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ABSTRACT

How we spend training time has become more important with neural network’s
evermore complex architectures. Recent research presents strategic data sampling
methods as an alternative to mini-batch SGD, alleviating training of unimportant
samples with little to no effect on training outcome. These methods are complex
and rely on extra data processing.

We present a novel filtering mechanism to do strategic data sampling in image
classification problems based solely on the boolean metric of sample classification
accuracy and consider how it performs compared to the de facto standard of mini-
batch SGD. We compare the two in terms of accuracy, mean loss, worst-case loss,
quantile losses, and wall-clock time.

We employ large-scale structured experiments to evaluate performance across
a large set of hyper-parameter combinations and find that our filtering approach
fails to achieve trends seen in other strategic sampling mechanisms. Instead,
we find our strategic sampler variant has its own merits, showing a tendency to
reach similar losses between training and test datasets, indicating a generalising
behaviour.

Keywords: Supervised learning, Strategic sampling, Importance sampling,
Image classification,



Preface
The work and experiments presented in this thesis were conducted throughout
2020–2021. All experiments were carried out using Python 3.8.61, frameworks
and libraries extensively used for the experiments include — but is not limited
to — PyTorch2 (v1.7.1) by FAIR and NumPy3 (v1.19.2) by Travis Oliphant
(and community contributors). Hence; any code, pseudo-code, figures and tables
specific to technical details of our works may be contingent on said frameworks
and libraries. The intent of these, and embodied meaning should however still
be legible.

Professor Zhirong Yang of the Department of Computer Science at NTNU,
and Senior Research Scientist John Reidar Mathiassen at SINTEF Ocean AS
were my supervisors.

1https://python.org/
2https://pytorch.org/
3https://numpy.org/

https://python.org/
https://pytorch.org/
https://numpy.org/


Acknowledgements

I would like to first thank my thesis supervisors: Professor Zhirong Yang of
the Department of Computer Science at NTNU, for accepting to supervise in an
external, self-provided master thesis problem, allowing me to do the work con-
ducted in this thesis. And my second supervisor: Senior Research Scientist John
Reidar Mathiassen at SINTEF Ocean AS, for creating the thesis objective. This
thesis would literally not exist without that. But I would also like to thank you
for the countless Teams-meetings we’ve had, practically on a weekly basis, and
often lasting several hours. Not only were these meetings incredibly rewarding as
a way for me to bounce ideas back and forth, and to keep my thesis on track, but
also as a way to gain some insight into the world of research and how everyday
life is like in research.

I would like to thank the people of NTNU’s High Performance Computing
Group for allowing me to utilise their IDUN cluster [see Själander et al., 2019],
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Acronyms and
Abbreviations

AI Artificial Intelligence. 1–3
ANN Artificial Neural Network. xii, 1–4,

10, 53, 54, 60, 61

BGD Batch Gradient Descent. xii, xiii,
14–16, 22, 23, 53, see Batch Gradient
Descent

CNN Convolutional Neural Network. 10,
11, 51, 52

DNN Deep Neural Network. 9

MBGD Mini-Batch Gradient Descent. xiii,
15, 16, 22, 31, see Mini-Batch Gra-
dient Descent

PRNG Pseudorandom number generator.
35, 38, 59, see Pseudorandom Num-
ber generator

SGD Threefold meaning, see Stochastic
Gradient Descent. xiii, 8, 14–17, 22,
26, 52, 53





Glossaries

Novel Terms
Adaptive Sampler An adaptive sampler is a strategic sampler that uses adaptive strategies.

Strategies that are adaptive to the training model’s current state, and so make a different
selection to what it would in another state of being. xi, 19, 22, see Strategic Sampler

Archetype The archetype refers to the de facto standard way of performing supervised ma-
chine learning, Using Mini-Batch Stochastic Gradient Descent. 19, 21, 22, 30, 33, 34,
36, 39, 51, 52, 54, 55, 58, 59

Strategic Sampler A data-sampler that makes a designed selection according to some strat-
egy (other than stochastic). A strategy either being a sound analysis of current state-
performance, or a more informal strategy, like an educated guess of an optimal sampling
scheme. In this thesis strategic samplers can also generally be considered adaptive sam-
plers. xi, 2, 4, 6, 33, see Adaptive Sampler

Trainer A trainer is an encapsulation of the training loop. The trainer’s main functionality is
to train the model. Additionally it supplies an interface to perform external operations
upon starting & stopping the training loop, starting & ending an epoch, and starting &
ending a batch.. 17

Artificial Intelligence Concepts

Batch Gradient Descent Gradient descent performed on gradients computed (typically as
a mean) of all samples in a dataset. ix, xii, xiii, 14–16, 22, 23, 53



Classification Classification is the process of being able to label some data. An image classi-
fication for example, would involve attributing a class to an image based on its features..
10

Cross Entropy Loss A popular loss function used in classification problems. Although it’s
definition is as follows:

C(y, ŷ) = −
N∑

n=0

ŷnlog(yn)

it is more easily presented as −log(yi) where i is the index of the labelled class. 34, see
Loss

Data Augmentation A process in which we transform the sample data to a new, valid variant
of the same data. In image classification such an addition is often crucial to achieve high
accuracy. Typical transformations include adding noise, random cropping, and the affine
transformations: rotation, mirroring, scaling, and translating. 28, 29

Gradient Descent An iterative optimization algorithm prominently used as a foundation
for modern machine learning. Adjusting parameters of the model according to their
contribution in making the model erroneous - i.e. according to the gradients of the loss.
xii, 1, 14–18, 22, 23

Loss The metric we’re trying to optimize for when training a model. It is an evaluation metric
for how the model is performing. Several loss metrics exists, where the main requirement
for a loss function is that it is differentiable, allowing us to extract valid gradients that
can be used for gradient descent. xii

Mini-Batch Gradient Descent Gradient descent performed on gradients computed (typi-
cally as a mean) of a mini-batch of samples of a dataset. Typically the mini-batches are
constructed as subsections of a random permutation of the full dataset, referred to as
mini-batch stochastic gradient descent. ix, xiii, 15, 16, 22, 31, see Mini-Batch Stochastic
Gradient Descent

Mini-Batch Stochastic Gradient Descent An approximation of Batch Gradient Descent
(BGD) using a significantly smaller, random selection of the entire dataset, organised
into batches. The idea being that the samples within the dataset are representative
of the whole concept, to allow the model to generalize and perform well without being
presented with all the samples from the dataset. xii, xiii, 1, 3, 4, 9, 15, 16, 21, 33, 57,
58, 63, see Mini-Batch Gradient Descent & Stochastic Gradient Descent

Model An instance of an Artificial Neural Network (ANN). The subject of optimization in a
machine learning problem (i.e. its learnable parameters: weights and biases). xi–xiii, 1,
4, 8–10, 22, 26, 29, 34, 61

One-Hot encoding A one-hot encoding is a binary representation of a class label consisting
of a bit-mask where the only active bit is at the nth index for the nth class. It is a useful
encoding as it can easily be used in vectorized operations, such as when calculating the
loss. 13

Outlier An outlier is a sample that doesn’t really fit in the dataset it’s supposed to represent.
An extremum which we generally do not want our classifiers to handle. 27

Overfitting A model is said to be overfitting when its performance in the training environ-
ment is better than its performance in its operational environment - i.e. the model has
specialized in niche features of the training dataset, as opposed to be generalizing. 9, 10,
39



Parameter Learnable parameters are, generally speaking, the weights and the biases of an
ANN, the values are over time tweaked during learning, using gradient descent. 18

Quantile Loss The loss of the qth quantile prediction of the model, ranking from 0 — being
the best-case loss — to 1 — being the worst-case loss, at q = 0.5 you will find the median
loss. In this thesis we tend to look at q = 0.9 because it gives an idea about how large
the portion of samples the model is performing bad on is.. 53, 54

Sample A Datapoint from a dataset. In supervised machine learning a sample could be
considered a tuple of some data, and a label for said data. Depending on the context,
the sample might also refer to just the data within the sample. xii

Stochastic Gradient Descent A somewhat misused term, drifting from its original meaning.
In this thesis it refers to either of these (though generally 1.):

1. A stochastic approximation of gradient descent. Performed on a randomly selected
sample of a dataset.

2. The unification of MBGD and definition 1. — Mini-Batch Stochastic Gradient
Descent.

3. The PyTorch optimizer, a generalized optimizer structure used for performing
BGD, Stochastic Gradient Descent (SGD), Mini-Batch Gradient Descent (MBGD)
with additional parameters for optimizations such as momentum and nesterov ac-
celerated gradients.

. ix, xiii, 8, 14–17, 22, 26, 52, 53

Worst Loss The loss of the worst-case prediction of the model. xiii, 51, 53, 54, 58

Programming Concepts
Pseudorandom Number generator A pseudorandom number generator is typically the ap-

proach to obtain ”random” values on computer systems. Generally speaking, a PRNG
has an initial seed, and a current state. This grants us a way of setting up PRNGs that
generate the same sequence of random values for differing instantiations of code. All use
of PRNGs in this thesis take use of the Mersenne-Twister algorithm.. ix, 35, 38, 59

Tools and Datasets
CIFAR-10 The Canadian Institute For Advanced Research 10 dataset [?]. A dataset of real

world objects in tiny color images:

• automobile • bird • cat • dog • frog
• airplane • deer • horse • ship • truck

There are 10 classes, each with 5000 training and 1000 test images associ-
ated with them. The samples are rgb-color images of size 3× 28 × 28, i.e.
24-bit precision, true color pixels.
https://www.cs.toronto.edu/~kriz/cifar.html. 25, 27, 35, 36, 38, 39,
42, 44, 46, 51, 55

https://www.cs.toronto.edu/~kriz/cifar.html


CIFAR-100 The Canadian Institute For Advanced Research 100 dataset [?]. A
dataset of real world objects in tiny color images. There are 100 classes,
each with 500 training and 100 test images associated with them. The
samples are rgb-color images of size 3× 28× 28, i.e. 24-bit precision, true
color pixels.
https://www.cs.toronto.edu/~kriz/cifar.html. 25, 27, 35, 36, 38, 39,
46, 48, 54, 55, 61

GitHub User Kuangliu’s CIFAR-10 with PyTorch Implementation An
implementation of a vast collection of high-performing neural network mod-
els, implemented in PyTorch [?]. The basis for most of the used models in
the work for this thesis. https://github.com/kuangliu/pytorch-cifar.
xiv, 38

MNIST The Modified National Institute of Standards and Technology dataset
[LeCun et al., 1998]. A dataset of handwritten digits 0–9. There are 10
classes, each with approximately 6000 training and 1000 test images asso-
ciated with them. The samples are grayscale images of size 1 × 28 × 28,
i.e. 8-bit precision pixels. For the purposes of this thesis, all samples are
padded with zeros to be of size 1×32×32, to appropriately fit our modified
grayscale image-accepting versions of the models of Kuangliu’s CIFAR-10
with Pytorch.
http://yann.lecun.com/exdb/mnist/. 22, 26, 27, 36, 38–40, 42

https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/kuangliu/pytorch-cifar
http://yann.lecun.com/exdb/mnist/
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I

Introduction

State-of-the-art ANNs are predominantly trained on random subsets of data. However, are we
näıve to think that learning on random data is the optimal way for an Artificial Intelligence
(AI) to learn — that sampling data to train on in randomly arranged batches yields the best
results?

Whenever we are training ANNs, we tend to opt for a stochastic approach, using random
subsets of the available training data, hoping for the best possible outcome. Generally, the
algorithm known as mini-batch SGD (and other subsequent derivations) is the go-to options,
as they have proven advantageous in training time, memory footprint, accuracy and overall ro-
bustness to a wide range of problems. With it, randomly sampled data are iteratively presented
to an ANN model, and through gradient descent, the model will be adjusted to perform better.

Is there no way for us to easily determine if some data might be more important than others?
To tell which might be more useful to train on? Or maybe easier; which samples that are not
useful to train on?

1



1.1 | Motivation 2

In this chapter we will present the underlying motivation for researching strategic sampling
mechanisms, leading into the research questions we raise in this thesis and the goals we have
when conducting this research, furthermore, it will present the contributory objectives this thesis
will have to the field of AI and AI-research. Finally, this chapter will present the scope of the
thesis and research project, alongside an overview of the structure of this thesis.

***

1.1 Motivation
The availability of data accessible to everyone has exploded. With that, gathering of data to
build datasets for training ANNs is no longer a problem. As this is the case, we now instead
ask ourselves, which of these data are actually relevant? Using all of the data will cause a slow
training, as a large portion of the data may be entirely unimportant to find a good fit for the
problem. The computational cost, and time of training on unimportant data when working on
large scale neural network models is not negligible.

As ANNs grow more and more complex, the computational cost of training has led to a
small surge of interest in the concept of importance sampling (or what we refer to it as in
this thesis: stategic selection) in in the deep learning community. Katharopoulos and Fleuret
[2018]; Song et al. [2020]; Jiang et al. [2019] all relatively recent presented results indicating
that strategic sampling could lead to a significantly better accuracy in a fixed wall-clock time.
This motivates us to find a novel approach to selection of data samples and look into strategic
sampling as we see a potential to improve performance.

Katharopoulos and Fleuret [2018]; Jiang et al. [2019] both reiterate the idea that samples
aren’t equally important. That some samples may be more valuable to train on than others.
They both state that some samples might as well be ignored. This is an idea that we latch
onto, and eventually bring forward as the basis of our novel approach.

Chang et al. [2017]; Song et al. [2020] Find that by controlling sample selection they were
able to reduce variance which then lead to higher accuracies. However in doing so they introduce
a higher potential for overfitting. We take a note of this, and want to see if we can devise a
novel approach that avoids overfitting.



3 Introduction

1.2 Goals and Research Questions
Goal Explore and implement strategic data sampling mechanisms for improved training of

ANNs.

The de facto standard in machine learning is some form of mini-batch stochastic gradient
descent, fundamentally dependent on random sample selection. We want to take a side step,
and look at non-random, or less random sampling procedures. We propose that there are ways
in which a strategical selection can be made autonomously based on intermediate analysis of
the trained model’s own performance.

Research Question How do strategic data sampling methods perform as an alternative to
the de facto standard of mini-batch stochastic gradient descent?

Given the information we have access to during training, rules and procedures can be
established, creating the potential strategy-creation, and, as such; strategic samplers. We
would like to find whether such a strategic sampler bring forward new dynamics within the
training of an ANN. Could it compare to stochastic sampling? Could it lead to better training?
It raises the questions:

Sub Research Question How do strategic data sampling methods perform in terms of

RQ1.1 Accuracy

RQ1.2 Loss

RQ1.3 Wall-Clock Training Time

There is a multitude of measures one could look at when comparing methods in computer
science, and the deeper we delve into a topic, the more specific we can get on said measures. In
AI, it falls natural to look at how the final performance of our models compares with differing
hyperparameters — but equally, it falls natural to look at timing aspect of it; performance over
time; how our models evolve. In either case, performance remains an umbrella term for several
measures — be it mean-loss, training time, accuracy, or other, more niche measures specific to
a certain type of setup.

We intend to delve into these measures, and find instances of data either supporting or
opposing the idea of strategic samplers, and see if they too have a place in the field of AI.

1.3 Objectives of the Thesis
With this thesis, we intend to present contributions to the field of AI by questioning the modi
operandi of data sampling for supervised learning. To follow up on this, We present novel
strategies to data sampling.

Ultimately this thesis is intended to

1. Present the idea of strategic and adaptive sampling as a viable option to stochastic
sampling.

2. Explore an area of optimization, currently being investigated by the deep learning com-
munity. i.e. the sampling algorithm.

3. Introduce a series of concepts that when employed in sampling, can aid the training
process, and allow for more control of what the training focus will be.

4. Present empirical evidence under several different settings/conditions. And present rec-
ommendations based on what we see.
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1.4 Research Method
To answer our research questions, we employ extensive experiments as our primary research
methods, gathering quantitative data. We strive to explore the relation between a ANN’s model
and the presented data it learns from. Specifically, we intend to explore an alternative way of
selecting which data the model should learn from at any point in time throughout training.

Through extensive parametrically configured experiments, we empirically demonstrate the
capabilities of such an alternative selection strategy. By running the experiment using this wide
set of parameters we intend to illustrate the limits of when our suggested approach is applicable
and when it’s not. We further identify benefits, drawbacks, and otherwise interesting findings,
and highlight these when discussing further opportunities our novel approach enables. To this
end, we identify that with extensive experiments, there is a need for extensive tracking of the
various attributes a supervised learner holds and inheres too.

As this is already an issue addressed from early on in machine learning, there is a multitude
of tools accessible to be used for tracking our models’ performance. In preliminary work we
used TensorBoard1, a toolkit for machine learning metric-tracking and visualisation initially
built as part of the Google Brain’s TensorFlow. The somewhat limited features for data export
in TensorBoard lead us to seek out an alternative for the work conducted in this thesis; hence
we will be using Weights & Biases2 (also known simply as wandb) by Weights & Biases for
inspection instead in this thesis.

As we explore an alternative approach to data sampling, we naturally compare our novel
approach to that of the de facto standard data sampling: mini-batch SGD. This allows us to
project how our approach would work in the general use-case where an ANN is employed (for
image classification), widening the applicability of the results found.

