
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Henrik Haugland Syverinsen

Supervised Pre-training for Dialogue
Act Classification in Task-oriented
Dialogue

Master’s thesis in Computer Science
Supervisor: Krisztian Balog

June 2021M
as

te
r’s

 th
es

is

Henrik Haugland Syverinsen

Supervised Pre-training for Dialogue
Act Classification in Task-oriented
Dialogue

Master’s thesis in Computer Science
Supervisor: Krisztian Balog
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

In recent years dialogue systems, where a user can converse with an agent in nat-

ural language, have become ubiquitous through smartphones, smart speakers, and

customer service. Dialogue act classification, the task of detecting the function of

an utterance, is an important part of the natural language understanding module

in task-oriented dialogue systems, where the system helps a user perform a task.

Executing the task of dialogue act classification well is critical for the performance

of the task-oriented dialogue system.

State-of-the-art approaches often fine-tune language models that have been pre-

trained in a semi-supervised fashion with large amounts of unlabeled data. This

pre-training gives a general language understanding, but usually leaves task-specific

features to be learned during fine-tuning, which may be difficult if there is little

data available. We propose performing task-specific supervised pre-training with

several unified datasets to learn task-specific features before performing dataset-

specific fine-tuning. We unify the label sets of task-oriented dialogue act datasets to

a universal schema, implement pre-training and fine-tuning architectures, and make

experimental comparisons. We find that models pre-trained in a supervised fashion

often lead to better performance than the same non pre-trained models. The largest

improvements are found when limited data is available for fine-tuning, indicating

that this is a viable approach for dialogue act classification when there is limited

data available.

i

Sammendrag

I de siste årene har dialogsystemer, hvor en bruker kan lede en samtale med en

agent i naturlig spr̊ak, blitt allestedsnærværende gjennom smarttelefoner, smarte

høytalere, og kundeservice. Dialogue act klassifisering, som omhandler å gjenkjenne

funksjonen en ytring formidler, er en viktig del av modulen som prøver å forst̊a

naturlig spr̊ak i oppgaveorienterte dialogsystemer, hvor systemet hjelper en bruker

å utføre en oppgave. God utførelse av dialogue act klassifisering er kritisk for ytelsen

til det oppgaveorienterte dialogsystemet.

Moderne metoder finjusterer ofte spr̊akmodeller som er pre-trent p̊a en semi-

veiledet m̊ate med store mengder data som ikke har tilhørende utgangsverdier.

Denne pre-treningen oppn̊ar en generell spr̊akforst̊aelse, men lar ofte oppgavespe-

sifikke trekk være for å bli lært under finjustering, som kan være vanskelig med

begrenset tilgang p̊a data. Vi foresl̊ar å utføre oppgavespesifikk veiledet pre-trening

med flere forente datasett for å lære oppgavespesifikke trekk før vi gjør datasettspe-

sifikk finjustering. Vi forener settene av utgangsverdier til oppgaveorienterte dia-

logue act datasett slik at de følger et universalt skjema. Videre implementerer vi

pre-trening- og finjusterings-arkitekturer og gjør eksperimentelle sammenligninger.

Resultater viser at modeller pre-trent p̊a en veiledet m̊ate ofte leder til bedre ytelse

enn det ikke pre-trente modeller kan oppn̊a. De største forbedringene i ytelse finner

vi n̊ar mengden treningsdata for finjustering er begrenset, som indikerer at metoden

v̊ar er effektiv for dialogue act klassifisering n̊ar mengden treningsdata tilgjengelig

er begrenset.

ii

Preface

The present master’s thesis is written during the spring of 2021 at the Norwegian

University of Science and Technology (NTNU). The thesis is a finalisation of a 5-

year master’s degree in Computer Science at the Department of Computer Science,

Faculty of Information Technology and Electrical Engineering at NTNU. Supervision

has been provided by Professor Krisztian Balog.

iii

Contents

Abstract i

Sammendrag ii

Preface iii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 2

1.3 Main Contributions . 3

1.4 Outline . 3

2 Preliminaries 5

2.1 Dialogue Systems . 5

2.2 Classification . 6

2.2.1 Dialogue Act Classification . 6

2.3 Algorithms . 6

2.3.1 Feed Forward Neural Networks 7

2.3.2 Long Short-Term Memory (LSTM) 8

2.3.3 Transformers . 8

2.3.4 BERT . 10

2.4 Evaluation Metrics . 11

2.4.1 F1-score . 11

3 Related Work 13

3.1 Natural Language Understanding Tools 13

iv

3.1.1 Platforms . 13

3.1.2 Toolkits . 15

3.2 Dialogue Acts & Domain-specific Intents 17

3.3 Datasets . 17

3.3.1 Task-oriented Dialogue Act Datasets 18

3.3.2 Other Dialogue Act Datasets 21

3.3.3 Domain-specific Intent Datasets 22

3.4 Pre-trained Language Models . 22

3.5 Task-specific Architectures . 24

4 Method 25

4.1 Dialogue Act Schema Alignment . 25

4.1.1 Universal DA Schema . 25

4.1.2 Alignment of the TODA Corpus 26

4.2 BERT-based Classifier . 39

4.2.1 Experimental Setup . 40

4.3 U-DAT (Including Context Information) 42

4.3.1 Experimental Setup . 45

5 Results & Discussion 46

5.1 BERT-based Classifier . 46

5.1.1 Universal Schema vs. Original Schema 46

5.1.2 Limited Training Data . 51

5.1.3 Adapting Further Pre-trained Model to Target Dataset 55

5.1.4 Different Dialogue Act Schemas 57

5.2 U-DAT (Including Context Information) 58

5.2.1 Universal Schema vs. Original Schema 58

5.2.2 Limited Training Data . 61

5.2.3 TODA-UDAT vs. TODA-BERT 63

6 Conclusion 65

6.1 Contribution . 65

6.2 Further Work . 66

6.2.1 Supervised Pre-training for Intent Classification 66

v

6.2.2 Adapting Pre-trained Model to Original Schema 67

6.2.3 Context Inclusive TODA-BERT 67

vi

Chapter 1

Introduction

This chapter gives an introduction to the thesis through its motivation, the research

questions that will be answered, its main contributions, and an outline of the rest

of the thesis.

1.1 Motivation

In recent years deep learning methods have become popular in training dialogue

systems and their components. Deep learning methods require large amounts of

labeled training data to be effective. However, existing labeled dialogue datasets

are often small in size since collection and human annotation is expensive and time-

consuming. Previous work has experimented and succeeded with self-supervised

pre-training on abundant unlabeled data in attempts to alleviate the data scarcity

problem [8, 17, 24, 12, 39].

Dialogue act classification (DAC) is the task of detecting the function of an ut-

terance in a dialogue interaction (e.g., requesting information or welcoming a user).

For the DAC task in task-oriented dialogue there exists several labeled datasets.

The datasets are labeled with different annotation schemas that may have many

labels in common. Previous pre-training approaches, like BERT [8], typically pre-

train on unlabeled data before they fine-tune on a single labeled target dataset. We

want to take advantage of datasets with overlapping annotation schemas by unifying

them, and by performing further task-specific supervised pre-training with multiple

datasets, followed by dataset-specific fine-tuning. With this approach, we hope to

1

learn task-specific representations beneficial for DAC from multiple datasets, and

transfer this to a target dataset. Architectures will also be developed to facilitate

this transfer learning. This approach will hopefully make training with little labeled

data more efficient. We also want to investigate how the pre-trained model transfers

to datasets with annotation schemas of varying similarity to the unified schema used

during pre-training.

This thesis builds on the work of Paul et al. [27] where they train a universal

dialogue act tagger (U-DAT) on two human-machine datasets after unifying their

annotation schemas. U-DAT predicts the next dialogue act of the system, given a

user utterance and dialogue history. We want to take this idea further by unifying a

larger corpus for pre-training and aim to apply it on classification of user utterances.

Classification will be done on both the unified schema and on the original schemas

of the target datasets.

1.2 Research Questions

With the motivation from the previous section we define the following research

questions:

• RQ1 How does the performance of a further pre-trained BERT model compare

to a BERT model that’s only fine-tuned?

– RQ1.1 How does further pre-training affect performance when training

and evaluating on the universal and original dialogue act schema?

– RQ1.2 How does further pre-training affect performance when there is

limited training data available?

– RQ1.3 How do different architectures for fine-tuning a further pre-trained

model to datasets with varying annotation schemas affect performance?

– RQ1.4 How does further pre-training affect performance on datasets with

different dialogue act schemas?

These research questions will be answered by first aligning multiple task-oriented

datasets labeled with dialogue acts to the universal schema proposed by Paul et al.

2

[27]. The resulting corpus, named TODA, is then used to perform further pre-

training in a supervised fashion on a BERT model. We name the further pre-

trained model TODA-BERT. Results of fine-tuning TODA-BERT will be compared

to results of fine-tuning of a basic BERT model.

• RQ2 How does the performance of a pre-trained dialogue context inclusive

model compare to a model that’s only fine-tuned?

– RQ2.1 How does further pre-training affect performance when training

and evaluating on the universal and original dialogue act schema?

– RQ2.2 How does further pre-training affect performance when there is

limited training data available?

These research questions will be answered by using the TODA corpus to perform

supervised pre-training on a U-DAT model. We name the pre-trained model TODA-

UDAT. Results of fine-tuning TODA-UDAT will be compared to fine-tuning of a

non pre-trained U-DAT model.

1.3 Main Contributions

The following points are the main contributions this thesis makes to the research

area of pre-training and dialogue act classification:

• Alignment of several datasets to a universal dialogue act schema.

• Pre-training and fine-tuning architectures.

• Implementation of architectures, as well as a pre-trained model, made publicly

available1

• Experimental comparison and insights.

1.4 Outline

Chapter 2 introduces theory necessary to understand the classification problem,

algorithms, and evaluation metrics used in the thesis.

1https://github.com/hsyver/TODA-BERT

3

https://github.com/hsyver/TODA-BERT

Chapter 3 presents related work.

Chapter 4 describes the alignment of datasets to a universal schema and archi-

tectures used in experiments.

Chapter 5 presents and discusses the results of the experiments.

Chapter 6 concludes the thesis and presents further work.

4

Chapter 2

Preliminaries

This chapter presents dialogue systems, the classification problem, algorithms, and

evaluation metrics used in this thesis to give a better understanding of the following

chapters.

2.1 Dialogue Systems

A dialogue system involves a human user and a system agent which converse in

natural language. The literature divides dialogue systems into three categories:

task-oriented, question-answering, and social chatbots [7].

A task-oriented dialogue system helps a user solve a task. Tasks may range from

booking movie tickets to setting reminders or getting the weather forecast. Task-

oriented dialogue systems usually steer the dialogue to follow a structure which

ensures that the constraints of the user are satisfied (i.e., number of tickets to book,

theatre location, and time slot). These constraints are gathered by the system in as

few turns as possible.

Question-answering dialogue systems try to answer the questions of the user.

The structure of dialogues with question-answering dialogue systems is centered

around questions, answers, and follow-up questions for clarification.

Social chatbots attempt to replicate social interaction and make chitchat con-

versation with the user without any underlying task to solve.

Dialogue systems typically include the four following modules: (1) a natural

language understanding (NLU) module which extracts intent and other information

5

from a user utterance, (2) a dialogue state tracker that keeps information of the

conversation, (3) a decision making module that decides the action of the system

based on the current state of the conversation, and (4) a natural language generation

(NLG) module which takes the action of the decision making module and converts

it to natural language to be returned to the user [11].

NLU is often broken down into three tasks: identification of domain, intent or

dialogue act classification, and extraction of slots. In an example utterance like

“I’m looking for a moderately priced restaurant in the east part of town.”, the

domain would be restaurant, the detected dialogue act would be inform, and slot-

value pairs would be pricerange=moderate and area=east. The two first tasks are

classification problems, while slot filling is a sequence labelling task, where each

word of an utterance is classified.

2.2 Classification

Classification is the task of identifying which class or classes a sample belongs to. An

example classification task can be to detect whether an email is spam or not spam.

An algorithm that implements classification is called a classifier. The classifier aims

to learn a function f given training data x with accompanying classes y such that

y = f(x). The performance of the classifier is measured by classifying unseen data.

2.2.1 Dialogue Act Classification

Dialogue act classification is the task of detecting the dialogue acts which describe

the function of an utterance in a dialogue interaction. The function of an utterance

can for example be to inform about preferences, request information, or request

alternatives. A dialogue D of N utterances, ui, is denoted as D = u1, u2, ..., uN .

Let A be a pre-defined set of M dialogue acts, i.e., A = a1, a2, ..., aM . Given a

user utterance ui and possibly the dialogue history, DAC aims to detect the set of

dialogue acts Ai ⊂ A that belong to ui.

2.3 Algorithms

This section presents learning algorithms used in this thesis.

6

in
pu
ts

ou
tp
ut
s

Figure 2.1: Feed forward neural network with an example computation. The function f is the

activation function.

2.3.1 Feed Forward Neural Networks

Feed forward neural networks are learning algorithms made up of layers of connected

nodes. An input layer takes one value for each node in the layer and an output layer

gives one value for each node in the layer. Between the input and output layer, there

can be any number of hidden layers. Nodes are connected between layers and values

are fed forward through the network. Values are updated as they pass through the

connections of the network. A connection between two nodes i and j has a weight

wij which the value is multiplied with. Every node in a hidden or output layer has

a bias value which is added to the incoming value. When multiple connections lead

to a node, the incoming values are summed before the bias is added. Before the

value is passed to the next layer, an activation function is applied. An example of an

activation function is the ReLU, which limits values to positive values. The neural

network learns as weights and biases are updated when the difference between a

prediction and target, expressed by a loss function, is backpropagated. Figure 2.1

shows an example of a feed forward neural network with three input nodes, one

hidden layer, and an output layer with two nodes.

