finalized Python scripts 93
C.1. first attempt at sending trajectory points to robot controller 93
C.2. Python script for reading from simulation and writing to robot

controller simultaneously . 97
C.3. OPC UA server writing trajectory from simulation to file 101

Contents ix

C.4. Final script for sending trajectory from file to robot controller . . . 104

List of Figures

2.1. Three frames {s}, {b}, and {c} with different orientations. Adapted
from [2] . 4

2.2. Frames {s}, {b}, and {c} with different positions and orientations
relative to each other. Adapted from [2] 7

2.3. Simple illustration comparing forward kinematics and inverse kine-
matics. Adapted from [6] . 9

2.4. Non-linear slope defined by four way-points [8] 10

3.1. The four industrial revolutions [15] 20
3.2. Illustration of Industry 4.0 [16] . 20
3.3. OPC client-server [20] . 22
3.4. Information model structure [22] 25
3.5. Example of simple path with half circle movement. Adapted from:

[29] . 26
3.6. Illustration of repeatability and accuracy plotted against each other

[43] . 30
3.7. The stages of offline programming illustrated by Visual Compo-

nents [59] . 33

4.1. Yaskawa Motoman GP25-12 with welding equipment as installed
at Perleporten . 36

4.2. Controller and programming pendant 37
4.3. Simplified sketch of Yaskawa GP25-12 in its zero-position 39
4.4. Close-up of wrist and the attached welding gun 41
4.5. Image a) displays the Fronius TSP 400i and image b) the wire

feeding system . 43
4.6. Welding cell with enclosure . 44

5.1. Components in project . 46
5.2. Digital representation of robot cell 47
5.3. Physical robot cell . 48
5.4. Successful connection to robot controller through Ubuntu. Servos

and trajectory mode started . 50

xii List of Figures

5.5. Pairing joint variable S from server to simulation in Visual Com-
ponents . 50

5.6. Top image displays the joint positions read from the physical robot
and sent to Visual Components, and the bottom image displays the
joint positions of the simulated robot corresponding to the ones of
the physical robot . 51

5.7. Tenth position vector written to file (left) corresponding to the joint
angles of the first trajectory point in Visual Components (right) . 53

5.8. Simplified digital cell for testing simulation to server and server to
simulation simultaneously . 57

5.9. Paired variables from simulation to server and from server to sim-
ulation . 57

6.1. The red line illustrates the programmed trajectory in Visual Com-
ponents, while the blue line illustrates the trajectory written to file
without constraints in the server 60

6.2. Result obtained with “time” = 2, and sleep after each trajectory
point sent to the robot equal to 0.3 61

6.3. Result obtained with “time” = 2, and sleep after each trajectory
point sent to the robot equal to 0.1 61

6.4. Result obtained with “time” = 2, and sleep after each trajectory
point sent to the robot equal to 0.2 62

6.5. Result obtained with “time” = 5, and sleep after each trajectory
point sent to the robot equal to 0.2 62

6.6. Result obtained with “time” = 5, and sleep after each trajectory
point sent to the robot equal to 0.3 63

6.7. Result obtained with “time” = 5, and sleep after each trajectory
point sent to the robot equal to 0.4 63

6.8. Result obtained when sending the same trajectory file to the robot
controller five consecutive times. Labels 1-5 represent test 1-5,
respectively . 64

6.9. Figure 6.8 zoomed in on areas with small discrepancies between the
five consecutive tests. Labels 1-5 represent test 1-5, respectively . . 65

A.1. Description of Yaskawa Motoman GP25-12. Source: [74] 82

List of Tables

2.1. Example set-up of table with Denavit-Hartenberg parameters, where
subscript x is some value between zero and n 12

3.1. Instructions required to achieve path as shown in Figure 3.5. Adapted
from: [29] . 26

3.2. Summary of key features with manufacturer-dependent simulation
software [49], [50], [51], [52], [53], [54] 32

3.3. Summary of key features with manufacturer-independent simula-
tion software [61], [62], [63], [64], [65] 34

4.1. Vectors ωi and vi for i=1 to 6 for Yaskawa GP25-12 represented in
space form . 41

4.2. Vectors ωi and vi for i=1 to 6 for Yaskawa GP25-12 represented in
body form . 41

6.1. Largest difference recorded for each joint in five consecutive tests.
All values are in radians . 65

6.2. Comparison of the simulated trajectory and the feedback from
physical robot in Figure 6.5. The values are in radians and given
in absolute value . 65

6.3. Comparison of the simulated trajectory and the feedback from
physical robot in Figure 6.7. The values are in radians and given
in absolute value . 66

A.1. Technical data for TPS 400i [73] 81
A.2. Specifications for Yaskawa Motoman GP25-12 part 1 [74] 83
A.3. Specifications for Yaskawa Motoman GP25-12 part 2 [74] 83

Chapter 1.

Introduction

The subject of this report is robotic offline programming. More specifically, the
implementation of offline programming with the robot manipulator Yaskawa Mo-
toman GP25-12. Robotic offline programming is a method that differs from tra-
ditional online programming in that the teach-pendant is replaced by an external
computer. This entails that the work environment is moved from the factory floor
to wherever; the physical robot is no longer required in the programming phase.

With Industry 4.0, robotic offline programming is more relevant than ever. The
reader will be introduced to aspects of the industry supporting the implementa-
tion of robotic offline programming, as Industry 4.0, the OPC UA protocol, and
different simulation software. Robot programming will also be described. A sys-
tem description of the robot cell installed at Perleporten is presented, including
a Python library named Moto, developed by supervisor Lars Tingelstad, allow-
ing for communication with the robot controller. The process of developing and
implementing a solution for offline programming with the Yaskawa GP25-12 is
presented in detail.

1.1. Objectives
The main goal for this project, as stated above, is to implement offline program-
ming with the robot manipualtor Yaskawa Motoman GP25-12. The report has
four objectives, listed below.

• Present and assess aspects of the industry that supports the implementation
of robotic offline programming

• Create a digital representation of the robot cell at Perleporten, using Visual
Components Premium 4.3

2 Chapter 1. Introduction

• Develop a solution for offline programming that incorporates Visual Com-
ponents, OPC UA, and the Moto library

• Examine the potential discrepancies between the offline programmed trajec-
tory and the trajectory performed by the Yaskawa GP25-12.

1.2. Outline of thesis
The report is structured as follows; Chapter 2 presents the kinematics of a robot
manipulator. Chapter 3 presents a aspects of the industry supporting the imple-
mentation of offline programming. Chapter 4 and 5 are specific to this project,
and presents the robot cell at Perleporten, NTNU, and the process of developing
and implementing the solutions, respectively. Chapter 6, 7, and 8 presents the
obtained results, a discussion of the theory presented and the results, and finally
a conclusion and further work.

Chapter 2.

Robot kinematics

This chapter aims to provide the reader with a basic understanding of a robot
manipulator; more specifically, “Robot Kinematics” is explained. The reader will
be introduced to both forward- and inverse kinematics, as well as other important
concepts such as velocity kinematics, singularities, and redundancy. With an
understanding of all these concepts, one is able to both plan and control the
movement of a robot manipulator. Industrial robots with six degrees of freedom
will be the main focus in this chapter, as such robots are the topic of the successive
chapters. The chapter is gathered from the project thesis provided in the digital
appendix with this report [1], while Section is new 2.3.

2.1. Rotation and translation matrices
Before introducing robot kinematics, two important matrices will be presented;
the rotation matrix and the translation matrix. These matrices are essential when
describing motions. To explain the concept of rotation matrices, consider first two
frames; a space frame {s} and a body frame {b} which is rotated 90 degrees about
the zs axis, as shown in Figure 2.1. The orientation of the body frame {b} with
respect to the space frame {s} can be described by the vectors xb = (0,1,0), yb =
(-1,0,0) and zb = (0,0,1). These vectors can be represented in a rotation matrix
denoted Rsb as

Rsb =
[
xb yb zb

]
=

0 −1 0
1 0 0
0 0 1

 . (2.1)

The subscript “sb” represent the reference frame, {s} in this case, and the frame to

4 Chapter 2. Robot kinematics

be transformed with respect to the reference frame, {b} in this case, respectively.
The set of all 3 × 3 rotational matrices is called “The special orthogonal group
SO(3)”. The rotational matrices R ∈ SO(3) are subjected to two conditions; (i)
RTR = I and (ii) det R = 1 [2].

Figure 2.1.: Three frames {s}, {b}, and {c} with different orientations. Adapted
from [2]

The rotation matrix in Equation (2.1) contains nine elements, but the space de-
scribing an orientation is three dimensional [2]. The elements of the rotation
matrix are subjected to six constraints, summarised in condition (i) described
above. This condition states that the matrix R must be orthogonal. An n × n
matrix R is orthogonal if the relationship RTR = I holds, RT and I being the
matrix R transposed and the identity matrix, respectively [3]. Condition (ii) con-
tains the “special” case of the SO(3) group. Whereas condition (i) ensures det R
= ±1, condition (ii) states that the determinant of all matrices R must be equal to
+1. This implies the use of the right-hand rule to determine positive and negative
rotation about an axis.

Rotation matrices are commonly used for three purposes [2], the first one being to
represent an orientation. Referring to Figure 2.1 and Equation (2.1), the rotation
matrix Rsb represents the orientation of the body frame {b} with respect to the
space frame {s}. A second way to take advantage of the rotation matrix is to
change reference frame. Imagine a third frame, {c}, with a different orientation
than {s} and {b}, as shown in Figure 2.1. Suppose one wants to express the {b}
frame in {c} coordinates, as opposed to {s} coordinates. The rotation matrix Rcb
can then be found by the following matrix multiplication Rcb = Rcs Rsb, due to
a cancellation principle: if the second subscript of the first matrix and the first
subscript of the second matrix are equal, these cancel each other.

The third way to utilize the properties of the rotation matrix is to rotate a vector
or a frame. Again, referring to Figure 2.1, by studying frame {b} with respect to
frame {s} one can see that the former is obtained from the latter by a rotation
of 90 degrees about zs. This can be expressed as Rsb = R = Rot(z, 90°). This
rotation matrix can be used in pre- and post-multiplications to rotate any frame.

2.1. Rotation and translation matrices 5

Say Rsc represents the orientation of frame {c} in {s} coordinates. If one pre-
multiplies this matrix by the rotation operator R = Rot(z, 90°), frame {c} would
be rotated about the z axis corresponding to the first element in the subscript
of Rsc, zs in this case. The rotated frame can be represented as Rsc′ = R Rsc,
still expressed in {s} coordinates. For post-multiplication, the rotation about the
z axis would correspond to the last element in the subscript of Rsc; zc, and the
rotated frame becomes Rsc′′ = Rsc R, also still expressed in {s} coordinates [2].

The angular velocity of frame {b} expressed in {s} can be represented by a unit
vector, ω̂s, and the speed of rotation about it, θ̇. The angular velocity is given as
ωs = ω̂s θ̇. Further, the linear velocities of the axes of frame {b} are all a function
of the angular velocity and the respective axes:

ẋb = ωs × xb, (2.2)
ẏb = ωs × yb, (2.3)
żb = ωs × zb . (2.4)

An important concept called the “skew-symmetric matrix” simplifies the math-
ematical computations involving cross-product of vectors. Say x = [x1x2x3]T ∈
R3. One can define a 3 × 3 skew-symmetric matrix representation of x, denoted
[x], which satisfies [x] = -[x]T. The set of all these 3× 3 skew-symmetric matrices
is called so(3) [2]. The skew-symmetric matrix [x] is expressed as

[x] =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (2.5)

The rotation matrix R usually refers to an orientation of the body frame relative
to the space frame, so the subscript can be excluded. Therefore, by applying the
notation of a skew-symmetric matrix explained above, a general expression for
the relationship between Ṙsb and the angular velocity, ωs, can be expressed as

Ṙ =
[
ẋ ẏ ż

]
= [ωs]R. (2.6)

6 Chapter 2. Robot kinematics

From the equations above, one can deduce the following relations:

ωb = R−1ωs = RTωs [ωb] = R−1Ṙ = RTṘ

ωs = Rωb [ωs] = ṘR−1 = ṘRT

In order to describe a motion consisting of both rotation and translation, yet an-
other group is required; the special Euclidean group SE(3). The special Euclidean
group is also known as the group of homogeneous transformation matrices T in
R3. The set of all these 4×4 transformation matrices T is called SE(3). The
transformation matrix T is found as

T =
[
R p
0 1

]
=


r11 r12 r13 p1
r21 r22 r23 p2
r31 r32 r33 p3
0 0 0 1

 , (2.7)

where R ∈ SO(3) and the column vector p is in R3 [2].

The R matrix in Equation (2.7) above is the rotation matrix presented earlier in
this chapter. The vector p describes the position of the origin of the frame to be
represented relative to the reference frame[2]. The last row of the transformation
matrix is added for computational simplicity. Just as with the rotation matrix R,
the transformation matrix T has three common applications, the first one being
to represent a configuration. Referring to Figure 2.2, frame {b} is rotated by some
rotation matrix Rsb relative to the space frame {s}, and translated by a vector
p. The transformation matrix T representing frame {b} relative to frame {s} is
found as

Tsb =
[
Rsb p1
0 1

]
. (2.8)

The second application for the transformation matrix is to change reference frame.
This is analogous to changing the reference frame with a rotation matrix. Refer-
ring to Figure 2.2, if we know the transformation matrices Tsb, calculated with
Rsb and p1, and Tbc calculated with Rbc and p2, the transformation matrix repre-
senting frame {c} relative to frame {s} can be found as Tsc = Tsb Tbc.

The third way to utilize the transformation matrix is to displace a vector or a
frame. Any given configuration can be achieved by first translating and then

2.1. Rotation and translation matrices 7

Figure 2.2.: Frames {s}, {b}, and {c} with different positions and orientations
relative to each other. Adapted from [2]

rotating a frame. Mathematically, this can be expressed as

T = Trans(p) Rot(ω̂, θ) =


1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1




0
e[ω̂]θ 0

0
0 0 0 1

 . (2.9)

Referring to frames {s} and {b} in Figure 2.2, the transformation matrix rep-
resenting frame {b} relative to frame {s} is given as Tsb, and the displacement
can be found by either pre- or post-multiplying the transformation matrix Tsb
with T (2.9). Whether the variables p and ω̂ in Equation (2.9) are expressed in
{s} or {b} depends on the order of the multiplication. When pre-multiplying,
TTsb, both p and ω̂ are expressed in {s}. This implies a rotation about the axis
represented by ω̂, followed by a translation defined by p, both in the {s} frame.
When post-multiplying, TsbT , both p and ω̂ are expressed in {b}. This implies a
translation defined by p followed by a rotation about the axis represented by ω̂,
both in the {b} frame.

The 4× 4 rotation matrix Rot(ω̂, θ) in Equation (2.9) contains an element e[ω̂]θ ∈
SO(3). This is the so-called “matrix exponential” which is defined as follows:

Rot(ω̂, θ) = e[ω̂]θ = I + sin θ[ω̂] + (1− cos θ)[ω̂]2 ∈ SO(3). (2.10)

An analogous representation for the transformation matrix in SE(3) is given as

8 Chapter 2. Robot kinematics

T = e[S]θ =
[
e[ω]θ (Iθ + (1− cos θ[ω]) + (1− sin θ)[ω]2)v

0 1

]
, (2.11)

for ||ω|| = 1, and for ω = 0 and ||v|| = 1 the expression becomes

T = e[S]θ =
[
I vθ
0 1

]
. (2.12)

2.2. Robot kinematics
A robot manipulator consists of n joints connected by n+1 links, where actuators
provide motive power allowing the links to move. The number of movable joints
determines the robots degree of freedom, DOF, where at least six DOF is required
in order to fully describe an objects position in space [4]. Further, the number
of joints determines the dimension of the configuration space, which contains all
possible configurations of the robot. A robot with six DOF, implies a configuration
space of dimension six. The task-, also called cartesian space of a robot, is where
the task to be performed is expressed, and its dimension is determined by the
number of variables required to describe the position of the end-effector. For a
six DOF robot, the position and orientation of the end-effector is described by
the coordinate system {x,y,z} and the rotation around each of the axes, often
referred to as roll, pitch, and yaw. This implies a task space of dimension six.
In fact, the dimension of the task space can not be higher than six, whereas
the dimension of the configuration space can. However, if the dimension of the
configuration space is greater than the dimension of the task space, the robot is
said to be redundant. Redundancy is explained in Section 2.8. Whereas the task
space expresses the tasks of a robot´s end-effector, the workspace specifies all the
possible configurations of the end-effector [2].

Robot kinematics is a crucial tool in both understanding and controlling the
motion of a robot. The kinematic model is used to describe the robot´s motion,
excluding the forces required to achieve these motions [5]. Within kinematics,
one differs between forwards- and inverse kinematics. While forward kinematics
uses known information about the joint angles to calculate the position of the end-
effector, inverse kinematics calculates the joint angles based on the desired position
of the end-effector. A simple sketch is shown in Figure 2.3 to illustrate the concept.
Forward kinematics problems are quite straight-forward to calculate, while inverse
kinematics offers much more complex and time-consuming calculations.

2.3. Path and trajectory 9

Figure 2.3.: Simple illustration comparing forward kinematics and inverse kine-
matics. Adapted from [6]

2.3. Path and trajectory
The words´ path and trajectory are important concepts in robotics, used to de-
scribe the movement of a robot. Even though they both refer to the same concept,
movement, they describe the movement differently and must therefore be used
correctly.

When talking about the path of a robot, one refers to a movement from A to B
defined by a set of points. It is a spatial construct that describes the movement [7].
Not described by the path is the speed at which the robot is to execute its motion
from A to B; there is no notion of time. A trajectory describes the path and the
speed at which the robot is to move from A to B. There are different ways of
generating trajectories.

One method is to use a so-called quintic polynomial with six coefficients, defined
as

S(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F , t ∈ [0, T]. (2.13)

This permits one to specify six constraints; the initial and final position, denoted
s0 and sT , the initial and final velocity, ṡ0 and ṡT , and the initial and final
acceleration, s̈0 and s̈T . However, one problem with this method is that motor
performance is wasted as the peak velocity is almost double the average velocity.

Another method is the trapezoidal trajectory. This is more efficient than the for-
mer and is characterized by an acceleration phase, followed by a constant velocity,
before finally a deceleration phase. One small problem with this trajectory gener-
ation method is that the acceleration is discontinuous, however, it is widely used
in robotics.

The path of a robot can be simply a straight line, or many consecutive straight
lines, resulting in a non-linear slope [8]. Each of these linear segments are defined
by so-called “via points” or “way points”. For the robot to follow such a path with
complete precision, it would have to come to a complete stop at each via point.

10 Chapter 2. Robot kinematics

Figure 2.4.: Non-linear slope defined by four way-points [8]

This is due to the fact that robots have nonzero mass and also the forces that
can be applied are finite, which means that the robot is incapable of changing
its direction of motion instantaneously. In order to achieve continuity, so-called
parabolic blends can be added. These blends are shown in Figure 2.4 as continuous
curved segments near each via point. The time tb2 “containing” via point q2 is
called the acceleration period, in which there is a transition from the velocity
from the previous via point, q1, to the velocity towards the following via point,
q3. As can be seen in the figure, the continuous slope is not actually getting to
the via points. There is a trade-off between accuracy and acceleration [7]. A high
acceleration leads to a small tb2, which allows for the trajectory to get close to the
via point. A low acceleration leads to a high tb2, but a larger position error from
the via point.

Another way is through interpolation:

x(s) = (1− s)x0 + sx1 , s ∈ [0, 1]. (2.14)

This method takes in a scalar value, s, that varies between 0 and 1, where x(0)
gives the initial value and x(1) gives the final value. Here, x can be a vector or a
smooth function of time if s is that. However, this method is not applicable for

2.4. Forward kinematics 11

rotation matrices.

Rotation matrices are orthogonal matrices, explained in Section 2.1. Adding two
orthogonal matrices does not result in an orthogonal matrix [7]. However, since
x can be a vector, one can convert the rotation matrix to a vector Γ,

Γ(s) = (1− s)Γ0 + sΓ1 , s ∈ [0, 1], (2.15)

containing a set of angles, represented as Euler angles or roll-pitch-yaw angles.
However, interpolating angles requires one to take into account the direction, as
there will be two ways to get from A to B.

2.4. Forward kinematics
Using known information about the joint angles of the robot to calculate the po-
sition and orientation of the end-effector is called forward kinematics. As the
variables in the equations are known, forward kinematics always yields a solution,
and the solution is unique. There are two main methods for calculating the for-
ward kinematics for a given robot manipulator; Denavit-Hartenberg and Product
of Exponentials [2].

2.4.1. Denavit-Hartenberg
There exists two versions of the Denavit-Hartenberg method, the one described
in this section is the so-called “Modified Denavit-Hartenberg” [2]. This method
describes each joint and link of the robot with four parameters; φi, di, ai−1, and
αi−1, for i = 1 to n, n being the number of joints. The parameters describe the
joint angle, link offset, link length, and link twist, respectively. The method then
involves attaching a coordinate frame {x0, y0, z0} to {xn, yn, zn} to each joint,
where the zi axis points in the direction of the rotational/linear movement [9].
Each link transform is represented by a homogeneous transformation matrix T i−1

i

as

Ti−1
i = Rot(x̂, αi−1) Trans(x̂, ai−1) Trans(ẑ, di) Rot(ẑ, φi)

=


cosφi − sinφi 0 ai−1

sinφi cosαi−1 cosφi cosαi−1 − sinαi−1 −di sinαi−1
sinφi sinαi−1 cosφi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1

 , (2.16)

12 Chapter 2. Robot kinematics

where four elementary transformations are made; a rotation around z, a transla-
tion along z, a translation along x and a rotation around x [2].

As previously stated, only four parameters are required to express the forward
kinematics when applying the Denavit-Hartenberg method. With the Product of
Exponentials, six parameters are required in order to describe the displacement
in terms of orientation and position. The Denavit-Hartenberg method introduces
two constraints on the placement of each coordinate frame {xi, yi, zi}, which re-
sults in unique values for φi, di, ai−1, and αi−1. The first constraint states that
axis xi intersects axis zi−1 and the second that axis xi is perpendicular to axis
zi−1. Each of the four parameters is then found by analyzing link i with respect
to link i − 1. Usually, the parameters are placed in a table, as shown in Table
2.1 where i = 1 to n, n being the number of joints. The solution to the forward
kinematics problem is found by multiplying the n transformation matrices as

Tbase
EndEffector = T0

1 ...Ti−1
i . (2.17)

This gives the position and orientation of the end-effector frame with respect to
the base frame [6].

Table 2.1.: Example set-up of table with Denavit-Hartenberg parameters, where
subscript x is some value between zero and n

i αi−1 ai−1 di φi−1
1 0 0 0 θ1
...