As such, when presenting the results of approach, we will always present it in relation to
the equivalent run using standard mini-batch SGD. We present the results not only in respects
to the overall accuracy of the trained model, but also in terms of losses — mean and worst loss,
in addition to the quantile loss (q = 0.99)

1.5 Thesis Outline
The thesis introduction now concludes (Chapter 1). Following, we will extensively present the
fundamental background theory which paves the way for us to introduce our idea. We keep this
extensive and thorough, as we intended our work to be self-contained, allowing the everyman
to read this thesis too, if they so desire. We will revisit the work of others, to see where our
research brings novelty to the field. Through others work we will present our motivation to
strive for strategic sampling as an approach (Chapter 2). Subsequently, our developed methods
and mechanisms will be presented, and our preliminary work that paves the way for our final
architecture used in the experiments (Chapter 3). The chapter after will present our setup for
exhaustive experiments and the parameters used. We go over and cover all bases needed for
reproduction of our results, as well as the results themselves (Chapter 4), before we conclude
with an evaluation of our findings, a discussion about the research conducted, and sparks of
ideas for potential future work (Chapter 5).

1https://www.tensorflow.org/tensorboard/
2https://www.wandb.ai/

https://www.tensorflow.org/tensorboard/
https://www.wandb.ai/


II

Background Theory &
Motivation

Before we delve into the depths of our new approach to strategic data sampling, we will first
establish the state-of-the-art, and talk a little bit about the theory employed to get to this point,
so that we can more easily pinpoint where our addition is, and how it plays a part of the bigger
whole.

To that end, this chapter lays the foundation for where our contributory addition to the
field of AI and the topic of sample selection is. We start of looking at literature central to
our the work we will conduct, namely strategic sample selection. Wanting to ensure quality
data to work from, we formalize a structured literature review protocol before we dig into the
related works. From there we reiterate our motivation, grounded in the literature, before we
move on to background theory. This we present thoroughly and in depth (experienced readers
may freely choose to skip this, as it covers most of the needed material up to our new addition.
We suggest however, to read on from section 2.4.4).

2.1 Structured Literature Review Protocol

Situating ourselves in the field, and finding related research involves a process of extensive
searching through web archives, journals, books or otherwise. We have had to sift through ma-
terial to identify similar research both in terms of research questions, and in terms of proposed
solutions. When doing so we applied specific criteria to ensure we could quickly discern the
works that were relevant, while also ensuring that the found research was up to standards, and
could be trusted.

5
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Term: #1 #2 #3 #4

Group: 1○ Sampling Batching

2○ Stochastic Uniform Random

3○ Sample Instance Example Data Point

4○ Importance Utility

5○ Importance 1○ Strategic 1○ Non- 1○ 1○ Non- 2○ 1○

Table 2.1: Literature inclusion and quality criteria. Using combinations of these,
we were able to find primary sources of relevance to our work, and further fill the
gaps by citation network traversal.

Search engines used to find related works were primarily Google Scholar1, SemanticScholar2,
ResearchGate3.

As is often the case in research, we found that others before us have been using differ-
ing terminology from what we initially were using. This ended up shifting our search frame
drastically. For example, ”adaptive” was considered a central keyword in our mind, we found
that in fact many before us had not considered the use of adaptive about their approaches. A
representation of the final search frame used can be seen in table 2.1.

One of the additional ways utilised to discover related works were citation network traversal.
After performing initial searches using the keywords, we used tools such as ConnectedPapers4

for quick expansion of found materials, traversing through the found works’ related works-
section, this yielded a more thorough overview of the works done within our research frame,
and we could from this surmise that our work was novel.

From this point it was a matter of quick analysis, identifying whether or not the works were
of import to our work, and so should be included, and secondly if the quality held up to certain
criteria. The criteria used can be seen in table 2.2.

2.2 Related Works
In the last decade, several works have investigated methods for squeezing every bit of usefulness
out of every training step in training. Some looking into the depths of the mathematical
foundation we already have for training neural networks, namely the gradient descent algorithm,
and how its components can be put together to form better batches. — Approaches that
utilise the information we already have at hand during training: Losses and gradients. Others
accumulate information over time to build auxiliary data that can be used to the same effect.
As we found, there are 3 primary methods fundamentally achieving designed selections.

We note that Jiang et al. [2019] in fact is a preprint, and should be treated as such. Per
protocol they should not really be included, as their status in peer review is unknown. However,
upon seeing how similar some of their work is to ours, we make an exception.

1https://scholar.google.com/
2https://www.semanticscholar.org/
3https://www.researchgate.net/
4https://www.connectedpapers.com/
5if it is, use the one with the most recent results

https://scholar.google.com/
https://www.semanticscholar.org/
https://www.researchgate.net/
https://www.connectedpapers.com/
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Inclusion Criteria

1○ The main topic covered is non-uniform sampling.

2○ Empirical evidence of improvement is presented,
alongside a thorough discussion about the results.

3○ The work describes their approach/-es sufficiently.

Quality Criteria

1○ The work is peer-reviewed or heavily used (and; as
such, has stood the test of time)

2○ The work is not a duplicate of other work found5.

3○ The presented approach/-es is/are compared to others’
works.

Table 2.2: Literature inclusion and quality criteria.

Relevance Category Name

1
Importance
Sampling

Accelerating Deep learning by focusing on the Biggest
Losers [Jiang et al., 2019]

1
Importance
Sampling

Not All Samples Are Created Equal: Deep Learning with
Importance Sampling [Katharopoulos and Fleuret, 2018]

2
Importance
Sampling

Training Deep Models Faster with Robust, Approximate
Importance Sampling [Johnson and Guestrin, 2018]

2
Temporal &
Uncertainty

Carpe Diem, Seize the Samples Uncertain ”at the Moment”
for Adaptive Batch Selection [Song et al., 2020]

3
Temporal &
Uncertainty

Active bias: Training more accurate neural networks by
emphasizing high variance samples [Chang et al., 2017]

4 NeuralNet
Autoassist: A framework to accelerate training of deep
neural networks [Zhang et al., 2019]

4 NeuralNet
Mentornet: Learning data-driven curriculum for very deep
neural networks on corrupted labels [Jiang et al., 2018]

Table 2.3: Relevancy overview
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Importance Sampling Strategies Inferring utility of a sample in terms of their effect on
the parameters of the neural network training on them will. The bigger the change a
sample inflicts on the network’s parameters, the more useful it can be deemed.6

Temporal & Uncertainty Strategies Inferring utility of a sample in terms of the certainty
the model has and has had about the given samples over time.

NeuralNet Strategies Inferring utility by use of a secondary neural network.

2.2.1 Importance Sampling Strategies

Katharopoulos and Fleuret [2018] find preceding works to employ the losses or the gradient
norms of samples to determine their utility. In their paper, they present two contributions,
and results indicating an overall improvement to others given a time-budgeted training period.
Their first contribution lies in a derivation of a tractable upper bound to sample gradient norms,
and the second is an estimator of potential variance reduction achieved when using importance
sampling. The latter of which helps to ensure that importance sampling only is used when it’s
deemed to give a training speedup.

However, the trend has lately seemed to shift slightly, and although the sample losses and
gradients still remain the major part of the more recent works, many posterior works after
Katharopoulos and Fleuret [2018] attempt to instead approximate ideal distributions, rather
than to find the entire distribution.

Johnson and Guestrin [2018] is one of these works, in it Johnson and Guestrin [2018] pro-
vides an approach in which they first devise and term Oracle-SGD, an iteration upon standard
SGD that samples non-uniformly to reduce variance by computing the gradient norms and
additionally adjust the learning rate adaptively. Their iteration upon Oracle-SGD lies in the
approximation they do to mitigate the issue of time-consuming gradient norm calculations.

On the other hand, there’s still faith in the simpler approaches to be useful too. We found
this in the more recent Jiang et al. [2019], which make their selection strategy tightly linked
with sample losses. Their approach involves a process in which all samples are passed to the
model, as one would with standard SGD. The difference is that instead of using said forward
passes to calculate gradients and updating the model right away, they process the losses and
build a probability-distribution for sampling said samples based on their loss.

2.2.2 Temporal & Uncertainty Strategies

Temporal, history-tracking strategies have had a resurgence in the last couple of years, with
the most recent being [Song et al., 2020], in which they propose a sampling scheme based on
a sliding window, i.e. a limited view on the past history. What they track is not the losses or
gradients, but rather the past predicted labels. They suggest that doing so — using the model’s
uncertainties — will provide a useful sampling scheme to not only accelerate the training, but
also reach higher accuracies.

Chang et al. [2017], as also referred to by Song et al. [2020], approaches the problem with
the same idea in mind; sampling based on the uncertainty of a sample. They present a scheme
where the history is kept of previous softmax activations, essentially tracking the confidence
the model has had towards the correct label throughout training. Evaluating the variance over
this history gives a sample’s uncertainty.

2.2.3 NeuralNet Strategies

For completeness, we deem neuralnet strategies important to mention too, as they too seem to
be an ever more prominent way of performing machine learning with good results. Sampling
strategy is at the core of Zhang et al. [2019]. In their work, they propose a light-weight assistant

6Obviously, given that the label of said sample is correct.
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network attached alongside, and jointly trained with the main model, where the light-weight
assistant is used to pick determine a sample’s importance. Their process from there is to filter
out non-important samples from the sample pool, similar to how we too filter out samples from
our sample pool during training.

Other recent approaches have also been suggested utilising an additional attached network
alongside the main network. Albeit with slightly differing goals (focusing on performance of
deep networks trained on corrupt training data), Jiang et al. [2018] propose to have a dual
network structure; MentorNet and StudentNet, where the MentorNet learns a data-driven cur-
riculum — a sample weighting scheme, for the StudentNet to learn from, indubitably showing
the dual network structure to be viable in terms of generalisation.

2.3 Motivation
In modern machine learning we are essentially bound to chance, in the sense that we’re relying
heavily on stochastics in so many aspects when training. We see this as an intrinsic motivation
to explore other alternatives. Furthermore, while several alternatives have been suggested, and
a lot of them seem to work, we believe there is still room for novel approaches. Our motivation
thus stems from findings of the reviewed prior works, findings we have categorised twofoldly:

Learning Time —— While stochastic sampling certainly has proven itself as a robust and
strong contender in the game — one that will likely still be with us for years to come —
we cannot help asking ”is it truly not possible to do better than random?”. Putting it
as Katharopoulos and Fleuret does: not all samples are created equal ; some samples are
more useful than others at different points in time throughout training, and sampling
only those (instead of noisily including samples that don’t contribute as much) could
potentially shave of not merely minutes, but potentially hours and days of training time.
It is just a matter of finding which ones are more important. Common for [Katharopoulos
and Fleuret, 2018; Jiang et al., 2019; Song et al., 2020] is that they all present having had
improved training speeds in terms of wall-clock time reaching same-accuracy parameters
compared to random-batch, i.e. mini-batch SGD.

Variance Reduction through Supervising Supervised Learning —— Supervised
learning relies on the loss function to learn from the gradients. Others before us have fur-
ther utilised the loss function to also do importance sampling, either by using the losses
themselves, or the gradient norms [Katharopoulos and Fleuret, 2018]. Newer approaches
also suggest that indirectly controlling; ”supervise”, supervised learning by controlling
which samples to be presented reduces variance, and in so doing, increases accuracy
[Song et al., 2020; Chang et al., 2017], albeit with the added danger of overfitting.

From these findings we establish our twofold motivation:

Motivator 1. Improved performance —— As both points above emphasise, several
works point out an overall improvement in performance through designed selections.
Hence, we see our potential in adding to the knowledge-pool, and investigating yet an-
other new type of designed selection for improved performance (with respect to test
accuracy, learning speed to reach fixed accuracy, and worst case loss).

Motivator 2. Limiting Overfitting —— Contrary to Motivatior 1, an emphasised prob-
lem of using designed selections is the increased risk of overfitting to the training data.
Overfitting it self is a result of how the loss function is shaped. Minimising the losses
over time will often cause the network’s parameters to be too fine-tuned for the specific
data of the dataset, as it is allowed to continue tuning its parameters to better fit data
even though it’s already capable of classify correctly. This will narrow the boundaries
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of what data it will accept as part of the individual classes and cause the network to be
more and more capable of handling the training data, but at the same time, in the worst
case, less and less capable of handling data outside of the training data.

”You get what you ask for; not what you want.”

This is a phrase often used in relation to AI, and specifically about overfitting.
Where what you ask for refers to the loss function, and what you want refers to what
you actually want the model to learn.

We want to investigate what effect it might have on the learning if we actually manage
to limit the training by what we want by not allowing the model to keep minimising on
samples it already correctly classifies.

2.4 Background Theory
Let us now establish the fundamental background theory employed in our works. The experi-

enced reader may skip this without missing out. Just be sure to catch the last piece from this
section section 2.4.4, as it lays down some terminology core to the rest of our work.

***

Artificial Neural Networks (ANNs) are connectionist systems modelled to vaguely operate
like humans’ biological brain, being a cluster of interconnected neurons that through synapses
bring about senses, thoughts, reasoning and behaviour. An ANN tries to achieve the same by
sequencing nodes, a construct really only doing a small piece of math, simulating the inner
works of synapses in the neural systems of humans and animals, organised into layers where
each layers’ nodes feed into each of the following layers’ nodes.

The ANN as a construct is nothing more than a series of mathematical operations linked
together in a way that allows it to over time encode some meaning into the various parameters
and series of connections the network holds. As such, an ANN can typically be represented as
a series of vectors, matrices and tensors.

This thesis will focus on one specific type of task these ANNs often are used for, namely
classification; More specifically, we are going to be focusing on image classification, though we
suggest that the general approach we take in the thesis should be equally applicable for other
types of classification as well.

2.4.1 Image Classification

Image classification is all about determining what pictures’ contents are. A common example
is distinguishing whether the animal depicted in an image is a dog or a cat, but the more
complex — and perhaps more useful — type of image classification deals with several hundreds
of classes. A real-world example of where an image classifier is helpful is the classification of
fish species either on still images or on a video feed.

The ANN structure is often considered the simplest of them all is the fully connected
network. On its own, it is rarely enough to constitute as a good image classifier network by
itself. It struggles to build an encoding that utilise the structural parts of the images we give it.
In other words, its missing the ability to easily register and recognize the lines, corners, spaces,
indeed the very structure the pixels together form.

Convolutional Neural Network

Enter the Convolutional Neural Network (CNN)! CNNs fundamentally build a way to operate
on and learn structural features. It does this by splitting the classification problem into two
parts. The first part is dedicated to finding features, and the second part classifies based on
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Figure 2.1: The fundamental node structure of an Artificial Neural Network

the collection of features found; as such, the CNN’s fist couple of layers are a series of filters
(for finding features), and the second part, a fully connected network structure.

In essence: Instead of using vectors of weights and multiplying them with the input before
being summed (a fully connected layer, see fig. 2.1), the first couple of layers uses matrices of
weights that it then uses to convolve the image. This in turn, gives a series of (typically) smaller
images that could be considered structural encoding-images(see fig. 2.2), where bright regions
represent a high presence of the feature described by the filter matrices. Doing convolutions
like this in a sequence, with different filters for each layer, one ends up with a small image
representing high-level structural features of the image.

The encoding-images are then passed on to the fully connected part, which considers and
learns the constellation of high-level features, and classifies the original images on said features.

The Ins and Outs of The Image Classifier & The Categorical Cross
Entropy Loss

If we step back for a second and consider the neural net component of an image classification
process a black-box, an essential aspect of image classification through neural networks are the
dimensions of the presented data.

Like all neural networks, we obviously send all data in, so we send the image, or even mul-
tiple images at once, as neural networks generally can process the data parallelly, as vectorised
operations. The somewhat more interesting thing to see is that we get a vector out, as a result
of passing the data through the network.

After all, isn’t what were after a class identifier, not a vector of continuous values? —
The neural network is in fact giving back a distribution of the class spectrum. It gives back a
distribution of its beliefs or confidences as they often are dubbed. From this, we consider the
index of the element in the distribution with the highest value as the predicted class (with a
confidence of the element’s value).
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Figure 2.2: Convolution through a weight kernel of the CNN [Asthana, 2020]

***

There is a slight catch that needs to be mentioned here too, which is that the values passed out
from our black-box, the neural network, is in fact slightly dependent on the framework the net
is developed in, and slightly dependent on how the output is intended to be used. Oftentimes,
the network’s output hasn’t yet been turned into a distribution (or probability mass function,
as it doesn’t sum to 1 yet, that typically happens as the output is passed through a softmax
function, which can either occur in the network itself, or be incorporated in the loss function
used for learning, and training the network. We present the above case as we do because we
consider it to widely be considered the approach standard in image classification.

***

The next important step to cover when talking about image classification networks, is how
the network can go on to actually learn anything from its current state, and from passing images
through it. We will go more into details about that in section 2.4.2, but before we move on to
it, we present the idea of cross entropy loss.

To know if we’re doing well in a task, beside simply evaluating whether an image was
classified correctly or not, we can also consider the previously mentioned confidences of the
neural network; the distribution of beliefs about which class an image belongs to. It makes sense
to draw the link between high confidence of a classification and the performance of the classifier
(given, of course that the high confidence is placed in the appropriate class for the image). To
put it another way; A classifier that classifies something correctly with high confidence is better
than a classifier that classifies something correctly with low confidence. Equally, it applies to
say that a classifier with low confidence in the incorrect class is better than a classifier with
high confidence in the incorrect class.