7

2.3.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM), introduced by Hochreiter and Schmidhuber [18],

is a recurrent neural network (RNN) architecture for processing sequences of data.

RNNs contain cycles where activations from previous time steps are used as input for

the current time step. The LSTM architecture was designed to address the problems

of conventional RNNs: vanishing or exploding gradients when updating weights

through backpropagation and limited ability to model long range dependencies.

A standard LSTM architecture includes an input layer, a recurrent LSTM layer

and an output layer. At the core of the LSTM layer lies the cell state. The LSTM

updates the cell state through gates made up of a sigmoid function and a multi-

plication operation which optionally lets information through. The LSTM network

maps the input sequence (x1, ..., xT) to an output sequence (y1, ..., yT) by calculating

activations in the LSTM layer from time step t = 1 to T according to the following

equations:

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf)

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

where h is the hidden state, c is the cell state, x is the input, and i, f , g, o are the

input, forget, cell, and output gates, respectively. The W terms represent weight

matrices and b terms represent bias vectors. σ is the sigmoid function, and � is the

element-wise product of vectors.

A bidirectional LSTM is an LSTM that operates on the input sequence in both

directions when making a decision for the current input to learn dependencies in

both directions of the sequence.

2.3.3 Transformers

The transformer architecture, proposed by Vaswani et al. [36], is a state-of-the-art

architecture for processing sequences. Transformers differ from sequence processing

8

Figure 2.2: Original Transformer model architecture [36].

architectures like RNNs in that entire sequences are perceived at once, relying on

an attention mechanism, rather than perceiving one element of the sequence at a

time. Perception of the entire sequence at once allows for more parallelization in

training, which is a fundamental constraint of RNNs [36].

The original Transformer, proposed by Vaswani et al., employs an encoder-

decoder structure where an input sequence is mapped by the encoder. The decoder

uses the mapped representation of the input to generate an output sequence one

symbol at a time. The architecture of the Transformer is illustrated in Figure 2.2.

Each symbol of a sequence is transformed to an embedding (x1, ..., xn). This

embedding, along with a positional embedding, forms the input to the encoder

stack. Six identical encoder layers make up the encoder stack.

At the core of an encoder layer lies an attention mechanism. In the first step of

the attention mechanism, three matrices are calculated: the query matrix (Q), the

key matrix (K), and the value matrix (V). The embeddings (x1, ..., xn) are packed

9

to the matrix X which gives Q, K, and V when multiplied with the trainable weight

matrices WQ, WK , and W V . The attention mechanism then computes Z according

to Eq. (2.1), where dk is the dimension of queries and keys. Z represents which

symbols are relevant to each symbol in the sequence. Eight attention mechanisms in

parallel forms the multi-head attention. The reason multiple attention mechanisms

are used is such that multiple relationships between symbols can be learned. Outputs

of the attention mechanisms are concatenated and multiplied with the trainable

weight matrix WO. The result is then passed through a feed forward neural network.

Z = Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.1)

Residual connections and layer normalization is applied around the multi-head at-

tention and the feed forward neural network. The residual connection simply adds

the input of the multi-head attention to the component’s output. The output of the

feed forward neural network, passed through normalization, is the output of a single

encoder layer. This becomes the input of the next encoder layer in the encoder

stack.

The decoder stack also contains six identical layers. Unlike the encoder layers,

the decoder layers have two multi-head attention components per layer. The second

multi-head attention gets the matrices K and V from the output of the encoder

stack, while the matrix Q comes from the first multi-head attention in the layer.

The decoder generates the output sequence one symbol at a time. The input to

the decoder is the output of the entire transformer from the previous time step. The

output of the decoder is passed through a feed forward layer which gives an output

vector in the size of the vocabulary. A softmax layer is applied to give probabilities

for each symbol in the vocabulary.

2.3.4 BERT

BERT (Bidirectional Encoder Representations from Transformers) [8] is a method

for pre-training language representations. A language understanding model is pre-

trained from a large unlabeled text corpus through self-supervised learning. BERT

uses English Wikipedia and BooksCorpus for pre-training. The pre-trained model

can be applied on various natural language processing (NLP) tasks through fine-

10

tuning, and Devlin et al. [8] achieve state of the art performance on 11 NLP tasks

with this approach.

The architecture of a BERT model is nearly identical to the encoder stack of

the Transformer proposed by Vaswani et al. The biggest difference is that BERT

architectures have more encoder layers in the encoder stack and more attention

mechanisms in parallel in the multi-head attention.

A BERT model is trained on two self-supervised tasks: masked language modeling

(MLM) and next sentence prediction (NSP). MLM masks words in a sentence which

are predicted to train the model. NSP draws sentence pairs from the corpora that

have a 50% chance of being adjacent and the model is tasked with predicting whether

the second sentence is the following sentence of the first or not.

Pre-training a BERT model is computationally expensive, which is why Devlin

et al. have released BERT models of various sizes, BERTBASE being the most fre-

quently used. The models can be adapted to various NLP tasks through inexpensive

fine-tuning.

2.4 Evaluation Metrics

This section describes how models for multi-label dialogue act classification are

evaluated in this thesis.

2.4.1 F1-score

The F1-score (2.2) is a function of precision (2.3) and recall (2.4) giving a score

between 0 and 1.

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(2.2)

Precision =
True Positive

True Positive + False Positive
(2.3)

Recall =
True Positive

True Positive + False Negative
(2.4)

In the multi-label case, the F1-score can be computed in different ways based on

the type of averaging. The micro-F1 score is computed by simply counting true

11

positive, false positive, and false negative classifications globally. The macro-F1

score is calculated by taking the unweighted average of F1-scores for each class.

12

Chapter 3

Related Work

3.1 Natural Language Understanding Tools

This section describes some of the available platforms and toolkits for development

and research in dialogue systems. We focus on functionality relevant for dialogue

act classification or intent classification in the description of the tools.

3.1.1 Platforms

Several companies provide natural language understanding platforms to make it

easier for developers to create conversational agents or incorporate natural language

understanding in their apps. Some of the most popular platforms include:

• Wit.ai1

• Google’s Dialogflow2

• Microsoft’s LUIS3

• Amazon Lex4

• IBM’s Watson Assistant5

1https://wit.ai
2https://cloud.google.com/dialogflow
3https://luis.ai
4https://aws.amazon.com/lex
5https://ibm.com/cloud/watson-assistant

13

https://wit.ai
https://cloud.google.com/dialogflow
https://luis.ai
https://aws.amazon.com/lex
https://ibm.com/cloud/watson-assistant

• RASA6

An overview of main features related to dialogue act and intent classification in the

platforms can be found in Table 3.1.

The platforms are centered around intents and entities. Developers can train

the NLU module by defining intents and entities where they supply a small number

of annotated example utterances. The cloud-based platforms (all except for RASA,

which is open-source) have the advantage of being able to leverage data supplied by

other users to expand upon the example utterances for training. In LUIS and RASA

it’s possible to define patterns or regular expressions to detect intents for improved

performance. Most of the platforms provide pre-built intents. The pre-built intents

are often domain-specific (e.g., ChangeReservation), but some of the platforms also

provide general, dialogue act-like, pre-built intents like Confirm, StartOver or Repeat

in LUIS.

Wit.ai and LUIS only perform intent classification and recognize entities. In the

other platforms, responses and dialogue flows can be designed to create a complete

conversational agent. RASA also has an experimental end-to-end training feature

which only needs stories to train a conversational agent. This feature can also be

combined with the traditional intent and entity detection.

Xingkun Liu and Rieser [40] state that a significant limitation of the platforms is

that none of them use dialogue context for intent classification. This is problematic

when a user speaks in fragment utterances that can only be correctly classified with

knowledge of the previous utterances.

The platforms differ in how they handle multiple intents per input, if at all.

Utterances which express more than one intent is common in spoken dialogue. An

example is the utterance “Sounds good, what’s their adress?”, which expresses the

intents affirm and request. Watson Assistant supports this, while Wit.ai supports it

with the use of traits in combination with intents. LUIS and Amazon Lex facilitate

multi-intent classification by returning scores for all the intents. RASA can detect

mutliple intents if a specific classifier is used, but only the combinations of intents

which are present in the training data. This is so that it should not be overly compli-

cated to design dialogue flows, which could be difficult with arbitrary combinations

of intents.

6https://rasa.com

14

https://rasa.com

Table 3.1: Features related to intent classification in NLU platforms. Full CA indicates whether

the platform provides a full conversational agent or just a NLU service.

Platform Full

CA

Multi-

Intent

Support

Patterns/

RegEx

Pre-

Built

Intents

Cloud-

Based

Configurability

Wit.ai X X X

Dialogflow X X X

LUIS X X X X

Lex X X X X

Watson X X X X

RASA X X X X

The cloud-based platforms are secretive about what machine learning algorithms

are used and what training data is used for pre-training. Dialogflow reveals that

they use BERT-based language understanding models, while others only say they

use deep learning algorithms. On the other hand there is RASA, the open-source

alternative, which lets one create their own pipeline with different options for lan-

guage models, intent classifiers, and more. RASA offers SVM, keyword-matching,

and transformer-based intent classifiers.

3.1.2 Toolkits

This section presents toolkits that support development of dialogue systems or parts

of dialogue systems. We focus on toolkits that have a modular design built around

common dialogue system architecture, specifically including natural language under-

standing. Recent toolkits with active support are included. The toolkits are usually

made for research and prototyping purposes as opposed to the platforms presented

in Sect. 3.1.1 which are meant to create conversational agents for production.

Plato [26] is a flexible toolkit that supports any type of conversational agent

architecture and aims to bridge the gap between state-of-the-art research and pro-

duction. The toolkit abstracts away implementation details around training and

15

evaluation to speed up the development process, offers common ground for testing

of new ideas, and makes it easy to understand for people with different levels of ex-

pertise. It supports joint learning of modules, end-to-end learning, and is agnostic

to the underlying learning frameworks. The modular design of Plato allows modules

to run sequentially, in parallel, or in any combination of the two. A module can

be a language understanding module, language generation module, dialogue state

tracker, or any module of a conversational agent.

NeMo [20] is a toolkit for creating AI applications with neural modules and

is developed around the principles of re-usability, abstraction, and composition of

modules. A neural module is a piece of a neural network such as a language model,

an encoder, a loss function, or other layers and functions. NeMo aims to separate

the concerns of architecture definition, training procedure, analysis, and more which

are often mixed in a single Python script. NeMo provides pre-built collections for

automatic speech recognition and natural language processing, but users can easily

create new collections. The nemo nlp collection can be used for language modeling,

sentence classification, and more. It also supports BERT pre-training and fine-

tuning. NeMo is also a framework-agnostic toolkit.

ConvLab-2 [42] is a toolkit made for researchers so they can build task-oriented

dialogue systems with state-of-the-art models and easily perform evaluation. In

ConvLab-2, dialogue systems can be trained through different configurations of com-

ponents or fully end-to-end. The toolkit supports most standard dialogue system

components except for automatic speech recognition and text to speech synthesis.

State-of-the-art models for the various components are already implemented, but

researchers can add their own models by implementing the interfaces of the compo-

nents.

PyDial [35] is a toolkit targeted at statistical dialogue systems. It aims to stim-

ulate research and make it easier for people to get involved in the field. PyDial

offers easy configuration and extension of the dialogue system modules. The toolkit

supports multi-domain dialogues where a single conversation may span multiple

topics.

16

3.2 Dialogue Acts & Domain-specific Intents

An intent in a task-oriented dialogue system is a label that captures the meaning

of an utterance through the intention the user expresses in said utterance. Intents

can be represented at different levels of granularity. The two main approaches for

intent annotation in literature are dialogue acts and domain-specific intents.

A dialogue act in task-oriented dialogue captures the general intention or speech

act behind an utterance independent of domain or dialogue system. Common di-

alogue acts include inform, request, confirm, deny, request alts, and more. Some

dialogue acts include slot-value pairs that gives information of entities in the ut-

terance. An example is inform(food=“Italian”) which could belong to an utterance

where a user is looking for Italian restaurants. Despite dialogue acts not being bound

to a single domain or dialogue system, dialogue datasets apply different dialogue act

schemas for annotation, complicating training with multiple datasets. Efforts have

been made to create a universal dialogue act schema [41, 27]. Paul et al. [27] propose

a universal dialogue act schema for task-oriented dialogues and align three existing

datasets (DSTC2 [15], MultiWOZ2.0 [3], and M2M [33]) with their schema. The

schema and alignment process is presented in detail in Sect. 4.1.1

The other main interpretation of an intent in task-oriented dialogue are domain-

specific intents, which often describe the task the user wants to perform with

their utterance. The domain-specific intents are usually very fine-grained, with

one intent corresponding to one task an agent can perform (e.g., BookFlight or

GetWeather). This gives agent-dependent intent “schemas” that may be difficult

to align. Domain-specific intents are frequently used in the commercial platforms

presented in Sect. 3.1.1.

3.3 Datasets

This section presents datasets we find relevant for dialogue act classification and

intent classification. Dialogue act datasets are described more in depth than the

datasets with domain-specific intents since focus is on dialogue acts in this thesis.

17

3.3.1 Task-oriented Dialogue Act Datasets

The following criteria were set to consider inclusion of a dataset:

• Dialogues must be task-oriented.