...
...

...
...

i=n ± 90◦ Li−x 0 θn

2.4.2. Product of Exponentials
While the Denavit-Hartenberg method is quite straight-forward, it can be time-
consuming. When calculating the forward kinematics using the Product of Expo-
nentials, PoE, one simply has to define two frames; a fixed base frame {s} and an
end-effector frame {b}. It is, however, convenient to assign a frame to each of the
robot´s n joints, where the zn axis of each frame points in the direction of positive
rotation [2]. The end-effector frame is described by a 4×4 matrix,M , which is de-
termined when the robot is at its zero position, meaning all joint angles are equal
to zero. The first three columns of M are determined by comparing {xb, yb, zb} to
the base frame {xs, ys, zs}. If for example xb points in the negative direction of
zs, the first column of M would be [0 0 − 1 0]T . The fourth and last column
of M is set by evaluating the respective link lengths required to move the base

2.4. Forward kinematics 13

frame {xs, ys, zs} to the end-effector frame {xb, yb, zb}. The forward kinematics
with the PoE formula is calculated as

T (θ) = e[S1]θ1 ... e[Sn−1]θn−1 e[Sn]θnM, (2.18)

where i = n, n being the number of joints.

As can be seen from Equation (2.18), the PoE formula requires one to define so-
called “screw axes”, Si. Each screw axis is a column vector with six elements,
determined by ωi and vi, resulting in the expression: Si= (ωi, vi), for i = 1 to
n, n being the number of joints [2]. The vector ωi contains three elements and
describes the ith joint rotation with respect to the base frame. If the axis of
rotation for join i points in the direction of -ys, then ωi = (0,-1,0). The vector vi
is found by the cross-product between -ωi and qi, where qi is a vector with three
elements describing the ith joint translation with respect to the base frame. If
for example link 2 has length L1 in positive xs direction, while the translation
in ys and zs is zero, then q2 = (L1, 0, 0). The screw axes Si in Equation (2.18)
are expressed in matrix exponential form, which are found as shown in Equation
(2.12). The solution to the forward kinematics problem for any given joint angle
θi is given by Equation (2.18) with the respective screw matrices in exponential
form e[Si] and the M matrix [2].

The above derived forward kinematics with the PoE is called the Space form,
implying that the screw axes are represented in the base frame. Another rep-
resentation of the PoE is the Body form, where the screw axes are represented
in the end-effector frame; Bi = (ωi, vi), for i = 1 to n, n being the number of
joints [2]. With the body form, the M matrix representing the end-effector con-
figuration at zero position is found by following the same procedure as with the
space form above. The same applies for the respective screw axes expressed in
the end-effector frame, but the vectors ωi and vi are determined with respect to
the end-effector frame. If the axis of rotation of joint i points in the direction of
yb, then ωi = (0,1,0). The vector vi results from the cross-product of -ωi and qi,
just as with the space form. The solution to the forward kinematics calculated in
body form is given as

T (θ) = Me[B1]θ1 ... e[Bn−1]θn−1 e[Bn]θn , (2.19)

where the screw axes expressed in exponential matrix form, e[Bi] are found as in
Equation 2.12.

14 Chapter 2. Robot kinematics

2.5. Inverse kinematics
Inverse kinematics transforms the position and orientation of the end-effector from
the Cartesian-, or task space to the joint space, which is represented by the joint
angles. Referring to Section 2.4.2, the solution to the forward kinematics problem
using PoE was given as Equation (2.18). With inverse kinematics, one seeks to
obtain the angles required to reach the desired end-effector position. The inverse
kinematics problem can be expressed mathematically as

X = T (θ) (2.20)

where X represents the desired end-effector configuration [2]. As opposed to for-
ward kinematics, which always yields one unique solution, inverse kinematics can
give several valid joint angles for one and the same end-effector position. This
means that there exist multiple configurations of the robot manipulator while
the end-effector position remains the same. However, the desired solution to the
inverse kinematics problem is the one that minimizes the joint motion while en-
suring that the robot does not collide with itself [5]. As with forward kinematics,
inverse kinematics problems can be solved using different methods. However, in
contrast to forward kinematics, the choice of method does not depend on pref-
erence but rather the ability to achieve a solution. Further, regardless of the
choice of method, one might not be able to find any solution to the inverse kine-
matics problem. The robot´s workspace was introduced at the beginning of this
chapter as a space containing all reachable points for the robot manipulator. For
inverse kinematics problems where X, the end-effector configuration, lies outside
the robot´s workspace, there will not exists any solution [10].

2.5.1. Analytical inverse kinematics
Solving an inverse kinematics problem analytically is mathematically challenging,
and the complexity increases with the number of joints. Ultimately the analytical
inverse kinematics problem might become unsolvable. There is no “one method”
when solving an analytical inverse kinematics problem; the mathematical compu-
tations depends on the robot manipulator in question. The general approach can
be explained as follows: First, one needs to obtain the position of the end-effector
by solving the forward kinematics problem. From the transformation matrix rep-
resenting the pose of the end-effector, one extracts equations and solve these with
respect to the joint angles. The equations obtained from the forward kinemat-
ics are nonlinear. Solving for the angles to obtain the inverse kinematics may
therefore be difficult, with increasing complexity as the number of joints increase.

The number of joints influences the computational challenge, but also their ge-

2.6. Velocity kinematics 15

ometric arrangement [11]. If the robot in question has a spherical wrist, the
analytical inverse kinematics problem can be solved by decoupling the problem
into inverse position and inverse orientation. A spherical wrist is a term describ-
ing a robot manipulator whose three wrist joints intersect at a single point. Most
6 DOF industrial robots have such spherical wrists [12]. Decoupling the inverse
kinematics problem simplifies the computation [2]. The first three angles θ1, θ2,
and θ3 are obtained by the process explained above. With these angles derived,
one can solve the inverse orientation by modifying Equation (2.18) into

e[S4]θ4e[S5]θ5e[S6]θ6 = e−[S3]θ3e−[S2]θ2e−[S1]θ1XM−1. (2.21)

Even though it is possible to obtain a solution to the analytical inverse kinematics
problem for a six DOF industrial robot, the method is demanding and time-
consuming. An alternative approach to solving the inverse kinematics for a given
robot is a numerical approach.

2.5.2. Numerical inverse kinematics
Using numerical methods to solve the inverse kinematics problem is usually ap-
plied to robot manipulators where an analytical solution is unavailable. As stated
in Section 2.4, one can always find the forward kinematics solution to any given
robot manipulator. If one knows the desired end-effector configuration as well,
one can simply adjust the angles so that the solution to the forward kinematics
problem matches the desired end-effector configuration. This is usually achieved
through an iterative process, such as the Newton-Raphson method [2]. This
method is based on making an initial guess of the joint angles as well as de-
termining two positive error allowance; one for the orientation and one for the
linear position of the end-effector. The resulting angles must give an end-effector
configuration satisfying the allowed errors. The initial guess of the joint angles
must be sufficiently close to the solution for the iterations to converge, i.e., pro-
viding a solution.

2.6. Velocity kinematics
The previous sections of this chapter have been concerned with the position and
orientation of the end-effector, expressed as forward- and inverse kinematics prob-
lems. However, the motion required to achieve these configurations involves trans-
lational and rotational movement. This is velocity kinematics.

The linear and angular velocity of an end-effector can be described by two com-
ponents, ω and v, both column vectors with three elements. This results in a

16 Chapter 2. Robot kinematics

column vector with six elements, denoted V. The column vector V, expressed as

V =
[
ω
v

]
∈ R6, (2.22)

describing the velocity of the end-effector is called the twist, or spatial velocity
[2]. The twist V is determined by following the same procedure as with the screw
axes in Section 2.4.2, the difference being that the screw axes in Section 2.4.2
were determined while the robot was at its zero position, implying θ = 0. For the
twist, V, the screw axes depend on θ.

Further, the matrix representation of a twist can be written as

[V] =
[
[ω] v
0 0

]
∈ se(3). (2.23)

Note that the above equations, (2.22) and (2.23), are written in general form.
These expressions are valid for representing the twist in both space form and
body form, called spatial twist and body twist, respectively. It can be shown that
the relationship between the spatial twist and the body twist can be written as

[Vb] = T−1Ṫ = T−1[Vs]T, (2.24)

and

[Vs] = T [Vb]T−1, (2.25)

where the matrix T is the transformation matrix derived in Section 2.1. Writing
out Equation (2.25) yields the following relationship between the spatial twist and
the body twist

[
ωs
vs

]
=

[
R 0

[p]R R

] [
ωb
vb

]
. (2.26)

The 2× 2 matrix in Equation (2.26) pre-multiplying Vb is called the adjoint rep-
resentation of T , denoted [AdT]. This matrix is useful when changing between
frames, where subscript T denotes the transformation matrix expressed in space
form, Tsb, or body from, Tbs.

2.6. Velocity kinematics 17

An important concept within robot kinematics must be addressed: the Jacobian
matrix J(θ). The Jacobian is a matrix that provides a relationship between the
joint velocities, θ̇, and the tip velocity vector, vtip [2]. The velocity vector vtip can
be expressed in several ways; in the following section, the end-effector velocity
will be represented by the twist V. The relationship between the joint velocities
and the twist can be expressed as

V = J(θ)θ̇. (2.27)

For a robot manipulator the Jacobian is given as J(θ) = [J1(θ) .. Jn(θ)], where n
is the number of joints. This implies that the number of columns in the Jacobian
is equal to the number of joints in the robot manipulator. Further, Ji(θ) is the
twist Vi when the corresponding θ̇i = 1 and all other joint velocities are equal to
zero.

As with the screw axis in Section 2.4.2, one can define a space Jacobian, Js(θ),
and a body Jacobian, Jb(θ). For the former, the elements of Jsi(θ) are set by the
respective screw axis expressed in {s} frame. For the latter, the elements of Jbi(θ)
are set by the respective screw axis expressed in {b} frame [2].

As mentioned above, the screw axes, Si and Bi, of a robot are determined while the
robot is at its zero-position, implying all joint angles are equal to zero. However,
the Jacobian J(θ) is defined for any arbitrary value of θ. The space Jacobian
Js(θ) for a robot manipulator with n joints is defined as

Vs = Js(θ)θ̇ = [Js1 Js2(θ) ... Jsn(θ)]θ̇, (2.28)

where Js1 = S1, and

Jsi(θ) = [Ad
e[S1]θ1 ...e[Si−1]θi−1]Si, i = 2, ..., n. (2.29)

Here, the adjoint mapping AdT is used to represent the new screw axis with some
arbitrary values of the joint angles, and the transformation matrix T is given
as e[S1]θ1 ...e[Si−1]θi−1Si. The same reasoning applies for the body Jacobian Jb(θ)
which, for a robot manipulator with n joints, is defined as

Vb = Jb(θ)θ̇ = [Jb1(θ) ... Jbn−1(θ)Jbn]θ̇, (2.30)

where Jbn = Bn, and

18 Chapter 2. Robot kinematics

Jbi(θ) = [Ad
e−[Bn]θn ...e−[Bi+1]θi+1]Bi, i = 1, ..., n− 1. (2.31)

2.7. Singularities
Singularities, when talking about robots, refers to a configuration of the robot
manipulator which prohibits the end-effector from moving in certain directions [2].
This implies that when a robot manipulator is at a singularity, it loses one or more
of its degrees of freedom. Any robot manipulator with six degrees of freedom
will have such singularities, at which its mobility will be limited. However, the
complexity and type of singularity depend on the type of joints, the number of
joints, and how the joints are configured [11].

Referring to Section 2.6, the Jacobian gives information about a robot manipu-
lators singularities. For a six DOF robot, the resulting Jacobian matrix will be
6 × 6. Singularities for the six DOF robot will be where the Jacobian is not of
maximum rank.

2.8. Kinematically redundant
A kinematically redundant robot manipulator is a manipulator that consists of
more than six joints, i.e., n > 6. In the introduction to this chapter, it was stated
that at least six DOF was required in order to fully describe the end-effector´s
configuration in space. Further, the task space of any given robot manipulator
can not have a dimension larger than six. For a robot with 6 + n DOF, the n
successive joints are excess in terms of describing the end-effector configuration;
they are redundant. However, the excess joints are useful in obstacle avoidance
and for optimizing objective functions [2].

Chapter 3.

Aspects of the industry
supporting robotic offline
programming

This chapter aims to provide the reader with an understanding of some aspects
that essentially enable robotic offline programming. The first section will intro-
duce Industry 4.0; what it is, and how it affects the industry today. The commu-
nication protocols OPC Classic and OPC Unified Architecture will be presented
as a part of this section. Next, robot programming will be presented, where part
of the section has been gathered from the project thesis provided in the digital
appendix with this report [1]. Online programming will be described shortly be-
fore introducing offline programming, which is a newer method for programming
robots that is highly relevant for the mindset of Industry 4.0. The last section
will present a selection of simulation software available in the industry today.

3.1. Industry 4.0
The manufacturing industry of today has been formed by four important eras
that have revolutionized the industry during the past hundred years [13]. The
first industrial revolution, the age of mechanical production, is recognized by the
invention and implementation of steam power and water power in manufactur-
ing [14]. The second industrial revolution, the age of science and mass-production,
concerned the invention of mass-production assembly lines and electricity. The
third revolution, the digital age, introduced electronics, I.T systems and enabled
automation in production. The fourth industrial revolution, the technological age,
is often referred to as Industry 4.0 and represents the ongoing shift from the third
industrial revolution. Industry 4.0 is possible due to so-called cyber-physical sys-

20 Chapter 3. Aspects of the industry supporting robotic offline programming

tems, the Internet of Things and the Internet of Systems, and advances from the
third industrial revolution by connecting people, machines, and physical assets
that ultimately, by incorporating data and machine learning, can be able to make
decisions without human intervention [13].

Figure 3.1.: The four industrial revolutions [15]

As Industry 4.0 can be said to be an extension of Industry 3.0, many of the compo-
nents that make out Industry 4.0 already exists [16]. It is how these components
are digitally connected and can both generate and share information, illustrated
in Figure 3.2, that elevates Industry 4.0 from the former. The machines from
Industry 3.0 become smart machines in Industry 4.0 as they are fueled with data,
which contributes to a more efficient, productive and less wasteful production.

Figure 3.2.: Illustration of Industry 4.0 [16]

Companies have been collecting process data for a while; however, many only used
this data for logging purposes and not to actually improve their operations [14].
Today, customers have more options and higher demands which requires manufac-
turers to adapt more rapidly. It is becoming increasingly difficult to release new
products to the market as the competition is high due to the number of products
released at a high rate and the number of available options. Further, as products

3.1. Industry 4.0 21

are becoming more complicated, it is necessary for more aspects of the business to
be working together. There is a shift from the mass production seen in Industry
3.0 to a more customized production as customer demands personalized products.

Features of Industry 4.0 include, amongst others, the following; virtualization,
real-time capability, decentralization and interoperability. Virtualization regards
creating a digital representation of the production plant, which, by receiving and
outputting data with the help of sensors, reflects the status of the physical plant.
Such a digital representation is often called a Digital Twin. Real-time capability
refers to the process of collecting and analyzing data and taking immediate action
based on the information. Digital twins operate in real-time. Decentralization
concerns cyber-physical systems, hardware with software embedded, capable of
making their own decisions and thereby enable local production. Interoperability
is about how systems can communicate with one another, which proved to be
challenging [17].

The three previous revolutions have contributed to well established infrastructure
and systems, which have evolved and, during the last 30 years, become more and
more automated. One problem lies within how to make these existing systems
interoperable, which motivates the introduction of an important protocol named
Open Protocol Communications Unified Architecture, OPC UA. OPC UA is a
well-renowned communication protocol with its maybe most important feature
being that it is platform independent.

3.1.1. Before Open Protocol Communications
The manufacturing industry grew extensively with the third industrial revolution,
which introduced the need for data from the factory floor. Motivated by this, au-
tomation vendors Fisher-Rosemount, Intellution, Opto 22 and Rockwell Software
established the OPC Foundation in 1996 [18]. The OPC Foundation was founded
with the aim of solving problems with interoperability, compliance, validation and
certification [17].

Before the OPC Foundation was established, there did not exist any good standard
for communication between industrial control devices and computer applications
designed to use real-time data from these controllers. Some attempts were made,
e.g. Dynamic Data Exchange, DDE, from Windows 3.0 [19]. This standard
mechanism made it possible for multiple applications to exchange data at run-
time. However, it proved to be fragile, have limited bandwidth, and lacked support
across a network. Several attempts were made to fix these limitations, where
InTouchTM SCADA software might have been the most successful. However,
this and others, like AdvanceDDETM, were all proprietary, implying that they
required payments to their investors, thereby limiting their chances of becoming

22 Chapter 3. Aspects of the industry supporting robotic offline programming

an industry standard.

OLE 2.0 was released in 1992 and, with time, proved to be the replacement of
DDE [19]. A group named WinSEM expressed interest in the possibilities with
OLE techniques for data exchange between applications in real-time. Especially
SCADA vendors were looking into the possibilities of standardizing the interface
between SCADA and the device drivers acquiring the data. The most promising,
however in hindsight very simplistic, solution was proposed by US Data in 1995.
The progress however, was slow. It was agreed that in order to deliver a standard
within reasonable time, a smaller group was necessary; the OPC Task Force was
established.

3.1.2. OPC Classic
OPC is based on Client/Server communication, illustrated in Figure 3.3 [20]. The
interactions between the client and server are controlled by the client and can be
summarized as follows:

• The client initiates communication with server

• The client manages the behaviour of server

• The server waits for incoming requests from client

• The server only performs actions as instructed by the client

Figure 3.3.: OPC client-server [20]

OPC Classic refers to the original OPC specification [20]. It consists of five
protocols that are independent of one another. They are not compatible; they

3.1. Industry 4.0 23

have their own commands for, e.g., read and write, which only affect the protocol
in question.

OPC Classic started with a simple protocol named OPC Data Access, OPC DA.
This protocol establishes communication between the control system and the shop
floor by retrieving data from the former and sending it to the latter. The data
is recognized by a “Value”, which is the data itself, and a “Name”. Further, a
“Timestamp” is assigned to the data point containing the time of read, and lastly,
“Quality” reflects whether the data is valid or not. The second protocol released
by the OPC Foundation was OPC Alarm & Events, OPC AE. This protocol differs
from DA in that events do not have current value, and therefore no Value, Name
or Quality. The protocol does, however, have Timestamp. Following OPC EA
was the OPC Historical Analysis, OPC HDA. The HDA protocol differs from the
others with its support for recordsets of data for one or several data points.

While OPC Classic enables the exchange of process data, alarms and historical
data, it does not operate at the machine-to-machine communication layer. Other
issues with OPC Classic include its dependency to Microsoft, making it incom-
patible with other platforms, its vulnerability to attacks, and its inconsistencies
in data and inadequate data models [17].

3.1.3. OPC Unified Architecture
With Industry 4.0, the need for standardized data connectivity and interoperabil-
ity grew. As OPC Classic was developed with Windows-specific technology such
as OLE and DCOM [21], it was incompatible with other platforms such as Apple
and Linux, which proved to be a big constraint. Further, as explained in Section
3.1.2, the specifications of OPC Classic are not compatible with one another. The
OPC UA protocol was released in 2008 and incorporates all the functionalities
provided by OPC Classic into one specification. OPC UA is used in industrial
automation for communication between equipment and systems for both data col-
lection and control. The OPC UA standard was designed to fulfil the following
goals [22]:

• Functional equivalent to OPC Classic

• Platform independence ensuring incorporation with any operating system
and in any environment

• Secure communication with regards to encryption, authentication, and au-
diting

• Extensible design allowing for adding new features without affecting the
exciting application

24 Chapter 3. Aspects of the industry supporting robotic offline programming

• Comprehensive information modelling compatible with the requirements of
Industry 4.0

The OPC UA information model framework, illustrated in Figure 3.4, is prob-
ably the most important feature of the standard. The information model has
object-oriented capabilities, allowing for multi-layered structures to be modelled,
essentially turning data into information [23]. Generally, information represented
in a computer system is stored in a so-called address space. A variable is created
and given a unique identity, typically a string.

Instead of having one unique identifier for one given variable, the OPC UA pro-
tocol uses one identifier to represent a group of variables [24]. This identifier is
called a node. Each node has a specific node ID composed of three components.
The node ID is defined automatically by the server and is unique. An example
of a node ID can be “ns=3,s=Counter”. Here, “ns” is the namespace index. The
number 3, in this example, is the identifier, and “s” is the identifier type, which
in this example is a string.

As stated above, the information model has object-oriented capabilities. The
node is the basic building block of the information model. However, for complex
information to be processed, the node has to be able to exhibit different shapes.
This functionality is why the information model is compared to object-oriented
programming, as different classes of nodes are defined that all inherit from the
same basic node. Examples of OPC UA node classes are Variable Node Class,
Method Node Class and Object Node Class.

OPC UA provides four basic mechanisms for retrieving data. However, these can
be easily modified and extended in order to retrieve specific information [22].

• Data- and event notifications

• Read/write both current and historical data

• Execution of methods

• Features for locating instances and their semantic

There are two ways of utilizing the information modelling framework with OPC
UA; client/server communication and PubSub, Publish-Subscribe. The major dif-
ference between the two is that whereas the former is somewhat limited with its
one-to-one or one-to-many feature, the PubSub enables many-to-many configu-
rations [25]. A message broker, for example, MQTT, receives information from
publishers. Subscribers may subscribe to specific topics of interest published on
the message broker and only be notified when these topics update. A client/server
communication is based on an exchange of requests and responses, where a server
can handle requests from several clients.

3.2. Robot Programming 25

In order to establish communication between the OPC UA server and client,
an endpoint URL must be defined, consisting of three informative components.
The OPC UA standard is compatible with several transport protocols, such
as SOAP/HTTP (Simple Object Access Protocol/Hypertext Transfer Protocol),
HTTPS (Hypertext Transfer Protocol Secure), and UA TCP (Transmission Con-
trol Protocol) [26]. The client must support one of these, and the transport proto-
col used is defined in the endpoint URL as the first of the three components. Fur-
ther, the IP address of the device hosting the server must be included, as well as a
port number. The endpoint URL will have the form “opc.tcp://<IPaddress>:<port>”.

In 2016, the OPC Foundation announced that the OPC UA technology was made
open-source available[27]. The reason for doing so was based on the OPC Foun-
dation´s vision of becoming the standard for communication in the industry. By
making the technology open-source, the OPC Foundation envisioned becoming
the solution for the “Internet of everything”. The repository can be found on the
website Github http://github.com/opcfoundation.