These are the fundamental ideas of the Categorical Cross Entropy Loss function: Reward
(low loss) high confidence in the correct classifications and, in effect, low confidence in incor-
rect classifications, and punish (high loss) misplaced confidence and low confidence in correct
classifications.
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C(y, ŷ) = −
N∑

n=0

ŷnlog(yn) (2.1)

where:
y is the confidence vector, the output logits of the network softmaxed (to get a

probability-value per class).
yn is the confidence score (or probability, if you will) of the sample being of the nth class.
ŷ is the one-hot encoded label of the sample passed through the network.
N is the number of classes in the problem.
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Figure 2.3: Cross Entropy Loss

In essence, eq. (2.1) boils down to the negative log-
arithm of the confidence in the correct class; −log(ynŷ )
— nŷ being the correct class index. Because our y-
vector holds values in the interval (0, 1), the logarithm
will only ever return negative values, meaning that our
negation grants us a positive value. In turn, because
only the nŷth conficence value ends up being used in
the logarithm, we have that if ynŷ is small, our loss is
high, and that if it’s big (ynŷ → 1) our loss is low.

If we now were to pass all the data of a dataset —
one completely different from the training data, while
still in the same domain (let’s call it the test dataset)
— through our model, we can take the mean value of
the resulting losses, and in so doing, we have a metric
representing the current performance of the model.

This is how, broadly speaking, modern classifica-
tion networks are evaluated. Not only that; it is also
the first step in how the models are trained.

2.4.2 Gradient Descent

θ∗ = θ − η
∂

∂θ
C(X ,Y; θ) (2.2)

where:
θ is the network’s parameters X is all data from the dataset
η is the learning rate Y is all labels from the dataset
C is the loss function

The loss function signature here is denoted slightly differently from before. This is to emphasise
that the resulting loss is not only a result of the data and the labels passed in, it is also a result
of the current parameter configuration. In the equation above, and the subsequent equations
we will see this. C(X ,Y; θ) is really just an alternative way of writing C(net.Forward(X ),Y),
that shows the variable we are going to do partial derivatives with respect to.

Equation (2.2) is the very essence of gradient descent; the parameter update equation — or
the learning rule as it is often called — where each of the neural networks parameters (weights
and biases) are tuned in accordance with the partial derivative of the loss function with respect
to θ. Put simply, we tune parameters according to their contribution to the loss, essentially
lessening their contribution to the overall deviation from the ground truth. In doing so, ”teach”
the neural network to model relations from the features of the samples to the appropriate labels.

2.4.3 Gradient Descent Sampling Schemes

Fundamentally, there are three sampling schemes that are established as variations of how we
bring about gradient descent in machine learning, all with their benefits and drawbacks:
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Batch Gradient Descent The most straightforward variation is what’s simply known
as gradient descent, or often as batch gradient descent. It considers the whole dataset as one
single batch (hence the ”batch” in the name) to perform a training step. Depending on the
size of the dataset, this may already impose a problem for performing machine learning. Even
modern computers simply cannot load the bigger datasets out there into memory as a single
batch at a time, let alone do operations on it afterwards. Besides this, the algorithm is painfully
slow, seeing as it’s only updating the model parameters once using all available data. As a result
of the relatively low update frequency of BGD, we end up needing to run our training for longer,
over more epochs.

Stochastic Gradient Descent Stochastic gradient descent is the second variation of
gradient descent. It could easily be considered the converse of BGD, in that it takes sampling to
the opposite extreme. In stochastic gradient descent we don’t train on batches — or rather; we
train on single element-batches. For each epoch the dataset is shuffled, then we take sole samples
out from the shuffled dataset and perform gradient descent on them individually, resulting in a
large number of weight updates in one epoch.

The fundamental idea behind SGD is to by chance happen upon samples that hold features
other samples too hold, and in so doing, do generalised training steps that will improve overall
performance. The assumption is that in a dataset there is a large amount of redundancy —
Many of the samples are similar to each other, meaning that one should be able to progress
faster by training on randomly selected samples that to some degree can represent the general
concept.

An analogous way of comparing BGD and SGD is to imagine we’re walking down a valley
where arrowed indicators showing a way (not necessarily the right way) are placed all over.
Wanting to reach the bottom, we can choose to at every point of the way sum all the indicators
together (BGD), knowing that the summed direction will be leading us to the bottom. Alter-
natively, we can save time by not trying to take all the arrows into consideration, and rather
pick a random one to follow (SGD), knowing that generally, the arrows point towards the right
direction, and so, eventually (and hopefully faster than by doing the arrow summation) the
arrows will lead us to a bottom in the valley.

We highlight another benefit of SGD in the analogy: Because we’re not not following
summed arrow indicators, we’re not walking the most straight way down into the valley. Instead
we might end up wandering around a little, and actually discover a deeper valley, which we
then descend into.

In such a case, the stochasticity of our sampling has essentially lead to exploring connection
combinations in our network model, leading to an overall better fit — We’ve found a better
local minimum (or even the global minimum) of our error surface.

The negative side-effect of performing SGD is already somewhat highlighted in that analogy:
Although random sampling might be beneficial in terms of generalisable features being utilised
better when training, the consequences of sampling wrong data might actually lead to a severe
worsening of overall performance (when a sample’s data is very different from other samples’
data with the same label)

θ∗ = θ − η
∂

∂θ
C(x, y; θ) (2.3)

The parameter update in SGD is exactly the same as in BGD, with the exception of it only
using the one sample x and its label y instead of the whole dataset.

***

A significant problem of SGD is in its semantics. It is not something we will tackle in this
thesis, but nevertheless worthy of mentioning, as it may lead to confusion otherwise: The term
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SGD is severely misused to the extent that it nowadays generally mean a combination of SGD
and the following MBGD, combined in what is really mini-batch SGD. Additionally, as we will
see in the following section, MBGD can be seen as a generalisation, so SGD has grown into
an umbrella term. This especially applies when looking at how the various frameworks name
their optimisers. In PyTorch for example, the optimiser used for standard gradient descent is
also dubbed SGD.

Mini-Batch Gradient Descent Lastly, we have mini-batch gradient descent (which
almost always is equivalent to mini-batch SGD, depending on if it uses stochastic batches or
not), which in more than one way can be seen as the compromise between the other two.
Actually, it is very close to being a generalisation between the two. It strives for the best of
both worlds, aiming to get the accuracies and stable descent seen in BGD, while also perform-
ing training faster, as in SGD. Actually, MBGD generally has greater throughput than SGD
too, because modern machines and machine learning libraries support highly optimised tensor,
matrix and vector operations.

Foundationally, the aim of MBGD is to split the dataset up into subsets — mini-batches
— that themselves contain enough data to to some degree represent the entire dataset (which
again only is a limited representation of the reality our model might face after training). By
batching like this, MBGD hopes to generally smooth the descent, like in BGD, making more
sound steps towards a local minimum than SGD would cause it to do, while not disregarding
the speed benefits of doing multiple training steps in one epoch.

How the mini-batches are selected is a central topic we will come back to, as this essentially
is our entry point, but for now it will suffice to say that generally, they come as a result
of shuffling the dataset then taking batch size samples out of it. Doing so results in what
one might call mini-batch stochastic gradient descent, but the case is in fact that mini-batch
sampling has proven it self so useful, that the term SGD is pivoting to mean mini-batch SGD,
while SGD itself fades away as the less useful gradient descent variant.

Depending on the batch size selected, specifically when it is set to 1, the mini-batch SGD
is fundamentally the same as SGD. This brings us back to the first statement about MBGD
being a generalisation of the two others: It can equally be said to be equivalent to BGD in the
case where the sampling scheme used is not a stochastic one, but rather a sequential one. If the
batch size is set to dataset size, the MBGD will be equivalent in behaviour to that of BGD.

Having illustrated that MBGD can be considered a generalisation, and because the general
tendency seems to be shifting towards MBGD being the de facto standard, MBGD will be the
gradient descent variation we will focus our efforts into further improving.

θ∗ = θ − η
∂

∂θ
C(X(i:i+n),Y(i:i+n); θ) (2.4)

The parameter update in MBGD is yet again close to being the same as its predecessors. Instead
of training on the entire dataset, or on one lone sample, it’s using a smaller subset of the entire
dataset for each training step.7

Sampling Schemes — Complexity

There are certain limitations we always seem to encounter when writing algorithms in the realm
of computer science. Namely complexity; time complexity and space complexity. Seeing as our
aim is to find a sampling scheme that improves training, it should naturally also be compared to
the approaches we already have in terms of complexity. Complexity however is very dependent
on implementation, as such, we have to take another side-step here, and declare once again that
the presented concepts are based on the PyTorch implementation.

7Although this depicts a sequential sampling of the data and labels, the more typical instance
of MBGD uses stochastic batches
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***

For further reference on what is happening in these sampling mechanisms, refer to Ap-
pendix fig. 3

Batch Gradient Descent In terms of the sampling itself BGD is among the top con-
tenders. The time complexity, next to no operations is required to get the entire dataset loaded
into memory. As we access it through the Dataset-structure in PyTorch we have to get the
entries iteratively however, and then collate it all to make it into a batch. The same rules
apply for the other approaches too, so timewise, or operationwise BGD is literally the baseline.
Accessing all the data would involve generating the indices in the interval [0, n] for doing the
lookup of the dataset. Though, seeing as all subsequent variants also have to do this step, we
can quite simply ignore it.

In terms of space BGD is hardly advantageous in any respect. It is arguably the disad-
vantage of BGD. For larger datasets it might not even be an option, considering how much
memory is required to hold the data, and offloading the memory into swap on the hard drive
of the machine running the training would likely cause it to practically halt.

Stochastic Gradient Descent With SGD we generate a list of indices, again in the
interval [0, n]. We go on to shuffle the list. From this point it’s just a matter of using the indices
stored in the list iteratively.

Mini-Batch Stochastic Gradient Descent With mini-batch SGD we generally
do the same as in SGD; create an initial index-list, shuffle it, and then upon every batch start,
we request k samples, instead of 1 as in SGD.

Variation Ops. per Epoch (+ batching) Samples in Memory per Batch

BGD 1 + 1 N

SGD 3 + N 1

MBSGD 3 + num batches N / num batches

Table 2.4: Complexity through training of the commonplace gradient descent
sampling schemes. N is the number of samples in the whole dataset

Variation Sampled per Training Step Training Steps per Epoch

BGD Entire dataset 1

SGD One random entry N

MBGD One random subset of the dataset N / batch size

Table 2.5: The three commonplace variations of gradient descent

Comparing the three variants, we see that the number of training steps done heavily rely on
the way we sample our data. One way of thinking of the three variants is that they ultimately
prefer either step quality, or number of steps, with MBGD/mini-batch SGD attempting to
compromise between the two. A key point to make about the three variants is that they all
are ambivalent to the actual content of the samples they do training on. The de facto rule is
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that the training loop should go through the dataset in some fashion, be it sequentially, one by
one, or stochastically in a batchwise fashion; the whole dataset must be consumed through an
epoch. Epoch as a term is in fact often defined as one pass through all samples of the dataset.
This has some implications for our approach, seeing as we are filtering samples, and so, we’re
not training on all data. We will come back to this issue in section 3.3.

2.4.4 Connecting it All — The Archetypal Learning Pro-
cess

When writing machine learning algorithms there are certain components that regularly show
up. Depending on where we are developing said algorithms, some components may stick out
more clearly as separate entities of the larger system. Additionally, these entities may vary
a little between the different programming frameworks, though at the time of writing Ten-
sorflow8 by Google Brain and PyTorch9 by FAIR (Facebook AI Research) are the two most
prevalent frameworks in the industry, and both encapsulate the following structures into rel-
atively separable entities, so we consider them applicable for all intents and purposes of this
thesis.

The training medium
Either raw data or some generative process producing data.

The neural network
Typically a composition of matrices, vectors, or tensors for high computational through-
put, representing the parameters of the neural network; the weights and biases.

The optimizer
An entity that performs gradient descent (typically SGD) computations. It computes
and assigns updated parameters to the neural network model (ideally) making it perform
better.

The loss function
An equation describing the distance between the model prediction and the labelled
ground truth of a sample.

With these commonplace components of a machine learning algorithm established, it’s
relatively easy to extract yet another encapsulation; what we’ve come to call a trainer. Trainers
are instantiations of the previously mentioned components coupled together, making the trainer
be the interface for the training loop.

With this, the most primitive version of an archetypal trainer emerges, encapsulating a
training loop most AI enthusiasts and researchers would agree is the standard — The archetype.
Coming up with new approaches on how we can improve machine learning further, it makes
sense to look to the standard, both as a template where we can easily pinpoint which part we
are trying to improve, but also as a way to demonstrate the improvements a novel approach
brings; by comparing it to the archetype.

8https://www.tensorflow.org/
9https://pytorch.org/

https://www.tensorflow.org/
https://pytorch.org/
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Algorithm 1
Archetype Training Loop (see appx. fig. 7)

Require: A Dataset; S.
Require: A Loss Function; C(Y, Ŷ).
Require: An Optimiser; Op.

1: procedure Train(net, epochs)
2: for e← 0 to epochs do
3: for all (MBdata, MBlabels) in StochasticBatch(S, sizeMB) do
4: predictions← net.Forward(MBdata)
5: losses← C(predictions,MBlabels)
6: gradients← net.Backward(losses)
7: Op.step(net, gradients) . Adjust net parameters

8: end for
9: end for

10: end procedure

An essential detail to point out here is that obviously there are a wide range of ways one
might structure the training loop. However, the encapsulation we have done when defining
the archetype trainer, is based on the bare minimum for training a neural network model. By
extension, the result comparisons we later present that uses the archetype as a baseline, should
in general be extrapolatable for other types of training loops too.

Accuracy & Error

We’ve already touched upon how neural networks learn, using gradient descent through calcu-
lating losses of predictions, and then adjusting the contributing parameters to minimize said
losses. But the losses themselves are not a proper representation of how well the model is
performing. A correct classification may still have a relatively large loss if the classifier net-
work’s prediction is a relatively uniform distribution. As an example, given the CIFAR-100
dataset, with a relatively uniform distribution being the prediction of the network, even a cor-
rect classification could have a loss of −ln( 1

100
) ≈ 4.6 given that we use the categorical cross

entropy.
Our proposed method relies not on the losses or the strength of the predictions (confidences)

our network makes, but rather on the accuracy. The boolean, non-differentiable value of whether
or not the sample has been classified correctly. Hence we formally define accuracy to be precisely
that, while also dubbing the opposite — when a sample is inaccurately classified — an error.
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Architecture

We will now introduce our adaptive sampling strategy, and how it compares to the archetype’s
sampling in structure, explicitise what we are changing, and what we keep as is. We then move
on to talk about the technical aspects using an adaptive sampling strategy. Before we move on
to the, however: What does ”adaptive” mean in the context of data sampling for supervised
learning?

19
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3.1 Adaptive Sampling

Adapt:
Having an ability to change to suit
changing conditions.

— Cambridge Dictionary

With a formal definition of adapt readily at hand, we now establish what adaptive means
in this thesis, and in the context of data sampling for supervised learning:

We identify that in our context the changing conditions are the state of the learning process.
In other words; how the current fit of the model is — how well it performs. From that, we can
further assert that in order to make data sampling adaptive to the learning, it has to consider
the current performance of the model. Not only should it consider it, but it should also use it to
further improve the learning outcome — to suit the changing conditions — essentially meaning
that the current performance has to be utilized for picking out the most relevant samples for
optimal learning.

Summarised, our approach to adaptive sampling incorporates the current model perfor-
mance to pick out samples that have the highest possible utility, in terms of further learning.

The Utility of a Sample

Looking at the problem of finding the most relevant data points for learning presents another
issue, namely; knowing what is relevant in the first place. The näıve, and infeasible way would
be to simply try each and every permutation of sample batches possible, then feed them through
the network, update the model, and evaluate which batch that resulted in the best update step
being made — a brute-force approach.

Such an approach is not only infeasible, due to the inconceivably large number of possible
permutations, but also totally defeats the purpose of making a designed selection in the first
place. Indeed, the possible results of such an approach would be that the gradient descent is
fast in terms of needed update steps to reach a local minimum, but the sheer time needed to
even make one update step is so long that all other presented approaches would be faster.

In preliminary work, we entertained the idea that a sample’s utility, or importance is
tightly coupled with the performance of our model when operating on said sample. Upon
performing literature review we also find that others before us also consider this to be the case
(see Katharopoulos and Fleuret [2018]; Jiang et al. [2019]). The idea presented is that the
utility of a sample can be inferred from performance measures like loss, gradient norm, or rank
of either of the two.

U(x) ∼ P (x)
x : data sample(s)
U : Utility
P : Performance

Where P is either of the aforementioned performance measures or their inversion (high-loss
samples have higher importance than low-loss samples for example). We suggest that in clas-
sification tasks, there is additionally the binary accuracy/error value (correctly or incorrectly
classified). Accuracy and error, however, being binary values, cannot directly be used to select
the most important.

Another, perhaps more likely modelling of the relation, although more up for interpretation
is the following:
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U = f ◦ P
f : an unknown function
U : Utility
P : Performance

Suggesting that there is a more complex relation in play - that utility presents itself as a
compound function, perhaps dependent on a multitude of properties of the sample and how the
model performs when presented with said sample.

Luckily for us, we’re not trying to find a sampling strategy that only selects the samples of
high utility. What we are trying, is to find a sampling strategy that select more samples of utility
that the standard mini-batch SGD archetype approach does. And this task is comparatively
much easier! We mentioned earlier that selecting the most important samples is not possible
directly through the metric of accuracy. However, we can assume — considering the relation
described above — that inaccurately classified samples generally are of higher utility than
accurately classified samples.