• Utterances must be labeled with dialogue acts.

• Dialogue must be multi-turn.

• Dialogues must involve a human (i.e., human-human or human-machine) or

be paraphrased by a human, giving natural utterances.

• The size of the dataset should not be too small (preferably more than 1000

dialogues).

A summary with key properties of the datasets can be found in Table 3.2. The

following paragraphs give an overview of the datasets collected.

DSTC 2 [15] and DSTC 3 [16] were released during the Dialog State Tracking

Challenges 2 & 3. Combined the datasets are made up of 5,510 dialogues related

to restaurant search. The dialogues were collected using various telephone-based

dialogue systems which crowdworkers on Amazon Mechanical Turk7 called. Tran-

scription from audio to text was also performed by crowdworkers. The dialogues

were labeled with dialogue acts by a semantic decoder which the authors corrected

by hand. These two datasets will be treated as one in this thesis. The test set of

DSTC 2 will be used for evaluation.

Frames [9] was proposed to study complex dialogue flows and decision-making

behaviour. The dataset has 1,369 dialogues in the travel domain. Users were in-

structed to find a vacation package given some constraints in a search-and-compare

process. The dialogues were collected in a Wizard-of-Oz (WOz) setting where a hu-

man is paired up with another human, or wizard, which takes the role of the dialogue

system. The advantage of this setting is that the dialogues can display realistic be-

haviour not found in existing dialogue systems. The dialogues were written by only

7https://www.mturk.com/

18

Table 3.2: Statistics for task-oriented datasets

Dataset #Dialogues #Utterances #Domains Type

DSTC 2 & 3 [15, 16] 5,510 88,650 1 Spoken

Frames [9] 1,369 19,986 1 Written

MultiWOZ 2.3 [13] 10,438 143,048 7 Written

E2E [22] 10,087 74,686 3 Written

M2M [33] 3,008 27,120 2 Generated

SGD [30] 22,825 463,284 20 Generated

Total 53,237 816,774 24 unique

12 participants. El Asri et al. [9] state that the advantage of few participants is that

they know how to use the system, so they can focus on decision making and skip

learning about system capabilities. Dialogues were annotated with dialogue acts

by human experts. 10 random dialogues were selected to measure inter-annotator

agreement on dialogue acts, which received an F1 score of 81.2 ± 3.1.

MultiWOZ 2.3 [13] is an updated version of the previous MultiWOZ datasets

(2.0-2.2) with annotation corrections leading to significant improvements in natural

language understanding and dialogue state tracking according to Han et al. [13]. The

dataset contains 10,438 dialogues first presented in the MultiWOZ 2.0 [3] dataset.

The dialogues range from requesting information to making bookings in 7 tourism

related domains - Attraction, Hospital, Police, Hotel, Restaurant, Taxi, and Train.

Budzianowski et al. [3] collected the dialogues in a WOz setting with the help of

1,249 crowdworkers. They state that having a large set of workers mitigates the

problem of artificial encouragement of variety in dialogue from users. Goal changes

were encouraged to model more realistic dialogue. Utterances were automatically

labeled with user dialogue acts using heuristics and added in MultiWOZ 2.1 [10].

Han et al. [13] refined the dialogue act annotation using prediction and regular

expressions, but imply that further improvements can be made as they hope to

attract more research to further improve the quality of the dataset.

19

Microsoft Dialogue Challenge (E2E) [22] was introduced challenging par-

ticipants to develop end-to-end task-completion dialogue systems. The challenge

organizers, Li et al. [22], released a dataset of 10,087 dialogues, henceforth referred

to as the E2E dataset. The dialogues are in the domains of movie-ticket booking,

restaurant reservation and taxi ordering. The data was collected with crowdworkers

on Amazon Mechanical Turk and human-annotated with dialogue acts.

Machines Talking To Machines (M2M) [33] is a framework proposed with

the goal of reducing cost and effort to build dialogue datasets. Two datasets in

the movie-ticket booking and restaurant reservation domain are released using the

framework. The M2M framework generates dialogue outlines via self-play before

they are paraphrased by crowdworkers. The datasets, Sim-M (Movie) and Sim-R

(Restaurant), contain 3,008 dialogues and will be referred to as the M2M dataset in

this work. The dataset is labeled with dialogue acts which the generated outlines are

based on such that crowdworkers don’t have to decode the meaning of the utterances

and perform manual annotation. Shah et al. [33] argue that crowdsourcing using a

Wizard-of-Oz setup is flawed as (i) crowdworkers might not cover all interactions an

agent is meant to handle, (ii) crowdworkers might use overly simplistic or convoluted

language, and (iii) it can cause errors in dialogue act annotation. They claim to

achieve greater coverage of dialogue flows while keeping utterances realistic. How-

ever, they raise the concern that using the framework restricts generated dialogue

flows to those engineered into the model. A setup with crowdworkers conversing

could give dialogues not anticipated by the developer guiding the generation of the

dialogue.

Schema-Guided Dialogue (SGD) [30] addresses the problem that existing

task-oriented dialogue datasets don’t sufficiently cover the large number of domains

a virtual assistant in production is expected to handle. The dataset is made up of

22,825 dialogues in 20 domains, four of which are only present in the dev or test

set. Among the domains are Calendar, Events, Music, Weather, Travel, and more.

Dialogues were collected using a dialogue simulator. The simulator generates dia-

logue outlines which crowdworkers paraphrase to obtain conversational utterances.

Utterances are automatically labeled with dialogue acts as a part of the outline gen-

eration. Rastogi et al. [30] argue that simulation-based collection is better than other

20

Table 3.3: Parts of example dialogue from SwDA with dialogue acts

Speaker Utterance Dialogue Act

A Uh, let’s see. Hold before answer/agreement

A How about, uh, let’s see, about ten years ago, Abandoned or Turn-Exit

A Uh, what do you think was different ten years

ago from now?

Open-Question

B Well, I would say as fas as social changes go,

uh, I think families were more together.

Statement-opinion

B They, they did more things together. Statement-opinion

A Uh-huh. Acknowledge (Backchannel)

...

B I mean do you think, people really need two

cars and –

Yes-No-Question

A No. No answers

approaches like Wizard-of-Oz because of fewer annotation errors, better coverage of

dialogue flows and lower cost.

3.3.2 Other Dialogue Act Datasets

This section presents two popular dialogue act classification datasets that are not

task-oriented.

Switchboard Dialogue Act Corpus (SwDA) [19] is made up of 1,155 tele-

phone dialogues where a caller and receiver converse about various topics. The

utterances are labeled with a set of 43 dialogue acts for general conversation. This

corpus is not considered a task-oriented dataset since it doesn’t follow the sys-

tem/user setup. Table 3.3 shows parts of an example dialogue from the dataset.

MapTask Corpus [2] consists of 128 conversation between an instruction giver

and follower, where the instruction giver tries to guide the instruction follower to

draw a path on a map. The corpus is labeled with a set of 13 dialogue acts. Part of

an example dialogue can be found in Table 3.4.

21

Table 3.4: Part of example dialogue from MapTask with dialogue acts

Speaker Utterance Dialogue Act

G okay ready

G starting off we are above a caravan park instruct

F mmhmm acknowledge

G we are going to go due south straight south

and then we’re going to turn straight back

round and head north past an old mill on the

right hand side

instruct

F due south and the back up again check

G yeah reply y

G south and then straight back up again with an

old mill on the right and you’re going to pass

it on the left-hand side of the mill

clarify

3.3.3 Domain-specific Intent Datasets

The following task-oriented dialogue datasets are popular datasets labeled with

domain-specific intents. ATIS [14] is a dataset with recordings of flight reserva-

tions that has 21 intent labels in the flight domain. SNIPS [6] is a dataset labeled

with seven intents related to a virtual assistant. HWU64 [40] is a dataset with 64

virtual assistant intents. CLINC150 [21] is a dataset with 150 intents spanning 10

domains like travel, dining, and small talk. Facebook’s multilingual [32] dataset has

utterances in the weather, alarm, and reminder domains with 12 intents.

3.4 Pre-trained Language Models

Since 2018, transformer-based pre-trained language models have contributed to per-

formance gains on many downstream natural language processing tasks [29, 8]. They

often use large unlabeled text corpora like Wikipedia, BooksCorpus or Reddit data

for self-supervised training to gain language understanding that can be fine-tuned

for specific tasks.

One such model is BERT, presented in Sect. 2.3.4, which is pre-trained on the

two tasks masked language modeling and next sentence prediction. However, Hen-

22

derson et al. [17] state that response selection is a more suitable pre-training task to

learn representations of conversations. Response selection is the task of selecting the

most appropriate response from a collection of possible responses, given the dialogue

history. The authors present the pre-training framework ConveRT (Conversational

Representations from Transformers), which uses Reddit data and the response se-

lection task to pre-train a model. ConveRT achieves state-of-the-art performance

on response selection tasks. The authors also show that the pre-trained representa-

tions transfer to the intent classification task by outperforming BERT-based baseline

classifiers despite ConveRT training many times faster than BERT.

Mehri et al. [24] present ConvBERT, a model produced by further pre-training

of BERT on 700 million conversations from online forums. Their input for pre-

training includes the 3 last turns in the dialogue to model multi-turn dialogue. In a

process named task-adaptive pre-training, the authors continue training with MLM

on the target dataset on top of ConvBERT before fine-tuning. They also experiment

with MLM training on the 7 task-oriented dialogue datasets of the DialoGLUE

benchmark before fine-tuning for each task, which gives mixed results. ConvBERT

achieves state-of-the-art results on the intent classification datasets of DialoGLUE

with different combinations of their pre-training methods.

Gururangan et al. [12] attempt to adapt language models to domains and tasks

with domain adaptive pre-training (DAPT) and task adaptive pre-training (TAPT).

They continue training a BERT-based model with large amounts of unlabeled in-

domain text for DAPT, and use available unlabeled data associated with the target

task for TAPT. The authors find that both DAPT and TAPT consistently improve

the BERT-based baseline on text classification tasks. TAPT uses far less pre-training

data and is computationally cheaper to perform, but gives similar performance gains

as DAPT. DAPT and TAPT combined achieves the best performance in all of their

experiments.

TOD-BERT [39] is a BERT model further pre-trained on task-oriented dialogue.

Wu et al. [39] hypothesize that self-supervised pre-training with task-oriented dia-

logue corpora can learn better representations and perform better on downstream

tasks than existing pre-trained language models. For pre-training they collect 9

multi-turn, human-human, task-oriented dialogue datasets with over 100,000 dia-

logues spanning 60 domains. The authors fine-tune for 4 downstream tasks, in-

23

cluding intent recognition and dialogue act prediction. They find that TOD-BERT

outperforms BERT on all tasks. TOD-BERT has a clear advantage over BERT in

a few-shot scenario where limited labeled training data is available.

3.5 Task-specific Architectures

One of the earlier works that took into use neural networks for intent classification

is by Sarikaya et al. [31], where deep belief nets (DBNs) are applied to a natural

language call-routing task. DBNs discover features through unsupervised learn-

ing which Sarikaya et al. use in a multi-layer feed forward neural network that is

fine-tuned. Their approach produces better classification results than traditional

classifiers like Maximum Entropy and Boosting classifiers.

More recent RNN and transformer-based approaches achieve state-of-the-art re-

sults by performing intent classification and slot filling, which fills the arguments of

the intent, jointly. Wang et al. [37] introduce an asynchronously trained bi-model

structure with shared internal state between two bi-directional LSTMs, one for in-

tent classification and one for slot filling. After the recent shift to the pre-training

paradigm, Chen et al. [4] propose a model based on the pre-trained language model

BERT and achieve improved performance compared to non pre-trained models.

While the aforementioned models effectively solve the intent classification task

on the single-turn ATIS dataset, classification of multi-turn dialogue, where system

and user may refer to previous utterances, remains a challenge. Chen et al. [5]

propose an RNN based memory network that encodes the dialogue history through

an attention mechanism and achieve improved performance compared to models not

incorporating context.

Qin et al. [28] propose a model incorporating contextual information based on a

novel context-aware graph convolutional network (CGCN) which operates directly

on a graph structure of dialogues. The input to the CGCN comes from bidirectional

LSTM-encoded utterances and dialogues. Their approach improves upon the mem-

ory network of Chen et al. and other context inclusive architectures in dialogue act

and intent classification on the M2M dataset.

24

Chapter 4

Method

This chapter describes alignment of the task-oriented dialogue act datasets from

Sect. 3.3.1, henceforth referred to as the TODA corpus, to a universal DA schema.

Architectures used in experiments are also presented.

4.1 Dialogue Act Schema Alignment

This section presents the universal DA schema and the alignment of the TODA

corpus to the schema. Five datasets, previously not aligned by the authors of the

schema, are aligned. This alignment is one of the main contributions of this thesis.

4.1.1 Universal DA Schema

Paul et al. [27] developed a universal dialogue act schema for task-oriented dialogue

to enable supervised training of a universal dialogue act tagger with two datasets

that have different dialogue act annotation.

The authors design their universal schema to cover all of the dialogue acts found

in the DSTC 2 and M2M datasets. The schema is based on these datasets because

they both have annotation schemas inspired by the CUED schema [41] for dialogue

acts. They also align the MultiWOZ 2.0 dataset with their schema for evaluation

of their tagger.