Figure 3.4.: Information model structure [22]

3.2. Robot Programming
There are two main methods for programming a robot’s trajectory in the industry
today; online and offline. With “traditional” online programming, a so-called
teach-pendant is used to program the robot’s trajectory. The teach-pendant serves
as an interface between the operator and the robot and thereby requires the
operator to be in, or near, the robot cell. With online programming, the operator
can move the robot to the desired positions with the buttons on the pendant and

http://github.com/opcfoundation.

26 Chapter 3. Aspects of the industry supporting robotic offline programming

save each point continuously. This implies that production must be stopped while
the operator programs the robot, which is one of the main drawbacks with online
programming [28]

The teach-pendant is a handheld device the operator can use to, amongst others,
program the robot, start and stop the program, and retrieve information about
the robot from the digital display. The teach-pendant is usually equipped with
different modes, each with its own set of constraints [29]. In teach mode, the
operator prepares and teaches the robot the job to be done, as explained above.
Play mode allows the operator to playback the trajectory programmed in teach
mode. Both teach- and play mode have velocity constraints to restrict the robot
from moving at high velocities, ensuring safety while constructing and adjusting
the program. The last mode is called remote mode. While in remote mode, the
program can be executed at full speed. However, remote mode should never be
used before the entire program has been verified in play mode.

The path of the robot is programmed point by point with typical commands
such as “MoveJ”, “MoveL”, and “MoveC”. The chosen command depends on the
required movement; “MoveJ” will make the robot move from A to B on all axes
simultaneously, implying that the path from point A to point B will depend on the
configuration of the robot at point “A-1”. “MoveL” is used when the movement
from A to B is important, the end-effector will move linearly from A to B. “MoveC”
is used for circular movement. Figure 3.5 shows an example of a simple path with
five points, and Table 3.1 shows the instructions required to achieve this path
with the teach-pendant.

Figure 3.5.: Example of simple path with half circle movement. Adapted from:
[29]

Table 3.1.: Instructions required to achieve path as shown in Figure 3.5. Adapted
from: [29]

Point Instruction
p0 MoveJ/MoveL
p1 MoveC
p2
p3
p4 MoveJ/MoveL

3.2. Robot Programming 27

Online programming with the teach-pendant was the method applied in close
to 90% of all robotic operations in 2019 [30]. One explanation might be that
most technicians are familiar with the teach-pendant as most industrial robots
are provided with this, making online programming a natural choice [28]. Fur-
ther, programming with the teach-pendant is very precise and easy to use when
programming simple trajectories. However, the main drawback with online pro-
gramming is the stoppage in production while programming, which is an inevitable
effect of online programming.

Offline programming does not use the teach-pendant nor any equipment near or
inside the robot cell. This method simply requires a computer and a programming
language. “Offline” implies that the actual programming can be executed at
any time from anywhere, as opposed to online programming, which requires the
physical robot. However, when talking about offline programming in robotics, one
generally refers to advanced simulation software that allows for creating a digital
three-dimensional representation of the robot cell. This digital representation
of the robot cell is then used to program the robot’s path. That being said,
there is a difference between offline programming and simulation. Simulation
does not imply offline programming. However, offline programming can not be
done without simulation [31].

The digital and physical robot cells are closely related; either the digital cell is
designed as an exact replica of the physical cell, or the physical cell is designed
as an exact replica of the digital cell. Either way, the important thing is that
they are exact replicas of each other. That being said, the digital cell should only
include components that might interfere with the robot manipulator’s trajectory.
Components out of reach for the robot manipulator are not necessary to include
as they will not impact the performance of the robot. However, they might impact
the performance of the simulation.

There exist several methods for offline programming, the easiest being a so-called
path generation [32]. This method is quite similar to online programming with the
teach pendant. The programmed path is uploaded to the robot controller of the
physical robot. As mentioned above, the digital and physical robot cells should
be exact replicas of one another. The importance of keeping the discrepancies
between the two to a minimum is related to the “quality” of the programmed
path. One will have to make final adjustments after uploading the program to
the physical robot [33]. However, the larger the deviation between the digital and
physical cells, the more adjustments will have to be made after uploading program.
This can take away part of the reason for choosing offline programming, namely
the reduced production downtime.

One of the most important advantages of implementing offline programming is
the increased efficiency in production by eliminating production downtime while

28 Chapter 3. Aspects of the industry supporting robotic offline programming

programming [28]. With online programming, the robot to be used for the final
program is used for the programming as well, thereby causing production stoppage
while being programmed. With OLP, production can continue while a new task
is being programmed. According to Delfoi Robotics [34], production downtime
caused by online programming can be reduced from up to a month, down to one
day by replacing online programming with offline programming. This single day
of production stoppage is related to the implementation of the program with the
physical robot, as explained earlier in this section. This reduction in production
downtime further entails a reduction in the cost associated with the downtime as
well as the programming labour [31].

The reduction in programming stoppage accompanying OLP essentially means
that high-mix, low volume production no longer is a constraint for robotic au-
tomation. With online programming, the time spent programming the robot
could, in many cases, not be economically justified for companies with a rapidly
changing production. Fortaco, an Estonia-based company that utilizes robots for
welding operations, explains how online programming with the teach pendant is
out of the question as the increased efficiency achieved by the robot would be
lost in programming stoppage [35]. In opposed to online programming, offline
programming is highly compatible with Lean methodology [34].

Further, OLP can assist in the decision-making when designing a robot cell for
a specific need. It can be economically challenging for a company to invest in a
robot that may or may not suit its needs. As mentioned earlier in this section,
either the digital cell is designed to resemble the physical cell or vice versa. By
developing the digital cell first, one can test the possible candidates with the
simulation software prior to building the physical robot cell. This way, companies
can find the optimal set-up for the robot cell digitally before installing it physically,
and thereby avoid expansive and commonly made, mistakes by eliminating errors
and flaws discovered through simulations [36]. Further, OLP contributes to a
higher production rate as the operation is verified in advance [35]. As well as
verification of the thought solution, OLP allows for testing different approaches
to the same problem in order to find the best solution. This is not as easy with
online programming, it is not justifiable to test many different approaches due to
the time it takes to test only one [28].

Afrit, a trailer manufacturer, based in South Africa, explains how the implemen-
tation of offline programming has provided several benefits, such as improved
repeatability, explained in Section 3.3, of welding as well as better consistency.
Further, Afrit states that the time saved by replacing online programming with
offline programming can be used to give attention to other aspects, such as im-
proving welding [37].

Offline programming is less suited for simple operations with few points such as

3.3. Simulation Software 29

pick and place, assembly, and packaging [31]. In such applications, it can be more
cost-efficient to program online. However, for complex operations that require
hundreds or even thousand points, online programming is not really an option;
offline programming is necessary.

3.3. Simulation Software
The use of simulation software introduces many upsides to production. As men-
tioned in Section 3.2, the work cell can be designed in a simulation software before
making the physical cell. This allows for analyzing the behaviour of the cell in
advance of investing both time and money and for testing multiple scenarios and
solutions. Common mistakes can be made in the simulation software and thereby
avoided in the physical world [38]. Verification with regards to the robot´s reach
and access can be done, as well as testing of end-effector tools, workpiece po-
sitioners, etc. Further, with simulation software, one can estimate cycle times
and identify bottlenecks in the production line. Using simulation software is also
advantageous with regards to the customer, as a visual presentation gives larger
insight into the proposed solution. The simulation is also used to ensure that the
final product will deliver as the end-user requires.

Even though the upsides are many, offline programming software has its challenges
[31]. As mentioned in Section 3.2, regardless of the order in which they are
designed, it is important that the digital and physical work cell are exact replicas
of one another. This is related to the concept of a robot’s repeatability and
accuracy.

Repeatability, when talking about robotics, refers to the robot’s ability to reach
the same point over and over, whereas accuracy refers to the deviation between
the desired point and the achieved point. The two concepts are illustrated in
Figure 3.6. According to The Welding Institute, the repeatability of a typical
industrial robot used in welding operations is ≤ 0.05 mm [39]. Further, a robot
is able to follow its programmed path with an accuracy of 0.100 mm [40].

This implies that the robot will, with extreme precision, do exactly as programmed
to. If, however, there is a position error of one or several components in the digital
cell compared to the physical cell (or vice versa), the robot will not perform the
task it was programmed to; it will perform the programmed path with a position
error throughout. This motivates the introduction of robot calibration. The robot
controller calculates the position of the end-effector based on a perfect kinematic
model; however, the physical robot’s kinematics are not perfect [41]. Robot cali-
bration involves identifying the real geometrical parameters of the physical robots
kinematics [42]. Offline programming can only reach its full potential if there is

30 Chapter 3. Aspects of the industry supporting robotic offline programming

a precise correspondence between the kinematics of the physical robot as well as
the digital model. Several simulation software has tools for calibration.

Figure 3.6.: Illustration of repeatability and accuracy plotted against each other
[43]

When it comes to offline simulation software, the selection for the consumer is
generous. Further, many of these simulation tools offer the same qualities, mak-
ing it difficult to choose the right simulation software. However, one distinctive
difference ultimately divides the entire selection into two groups; manufacturer-
dependent and manufacturer-independent. Examples of simulation software from
both categories are presented in the following sections.

3.3.1. Manufacturer-dependent software
Several robot manufacturers have developed simulation software compatible with
their robots; ABB has their software called RobotStudio, KUKA has KUKA.Sim,
and Yaskawa has their MotoSim. All robots and additional equipment produced
by the manufacturer are usually provided in the component catalogue, making
it easy to design the digital work cell. Such simulation software does, however,
limit the user to that specific manufacturer. This can be problematic as companies
often utilize robots from different manufactures in different operations, depending
on their specific characteristics [35].

According to ABB, their simulation software, RobotStudio, is the world’s most
used offline programming software for robotics [44]. The software was designed to
closely resemble the online programming method in order to ease the transition.

3.3. Simulation Software 31

Their aim with the software is to reduce risks posed on both human and equipment
with online programming, increase start-ups, decrease time spent on change-overs
and ultimately achieve higher productivity. RobotStudio has advanced features,
including virtual meetings, digital twins, explained in Section 3.1, Augmented
Reality (AR) technology, Virtual Commissioning, and Stop Position Simulation.
Referring to Section 3.1.3, ABB provides an OPC UA server compatible with their
IRC5 robot controller.

KUKA’s robotic offline programming software is called KUKA.Sim. They high-
light features including planning reliability enabled by accurate cycle times, as
well as collision detection and reachability checks [45]. The digital layout is
easily designed by dragging the desired component into the three-dimensional
workspace. Referring to Section 3.2, it was stated that offline programming is less
suited for simple applications as, for example, pick and place. KUKA.Sim high-
lights both pick and place as well as automated palletizing as applications suitable
with their simulation software. The software provides an OPC UA PLC interface
that enables communication with several applications. Referring to Section 3.2,
KUKA.sim has functionalities that enables implementation of Industry 4.0 [46].
Visual Components, an offline programming software to be presented in Section
3.3.2, was acquired by KUKA in 2017 [47]. Therefore, KUKA.Sim exhibits many
of the same features as Visual Components, as well as the layout.

MotoSim EG-VRC is an offline programming software provided by Yaskawa.
Their simulation software is capable of performing collision detection, reach anal-
ysis and cycle time calculations [48]. It supports process applications such as
welding, cutting, and sealing. The offline programming process is identical to
programming with the pendant, and programs can be downloaded directly to
the compatible robot controllers. Three-dimensional CAD files of, for example,
parts to be welded can be uploaded directly to the software without the need
for conversion. Further, the robot path can be generated automatically based on
information from the 3D CAD model.

3.3.2. Manufacturer-independent software
A problem with the brand-dependent offline programming software is that they
limit the user to that brand. There does, however, exist different offline program-
ming software that is independent of the robot manufacturer. Examples of such
are RoboDK, Delfoi Robotics OLP, and Visual Components, which all offer an
extensive library of robots from different manufactures. By implementing an of-
fline programming software compatible with many different robot manufacturers,
the company is able to use the same software for all operations. Fortaco explains
how the use of one offline programming software in all operations is time-saving

32 Chapter 3. Aspects of the industry supporting robotic offline programming

Table 3.2.: Summary of key features with manufacturer-dependent simulation
software [49], [50], [51], [52], [53], [54]

Comparison of manufacturer-dependent software
Software System

requirements
Price OPC UA

compatible
Programming
language

RobotStudio Windows US$1.500/year Yes * RAPID
KUKA.Sim Windows US$2.000 Yes KRL
MotoSim Windows US$8.000 No ** INFORM

*IRC5 controller **MotoOPC software compatible with NX100, DX100 and FS100
controllers. No documentation for compatibility with OPC UA

as one only has to maintain one software, the operators only need to learn one
software, and all operators have the same programming skills as they all use the
same software [35].

RoboDK is an offline simulation tool for industrial robots, with an extensive li-
brary providing more than 500 robot manipulators from more than 40 different
robots manufacturers [55]. Equipped with an intuitive interface, RoboDK states
that no prior programming skills are necessary. Features include automatic opti-
mizing of the robot path by avoiding singularities, axis limits and collisions. The
software has calibration tools for improving accuracy, as mentioned at the begin-
ning of this section. In order to export the final program to the robot at the shop
floor, RoboDK is compatible with several robot controllers, such as ABB RAPID,
KUKA KRC/IIWA, Motoman Inform, and Universal Robots, to name a few.

Delfoi Robotics provides software for robotic offline programming and simulation.
According to them, they are one of the leading suppliers for industrial companies
implementing offline programming in manufacturing [34]. As stated above, by
implementing offline programming, high-mix, low volume production is no longer
a constraint with robotic automation. According to Delfoi, robots in short-run
production companies has increased from 30% to over 90%. Delfoi Robotics offline
programming software supports robot manufacturers as Yaskawa, KUKA, ABB,
Fanuc, and Staubli, to name a few. Their products include Delfoi ARC, Delfoi
SPOT, Delfoi CUT, Delfoi PAINT, and Delfoi SURF-X [56]. The software focuses
on easing the programming process, and, as with KUKA, Delfoi Robotics also uses
software technology provided by Visual Components.

Visual Components is a Finland-based company founded by Scott Walter, Mika
Anttila, and Juha Renfors in 1999 [57]. According to Scott Walter, their vision
was to “make factory simulation software easy to use and affordable” [58]. Today,
Visual Components is one of the leading companies within the industry of 3D
manufacturing simulation software and is used, as stated above, by several major

3.3. Simulation Software 33

actors in the simulation software industry.

Figure 3.7.: The stages of offline programming illustrated by Visual Components
[59]

As with both Delfoi Robotics and RoboDK, Visual Components is a third-party
software and offers more than 2500 components and over 60 robot brands. The
software is used in many industries, such as the automotive-, electronic-, industrial
automation-, and packaging and palletizing industry. With its extensive library
of components, the software is easy to implement in diverse production lines that
incorporates several brands. However, if a component is missing, or a specific
work-piece is required, it is easy to import CAD models to the program, where
Visual Components supports more than 20 CAD files [60]. In the “eCatalog”,
under Public Models, where all brands provided are listed, a model named Visual
Components is available, containing components designed by Visual Components.
This model essentially offers everything required to create a complete digital rep-
resentation of a factory floor, ranging from different robots and advanced machines
to walls and doors for enclosing the cell.

The software is divided into three categories; “Essential”, “Professional”, and
“Premium” [61]. The Essential version allows for basic robot programming, virtual
reality, and basic virtual commissioning to name a few. The professional version
includes all features provided with the essential version, as well as the ability to
convert CAD data into simulation models. The premium version includes all of the
above-mentioned features and more advanced features within virtual reality and
robot programming. Visual Components provide connectivity plugins for OPC
UA, Siemens S7, SIMIT, Universal Robots RTDE, and WinMOD Net. WinMOD
and SIMIT are only available for premium users. Further, the connectivity has
been optimized with Premium 4.3, enabling better communication with other
devices through, for example, OPC UA.

34 Chapter 3. Aspects of the industry supporting robotic offline programming

Table 3.3.: Summary of key features with manufacturer-independent simulation
software [61], [62], [63], [64], [65]

Comparison of manufacturer-independent software
Software System

requirements
Price OPC UA

compatible
Programming
language

Delfoi
Robotics

Windows Not provided Unknown Unknown

RoboDK Windows, Mac,
Ubuntu

2995 Euros * Yes Python **

Visual
Components

Windows Not provided Yes Python ***

*Professional **RoboDK API ***Visual Components API

Chapter 4.

System Description of Robot
Cell at NTNU

The robot at disposal for this project is the Yaskawa Motoman GP25-12. This
chapter presents a system description of the robot cell installed at NTNU, as
shown in Figure 4.1. This includes the robot manipulator, the welding equipment,
and the enclosure. Further, the robot software allowing for offline programming is
presented. Simple calculations on the robots forward- and inverse kinematics are
presented in order to illustrate the concept explained in Chapter 2. This chapter
has been gathered from project thesis [1], provided in the digital appendix, with
some modifications throughout. Further, Section 4.1 has been extended, and
Section 4.2 is new.

4.1. Industrial robot controller
It is important to distinguish between the controller and the teach pendant. The
teach pendant provides easy access to the robot through a touchscreen display
where one can both see and edit the available commands, obtain information
about different joint variables, develop and edit programs, etc. The teach pendant,
referred to as the programming pendant by Yaskawa [66], is equipped with a
keyboard that allows for easy maneuvering in the form of, for example, “jogging”,
and online programming. Further, a button is installed at the back of the pendant,
which must be pressed and held halfway in order to move the robot, and serves
as a “live-man” switch by either being pressed- or released fully. This ensures
safety while both testing and running programs. An additional emergency button
is implemented in the upper left corner, important when the pendant is in remote
mode, as it is with offline programming. Figure 4.2 shows the Motoman YRC1000
Industrial Robot Controller with the provided programming pendant in front of

36 Chapter 4. System Description of Robot Cell at NTNU

Figure 4.1.: Yaskawa Motoman GP25-12 with welding equipment as installed at
Perleporten

the controller.

The robot controller can be said to be the brain of the robot, seeing as the actual
control lies within the controller. Code, also referred to as programs, developed
either online through the teach pendant or offline via an external computer, are
exported to the controller via a communication port such as, for example, an
Ethernet connection. The exported program is translated to physical motions in
the controller [67]. This information is then sent to the robots Central Processing
Unit, CPU, which enables the robot to both process and run the program [68].

The YRC1000 controller has a non-windows based operating system and uses
the language Inform III. It is equipped with standard communication interfaces,
enabling connection with already exiting networks [69]. Two Ethernet ports are
provided which, e.g. allows for connection to an external computer for offline
programming. Further, the status of the controller can be read/set due to an
FTP-capable TCP/IP web server function. The YRC1000 controller supports
communication protocols such as OPC UA, explained in Section 3.1.3, enabling
interoperability, explained in 3.1.

4.2. Robot Software 37

Figure 4.2.: Controller and programming pendant

4.2. Robot Software
The YRC1000 robot controller is compatible with many different programming
methods, one of them being Robot Operating System, ROS [69]. This section
will present a Python library written by supervisor Lars Tingelstad in order to
communicate with the robot Yaskawa GP25-12 from an external computer, i.e. of-
fline programming. The library translates information written in Python to ROS
commands for the robot controller and essentially enables all the same function-
alities as with the teach-pendant. As the library is quite extensive, this section
has been limited to only present the functionalities explicitly used in this project.
The repository is available at https://github.com/tingelst/moto/tree/main/
moto. The necessary files must be installed on the robot controller, available at
https://github.com/ros-industrial/motoman.

The “Moto” class contains the highest level API and is used, together with a class
named “ControlGroupDefinition”, to define the robot and connect to the robot
controller with its respective IP address. This class requires a group id to be
defined, which is a string describing the object. Further, a group number must
be given, as the system is compatible with up to four control groups, e.g. several
robots, and work-piece positioners, where 0 implies robot number one. Lastly, the
number of joints must be defined, as well as their names.

The next class important to introduce is a class named “Motion”. This class

https://github.com/tingelst/moto/tree/main/moto
https://github.com/tingelst/moto/tree/main/moto
https://github.com/ros-industrial/motoman

38 Chapter 4. System Description of Robot Cell at NTNU

provides methods required for the start-up process. A convenient but not vi-
tal method is “check_motion_ready”, which outputs whether or not the robot
is ready for ROS commands. If, for example, the teach-pendant is not sat
in remote-mode, explained in Section 3.2, which is required for OLP, the out-
put message will print failure. Two important methods are “start_servos” and
“start_trajectory_mode”. Both methods are self-explanatory; the former start
the servos, and the latter starts trajectory mode, which is required prior to send-
ing trajectory points to the controller.

When it comes to moving the robot, read joint positions from the robot, check the
status of the robot, to name a few, a class called “Simple_message" is important.
This class enables, amongst others, the above mentioned functionalities. In order
to send trajectory points order to the robot controller, the class “JointTrajPtFull”
must be presented. It takes seven inputs, the first being group number, explained
above. Next, a sequence number must be defined, which states which number
the current point is in the total trajectory. The third, “Valid_fields” is always
set to “ValidFields.TIME | ValidFields.POSITION | ValidFields.VELOCITY”. A
time must be given, which states the time at which the robot should be at that
position. The last three variables; position, velocity, and acceleration, all require
input as a list of integers, and the list must contain ten elements as the software is
compatible with robots that have up to ten degrees of freedom. As the Yaskawa
GP25-12 has six joints, the first six elements correspond to the six joints. The
last four are set to zero.

In order to send a trajectory point to the robot controller, the method
“send_joint_trajectory_point(trajectorypoint)” must be entered, where the in-
put “trajectorypoint” is the point one desires to send. Lastly, to retrieve informa-
tion about the position, velocity or acceleration of the robot, a class “Joint_feedback”
is provided.

4.3. The robot manipulator
The Yaskawa Motoman GP25-12 is a robot manipulator with six rotational joints
connected by seven links, as can be seen in Figure 4.1. Referring to Chapter 2,
this robot has six DOF. This implies that the GP25-12 has a configuration space
and a task space of dimension six. As the dimension of the configuration space is
equal to the dimension of the task space, this robot is not kinematically redun-
dant. However, the robot will have configurations in which singularities arise [11].
Yaskawa Motoman labels each axis as S, L, U, R, B, and T, which stands for Swing
or Swivel, Lower arm, Upper arm, Rotate, Bend, and Twist, respectively [70]. Six
axes allow for the robot manipulator to exhibit the movement of a human arm.
Each axis has limitations with regard to maximum motion range and maximum

4.3. The robot manipulator 39

speed. The repeatability, discussed in Section 3.3, of this robot is ± 0.03 mm. Fur-
ther, the maximum work range is 2010 mm. The above-explained specifications
as well as other important variables are summarized in Table A.2 and Table A.3
in Appendix A.2.

4.3.1. Kinematic calculations
A simple program calculating the forward- and inverse kinematics for the Yaskawa
Motoman GP25-12 has been developed in order to illustrate the concepts ex-
plained in Section 2. The code editor Visual Studio Code, VS-code, was used with
the programming language Python. The packages “numpy” and “modern_robotics”
were installed using pip install.