A potential benefit of selecting such a non-specialised metric to decide which samples to
include in training, is that we might circumvent the overfitting Song et al. [2020] present to
often be a result of training on designed selections over time, seeing as our data selection then
has the potential to be more varied than that of a loss- or gradient-focused selection.

Our suggested approach is thus to only sample inaccurately classified samples, as they are
assumed to have higher utility than that of a stochastically sampled samples.
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3.2 Overthrowing the Archetype
From the archetype we identify that the region we want to modify to introduce adaptive sam-
pling is the how data is fed to the neural net. As our selection mechanism is dependent on the
current state of the model, we first need to feed all samples to it to determine which to accept,
and which to reject. Then, when all accepted samples (i.e. the inaccurately classified ones)
are found, they are passed through the model yet again, this time to calculate the losses and
gradients. Finally, we use the gradients in the gradient descent update rule (see eq. (2.2)), and
move on to the next batch.

3.2.1 Preliminary Work — The Search for Selectors

In the preliminary phase of the thesis, we explored a wide range of selectors, many of which
were novel in their own right, or novel variations of existing methods. Before we get to our
final architecture and approach we use in our experiments, we present some of our preliminary
work that we did to explore the field and gather ideas, ultimately leading us to where we ar
now. Many of which we see potential in as further discussed in section 5.4 Future Work.

The fundamental idea we started out with in our exploratory phase for this thesis was the
idea of adaptive selections; using the model’s own properties to determine what to train on.

We were exploring opportunities primarily using MNIST, leading us to working with the
baseline basically being BGD, as everything could fit easily in one batch on GPU. This lead to
some variants being difficult to apply in later iterations as larger datasets generally need to be
split into smaller mini-batches, and worked on using either SGD or MBGD.

Algorithm 2
Training Loop in Preliminary Work. . This is essentially BGD

Require: A Dataset; S.
Require: A Loss Function; C(Y, Ŷ).
Require: An Optimiser; Op.

1: procedure Train(net, epochs)
2: for e← 1 to epochs do
3: Bdata, Blabels ← Select(S; net) . In BGD, Select returns S
4: predictions← net.Forward(Bdata)
5: losses← C(predictions, Blabels)
6: gradients← net.Backward(losses)
7: Op.step(net, gradients) . Adjust net parameters

8: end for
9: end procedure

This search for a new method of sampling quickly went to losses, as they are readily
accessible as part of the training loop already. Initially, the work revolved around the idea that
the loss could be used directly for an informed selection.

Top-k Selector Our first iteration of a selection mechanism was the top-k selector. The
essence of it to simply sort the samples on their loss value, then pick the k samples of highest
loss.
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Algorithm 3
Select (Loss Sorted Top-k)

Require: A neural net model; net.
Require: A Loss Function; C(Y, Ŷ).

1: function Select(S)
2: X , Ŷ ← S
3: predictions← net.Forward(X )
4: losses← C(predictions, Ŷ)
5: idxdesc ← argsort(losses) . Sort indices on losses, descending

6: S# ← S[idxdesc[0 : k]] . Select k top elements of S
7: return S#

8: end function

Top-q Selector Other variants of this were quantile-based selectors, with q being of the
interval (0, 1) (normally set to values like 0.5), which selected all samples above said quantile.
Using it meant giving up control of number of samples for a more flexible selector taking the
relative sample losses into account. This would sometimes lead to noisy learning, as the non-
static size of batch size effectively made learning rate have less control of the step size taken in
gradient descent.

Loss Weighted Random Selector The loss weighted sampler bears resemblance to
top-k, and shares the same basic structure as algorithm 3. With the fundamental difference that
it uses a weighted random selection instead of the top k elements of the sorted loss. The sorted
loss is instead utilised as the to make a probability density function for weighting the selection.
This in turn, is similar to the proposed selection mechanism proposed by Jiang et al. [2019],
with the primary difference being that their approach was defined to accumulate batches, while
we were still performing selection on the whole dataset, putting us closer to a filtered variant
of BGD.

Loss q-Split Random Selector This loss-based sample selector again is similar to
the previous selectors, with it, we aim to divide a cumulative loss-power into equally sized
portions, and from that take equally many samples from each portion. Doing so with a high
power p would result in making a qth part of the selection from a small number of high-loss
samples. Doing so with a low power p would result in a more equal spread of selected samples
in terms of losses.

An example case of using this: If we’ve set q = 2 and p = 3, the cumulative losses would
in the last couple of elements raise very quickly, seing as that’s where the high-loss samples
reside after sorting. Having q = 2 in this case would make half of the selection among these
last couple of samples, while the other half would be spread equally among the low losses and
middle losses.
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Algorithm 4
Select (Loss q-Split Random Selector)

Require: A neural net model; net.
Require: A Loss Function; C(Y, Ŷ).
Require: A power factor; p ∈ (0,∞). . typically 2 or higher

Require: A number of buckets; q ∈ [2..∞). . typically 2

Require: A number of samples; k ∈ [2..∞). . typically 2

1: function Select(S)
2: X , Ŷ ← S
3: predictions← net.Forward(X )
4: losses← C(predictions, Ŷ)
5: idxasc ← argsort(losses, −1) . Sort indices on losses, ascending

6: cuml← cumsum(losses[idxasc]
p) . cumulative losses

7: buckets← [[] ∗ q] . make q empty buckets

8: bs← last(cuml) /q . bucket size

9: bi ← 0
10: for all i in idxasc do . Assign indices to their buckets

11: buckets[bi].append(i)
12: if cuml[i] ≥ bs ∗ (bi + 1) then
13: bi ← bi + 1
14: end if
15: end for
16: idxselect ← [] . Fill by equally many samples from each bucket

17: for all j in [0..q] do
18: idxselect.append(SelectRandom(buckets[j], k /q))
19: end for
20: D# ← S[idxselect]
21: return D#

22: end function

An interesting side-note to add about p is that it could hypothetically be decaying over time to
reduce selection pressure, similar to what Song et al. [2020] do in order to circumvent potential
overfitting issues related to non-uniform sampling.

From here we saw that although the different solutions seemed to work, they were getting ever
more convoluted and introduced new hyperparameters. So we went back to the simplest variant,
the top-k selector, and rather tried to make changes to that. This turned out to be the birth of
the filtering-concept

Although most of the selectors also can be seen as filtering mechanisms, they themselves
rely on a dataset. And there is nothing stopping us from doing some simple filtering on said
dataset before we apply the selectors. Hence, we came up with some filtering schemes too:

Hard Accuracy Filtering The simplest of them all, and closest to the main exper-
imental focus of this thesis is the hard accuracy filter, where we first filter out samples the
network is already able to handle, and then prioritise which samples to train on based on a k.
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Figure 3.1: An example run where Hard Accuracy Filtering (algorithm 5) was
utilised. Showing promising results on MNIST with a simple 3-layer fully con-
nected network.

Algorithm 5
Select (Hard Accuracy + top-k)

Require: A neural net model; net.
Require: A Loss Function; C(Y, Ŷ).

1: function Select(D)
2: X , Ŷ ← D
3: predictions← net.Forward(X )
4: filter ← argmax(predictions) 6= Ŷ
5: predictions# ← predictions where filter
6: D# ← D where filter

7: Ŷ# ← D#[1] . Select filtered labels

8: losses← C(predictions#, Ŷ#)
9: idxdesc ← argsort(losses) . Sort indices on losses, descending

10: D# ← D#[idxdesc[0 : k]] . Select top k from the filtered subset of D#

11: return D#

12: end function

Obviously, one catch with this approach is the potential problem of not having enough
samples to take from after having filtered. Depending on k this might be a problem or not.
In larger datasets like CIFAR-10 and CIFAR-100. k needs to be somewhat large to encounter
such a problem. Nonetheless, it is a real problem, and it is a problem that is actually nice to
encounter, seeing as that would mean the network has learnt most of the samples of the dataset.
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It should be considered however, before employing such a solution. Our go-to option in cases
where we encountered this problem (which, given that we were using MNIST was somewhat
more often) was to simply select random samples from the dataset, essentially defaulting back
to SGD.

Soft Accuracy Filtering An iteration of the filter-idea from there was the soft accuracy
filter. The grounds for this idea came from a concern that hard accuracy filtering potentially
ends up having samples oscillating out and in of the set of samples the model can handle.

Soft accuracy utilises the prediction of the neural network to determine not only if a sample
is correctly classified, but also that it’s well within some margin of the class compared to the
other classes. Essentially, it strives push its decision boundary a bit further than the bare
minimum for a correct classification on the training dataset. Doing so would achieve similar
effects to that of [Lin et al., 2017], in which an additional term is added to the cross-entropy
loss, reducing the loss on samples that are well within the decision boundary. (see appx. fig. 8)

Algorithm 6
Select (Soft Accuracy + top-k) . Changes from Hard Accuracy highlighted

Require: A neural net model; net.
Require: A Loss Function; C(Y, Ŷ).
Require: A margin; α ∈ (0, 1)

1: function Select(D)
2: X , Ŷ ← D
3: predictions← net.Forward(X )
4: filter ← argmax(predictions) 6= Ŷ
5: cdx← softmax(predictions) . Belief distributions per sample

6: idx← [0..len(D)] where not filter . Get indices of accurately classified

7: marginal← []

8: for all i in idx do

9: p, q ← sort(cdx[i])[0 : 2] . Get 2 highest beliefs of sample

10: if p− q ≤ α then

11: marginal.append(D[i])

12: end if

13: end for
14: predictions# ← predictions where filter
15: D# ← D where filter

16: Ŷ# ← D#[1] . Select filtered labels

17: losses← C(predictions#, Ŷ#)
18: idxdesc ← argsort(losses) . Sort indices on losses, descending

19: D# ← D#[idxdesc[0 : k]] . Select top k from the filtered subset of D#

20: D#.appendAll(marginal) . Add all soft filtered samples

21: return D#

22: end function
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3.2.2 Keep It Simple Stupid — Our Main Approach to
Selection

As mentioned in the previous section, we got to a point in our preliminary work where we found
our selectors to be too convoluted, and too complex. They were ideas combining concepts we
yet had to reason about on the individual level, considering what each concept brought to the
selection. Hence; we take a step backwards in complexity, and follow the KISS (Keep It Simple
Stupid) principle, when we now pose the idea of reducing the complexity of our selection.

We move from having introduced a filtering mechanism as an addition to our loss-oriented
sample selectors, to instead discard the loss from our selection process entirely. Our motivation
for doing so lies in the aforementioned uncertainty about what accuracy as a metric gives us; we
want to discover it contribution, while also suggesting that the accuracy metric might yet prove
sufficient on its own as a means to perform sample selection, as it is not as susceptible to high-
loss outliers as a loss-oriented approach may be (meaning that it doesn’t prefer the high-loss
erroneous samples over the low-loss erroneous samples, which a loss-oriented one might).

Previous methods have already indicated a benefit of non-stochastic selection of samples
utilising losses or gradients [Katharopoulos and Fleuret, 2018; Jiang et al., 2019], in addition
to our preliminary exploratory experiments. Hence; we can also motivate our step back to the
simpler filtering mechanism as it will be the newcomer to the field.

From this point, we look to larger datasets (CIFAR-10 & CIFAR-100), in addition to
MNIST, as a selector algorithm ideally should scale to larger machine learning problems too.
Not just the relatively simple problem of image classification on MNIST.

Accuracy Filtering The accuracy filtering scheme is very similar to that of algorithm 5,
with the exception that we don’t need to calculate losses at all.

Algorithm 7
Filter (Accuracy/Error)

Require: A neural net model; net.
1: function Filter(D)
2: X , Ŷ ← D
3: predictions← net.Forward(X )
4: D# ← D where argmax(predictions) 6= Ŷ
5: return D#

6: end function

We insert this into a training loop similar to the Archetype Training Loop (Algorithm 1),
modified to perform a filtering operation on the dataset every time a new epoch starts. This
will from

3.3 The Problem of Filtering Large Data
A somewhat convoluted problem arise when using the epochwise-filtered training loop (Algo-
rithm 8). Namely; memory requirements. This applies especially when applying the algorithm
to larger datasets, as they cannot all be held in memory at once. Strictly speaking, this is not
the case with the datasets we used, as they are relatively small in the grand scheme of things,
but it’s nonetheless something we considered when implementing the algorithm.

With some datasets consisting of samples of a vastly larger size than that of CIFAR-10, such
as ImageNet which (admittedly has varying image sizes, but) has a rough estimate of images’
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Algorithm 8
Epochwise Filtering Training Loop. . Changes from Archetype (Algorithm 1) highlighted

Require: A Dataset; S.
Require: A Loss Function; C(Y, Ŷ).
Require: An Optimiser; Op.

1: procedure Train(net, epochs)
2: for e← 1 to epochs do
3: D ← StochasticBatch(S, len(S)) . Shuffled dataset

4: D# ← Filter(D; net) . Select samples of high utility

5: for all MBdata, MBlabels in Batch(D#, sizeMB) do
6: predictions← net.Forward(MBdata)
7: losses← C(predictions,MBlabels)
8: gradients← net.Backward(losses)
9: Op.step(net, gradients) . Adjust net parameters

10: end for
11: end for
12: end procedure

average size being 400×350, 24-bit (3B) true color color pixels. Oftentimes, the images are pre-
processed and re-scaled to a size such as 256× 256, meaning we get a total of 3B × 256× 256 =
192KiB per sample. Assuming we were to work on a portion of the whole dataset; let’s say
1 000 000 training samples, we would be looking at 192KiB × 1 000 000 ≈ 183GiB , which is
beyond any normal amount of RAM, and especially an normal amount of VRAM accessible for
doing training on GPU.

If we try to do epochwise filtering on such a large set of large samples, we would end up
overstepping our available memory. Not only do we need to load all the samples in the first
place — albeit, we can do that batchwise — but we would need to store the filtered data too,
before we perform a training step on it which, again would be a massive amount of data.

Having considered this problem, we naturally looked at possible solutions too, of which we
found two:

3.3.1 Storing Indices of Filtered Data

One of the easiest ways to alleviate the needed memory when storing filtered data, is to instead
store the indices of said data. Then, upon fetching a mini-batch of filtered data, one would
fetch batch size stored indices, and then simply perform a lookup from the dataset directly.

This solution is good, and works well to mitigate the memory issues, as an index is typically
either 4B or 8B in size, compared to the 192KiB described above, and we see how much more
scalable this solution is. However, a problem quickly arise with this approach too.

Data Augmentation Modern approaches for image classification, and classification in
general often rely heavily on data augmentation, a process in which we transform the sample
data (in image classification problems being the image) to an randomly augmented version of
the same data, essentially creating more training data than we have accessible through the
dataset. Obviously this could simply be seen as an extension of the dataset, which would still
work fine if we were storing aside the data itself for training.



29 Architecture

Once we store aside the index instead however, we will augment the sample data differently
from the data we filtered on, which, depending on the severity of the augmentation will cause
the training loop to ignore augmented samples it may still be unable to classify correctly.

Furthermore, seeing as the data we filter on and the data augmented post-filtering is differ-
ent when storing the index, we end up in a scenario where the index is marked as an unlearnt
sample, because the augmentation done before filtering resulted in a sample our model was
unable to classify correctly, while the augmentation done upon training may result in a sample
our model is capable of handling.

The problem is framework specific, so this may not apply for all implementations, and might
yet be circumvented by manually doing augmentation in the training loop. It is however an
issue worth mentioning, as our implementation of epochwise filtering don’t take augmentation
into account, precisely because it doesn’t store aside the data, but rather the indices.

3.3.2 Not Filtering Epochwise; Batchwise Filtering

While epochwise filtering might be beneficial in the sense that the added overhead is minimal,
it’s also a solution that doesn’t explore the potential of filtering to its full extent. — Why not
filter for all batches instead? That way we can always ensure that the samples the model is
training on is (according to our selection scheme) the samples of most utility.

Using a batchwise filtering mechanism instead alleviates us from all of the resource-related
issues, as we now can keep smaller batches in memory instead. With that, it also circumvents
the issues related to data augmentation we saw in epochwise filtering. We simply keep the data
for when we’re actually training the model, post-filtering, and as such; we can always be sure
that the data presented to the model is data controlled by us through our sampling scheme.

There are two ways in which we could implement a batchwise filtering, both of which have
their own catch to them:

Algorithm 9
Adaptive Sampler Training Loop - Batchwise (Unstable batch size)

Require: A Dataset; S.
Require: A Loss Function; C(Ŷ , Y ).
Require: An Optimiser; Op.

1: procedure Train(net, epochs)
2: for e← 1 to epochs do
3: for all MB in StochasticBatch(S, sizeMB)
4: MB# ← Filter(MB;net)

5: MBdata, MBlabels ←MB#

6: predictions← net.Forward(MBdata)
7: losses← C(predictions,MBlabels)
8: gradients← net.Backward(losses)
9: Op.step(net, gradients) . Adjust net parameters

10: end for
11: end for
12: end procedure
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The First one is quite simply receiving a batch of n size from the dataset, performing the
filtering operation, and then using this subset of filtered data as its batch.

The catch with this one is that the resultant filtered batch has a varying size. Throughout
training the effective batch size would end up becoming smaller and smaller, leaving the few
samples left in the batch to have a larger impact on the gradient than any one sample normally
would have when a batch size is set to be stable, effectively overriding the set learning rate. We
imagine this could lead to unstable progression, and instead end up opting for option two:

Algorithm 10
Adaptive Sampler Training Loop - Batchwise

Require: A Dataset; S.
Require: A Loss Function; C(Y, Ŷ).
Require: An Optimiser; Op.
Require: A raw batch sampling size; sizeRB.
Require: An ideal filtered batch size; sizeFB.