To create the universal schema the authors first take a union of the dialogue acts

based on namespace and look at the distribution of the acts. They find that the

25

Table 4.1: Universal DA schema

ack, affirm, bye, deny, inform, repeat, reqalts, request, restart,

thank you, user-confirm, sys-impl-confirm, sys-expl-confirm,

sys-hi, user-hi, sys-negate, user-negate, sys-notify-failure, sys-

notify-success, sys-offer

datasets share few dialogue act names, and when they do there may be differences

in semantics since the distributions of the acts can be very different.

Due to this, they perform a manual assessment of the semantics of the dialogue

acts. After training a tagger with the manually aligned acts, some semantically

similar acts that confused the tagger were found. Some of these acts were split and

others were merged to improve the performance of the tagger. They ended up with

a schema of 20 dialogue acts which can be found in Table 4.1. The alignment of

the DSTC 2 and M2M datasets to the universal schema can be found in Table 4.2.

Example dialogues from DSTC 2 and M2M can be found in Table 4.3 and 4.4.

4.1.2 Alignment of the TODA Corpus

Manual assessment of the semantics of dialogue acts is used to align the datasets of

the TODA corpus to the universal DA schema. Dialogues from DSTC 2 and M2M

were inspected to understand the semantics of each dialogue act in the universal

schema. Following is an explanation of the not-so-obvious alignments of dialogue

acts for each dataset. Even though we are only interested in classifying utterances

with dialogue acts, accompanying slot-value pairs are included in the presentation

and discussion of the alignment. This is because the same dialogue act with different

slots and values can map to different acts in the universal schema. Frequency of

user acts in the aligned TODA corpus can be found in Figure 4.1.

Frames has a user act request compare(x) which requests a comparison of two or

more options on a provided slot x. This act is mapped to request since the request

act is for utterances where a value of a slot is requested (e.g., the utterance “How

many days would I be in Kobe?” requests the value of the duration slot and is tagged

with request(duration)).

The user act moreinfo accompanies utterances where a user requests more infor-

26

Table 4.2: Alignment of DSTC 2 and M2M with Universal DA Schema by Paul et al. [27]

Universal DA Schema DSTC 2 M2M

inform inform(x=y) inform(x=y)

request request(x) request(x)

user-negate negate(x=y) negate(x=y)

sys-negate negate(x=y) negate(x=y)

user-hi hello()

user-hi + inform greeting(x=y)

sys-hi welcomemsg()

reqalts reqalts(), reqmore() request alts()

repeat repeat() cant understand()

restart restart()

affirm affirm() affirm()

affirm + inform affirm(x=y)

sys-impl-confirm impl-conf(x=y)

sys-expl-confirm expl-conf(x=y), confirm-domain(x=y) confirm(x=y)

user-confirm confirm(x=y)

sys-notify-failure canthelp(), canthelp.exception() notfiy failure()

sys-notify-success notify success()

sys-offer offer(x=y), select(x=y1,y2) offer(x=y), select(x=y1,y2)

thank you thankyou() thank you()

bye bye()

ack ack()

deny deny(x=y)

27

Table 4.3: Example dialogue from DSTC 2 with dialogue acts

Actor Utterance Dialogue Acts

System Hello, welcome to the Cambridge restaurant system. You

can ask for restaurants by area, price range or food type.

How may I help you?

welcomemsg()

User west part of town cuban food inform(area=west),

inform(food=cuban)

System Sorry there is no cuban restaurant in the west of town canthelp()

User italian inform(food=italian)

System prezzo is a nice restaurant in the west of town serving

italian food

offer(name=prezzo),

inform(food=italian),

inform(area=west)

User phone number request(phone)

System You are looking for a restaurant is that right? confirm-domain()

User yes affirm()

System prezzo is a nice restaurant in the west of town serving

italian food

offer(name=prezzo),

inform(food=italian),

inform(area=west)

User what is the phone number request(phone)

System The phone number of prezzo is 01799 521260 offer(name=prezzo),

inform(phone=01799

521260)

User good bye bye()

28

Table 4.4: Example dialogue from M2M with dialogue acts

Actor Utterance Dialogue Acts

User hi - buy 6 tickets for gimme danger at cinelux plaza theatre greeting(), inform()

System what date and time ? request(time),

request(date)

User 4:00 pm on wednesday inform()

System 4:00 pm ? confirm(time=4:00 pm)

User yes affirm()

System i bought 6 tickets for gimme danger at cinelux plaza the-

atre for march 08 at 4:00 pm

notify success()

User bye good bye()

in
fo

rm

re
qu

es
t

th
an

k
yo

u

by
e

re
qa

lt
s

affi
rm

u
se

r-
h
i

ac
k

u
se

r-
co

n
fi
rm

u
se

r-
n
eg

at
e

re
p
ea

t

d
en

y

re
st

ar
t

0

20

40

60 56
.4

15
.1

12
.2

5.
1

4.
2 10

.3

1

9

0.
2 6.

2

0.
1

6
·1

0−
5

5
·1

0−
5

%

Figure 4.1: User act frequency in aligned TODA corpus

29

mation or a description of an option offered by the system (e.g., “What is the hotel

like?”). In the E2E dataset, utterances like this are annotated with request(other)

which leads us to map this act to request.

The system act suggest is split three ways when mapped to the universal schema

due to its semantic diversity. (i) Utterances where the system asks if the user would

like to book an offered option is annotated with suggest(action=book). This is

mapped to sys-expl-confirm since this act is for when the system asks for an explicit

confirmation from the user. (ii) When the act is in the form suggest(x=y), except for

the situation in (i), the system offers values for one or more slots. In this situation the

act is mapped to sys-offer. (iii) When the act contains a slot with no corresponding

value, suggest(x), the system asks if the user can provide a new value for the slot

x (e.g., “What other cities are you considering?”). This is semantically similar to

a request act and similar utterances in the E2E and MultiWOZ 2.3 datasets label

these with request. This leads us to map suggest(x) to request.

Frames does not have its own act to notify success, but this can be extracted

from the inform act when it contains the slot-value pair action=book. Utterances

labeled with this informs the user that a booking has been completed and this is

mapped to sys-notify-success.

The dataset contains about 600 utterances which are annotated with the greeting

act. However, using a regular expression to match on common greeting words in the

dataset, we find about 300 utterances that are not labeled with greeting that clearly

should be. All of these are mapped to the user-hi or sys-hi act depending on whom

the utterance comes from. The 300 utterances are labeled so that a model being

trained with this data does not get punished for tagging an utterance like “Hi, I

need to go somewhere warm!” with user-hi.

An example dialogue from Frames is presented in Table 4.5 and the complete

alignment of Frames to Universal DA schema can be found in Table 4.7.

SGD has a user act select which is for utterances where a result offered by the

system is selected. Some example utterances labeled with select are “Okay”, “That

sounds great”, and “That works for me, please reserve the bus”. The last example

would also be tagged with inform intent where the select act only refers to the

positive feedback part of the utterance. This is similar to the act ack in DSTC 2

30

Table 4.5: Example dialogue from Frames with dialogue acts

Actor Utterance Dialogue Acts

User Hi im in the middle of travelling and i want to go to Porto! inform(intent=book),

inform(dst city=Porto),

greeting()

System Sure thing! What city will you be departing from? request(or city)

User i can leave from Minneapolis inform(or city=

Minneapolis)

System I you leave from Minneapolis on the 17th of August I can

book you 11 days in the four-star Golden Keep. The total

cost of this package is 2362.21USD. Would you like me to

book this package?

offer(),

suggest(action=book)

User Let’s book it! inform(intent=book),

switch frame()

System Done! Enjoy! inform(action=book)

User thank you! thankyou()

which has short utterances like “Good”, “That’ll do”, and “Okay”. The user act

select is mapped to ack of the Universal DA schema.

The system act offer intent is paired with utterances where the system asks if

the user would like to make a reservation, booking, or similar. This is similar to

suggest(action=book) in Frames and is mapped to sys-expl-confirm.

An example dialogue from SGD is presented in Table 4.6 and the complete

alignment of SGD to Universal DA schema can be found in Table 4.7 along with the

alignment of the Frames dataset.

E2E has a different idea of what a request act is compared to the other datasets.

This becomes obvious when looking at the distribution of acts on the first user turn

in each dialogue. In E2E 91.9% of the first user turns are labeled with request and

only 3.3% with inform. In Frames it is the other way around with 1.1% request and

93.7% inform. In other datasets like M2M and SGD none of the first user turns are

labeled with request. After making the corrections in the following paragraph the

distribution of acts on the first user turn is flipped around to a more typical 88.4%

inform and 6.7% request.

31

Table 4.6: Example dialogue from SGD with dialogue acts

Actor Utterance Dialogue Acts

User I am searching to watch a movie like Fantasy kind

and i need something with Colin Farrell in that movie

inform(genre=Fantasy),

inform(actors=Colin Farrell),

inform intent(FindMovies)

System I have selected 1 movie of your choice and what is

your opinion on Dumbo?

offer(movie name=Dumbo),

inform count(count=1)

User Dumbo is fine as i need to rent the movie and have

to watch it with no subtitles

inform(subtitle=None),

inform intent(RentMovie),

select(movie name=Dumbo)

System Please give confirmation details: The movie you like

to watch is Dumbo with no subtitles

confirm(movie name=Dumbo),

confirm(subtitle=None)

User That is cool. Can i know the rental cost of that

movie? who is the director of that movie?

affirm(), request(director),

request(price)

System Movie rented and you have to watch it within 3

days.The renting cost of the movie is $4 and the

movie is directed by Tim Burton

inform(price=$4),

inform(director=Tim Burton),

notify success()

User Can you also tell me the weather o March 14th in

Montara?

inform(date=March 14th),

inform(city=Montara),

inform intent(GetWeather)

System The average day temperature is running at 77 de-

grees Fahrenheit and the chances of rain is 21 per-

cent

offer(temperature=77),

offer(precipitation=21)

User Fine and thanks for now select(), goodbye()

System Enjoy, be happy goodbye()

32

Table 4.7: Alignment of Frames and SGD with Universal DA Schema

Universal DA Schema Frames SGD

inform inform(x=y) inform(x=y), inform intent(y)

request request(x), request compare(x), request(x)

moreinfo(), suggest(x)

user-negate negate(x=y) negate(), negate intent()

sys-negate negate(x=y)

user-hi greeting()

sys-hi greeting()

reqalts request alts() request alts(), req more()

repeat reject()

affirm affirm() affirm(), affirm intent()

sys-expl-confirm confirm(x=y), hearmore(), confirm(x=y), offer intent()

suggest(action=book)

user-confirm confirm(x=y)

sys-notify-failure canthelp(), no result() notify failure()

sys-notify-success inform(action=book) notify success()

sys-offer offer(x=y), suggest(x=y) offer(x=y)

thank you thankyou() thank you()

bye goodbye() goodbye()

ack select()

33

Upon inspection of the dialogues we find that the request act fits three dif-

ferent acts in the universal schema depending on accompanying slot-name and

speaker. (i) User utterances labeled with request(moviename), request(ticket), re-

quest(reservation), request(restaurantname), or request(taxi) actually informs about

the task the user wants performed (e.g., “I need movie tickets”) or that the user

wants an option booked or similar (e.g., “Great. make a reservation there”). In

this case request is mapped to inform. (ii) System utterances labeled with re-

quest(ticket), request(reservation), or request(taxi) reads just like utterances labeled

with offer intent in the SGD dataset (e.g., “Hello! Would you like to make a restau-

rant reservation?”). This case is therefore mapped like offer intent to sys-expl-

confirm. (iii) In the case where an utterance is not covered by (i) nor (ii), the

utterance fits the request act of the universal schema where the value of a slot is

requested.

An example dialogue from E2E is presented in Table 4.8 and the complete align-

ment of E2E to Universal DA schema can be found in Table 4.9 with heuristics to

fix the request act.

MultiWOZ 2.3 has the same annotation schema as MultiWOZ 2.0, which is why

this alignment is based on the one of MultiWOZ 2.0 by Paul et al., but with a few

additions.

When the first turn of a user in a dialogue is labeled with general-greet, it contains

a greeting followed by information about what task they want to perform. Most of

the time these utterances are only labeled with general-greet. These utterances are

mapped to user-hi and inform.

An example dialogue from MultiWOZ 2.3 is presented in Table 4.10 and the

complete alignment of MultiWOZ 2.3 to Universal DA schema can be found in

Table 4.11.

DSTC 3 has a near identical annotation schema to that of DSTC 2. The dataset

has a system act canthelp.missing slot value which we map to sys-notify-failure. The

acts impl-conf and confirm-domain from DSTC 2 are not present in DSTC 3.