The zero-position for the GP25-12 is as shown in Figure A.1 in Appendix A.2,
where the respective lengths from joint one to joint six can be identified as; l1
= 505 mm, l2 = 760 mm, l3 = 200 mm, l4 = 150 mm, l5 = 275 mm, l6 = 807
mm, and l7 = 100. Note that this includes an offset between joint one and two,
resulting in seven identified lengths. A simplified sketch of the robot has been
developed in order to illustrate the concept, shown in 4.3.

Figure 4.3.: Simplified sketch of Yaskawa GP25-12 in its zero-position

The global coordinate system is defined using the right-hand rule with positive
x axis pointing out of the paper, positive z axis pointing upwards, resulting in
positive y axis pointing in the direction of the spherical wrist. The M matrix
representing the end-effector configuration when the robot is at its zero-position,

40 Chapter 4. System Description of Robot Cell at NTNU

explained in Section 2.4.2, is found to be

M =


1 0 0 0
0 1 0 l5 + l5 + l6 + l7
0 0 1 l1 + l2 + l3
0 0 0 1

 =


1 0 0 0
0 1 0 1332
0 0 1 1465
0 0 0 1

 , (4.1)

with lengths l1 - l6 as above.

However, with the welding gun mounted on the wrist, the new end-effector po-
sition will be at the tip of the welding gun. To obtain this configuration, the
homogeneous transformation matrix described in Section 2.1 was used. Let {b}
denote the frame at the wrist, and {t} denote the frame at the tip of the welding
gun. By studying Figure 4.4 one can see that frame {t} relative to frame {b} is
rotated some amount about the xb axis and translated some amount in y- and
z direction. These values were obtained from the programming pendant. The
transformation matrix expressing the configuration of the new end-effector was
found to be

Mtool = Tbt =
[
Rbt p
0 1

]
=


1 0 0 0
0 0.59 0.81 450.27
0 −0.81 0.59 84.40
0 0 0 1

 , (4.2)

where Rbt = Rot(x, θ) = Rot(x,−0.94) and p = [x, y, z] = [0, 450.27, 84.40]. Note
that the angle given in radians is negative, due to the previously defined coordinate
frame {x, y, z} explained earlier in this section.

The screw axes represented in space form, Si = (ωi,vi), and in body form, Bi =
(ωi,vi), can be found as explained in Section 2.4.2. The vectors ωi and vi are
presented in Table 4.1 in space form and Table 4.2 in body form. Each screw axis
is the 6 × 1 column vector formed by the respective ωi and vi. The screw axes
were calculated in VS-code as shown in Listing A.1 line 41 to 71, and 81 to 112
in Appendix A.3.

To compute the forward kinematics solution, two functions in the “modern_robotics”
library can be utilized; FKinSpace and FKinBody. Both functions take as input
the matrix M as well as a list of joint angles, named “thetalist” by default. The
list of angles will be a 1 × 6 vector for the GP25-12 as it has six joints. The
last input depends on whether the screw axes were calculated in space form or

4.3. The robot manipulator 41

Figure 4.4.: Close-up of wrist and the attached welding gun

Table 4.1.: Vectors ωi and vi for i=1 to 6 for Yaskawa GP25-12 represented in
space form

i ωi vi
1 (0,0,1) (0,0,0)
2 (1,0,0) (0, l1, -l4)
3 (1,0,0) (0, l1+l2, -l4)
4 (0,1,0) (-(l1+l2+l3),0,0)
5 (1,0,0) (0, l1+l2+l3, -(l4+l5+l6))
6 (0,1,0) (-(l1+l2+l3), 0, 0)

Table 4.2.: Vectors ωi and vi for i=1 to 6 for Yaskawa GP25-12 represented in
body form

i ωi vi
1 (0,0,1) (-(l7+l6+l5+l4),0,0)
2 (1,0,0) (0, -(l3+l2), l7+l6+l5)
3 (1,0,0) (0, -l3, l7+l6+l5)
4 (0,1,0) (0,0,0)
5 (1,0,0) (0, 0, l7)
6 (0,1,0) (0, 0, 0)

body form. The function FKinSpace takes a list of screw axes calculated in space
form, named “Slist” by default. The function FKinBody takes a list of screw axes
calculated in body form, named “Blist” by default. These lists can be calculated
in VS-code as shown in Listing A.1 in Appendix A.3, line 71 and 112, respectively.

42 Chapter 4. System Description of Robot Cell at NTNU

The resulting Slist and Blist for the GP25-12 are shown in Equation (4.3) and
(4.4), respectively.

Slist =



0 1 1 0 1 0
0 0 0 1 0 1
1 0 0 0 0 0
0 0 0 −1465 0 −1465
0 505 1265 0 1465 0
0 −150 −150 0 −1232 0


(4.3)

Blist =



0 1 1 0 1 0
0 0 0 1 0 1
1 0 0 0 0 0

−1332 0 0 0 0 0
0 −960 −200 0 0 0
0 1182 1182 0 100 0


(4.4)

For inverse kinematics calculations, the library “modern_robotics” uses the Newton-
Raphson method explained in Section 2.5.2. As with the forward kinematics,
there exist two functions for computing the inverse kinematics; IKinSpace and
IKinBody. Both functions take in the matrix M , a matrix describing the desired
end-effector configuration, a list of guessed joint angles, and an error allowance
“eomg” for orientation and “ev” for position. Again, the last input depends on
whether the screw axes were calculated in space form or body form. IKinSpace
takes Slist as input, and IKinBody takes Blist as input, both lists being equal to
the ones derived above.

To calculate the inverse kinematics for the GP25-12, the transformation matrix
given as the solution to the forward kinematics was set as the desired end-effector
configuration, T = T_goal. Then, an initial guess of the joint angles was stored
in a list called “thetalist_guess”. The error allowance for orientation was set to
0.001, and the error allowance for position was set to 0.0001.

The two functions will output a list of angles required to obtain the desired end-
effector configurations and a result of the iterations, which will be either “true”
or “false”. The result would be true if the iterations were able to find a solution
within the defined error allowances and false if not. If the initial guess of angles
is too far from the solution, the iterations will not converge, and the result will
be false.

4.4. Welding equipment 43

4.4. Welding equipment
A Fronius CMT welding system is installed with the Yaskawa robot manipulator.
CMT is a welding technique that utilizes very low heat input and as a result
shields the material to be welded from property changes, amongst others. The
CMT welding system from Fronius works by detecting a short circuit. During
welding execution, the short current is supervised by the digital process control,
and at occurrence, the welding wire is pulled back. This short circuit control
results in low temperatures [71].

More specifically, the welding equipment from Fronius installed at the lab is the
MIG/MAG power source TPS 400i as can be seen in Figure 4.5a. The wire feeder
is shown in Figure 4.5b. The TSP 400i is equipped with a touch screen, which
provides the operator with system information, and the operator is also able to
perform adjustments such as welding parameters. The technical data for the TPS
400i is provided in Table A.1 in Appendix A.1.

(a) Fronius TPS 400i (b) Wire feeder

Figure 4.5.: Image a) displays the Fronius TSP 400i and image b) the wire
feeding system

The welding gun is attached to the robot´s wrist joint as an additional piece of
equipment, where the tip of the welding gun makes out the end-effector of the
robot manipulator. The wiring from both the wire feeder and the power source
is gathered on the robot prior to the spherical wrist. The wires provided to
the welding gun are implemented within the spherical wrist, allowing for a more
flexible movement.

44 Chapter 4. System Description of Robot Cell at NTNU

4.5. Welding cell enclosure
A welding process exposes the operator and those in near proximity to a hazardous
environment. Security measures as welding helmets shielding the operator, and
curtains shielding those around must be implemented. However, automating the
process by introducing robots adds a new safety hazard; a moving robot.

Different solutions for enclosing the welding cell exist. The Yaskawa Motoman
GP25-12 with Fronius TPS 400i is enclosed by see-through walls, as shown in
Figure 4.6. A lock mechanism is installed at the door, which is implemented in
the software of the robot. This functions as a safety measure where the operator
will not be able to execute programs in remote mode unless the door is closed.
This protects the operator, and anyone near the robot cell, from both dangers
related to the welding operation, such as spatter and damaging light, and the
robot manipulator itself.

Figure 4.6.: Welding cell with enclosure

Chapter 5.

Development of the suggested
solutions

This chapter will present the development and implementation of offline program-
ming with the robot manipulator Yaskawa GP25-12. The required installations
will be described, followed by a presentation of the virtual robot cell designed
based on the physical robot cell at Perleporten. The rest of the chapter is divided
into two main parts; the development of the OPC UA server and the development
of a solution for sending the offline programmed trajectory to the physical robot.

This project consists of four main components; a computer, an offline program-
ming simulation software, the OPC UA protocol, and the robot cell at Perleporten.
A presentation of different offline simulation software was given in Section 3.3.
However, the software Visual Components was chosen for this project before
startup.

The computer hosts the simulation software and serves as the link between the
digital robot cell in Visual Components and the physical robot cell. The OPC UA
protocol ensures communication between the computer and Visual Components.
Referring to Section 3.1.3, the computer contains the OPC UA server, whereas
Visual Components serves as the OPC UA client.

The communication between the physical robot and the computer is achieved
by an Ethernet connection between the computer and the robot controller. The
set-up is shown in Figure 5.1.

46 Chapter 5. Development of the suggested solutions

Figure 5.1.: Components in project

5.1. Installations
Visual Components Premium 4.3 was installed and activated with a license pro-
vided by NTNU. Further, VS-code was chosen as the software in which code would
be written. This coding editor is compatible with several coding languages, in-
cluding Python, used in this project. With this coding editor, a "pip install"
command can be used to install necessary packages.

The Github repository published by the OPC Foundation, explained in Section
3.1.3, does not provide any resources compatible with Python. An open-source
OPC UA library, available at Github https://github.com/FreeOpcUa, provides
an extensive amount of resources compatible with both Python and C++, and
offers a wide range of examples. The repository “python-opcua” was used as a
basis for this project.

In order to use the functionalities provided in the free OPC UA open-source
Github library, they must be installed as “pip install opcua”. The same yields
for the software translating Python code to ROS commands for the robot con-
troller, explained in Section 4.2. The installation was executed as “pip3 install
git+https://github.com/tingelst/moto.git –upgrade”.

To connect to the robot controller, an Ubuntu terminal was installed on the
computer hosting the simulation software.

https://github.com/FreeOpcUa

5.2. Virtual robot cell 47

5.2. Virtual robot cell
As stated in Section 3.2, there are two ways of creating a digital work cell in a
simulation software; either the digital cell is made based on an already exiting
physical cell, or the digital cell is made prior to the physical cell. For this project,
the physical cell was already installed. The digital and physical robot cell are
presented in Figure 5.2 and Figure 5.3, respectively.

As mentioned in Section 3.2, components that do not interfere with the robot
manipulator are not necessary to include in the digital representation, as these
might impact the performance of the simulation. As can be seen in Figure 5.3,
the robot manipulator is placed on a positioner, elevating the robot manipulator
from the floor. This component was included in the digital representation, as it
affects the performance of the digital representation with regards to the physical
cell. The eCatalog in Visual Components did not have this exact component.
However, as its only function is to elevate the robot, a similar component with
the same height was included in the digital cell.

The workpiece positioner in the physical cell was also not provided in Visual
Component´s eCatalog. Yaskawa was contacted in an attempt to obtain CAD
files for the components missing in Visual Components. As it turned out, this
would be a rather time-consuming process, and seeing as the workpiece positioner
would not affect the progress of the project, it was decided to proceed without it.
A similar positioner was included in the digital representation for illustration.

Figure 5.2.: Digital representation of robot cell

48 Chapter 5. Development of the suggested solutions

Figure 5.3.: Physical robot cell

5.3. Testing the OPC UA communication
As explained in Section 3.3.2, Visual Components has connectivity features as
add-on, which have to be enabled in the configurations. With the OPC UA
connectivity enabled and the software restarted, the OPC UA server was avail-
able in Visual Components. In order to test the connection, the example server
“server_minimal.py” provided by the Free OPC UA library was used. In the
server, one must define the server endpoint, as explained in Section 3.1.3, with
an IP address and a port number. As both the server and client were located
on the same computer, the IP address was set to “localhost” with port number
4840. This is a commonly used port number in OPC UA servers; however, not a
required one. For the connectivity configurations in Visual Components, an OPC
UA server address must be defined. The server address was set to be equal to
the string stored in the server endpoint in the server. The server endpoint in the
OPC UA server and the server address in Visual Components must be identical.

The OPC UA server in Visual Components consists of two parts; “Server to

5.3. Testing the OPC UA communication 49

simulation” and “Simulation to server”. Both of these contains variables from
the digital environment as well as variables from a connected server. The server
“server_minimal.py” creates an object called “MyObject” and adds a writable
variable called “MyVariable” to this object. The server increments a variable
“count” every 0.1 seconds and sets “MyVariable” to this value.

With the server running in VS-code, the connection in Visual Components changed
to True, implying that a connection was established between the server and client.
With the connection established, the object “MyObject” was available in the “Sim-
ulation to server” configuration. The variable “MyVariable” within “MyObject”
from the server was paired with the variable “S” from the simulator, represent-
ing joint S of the Yaskawa GP25-12. The simulation in Visual Components was
started, resulting in the simulated robot rotating about joint S, verifying that the
communication was successful.

With the OPC UA connection between the server and Visual Components es-
tablished, the next step was to modify the server to have six writable variables
corresponding to the robot’s six joints. The server “server_minimal.py” gener-
ates a value that is stored in the variable “MyVariable”. Besides being useful for
testing purposes, this generated value serves no purpose. A more interesting value
to store in these writable variables would be the actual joint positions, read from
the physical robot.

A new server was created, based on “server_minimal.py”, the master´s thesis
written by Aksel Øvern [72] , and the Moto library developed by supervisor Lars
Tingelstad. The code can be seen in Listing B.1 in Appendix B.

The new server creates an object called “Moto”, similar to “MyObject”, explained
above. Further, all six joint links are defined as writable variables which are added
to the “Moto” object.

As explained in Section 4.2, some essential methods defined in the Moto library
must be implemented in order to achieve movement with the physical robot. In
the server script, above the initiation of the server, the physical robot was defined.
Further, the servo and trajectory mode was started. The joint angles of the physi-
cal robot were extracted using the command “robot.state.joint_feedback(0).pos”.
Here, “robot” is the object containing the physical robot, explained above.

In order to retrieve information from the physical robot, a connection between the
computer and the robot controller must be established. Referring to Section 5.1,
an Ubuntu terminal was installed to connect with the robot controller through an
Ethernet cable. In the Ubuntu terminal, the following must be entered: “telnet
192.168.255.200”. If a connection is established, Ubuntu requests a username and
password. Once the connection with the robot controller was established and the
server initiated, Ubuntu outputs that the robot is ready for ROS commands, see

50 Chapter 5. Development of the suggested solutions

Figure 5.4.

Figure 5.4.: Successful connection to robot controller through Ubuntu. Servos
and trajectory mode started

Following the same procedure as before, a connection was established between the
server and Visual components. The six joint variables from the server were paired
with their respective joint variables in the simulation, see Figure 5.5. Once all joint
variables were paired correctly, the simulation was initiated in Visual Components,
and the simulated robot moved to the desired position, see Figure 5.6.

Figure 5.5.: Pairing joint variable S from server to simulation in Visual Compo-
nents

Important to note from this test was that Visual Components takes joint angles in
degrees, whereas the physical robot requires joint angles in radians, implying that
it also output joint angles in radians. The position of the robot in Visual Com-
ponents, shown in Figure 5.6, actually displays degrees. The values are correct,
but the robot barely moved. Converting the joint angles read from the physical
robot to degrees before sending these to Visual Components made the simulated
robot move to the desired position.

5.4. Offline programming from simulation to server 51

Figure 5.6.: Top image displays the joint positions read from the physical robot
and sent to Visual Components, and the bottom image displays the joint positions
of the simulated robot corresponding to the ones of the physical robot

5.4. Offline programming from simulation to server
The OPC UA connection was proven to be successful, and the simulated robot
mirrored the position of the physical robot. The next step was to reverse the
process, to get the physical robot to mirror the position of the simulated robot,
i.e. offline programming. The process of implementing offline programming with
the Yaskawa GP25-12 required an extensive amount of testing. Essential was to
understand how best to utilize the functionally provided with the Moto library,
as well as perfecting the OPC UA server, reading joint positions from Visual
Components. The following sections will present the process of developing Python
scripts, testing, and improvements.

In order to send a trajectory to the robot controller, the Moto library explained
in Section 4.2 had to be investigated thoroughly. A server had to be created that
connects to the client, reads joint positions, and sends these to the physical robot.
Reading joint positions from Visual Components was easily achieved by changing
“set_value” to “get_value” in the server. However, sending these joint positions
to the robot proved to be challenging.

Two methods for implementation with the robot controller were tested. The
robot software implemented in this project is not compatible with “real-time”
programming. Therefore, the initial idea was to write the joint positions from
client to file, before sending these to the physical robot. The other idea was to

52 Chapter 5. Development of the suggested solutions

write directly to the robot controller from Visual Components, however, with
some delay.

5.4.1. Developing the OPC UA server
In Visual Components, a simple trajectory consisting of four points was pro-
grammed. The initial point recorded was with the robot manipulator in its zero-
position, explained in Section 4.3.1. This implies that all joint angles are equal
to zero. Next, three more points were placed at arbitrary positions. All points
were programmed with a “point-to-point Motion Statement” allowing the robot
to move all joints freely. Visual Components automatically generated the path
from point p1 to point p4.

The joint variables were paired as before, only now from simulation to server.
In order to store the positions read from Visual Components, a JSON file was
created. The server gets joint angles from Visual Components every 0.2 seconds
and creates a 1×6 position vector that stores these joint angles before writing the
position vector to file.

In the server, all variables in the object “Moto”, explained in Section 5.3, are given
a default value of 6.7. As soon as the server starts, if there are no constraints on
the writing-to-file functionality, 1×6 position vectors with all six elements equal
to 6.7 will be written to file until the simulation in Visual Components is initiated.
At this moment, the joint angles read from Visual Components will be written to
file. However, as the position vectors containing the default value 6.7 are not part
of the programmed trajectory, they can not be included in the file. A test was
executed in order to illustrate the problem described above. The result is shown
in Figure 6.1 in Section 6.1.

To account for this, an IF-statement was included in the server, which is only
entered if the value of one of the joint variables is different from 6.7, implying
that the simulation in Visual Components is initiated.

Further, the server will get values from the client as long as the server is running.
This implies that even though the simulated trajectory is finished, the server will
continue writing position vectors to file. A solution to this problem was to create
a method in the server that checks whether or not the simulated trajectory is
completed, see Listing C.3, line 23 to 43, in Appendix C.3.

The above-described modifications to the server were crucial in order to obtain
an accurate joint position file containing the offline programmed path. Two more,
however less important, constraints were implemented in the server. An IF state-
ment was included in order to stop writing to file when the simulation in Visual

5.4. Offline programming from simulation to server 53

Components is resat, as well as a statement that clears the content of the JSON
file between each test.

With the suggested server, a problem regarding the relation between the simula-
tion speed, and the speed at which the server gets values, was discovered. The
simulation speed in Visual Components can be adjusted from 0.0 to 10000. If the
speed of simulation is high, the server will have to get values at a very high rate
in order to obtain enough position vectors along the trajectory. If the speed at
which the server gets values is not sufficiently high, a lot of points along the path
will be lost from simulation to server. This results in a trajectory that deviates
from the programmed one, ultimately making it useless.

When programming a path in Visual Components, one can assign a so-called
“Cycletime” to each point along the trajectory. This can be compared to the
variable “time”, explained in Section 4.2, which resembles the time given the
physical robot to reach the desired position. By giving such a cycle time to each
point in the simulation, the server read-time can be adapted to this and thereby
controlling the process. With a cycle time of 5 seconds and a server read-time of 0.5
seconds, a total of ten position vectors will be read by the server as the simulated
robot moves from point A to B, given that the simulation speed is 1.0. This
implies that every tenth position vector written to file corresponds to a point in
the simulation, see Figure 5.7. The nine previous ones record the movement from
the previous point to the point in question, ensuring that the physical robot will
move exactly as the simulated robot also in between each programmed trajectory
point.

Figure 5.7.: Tenth position vector written to file (left) corresponding to the joint
angles of the first trajectory point in Visual Components (right)

54 Chapter 5. Development of the suggested solutions

5.4.2. Developing script for implementing OLP with robot
controller

A separate script was developed in order to send the offline programmed trajectory
to the robot controller. As explained in Section 4.2, the robot controller requires
one to send a trajectory point, p0, recording the robot´s current position before
sending a trajectory point, p1, instructing a new position. At the early stages,
a misinterpretation concerning sending trajectory points to the robot controller
was made. It was understood that point p0, recording the current position of the
robot, had to be sent to the robot controller before a new trajectory point, p1,
every time. This was later realized to be a misconception and is commented on
later in this section.

The file that stores the offline programmed trajectory consist of one large vector
containing all the position vectors read from simulation. A for-loop was created
in order to retrieve the position vectors one by one and store these in a variable.
The position vectors from simulation are 1×6. However, as explained in Section
4.2, when defining a trajectory point, the position-, velocity-, and acceleration
vectors must be 1×10. An array containing four zeros were therefore added to
the end of each position vector from file and stored in a new variable to be given
as input to the trajectory points.

As explained in Section 5.4.1, the first point in the trajectory programmed in
Visual Components was with the robot in its zero-position, i.e. all joint angles
equal to zero. This was done as a security measure for when the trajectory would
be implemented with the physical robot. Based on the amount of uncertainties
related to the implementation of offline programming with the robot controller in
question, it was decided that it would be advantageous to always know the first
position vector sent to the robot controller. This allows for the physical robot
to, prior to receiving positions from file, be moved to the zero position from any
arbitrary position under controlled conditions.

To ensure that the physical robot was in the zero position before receiving the of-
fline programmed trajectory points, a simple “check” was included that calculates
the difference between the robot´s current position and the zero position, essen-
tially a 1×10 zero vector. If the difference is smaller than a defined threshold, this
is interpreted as the robot being in the zero position, and a point p0, recording
the current position of the robot, is sent to the robot controller. A difference
larger than the threshold implies that the current position is too far from the zero
position, and the robot must be moved. Based on the current interpretation of
how to send trajectory points to the robot controller, three points were included;
a point p0 that records the current position of the robot, followed by a point p1
that moves the robot to zero position over a given time period. Lastly, a point p0

5.4. Offline programming from simulation to server 55

was sent to the robot controller again, updating the current position of the robot.