1: procedure Train(net, epochs)
2: FB ← [] . Initialise empty filtered samples mini-batch

3: for e← 1 to epochs do
4: for all RB in StochasticBatch(S, sizeRB) do
5: RB# ← Filter(RB; net)

6: FB.append(FB#)

7: if len(FB) ≥ sizeFB then

8: X , Ŷ ← FB[0 : sizeFB] . Select sizeFB samples

9: predictions← net.Forward(X )
10: losses← C(predictions, Ŷ)
11: gradients← net.Backward(losses)
12: Op.step(net, gradients) . Adjust net parameters

13: FB ← [] . Empty filtered samples for next batch

14: end if
15: end for
16: end for
17: end procedure

The second option is to accumulate filtered batches over a number of passes getting raw
data from the dataset. This would look a lot like an archetypal training loop, with the exception
that we put filtered the raw batches (i.e. the unfiltered data) instead of training on them. We
only do the forward pass (see eq. (2.2)), and from there evaluate the accuracies to accept or
reject samples into the filtered batch. Once the batch is filled, we perform an update step, and
reset the accumulated batch.
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Figure 3.2: Accumulative Batching of Filtered Data

Batch Accumulation is what we have dubbed this second option. We want our trainer
algorithm to serve data in batches, and perform MBGD on them. We want these batches to be
carefully selected. When doing this careful selection (i.e. filtering) of which samples to include
in a batch, we end up rejecting some samples from being included in the batch. To mitigate the
issue of variable batch size, we adapt an accumulative way of building our batches. Inspired
by Jiang et al.’s [2019] accumulation of samples before performing updates, we too iterate over
the dataset and filter out samples that should not be part of the current batch.

For computation speed, it is ideal if we emplace as much as possible from the dataset into
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one batch. Doing so will allow us to fully utilize data broadcasting and vectorized operations,
which most modern computers — and certainly those designed to be machine learning capable
— generally do, and draw great performance-boosts from. However, emplacing more data into
one raw batch may lead to a large batch overflow, which ultimately ends up being work that’s
just discarded.

Filtered Sample Overflow is an issue our current implementation of the accumulator
does not take into account. By that we mean that unfortunately, the sampling process ends up
doing more work than what is ultimately used.

Raw data that endure filtration is not guaranteed to be included in the filtered batch. When
a filtered batch is completed there may yet be samples that were filtered, but that didn’t fit into
the batch. Seeing as we once again want our batches to be of a stable size, we simply discard
the overflown accepted samples. This fortunately is a diminishing drawback; as the acceptance
ratio decreases continually through training, the overflow grows smaller and smaller (This is
illustrated in appx. fig. 6b).

The Semantic Problem of ”Epochs” is one that arise when we introduce filtering
to the selection process. Specifically, the term epoch as is, is defined as a cycle over all the
samples of the training dataset. How are we to define when our filtering reaches the end of an
epoch, when we practically never cycle through all the data of the training dataset?

In the epochwise filtering scheme, this isn’t all that big of an issue, as we could look at the
filtered dataset to be the one we cycle over. Equally, when filtering batchwise with an unstable
batch size (Algorithm 9), we can easily consider a cycle as a having filtered all the samples from
the training dataset.

However, when we use the stable batch size implementation (Algorithm 10), we end up
in a situation in which we might have varying number of training steps being performed per
epoch. Additionally, as it is most efficient for building up our filtered batch, a filtered batch may
contain samples from several different epochs, and several epochs may pass without a training
step being performed. If the batch size is set to a large number, and the filter’s acceptance ratio
is growing low, this can easily become the case. (All of these effects can be seen illustrated in
appx. fig. 6)

3.4 Final Architecture
Our final architecture, and the architecture we refer to from this point on, will primarily be
batchwise filtering with stable batch size (i.e. unstable number of training steps per epoch).
And Epochwise filtering.

For both we have the option of using data augmentation. For batchwise filtering we can
guarantee a ”hard filtering”, as the augmented samples we accept through the filtering also will
be the same sample we train on. For epochwise filtering however, turning data augmentation
on results in a ”soft filtering” in which an augmented sample accepted through the filter will
end up being augmented differently when sampling it again for the training.



IV

Experiments & Assessment

We will now go over the experiments we ran in detail, identifying their purpose, as well as
the procedure of how we conducted them. We will present the metrics of the experiments,
identifying which data are measured and tracked, as well as a description of the variables of
the experiments.

We will present the hardware and software used to conduct and analyse the experiments
and their results, as well as initial parameters.

Finally, we move on to present the results and evaluate them.

4.1 Experiment Plan
We have built a novel way of selecting samples for mini-batch SGD. Our initial motivation
for making a new selection procedure was to reveal whether it could improve performance
and limit overfitting. As such, we focus our experimentation efforts to assess a large set of
configuration combinations for our novel approach. Not only that, but we also ensure that
for every one configuration using our approach, we have an equivalent archetype training loop
running alongside using the same set of parameters.

It has to be emphasised again that although we are comparing our accuracy-filtering ap-
proach to that of an archetypal mini-batch SGD, we are not focusing our effort on exceeding
it in terms of accuracy in any way. We are not looking to outperform the state-of-the-art,
but rather to discover niches, benefits, drawbacks; indeed, overall behaviour in a multitude of
hyperparameter configurations. Our ultimate goal, after all, is to find if our novel approach in
any respect is valuable and if using a designed selection like this can have useful effects.

With that being said, it should also be noted that we also have runs using state-of-the-art
configurations. Yet again to see if we too benefit from said configurations or not. These runs
can be observed in appendix II.

To a great extent, our experiments are conducted exhaustively, attempting to isolate the

33
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effects of our additions and open for the eventuality that our additions combined with other
optimisations may prove favourable or unfavourable.

Concretely, we are tracking the following metrics and poll their values once per epoch:

Wall-Clock Time How much time does the training loop use to get through all epochs. — A
lot of the related works found that non-stochastic sampling can lead to reaching higher
accuracies faster in a set time frame [Katharopoulos and Fleuret, 2018; Song et al., 2020;
Jiang et al., 2019]; hence, we look for this behaviour when using our sampling method
too.

Accuracy How many of the samples given has the model correctly classified per epoch. —
Naturally, if we were to outperform the archetype, it would be safe to say that something
interesting is happening. It’s a no-brainer to keep track of how the accuracy of models
subdued to our new sampler.

Mean Loss The mean of all samples’ classification losses, defined by cross entropy in our
experiments. — As are looking at the effects of our approach in terms of overfitting, one
of the crucial metrics to track is mean loss, as it is perhaps the best metric to identify
overfitting with.

Worst Loss The loss of the one sample our model performs worst on. — The mean loss is not
the only loss metric of interest however! The worst loss-metric will help us understand
the generalisation ability of the model.

Quantile q = 0.9 Loss The loss of quantile samples. — In addition to the mean loss and
worst loss, a metric we track is the loss of quantile q = 0.9. Doing so might again help us
understand the generalisation capabilities, but will also allow us to make rough estimates
of how our losses in general are.

In addition, we track the following metrics which have been left out in plots and tables for
brevity, and because they don’t add much of interest:

Best Loss Quantile q = 0.5 Loss

Quantile q = 0.99 Loss Process GPU Temp

Process GPU Power Usage Process GPU Memory Allocated

Process GPU Temp Process GPU Utilization

Process CPU Threads In Use Process Memory Available

Process Memory In Use CPU Utilization

All of the runs of our experiments are set up to adhere to the same set of hyperparameters.
Unless explicitly stated otherwise, they follow the setup illustrated in table 4.1
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Configurable Parameter Value Parameter Purpose

model ResNet18 The type of model are we training.

optimizer SGD Which optimizer to use for the run.

batch size 1024 The size of the mini-batch used for training.

learning late 0.1
The initial learning rate the optimizer
should use.

data augmentation1 True
Should the run use augmentation on sam-
pled data from the dataset.

rng seed 0
The random seed for the Pseudorandom
number generator (PRNG) used in the run.

weight decay 0.0005
At what rate should the weight parameters
of the model be decaying. (0 ⇒ no decay).

epoch filtering False
Make an accuracy-filtered dataset selection
at the start of epochs.

batch filtering True
Should the run Create accuracy-filtered
batches.

lr scheduler None
Learning rate scheduler (available choices
are exponential2, multistep3 and None).

accumulation batch size4 None
The size of raw batches used in batch accu-
mulation (None ⇒ batch size).

momentum5 0.9
Add this proportion of the last update vec-
tor to the current update vector.

nesterov5 False
Should the run use nesterov accelerated gra-
dients.

amsgrad6 False
Should the run use amsgrad, maximizing
the squared gradients term used in the
Adam update equation.[Ruder, 2016]

gamma7 0.1
Decay factor deciding how much the learn-
ing rate should change (Defaults to 0.1 us-
ing multistep, 0.995 using exponential).

Table 4.1: Baseline parameters used in all experiments.

Our experiments can be seen as one big experiment with separate trials for various pa-
rameter configurations. However, within the parameter combination exploration, some sets of
combinations can easily be considered distinct to the rest of the runs. To make it easier to
process and present the data, we pick out a selection of these runs with the intent to present
any findings of trends seen in these, and findings specific to those runs. For a full overview of
the experiments we ran, see Appendix II.

1Only applies for runs using CIFAR-10 or CIFAR-100
2https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ExponentialLR
3https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.MultiStepLR
4Only applies to runs using batch filtering.
5Only applies to runs using the SGD optimizer.
6Only applies to runs using the Adam optimizer.
7Only applies runs using a lr scheduler.

https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ExponentialLR
https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.MultiStepLR
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The experiments are highly exploratory, which could be considered a problem, as it is
difficult to know where to start and where to go, but due to the novelty of our approach, we see
it as the only option to lay the grounds. By running these exploratory experiments, we intend
to find the unknown relations, if any, between the sample filtering and the various metrics
listed earlier, and to that extent present data to discuss so we can further answer our research
questions.

The selection of experiments we pick out are the following:

MNIST Fully Connected Networks A scenario in which a simple fully connected network
often is sufficient to get high scores — how will a model trained using our approach fare?

Modified Parameters For This Experiment
Parameter Values

model [FCNet100, FCNet1000, FCNet3000]
data augmentation False
batch filtering [True, False]

MNIST Epochwise Filtering Explore how the two implemented filtering modes compare
to each other, how they both compare to an archetypal trainer, and how they compare
when combined.

Modified Parameters For This Experiment
Parameter Values

model [LeNet, ResNet18, DLA]
data augmentation False
epoch filtering [True, False]
batch filtering [True, False]

CIFAR-10 Fully Connected Networks CIFAR-10 is a slightly more challenging scenario
for a fully connected network. Will our addition help in that regards?

Modified Parameters For This Experiment
Parameter Values

model [FCNet100, FCNet1000, FCNet3000]
data augmentation True
batch filtering [True, False]

CIFAR-10 Batch Size Variations What happens when we adjust batch size, and how will
it affect accuracy, not to mention losses?

Modified Parameters For This Experiment
Parameter Values

batch size [16, 128, 256, 512, 1024]
data augmentation True
batch filtering [True, False]

CIFAR-100 Fully Connected Networks CIFAR-100 on a fully connected network is prac-
tically unheard of, but maybe our filtering might help?

Modified Parameters For This Experiment
Parameter Values

model [FCNet100, FCNet1000, FCNet3000]
data augmentation True
batch filtering [True, False]

CIFAR-100 Batch Size Variations The same as with CIFAR-10 and batch size variations,
but with more classes, and fewer examples per class. How will we fare with less data per
class?
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Modified Parameters For This Experiment
Parameter Values

batch size [16, 128, 512, 1024]
data augmentation True
batch filtering [True, False]

4.2 Experiment Setup
The experiment runs have all had a somewhat involved setup to get going, through iterations
however, we have reached this relatively condensed list of information relevant for replicating
the works done in this thesis. This will now be covered, when we first look to hardware and
software details, how we ran experiment runs on a cluster computer, how the initialisation of
variables are set, and which datasets we are employing.

4.2.1 Hardware & Software

Processor Cores Memory GPU
Intel Xeon Gold 6132 28 768GB NVIDIA Tesla V100 16GB

Table 4.2: Hardware Specifics of the Cluster Node Used.

To run our experiments we used the IDUN-cluster of the HPC-group of NTNU [Själander et al.,
2019]. That gave us the control of hardware and software parameters, as well as the needed
GPU-capabilities for performing all the experiments we have.

The cluster uses the Slurm Workload Manager to allocate resources and to its users and
manage a queue of jobs to be run. Our experiments’ Slurm-jobs follows this general format:

1. Request resources:

• 16 processing cores (for optimal throughput using 4 workers per DataLoader in
PyTorch).

• 32GB Memory (for loading and handling datasets in larger bulks).

• ∼4 Tasks at a time (for all array-jobs).

2. Load module of needed software and libraries:

• Python8 3.8.6

• PyTorch9 1.7.1

• torchvision10 0.8.1

• numpy11 1.19.2

• wandb12 0.10.26

3. Run python-script with parameters determined by job array-index and predefined pa-
rameter list.

8https://www.python.org/
9https://pytorch.org/

10https://pytorch.org/
11https://numpy.org/
12https://wandb.ai/

https://www.python.org/
https://pytorch.org/
https://pytorch.org/
https://numpy.org/
https://wandb.ai/
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4.2.2 Implementation

The majority of our runs are based in batchwise filtering, and both that and the less interesting
epochwise filtering should both be reconstructible from the algorithms laid out in algorithms 7
and 10. Initialisation of all runs of an experiment happens upon startup of the run, when
it receives the arguments of the run (or defaults if omitted). The initial of all runs have
been set up in such a way as to use the same initial PRNG-state, ensuring that although the
divergence of random values is inevitable (considering that we have two vastly differing sampling
mechanisms), it will always start out the same between runs within an experiment

As a general rule, our experiments run for at least 300 epochs, as that is the region whence
we’ve found most interesting behavioural indicators. That being said, some of the experiments
we let run longer, both 500 and 1000 epochs are reasonable for a run to execute within.

Most runs we run on the ResNet18 [He et al., 2015] architecture, modified for use in 32×32-
sized images as opposed to the 224 × 224 of the original implementation. We also have a
selection of runs and experiments running on LeNet [LeCun et al., 1998], and state-of-the-art
architectures like DLA [Yu et al., 2018]. At the time of writing all implementations of the
various networks used can be found online; see Kuangliu’s CIFAR-10 with Pytorch13 (except
the FCNet models, which are all simple one-layer networks of the in→ n→ out format).

4.2.3 Datasets

As stepping stones to show a general tendency in training behaviour when using our custom
sampling scheme, we conduct experiments on several datasets of increasing difficulty. Doing so
should give us a good idea of the boundaries of our new approach, indicating what works and
what doesn’t, and in which circumstances.

Dataset Classes Training set Per class Test set Per class Dimensions

MNIST 10 60 000 ∼6 000 10 000 ∼1 000 28×28
CIFAR-10 10 50 000 5 000 10 000 1 000 32×32×3
CIFAR-100 100 50 000 500 10 000 100 32×32×3

Table 4.3: Overview of datasets used in experiments.

MNIST: Ever since LeCun et al. [1998] first introduced their MNIST dataset, it has paved
the way for many a machine learning enthusiasts and researchers. For many, training a classifier
on the MNIST dataset is their first serious machine learning project. The dataset consists of
images of 10 classes; hand-written digits from 0–9. It comes pre-separated in a training set
and a test set — respectively 60 000 and 10 000 samples. The images are 28×28 pixels of 8-
bit precision (grayscale). MNIST is relatively popular to use as a stepping stone to explore
classification concepts, and put new algorithms to the test, as it is suitably small in terms of
complexity, and in terms of required memory, while also being large in terms of samples per
class (approximately 6 000 training samples for each of the ten classes), giving a lot of data
control to the users of the dataset.14

CIFAR-10: From the world of grayscale to the world of colour, that is perhaps the most
striking difference between CIFAR-10 and MNIST. Along with the fact that CIFAR-10’s classes
are images of vastly different objects. Where MNIST keeps to hand-written digits; a relatively
small domain, CIFAR-10 expands on this massively. Although CIFAR-10 also only has 10

13https://github.com/kuangliu/pytorch-cifar/
14The dataset is available at http://yann.lecun.com/exdb/mnist/

https://github.com/kuangliu/pytorch-cifar/
http://yann.lecun.com/exdb/mnist/
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classes, the domain we’re working with within CIFAR-10 is massive in comparison. The objects
depicted in the different images of the dateset (i.e. the classes) are airplanes, automobiles, birds,
cats, deer, dogs, frogs, horses, ships and trucks. All of which are three dimensional objects,
meaning the images (which can represent the objects in two dimensions) can only show part of
the objects at a time. Any neural network hoping to appropriately classify these can no longer
be of the simple kind, or at least that’s the consensus of current state simple fully connected
models. The internals of the neural net will need to be able to compress said features and
generalize across them.15

CIFAR-100: From one relatively complex problem to another, CIFAR-100 takes the dif-
ficult parts from CIFAR-10, and ramps them up yet another notch. Where CIFAR-10 has a
total of 5 000 samples that can be used to model a class, CIFAR-100 has only 500. In essence,
this should mean that a CIFAR-100 classifier needs to be even better in terms of generalization
to score high in performance.15

Dataset Transforms

As mentioned in section 3.4, we allow both batchwise and epochwise filtering to have batch
accumulation be a part of their training loops. We only set up data augmentation for the
CIFAR-experiments, as MNIST is trivial to solve with a very high accuracy, even without it.
The configuration of our augmentation is as follows:

CIFAR-10 & CIFAR-100

RandomHorizontalFlip(),

RandomAffine(degrees=180, translate=(0.1, 0.1), scale=(0.9, 1.1)),

RandomCrop(32, padding=4),

ColorJitter(brightness=0.5, contrast=0.5, saturation0.5, hue=0.05),

4.3 Results

We will now present the results from the experiments as listed in section 4.1. For all of the
experiments, we will present 9 plots showing the main metrics (covered in section 4.1) of 1-3
runs of a single experiment, in addition to the baseline archetype and its metrics. Further than
that, we will also supplement the plots with a condensed-form table, summarising the final
value for each of the metrics, and the relevant ratios of mtest/mtrain where m represent the
loss and accuracy metrics. This should aid us when looking for signs of overfitting.