34

Table 4.8: Example dialogue from E2E with dialogue acts

Actor Utterance Dialogue Acts

User Hi! are there any good foreign movies showing around

Houma, Louisiana this week?

greeting(),

request(moviename;

genre=foreign;

city=Houma)

System What date would you like me to look for a reservation? request(date)

User How about the 9th? inform(date=9th)

System Unfortunately, there are no foreign movies playing at

this time. Do you have another genre that you’re inter-

ested in?

inform(result={}),
request(genre)

User Is there something that’s maybe a good intelligent com-

edy?

request(moviename;

genre=comedy)

System Whiskey Tango Foxtrot is the only Adult comedy I see

playing in your area. Would you like to try that?

inform(moviename=

Whiskey Tango Foxtrot),

inform(genre=comedy),

confirm question()

User I guess I’ll have to. Any night showing will be fine. confirm answer(),

inform(date=any night)

System Whisky Tango Foxtrot is playing at the AMC HOUMA

PALACE 10 5737 W Park Ave., Houma, LA 70364 at

11:40am 2:15pm 5:00pm 7:40pm. Does one of those

times work? How many tickets would you need?

inform(city=Houma, LA),

inform(starttime=11:40am#

2:15pm#5:00pm#7:40pm),

multiple choice(starttime),

request(numberofpeople)

User 740 for 4 would be great inform(numberofpeople=4),

inform(starttime=7:40pm)

System I have purchased your tickets for you. Thank you. inform(taskcomplete),

thanks()

User thank you. thanks()

System Thanks! thanks()

35

Table 4.9: Alignment of E2E with Universal DA Schema including heuristics

Universal DA Schema E2E Heuristic

inform inform(x=y)

inform request(x) user utterances where x is

’moviename’, ’ticket’, ’reservation’,

’restaurantname’, or ’taxi’

request request(x) user utterances where x is not

’moviename’, ’ticket’, ’reservation’,

’restaurantname’, or ’taxi’

AND system utterances where x is not

’ticket’, ’reservation’, or ’taxi’

user-hi greeting(),

request(greeting=y)

sys-hi greeting(),

inform(greeting=y),

request(greeting=y)

affirm confirm answer()

affirm + inform confirm answer(x=y)

sys-expl-confirm confirm question(x=y)

sys-expl-confirm request(x) system utterances where x is

’ticket’, ’reservation’, or ’taxi’

user-confirm confirm question(x=y)

sys-notify-failure inform(result={})

sys-notify-success inform(taskcomplete)

sys-offer multiple choice(x=y1,y2)

thank you thanks()

deny deny()

36

Table 4.10: Example dialogue from MultiWOZ 2.3 with dialogue acts

Actor Utterance Dialogue Acts

User I ’m looking for a restaurant that offers British food in a

moderate price range , can you help me with that ?

Restaurant-Inform

System Yes I have many in the center of town and on in the west .

Do you have a preference for area ?

Restaurant-Request,

Restaurant-Inform

User Let ’s try the west . Restaurant-Inform

System I have one in the west called Saint Johns Chop House .

Would you like a reservation here ?

Restaurant-Inform,

Booking-

Inform(none=none)

User For now , can I just get the phone number and postcode ? Restaurant-Request

System Their number is 01223353110 . Postcode is cb30ad . Restaurant-Inform

User Thanks , that ’s everything I need . general-thank

System Thank you for choosing Cambridge TownInfo Centre . general-bye

37

Table 4.11: Alignment of MultiWOZ 2.3 with Universal DA Schema including heuristics. The

asterisk represents any sequence of characters.

Universal DA Schema MultiWOZ 2.3 Heuristic

inform Restaurant-Inform, Hotel-Inform, doesn’t end in

Attraction-Inform, Taxi-Inform, Booking-Inform(none=none)

Train-Inform, Police-Inform,

Hospital-Inform

request *-Request

user-hi + inform general-greet turn = 1

reqalts general-reqmore

sys-expl-confirm Train-OfferBook, Booking-Inform

sys-notify-failure Booking-NoBook, *-NoOffer

sys-notify-success Booking-Book, Train-OfferBooked

sys-offer *-Select, *-Recommend

sys-offer Restaurant-Inform, Hotel-Inform, ends in

Attraction-Inform, Taxi-Inform, Booking-Inform(none=none)

Train-Inform

thank you general-thank

thank you general-greet, general-bye, contains “*thank*”

general-welcome

bye general-bye

bye general-greet, general-welcome, contains “*bye”

general-thank

38

4.2 BERT-based Classifier

The aligned TODA corpus is used to further pre-train a simple BERT-based classifier

in a supervised fashion. We start with this simple architecture to investigate if the

further pre-trained model fine-tuned on a target dataset performs better than a

model trained on just the target dataset. We name the further pre-trained model

TODA-BERT, short for task-oriented dialogue act BERT, and release the model

and code1.

Figure 4.2 illustrates the further pre-training/fine-tuning procedure which is de-

scribed in the following paragraphs.

DSTC M2M

Training sets

Frames SGD E2E

Training set

Test set

MWOZ 2.3

Further pre-trained model

Further Pre-training
of bert-base-uncased

Fine-tuned model

Fine-tuning
4 epochs

Evaluation

One left out dataset

5 of 6 task-oriented datasets

10 epochs

left out dataset

Figure 4.2: Pre-training/fine-tuning procedure.

1https://github.com/hsyver/TODA-BERT

39

https://github.com/hsyver/TODA-BERT

Further Pre-training is done with the aligned TODA corpus. In the experiments

where one of the six datasets is used for evaluation, the dataset is left out from pre-

training. A BERTBASE model is further pre-trained on user turns of the TODA

corpus in a supervised manner with the 13 classes of the universal DA schema

present in user turns.

The architecture of the TODA-BERT model consists of the pooler output from

the BERTBASE model, followed by a dropout layer (p=0.3) and feed-forward layer

with 13 outputs, one for each possible dialogue act. The dropout probability is set

to 0.3 based on results from a preliminary project.

Fine-tuning is carried out with four different architectures: (a) BERT which is

the BERTBASE model, followed by a dropout layer (p=0.3) and a feed-forward layer

with one output per dialogue act, (b) TODA-BERT-replace which is the pre-

trained TODA-BERT model where the final feed-forward layer is replaced to fit the

number of dialogue acts, (c) TODA-BERT-add which is the pre-trained TODA-

BERT model with an added feed-forward layer with 13 inputs and one output per

dialogue act, and (d) TODA-BERT-filter which is the pre-trained TODA-BERT

model, where the outputs are post-filtered to only include the dialogue acts present

in the dataset being fine-tuned on. The fourth architecture is only used when fine-

tuning with the universal schema since further pre-training is done with this schema.

The architectures are illustrated in Figure 4.3.

We experiment with both fine-tuning on the universal DA schema of the aligned

dataset and fine-tuning on the original schema of the dataset. Experiments where

only 20% of the training data is used for fine-tuning are also conducted.

In addition to fine-tuning on the individual datasets of the TODA corpus, we

experiment with fine-tuning on the SwDA and MapTask datasets to test the further

pre-trained model’s ability to generalize to unseen datasets with different dialogue

act schemas.

4.2.1 Experimental Setup

In both the BERT and TODA-BERT architecture, the bert-base-uncased pre-trained

model from HuggingFace’s transformer library [38] is used.

All models are trained using a binary cross entropy loss function. A sigmoid

40

bert-base-uncased dropout
p = 0.3

utterance

σFFf

yf

(a) BERT, fine-tuning without using a further pre-trained

model.

bert-base-uncased dropout
p = 0.3

utterance

Further pre-trained model

σFFf

yf

(b) TODA-BERT-replace, fine-tuning on top of TODA-

BERT where the feed-forward layer is replaced.

bert-base-uncased dropout
p = 0.3

utterance

Further pre-trained model

σFFp

yf

FFf

(c) TODA-BERT-add, fine-tuning on top of TODA-BERT

where a feed-forward layer is added.

bert-base-uncased dropout
p = 0.3

utterance

Further pre-trained model

σFFp

yf
yp

(d) TODA-BERT-filter, fine-tuning on top of TODA-BERT

where outputs are post-filtered.

Figure 4.3: BERT-based fine-tuning architectures. Subscripts p and f denote the number of

dialogue acts present when pre-training and fine-tuning, respectively.

41

function is applied to the outputs and a dialogue act is detected if the corresponding

value is greater than or equal to 0.5.

Maximum sequence length is set to 80 as the longest utterances in the TODA

corpus are about 80 tokens long. Shorter utterances are zero-padded to a length of

80 while the few longer utterances are truncated. Training is done with the AdamW

optimizer [23] with a weight decay of 0.01. Hyperparameters are picked from the

recommended values by Devlin et al. [8] for fine-tuning BERT: learning rate is set

to 3e-5, batch size to 16 and number of epochs (passes of the entire training data)

to 4. The learning rate is decayed to zero using a cosine annealing schedule without

restarts. Further pre-training is stopped after 10 epochs based on the performance

on a held out validation set.

Training, validation and dev splits are used for training, and the original test

splits are used for evaluation when they are present. For the E2E dataset, 20% of

the dialogues are chosen at random to create a test split. For the Frames dataset,

we follow Abro et al. [1] and create a test split with the dialogues of participants

with ids “U21E41CQP” and “U231PNNA3”. The test set of DSTC 2 is used for

the combined dataset of DSTC 2 and 3.

When fine-tuning on MultiWOZ 2.3 with its original labels, we follow Wu et al.

[39] and remove the domain information from the dialogue acts such that for example

Hotel-Request becomes Request. This reduces the number of user acts from 32 to

12.

Experiments are conducted on one NVIDIA P100 or V100 GPU, depending on

availability, provided by the NTNU IDUN/EPIC computing cluster [34].

4.3 U-DAT (Including Context Information)

The pre-training/fine-tuning procedure described in Sect. 4.2 is applied on the U-

DAT architecture proposed by Paul et al. [27] that includes context information to

detect dialogue acts in multi-turn dialogue. The U-DAT model pre-trained with the

TODA corpus is named TODA-UDAT.

The experiments performed with the BERT-based classifier are also carried out

with this architecture, e.g., fine-tuning on the universal schema and original schema

with 100% and 20% of the training data.

42

The model architecture proposed by Paul et al. consists of four encoders: (1) an

utterance encoder, (2) a dialogue encoder, (3) a past DA encoder, and (4) an agent

encoder. The architecture is illustrated in Figure 4.4.

The utterance encoder is a bidirectional LSTM taking an utterance ui as input

and produces zi which is a concatenation of the first hidden state of the backward

LSTM, and the last hidden state of the forward LSTM:

zi =
←−−−−
LSTM(ui)⊕

−−−−→
LSTM(ui)

The dialogue encoder is a unidirectional LSTM that takes the encoded previous

utterances in the dialogue (z1, ..., zi−1) as input and produces ei:

ei = LSTM(z1, ..., zi−1)

The past DA encoder is a concatenation of the many-hot encoded vectors of past

DAs (d1, ..., di−1) resulting in pi:

pi = d1 ⊕ ...⊕ di−1

The agent encoder is simply a number gi indicating whether the agent of the current

utterance is a user (gi = 0) or the system (gi = 1). The concatenation of the encoded

dialogue, past DAs, and agent produces the encoded context, Ci:

Ci = ei ⊕ gi ⊕ pi

Finally, the encoded current utterance and encoded context are concatenated and

passed through a feed forward layer, FFj, giving yj:

yj = sigmoid(FFj(zi ⊕ Ci))

Adjustments are made to the model architecture to facilitate the pre-training/fine-

tuning procedure when fine-tuning TODA-UDAT on the original schema of a dataset.

A feed forward layer is appended to the architecture with one output per dialogue

act present in the target dataset and a feed forward layer with 20 outputs (one

for each DA in the universal schema) is prepended to the architecture where past

DA vectors (d1, ..., di−1) are passed through before concatenation. When fine-tuning

TODA-UDAT on a dataset with the universal schema, the output is post-filtered

43

Current utterance ui

Bi-directional LSTM

zi

Feed-forward layer (FFj)

yj

σ

...

u2
u1

ui-1

d1
d2

di-1

...

zi-1

z2
z1

LSTM

eipi gi

CiEncoded context

...

word1 word2 wordn

fastText word embeddings

...

Past DAs

Figure 4.4: U-DAT model architecture [27].

44

such that only classes present in the dataset are considered when evaluating. Ta-

ble 4.12 gives an overview of all the models presented in this chapter.

Table 4.12: Overview of model variants.

Model Pre-training Architecture Includes Context

BERT Self-supervised Transformer-based

TODA-BERT-replace Supervised Transformer-based

TODA-BERT-add Supervised Transformer-based

TODA-BERT-filter Supervised Transformer-based

U-DAT None LSTM-based X

TODA-UDAT Supervised LSTM-based X

4.3.1 Experimental Setup

We follow the experimental setup of Paul et al. and set the hidden layer size of the

bidirectional LSTM to 128 and the hidden layer size of the unidirectional LSTM

to 256. Word embeddings are intialized with pre-trained fastText [25] embeddings

which are fine-tuned during training. Utterances are tokenized with the basic english

tokenizer from PyTorch2 and a lookup table for embeddings is initialized with the

unique tokens of the training data. During pre-training of TODA-UDAT and fine-

tuning without TODA-UDAT, the embeddings are not fine-tuned for the first 5

epochs to avoid possible forgetting of the fastText embeddings as the model begins

to learn.

Memory size, i.e., number of previous utterances to include, is set to 5 to limit

training time. If an utterance has a dialogue history greater than 5, the utterances

most distant in time are removed. Batch size is set to 16 and training is performed

for 10 epochs. Following Paul et al., ADAM is used for optimization with default

parameters and a learning rate of 0.001.

Since we are only concerned with classifying user utterances, gi is always set to

0. In the past DA representation, observable system DAs and previously detected

user DAs are used.

2https://pytorch.org/text/ modules/torchtext/data/utils.html

45

https://pytorch.org/text/_modules/torchtext/data/utils.html

Chapter 5

Results & Discussion

5.1 BERT-based Classifier

This section presents and discusses the results of the experiments described in

Sect. 4.2.

The results in this section are used to answer our first main research question,

RQ1: How does the performance of a further pre-trained BERT model compare to

a BERT model that’s only fine-tuned?

5.1.1 Universal Schema vs. Original Schema

The results in this section are the basis for answering the research question RQ1.1:

How does further pre-training affect performance when training and evaluating on

the universal and original dialogue act schema?