With the robot in the zero position, the offline programmed trajectory could be
sent. Two points were created within the for-loop presented above; a point, p0,
recording the current position of the robot, followed by a point, p1, that takes the
1×10 position vectors explained above as input. The server is shown in Listing
C.1 in Appendix C.1. Running this script made the robot move; however, lots of
errors from the robot controller were displayed in Ubuntu. These errors stated
that the trajectory start position did not match the current position. As stated
earlier in this section, the functionality of the robot software was misinterpreted.
After discussing the results and errors with supervisor Lars Tingelstad, it was
realized that the point recording the current position, p0, only has to be sent one
time as the first point of the trajectory. Based on this new insight, the script was
modified.

The IF-statement entered if the robot was too far from zero position was modified
to only contain two points; point p0 reading current position and point p1 moving
the robot to zero position. Further, the point p0 within the for-loop was removed,
as this would already have been sent to the robot in the IF-statement above, leav-
ing only the trajectory point, p1, reading position vectors from file. When testing
the modified version, the physical robot moved a small amount before stopping
while displaying “excessive segment” on the teach-pendant. It was realized that
the sequence number, explained in Section 4.2, of the trajectory points produced
in the for-loop was set to 1 throughout the for-loop. This means that while the
position vector in the trajectory point changed, the sequence number remained
at 1, essentially telling the robot that the first point in its trajectory has infinite
many positions, which is impossible. A variable called “sequence_nb” was created
that starts at zero and is incremented by one for each for-loop.

Another important realization regarding the functionality of the trajectory point
was made while testing the script. The “time” variable, explained in Section
4.2, was initially interpreted as a time given the robot to perform the specified
movement; if “time” was set to 0.5 seconds, each generated trajectory point in the
for-loop should take 0.5 seconds. However, the time variable functions similarly to
the “sequence” variable described above. It is not simply a time given to execute
the current point; it describes at what time the robot should be at the desired
position. As with sequence = 1, if time = 0.5 in all trajectory points generated in
the for-loop, this tells the robot that it should be at all these different positions
at the exact same time, which is impossible. A variable “timer” was created,
which is incremented for every for-loop. This variable is not, however, necessarily
initiated at zero. If the robot is not in the zero position and the IF-statement,
explained earlier, is entered, the robot is given 5 seconds to move to the zero
position. This means that the variable “timer” in the for-loop must start at 5,

56 Chapter 5. Development of the suggested solutions

and be incremented a desired amount. If the robot is in zero position, meaning
the IF-statement is not entered, the variable “timer” starts at zero. The resulting
script is shown in Listing C.4 in Appendix C.4.

5.5. Testing of the finalized versions
As explained in Section 5.4.1, the main challenge with the developed solutions was
to find the optimal relationship between the speed at which the server gets values
and the speed of the simulation in Visual Components. Further, an additional
factor regarding speed was realized. In the script sending the offline programmed
trajectory to the robot controller, there needs to be some sleep in the script in
order for the physical robot to "keep up". Finding the optimal setup required
testing. As stated at the beginning of this chapter, two different implementation
methods were tested; writing from simulation to file before sending to the robot
controller and writing directly to the robot controller from simulation.

5.5.1. Sending position vectors directly to robot controller
A script was developed that connects to the robot controller and Visual Compo-
nents at the same time, see Listing C.2 in Appendix C.2. This script incorporates
the OPC UA server explained in Section 5.4.1, and the functionalities for sending
trajectory points to the robot controller, explained in Section 5.4.2. However, in-
stead of writing the offline programmed trajectory to file, it was temporally stored
in a vector and sent directly to the robot controller.

In Visual Components, two identical robots were placed next to one another, see
Figure 5.8. One of the robots were programmed to execute a simple trajectory,
and the variables were paired from simulation to server. The other robot was
paired from server to simulation. Both pairings are shown in Figure 5.9. Within
a for-loop, the server gets joint position values from the first robot, store these
in a temporary vector, and immediately send them to the robot controller. Si-
multaneously, the current position of the physical robot is retrieved and written
to simulation. The desired outcome was for the physical robot to, with some de-
lay, mirror the movement of the first simulated robot, while the second simulated
robot received position vectors from the physical robot and simulated the actual
movement of the physical robot.

This test was not successful. Sending the offline programmed trajectory directly
from simulation to the robot controller worked well; however, reading the posi-
tion vectors from the physical robot and writing these to simulation did not. A
recording was made that shows the physical robot mirroring the movement of the
simulated robot, with some delay. The result is shown in Section 6.2.

5.5. Testing of the finalized versions 57

Figure 5.8.: Simplified digital cell for testing simulation to server and server to
simulation simultaneously

Figure 5.9.: Paired variables from simulation to server and from server to sim-
ulation

5.5.2. Sending position vectors to robot controller from file
The second implementation method tested was developed with two separate scripts.
An OPC UA server, as explained in Section 5.4.1, and a script for sending tra-
jectory points to the robot controller, explained in Section 5.4.2. From the tests
executed with the above-explained implementation method, it was realized that
the communication with Visual Components and the communication with the
robot controller have different “requirements” proven difficult to satisfy at the

58 Chapter 5. Development of the suggested solutions

same time. The two scripts are shown in Listings C.3 and C.4, in Appendix C.3
and C.4, respectively. The desired outcome was to find the optimal relationship
between the server read-time and the sleep in the script sending trajectory points
to the robot controller.

The first tests were executed with the sleep after the robot has moved to zero posi-
tion set to 2 seconds, while the “time” variable in the trajectory point instructing
the robot to move to zero position was set to 5 seconds. The tests in Figure 6.2,
6.3, and 6.4 were executed with sleep after each trajectory point set to 0.3, 0.1,
and 0.2, respectively.

The next tests were executed with the sleep after the robot has moved to zero
position equal to the “time” variable given to arrive at desired position; 5 seconds.
The tests in Figure 6.5, 6.6, and 6.7 were executed with sleep after each trajectory
point sat to 0.2, 0.3, and 0.4, respectively.

Finally, a test was executed to check the repeatability of the offline programmed
trajectory. The same trajectory was sent to the robot five consecutive times,
and for each test, the position of the robot was read and written to file. Figure
6.8 shows all five tests in the same plot, while Figure 6.9 shows the same figure,
only zoomed in on the areas where discrepancies between the five tests were at a
maximum. Table 6.1 displays the largest difference encountered for each joint in
all five tests.

Chapter 6.

Results

This chapter will present the results obtained from testing the developed solutions.
The results will be described and commented on in Chapter 7. The results are
presented in the same order as the solutions were presented in Chapter 5.

All plots display six sub-figures, one for each of the robot´s six joints. The unit
“step” along the x-axis represents the total amount of position vectors in the
trajectory, implying that “step 0” represents the first point in the trajectory. The
unit “angle” along the y-axis is given in radians.

6.1. Results from testing OPC UA server without
constraints

This section presents the result obtained when comparing two trajectory files; the
desired trajectory programmed in Visual Components and the actual trajectory
written to file from the OPC UA server. The result is shown in Figure 6.1.

60 Chapter 6. Results

Figure 6.1.: The red line illustrates the programmed trajectory in Visual Com-
ponents, while the blue line illustrates the trajectory written to file without con-
straints in the server

6.2. Results from sending trajectory directly from
Visual Components to the robot controller

A video is provided in the digital appendix, illustrating the result when sending
trajectory points directly from Visual Components to the robot controller. The
recording displays the physical robot mirroring the movement of the simulated
robot, with some delay.

6.3. Results from sending trajectory to file and then
to robot controller

The results presented in this section were obtained with different configurations
with regards to sleep in the script. The robot was moved to its zero position prior
to receiving trajectory points from file in all tests. The time given to arrive at
zero position was 5 seconds.

Figure 6.2, 6.3, and 6.4 displays the results obtained with sleep after moving the
robot to its zero position equal to 2 seconds. Figure 6.5, 6.6, and 6.7 displays the
results obtained with sleep after moving the robot to its zero position equal to
the time given to move to zero position; 5 seconds. This information is provided
in the figure description as “time” = 2 for the first three, and “time” = 5 for the

6.3. Results from sending trajectory to file and then to robot controller 61

three last.

Figure 6.2.: Result obtained with “time” = 2, and sleep after each trajectory
point sent to the robot equal to 0.3

Figure 6.3.: Result obtained with “time” = 2, and sleep after each trajectory
point sent to the robot equal to 0.1

62 Chapter 6. Results

Figure 6.4.: Result obtained with “time” = 2, and sleep after each trajectory
point sent to the robot equal to 0.2

Figure 6.5.: Result obtained with “time” = 5, and sleep after each trajectory
point sent to the robot equal to 0.2

6.3. Results from sending trajectory to file and then to robot controller 63

Figure 6.6.: Result obtained with “time” = 5, and sleep after each trajectory
point sent to the robot equal to 0.3

Figure 6.7.: Result obtained with “time” = 5, and sleep after each trajectory
point sent to the robot equal to 0.4

64 Chapter 6. Results

6.4. Checking the accuracy
This section presents the results obtained when sending the same trajectory to
the robot controller five consecutive times. Figure 6.8 displays all five tests in the
same plot. Figure 6.9 is the same plot as displayed in Figure 6.8, only zoomed in
on areas with the largest error between the five tests. The labels 1, 2, 3, 4, and 5
represent test 1 to 5, respectively.

Table 6.1 displays the largest error found between the minimal joint angle and
the maximal joint angle in all five tests, see Figure 6.9.

Table 6.2 and 6.3 presents the minimal and maximal error between the trajectory
sent to the robot controller and joint feedback received from the robot controller
in Figure 6.5 and 6.7, respectively.

Figure 6.8.: Result obtained when sending the same trajectory file to the robot
controller five consecutive times. Labels 1-5 represent test 1-5, respectively

6.4. Checking the accuracy 65

Figure 6.9.: Figure 6.8 zoomed in on areas with small discrepancies between the
five consecutive tests. Labels 1-5 represent test 1-5, respectively

Table 6.1.: Largest difference recorded for each joint in five consecutive tests.
All values are in radians
Joint Step Min [rad] Test Max [rad] Test Difference [rad]
S 50 -0.046932284 Test2 - 0.038852174 Test5 0.008080110
L 50 0.042341530 Test5 0.052772656 Test2 0.010631125
U 50 -0.172967285 Test5 0.162360907 Test2 0.010906378
R 50 0.179402381 Test5 0.217299730 Test2 0.037897348
B 13 0.106403485 Test3 0.109252304 Test2 0.002848819
T 50 -0.213544220 Test2 -0.176354364 Test5 0.037189856

Table 6.2.: Comparison of the simulated trajectory and the feedback from phys-
ical robot in Figure 6.5. The values are in radians and given in absolute value

Joint Min error [rad] Step Max error [rad] Step
S 0.0 – 0.049204747 Step51
L 0.0 – 0.062942668 Step51
U 0.0 – 0.061745344 Step51
R 0.000014887 Step73 0.220588276 Step51
B 0.000005147 Step74 0.011258153 Step114
T 0.0 – 0.216544803 Step51

66 Chapter 6. Results

Table 6.3.: Comparison of the simulated trajectory and the feedback from phys-
ical robot in Figure 6.7. The values are in radians and given in absolute value

Joint Min error [rad] Step Max error [rad] Step
S 0.0 – 0.000047506 Step51
L 0.000000091 Step70 0.000034207 Step51
U 0.0 – 0.000068365 Step51
R 0.0 – 0.000271847 Step28
B 0.000002075 Step31 0.000363389 Step51
T 0.0 – 0.000539283 Step27

Chapter 7.

Discussion

Even though to some, Industry 4.0 may merely be a buzzword, there is no argu-
ing that an impressive advancement in the manufacturing industry is happening.
Technology is evolving at a rapid speed, and the information flow is greater than
ever. Industry 4.0 essentially enables the demand for high-mix, low volume pro-
duction, as the exchange of information is constant, implying that adaption to
new information is possible at all time.

Robots have been implemented successfully in mass-production for a long time.
However, with the new demands introduced with Industry 4.0, they are on the
verge of becoming outdated. The method of programming robots online is not
compatible/sustainable with an ever-changing request from the consumer. If the
time required to program the robot with the teach pendant equals the time it takes
for the demand to change, the robot will never reach the stage of production. This
might be a rather blunt statement, but as explained by Delfoi Robotics in Section
3.2, online programming can take everything from two weeks to a month. It is
not unlikely that demands change from one month to the next.

Robotic offline programming offers one major advantage being that the produc-
tion stoppage is drastically decreased, as the programming is executed from an
external computer not dependent on the physical robot. Not only does this in-
crease efficiency, it essentially revitalize robots in Industry 4.0. While the robot
is producing the exciting demand, the new demand can be programmed, enabling
the optimal production strategy.

The fact that offline programming is not dependent on the physical robot while
programming is highly relevant with the current pandemic. The ability to work
from home while maintaining progress has never been more important. While the
current pandemic won´t last forever, it is interesting to consider the effects it will
have on the industry. As home-office has become the new normal, it is reasonable
to assume that companies see a potential in economical savings by not having

68 Chapter 7. Discussion

their employees in office every day of the week.

Further, the pandemic introduced a drastic increase in demand for products nor-
mally not desired by the “average” person, such as sanitary products, e.g. face
masks and antibacterial gel. Companies that were able to adapt to these changes
quickly undoubtedly profited from it, while others who did not might want to
change their strategy in order to be more versatile to new demands. Based on
the literature and the factors discussed above, a fair assumption is that robotic
offline programming will increase in the years to come.

The literature describes robotic offline programming, almost exclusively, by all
the advantages it introduces. However, referring to Section 3.2, close to 90% of
all robotic operations in 2019 were programmed online. Possible reasons for this
might be related to, what some would call, misconceptions regarding the method.
Whether or not they are, is a topic of discussion.

One reason why some companies might be opposed to implementing offline pro-
gramming can be related to the belief that it requires expertise. In this project,
referring to Section 3.2, the digital robot cell was designed to replicate the al-
ready exciting physical robot cell. As explained in Section 5.2, several compo-
nents installed in the physical cell were not provided in the eCatalog in Visual
Components. With Visual Components, one can create and upload 3D models
of components designed in, for example, SolidWorks. However, this requires the
operator to have, or to obtain, competence with CAD design.

Further, most simulation software advertise themselves as being easy to use, where
no prior programming skills are required. Understanding the basics of Visual
Components is manageable. However, based on personal experience, the doc-
umentation in general is not very user-friendly. The simulation software is ex-
tremely advanced, which is both positive and negative. Positive because it really
does enhance the quality of a production cell both in the design phase and the
production phase, with the insight and advanced programming functionalities it
provides. However, in order to achieve the full advantage of the software, at least
for someone new to simulation software, it is a plausible assumption that quite
some time must be invested.

The OPC UA protocol used in this project is advanced. It consists of very spe-
cific technology that most people are unfamiliar with, including people in the IT
industry. Referring to the discussion above, implementing such a technology re-
quires knowledge within the subject in order to fully take advantage of its features.
Even though the OPC UA protocol is not a requirement with offline programming,
considering the statements above, this motivates the question; is robotic offline
programming becoming so advanced, compared to online programming, that it
essentially requires a completely new set of skills?

69

That being said, implementing a simple OPC UA server with Visual Components
was easy, and the connection worked seamlessly. As both the OPC UA server and
the entire Moto library were written in Python, no problem arose regarding the
compatibility of all three software components. Issues that were faced with the
developed solutions were not directly caused by one of the software components
but rather how to best incorporate them with one another.

As explained in Section 5.4.1, constraints on the read-functionality of the server
had to be implemented. Figure 6.1 in Section 6.1 displays the results without
constraints on the server. The programmed trajectory sent to file is shown in red,
and the actual trajectory written to file in blue. It can be seen that all six joints
maintain a constant joint angle for about 30 steps; this is the default value given
in the server. One step represents one position vector, implying that close to 30
position vectors were written to file before the simulation in Visual Components
was initiated. This further explains the delay in the plots, as the trajectory from
simulation is added after the 30 position vectors created with the default value in
the server.

As soon as the simulation is initiated, all joint angles should change to the angle
of the desired trajectory at step 0. This is the case for joint S, L, R, and T.
However, joint U and B are far from the respective angles in step 0 of the desired
trajectory. This can be explained by the quite drastic change in joint angle from
step 0 to around step 20, which only occurs in joint U and B. The remaining four
joints have quite a small, if any, change in angle from step 0 to 20. The server
read time is too slow compared to the speed of the simulation, resulting in the
rapid change in joint angles being lost from simulation to server. The same issue
can be seen with the joint angle change in joint S, L, U, R, and T at around step
50. In the desired trajectory, these joint angles change during a few steps, whereas
the actual trajectory requires around 20 steps to achieve the same angle.

The trajectory from file has around 110 steps, whereas the actual trajectory has
about 75. The actual path should have 30 steps more than the desired one due to
the default values written to file in the beginning. However, the actual trajectory
has around 5 steps more than it should. This is because the server gets values
from the simulation even though the trajectory is finished and only stops when
the server connection is manually closed.

Two methods of implementation were tested with the final solutions. The first one
being to send position vectors directly to the robot controller from Visual Com-
ponents, explained in Section 5.5.1. This implementation method was successful
with regards to sending the offline programmed trajectory to the robot controller.
The result is provided as a digital recording in the digital appendix. However,
retrieving joint position feedback from the robot was unsuccessful. As the com-
munication with the robot in this test was achieved while the server was running,

70 Chapter 7. Discussion

it was highly affected by the speed of the server. The problem with this method
can be explained by the script essentially running too fast compared to the move-
ment of the robot. The trajectory points are sent to the robot controller every
0.2 seconds and temporarily stored while awaiting their execution time. However,
the joint feedback from the robot controller is retrieved equally fast. This implies
that the joint feedback from the robot ultimately reads the same position over
and over.

It can be argued that the unsuccessful result from this test is not of great im-
portance; it is important with regards to logging the movement of the physical
robot, and it is essential in order to simulate the movement in Visual Components.
However, it is not essential, nor does it affect the offline programmed trajectory.

The second method of implementation tested was writing the trajectory to file
before sending it to the robot controller, explained in Section 5.5.2. Referring to
Figure 6.2, 6.3, and 6.4 in Section 6.3, in all three tests the joint angles of the
robot, shown in blue, have a position error in step 0, compared to the simulation.
This can be explained by the lack of sleep in the script.

The robot was given 5 seconds to move to its zero position prior to receiving tra-
jectory points from simulation, while a sleep of 2 seconds was given after sending
this trajectory point. The problem is that the trajectory point is sent to the robot
controller, and then the script pauses for 2 seconds. The robot, however, will still
use 5 seconds to perform the movement. This entails that when the simulated
robot is at step 0 with all joint angles equal to zero, the physical robot is still 3
seconds away from its zero position.

Figure 6.3 shows the worst result of the three tests. However, the actual movement
of the robot was smooth. The time to execute each trajectory point was set to
0.2 seconds while the sleep after each trajectory point was set to 0.1 seconds. The
same problem as previously explained arises; the script runs faster than the robot
is moving. For every position vector sent to the robot, the joint feedback from
the robot is received when the robot has executed 50% of the trajectory point.

Figure 6.4 shows the result when the sleep after each trajectory point is equal to
the time given in each trajectory point. This test best illustrates the problem aris-
ing when the robot is not at the correct start position before receiving trajectory
points; there will be a lag throughout the entire trajectory.

Three tests were executed with sleep after moving the robot to zero position equal
to the time given to move to zero position; 5 seconds. The results are shown in
Figure 6.5, 6.6, and 6.7. Figure 6.5 illustrates an impressive improvement from
Figure 6.4, where the only modification made is that the script waits while the
robot moves to zero position before continuing. Table 6.2 displays the minimum
and maximum error obtained between the simulated and actual trajectory. The

71

largest error for all joints, except joint B, was found in step 51, where a rapid
change in angle takes place. When analyzing the plots, there seems to be a trade-
off between the accuracy and the smoothness of movement.

Figure 6.7 displays the absolute best correspondence between the simulated tra-
jectory and executed trajectory. Referring to Table 6.3, the largest errors are
all very small. However, the robot did not execute the trajectory in one smooth
movement but rather in sequences of movement. If the robot were to be imple-
mented in a welding operation it would definitely be problematic for the result of
the weld if the robot moves in segments rather than one smooth movement. The
same is true for Figure 6.6. The common factor with these two tests was that
the sleep after each trajectory point was set to be higher than the time given to
execute the movement. The smoothest execution while still performing accurately
was found with sleep after each trajectory point equal to the speed of execution,
see Figure 6.5.

One possible source of error is important to discuss. The quality of executed
trajectory, as seen in the plots presented above, range from highly inaccurate to
highly accurate. However, these plots are based on the received joint feedback
from the robot controller, and as discussed, this is highly dependent on the speed
of the script. When the sleep after a trajectory point is larger than the time given
to execute the movement, the received joint feedback is very accurate. When the
sleep after each trajectory point is less than, or equal to, the time given to execute
the movement, the plots displayed less accurate results. However, this does not
necessarily imply that the robot does not move as desired, but rather that the
suggested solution is not completely trustworthy with regards to analyzing the
joint feedback.

Referring to Figure 6.9 and Table 6.1 in Section 6.4, the largest deviations between
five consecutive tests for all joint angles, except for joint B, is found to be in step
50. By studying Figure 6.8, one can see that all joints, except joint B, experience
a drastic change in joint angle around step 50. The concept of repeatability
was presented in Section 3.3. As the five consecutive tests show good results,
where the largest difference between two tests was found to be 0.038 radians, it is
reasonable to assume that the robot´s repeatability explains these discrepancies
seen in Figure 6.9.

Further, from Table 6.1, it can be seen that the smallest joint value and the
highest joint value, i.e. the largest deviation, for all joints in step 50 regards test
2 and test 5, except the smallest value in joint B. Although it is not clear why
these two tests are furthest apart in all joints in step 50, it can be argued that it
is preferable for the results to be consistent rather than random. This consistency
in joint deviations between tests indicates that the robot moves very accurately
within one trajectory.

Chapter 8.

Conclusion

This report has presented the process of achieving the main goal for this project;
to implement offline programming with the Yaskawa Motoman GP25-12 installed
at Perleporten, NTNU. Further, four objectives were defined in Section 1.1.

Referring to the first objective, aspects of the industry supporting the implemen-
tation of robotic offline programming was presented in 3, and assessed in 7. With
the evolvement in digital connectivity accompanying Industry 4.0, there is unques-
tionably a need for robotic offline programming. The OPC UA protocol solves
the issue of interoperability, and the amount of simulation software available mo-
tivates the conclusion that offline programming is implementable for all. However,
the fact is that robotic offline programming has not replaced online programming.