Outside the plots and tables we present in this section is also the extensive list of all
experiments ran. It can be found in Appendix II.

4.3.1 MNIST Experiments

15The dataset is available at https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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Filtering Modes and Network Variants with MNIST

MNIST Accuracy Mean Loss Q=0.9 Loss Worst Loss

Model Filtering Train Test Ratio Train Test Ratio Train Test Ratio Train Test Ratio

LeNet16

None 0.999 0.990 0.991 0.005 0.031 6.468 0.001 0.002 1.023 3.272 12.640 3.864
Epochwise 0.968 0.964 0.995 0.140 0.156 1.113 0.008 0.007 0.890 27.821 30.966 1.113
Batchwise 0.998 0.988 0.991 0.072 0.086 1.197 0.194 0.195 1.003 2.664 4.684 1.759
Epoch + Batch 0.953 0.952 0.999 0.213 0.213 1.004 0.547 0.551 1.007 13.197 9.984 0.757

ResNet1817

None 0.996 0.988 0.993 0.016 0.044 2.761 0.010 0.010 1.067 8.224 10.766 1.309
Epochwise 0.979 0.980 1.000 0.070 0.063 0.906 0.029 0.025 0.868 13.521 7.334 0.542
Batchwise 0.998 0.994 0.995 0.084 0.091 1.087 0.191 0.189 0.987 1.860 3.371 1.813
Epoch + Batch 0.964 0.967 1.003 0.258 0.255 0.987 0.538 0.526 0.978 6.954 5.182 0.745

DLA18

None 1.000 0.996 0.996 0.001 0.016 10.796 0.002 0.002 1.035 0.039 7.763 200.017
Epochwise 0.989 0.986 0.998 0.039 0.040 1.042 0.003 0.002 0.899 17.521 10.427 0.595
Batchwise 0.994 0.988 0.994 0.096 0.108 1.128 0.215 0.227 1.054 3.978 3.945 0.992
Epoch + Batch 0.977 0.977 1.000 0.155 0.154 0.995 0.343 0.338 0.986 8.153 5.790 0.710

Table 4.4: Batchwise and Epochwise Filtering on MNIST with LeNet. In this
experiment we vary which network type we use, and explore how the two fil-
tering mechanisms we have presented, namely batchwise and epochwise filtering
perform. Figure 4.1 shows the plots of the 4 emphasised LeNet-runs. We note
that independently from the networks used we have the same order from worst to
best performer among the different filtering mechanisms, no filtering being the
top contender. Additionally, we see a trend in mean loss and Q-loss:

No filtering < Batchwise & Epochwise < Epoch + Batch

From this point we more or less discarded usage of Epochwise filtering as an
alternative. With this, and several other runs (see appendix II) we found it to
be severely worse in practically all respects, and rather prioritized our efforts
on experiments using batchwise filtering. For now we take a last note of this
experiments: the losstest/losstrain ratios are generally close to 1 with batchwise
filtering enabled.
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Figure 4.1: Batchwise and Epochwise Filtering on MNIST with LeNet, using the
four combinations of filtering.
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Fully Connected Network on MNIST

MNIST Accuracy Mean Loss Q=0.9 Loss Worst Loss

Model Filtering Train Test Ratio Train Test Ratio Train Test Ratio Train Test Ratio

FCNet3000
None 0.996 0.982 0.986 0.031 0.061 1.959 0.060 0.069 1.142 8.322 6.629 0.797
Batchwise 1.000 0.968 0.968 0.621 0.623 1.004 0.997 0.998 1.000 1.902 3.135 1.648

FCNet1000
None 0.996 0.982 0.987 0.032 0.062 1.951 0.060 0.068 1.135 8.666 6.462 0.746
Batchwise 1.000 0.968 0.968 0.605 0.608 1.005 0.984 0.986 1.002 1.932 3.208 1.660

FCNet100
None 0.994 0.978 0.985 0.037 0.069 1.899 0.066 0.076 1.144 9.663 7.282 0.754
Batchwise 0.999 0.965 0.967 0.483 0.487 1.008 0.878 0.873 0.995 1.885 3.758 1.993

Table 4.5: Fully Connected Networks on MNIST, 3000 nodes hidden layer. Here
we see something that at first looked like overfitting when applying our filtering,
we clearly seem to have an edge over no filtering in the training data. But again
the batchwise sampler fails to similarly when used on the test dataset. We again
take note of the better loss ratios in mean and q=0.9-losses.

4.3.2 CIFAR-10 Experiments

16LeCun et al. [1998]
17He et al. [2015]
18Yu et al. [2018]
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Figure 4.2: MNIST with Fully Connected Network, 3000 nodes in hidden layer.
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(a) Batchwise and Epochwise Filtering on
MNIST with LeNet. Wall-Clock Time.

(b) MNIST with Fully Connected Network,
3000 nodes in hidden layer. Wall-Clock
Time

Batch Size Variations

CIFAR-10 Accuracy Mean Loss Q=0.9 Loss Worst Loss

Batch Size Filtering Train Test Ratio Train Test Ratio Train Test Ratio Train Test Ratio

1024
None 0.972 0.849 0.874 0.079 0.582 7.346 0.084 1.993 23.720 11.435 15.933 1.393
Batchwise 0.885 0.787 0.889 0.579 0.783 1.353 0.875 1.214 1.387 7.834 12.946 1.653

512
None 0.953 0.862 0.905 0.133 0.495 3.712 0.228 1.599 7.007 9.704 16.415 1.691
Batchwise 0.903 0.812 0.899 0.510 0.711 1.395 0.821 1.140 1.388 5.756 12.914 2.243

256
None 0.917 0.860 0.937 0.232 0.428 1.846 0.655 1.392 2.124 11.727 12.338 1.052
Batchwise 0.910 0.824 0.906 0.487 0.654 1.344 0.825 1.100 1.334 5.140 12.086 2.351

128
None 0.863 0.831 0.963 0.396 0.513 1.296 1.298 1.736 1.337 11.215 9.460 0.844
Batchwise 0.832 0.783 0.941 0.671 0.777 1.159 1.057 1.213 1.148 6.556 10.651 1.625

16
None 0.590 0.578 0.979 1.202 1.225 1.019 3.039 3.134 1.031 13.549 11.017 0.813
Batchwise 0.530 0.521 0.983 1.264 1.278 1.011 2.100 2.139 1.019 9.423 8.714 0.925

Table 4.6: ResNet18 Batch Size Variations with CIFAR-10. Once again we take
a note of the trend in losses: In mean loss, our approach is performing slightly
worse. In q = 0.9-loss we see the same apply for batch sizes from 256 and up,
while the test q = 0.9-loss is better across all batch sizes. This in turn we see
in the train-test loss ratio too for mean and sub-q = 0.9 losses. The contrary is
the case when it comes to worst-case losses, where our filtering results in a lower
overall worst-case loss, but a larger gap between worst-case losses of the test and
training sets.
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Figure 4.4: ResNet18 Batch Size 1024 on CIFAR-10
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Fully Connected Network

CIFAR-10 Accuracy Mean Loss Q=0.9 Loss Worst Loss

Model Filtering Train Test Ratio Train Test Ratio Train Test Ratio Train Test Ratio

FCNet3000
None 0.327 0.331 1.012 2.007 2.023 1.008 3.703 3.745 1.011 11.853 13.368 1.128
Batchwise 0.306 0.305 0.998 1.960 1.957 0.998 2.839 2.845 1.002 7.714 9.661 1.252

FCNet1000
None 0.323 0.324 1.004 1.978 1.984 1.003 3.543 3.591 1.014 12.994 13.454 1.035
Batchwise 0.304 0.306 1.008 1.956 1.949 0.997 2.803 2.793 0.996 8.276 10.779 1.302

FCNet100
None 0.287 0.291 1.012 2.003 1.997 0.997 3.344 3.329 0.995 19.261 9.056 0.470
Batchwise 0.277 0.279 1.006 1.975 1.966 0.995 2.697 2.679 0.993 12.644 6.851 0.542

Table 4.7: Fully Connected Network on CIFAR-10, 3000 nodes in hidden layer.
For this problem, we dont see such a strong tendency towards the trend we
otherwise have seen with mean losses and q=0.9-losses. It still applies, but is
for some reason not as strongly present when running on CIFAR-10 with a fully
connected network.

4.3.3 CIFAR-100 Experiments

Batch Size Variations

CIFAR-100 Accuracy Mean Loss Q=0.9 Loss Worst Loss

Batch Size Filtering Train Test Ratio Train Test Ratio Train Test Ratio Train Test Ratio

1024
None 0.790 0.512 0.648 0.704 2.371 3.365 2.407 6.920 2.875 14.541 19.328 1.329
Batchwise 0.924 0.560 0.606 0.388 1.659 4.281 0.957 4.484 4.683 9.300 15.359 1.652

512
None 0.631 0.480 0.760 1.338 2.339 1.748 4.079 6.437 1.578 15.471 15.910 1.028
Batchwise 0.885 0.565 0.638 0.478 1.647 3.447 1.190 4.413 3.709 9.125 14.732 1.615

128
None 0.462 0.425 0.918 2.011 2.185 1.087 4.645 4.947 1.065 12.182 13.316 1.093
Batchwise 0.539 0.470 0.871 1.635 1.932 1.182 3.455 4.116 1.191 10.297 10.369 1.007

16
None 0.144 0.145 1.004 3.590 3.602 1.003 5.474 5.490 1.003 15.282 12.813 0.838
Batchwise 0.145 0.146 1.002 3.583 3.585 1.000 5.270 5.272 1.000 11.979 12.108 1.011

Table 4.8: ResNet18 Batch Size Variations with CIFAR-100. This is perhaps the
most interesting experiment found, as it differs a lot from the results we’ve seen
previously. The trend we’ve seen in loss ratios being better is gone, and the model
trained with filtering is outperforming the archetypal, no-filtering approach.
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Figure 4.5: CIFAR-10 on a Fully Connected Network with one layer of 3000
nodes.
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(a) CIFAR-10 on ResNet18 using a batch
size of 1024. Wall-Clock Time.

(b) CIFAR-10 with Fully Connected Net-
work, 3000 nodes in hidden layer. Wall-
Clock Time.

Fully Connected Network

CIFAR-100 Accuracy Mean Loss Q=0.9 Loss Worst Loss

Model Filtering Train Test Ratio Train Test Ratio Train Test Ratio Train Test Ratio

FCNet3000
None 0.143 0.138 0.962 3.854 3.931 1.020 6.050 6.185 1.022 23.568 20.028 0.850
Batchwise 0.119 0.115 0.965 3.848 3.904 1.015 5.636 5.705 1.012 19.525 17.375 0.890

FCNet1000
None 0.137 0.134 0.976 3.871 3.940 1.018 6.048 6.162 1.019 23.154 18.758 0.810
Batchwise 0.114 0.109 0.959 3.880 3.935 1.014 5.670 5.760 1.016 18.734 18.176 0.970

FCNet100
None 0.113 0.107 0.954 3.969 4.022 1.013 5.923 6.018 1.016 16.711 16.392 0.981
Batchwise 0.100 0.094 0.949 3.944 3.995 1.013 5.567 5.641 1.013 17.227 16.989 0.986

Table 4.9: Fully Connected Network on CIFAR-100, 3000 nodes in hidden layer.
Very similar results to that of CIFAR-10, loss ratios are better in all but the
worst loss, but in this case, like with CIFAR-10, thhe difference is only marginal.
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Figure 4.7: Batch Size Variations on CIFAR-100
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Figure 4.8: CIFAR-100 with Fully Connected Network, 3000 nodes in hidden
layer.
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(a) CIFAR-100 on ResNet18 using a batch
size of 1024. Wall-Clock Time.

(b) CIFAR-100 with Fully Connected Net-
work, 3000 nodes in hidden layer. Wall-
Clock Time.

4.4 Assessment
Before we dig into the details of the highlighted experiments, lat us look the experiments on
the higher level. We have pointed out that some of the experiments we have taken a note of.
Some of which indicated these trends across several runs.

• Different CNNs don’t seem to act differently between various modes of filtering.

• Epochwise and batchwise filtering cause the model to perform worse than without filter-
ing in terms of accuracy.

• Epochwise filtering seems worse than both batchwise filtering and no filtering at all in
terms of accuracy and worst loss, but is often good in terms of overall losses.

• The smaller the batch size is, the smaller the difference between the archetypal and our
approach is.

• An overall improvement in epochs per Wall-Clock Time.

• Batchwise filtering grants more similar mean losses and q < 0.9-losses between the train-
ing and test sets, the ratio is often close to 1. Contrary to this, batchwise filtering also
often grants a worse worst loss-ratio than what the archetype grants us.

Additionally, there’s the surprising moment in one of our latest experiments, in which our
approach not only surpasses the archetype, but it does so on the most difficult problem of the
ones we’ve put it through, CIFAR-10. Before we go on to talk about the results, what they
mean and why we get the results we do, we will address our approach to analysis:

Analysis Tools

We have run a vast number of experiments, and the results are plenty, so we needed a structured
way to process it all. To pinpoint areas of interest in our data, and to help in analysis we have
utilised some of the toolset Weights & Biases19 provides. Specifically, we used it to continually
track experiments while they were running, as well as to evaluate parameter importance in
respects to the various tracked metrics. Where the latter was used mostly as a guide for

19https://wandb.ai/

https://wandb.ai/
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discovery, hinting at which parameters could have had a legitimate effect when combined with
filtering.

In addition to that, to get an overview of all of our runs, we used the python library
pandas20. With it we were able to construct dense tables to easily look at the how our runs
performed relative to their most similar configurations in terms of initial parameters. Addi-
tionally, it allowed us to easily pinpoint our focus on the different hyperparameters, and look
at all runs grouped respectively by their parameters, as a way to both discover trends, and as
a way to contradict trends by observing non-trend-following training progressions.

4.4.1 CNNs Seem Unhindered by our Accuracy Filtering

This isn’t necessarily all that surprising, but one could imagine a scenario in which sampling
only the unhandled samples would lead to a worse initial set of convolution kernels, which again
would make it harder for the model to classify samples due to the kernels being ineffective.

We believe however, that the initial few iterations — in which even our sampler strategy
is close to stochastic — will allow the model to get kick-started and exposed to enough of the
various features of the domain, which will allow it to quickly make differing filters.

One of the potential problems when applying epochwise filtering combined with CNNs
might be that the epochwise filtering limits the sample selection too much, and miss out on
opportunities to learn useful generalisable features, and instead develops niche features of the
samples that were accepted during filtering.

Batchwise filtering, on the other hand, we can’t see a reason for it to suffer any problem as
it doesn’t lock down the selection for the next couple of iterations as the epochwise one would.
Instead, it is doing the exact same as SGD; and uses the selected sample once before moving
on.

Overall, we don’t find much reason to believe that accuracy filtering has an all too serious
impact on how well a CNN might train and ultimately perform.

4.4.2 Filtering Causes Worse Accuracy

We see in the majority of our experiments that filtering actually has a negative effect on
accuracy. This is of course an unwanted effect, and one we didn’t expect to see.

Our hypothesis for why this is is twofold, as we believe the effects of batchwise and epochwise
are not of the same causal root.

For epochwise filtering the hypothesis is that the selected samples don’t represent
enough of the problem in any given batch. The model might improve a lot in just the first
update step of an epoch. Depending on the likeness of the samples selected for the batch, all
of them might easily be handled by the model after that first epoch too. So instead of helping
the model to train faster, we instead end up limiting what data it can learn from, causing a
slower and worse training.

For batchwise filtering the hypothesis is that the samples selected are barely learnt.
The belief distributions the model ends up producing when fed a sample end up being more
flat for practically all samples we feed it (Our figure for soft accuracy filtering shows this effect
intuitively; Appx. Figure 8).

This is supported by the fact that our mean loss and q = 0.9-loss ratios are so much closer
to 1 than what the archetype-trained network is, but should obviously have been specifically
observed directly too.

20https://pandas.pydata.org/

https://pandas.pydata.org/


53 Experiments & Assessment

4.4.3 Epochwise Filtering is the Big Loser?

Among the four variants used throughout our experiments, we early on discarded the epochwise
filtering as ineffective. But in analysis the results of the runs we made using epochwise filtering
still show various interesting features

First note is that although it has a lower accuracy than no filtering and batchwise filtering,
the accuracy isn’t all that bad, though this is likely due to the relatively uncomplex problems
we let it face (mainly MNIST), and the very good ANN models we used. Besides that, it also
seems to end up with very similar training and test set accuracies.