Results of experiments with the universal and original schema can be found in

Table 5.1. When comparing the three different models trained on a further pre-

trained model to the model that’s only fine-tuned, the highest macro-F1 scores

are often found in the pre-trained models. This trend is most prominent when fine-

tuning with the original schema, where increases from 1.71 to 6.78 in macro-F1 score

are found in four out of six datasets. When fine-tuning with the universal schema,

a notable increase in macro-F1 score is found in two out of six datasets. When

these increases are observed, the accompanying micro-F1 score usually remains at

the level of the model that’s only fine-tuned, but can have an decrease of up to 1.45.

46

Table 5.1: Micro-F1 and macro-F1 scores of the BERT-based classifier using 100% of the training

data. Scores are averages of five runs.

Dataset
BERT (a)

TODA-BERT-
replace (b)

TODA-BERT-
add (c)

TODA-BERT-
filter (d)

micro macro micro macro micro macro micro macro

U
n

iv
e
rs

a
l

sc
h

e
m

a

DSTC 98.13 81.33 98.16 83.14 98.25 87.96 98.19 84.63

M2M 96.09 93.62 96.06 93.31 95.83 93.12 95.61 93.05

Frames 85.71 62.94 84.71 62.02 84.76 61.63 84.26 65.50

SGD 94.06 92.42 94.15 92.40 94.15 92.45 94.17 92.44

E2E 94.31 75.71 94.12 74.74 94.10 74.92 94.01 74.55

MWOZ 98.00 92.34 97.93 89.87 97.96 90.45 97.96 90.45

Average 94.38 83.06 94.19 82.58 94.18 83.42 94.03 83.44

O
ri

g
in

a
l

sc
h

e
m

a

DSTC 98.10 74.35 98.10 78.01 98.15 81.13

M2M 94.29 82.46 94.01 83.84 93.81 85.80

Frames 79.35 52.58 78.72 49.04 78.09 51.25

SGD 92.81 90.20 92.77 90.15 92.87 90.31

E2E 91.03 47.27 90.87 48.98 90.89 48.44

MWOZ 97.85 38.40 97.76 40.10 97.78 42.17

Average 92.24 64.21 92.04 65.02 91.93 66.52

47

Analysis

This increase in macro-F1 score can be explained by improved performance on classes

with few positive samples in the test set. A few correctly classified samples from

a small class can increase the macro-F1 score without having a notable impact on

the micro-F1 score since the macro score averages the F1 score of all the classes,

while the micro-F1 score counts classifications globally. Improved performance on

smaller classes can be observed when comparing the multi-label confusion matrices of

BERT (Figure 5.1a) and TODA-BERT-add (Figure 5.1b) on M2M with the original

schema. TODA-BERT-add is better at detecting the smallest classes OTHER and

REQUEST ALTS with higher numbers in the fourth quadrant, representing true

positives. Similar observations are made in the confusion matrices of the other

datasets where a small number of correctly classified samples from small classes

increases the macro-F1 score.

(a) BERT

(b) TODA-BERT-add

Figure 5.1: Confusion matrix and F1 score for each class after evaluation on M2M with the

original schema. 100% of the training data was used for fine-tuning.

48

A likely explanation for the improvement on smaller classes is that they are

learned during further pre-training and transfer to the model fine-tuned on top.

A model that’s only fine-tuned may have very few training samples for a dialogue

act like REQUEST ALTS, while a further pre-trained model takes advantage of the

entire TODA corpus which has more samples in total with similar dialogue acts that

have been unified.

A setup where the further pre-trained models fail at improving on the only

fine-tuned model, but rather perform worse, is when fine-tuning on the MWOZ

dataset with the universal schema. Comparing the confusion matrices of BERT

(Figure 5.2a) and TODA-BERT-filter (Figure 5.2b), it can be observed that the

decrease in macro-F1 score is mostly caused by a single false positive classification

of the user-hi class. Some additional false positive classifications of the inform class

can explain the slight decrease in micro-F1 score.

(a) BERT

(b) TODA-BERT-filter

Figure 5.2: Confusion matrix and F1 score for each class after evaluation on MWOZ with the

universal schema. 100% of the training data was used for fine-tuning.

Which classes that are confused with each other can’t be observed in the afore-

mentioned figures since this is a multi-label classification problem where there is no

way of telling which detected class is meant for which target class when there are

multiple target classes for an utterance. However, in the test sets of this experiment,

utterances with more than one ground truth dialogue act make up only 18.1% of

49

the samples on average. By leaving these samples out, a single confusion matrix

can be made for the remaining utterances with only one ground truth dialogue act.

Figure 5.3 shows this confusion matrix for the two models discussed in the previous

paragraph. These confusion matrices show that there is some confusion between

the classes inform and request, more so in TODA-BERT-filter than BERT. Taking

a closer look at these samples, we find that the models almost always detect both

inform and request when only one of them is correct. One such example is the

utterance “Can you tell me what time the train leaves?”, where the ground truth

label is request, but the model detects inform as well.

This increased confusion between inform and request when using a further pre-

trained model can also be observed when fine-tuning on other datasets. In Figure 5.4

it can be observed in the E2E dataset. The elevated confusion when fine-tuning on

top of a pre-trained model could be caused by inconsistencies among the inform

and request classes in the TODA corpus. An example of a possible source for this

is the E2E dataset which had the classes completely mixed up before an imperfect

unification of dialogue act schemas was done.

(a) BERT (b) TODA-BERT-filter

Figure 5.3: Confusion matrix and F1 score for single-class samples after evaluation on MWOZ

with the universal schema. 100% of the training data was used for fine-tuning.

50

(a) BERT (b) TODA-BERT-filter

Figure 5.4: Confusion matrix and F1 score for single-class samples after evaluation on E2E with

the universal schema. 100% of the training data was used for fine-tuning.

Summary

The expected outcome of the experiment was that bigger improvements would be

observed using the universal schema than the original schema, since further pre-

training is done with the universal schema. Transfer learning from TODA-BERT

was thought easier with the universal schema as it only had to be fit to the subset

of classes present in the fine-tuning dataset. The task of fine-tuning with the orig-

inal schema was expected to be more difficult since a mapping from the universal

schema back to the original schema had to be learned as well. Surprisingly, bigger

improvements are found using the original schema. Different observations are made

when only fine-tuning with 20% of the training data, however, which is presented

and discussed in the following section.

5.1.2 Limited Training Data

The results in this section are the basis for answering the research question RQ1.2:

How does further pre-training affect performance when there is limited training data

available?

51

Table 5.2: Micro-F1 and macro-F1 scores of the BERT-based classifier using 20% of the training

data. Scores are averages of five runs.

Dataset
BERT (a)

TODA-BERT-
replace (b)

TODA-BERT-
add (c)

TODA-BERT-
filter (d)

micro macro micro macro micro macro micro macro

U
n

iv
e
rs

a
l

sc
h

e
m

a

DSTC 97.44 60.77 97.65 61.10 96.79 66.16 97.55 73.09

M2M 95.08 81.58 94.17 79.28 93.87 83.05 93.62 89.41

Frames 81.35 39.09 81.36 39.16 79.68 36.86 82.37 61.00

SGD 93.59 91.69 93.50 91.46 93.47 91.44 93.42 91.30

E2E 93.60 67.99 93.51 67.96 93.29 68.10 93.27 72.39

MWOZ 97.42 90.46 97.44 91.11 97.44 90.92 97.43 88.80

Average 93.08 71.93 92.94 71.68 92.42 72.76 92.94 79.33

O
ri

g
in

a
l

sc
h

e
m

a

DSTC 97.57 55.07 97.64 56.09 95.41 57.55

M2M 91.45 72.42 90.67 69.75 88.90 70.51

Frames 72.43 25.03 72.93 25.55 68.13 24.76

SGD 92.16 89.12 92.01 89.01 92.11 89.12

E2E 90.07 43.89 89.94 43.65 89.45 43.65

MWOZ 97.32 36.39 97.27 37.43 97.18 35.24

Average 90.17 53.65 90.08 53.58 88.53 53.47

Results of the experiments with 20% of the training data available can be found

in Table 5.2. When comparing the three different further pre-trained models to the

model that’s only fine-tuned, increased macro-F1 scores are found in some of the

setups. Unlike in the experiment from Sect. 5.1.1, which uses 100% of the available

training data for fine-tuning, elevated macro-F1 scores are found when fine-tuning

with the universal schema in this experiment. Increases between 4.4 and 21.9 in

macro-F1 score are found in four out of six datasets. Like in Sect. 5.1.1, micro-F1

score tends to decrease a little or stay about the same as the micro-F1 score of the

model that’s only fine-tuned.

Analysis

Looking at the multi-label confusion matrices of BERT (Figure 5.5a) and TODA-

BERT-filter (Figure 5.5b), when fine-tuning on DSTC with the universal schema,

52

improved performance on the smaller classes can be observed like in the previous

experiment. Specifically, improvements are made in the repeat, user-hi, and reqalts

classes. Performance is good on the classes with many positive samples in both

architectures.

The two datasets that don’t see an improvement in macro-F1 score with a further

pre-trained model are SGD and MWOZ. These two datasets are by far the largest

of the six (see Table 3.2) and have a larger number of positive samples in their

smallest classes compared to the other datasets. Even when limiting training data

to 20%, these datasets remain fairly large. SGD and MWOZ also don’t include

some of the typical small classes like user-confirm or repeat. These points are likely

the cause of good performance overall on these two datasets when only fine-tuning.

The additional small-class samples from the TODA corpus doesn’t help improve

performance when using a further pre-trained model.

Summary

The expected results of this experiment was that bigger improvements would be

seen with the further pre-trained models compared to the experiment which used

100% of the training data. The reasoning behind this is that the TODA corpus and

TODA-BERT will help more when BERT struggles with limited training data. This

is indeed what was observed with much larger improvements in macro-F1 score,

although improvements were found with the universal schema in this experiment

and mostly with the original schema in the experiment with 100% training data. A

possible explanation for the lack of improvement with the original schema in this

experiment could be that the mapping from the universal schema to the original

schema wasn’t sufficiently learned when fine-tuning TODA-BERT because of limited

fine-tuning data. However, these results are more in line with the expectation from

the previous experiment where it was expected that improvements with the universal

schema would be greater than with the original schema.

53

(a) BERT

(b) TODA-BERT-filter

Figure 5.5: Confusion matrix and F1 score for each class after evaluation on DSTC with the

universal schema. 20% of the training data was used for fine-tuning.

54

5.1.3 Adapting Further Pre-trained Model to Target Dataset

The results in this section are the basis for answering the research question RQ1.3:

How do different architectures for fine-tuning a further pre-trained model to datasets

with varying annotation schemas affect performance?

To answer this question, one has to look at the results from the two previous

experiments in Table 5.1 and Table 5.2, specifically in the three rightmost columns of

the tables where the different architectures for fine-tuning TODA-BERT are found.

When fine-tuning with 100% of the training data, TODA-BERT-add consistently

outperforms TODA-BERT-replace when looking at macro-F1 score, while micro-F1

is about the same for the two architectures. The improvement with an added layer

against replacing the last layer is not as consistent when fine-tuning with 20% of the

training data, but it performs better more often than not with respect to macro-F1

score. In the cases where the macro-F1 score is worse for TODA-BERT-add, the

micro-F1 score is also usually lagging behind TODA-BERT-replace.

Analysis

The datasets where TODA-BERT-add performs notably worse is on Frames with the

universal schema and on Frames and MWOZ with the original schema. Although,

on these datasets, some of the five runs that are averaged in Table 5.2 perform

as well as TODA-BERT-replace and sometimes better. This can be observed in

Table 5.3 which shows the macro-F1 scores from fine-tuning with 20% of training

data along with standard deviation of the five runs. TODA-BERT-add generally

has a lot higher standard deviation and is less stable than TODA-BERT-replace.

TODA-BERT-add has much higher scores in some of the runs, but also has runs

with worse performance, pulling the average down.

Summary

Overall it looks like TODA-BERT-add performs better than TODA-BERT-replace.

A possible explanation for this could be that retaining as much as possible of the pre-

trained TODA-BERT model is beneficial, leaving the last added layer to learn the

mapping from the pre-training classes to the classes in the target dataset. Replac-

ing the last classification layer of TODA-BERT likely removes pre-trained weights

55

Table 5.3: Macro-F1 scores with standard deviation of five runs of the BERT-based classifier

using 20% of the training data.

Dataset BERT (a)
TODA-BERT-

replace (b)
TODA-BERT-

add (c)
TODA-BERT-

filter (d)

macro (SD) macro (SD) macro (SD) macro (SD)

U
n

iv
e
rs

a
l

sc
h

e
m

a

DSTC 60.77 (2.27) 61.10 (5.09) 66.16 (9.06) 73.09 (1.54)

M2M 81.58 (0.97) 79.28 (2.70) 83.05 (3.73) 89.41 (0.76)

Frames 39.09 (1.76) 39.16 (2.62) 36.86 (5.80) 61.00 (1.44)

SGD 91.69 (0.14) 91.46 (0.07) 91.44 (0.12) 91.30 (0.10)

E2E 67.99 (0.37) 67.96 (1.27) 68.10 (0.86) 72.39 (0.71)

MWOZ 90.46 (1.26) 91.11 (1.26) 90.92 (0.81) 88.80 (1.83)

Average 71.93 (1.13) 71.68 (2.17) 72.76 (3.40) 79.33 (1.06)

O
ri

g
in

a
l

sc
h

e
m

a

DSTC 55.07 (0.59) 56.09 (2.90) 57.55 (8.31)

M2M 72.42 (1.64) 69.75 (3.37) 70.51 (1.67)

Frames 25.03 (1.81) 25.55 (1.34) 24.76 (3.67)

SGD 89.12 (0.18) 89.01 (0.21) 89.12 (0.16)

E2E 43.89 (0.09) 43.65 (0.31) 43.65 (0.51)

MWOZ 36.39 (0.76) 37.43 (0.65) 35.24 (2.43)

Average 53.65 (0.85) 53.58 (1.46) 53.47 (2.79)

56

important for classification.