In Chapter 7, it was discussed why this might be, where the topic of complexity
dominated, ultimately leading to the question: “is robotic offline programming
becoming so advanced, compared to online programming, that it essentially re-
quires a whole new set of skills?”. Based on the three software components; the
Moto library, the OPC UA protocol, and Visual Components, used to develop a
solution for implementing offline programming with the Yaskawa GP25-12, my
answer would be yes.

A digital representation of the physical robot cell was designed in Visual Com-
ponents Premium 4.3, according to objective number two in Section 1.1. Some
components were missing in the eCatalog in Visual Components. However, the
lack of these did not influence the project.

The main focus during the project was within the three software components and
how to best incorporate these. Referring to objective three, a solution was to be
developed that incorporated Visual Components, OPC UA, and the Moto library.
Both methods of implementation presented in this report incorporate all three
components; however, the first of the two is especially interesting with regards to

74 Chapter 8. Conclusion

the compatibility. With only one script, communication was achieved with Visual
Components and the physical robot simultaneously, where the robot mirrored the
movement of the simulated robot, with some delay.

However, with the suggested solutions, it is concluded that the second method of
implementation presented is the best of the two. Taken into consideration is the
importance of receiving joint feedback, which is not possible with the first method
presented.

Joint feedback from the physical robot was given much attention in this project.
It was essential in order to evaluate the performance of the suggested solution,
referring to the fourth and last objective. From the best result obtained, the
largest position error found in one joint was 0.0005 radians. The smallest error
found was 0.0. Further, between five consecutive tests, the largest difference
found between the angles at one given point in the trajectory was 0.038 radians,
whereas the smallest difference was 0.003 radians. These numbers substantiate
the conclusion that the implementation of offline programming with the Yaskawa
GP25-12 was successful.

8.1. Further Work
One issue that needs to be solved is the issue of speed. The first method that sends
trajectory points directly from simulation implements all its functionalities within
the OPC UA server, implying that all information read from Visual Components
and sent to the robot controller is controlled by the speed of the server. A form
of “await” functionality could be implemented to slow down the script in order to
receive joint feedback from the physical robot.

Further, as explained in Section 5.4.2, the physical robot was moved to its zero
position prior to receiving trajectory points, and the first trajectory point pro-
grammed in Visual Components was always with the simulated robot in zero
position. This solution is not ideal. An attempt to avoid the issue could be to
read the position of the physical robot, write this position to Visual Components
and implement this position as the first point in the offline programmed trajectory.

References

[1] T. Holmedal, “The automated welding industry; how it has been achieved
and the challenges it faces,” Project Thesis, Dec. 2020.

[2] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning and
Control. Cambridge University press, 2019.

[3] T. Rowland, Orthogonal matrix. [Online]. Available: https://mathworld.
wolfram.com/OrthogonalMatrix.html.

[4] Motion Controls Robotics, Unraveling degrees of freedom and robot axis:
What does it mean to have a multiple axis pick and place or multiple axis
robot? [Online]. Available: https://motioncontrolsrobotics.com/unraveling-
degrees-of-freedom-and-robot-axis-what-does-it-mean-to-have-
a-multiple-axis-pick-and-place-or-multiple-axis-robot/.

[5] J. Iqbal, M. Ul Islam, and H. Khan, “Modeling and analysis of a 6 dof
robotic arm manipulator,” Canadian Journal on Electrical and Electronics
Engineering, vol. 3, pp. 300–306, 2012. doi: https://www.researchgate.
net/publication/280643085_Modeling_and_analysis_of_a_6_DOF_
robotic_arm_manipulator.

[6] S. Kucuk and Z. Bingul, “Industrial robotics: Theory, modelling and con-
trol,” in. Germany/ARS, Austria: Pro Literatur Verlag, 200§, vol. December,
ch. 4, pp. 117–147.

[7] P. Corke, Paths and trajectories. [Online]. Available: https://robotacademy.
net.au/masterclass/paths-and-trajectories/.

[8] T. Kunz and M. Stilman, “Turning paths into trajectories using parabolic
blends,” Georgia Institute of Technology, Tech. Rep., 2011.

[9] Robotic Industries Association, Defining the industrial robot industry and
all it entails. [Online]. Available: https://www.robotics.org/robotics/
industrial-robot-industry-and-all-it-entails.

[10] N. Correll, Advanced robotics 4: Inverse kinematics, Feb. 2012. [Online].
Available: http://correll.cs.colorado.edu/?p=1958.

https://mathworld.wolfram.com/OrthogonalMatrix.html
https://mathworld.wolfram.com/OrthogonalMatrix.html
https://motioncontrolsrobotics.com/unraveling-degrees-of-freedom-and-robot-axis-what-does-it-mean-to-have-a-multiple-axis-pick-and-place-or-multiple-axis-robot/
https://motioncontrolsrobotics.com/unraveling-degrees-of-freedom-and-robot-axis-what-does-it-mean-to-have-a-multiple-axis-pick-and-place-or-multiple-axis-robot/
https://motioncontrolsrobotics.com/unraveling-degrees-of-freedom-and-robot-axis-what-does-it-mean-to-have-a-multiple-axis-pick-and-place-or-multiple-axis-robot/
https://doi.org/https://www.researchgate.net/publication/280643085_Modeling_and_analysis_of_a_6_DOF_robotic_arm_manipulator
https://doi.org/https://www.researchgate.net/publication/280643085_Modeling_and_analysis_of_a_6_DOF_robotic_arm_manipulator
https://doi.org/https://www.researchgate.net/publication/280643085_Modeling_and_analysis_of_a_6_DOF_robotic_arm_manipulator
https://robotacademy.net.au/masterclass/paths-and-trajectories/
https://robotacademy.net.au/masterclass/paths-and-trajectories/
https://www.robotics.org/robotics/industrial-robot-industry-and-all-it-entails
https://www.robotics.org/robotics/industrial-robot-industry-and-all-it-entails
http://correll.cs.colorado.edu/?p=1958

76 References

[11] Mecademic, What are singularities in a six-axis robot arm? [Online]. Avail-
able: https://www.mecademic.com/resources/Singularities/Robot-
singularities.

[12] P. Corke, Inverse kinematics and robot motion. [Online]. Available: https:
//robotacademy.net.au.

[13] A. Fox, Why you know more about industry 4.0 than you think, Dec. 2019.
[Online]. Available: https : / / www . nist . gov / blogs / manufacturing -
innovation-blog/why-you-know-more-about-industry-40-you-think.

[14] TIBCO Software Inc., What is industry 4.0? [Online]. Available: https:
//www.tibco.com/reference-center/what-is-industry-4-0.

[15] Spectral Engines GmbH, Industry 4.0 and how smart sensors make the dif-
ference, Feb. 2018. [Online]. Available: https://www.spectralengines.
com/articles/industry- 4- 0- and- how- smart- sensors- make- the-
difference.

[16] B. Marr, What is industry 4.0? here´s a super easy explanation for any-
one, Sep. 2018. [Online]. Available: https://www.forbes.com/sites/
bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-
easy-explanation-for-anyone/.

[17] Kalycito Infotech Pvt Ltd, What is opc ua, industry 4.0 and the interop-
erability challenge. [Online]. Available: https://www.kalycito.com/opc-
ua-interoperability/.

[18] OPC Foundation, History. [Online]. Available: https://opcfoundation.
org/about/opc-foundation/history/.

[19] OPCconnect.com,History of opc. [Online]. Available: https://www.opcconnect.
com/history.php.

[20] Novotek, Opc and opc ua explained. [Online]. Available: https : / / www .
novotek.com/uk/solutions/kepware-communication-platform/opc-
and-opc-ua-explained/.

[21] A. Frejborg, M. Ojala, L. Haapanen, O. Palonen, and J. Aro, Opc ua con-
nects your systems - top 10 reasons why to choose opc ua over opc, May 2013.
[Online]. Available: https : / / downloads . prosysopc . com / downloads /
automation_xx_seminar_opcua_connects_your_systems.pdf.

[22] OPC Foundation,Unified architecture. [Online]. Available: https://opcfoundation.
org/about/opc-technologies/opc-ua/.

[23] Kalycito Infotech Pvt Ltd., What is opc ua? [Online]. Available: https:
//www.kalycito.com/opcua/#fourth.

https://www.mecademic.com/resources/Singularities/Robot-singularities
https://www.mecademic.com/resources/Singularities/Robot-singularities
https://robotacademy.net.au
https://robotacademy.net.au
https://www.nist.gov/blogs/manufacturing-innovation-blog/why-you-know-more-about-industry-40-you-think
https://www.nist.gov/blogs/manufacturing-innovation-blog/why-you-know-more-about-industry-40-you-think
https://www.tibco.com/reference-center/what-is-industry-4-0
https://www.tibco.com/reference-center/what-is-industry-4-0
https://www.spectralengines.com/articles/industry-4-0-and-how-smart-sensors-make-the-difference
https://www.spectralengines.com/articles/industry-4-0-and-how-smart-sensors-make-the-difference
https://www.spectralengines.com/articles/industry-4-0-and-how-smart-sensors-make-the-difference
https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/
https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/
https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/
https://www.kalycito.com/opc-ua-interoperability/
https://www.kalycito.com/opc-ua-interoperability/
https://opcfoundation.org/about/opc-foundation/history/
https://opcfoundation.org/about/opc-foundation/history/
https://www.opcconnect.com/history.php
https://www.opcconnect.com/history.php
https://www.novotek.com/uk/solutions/kepware-communication-platform/opc-and-opc-ua-explained/
https://www.novotek.com/uk/solutions/kepware-communication-platform/opc-and-opc-ua-explained/
https://www.novotek.com/uk/solutions/kepware-communication-platform/opc-and-opc-ua-explained/
https://downloads.prosysopc.com/downloads/automation_xx_seminar_opcua_connects_your_systems.pdf
https://downloads.prosysopc.com/downloads/automation_xx_seminar_opcua_connects_your_systems.pdf
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.kalycito.com/opcua/#fourth
https://www.kalycito.com/opcua/#fourth

References 77

[24] Unified Automation GmbH, Opc ua nodeid concepts. [Online]. Available:
https://documentation.unified-automation.com/uasdkhp/1.4.1/
html/_l2_ua_node_ids.html.

[25] Exor International, The introduction of opc ua publish-subscribe and its
importance to manufacturers, Sep. 2019. [Online]. Available: https : / /
www.exorint.com/en/blog/the- introduction- of- opc- ua- pubsub-
publish-subscribe-and-its-importance-to-manufacturers.

[26] Real Time Automation, Inc., Opc ua overview. [Online]. Available: https:
//www.rtautomation.com/technologies/opcua/.

[27] OPC Foundation, Opc foundation announces opc ua open source avail-
ability. [Online]. Available: https : / / opcfoundation . org / news / opc -
foundation-news/opc-foundation-announces-opc-ua-open-source-
availability/.

[28] A. Owen-Hill, What are the different programming methods for robots? Mar.
2016. [Online]. Available: https://blog.robotiq.com/what-are-the-
different-programming-methods-for-robots.

[29] Yaskawa America, Inc, Dx200 operator’s manual for spot welding using mo-
tor gun, 2015. [Online]. Available: http://assets.efc.gwu.edu/yaskawa-
motoman/165297-1CD.pdf.

[30] S. Jeannet, 5 ways to program a robot, Jun. 2019. [Online]. Available: https:
//www.motoman.com/en-us/about/blog/5-ways-to-program-a-robot.

[31] T. M. Anandan, Demystifying robot offline programming, Sep. 2018. [On-
line]. Available: https://www.automate.org/industry-insights/demystifying-
robot-offline-programming.

[32] PPMA ltd, Robot programming methods. [Online]. Available: https : / /
www.ppma.co.uk/bara/expert-advice/robots/robot-programming-
methods.html.

[33] M. Castor, The need for robotic offline programming in a covid-19 world,
Dec. 2020. [Online]. Available: https://www.controleng.com/articles/
the-need-for-robotic-offline-programming-in-a-covid-19-world/.

[34] Delfoi Robotics, Offline programming robot simulation and offline program-
ming. [Online]. Available: https://www.delfoi.com/delfoi-robotics/
offline-programming/.

[35] ——, Fortaco - efficient robot welding for high mix- low volume production,
Oct. 2020. [Online]. Available: https://www.delfoi.com/references/
robotics-references/fortaco-efficient-robot-welding-for-high-
mix-low-volume-production/.

https://documentation.unified-automation.com/uasdkhp/1.4.1/html/_l2_ua_node_ids.html
https://documentation.unified-automation.com/uasdkhp/1.4.1/html/_l2_ua_node_ids.html
https://www.exorint.com/en/blog/the-introduction-of-opc-ua-pubsub-publish-subscribe-and-its-importance-to-manufacturers
https://www.exorint.com/en/blog/the-introduction-of-opc-ua-pubsub-publish-subscribe-and-its-importance-to-manufacturers
https://www.exorint.com/en/blog/the-introduction-of-opc-ua-pubsub-publish-subscribe-and-its-importance-to-manufacturers
https://www.rtautomation.com/technologies/opcua/
https://www.rtautomation.com/technologies/opcua/
https://opcfoundation.org/news/opc-foundation-news/opc-foundation-announces-opc-ua-open-source-availability/
https://opcfoundation.org/news/opc-foundation-news/opc-foundation-announces-opc-ua-open-source-availability/
https://opcfoundation.org/news/opc-foundation-news/opc-foundation-announces-opc-ua-open-source-availability/
https://blog.robotiq.com/what-are-the-different-programming-methods-for-robots
https://blog.robotiq.com/what-are-the-different-programming-methods-for-robots
http://assets.efc.gwu.edu/yaskawa-motoman/165297-1CD.pdf
http://assets.efc.gwu.edu/yaskawa-motoman/165297-1CD.pdf
https://www.motoman.com/en-us/about/blog/5-ways-to-program-a-robot
https://www.motoman.com/en-us/about/blog/5-ways-to-program-a-robot
https://www.automate.org/industry-insights/demystifying-robot-offline-programming
https://www.automate.org/industry-insights/demystifying-robot-offline-programming
https://www.ppma.co.uk/bara/expert-advice/robots/robot-programming-methods.html
https://www.ppma.co.uk/bara/expert-advice/robots/robot-programming-methods.html
https://www.ppma.co.uk/bara/expert-advice/robots/robot-programming-methods.html
https://www.controleng.com/articles/the-need-for-robotic-offline-programming-in-a-covid-19-world/
https://www.controleng.com/articles/the-need-for-robotic-offline-programming-in-a-covid-19-world/
https://www.delfoi.com/delfoi-robotics/offline-programming/
https://www.delfoi.com/delfoi-robotics/offline-programming/
https://www.delfoi.com/references/robotics-references/fortaco-efficient-robot-welding-for-high-mix-low-volume-production/
https://www.delfoi.com/references/robotics-references/fortaco-efficient-robot-welding-for-high-mix-low-volume-production/
https://www.delfoi.com/references/robotics-references/fortaco-efficient-robot-welding-for-high-mix-low-volume-production/

78 References

[36] Blumenbecker Group, Offline programming. [Online]. Available: https://
www.blumenbecker.com/industrial-automation/industrial-robotics/
offline-programming.

[37] Delfoi Robotics, Afrit production now runs faster than ever, Jun. 2020. [On-
line]. Available: https://www.delfoi.com/afrit-production-now-runs-
faster-than-ever/.

[38] B. Brumson, Robotic simulation and off-line programming: From academia
to industry, Nov. 2009. [Online]. Available: https://www.automate.org/
industry-insights/robotic-simulation-and-off-line-programming-
from-academia-to-industry.

[39] TWI Ltd, Robotic arc welding. [Online]. Available: https : / / www . twi -
global . com / technical - knowledge / job - knowledge / robotic - arc -
welding-135.

[40] T. Bonine, Robotic welding advantages, Jul. 2015. [Online]. Available: https:
//www.automation.com/en-us/articles/2015-2/robotic-welding-
advantages.

[41] P. Rocadas and R. McMaster, “A robot cell calibration algorithm and its
use with a 3d measuring system,” in ISIE ’97 Proceeding of the IEEE In-
ternational Symposium on Industrial Electronics, vol. 1, 1997, SS297–SS302
vol.1. doi: 10.1109/ISIE.1997.651779.

[42] RoboDK Inc., Robot calibration. [Online]. Available: https://robodk.com/
robot-calibration.

[43] A. Joubair, What are accuracy and repeatability in industrial robots? May
2016. [Online]. Available: https://blog.robotiq.com/bid/72766/What-
are-Accuracy-and-Repeatability-in-Industrial-Robots.

[44] ABB, Robotstudio the world’s most used offline programming tool for robotics.
[Online]. Available: https://new.abb.com/products/robotics/robotstudio.

[45] KUKA Robotics Corporation, Kuka.sim. [Online]. Available: https://www.
kuka.com/en-us/products/robotics-systems/software/simulation-
planning-optimization/kuka_sim.

[46] AYVA Educational Solutions,Kuka.sim software. [Online]. Available: https:
//www.ayva.ca/eng/product/kuka-sim-software/.

[47] W. Meisen, Kuka invests in the factory of the future, Dec. 2017. [Online].
Available: https://www.kuka.com/en-de/press/news/2017/12/kuka-
akquiriert-visual-components.

[48] YASKAWA AMERICA, INC., Motosim eg-vrc, 2021. [Online]. Available:
https : // www . motoman .com / getmedia / e94bc0ea - c62a - 4977 - bc98-
fdfe598a490f/MotoSimEG_VRC.pdf.aspx.

https://www.blumenbecker.com/industrial-automation/industrial-robotics/offline-programming
https://www.blumenbecker.com/industrial-automation/industrial-robotics/offline-programming
https://www.blumenbecker.com/industrial-automation/industrial-robotics/offline-programming
https://www.delfoi.com/afrit-production-now-runs-faster-than-ever/
https://www.delfoi.com/afrit-production-now-runs-faster-than-ever/
https://www.automate.org/industry-insights/robotic-simulation-and-off-line-programming-from-academia-to-industry
https://www.automate.org/industry-insights/robotic-simulation-and-off-line-programming-from-academia-to-industry
https://www.automate.org/industry-insights/robotic-simulation-and-off-line-programming-from-academia-to-industry
https://www.twi-global.com/technical-knowledge/job-knowledge/robotic-arc-welding-135
https://www.twi-global.com/technical-knowledge/job-knowledge/robotic-arc-welding-135
https://www.twi-global.com/technical-knowledge/job-knowledge/robotic-arc-welding-135
https://www.automation.com/en-us/articles/2015-2/robotic-welding-advantages
https://www.automation.com/en-us/articles/2015-2/robotic-welding-advantages
https://www.automation.com/en-us/articles/2015-2/robotic-welding-advantages
https://doi.org/10.1109/ISIE.1997.651779
https://robodk.com/robot-calibration
https://robodk.com/robot-calibration
https://blog.robotiq.com/bid/72766/What-are-Accuracy-and-Repeatability-in-Industrial-Robots
https://blog.robotiq.com/bid/72766/What-are-Accuracy-and-Repeatability-in-Industrial-Robots
https://new.abb.com/products/robotics/robotstudio
https://www.kuka.com/en-us/products/robotics-systems/software/simulation-planning-optimization/kuka_sim
https://www.kuka.com/en-us/products/robotics-systems/software/simulation-planning-optimization/kuka_sim
https://www.kuka.com/en-us/products/robotics-systems/software/simulation-planning-optimization/kuka_sim
https://www.ayva.ca/eng/product/kuka-sim-software/
https://www.ayva.ca/eng/product/kuka-sim-software/
https://www.kuka.com/en-de/press/news/2017/12/kuka-akquiriert-visual-components
https://www.kuka.com/en-de/press/news/2017/12/kuka-akquiriert-visual-components
https://www.motoman.com/getmedia/e94bc0ea-c62a-4977-bc98-fdfe598a490f/MotoSimEG_VRC.pdf.aspx
https://www.motoman.com/getmedia/e94bc0ea-c62a-4977-bc98-fdfe598a490f/MotoSimEG_VRC.pdf.aspx

References 79

[49] S. Cranston, 3 styles of robot programming using offline simulation software
(motosim), Mar. 2018. [Online]. Available: https://www.linkedin.com/
pulse/3- styles- robot- programming- using- offline- simulation-
motosim-cranston/.

[50] A. Nubiola, The future of robot off-line programming, Dec. 2015. [Online].
Available: https://robohub.org/the- future- of- robot- off- line-
programming/.

[51] Autoline Automation Ltd,Motoopc server software. [Online]. Available: https:
/ / autoline . nz / products / robotic - automation / yaskawa - motoman -
robotics/yaskawa-software/motoopc-server-software/.

[52] ABB, Product specification robotstudio, ABB, Mar. 2021. [Online]. Available:
%5Curl%7Bhttps://library.e.abb.com/public/218ec1270fd24602a5d69fba5d50989c/
3HAC026932%5C%20PS%5C%20RobotStudio-en.pdf?x-sign=iL0xb7BVVaEgj326mYNVZShFPFQaZkY5MDG0EDnQT9GRW5EuIgRmYhJEjmCPbkRs%
20%7D.

[53] Intelitek,Motosim. [Online]. Available: https://intelitek.com/motosim/.
[54] ABB, Release notes for robotstudio sdk 2021.1, Mar. 2021. [Online]. Avail-

able: https://developercenter.robotstudio.com/api/robotstudio/
articles/releases/robotstudio-sdk-2021-1.html#add-documentwindow-
example-to-sdk-template.

[55] RoboDK Inc., Simulate robot applications program any industrial robot with
one simulation environment. [Online]. Available: https://robodk.com/
index.

[56] Delfoi Robotics, Delfoi robotics software. [Online]. Available: https://www.
delfoi.com/delfoi-robotics/delfoi-robotics-software/.

[57] Visual Components,About us. [Online]. Available: https://www.visualcomponents.
com/about-us/.

[58] ——, Meet the heads of a simulation software family, Feb. 2020. [Online].
Available: https://www.visualcomponents.com/about-us/meet-the-
team/meet-the-founders-of-visual-components/.

[59] ——, Steps of the olp process, Dec. 2017. [Online]. Available: https://
www.visualcomponents.com/resources/articles/steps-of-the-olp-
process/.

[60] ——, Supported cad files. [Online]. Available: https://www.visualcomponents.
com/supported-cad-files/.

[61] ——, Premium. [Online]. Available: https://www.visualcomponents.com/
products/premium/.