Second note we take is that it often results in a model that has better overall losses than
that of our model trained using batchwise filtering. We see this clearly indicated by the quantile
loss which from q = 0.9 is lower than that of a model being trained using batchwise filtering.
Why this is the case isn’t really clear to us, though one hypothesis is that because we lock our
selection down to a certain set of samples, it might be able to better optimise on said samples
over a longer time, allowing it to reach such low losses.

Third note we take is that it generally ends up as the loser among the four in terms of
worst loss, where again batchwise filtering is the winner. An interesting effect of using both
filtering mechanisms is that we end up with a better worst loss than when only using epochwise.
This seems like a strong indicator that batchwise filtering in general pushes worst loss down.

Last note we make ourselves when looking at how the epochwise sampler had performed, is
how the central filtering function will differ from datasets where data augmentation is required
and applied. This is as mentioned in section 3.3.1 not precisely filtering the samples, so we
cannot at any point be sure about if the samples presented are samples the model do not
already handle.

One hypothesis as to what could improve epochwise filtering, based on the experiences
gained in our preliminary work, is that larger batch sizes would benefit the training when using
it, with the fundamental idea that the closer to a full BGD we get, the better the resultant
gradient will be. One imagined scheme that looks a lot like our Algorithm 5 is essentially
the case where one runs BGD with filtering. Effectively, however, this would be the same as
batchwise filtering when using the dataset’s size as its batch size. Which, as we talked about
in section 3.3, often is unfeasible or impossible due to the resource requirements of doing so.

4.4.4 Diminishing Effects of Batchwise Filtering on Small
Batches

We take a note that the runs using smaller batch size usually tend to perform similarly to the
non-filtering training loop, both in terms of accuracy and in losses. Having said that, we also
take a note of a slight edge our approach has in losses. Seemingly the filtering is still affecting
the losses towards being more similar in between training and test set.

This was expected behaviour, as a smaller batch size, also with filtering enabled, will leave
out a vast number of important samples, similar to that of SGD.

4.4.5 Larger Number of Epochs Passed per Wall-Clock Time

We take note of how our sampling mechanism seemed to eventually cause faster and faster
epochs, until it again reached a seemingly stable and linear progression. Initially, this was
something that piqued our interest, as it seemed our filtering somehow caused a faster training,
not in terms of accuracy per training step, but literally in terms of time.

This was of course not the case, as our algorithm itself was doing more work behind the
scenes than a standard stochastic sampler would be doing. An hypothesis rose as to why this
was happening, and we confirmed it by tracking the dataflow of our samples: The model had
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gotten to the point where it was already capable of classifying a few batches worth of samples,
meaning that the pool of samples to fill a batch of was shrinking (We investigated this, and
tracked it, see appx. fig. 6a).

This again meant that over time our epochs would contain fewer and fewer training steps.
This is why we instead have chosen to present the experiment plots in epoch time steps, rather
than wall-clock time, but supplement with the Wall-Clock Time plots to give the full picture.
Arguably, considering this, the ideal way we should have tracked and presented our data is per
training step. Alas, this comes as an afterthought upon analysing the results.

It is nonetheless worth mentioning, as it brings to light a possibility that our sample selection
might yet be considered more beneficial in terms of progress per training steps. We can draw
this conclusion from the fact that we are doing fewer and fewer training steps per epoch, but
still reach comparable results to that of the archetype.

4.4.6 Generalisation and What our Loss-Ratios Mean

One of the clearest trends we see in our gathered data is that accuracy filtering does have an
effect. Specifically, batchwise accuracy filtering is consistently more self-similar in its mean
losses and q = 0.9-losses between training data and test data. This we see as an indicator that
our sampling mechanism to some degree limits overfitting, and allows for more generalisation.

This as a result makes a lot of sense considering we don’t keep training on samples the model
already handles. Indeed, it is the intended behaviour we, in retrospect, should have expected to
see. These results, per our interpretation, means that the ANN subjected to accuracy-filtering
(especially batchwise) is tuned in such a way as to barely keep the samples within its decision
boundary.

An unfortunate side-effect of not minimising the losses further on all samples that are
already modelled and classifies correctly, is that our classifier won’t further build up confidence
about the classified sample. The slightest difference in a presented sample might make a model
trained with filtering classify wrongly. but because of the distribution of beliefs, the loss ends
up being relatively low; after all, the classifier wouldn’t be that far of from classifying correctly
if the beliefs it had were pretty much a similar to a uniform distribution (at least when dealing
with few classes).

We sum this up to the idea that our approach to training leads to a generalising model that
ironically also is too indecisive to get high accuracies.

Another interesting observation made in terms of losses is the overall higher train/test-ratio
we see in worst loss our approach leads to. This yet again is an effect which although initially is
surprising, makes sense when we go to the root of what our approach is doing. The worst-case
samples; these are the samples that consistently ends up in the pool of samples that our model
actually trains on in the end. With that, these samples also end up being the few samples the
training loop gets to use for training the model. It poses the question of whether our approach
ultimately ends up overfitting the worst-case samples.

4.4.7 Outperforming the Archetype on CIFAR-100?

When getting to the results of CIFAR-100, the most complex problem of the ones we have been
using throughout the thesis, it was surprising to see the trends of batchwise filtering, having
been the runner-up in all the other experiments, all of a sudden surpass the archetype, and beat
it by a fair margin too, with an improvement of 0.1–8.5% (measured in test accuracy difference)
depending on the batch size used (seen in table 4.8).

Trying to explain this behaviour with the previous hypotheses in mind is tricky. It is
however also the kind of behaviour we sought out to discover, where a change of parameter
shows a clear difference in training progression. In this case the ”parameter” tweaked is the
actual problem we’re exposing the model to.
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To reason about where this change in behavior occurs, we reiterate the differences between
CIFAR-100 and CIFAR-10:

• The number of classes.

• The number of samples representing each class.

• The content of the images.

Specifically, we believe that the second point is of significance when applying filtering. With
CIFAR-100 we have a tenth of the available data per class to build convolution kernels out of.
Seemingly, there is a dynamic in which we select more important samples to construct good
kernels to classify more samples correctly than what the archetype does using the same set of
parameters.

One hypothesis is that because we now are dealing with a larger number of classes and
fewer samples, we are utilising the batch size we have better than the stochastic sampler does,
which may choose samples the training model already knows. But ultimately this experiment
has left us baffled.

There is a catch to it all however; as this behaviour arises in a scenario in which the
archetype is not using the state-of-the-art additions found to significantly improve accuracy in
CIFAR-10 and CIFAR-100:

A fairly typical way to fine tune a classifier model at the end of its training is to reduce
the learning rate. As it is fairly typical to do so, we also ran experiments in which we apply
learning rate decay (using the exponential learning rate scheduler listed in table 4.1), or apply
a reduction in learning rate per nth epoch (using the multistep learning rate scheduler listed
in table 4.1). As expected, we see an improvement in both training set accuracy, and test set
accuracy for the archetype, but the same does not apply when using our sampling strategy,
which instead stagnates at an test accuracy ∼ 5.3% of absolute test accuracy lower than the
archetype which plateaus at around 75.5% test accuracy. (see appx. fig. 5)
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V

Discussion

In this chapter we will discuss findings and reason about what they mean in relation to our
posed research questions. From there we will discuss and present shortcomings of our sample
selection processes, and the research conducted, before we re-iterate on what our work ultimately
has contributed to, and what the road from here looks like before we conclude.

5.1 Findings
We set out on this journey with the intent of exploring and implementing strategic sampling
mechanisms for improving training of neural network models. We did so knowing that we at
least had a couple of options we could look into to use in guiding our selection process, where
losses were one of the options, while the second was a novel idea that instead would base itself
upon the accuracy as a metric for guiding selection. This lead us to posing our primary research
question. We ask How do strategic data sampling methods perform as an alternative to the de
facto standard of mini-batch SGD?.

To set us of we look into others’ prior works related to the issue of non-stochastic sampling,
and find that indeed several findings have been made on various strategic sampling schemes,
where several indicate an improvement in performance when compared against mini-batch SGD.

To further enable us to answer our research question we pose three supplementary sub-
questions regarding in which aspects we look for performance gains.

RQ.1.1 — Accuracy

The first sub-question we look to is RQ1.1 — how strategic sampling methods perform in terms
of accuracy.

From related works, a clear conclusion to this question is that it often performs well,
especially when considered in terms of a fixed wall-clock time span, strategic samplers gain
higher accuracies, and as such have proven to be beneficial. The literature also presents the

57
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idea of having the sampler be adaptive to some tracked or computed metric determining whether
or not it is deemed to be beneficial to design a selection, or if stochastic sampling will be the
better option in a given step of training [Katharopoulos and Fleuret, 2018; Song et al., 2020].

Our own findings were somewhat different to that of the literature, in the sense that we
generally weren’t able to outperform the archetype, but then again our approach to strategic
sampling is also very different to that of the literature, so a different outcome was considerably
more interesting, as that brings nuances to when, and for what we might say that strategic
sampling works, and how it performs.

From this we see that indeed there are cases in which strategic sampling perform better
than the archetypal, in the literature, it specifically seems to benefit the start of the training as
it can cause high accuracies in a short amount of time. With that said, the archetype may yet
surpass these high accuracies over longer wall-clock time spans by applying well-known fine-
tuning optimisations such as decreasing learning rate. This was also the case we saw in our one
example where accuracy-filtering proved to reach higher accuracies faster than the archetype
(see appx. fig. 5).

RQ.1.2 — Loss

The second sub-question we look to is RQ1.2 — how strategic sampling methods perform in
terms of loss.

In the literature, we found there were several findings about losses and overfitting issues
related to strategic sampling. Conclusively, all have their merits and limitations in terms of
losses, and in terms of overfitting. Some are better suited for low-complexity problems, while
others are more robust. Indicating that the state-of-the-art is still paving the way for strategic
sampling being a viable or better alternative to archetypal mini-batch SGD.

Throughout this thesis we have considered several loss-metrics to get into the depths of
how losses are affected by using our two proposed filtering sampling schemes. In our efforts
we particularly paid attention to the ratios between training losses and test losses, as they
together with the accuracy indicate how well we are generalising, and how our model might be
overfitting. Empirically we found an overall improvement in the training loss to test loss ratio,
indicating that the sampling mechanism should lead to a generalising model.

However, we also found that due to the filtering hard boundary cutoff (i.e. classification
accuracy), training fails to achieve optimal training accuracies, meaning of course that the test
accuracies also remain worse than to that of an archetype-trained model.

Additionally, we found evidence of what we dub overfitting of worst case samples, where,
in some cases the worst case samples continually are included in a batch, causing the model
to adjust particularly to these samples. Using a filtering mechanism that is based on accuracy
also typically results in worst loss-samples being included. As such, the filtering causes training
to focus on these samples from the training dataset, making the overall fit adjusted specifically
to minimise the losses of these worst-case losses. This we consider an overfitting-like side-effect
our filtering sampling unfortunately inhabits.

RQ.1.3 — Wall-Clock Training Time

The third, and final sub-question we look to is RQ1.3 — how strategic sampling methods
perform in terms of wall-clock training time.

In the literature, this is emphasised as one of the advantages of applying strategic sampling
methods. It is shown empirically that various strategic samplers achieve a better accuracy in
a shorter amount of time, and that the overhead added to the sampling procedure itself, while
substantial compared to the simplicity of stochastic sampling, is negligible because of the gained
value of each training step.

This is pointed out in terms of a fixed wall-clock time however, and in general the value of
applying strategic sampling is diminishing the further into training we get.
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Although the improved wall-clock training time is not a trend see in our results when
employing accuracy filtering as the strategic sampling method, we can see indications of training
steps of higher value when using it. This is indicated when our accuracy filtering cause fewer
and fewer training steps to be taken per epoch, while we still reach comparable results to that
of the archetype in comparable time.

5.2 Limitations of our Work

5.2.1 Data Augmentation

As highlighted in section 3.3.1, data augmentation is a common practice to get more use out
of the data provided in the training set. In section 3.4, we emphasise that in our current
implementation of epochwise filtering, we achieve a sub-optimal filtering in which the data
filtered upon may be a vastly different augmentation of the same sample from the data

This sub-optimal filtering was left as is as we saw it as a potential to explore how such a
”soft” filtering mechanism would behave. After all, the underlying images (pre-augmentation)
are the same, so one way to look at it is that one augmented sample represents other aug-
mentations of the same sample too, which of course is what we ideally want, and what we to
some degree might have in the later stages of training. But early on in the training this ”soft”
filtering is not ideal, as it effectively causes selection of samples of unknown difficulty instead
of samples the model cannot handle.

Ultimately however, it served to be a source of confusion, which contributed to us practically
discarding it as a useful sampling mechanism. We did perform some runs explicitly attempting
to explore how it behaved (see appendix II; experiments using epochwise filtering with and
without data augmentation), where in general it seemed to still be working similarly to how
it would perform when not using data augmentation, albeit with a higher accuracy, which we
attribute to the data augmentation rather than to our filtering.

Our initial idea on how one might mitigate the issues related to data augmentation to
achieve true filtering on epochwise filters was to keep track of the PRNG-state and fork the
state right before filtering is done, then join the state afterwards, ensuring that the randomly
generated augmentation-transformations are happens in the same way upon training. This
would work, but adds a fair bit of complexity to the sampler.

5.2.2 Batch Accumulation

An issue we brought up in section 3.3 when talking about how we accumulate batches (see
algorithm 10 and subsequent fig. 3.2), is the problem of how we best fill our filtered batch with
as little overhead as possible. Filtering may involve several batch look-ups of the raw data,
before our filtered batch is fully formed. This is just the nature of how accumulation of batches
work.

It makes the approach sub-optimal as there is an added overhead where we gradually end
up having to do more and more look-ups of raw data in order to accumulate enough filtered
samples to create a filtered batch. This is shown in appx. fig. 6a, where the overhead gradually
increases as number of required raw batches to produce one filtered batch increases.

Our suggestion to reduce this overhead is tightly coupled to what we see in the figures.
Seeing as we can track how many batches we needed to produce one batch the previous steps,
we can employ simple extrapolation and easily estimate how many batches are needed based
on the previous required steps. Then we simply adjust how many samples we take out of the
dataset as the raw batch. Essentially, we would be estimating how much of the raw batch
would be accepted, and in so doing alleviate us of some overhead. Some overhead is still to
be expected however, as we’re sure to miss the target number of accepted samples every now
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and then too. And at some point, the acceptance ratio might lead to us having to fetch huge
batches of raw data, which again leads us into the problem of memory.

Varying Batch Size or Number of Training Steps per Epoch

This problem is slightly linked with the previous one, and is again emphasised in section 3.3.2.
With filtering employed, we end up having to break one of two norms in supervised machine
learning:

Varying Batch Size We either end up having to break the norm of using a static batch size,
which could have negative side-effects on training, as the size of a batch may vastly
change how big the resultant parameter adjustments are.

Varying Number of Training Steps per Epoch Alternatively, we end up with what we
have, an epoch that is just a construct vaguely hinting at how far we have gotten in our
training. It’s mainly problematic in terms of comparison with other approaches, as they
cannot really be considered to have gone through the same number of training steps,
making it a somewhat poor grounds for comparison.

How we get around this problem is really not clear, as it seems rooted of the supervised
machine learning-training loop.

Not Getting Through all Experiments

There is a rather serious point to be made about our work in terms of the experiments we ran,
as not all ran to completion. Ideally, we’d run experiments using all (sensible) combinations of
our adjustable parameters (seen in table 4.1). Due to time constraints, queuing-times (on the
cluster used to run experiments [Själander et al., 2019]) and crashes of runs and experiments,
we regrettably weren’t quite able to do so.

The experiments we did run (appendix II) are nonetheless satisfiable, and we deem them
thorough enough to draw the conclusions we have drawn. Yet, we see it as a lost opportunity
that we weren’t able to test more combinations, especially involving more optimizer variants
and settings, as we’d like to have covered a larger basis to get a better overview of where our
approach specifically succeeds or fails.

5.3 Contributions of our Work
Summarising the merits of our work in this thesis, we will now reiterate, and present what we
believe to be our biggest contributions to the AI-field.

We demonstrate that accuracy filtering on its own is not sufficient
Within the relatively large set of differing configurations we have put our approaches to the
test, we demonstrate that accuracy filtering on its own is insufficient as the sole mechanism for
selection of samples.

We suggest that a combination of filtering and loss-oriented selection
might be beneficial Presenting a set of algortithms that utilise both loss and accuracy
as grounds for the selection, as well as results from our exploratory preliminary experiments
indicating, we suggest that the two combined may yet prove a good contestant for improved
supervised learning.

We observe that accuracy filtering results in a lower worst-case loss
and better generalisation ratio Begging the question if this is something we can
further dig into, and potentially find new methods to improve generalising behaviour of ANNs
without it affecting the overall accuracy as much as it has done in our case.
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5.4 Future Work
It is bittersweet to see our accuracy filtering work as poorly as it does. We had high hopes that
it would prove effective. It has however caused a great surge in inspiration, and has been at
the root of many a new idea throughout its development.

We see it evident that the concept of accuracy filtering has some potential yet, although
we also acknowledge that it on its own is far from sufficient in aiding the training of an image
classifier.

We have seen several works bring forward an improved performance using importance sam-
pling or otherwise non-stochastic sampling. With our work we also present results suggesting
that filtering yet may prove useful to ensure generalisation capabilities of an ANN model.