Post-filtering of outputs, which is only possible with the universal schema, solves

the instability issue of TODA-BERT-add and performs a lot better than both archi-

tectures overall when fine-tuning with 20% of the training data. It looks like adding

a layer is unnecessary when fine-tuning with the universal schema. Simply filtering

the output to only include the classes in the target dataset leaves less room to in-

troduce errors in an additional layer. TODA-BERT-filter doesn’t improve as much

when fine-tuning with 100% of the training data. In this case the approach performs

similarly to TODA-BERT-add, except for on the Frames and DSTC datasets, where

the difference in macro-F1 score is 3.87 and -3.33, respectively.

5.1.4 Different Dialogue Act Schemas

The results in this section are the basis for answering the research question RQ1.4:

How does further pre-training affect performance on datasets with different dialogue

act schemas?

Results of experiments on the SwDA and MapTask datasets can be found in

Table 5.4, which shows that performance is worse on both datasets when fine-tuning

TODA-BERT. Both TODA-BERT-replace and TODA-BERT-add produce lower

accuracy scores. TODA-BERT-filter was not used here since the datasets are not

unified to the universal schema.

A possible explanation for the decreased performance of fine-tuned TODA-BERT

models on these datasets could be that the utterances are too different from the

TODA corpus. The general conversational language of SwDA and MapTask, exem-

plified in Sect. 3.3.2, might have more in common with the pre-training corpus of

the BERT base model: BooksCorpus and English Wikipedia.

Another reason for the decreased performance could be that the dialogue act

schemas of SwDA and MapTask are too different from the universal schema. Al-

though they have some semantically similar acts like Acknowledge and Thanking,

task-specific features learned from the TODA corpus are likely not very transferable

to SwDA and MapTask.

57

Table 5.4: Accuracy scores (%) of the BERT-based classifier trained on the SwDA and MapTask

datasets. Scores are averages of five runs.

Dataset BERT (a)
TODA-BERT-

replace (b)
TODA-BERT-

add (c)

SwDA 72.10 71.92 71.95

MapTask 62.73 62.42 62.05

Average 67.42 67.17 67.00

5.2 U-DAT (Including Context Information)

This section presents and discusses the results of the experiments described in

Sect. 4.3.

The results in this section are used to answer our second main research question,

RQ2: How does the performance of a pre-trained dialogue context inclusive model

compare to a model that’s only fine-tuned?

5.2.1 Universal Schema vs. Original Schema

The results in this section are the basis for answering the research question RQ2.1:

How does further pre-training affect performance when training and evaluating on

the universal and original dialogue act schema?

Results of experiments with the universal and original schema can be found in

Table 5.5, where improvements in both micro and macro-F1 score can be observed

across all the datasets when fine-tuning TODA-UDAT. When fine-tuning with the

universal schema, improvements in micro-F1 scores are between 2.34 and 5.44 in

four out of the six datasets. Macro-F1 scores improve between 6.05 and 14.67 in

five of the datasets. When fine-tuning with the original schema, improvements in

micro-F1 scores range from 1.13 to 4.03 in four out of six datasets, while macro-F1

scores improve between 1.33 and 4.96 in all datasets. In the cases that TODA-UDAT

doesn’t improve upon U-DAT, the performance is about the same.

Analysis

A result that stands out is the improved scores for the SGD dataset with the origi-

nal schema. With this dataset pre-trained models failed to make any improvements

58

Table 5.5: Micro-F1 and macro-F1 scores of the U-DAT-based classifier using 100% of the training

data. Scores are averages of five runs.

Dataset
U-DAT TODA-UDAT

micro macro micro macro

U
n

iv
e
rs

a
l

sc
h

e
m

a

DSTC 97.05 64.77 97.09 70.82

M2M 91.74 81.60 95.08 90.57

Frames 71.53 36.77 76.51 51.44

SGD 94.69 92.12 94.63 91.84

E2E 88.08 64.73 93.52 76.32

MWOZ 92.47 75.69 94.81 82.45

Average 89.26 69.28 91.94 77.24

O
ri

g
in

a
l

sc
h

e
m

a

DSTC 97.15 60.93 97.05 62.26

M2M 89.47 74.02 93.50 77.43

Frames 66.86 27.99 70.22 32.95

SGD 93.22 91.60 94.99 94.76

E2E 88.49 43.29 88.62 44.94

MWOZ 93.08 32.00 94.21 34.14

Average 88.05 54.97 89.77 57.75

59

with the BERT-based classifier. However, this context inclusive architecture im-

proves both micro and macro-F1 scores notably when comparing the pre-trained

TODA-UDAT to the non pre-trained U-DAT, outperforming the BERT-based clas-

sifier. This architecture is usually not competitive with the BERT-based classifier,

producing lower scores in most datasets. A possible explanation for the improve-

ment could be that the model looks at previous DAs in the dialogue history to better

classify the current utterance. Since the SGD dataset is generated from dialogue

outlines made up of dialogue acts, patterns of preceding DAs could be easy to learn

and helpful for classification. An example is that the NEGATE INTENT user act

is always preceded by the OFFER INTENT act. In a run of TODA-BERT-filter

the F1-score of the NEGATE INTENT class is about 86, while TODA-UDAT gets

an F1-score of about 97 for this class, indicating that this context inclusive model

manages to learn the relationship between the two classes. That TODA-UDAT im-

proves upon U-DAT with SGD indicates that relationships between classes from the

TODA corpus are successfully learned and applied to the target dataset.

As opposed to the BERT-based classifier, consistent improvements are made in

micro-F1 score as well. This improvement could be attributed to the models ability

to learn context.

Summary

Like in the corresponding experiment with the BERT-based classifier, results were

expected to show bigger improvements when fine-tuning with the universal schema

than the original schema. The same reasoning lies behind this expectation: that

transfer learning from the pre-trained model should be easier with the universal

schema, because this is the schema of the TODA corpus used for further pre-training.

Unlike with the BERT-based classifier, where only results from fine-tuning with 20%

training data supports this, performance is clearly better overall with the universal

schema when using 100% of the training data. Improvements are also found with

the original schema, although smaller. Experiments with 20% training data also

point this way, which the results of can be found in the following section.

60

Table 5.6: Micro-F1 and macro-F1 scores of the U-DAT-based classifier using 20% of the training

data. Scores are averages of five runs.

Dataset
U-DAT TODA-UDAT

micro macro micro macro

U
n

iv
e
rs

a
l

sc
h

e
m

a

DSTC 93.98 53.46 95.60 62.98

M2M 81.33 58.56 93.66 83.46

Frames 65.70 27.66 75.33 48.81

SGD 93.23 90.24 93.73 90.73

E2E 89.50 58.24 92.05 69.48

MWOZ 90.71 71.44 93.45 74.68

Average 85.74 59.93 90.64 71.69

O
ri

g
in

a
l

sc
h

e
m

a

DSTC 93.71 49.89 94.03 49.20

M2M 77.48 50.03 85.85 60.73

Frames 56.56 16.57 63.45 21.09

SGD 92.26 91.00 93.58 92.67

E2E 87.06 40.13 87.91 41.21

MWOZ 89.50 28.50 92.39 30.00

Average 82.76 46.02 86.20 49.15

5.2.2 Limited Training Data

The results in this section are the basis for answering the research question RQ2.2:

How does further pre-training affect performance when there is limited training data

available?

Results of the experiments with 20% of the training data available can be found in

Table 5.6, which also show improvements in micro and macro-F1 scores for TODA-

UDAT when compared to U-DAT. When fine-tuning with the universal schema,

improvements in micro-F1 score range between 2.55 and 12.33 in four out of six

datasets. Macro-F1 scores improve between 3.24 and 24.9 in five datasets. When

fine-tuning with the original schema, improvements in micro-F1 score are between

1.32 and 8.37 in four out of six datasets. Improvements in macro-F1 scores range

from 1.08 to 10.7 in five datasets. When TODA-UDAT doesn’t improve notably

better than U-DAT, it performs about the same or just slightly better.

61

(a) U-DAT (b) TODA-UDAT

Figure 5.6: Confusion matrix and F1 score for single-class samples after evaluation on M2M with

the universal schema. 20% of the training data was used for fine-tuning.

Analysis

To get a closer look at the results on M2M with the universal schema, one can

look at Figure 5.6 which shows confusion matrices with single-class samples such

that confusion between classes can be observed in a single matrix. TODA-UDAT

improves greatly on the small classes like reqalts and repeat. In U-DAT, some con-

fusion between the classes affirm and inform can be observed. For example, one

can see in Figure 5.6a that the model detects inform when the ground truth label

is affirm 111 times. Many of these 111 wrongly detected utterances are on the

form “Yes.”, “That’s correct.”, or similar. The reason U-DAT fails on these sim-

ple utterances could be that half of the affirm utterances in the M2M training set

are also labeled with inform. This can make it hard for the model to understand

which part of the utterance is related to affirm and which part is related to inform.

TODA-UDAT clears up most of this confusion, which can be seen in Figure 5.6b.

TODA-UDAT doesn’t wrongly classify the short simple affirm utterances as in-

form. Additional inform and affirm samples from the TODA corpus likely helps

the pre-trained TODA-UDAT model better distinguish the two classes from each

other.

62

Summary

As in the corresponding experiment with the BERT-based classifier, it was expected

that larger improvements would be seen with 20% training data than with 100%

training data, for the same reason. The results support this on both the universal

and original schema with greater improvements in both micro and macro-F1 score

compared to fine-tuning with 100% training data.

5.2.3 TODA-UDAT vs. TODA-BERT

Finally, results from TODA-UDAT and TODA-BERT are presented together for a

direct comparison in Table 5.7.

Average micro-F1 scores are about two points higher with TODA-BERT than

TODA-UDAT across all setups, while average macro-F1 scores range between 4.32

and 8.77 points higher.

Analysis

A likely explanation for TODA-BERTs superior performance over TODA-UDAT is

that TODA-BERT builds on BERT which is already pre-trained in a self-supervised

fashion for language understanding. On the other hand, TODA-UDAT is trained

from scratch. This gives TODA-BERT a head start that’s hard for TODA-UDAT

to compete with. This could also be an explanation for why TODA-UDAT improves

more on U-DAT than TODA-BERT does on BERT. Since BERT already is a very

strong baseline, it’s harder for TODA-BERT to improve than it is for TODA-UDAT.

It remains to be seen if a context inclusive variant of TODA-BERT would improve

performance more and if including context in supervised further pre-training is ben-

eficial in this case.

Summary

All in all, TODA-BERT-filter is the best performing architecture when using the

universal schema, while TODA-BERT-add performs best when using the original

schema of a dataset. This is why we recommend TODA-BERT-filter and TODA-

BERT-add for dialogue act classification depending on whether the label set follows

63

the universal schema or not. Either way, the further pre-trained TODA-BERT

model is used, just with small differences in the fine-tuning architecture.

Table 5.7: Micro-F1 and macro-F1 scores of TODA-BERT and TODA-UDAT with both 20% and

100% training data. TODA-BERT-filter is used for the universal schema, while TODA-BERT-add

is used for the original schema. Scores are averages of five runs.

20% Data 100% Data

Dataset
TODA-BERT TODA-UDAT TODA-BERT TODA-UDAT

micro macro micro macro micro macro micro macro

U
n

iv
e
rs

a
l

sc
h

e
m

a

DSTC 97.55 73.09 95.60 62.98 98.19 84.63 97.09 70.82

M2M 93.62 89.41 93.66 83.46 95.61 93.05 95.08 90.57

Frames 82.37 61.00 75.33 48.81 84.26 65.50 76.51 51.44

SGD 93.42 91.30 93.73 90.73 94.17 92.44 94.63 91.84

E2E 93.27 72.39 92.05 69.48 94.01 74.55 93.52 76.32

MWOZ 97.43 88.80 93.45 74.68 97.96 90.45 94.81 82.45

Average 92.94 79.33 90.64 71.69 94.03 83.44 91.94 77.24

O
ri

g
in

a
l

sc
h

e
m

a

DSTC 95.41 57.55 94.03 49.20 98.15 81.13 97.05 62.26

M2M 88.90 70.51 85.85 60.73 93.81 85.80 93.50 77.43

Frames 68.13 24.76 63.45 21.09 78.09 51.25 70.22 32.95

SGD 92.11 89.12 93.58 92.67 92.87 90.31 94.99 94.76

E2E 89.45 43.65 87.91 41.21 90.89 48.44 88.62 44.94

MWOZ 97.18 35.24 92.39 30.00 97.78 42.17 94.21 34.14

Average 88.53 53.47 86.20 49.15 91.93 66.52 89.77 57.75

64

Chapter 6

Conclusion

In this chapter, the thesis is concluded with the contribution of the thesis and further

work.

6.1 Contribution

In this thesis, we aligned several task-oriented dialogue datasets to a universal dia-

logue act schema to enable supervised pre-training.

Architectures for pre-training and fine-tuning have been proposed and imple-

mented. We made our further pre-trained BERT-based model, TODA-BERT, pub-

licly available1

The final contribution of this thesis comes from insights gained through exper-

imental comparison. The insight is summarized in the answers to our two main

research questions:

RQ1 How does the performance of a further pre-trained BERT model compare to

a BERT model that’s only fine-tuned?