[62] ——, System requirements. [Online]. Available: https://www.visualcomponents.
com/system-requirements/.

https://www.linkedin.com/pulse/3-styles-robot-programming-using-offline-simulation-motosim-cranston/
https://www.linkedin.com/pulse/3-styles-robot-programming-using-offline-simulation-motosim-cranston/
https://www.linkedin.com/pulse/3-styles-robot-programming-using-offline-simulation-motosim-cranston/
https://robohub.org/the-future-of-robot-off-line-programming/
https://robohub.org/the-future-of-robot-off-line-programming/
https://autoline.nz/products/robotic-automation/yaskawa-motoman-robotics/yaskawa-software/motoopc-server-software/
https://autoline.nz/products/robotic-automation/yaskawa-motoman-robotics/yaskawa-software/motoopc-server-software/
https://autoline.nz/products/robotic-automation/yaskawa-motoman-robotics/yaskawa-software/motoopc-server-software/
%5Curl%7Bhttps://library.e.abb.com/public/218ec1270fd24602a5d69fba5d50989c/3HAC026932%5C%20PS%5C%20RobotStudio-en.pdf?x-sign=iL0xb7BVVaEgj326mYNVZShFPFQaZkY5MDG0EDnQT9GRW5EuIgRmYhJEjmCPbkRs%20%7D
%5Curl%7Bhttps://library.e.abb.com/public/218ec1270fd24602a5d69fba5d50989c/3HAC026932%5C%20PS%5C%20RobotStudio-en.pdf?x-sign=iL0xb7BVVaEgj326mYNVZShFPFQaZkY5MDG0EDnQT9GRW5EuIgRmYhJEjmCPbkRs%20%7D
%5Curl%7Bhttps://library.e.abb.com/public/218ec1270fd24602a5d69fba5d50989c/3HAC026932%5C%20PS%5C%20RobotStudio-en.pdf?x-sign=iL0xb7BVVaEgj326mYNVZShFPFQaZkY5MDG0EDnQT9GRW5EuIgRmYhJEjmCPbkRs%20%7D
https://intelitek.com/motosim/
https://developercenter.robotstudio.com/api/robotstudio/articles/releases/robotstudio-sdk-2021-1.html#add-documentwindow-example-to-sdk-template
https://developercenter.robotstudio.com/api/robotstudio/articles/releases/robotstudio-sdk-2021-1.html#add-documentwindow-example-to-sdk-template
https://developercenter.robotstudio.com/api/robotstudio/articles/releases/robotstudio-sdk-2021-1.html#add-documentwindow-example-to-sdk-template
https://robodk.com/index
https://robodk.com/index
https://www.delfoi.com/delfoi-robotics/delfoi-robotics-software/
https://www.delfoi.com/delfoi-robotics/delfoi-robotics-software/
https://www.visualcomponents.com/about-us/
https://www.visualcomponents.com/about-us/
https://www.visualcomponents.com/about-us/meet-the-team/meet-the-founders-of-visual-components/
https://www.visualcomponents.com/about-us/meet-the-team/meet-the-founders-of-visual-components/
https://www.visualcomponents.com/resources/articles/steps-of-the-olp-process/
https://www.visualcomponents.com/resources/articles/steps-of-the-olp-process/
https://www.visualcomponents.com/resources/articles/steps-of-the-olp-process/
https://www.visualcomponents.com/supported-cad-files/
https://www.visualcomponents.com/supported-cad-files/
https://www.visualcomponents.com/products/premium/
https://www.visualcomponents.com/products/premium/
https://www.visualcomponents.com/system-requirements/
https://www.visualcomponents.com/system-requirements/

80 References

[63] RoboDK, Robodk pricing. [Online]. Available: https://robodk.com/pricing.
[64] A. Owen-Hill, 9 powerful robodk features you might not know about, Oct.

2020. [Online]. Available: https://robodk.com/blog/powerful-robodk-
features/.

[65] Delfoi Robotics, System requirements. [Online]. Available: https://www.
delfoi.com/delfoi-robotics/system-requirements/.

[66] YASKAWA ELECTRIC CORPORATION,What is “robot”. [Online]. Avail-
able: https://www.yaskawa-global.com/product/robotics/about.

[67] M. Bélanger-Barrette, What is included in robotic welding systems? Feb.
2016. [Online]. Available: https://blog.robotiq.com/bid/72927/What-
is-Included-in-Robotic-Welding-Systems.

[68] Robots Done Right, The main components of an industrial robot. [Online].
Available: https://robotsdoneright.com/Articles/main-components-
of-an-industrial-robot.html.

[69] Yaskawa Europe GmbH, Yaskawa motoman robot controllers yrc1000. [On-
line]. Available: https : / / www . yaskawa . eu . com / products / robots /
controller/productdetail/product/yrc1000_583.

[70] Yaskawa America, Robotics glossary. [Online]. Available: https://www.
motoman.com/en-us/about/company/robotics-glossary.

[71] Fronius International GmbH, Cmt – cold metal transfer: The cold welding
process for premium quality. [Online]. Available: https://www.fronius.
com/en/welding-technology/world-of-welding/fronius-welding-
processes/cmt.

[72] A. Øvern, “Industry 4.0-digital twins and opc ua,” M.S. thesis, NTNU, 2018.
[73] Fronius International GmbH, Tps/i. [Online]. Available: https : / / www .

fronius . com / en / welding - technology / products / manual - welding /
migmag/tpsi/tpsi/tps-400i.

[74] Yaskawa Europe GmbH,Yaskawa. [Online]. Available: https://www.yaskawa.
eu.com/products/robots/handling-mounting/productdetail/product/
gp25_699.

https://robodk.com/pricing
https://robodk.com/blog/powerful-robodk-features/
https://robodk.com/blog/powerful-robodk-features/
https://www.delfoi.com/delfoi-robotics/system-requirements/
https://www.delfoi.com/delfoi-robotics/system-requirements/
https://www.yaskawa-global.com/product/robotics/about
https://blog.robotiq.com/bid/72927/What-is-Included-in-Robotic-Welding-Systems
https://blog.robotiq.com/bid/72927/What-is-Included-in-Robotic-Welding-Systems
https://robotsdoneright.com/Articles/main-components-of-an-industrial-robot.html
https://robotsdoneright.com/Articles/main-components-of-an-industrial-robot.html
https://www.yaskawa.eu.com/products/robots/controller/productdetail/product/yrc1000_583
https://www.yaskawa.eu.com/products/robots/controller/productdetail/product/yrc1000_583
https://www.motoman.com/en-us/about/company/robotics-glossary
https://www.motoman.com/en-us/about/company/robotics-glossary
https://www.fronius.com/en/welding-technology/world-of-welding/fronius-welding-processes/cmt
https://www.fronius.com/en/welding-technology/world-of-welding/fronius-welding-processes/cmt
https://www.fronius.com/en/welding-technology/world-of-welding/fronius-welding-processes/cmt
https://www.fronius.com/en/welding-technology/products/manual-welding/migmag/tpsi/tpsi/tps-400i
https://www.fronius.com/en/welding-technology/products/manual-welding/migmag/tpsi/tpsi/tps-400i
https://www.fronius.com/en/welding-technology/products/manual-welding/migmag/tpsi/tpsi/tps-400i
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp25_699
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp25_699
https://www.yaskawa.eu.com/products/robots/handling-mounting/productdetail/product/gp25_699

Appendix A.

System description of robot
cell and Python code

A.1. Fronius TPS 400i

Table A.1.: Technical data for TPS 400i [73]
Welding current max. 400 A
Welding current min. 3 A
Welding current / Duty cycle [10min/40°C] 400A / 40%
Welding current / Duty cycle [10min/40°C] 360A / 60%
Welding current / Duty cycle [10min/40°C] 320A / 100%
Operating voltage 14,2-34,0V
Open-circuit voltage 73 V
Mains frequency 50-60Hz
Mains voltage 3 x 400V
Mains fuse 35A
Dimension / b 300 mm
Dimension / l 706 mm
Weight 36,45 kg
Degree of protection IP23

A.2. Yaskawa Motoman GP25-12

82 Appendix A. System description of robot cell and Python code

139

261 229

135

491

50
400

R2010

917 165

180°

180°

13
0

70 88
83

.5

17
7

168 70

10
0

15
45

26
13

R28
5

77.5

93
.5

R561

 2 x M6, depth 12
 4 x M6, depth 12
4 x M6, depth 14

2 x M5, depth 11

1284

0
199

850

2365

1309

580
598

0

540
Type: -A11

568

50
5

76
0

20
0

83

150 1082 100

114

20
100

17
10 79
2

37
4

10
41 56
1

42
5

105°

155° 30
2 30

3030

84

28
1

48

86°

160°

30
78

12
84

12
87 55
9

Working range
Point P

8 x M5,
depth 6

B

C

A

P

B

S

TR

L

U

29
2

375

335

60

60

200316

37
5

33
5

4 x Ø 18

260±0.12 x Ø 12 H7

20
0±

0.
1

17
0±

0.1

Ø
 5

0

Ø
10

0

Ø
 6

2 h
6 22.5°

Ø 56

12
8

8 x M4, depth 8

1 x Ø 4 H7,
depth 6

1 x Air

Internal user wiring connector
Media connector

+ Conforms to ISO 9283 ++ Varies in accordance with applications and motion patterns Note: SI units are used for specifi cations.

Specifications GP25-12

Axes
Maximum
motion range
[º]

Maximum
speed
[º/sec.]

Allowable
moment
[Nm]

Allowable
moment of inertia
[kg · m2]

Controlled axes 6

Max. payload (on U-axis) [kg] 12 (9)

S ±180 210 – – Repeatability [mm] ±0.03+

L +155/–105 210 – – Max. working range R [mm] 2010

U +160/–86 220 – – Temperature [ºC] 0 to +45

R ±200 435 22 0.65 Humidity [%] 20 – 80

B ±150 435 22 0.65 Weight [kg] 260

T ±455 700 9.8 0.17 Power supply, average [KVA] 2.0++

All dimensions in mm

View A

View B

View C

!

W = 6 kg

200 300 400 500

LB

LT

187 329 465

W = 3 kg

W =
12 kg

P-point

100 R-, T-axis
centre of rotation

B-axis
centre of rotation

300

200

100

238

167

83

Allowable wrist load

Prevent interaction of the robot with:
• Corrosive gases, liquids or explosive gases
• Exposure to water, oil or dust
• Excessive electrical noise (plasma)

Robot
installation angle
! [deg.]

S-axis
operating range
[deg.]

 0 ≤ ! ≤ 30 ±180 degrees or less
(no limit)

30 < ! ≤ 35 ±60 degrees or less

35 < ! ±30 degrees or less

Mounting options: Floor, ceiling, wall, tilt*

Protection class: Main axes (S, L, U) IP54
(option 65), wrist IP67

* tilt with condition of angle – see table below

MOTOMAN GP25-12

Figure A.1.: Description of Yaskawa Motoman GP25-12. Source: [74]

A.2. Yaskawa Motoman GP25-12 83

Table A.2.: Specifications for Yaskawa Motoman GP25-12 part 1 [74]

Axes Maximum
motion
range [°]

Maximum
speed
[°/sec]

Allowable
moment
[N·m]

Allowable
moment
of inertia
[kg·m2]

S ± 180 210 - -
L +155/-105 210 - -
U +160/-86 220 - -
R ± 200 435 22 0.65
B ± 150 435 22 0.65
T ± 455 700 9.8 0.17

Table A.3.: Specifications for Yaskawa Motoman GP25-12 part 2 [74]

Controlled axes 6
Max. payload (on U-axis) [kg] 12(9)
Repeatability [mm] ± 0.03*
Max. working range R [mm] 2010
Temperature [°C] 0 to +45
Humidity [%] 20-80
Weight [kg] 260
Power supply, average [KVA] 2,0**

*Conforms to ISO 9283 **Varies in accordance with applications and motion patterns

84 Appendix A. System description of robot cell and Python code

A.3. Python script for calculating robot kinematics
1

2 import numpy as np
3 import modern_robotics as mr
4 import math
5 from numpy. linalg import matrix_rank
6 from IPython import display
7

8 # Defining lengths [mm].
9 l1 = 505

10 l2 = 760
11 l3 = 200
12 l4 = 150
13 l5 = 275
14 l6 = 807
15 l7 = 100
16

17 # Values for x_tool , y_tool , and z_tool gathered from the programming
pendant

18 x_tool = 0
19 y_tool = 450.27
20 z_tool = 84.4028
21

22 #M matrix for Yaskawa Motoman GP25 -12 in zero - position without
welding gun

23 M = np.array ([[1 ,0 ,0 ,0] ,
24 [0,1,0,l4+l5+l6+l7],
25 [0,0,1,l1+l2+l3],
26 [0 ,0 ,0 ,1]])
27

28

29 #M matrix for Yaskawa Motoman GP25 -12 in zero - position with welding
gun

30 theta_endEffector = np. radians (-54)
31

32 R_endEffector = np.array ([[1 ,0 ,0] ,
33 [0,np.cos(theta_endEffector),-np.sin(theta_endEffector

)],
34 [0,np.sin(theta_endEffector), np.cos(theta_endEffector)

]])
35

36 p_endEffector = np.array ([x_tool ,y_tool , z_tool])
37

38 M_tool = mr. RpToTrans (R_endEffector , p_endEffector)
39

40 # Calculating each screw axis in space form Sn
41 w1 = np.array ([0 ,0 ,1])
42 q1 = np.array ([0 ,0 ,0])
43 v1 = np.cross(-w1 ,q1)
44 S1 = np. append (w1 ,v1)
45

A.3. Python script for calculating robot kinematics 85

46 w2 = np.array ([1 ,0 ,0])
47 q2 = np.array ([0,l4 ,l1])
48 v2 = np.cross(-w2 ,q2)
49 S2 = np. append (w2 ,v2)
50

51 w3 = np.array ([1 ,0 ,0])
52 q3 = np.array ([0,l4 ,l1+l2])
53 v3 = np.cross(-w3 ,q3)
54 S3 = np. append (w3 ,v3)
55

56 w4 = np.array ([0 ,1 ,0])
57 q4 = np.array ([0,l4+l5 ,l1+l2+l3])
58 v4 = np.cross(-w4 ,q4)
59 S4 = np. append (w4 ,v4)
60

61 w5 = np.array ([1 ,0 ,0])
62 q5 = np.array ([0,l4+l5+l6 ,l1+l2+l3])
63 v5 = np.cross(-w5 ,q5)
64 S5 = np. append (w5 ,v5)
65

66 w6 = np.array ([0 ,1 ,0])
67 q6 = np.array ([0,l4+l5+l6+l7 ,l1+l2+l3])
68 v6 = np.cross(-w6 ,q6)
69 S6 = np. append (w6 ,v6)
70

71 Slist = np. concatenate (([S1], [S2], [S3], [S4], [S5], [S6]), axis =0)
.T

72

73 # Calculating each screw matrix [Sn]
74 se1 = mr. VecTose3 (S1)
75 se2 = mr. VecTose3 (S2)
76 se3 = mr. VecTose3 (S3)
77 se4 = mr. VecTose3 (S4)
78 se5 = mr. VecTose3 (S5)
79 se6 = mr. VecTose3 (S6)
80

81 # Calculating each screw axis in body form Bn
82 wb1 = np.array ([0 ,0 ,1])
83 qb1 = np.array ([0,-(l7+l6+l5+l4) ,-(l3+l2+l1)])
84 vb1 = np.cross(-wb1 ,qb1)
85 Sb1 = np. append (wb1 ,vb1)
86

87 wb2 = np.array ([1 ,0 ,0])
88 qb2 = np.array ([0,-(l7+l6+l5) ,-(l3+l2)])
89 vb2 = np.cross(-wb2 ,qb2)
90 Sb2 = np. append (wb2 ,vb2)
91

92 wb3 = np.array ([1 ,0 ,0])
93 qb3 = np.array ([0,-(l7+l6+l5),-l3])
94 vb3 = np.cross(-wb3 ,qb3)
95 Sb3 = np. append (wb3 ,vb3)

86 Appendix A. System description of robot cell and Python code

96

97 wb4 = np.array ([0 ,1 ,0])
98 qb4 = np.array ([0,-(l7+l6) ,0])
99 vb4 = np.cross(-wb4 ,qb4)

100 Sb4 = np. append (wb4 ,vb4)
101

102 wb5 = np.array ([1 ,0 ,0])
103 qb5 = np.array ([0,-l7 ,0])
104 vb5 = np.cross(-wb5 ,qb5)
105 Sb5 = np. append (wb5 ,vb5)
106

107 wb6 = np.array ([0 ,1 ,0])
108 qb6 = np.array ([0 ,0 ,0])
109 vb6 = np.cross(-wb6 ,qb6)
110 Sb6 = np. append (wb6 ,vb6)
111

112 Blist = np. concatenate (([Sb1], [Sb2], [Sb3], [Sb4], [Sb5], [Sb6]),
axis =0).T

113

114 # Defining each joint angle
115 theta1 = -np.pi/2
116 theta2 = -np.pi/5
117 theta3 = 0
118 theta4 = 0
119 theta5 = -np.pi/2
120 theta6 = 0
121

122 # Calculating the forward kinematics for the Yaskawa Motoman GP25 -12
123

124 thetalist = np.array ([theta1 ,theta2 ,theta3 ,theta4 ,theta5 , theta6])
125

126 T = mr. FKinSpace (M_tool ,Slist , thetalist)
127

128 T2 = mr. FKinBody (M_tool ,Blist , thetalist)
129

130 # Calculating the inverse kinematics for the Yaskawa Motoman GP25 -12
131

132 # Defining the desired end - effector configuration to be equal to the
solution of the forward kinematics

133 T_goal1 = T
134 T_goal2 = T
135

136 # Defining a guess for each joint angle , as well as an positive error
allowance

137 thetalist_guess = np.array ([-1 , -0.3 ,0 ,0 , -1.2 ,0])
138 print(’This is a list of guessed angles sufficiently close to the

solution . The result should be "true"’)
139 print(thetalist_guess)
140

141 thetalist_guess2 = np.array ([-25 ,5 ,1 ,1 , -1.2 ,2])
142 print(’This is a list of guessed angles to far from the solution .

A.3. Python script for calculating robot kinematics 87

The result should be "false"’)
143 print(thetalist_guess2)
144

145 eomg = 0.001
146 ev = 0.0001
147

148 # Calculating the inverse kinematics for the Yaskawa Motoman GP25 -12
149

150 [thetalist_01 , result1] = mr. IKinSpace (Slist ,M_tool ,T_goal1 ,
thetalist_guess ,eomg , ev)

151 print(’ " Solution to inverse kinematics where initial guess of joint
angles sufficiently close to solution "’)

152 print(thetalist_01 , result1)
153

154 [thetalist_02 , result2] = mr. IKinSpace (Slist ,M_tool ,T_goal2 ,
thetalist_guess2 ,eomg , ev)

155 print(" Solution to inverse kinematics where initial guess of joint
angles too far from solution ")

156 print(thetalist_02 , result2)

Listing A.1: Python code for calculating robot kinematics

Appendix B.

Testing OPC UA connection

1

2 import sys
3 import socket
4 sys.path. insert (0, "..")
5 import time
6 from moto. simple_message import *
7 from moto import motion_connection
8 from moto. simple_message_connection import SimpleMessageConnection
9 from moto. simple_message import SimpleMessage

10 from moto import Moto
11 from moto import Moto , ControlGroupDefinition
12 from moto. simple_message import (
13 JointFeedbackEx ,
14 JointTrajPtExData ,
15 JointTrajPtFull ,
16 JointTrajPtFullEx ,
17)
18

19 from opcua import ua , Server
20 import numpy as np
21

22 robot: Moto = Moto(
23 " 192.168.255.200 ",
24 [ControlGroupDefinition ("robot", 0, 6, ["s", "l", "u", "r",

"b", "t"])],
25)
26

27 robot. motion . start_servos ()
28 robot. motion . start_trajectory_mode ()
29

30 time.sleep (1)
31

32 status = robot. motion . check_motion_ready ()
33 print(status)
34

90 Appendix B. Testing OPC UA connection

35 position = robot.state. joint_feedback (0).pos
36 print(" ------------------joint position ")
37 print(position)
38

39 def disconnect (self):
40 client .close ()
41

42 if __name__ == " __main__ ":
43

44 client = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
45

46 # setup our server
47 server = Server ()
48 server . set_endpoint ("opc.tcp ://’ localhost ’:4840/ motopcua / server /

")
49

50 # setup our own namespace , not really necessary but should as
spec

51 uri = "http :// server . motopcua . github .io"
52 idx = server . register_namespace (uri)
53

54 # get Objects node , this is where we should put our nodes
55 objects = server . get_objects_node ()
56

57 # populating our address space
58 myobj = server .nodes. objects . add_object (idx , "Moto")
59 myvar = myobj. add_variable (idx , " MyVariable ", 6.7)
60

61 myvar. set_writable () # Set MyVariable to be writable by
clients

62

63 # Adding desired variables
64 s = myobj. add_variable (idx , "s", 6.7)
65 l = myobj. add_variable (idx , "l", 6.7)
66 u = myobj. add_variable (idx , "u", 6.7)
67 r = myobj. add_variable (idx , "r", 6.7)
68 b = myobj. add_variable (idx , "b", 6.7)
69 t = myobj. add_variable (idx , "t", 6.7)
70

71 s. set_writable ()
72 l. set_writable ()
73 u. set_writable ()
74 r. set_writable ()
75 b. set_writable ()
76 t. set_writable ()
77

78 # starting !
79 server .start ()
80 print(" server is started ")
81 try:
82

91

83 while True:
84 time.sleep (0.1)
85

86 s. set_value (np. rad2deg (position [0]))
87 l. set_value (np. rad2deg (position [1]))
88 u. set_value (np. rad2deg (position [2]))
89 r. set_value (np. rad2deg (position [3]))
90 b. set_value (np. rad2deg (position [4]))
91 t. set_value (np. rad2deg (position [5]))
92

93 finally :
94 #close connection , remove subcsriptions , etc
95 server .stop ()

Listing B.1: OPC UA server reading joint positions from physical robot and
writing these to Visual Components

Appendix C.