We find that further pre-trained BERT models often, but not always, perform

better than a basic BERT model. This is observed in increased macro-F1 scores,

indicating that further pre-training improves performance on small classes with few

positive samples.

1https://github.com/hsyver/TODA-BERT

65

https://github.com/hsyver/TODA-BERT

Further pre-training improves performance the most when there is limited train-

ing data available. However, this is only the case when fine-tuning with the universal

schema and for four out of the six evaluation datasets. The two datasets that don’t

see improvements are still relatively large when limiting training data to 20% which

supports that further pre-training helps the most in low resource situations. That

improvements weren’t observed when fine-tuning with original schemas could be

explained by insufficient learning of the mapping from the universal schema to the

original schema with limited data.

We find that the fine-tuning architectures that are as similar as possible to the

pre-training architecture perform best.

Further pre-training with the TODA corpus doesn’t improve performance on

datasets that don’t use a typical task-oriented dialogue act schema.

RQ2 How does the performance of a pre-trained dialogue context inclusive model

compare to a model that’s only fine-tuned?

Results show that the pre-trained context inclusive TODA-UDAT model consis-

tently outperforms the non pre-trained U-DAT model by a large margin. TODA-

UDAT improves the most when fine-tuning with the universal schema, but also

improves when fine-tuning with original schemas.

The largest improvements are found when 20% of the training data is available,

further supporting that the supervised pre-training is beneficial in low resource

situations. Whether the improvement is mostly caused by context relationships

learned during pre-training or just because U-DAT is a weak baseline compared to

BERT is unclear.

6.2 Further Work

In this section, ideas for further work we didn’t find time to pursue in this thesis

are presented.

6.2.1 Supervised Pre-training for Intent Classification

While this thesis revolves supervised pre-training for dialogue act classification, it

would be interesting to see what results could be made with the same approach

66

for the task of intent classification. However, an obstacle for performing supervised

pre-training for intent classification is that schemas of domain-specific intents vary

greatly among datasets. A possible approach could be to unify schemas within

domains before pre-training. Another approach could be to pre-train with all classes

in the pre-training corpus, without aligning them.

6.2.2 Adapting Pre-trained Model to Original Schema

In this thesis pre-trained models were fine-tuned to the original schemas of target

datasets with variations of a feed forward neural network at the end of the archi-

tecture. In the limited training data setup, TODA-BERT-add, which in the other

setups had performed best for the original schemas, struggled with instability. Al-

ternative approaches to adapt the pre-trained model to the original schema of a

dataset could be explored to avoid the instability problem TODA-BERT-add has

when there is limited training data.

6.2.3 Context Inclusive TODA-BERT

As stated in Sect. 5.2.3, it remains to be seen if further pre-training of a context

inclusive variant of TODA-BERT would improve performance more. An idea for

further work is therefore to implement a context inclusive variant of TODA-BERT

and investigate if supervised further pre-training is beneficial in this case.

67

Bibliography

[1] W. A. Abro, G. Qi, Z. Ali, Y. Feng, and M. Aamir. Multi-turn intent determi-

nation and slot filling with neural networks and regular expressions. Knowledge-

Based Systems, 208, 2020.

[2] A. H. Anderson, M. Bader, E. G. Bard, E. Boyle, G. Doherty, S. Garrod,

S. Isard, J. Kowtko, J. McAllister, J. Miller, C. Sotillo, H. S. Thompson, and

R. Weinert. The HCRC map task corpus. Language and Speech, 34(4):351–366,

1991.

[3] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes, O. Ramadan,

and M. Gašić. MultiWOZ - a large-scale multi-domain Wizard-of-Oz dataset

for task-oriented dialogue modelling. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, EMNLP ’18, pages 5016–

5026, 2018.

[4] Q. Chen, Z. Zhuo, and W. Wang. BERT for joint intent classification and slot

filling. CoRR, abs/1902.10909, 2019.

[5] Y.-N. Chen, D. Hakkani-Tür, G. Tur, J. Gao, and L. Deng. End-to-end memory

networks with knowledge carryover for multi-turn spoken language understand-

ing. In Interspeech 2016, pages 3245–3249, 2016.

[6] A. Coucke, A. Saade, A. Ball, T. Bluche, A. Caulier, D. Leroy, C. Doumouro,

T. Gisselbrecht, F. Caltagirone, T. Lavril, M. Primet, and J. Dureau. Snips

voice platform: an embedded spoken language understanding system for

private-by-design voice interfaces. CoRR, abs/1805.10190, 2018.

[7] J. Deriu, A. Rodrigo, A. Otegi, G. Echegoyen, S. Rosset, E. Agirre, and

68

M. Cieliebak. Survey on evaluation methods for dialogue systems. Artificial

Intelligence Review, 54:755–810, 2020.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of

deep bidirectional transformers for language understanding. In Proceedings of

the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), NAACL ’19, pages 4171–4186, 2019.

[9] L. El Asri, H. Schulz, S. Sharma, J. Zumer, J. Harris, E. Fine, R. Mehrotra, and

K. Suleman. Frames: a corpus for adding memory to goal-oriented dialogue

systems. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and

Dialogue, SIGDIAL ’17, pages 207–219, 2017.

[10] M. Eric, R. Goel, S. Paul, A. Sethi, S. Agarwal, S. Gao, and D. Hakkani-

Tür. Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking

baselines. CoRR, abs/1907.01669, 2019.

[11] J. Gao, M. Galley, and L. Li. Neural approaches to conversational AI. In

Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics: Tutorial Abstracts, ACL ’18, pages 2–7, 2018.

[12] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey,

and N. A. Smith. Don’t stop pretraining: Adapt language models to domains

and tasks. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, ACL ’20, pages 8342–8360, 2020.

[13] T. Han, X. Liu, R. Takanobu, Y. Lian, C. Huang, W. Peng, and M. Huang.

Multiwoz 2.3: A multi-domain task-oriented dataset enhanced with annotation

corrections and co-reference annotation. abs/2010.05594, 2020.

[14] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington. The atis spoken lan-

guage systems pilot corpus. In Proceedings of the DARPA Speech and Natural

Language Workshop, DARPA ’90, pages 96–101, 1990.

[15] M. Henderson, B. Thomson, and J. D. Williams. The second dialog state

tracking challenge. In Proceedings of the 15th annual meeting of the special

interest group on discourse and dialogue, SIGDIAL ’14, pages 263–272, 2014.

69

[16] M. Henderson, B. Thomson, and J. D. Williams. The third dialog state tracking

challenge. In 2014 IEEE Spoken Language Technology Workshop, SLT ’14,

pages 324–329, 2014.

[17] M. Henderson, I. Casanueva, N. Mrkšić, P.-H. Su, T.-H. Wen, and I. Vulić. Con-

veRT: Efficient and accurate conversational representations from transformers.

In Findings of the Association for Computational Linguistics: EMNLP ’20,

pages 2161–2174, 2020.

[18] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-

tion, 9(8):1735–1780, 1997.

[19] D. Jurafsky, E. Shriberg, and D. Biasca. Switchboard SWBD-DAMSL shallow-

discourse-function annotation coders manual, draft 13, 1997.

[20] O. Kuchaiev, J. Li, H. Nguyen, O. Hrinchuk, R. Leary, B. Ginsburg, S. Kriman,

S. Beliaev, V. Lavrukhin, J. Cook, et al. NeMo: a toolkit for building AI

applications using neural modules. abs/1909.09577, 2019.

[21] S. Larson, A. Mahendran, J. J. Peper, C. Clarke, A. Lee, P. Hill, J. K. Kum-

merfeld, K. Leach, M. A. Laurenzano, L. Tang, and J. Mars. An evaluation

dataset for intent classification and out-of-scope prediction. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing,

EMNLP-IJCNLP ’19, pages 1311–1316, 2019.

[22] X. Li, S. Panda, J. Liu, and J. Gao. Microsoft dialogue challenge: Building

end-to-end task-completion dialogue systems. CoRR, abs/1807.11125, 2018.

[23] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Inter-

national Conference on Learning Representations, ICLR ’19, 2019.

[24] S. Mehri, M. Eric, and D. Hakkani-Tur. Dialoglue: A natural language under-

standing benchmark for task-oriented dialogue. abs/2009.13570, 2020.

[25] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin. Advances

in pre-training distributed word representations. In Proceedings of the Inter-

70

national Conference on Language Resources and Evaluation, LREC ’18, pages

52–55, 2018.

[26] A. Papangelis, M. Namazifar, C. Khatri, Y.-C. Wang, P. Molino, and G. Tür.

Plato dialogue system: A flexible conversational ai research platform. CoRR,

abs/2001.06463, 2020.

[27] S. Paul, R. Goel, and D. Hakkani-Tür. Towards universal dialogue act tagging

for task-oriented dialogues. In Interspeech 2019, 2019.

[28] L. Qin, W. Che, M. Ni, Y. Li, and T. Liu. Knowing where to leverage: Context-

aware graph convolutional network with an adaptive fusion layer for contextual

spoken language understanding. IEEE/ACM Transactions on Audio, Speech,

and Language Processing, 29:1280–1289, 2021.

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language

models are unsupervised multitask learners. Technical report, OpenAI, 2019.

[30] A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan. Towards scalable

multi-domain conversational agents: The schema-guided dialogue dataset. In

The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI ’20, pages

8689–8696, 2020.

[31] R. Sarikaya, G. E. Hinton, and B. Ramabhadran. Deep belief nets for natural

language call-routing. In 2011 IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP ’11, pages 5680–5683, 2011.

[32] S. Schuster, S. Gupta, R. Shah, and M. Lewis. Cross-lingual transfer learning

for multilingual task oriented dialog. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), NAACL

’19, pages 3795–3805, 2019.

[33] P. Shah, D. Hakkani-Tür, G. Tür, A. Rastogi, A. Bapna, N. Nayak, and L. P.

Heck. Building a conversational agent overnight with dialogue self-play. CoRR,

abs/1801.04871, 2018.

71

[34] M. Själander, M. Jahre, G. Tufte, and N. Reissmann. EPIC: An energy-efficient,

high-performance GPGPU computing research infrastructure, 2019.

[35] S. Ultes, L. M. Rojas-Barahona, P.-H. Su, D. Vandyke, D. Kim, I. Casanueva,

P. Budzianowski, N. Mrkšić, T.-H. Wen, M. Gašić, and S. Young. PyDial: A

multi-domain statistical dialogue system toolkit. In Proceedings of ACL 2017,

System Demonstrations, ACL ’17, pages 73–78, 2017.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in neural

information processing systems, NIPS ’17, pages 5998–6008, 2017.

[37] Y. Wang, Y. Shen, and H. Jin. A bi-model based RNN semantic frame parsing

model for intent detection and slot filling. In Proceedings of the 2018 Con-

ference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 2 (Short Papers), NAACL

’18, pages 309–314, 2018.

[38] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,

T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,

Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and

A. M. Rush. Transformers: State-of-the-art natural language processing. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, EMNLP ’20, pages 38–45, 2020.

[39] C.-S. Wu, S. C. Hoi, R. Socher, and C. Xiong. TOD-BERT: Pre-trained natural

language understanding for task-oriented dialogue. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing, EMNLP

’20, pages 917–929, 2020.

[40] P. S. Xingkun Liu, Arash Eshghi and V. Rieser. Benchmarking natural language

understanding services for building conversational agents. In Proceedings of the

Tenth International Workshop on Spoken Dialogue Systems Technology, IWSDS

’19, pages 165–183, 2019.

[41] S. Young. CUED standard dialogue acts. Report, Cambridge University Engi-

neering Department, 14th October, 2007.

72

[42] Q. Zhu, Z. Zhang, Y. Fang, X. Li, R. Takanobu, J. Li, B. Peng, J. Gao, X. Zhu,

and M. Huang. ConvLab-2: An open-source toolkit for building, evaluating,

and diagnosing dialogue systems. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics: System Demonstrations, ACL

’20, pages 142–149, 2020.

73

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Henrik Haugland Syverinsen

Supervised Pre-training for Dialogue
Act Classification in Task-oriented
Dialogue

Master’s thesis in Computer Science
Supervisor: Krisztian Balog

June 2021M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Introduction
	Motivation
	Research Questions
	Main Contributions
	Outline

	Preliminaries
	Dialogue Systems
	Classification
	Dialogue Act Classification

	Algorithms
	Feed Forward Neural Networks
	Long Short-Term Memory (LSTM)
	Transformers
	BERT

	Evaluation Metrics
	F1-score

	Related Work
	Natural Language Understanding Tools
	Platforms
	Toolkits

	Dialogue Acts & Domain-specific Intents
	Datasets
	Task-oriented Dialogue Act Datasets
	Other Dialogue Act Datasets
	Domain-specific Intent Datasets

	Pre-trained Language Models
	Task-specific Architectures

	Method
	Dialogue Act Schema Alignment
	Universal DA Schema
	Alignment of the TODA Corpus

	BERT-based Classifier
	Experimental Setup

	U-DAT (Including Context Information)
	Experimental Setup

	Results & Discussion
	BERT-based Classifier
	Universal Schema vs. Original Schema
	Limited Training Data
	Adapting Further Pre-trained Model to Target Dataset
	Different Dialogue Act Schemas

	U-DAT (Including Context Information)
	Universal Schema vs. Original Schema
	Limited Training Data
	TODA-UDAT vs. TODA-BERT

	Conclusion
	Contribution
	Further Work
	Supervised Pre-training for Intent Classification
	Adapting Pre-trained Model to Original Schema
	Context Inclusive TODA-BERT