The finalized Python scripts

C.1. first attempt at sending trajectory points to
robot controller

1

2 import sys
3 import csv
4 import socket
5 sys.path. insert (0, "..")
6 import time
7 from moto. simple_message import *
8 from moto import motion_connection
9 from moto. simple_message_connection import SimpleMessageConnection

10 from moto. simple_message import SimpleMessage
11 from moto import Moto
12 from moto import Moto , ControlGroupDefinition
13 from moto. simple_message import (
14 JointFeedbackEx ,
15 JointTrajPtExData ,
16 JointTrajPtFull ,
17 JointTrajPtFullEx ,
18)
19

20 from opcua import ua , Server
21 import numpy as np
22 import json
23

24 def get_joint_values_from_file (filepath , variable_name):
25

26 data = json.load(open(filepath))
27

28 return np. asarray (data[variable_name])
29

30 robot: Moto = Moto(
31 " 192.168.255.200 ",

94 Appendix C. The finalized Python scripts

32 [ControlGroupDefinition ("robot", 0, 6, ["s", "l", "u", "r",
"b", "t"])],

33)
34 robot. motion . start_servos ()
35 robot. motion . start_trajectory_mode ()
36 time.sleep (1)
37 status = robot. motion . check_motion_ready ()
38 print(" --------------------- status of robot ready/not ready ?: ")
39 print(status)
40

41 position = robot.state. joint_feedback (0).pos
42 print(" --------------------- current position of robot joints : ")
43 print(position)
44

45 home = JointTrajPtFull (
46 groupno =0,
47 sequence =0,
48 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
49 time =0,
50 pos = [0.0]*10 ,
51 vel = [0.0]*10 ,
52 acc = [0.0]*10
53)
54

55 threshold = 0.003
56 check = list(np.array(position)-np.array(home.pos))
57 print(" ----check",check)
58

59 #check whether or not robot is in home position
60 for item in check:
61 if item > threshold :
62

63 p0 = JointTrajPtFull (
64 groupno =0,
65 sequence =0,
66 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
67 time =0,
68 pos = position ,
69 vel = [0.0]*10 ,
70 acc = [0.0]*10
71)
72 robot. motion . send_joint_trajectory_point (p0)
73 time.sleep (1)
74 home = JointTrajPtFull (
75 groupno =0,
76 sequence =1,
77 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
78 time =5.0 ,

C.1. first attempt at sending trajectory points to robot controller 95

79 pos = [0.0]*10 ,
80 vel = [0.0]*10 ,
81 acc = [0.0]*10
82)
83 robot. motion . send_joint_trajectory_point (home)
84 time.sleep (6)
85 p0 = JointTrajPtFull (
86 groupno =0,
87 sequence =0,
88 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
89 time =0,
90 pos = robot.state. joint_feedback (0).pos ,
91 vel = [0.0]*10 ,
92 acc = [0.0]*10
93)
94 robot. motion . send_joint_trajectory_point (p0)
95

96 print("robot has been moved to home pos and p0 updated ", p0.
pos)

97

98 p0 = JointTrajPtFull (
99 groupno =0,

100 sequence =0,
101 valid_fields = ValidFields .TIME | ValidFields . POSITION

| ValidFields .VELOCITY ,
102 time =0,
103 pos = position ,
104 vel = [0.0]*10 ,
105 acc = [0.0]*10
106)
107 robot. motion . send_joint_trajectory_point (p0)
108 print("robot was in home pos , p0 updated ")
109

110 TrajPoints_fromSim = get_joint_values_from_file (filepath ="
test_verdier_joint .json", variable_name =" joint_values ")

111

112 for row in TrajPoints_fromSim :
113

114 zero_array = np.array ([0 ,0 ,0 ,0])
115 traj_point = np. append (row , zero_array)
116

117 p0 = JointTrajPtFull (
118 groupno =0,
119 sequence =0,
120 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
121 time =0,
122 pos = robot.state. joint_feedback (0).pos ,
123 vel = [0.0]*10 ,
124 acc = [0.0]*10

96 Appendix C. The finalized Python scripts

125)
126 robot. motion . send_joint_trajectory_point (p0)
127 print(p0.pos)
128 time.sleep (1)
129

130 p1 = JointTrajPtFull (
131 groupno =0,
132 sequence =1,
133 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
134 time =20,
135 pos = traj_point ,
136 vel = [0.0]*10 ,
137 acc = [0.0]*10
138)
139 robot. motion . send_joint_trajectory_point (p1)
140 print(p1.pos)
141 time.sleep (20)

Listing C.1: First attempt at sending joint position vectors from file to physical
robot

C.2. Python script for reading from simulation and writing to robot controller
simultaneously 97

C.2. Python script for reading from simulation and
writing to robot controller simultaneously

1 import sys
2 import csv
3 import socket
4 sys.path. insert (0, "..")
5 import time
6 from moto. simple_message import *
7 from moto import motion_connection
8 from moto. simple_message_connection import SimpleMessageConnection
9 from moto. simple_message import SimpleMessage

10 from moto import Moto
11 from moto import Moto , ControlGroupDefinition
12 from moto. simple_message import (
13 JointFeedbackEx ,
14 JointTrajPtExData ,
15 JointTrajPtFull ,
16 JointTrajPtFullEx ,
17)
18 from opcua import ua , Server
19 import numpy as np
20 import json
21

22 robot_pos_file = " robot_pos .json"
23 simulation_pos_file = " sim_pos .json"
24

25 robot: Moto = Moto(
26 " 192.168.255.200 ",
27 [ControlGroupDefinition ("robot", 0, 6, ["s", "l", "u", "r",

"b", "t"])],
28)
29

30 # connect to physical robot and prepare for movement
31 robot. motion . start_servos ()
32 robot. motion . start_trajectory_mode ()
33 check_ready = robot. motion . check_motion_ready ()
34 print("robot ready ?.............. ")
35 print(check_ready)
36 time.sleep (3)
37

38 def disconnect (self):
39 client .close ()
40

41 if __name__ == " __main__ ":
42

43 client = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
44

45 # setup our server
46 server = Server ()
47 server . set_endpoint ("opc.tcp :// localhost :4840/ motopcua / server /")

98 Appendix C. The finalized Python scripts

48

49 # setup our own namespace , not really necessary but should as
spec

50 uri = "http :// server . motopcua . github .io"
51 idx = server . register_namespace (uri)
52

53 # get Objects node , this is where we should put our nodes
54 objects = server . get_objects_node ()
55

56 # populating our address space
57 myobj = server .nodes. objects . add_object (idx , "Moto")
58 myvar = myobj. add_variable (idx , " MyVariable ", 6.7)
59

60 myvar. set_writable () # Set MyVariable to be writable by
clients

61

62 # Adding desired variables from server to simulation
63 s = myobj. add_variable (idx , "s", 6.7)
64 l = myobj. add_variable (idx , "l", 6.7)
65 u = myobj. add_variable (idx , "u", 6.7)
66 r = myobj. add_variable (idx , "r", 6.7)
67 b = myobj. add_variable (idx , "b", 6.7)
68 t = myobj. add_variable (idx , "t", 6.7)
69

70 # set joints writable
71 s. set_writable ()
72 l. set_writable ()
73 u. set_writable ()
74 r. set_writable ()
75 b. set_writable ()
76 t. set_writable ()
77

78 # Adding desired variables from simulation to server
79 joint_S = myobj. add_variable (idx , "S1", 6.7)
80 joint_L = myobj. add_variable (idx , "L1", 6.7)
81 joint_U = myobj. add_variable (idx , "U1", 6.7)
82 joint_R = myobj. add_variable (idx , "R1", 6.7)
83 joint_B = myobj. add_variable (idx , "B1", 6.7)
84 joint_T = myobj. add_variable (idx , "T1", 6.7)
85

86 joint_S . set_writable ()
87 joint_L . set_writable ()
88 joint_U . set_writable ()
89 joint_R . set_writable ()
90 joint_B . set_writable ()
91 joint_T . set_writable ()
92

93 # starting !
94 server .start ()
95 print(" server is started ")
96 try:

C.2. Python script for reading from simulation and writing to robot controller
simultaneously 99

97 pos_vec_fromRob = []
98 pos_vec = []
99 index = 0

100 timer = 10
101 while True:
102

103 S_updated = joint_S . get_value ()
104 L_updated = joint_L . get_value ()
105 U_updated = joint_U . get_value ()
106 R_updated = joint_R . get_value ()
107 B_updated = joint_B . get_value ()
108 T_updated = joint_T . get_value ()
109

110 if S_updated != 6.7 or L_updated != 6.7 or U_updated !=
6.7 or R_updated != 6.7 or B_updated != 6.7 or T_updated != 6.7:

111 vec = [S_updated , L_updated , U_updated , R_updated ,
B_updated , T_updated]

112

113 data = json.load(open(simulation_pos_file))
114 data_vec = data[" joint_values "]
115 data_vec . append (vec)
116 data[" joint_values "] = data_vec
117 with open(simulation_pos_file , "w") as f:
118 json.dump(data , f, indent =2)
119

120 pos_vec . append (vec)
121 print(pos_vec)
122

123 position = pos_vec [index]
124

125 zero_array = np.array ([0 ,0 ,0 ,0])
126 trajectory_point = list(np. append (position ,

zero_array))
127

128 if index == 0:
129 currentPosition = JointTrajPtFull (
130 groupno =0,
131 sequence =0,
132 valid_fields = ValidFields .TIME |

ValidFields . POSITION | ValidFields .VELOCITY ,
133 time =0,
134 pos = robot.state. joint_feedback (0).pos ,
135 vel = [0.0]*10 ,
136 acc = [0.0]*10
137)
138 robot. motion . send_joint_trajectory_point (

currentPosition)
139

140 time.sleep (0.1)
141 newPosition = JointTrajPtFull (
142 groupno =0,

100 Appendix C. The finalized Python scripts

143 sequence =index +1,
144 valid_fields = ValidFields .TIME |

ValidFields . POSITION | ValidFields .VELOCITY ,
145 time=timer ,
146 pos = [0.0]*10 ,
147 vel = [0.0]*10 ,
148 acc = [0.0]*10
149)
150 robot. motion . send_joint_trajectory_point (

newPosition)
151 time.sleep (0.2)
152 index = 1
153 timer +=0.2
154

155 else:
156

157 newPosition = JointTrajPtFull (
158 groupno =0,
159 sequence =index +1,
160 valid_fields = ValidFields .TIME |

ValidFields . POSITION | ValidFields .VELOCITY ,
161 time=timer ,
162 pos = np. deg2rad (trajectory_point),
163 vel = [0.0]*10 ,
164 acc = [0.0]*10
165)
166 robot. motion . send_joint_trajectory_point (

newPosition)
167

168 time.sleep (0.3)
169

170 position2 = robot.state. joint_feedback (0).pos
171 rad = np. rad2deg (position2)
172

173 s. set_value (rad [0])
174 l. set_value (rad [1])
175 u. set_value (rad [2])
176 r. set_value (rad [3])
177 b. set_value (rad [4])
178 t. set_value (rad [5])
179

180 position_vector = robot.state. joint_feedback (0).
pos

181 s_from_rob = position_vector [0]
182 l_from_rob = position_vector [1]
183 u_from_rob = position_vector [2]
184 r_from_rob = position_vector [3]
185 b_from_rob = position_vector [4]
186 t_from_rob = position_vector [5]
187

188 vec_fromRob = [s_from_rob , l_from_rob ,

C.3. OPC UA server writing trajectory from simulation to file 101

u_from_rob , r_from_rob , b_from_rob , t_from_rob]
189 data2 = json.load(open(robot_pos_file))
190 data_vec2 = data2[" joint_values "]
191 data_vec2 . append (vec_fromRob)
192 data2[" joint_values "] = data_vec2
193

194 with open(robot_pos_file , "w") as f:
195 json.dump(data2 , f, indent =2)
196 pos_vec_fromRob . append (vec_fromRob)
197

198 index += 1
199 timer += 0.2
200

201 finally :
202 #close connection , remove subcsriptions , etc
203 server .stop ()

Listing C.2: Script that reads from simulation and directly sends to physical
robot

C.3. OPC UA server writing trajectory from
simulation to file

1 import sys
2 import csv
3 import socket
4 sys.path. insert (0, "..")
5 import time
6 from moto. simple_message import *
7 from moto import motion_connection
8 from moto. simple_message_connection import SimpleMessageConnection
9 from moto. simple_message import SimpleMessage

10 from moto import Moto
11 from moto import Moto , ControlGroupDefinition
12 from moto. simple_message import (
13 JointFeedbackEx ,
14 JointTrajPtExData ,
15 JointTrajPtFull ,
16 JointTrajPtFullEx ,
17)
18 import copy
19 from opcua import ua , Server
20 import numpy as np
21 import json
22

23 def trajectory_continuing (pos_vec , history_vec):
24

25 history_vec . append (pos_vec)
26

102 Appendix C. The finalized Python scripts

27 if len(history_vec) <= 4:
28 continuing = True
29 return history_vec , continuing
30

31 else:
32

33 temp = np. asarray (history_vec [-4:])
34 print(temp)
35 print(temp.shape)
36

37 if sum(abs(temp [-1]) -abs(temp [-2])) < 10** -3 and sum(abs(
temp [-1]) -abs(temp [-3])) < 10** -3 and sum(abs(temp [-1]) -abs(temp
[-4])) < 10** -3:

38 continuing = False
39 return history_vec , continuing
40

41 else:
42 continuing = True
43 return history_vec , continuing
44

45 def disconnect (self):
46 client .close ()
47

48 if __name__ == " __main__ ":
49

50 client = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
51

52 # setup our server
53 server = Server ()
54 server . set_endpoint ("opc.tcp :// localhost :4840/ motopcua / server /")
55

56 # setup our own namespace , not really necessary but should as
spec

57 uri = "http :// server . motopcua . github .io"
58 idx = server . register_namespace (uri)
59

60 # get Objects node , this is where we should put our nodes
61 objects = server . get_objects_node ()
62

63 # populating our address space
64 myobj = server .nodes. objects . add_object (idx , "Moto")
65 myvar = myobj. add_variable (idx , " MyVariable ", 6.7)
66

67 myvar. set_writable () # Set MyVariable to be writable by
clients

68

69 # Adding desired variables
70 s = myobj. add_variable (idx , "s", 6.7)
71 l = myobj. add_variable (idx , "l", 6.7)
72 u = myobj. add_variable (idx , "u", 6.7)
73 r = myobj. add_variable (idx , "r", 6.7)

C.3. OPC UA server writing trajectory from simulation to file 103

74 b = myobj. add_variable (idx , "b", 6.7)
75 t = myobj. add_variable (idx , "t", 6.7)
76

77 s. set_writable ()
78 l. set_writable ()
79 u. set_writable ()
80 r. set_writable ()
81 b. set_writable ()
82 t. set_writable ()
83

84

85 # starting !
86 server .start ()
87 print(" server is started ")
88 try:
89 pos_vec = []
90 history_vec = []
91 data_vec = []
92 time_vec = []
93 count = 1
94

95 filename = " serverDouble_sin_test4 .json"
96 start_time = time.time ()
97 while True:
98

99 time.sleep (0.2)
100 new_s = s. get_value ()
101 new_l = l. get_value ()
102 new_u = u. get_value ()
103 new_r = r. get_value ()
104 new_b = b. get_value ()
105 new_t = t. get_value ()
106

107 #Start writing to file when simulation is started in
Visual Components

108 if new_s != 6.7 or new_l != 6.7 or new_u != 6.7 or new_r
!= 6.7 or new_b != 6.7 or new_t != 6.7:

109

110 prev_time = start_time
111

112 if count > 1:
113 time_var = prev_time - start_time
114 time_vec . append (time_var)
115

116 start_time = time.time ()
117

118 vec = [new_s , new_l , new_u , new_r , new_b , new_t]
119

120 history_vec , continuing = trajectory_continuing (
pos_vec =vec , history_vec = history_vec)

121 #if new_s == new_s -1 and new_l == new_l -1 etc s

104 Appendix C. The finalized Python scripts

m den vente
122 if continuing :
123

124 data = json.load(open(filename))
125

126 if count != 1:
127 data_vec = data[" joint_values "]
128

129 data_vec . append (vec)
130

131 data[" joint_values "] = data_vec
132 #print(type(data))
133 #print(data)
134

135 with open(filename , "w") as f:
136 json.dump(data , f, indent =2)
137

138 pos_vec . append (vec)
139 else:
140 time_vec_final = time_vec [0: -1]
141

142 count += 1
143

144 if count >3 and new_s == 0.0 and new_l == 0.0 and
new_u == 0.0 and new_r == 0.0 and new_b == 0.0 and new_t == 0.0:

145 print(" tajectory finished ")
146 server .stop ()
147

148 finally :
149 #close connection , remove subcsriptions , etc
150 server .stop ()

Listing C.3: OPC UA server reading joint positions from Visual Components
and writing these to file

C.4. Final script for sending trajectory from file to
robot controller

1

2 import sys
3 import socket
4 sys.path. insert (0, "..")
5 import time
6 from moto. simple_message import *
7 from moto import motion_connection
8 from moto. simple_message_connection import SimpleMessageConnection
9 from moto. simple_message import SimpleMessage

10 from moto import Moto
11 from moto import Moto , ControlGroupDefinition

C.4. Final script for sending trajectory from file to robot controller 105

12 from moto. simple_message import (
13 JointFeedbackEx ,
14 JointTrajPtExData ,
15 JointTrajPtFull ,
16 JointTrajPtFullEx ,
17)
18 import copy
19 from opcua import ua , Server
20 import numpy as np
21 import json
22 from simtorob import SimtoRob
23

24 def get_joint_values_from_file (filepath , variable_name):
25

26 data = json.load(open(filepath))
27

28 return np. asarray (data[variable_name])
29

30 pos_from_simulation = " serverDouble_sim_test4 .json"
31 Pos_from_robot = " serverDouble_robot_test4 .json"
32

33 robot: SimtoRob = SimtoRob (
34 " 192.168.255.200 ",
35 [ControlGroupDefinition ("robot", 0, 6, ["s", "l", "u", "r",

"b", "t"])],
36)
37

38 robot. motion . start_servos ()
39 robot. motion . start_trajectory_mode ()
40

41 time.sleep (1)
42

43 status = robot. motion . check_motion_ready ()
44 print(" --------------------- status of robot ready/not ready ?: ")
45 print(status)
46

47 position = robot.state. joint_feedback (0).pos
48 print(" --------------------- current position of robot joints : ")
49 print(position)
50

51 home = JointTrajPtFull (
52 groupno =0,
53 sequence =0,
54 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
55 time =0,
56 pos = [0.0]*10 ,
57 vel = [0.0]*10 ,
58 acc = [0.0]*10
59)
60

106 Appendix C. The finalized Python scripts

61 threshold = 0.00003
62

63 check = list(np.array(position)-np.array(home.pos))
64 print(" ----check",check)
65

66 for item in check:
67

68 sequence_nb = 0
69

70 if abs(item) > threshold :
71 timer = 5.0
72 p0 = JointTrajPtFull (
73 groupno =0,
74 sequence =0,
75 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
76 time =0,
77 pos = position ,
78 vel = [0.0]*10 ,
79 acc = [0.0]*10
80)
81 robot. motion . send_joint_trajectory_point (p0)
82 time.sleep (1)
83 home = JointTrajPtFull (
84 groupno =0,
85 sequence = sequence_nb +1,
86 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
87 time=timer ,
88 pos = [0.0]*10 ,
89 vel = [0.0]*10 ,
90 acc = [0.0]*10
91)
92 robot. motion . send_joint_trajectory_point (home)
93 sequence_nb +=1
94 timer +=0.2
95 time.sleep (5)
96 print("robot has been moved to home pos and p0 updated ",

home.pos)
97 break
98

99 else:
100 timer = 0
101 home = JointTrajPtFull (
102 groupno =0,
103 sequence = sequence_nb ,
104 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
105 time=timer ,
106 pos = robot.state. joint_feedback (0).pos ,
107 vel = [0.0]*10 ,

C.4. Final script for sending trajectory from file to robot controller 107

108 acc = [0.0]*10
109)
110 robot. motion . send_joint_trajectory_point (home)
111 sequence_nb +=1
112 timer += 0.2
113

114 TrajPoints_fromSim = get_joint_values_from_file (filepath ="
serverDouble_sin_test4 .json", variable_name =" joint_values ")

115

116 for row in TrajPoints_fromSim :
117 pos_vec = []
118 zero_array = np.array ([0 ,0 ,0 ,0])
119 traj_point = np. append (row , zero_array)
120

121 p1 = JointTrajPtFull (
122 groupno =0,
123 sequence = sequence_nb +1,
124 valid_fields = ValidFields .TIME | ValidFields .

POSITION | ValidFields .VELOCITY ,
125 time=timer ,
126 pos = np. deg2rad (traj_point),
127 vel = [0.0]*10 ,
128 acc = [0.0]*10
129)
130 robot. motion . send_joint_trajectory_point (p1)
131 sequence_nb +=1
132 timer += 0.2
133 time.sleep (0.2)
134

135 position_vector = robot.state. joint_feedback (0).pos
136

137 new_s = position_vector [0]
138 new_l = position_vector [1]
139 new_u = position_vector [2]
140 new_r = position_vector [3]
141 new_b = position_vector [4]
142 new_t = position_vector [5]
143

144 vec = [new_s , new_l , new_u , new_r , new_b , new_t]
145 data = json.load(open(Pos_from_robot))
146 data_vec = data[" joint_values "]
147 data_vec . append (vec)
148 data[" joint_values "] = data_vec
149

150 with open(Pos_from_robot , "w") as f:
151 json.dump(data , f, indent =2)
152

153 pos_vec . append (vec)

Listing C.4: Final script sending offline programmed trajectory to robot
controller

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Thea H
olm

edal
Im

plem
enting robotic offline program

m
ing w

ith the Yaskaw
a M

otom
an G

P25-12

Thea Holmedal

Implementing robotic offline
programming with the Yaskawa
Motoman GP25-12

Master’s thesis in Mechanical Engineering
Supervisor: Lars Tingelstad

June 2021M
as

te
r’s

 th
es

is

	Preface
	Summary
	Sammendrag
	Introduction
	Objectives
	Outline of thesis

	Robot kinematics
	Rotation and translation matrices
	Robot kinematics
	Path and trajectory
	Forward kinematics
	Denavit-Hartenberg
	Product of Exponentials

	Inverse kinematics
	Analytical inverse kinematics
	Numerical inverse kinematics

	Velocity kinematics
	Singularities
	Kinematically redundant

	Aspects of the industry supporting robotic offline programming
	Industry 4.0
	Before Open Protocol Communications
	OPC Classic
	OPC Unified Architecture

	Robot Programming
	Simulation Software
	Manufacturer-dependent software
	Manufacturer-independent software

	System Description of Robot Cell at NTNU
	Industrial robot controller
	Robot Software
	The robot manipulator
	Kinematic calculations

	Welding equipment
	Welding cell enclosure

	Development of the suggested solutions
	Installations
	Virtual robot cell
	Testing the OPC UA communication
	Offline programming from simulation to server
	Developing the OPC UA server
	Developing script for implementing OLP with robot controller

	Testing of the finalized versions
	Sending position vectors directly to robot controller
	Sending position vectors to robot controller from file

	Results
	Results from testing OPC UA server without constraints
	Results from sending trajectory directly from Visual Components to the robot controller
	Results from sending trajectory to file and then to robot controller
	Checking the accuracy

	Discussion
	Conclusion
	Further Work

	System description of robot cell and Python code
	Fronius TPS 400i
	Yaskawa Motoman GP25-12
	Python script for calculating robot kinematics

	Testing OPC UA connection
	The finalized Python scripts
	first attempt at sending trajectory points to robot controller
	Python script for reading from simulation and writing to robot controller simultaneously
	OPC UA server writing trajectory from simulation to file
	Final script for sending trajectory from file to robot controller