In our preliminary work, we worked out several algorithms combining the two concepts,
and through ad-hoc experimentation found several to be promising.

Seeing as we with this thesis instead focused our efforts on what we considered to be the
foundation of said algorithms, the filtering, the various presented additions are still open and
viable options for where to keep going from here.

Concretely, we suggest that combining accuracy filtering and strategic sampling may
yet prove to be a beneficial approach, both in terms of runtime, generalisation-capabilities and,
of course, in terms of accuracy. Based in the preliminary work, we already have a great deal of
ideas for where to take this next:

We suggest combining one of the following selectors, with one of the following filtering
mechanisms:

Selectors

Top-k Selector Selecting only the k samples with the worst loss

Top-q Selector Selecting only the sample from quantile q and above

Loss Weighted Random Se-
lector

Using the sorted losses to make a probability density function
for weighting the selection of the respective samples.

Loss q-Split Random
Selector

Bucketing samples based on their losses, and selecting equally
many samples from each bucket.

Filters

Hard Accuracy Filter Any sample that is already handled by the model is rejected
from the sampling pool.

Soft Accuracy Filter Any sample that is already handled by the model is rejected
from the sampling pool, unless its close to a decision bound-
ary (i.e. the belief distribution has more than one clear con-
tender for which class the model should decide for).

One of the last results we found was of CIFAR-100 being surpasses by our implementation.
We see this as a basis upon which we new research can start, investigating how accuracy filtering
works on larger and larger datasets (in terms of number of classes).

One way to start of such a project would be to take control of the dataset and split it up
manually. That way one could run experiments of differing number of classes, and of differing
number of samples per class, and see when this behaviour occurs.
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VI

Conclusion

We have investigated the topic of non-uniform, strategic data sampling for improved supervised

learning and considered how it performs compared to the commonplace standard of Mini-Batch

Stochastic Gradient Descent. We find that recent works have made headway in this respect and

that their findings indicate greater performance in a fixed wall-clock time in terms of accuracy,

and at times in terms of losses and how generalising the trained models ultimately are.

Furthermore, we have developed a novel filtering mechanism to perform strategic data

sampling to aid supervised learning in image classification problems based on the fundamental

metric of classification accuracy. We do this to investigate whether the binary accuracy is a

sufficient metric to base selection on to get closer to an answer about whether such a strategic

sampling mechanism also may be a viable option to mini-batch SGD.

To investigate the effects of our filtering mechanism, we employed extensive experimen-

tation looking at various combinations of features and parameters used in addition to our

filtering, with the hopes of finding trends unique to our approach. To that extent, we paral-

lelly ran experiments with the same configurations using mini-batch SGD, and, in respects to

our research questions discovered that: accuracy is not sufficient on its own, filtering causes

losses that indicate high generalisation capabilities in the model, and finally that the selection

made through filtering does not yield a better wall-clock training time, but tends to have a

comparable improvement in fewer training steps.

We conclude with a discussion on how strategic sampling compares in performance to that

of mini-batch SGD, in which we highlight that while our own approach fails to reach similar

performance trends as other before us looking into strategic sampling methods, our strategic

sampler mechanism has its own merits, such as a ratio close to one between training and test

losses, indicating an inherit generalising behaviour.

Our findings present new opportunities of which we introduce, and talk about, illustrating

our thoughts on where to take the road from here.

We have in this thesis done body of work that has lead us ever closer to answer the research

questions posed in the beginning, and we ultimately consider our efforts a foot in the door,

pushing towards more research not focusing inwards, but outwards, to the consideration of a

sample’s importance in supervised learning.

—————a—————
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Figure 3: Gradient Descent Sampling Schemes
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Figure 4: Trainer Loops
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II Experiments
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CIFAR10 7 7 FCNet100 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.291 0.287 2.003 1.997 3.344 3.329 19.261 9.056

CIFAR10 3 7 FCNet100 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.279 0.277 1.975 1.966 2.697 2.679 12.644 6.851

CIFAR10 7 7 FCNet1000 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.324 0.323 1.978 1.984 3.543 3.591 12.994 13.454

CIFAR10 3 7 FCNet1000 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.306 0.304 1.956 1.949 2.803 2.793 8.276 10.779

CIFAR10 7 7 FCNet3000 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.331 0.327 2.007 2.023 3.703 3.745 11.853 13.368

CIFAR10 3 7 FCNet3000 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.305 0.306 1.960 1.957 2.839 2.845 7.714 9.661

CIFAR10 7 7 ResNet18 16 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.578 0.590 1.202 1.225 3.039 3.134 13.549 11.017

CIFAR10 3 7 ResNet18 16 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.521 0.530 1.264 1.278 2.100 2.139 9.423 8.714

CIFAR10 7 7 ResNet18 128 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.831 0.863 0.396 0.513 1.298 1.736 11.215 9.460

CIFAR10 3 7 ResNet18 128 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.783 0.832 0.671 0.777 1.057 1.213 6.556 10.651

CIFAR10 7 7 ResNet18 256 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.860 0.917 0.232 0.428 0.655 1.392 11.727 12.338

CIFAR10 3 7 ResNet18 256 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.824 0.910 0.487 0.654 0.825 1.100 5.140 12.086

CIFAR10 7 7 ResNet18 512 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.862 0.953 0.133 0.495 0.228 1.599 9.704 16.415

CIFAR10 3 7 ResNet18 512 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.812 0.903 0.510 0.711 0.821 1.140 5.756 12.914

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.849 0.972 0.079 0.582 0.084 1.993 11.435 15.933

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.995 0.900 exp 300 0.001 3 3 7 0.787 0.885 0.579 0.783 0.875 1.214 7.834 12.946

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.990 0.900 exp 500 0.001 3 3 7 0.937 1.000 0.001 0.259 0.001 0.088 0.048 9.688

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.990 0.900 exp 500 0.001 3 3 7 0.935 1.000 0.001 0.273 0.002 0.105 0.063 9.714

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.995 0.000 exp 1000 0.001 3 3 7 0.912 1.000 0.001 0.378 0.001 0.464 0.138 16.683

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.995 0.900 exp 1000 0.000 3 3 7 0.925 1.000 0.000 0.567 0.000 0.087 0.031 33.354

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.995 0.000 exp 1000 0.000 3 3 7 0.911 1.000 0.000 0.553 0.000 0.395 0.097 28.816

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.995 0.000 exp 1000 0.001 3 3 7 0.861 0.984 0.175 0.571 0.588 1.082 5.338 13.192

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.995 0.900 exp 1000 0.000 3 3 7 0.839 0.985 0.092 0.802 0.281 1.760 9.577 49.725

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.995 0.000 exp 1000 0.000 3 3 7 0.860 0.981 0.176 0.610 0.578 1.135 7.770 15.904

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.100 0.900 ms 500 0.001 3 3 200 0.947 1.000 0.001 0.210 0.002 0.057 0.102 10.168

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.100 0.900 ms 500 0.001 3 3 200 0.943 1.000 0.001 0.210 0.002 0.103 0.778 12.404

CIFAR10 7 3 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 7 150 0.757 0.845 0.527 0.841 1.973 3.144 13.575 12.086

CIFAR10 7 3 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 3 150 0.837 0.875 0.502 0.703 1.483 2.648 17.435 16.139

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.500 0.000 ms 1000 0.001 3 3 150 0.922 1.000 0.001 0.313 0.001 0.347 0.080 13.873

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.000 3 3 150 0.929 1.000 0.000 0.584 0.000 0.030 0.020 38.028

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.500 0.000 ms 1000 0.000 3 3 150 0.917 1.000 0.000 0.514 0.000 0.239 0.574 28.849

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 7 150 0.763 0.997 0.039 0.885 0.084 3.081 12.268 16.040

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 3 150 0.886 0.996 0.042 0.451 0.110 1.035 6.238 14.749

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.500 0.000 ms 1000 0.001 3 3 150 0.890 0.995 0.127 0.437 0.436 0.806 6.997 22.265

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.000 3 3 150 0.861 0.993 0.055 0.693 0.143 1.653 20.171 68.813

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.500 0.000 ms 1000 0.000 3 3 150 0.879 0.993 0.139 0.514 0.486 0.881 3.614 19.868

CIFAR10 7 7 ResNet18 16 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.404 0.411 1.637 1.650 3.090 3.091 11.322 8.899

CIFAR10 3 7 ResNet18 16 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.368 0.368 1.645 1.645 2.560 2.549 8.362 6.832

CIFAR10 7 7 ResNet18 128 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.610 0.615 1.167 1.196 3.312 3.364 14.515 13.705

CIFAR10 3 7 ResNet18 128 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.626 0.650 1.025 1.060 1.543 1.618 8.048 8.214

CIFAR10 7 7 ResNet18 512 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.797 0.832 0.485 0.610 1.654 2.138 12.917 11.246

CIFAR10 3 7 ResNet18 512 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.748 0.787 0.774 0.855 1.313 1.507 9.276 7.040

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.937 1.000 0.002 0.239 0.003 0.152 0.908 13.125

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.936 1.000 0.002 0.235 0.003 0.158 1.826 12.402

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.892 0.966 0.098 0.392 0.122 0.993 7.927 13.078

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.887 0.957 0.122 0.436 0.147 1.124 9.838 12.249

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.813 0.880 0.352 0.605 1.096 2.170 10.141 14.323

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.947 1.000 0.001 0.197 0.002 0.067 0.296 9.943

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.946 1.000 0.001 0.199 0.002 0.079 0.276 9.793

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.760 0.825 0.616 0.779 1.047 1.368 8.503 10.788

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.887 0.957 0.127 0.414 0.152 1.123 9.181 12.018

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.885 0.960 0.120 0.450 0.132 1.271 11.054 13.457

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.000 7 1000 0.001 3 3 7 0.941 1.000 0.001 0.248 0.001 0.063 0.088 10.381

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.000 3 3 7 0.928 1.000 0.000 0.635 0.000 0.024 0.005 37.619

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.000 7 1000 0.000 3 3 7 0.919 1.000 0.000 0.542 0.000 0.177 0.010 32.486

CIFAR10 7 3 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.001 3 7 7 0.725 0.821 0.623 0.968 2.470 3.468 13.519 13.483

CIFAR10 7 3 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.001 3 3 7 0.846 0.880 0.456 0.639 1.290 2.314 16.061 15.125

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.001 3 7 7 0.810 1.000 0.002 0.688 0.004 2.679 0.020 11.773

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.001 3 3 7 0.902 0.967 0.100 0.376 0.074 0.763 9.301 12.220

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.000 0.000 7 1000 0.001 3 3 7 0.904 0.992 0.154 0.337 0.398 0.758 7.877 20.599

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.000 3 3 7 0.856 0.987 0.055 0.730 0.070 1.912 14.964 39.823

CIFAR10 3 7 ResNet18 1024 SGD 0.100 0.000 0.000 7 1000 0.000 3 3 7 0.905 0.995 0.118 0.320 0.327 0.738 8.202 43.800

CIFAR10 7 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.939 1.000 0.002 0.242 0.002 0.094 2.296 11.669

CIFAR10 3 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.880 0.945 0.157 0.438 0.224 1.282 9.091 11.129

Continues on next page...
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CIFAR10 7 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.947 1.000 0.001 0.236 0.002 0.030 0.429 9.438

CIFAR10 3 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.889 0.953 0.146 0.405 0.155 1.034 9.094 11.192

CIFAR100 7 7 FCNet100 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.107 0.113 3.969 4.022 5.923 6.018 16.711 16.392

CIFAR100 3 7 FCNet100 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.094 0.100 3.944 3.995 5.567 5.641 17.227 16.989

CIFAR100 7 7 FCNet1000 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.134 0.137 3.871 3.940 6.048 6.162 23.154 18.758

CIFAR100 3 7 FCNet1000 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.109 0.114 3.880 3.935 5.670 5.760 18.734 18.176

CIFAR100 7 7 FCNet3000 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.138 0.143 3.854 3.931 6.050 6.185 23.568 20.028

CIFAR100 3 7 FCNet3000 512 SGD 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.115 0.119 3.848 3.904 5.636 5.705 19.525 17.375

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.990 0.900 exp 500 0.001 3 3 7 0.742 1.000 0.005 1.123 0.009 3.997 1.146 12.190

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.990 0.900 exp 500 0.001 3 3 7 0.739 1.000 0.005 1.133 0.010 4.076 0.919 12.878

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.995 0.900 exp 1000 0.001 3 3 7 0.766 1.000 0.005 1.124 0.008 4.124 0.790 11.701

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.995 0.000 exp 1000 0.001 3 3 7 0.705 1.000 0.006 1.262 0.014 4.739 1.088 15.157

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.995 0.900 exp 1000 0.000 3 3 7 0.718 1.000 0.000 1.825 0.000 7.129 1.330 30.570

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.995 0.000 exp 1000 0.000 3 3 7 0.692 1.000 0.002 1.711 0.004 6.503 1.386 23.564

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.995 0.900 exp 1000 0.001 3 3 7 0.696 1.000 0.161 1.099 0.370 3.389 1.864 14.666

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.995 0.000 exp 1000 0.001 3 3 7 0.662 0.998 0.272 1.232 0.590 3.638 2.233 15.049

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.995 0.900 exp 1000 0.000 3 3 7 0.684 1.000 0.129 1.185 0.312 3.763 1.469 18.031

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.995 0.000 exp 1000 0.000 3 3 7 0.659 0.999 0.257 1.253 0.566 3.764 1.834 12.905

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.100 0.900 ms 500 0.001 3 3 200 0.764 1.000 0.006 1.025 0.012 3.765 1.367 13.607

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.100 0.900 ms 500 0.001 3 3 200 0.747 1.000 0.004 1.057 0.009 4.022 1.398 15.784

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 3 150 0.771 1.000 0.004 1.098 0.007 4.082 0.847 10.819

CIFAR100 7 3 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 7 150 0.485 0.766 1.068 2.160 3.540 4.517 9.933 10.185

CIFAR100 7 3 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 3 150 0.658 0.788 0.863 1.414 3.353 4.378 14.151 13.252

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.500 0.000 ms 1000 0.001 3 3 150 0.709 1.000 0.005 1.189 0.012 4.278 1.266 17.223

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.000 3 3 150 0.719 1.000 0.000 1.921 0.000 7.573 1.132 33.370

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.500 0.000 ms 1000 0.000 3 3 150 0.701 1.000 0.001 1.664 0.002 6.428 1.157 23.444

CIFAR100 3 3 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 7 150 0.434 0.683 1.292 2.310 4.071 5.658 17.225 14.992

CIFAR100 3 3 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 3 150 0.609 0.765 0.903 1.462 2.784 4.282 18.311 15.836

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 7 150 0.512 1.000 0.099 1.969 0.273 5.323 1.561 16.287

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.500 0.000 ms 1000 0.001 3 3 150 0.676 1.000 0.196 1.162 0.455 3.485 1.802 14.123

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.000 3 3 150 0.693 1.000 0.099 1.165 0.248 3.751 1.433 15.486

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.500 0.000 ms 1000 0.000 3 3 150 0.681 0.999 0.182 1.163 0.436 3.568 1.539 14.332

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 3 3 150 0.698 1.000 0.135 1.090 0.323 3.410 1.305 16.066

CIFAR100 7 7 ResNet18 16 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.145 0.144 3.590 3.602 5.474 5.490 15.282 12.813

CIFAR100 3 7 ResNet18 16 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.146 0.145 3.583 3.585 5.270 5.272 11.979 12.108

CIFAR100 7 7 ResNet18 128 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.425 0.462 2.011 2.185 4.645 4.947 12.182 13.316

CIFAR100 3 7 ResNet18 128 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.470 0.539 1.635 1.932 3.455 4.116 10.297 10.369

CIFAR100 7 7 ResNet18 512 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.480 0.631 1.338 2.339 4.079 6.437 15.471 15.910

CIFAR100 3 7 ResNet18 512 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.565 0.885 0.478 1.647 1.190 4.413 9.125 14.732

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.743 1.000 0.008 1.028 0.019 3.753 1.756 17.252

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.658 0.929 0.239 1.516 0.676 5.250 8.866 15.076

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.512 0.790 0.704 2.371 2.407 6.920 14.541 19.328

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.758 1.000 0.006 0.994 0.013 3.703 1.479 15.377

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.560 0.924 0.388 1.659 0.957 4.484 9.300 15.359

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.663 0.944 0.194 1.517 0.505 5.350 9.973 17.731

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.001 3 3 7 0.671 0.955 0.157 1.552 0.338 5.441 10.479 20.424

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.000 0.000 7 1000 0.001 3 3 7 0.743 1.000 0.004 1.111 0.008 4.130 6.993 13.056

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.000 3 3 7 0.721 1.000 0.000 2.019 0.000 8.080 0.905 35.603

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.000 0.000 7 1000 0.000 3 3 7 0.706 1.000 0.000 1.838 0.000 7.123 1.142 24.977

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.000 3 3 7 0.690 0.998 0.063 1.265 0.170 4.377 1.875 21.555

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.000 0.000 7 1000 0.001 3 3 7 0.683 0.997 0.094 1.206 0.245 3.964 4.807 15.065

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.000 0.000 7 1000 0.000 3 3 7 0.678 0.996 0.095 1.255 0.256 4.161 3.603 16.155

CIFAR100 7 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.733 1.000 0.007 1.126 0.016 4.277 1.996 18.172

CIFAR100 3 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 150 0.001 3 3 7 0.614 0.896 0.342 1.736 1.066 5.763 12.045 20.056

CIFAR100 7 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.757 1.000 0.005 1.004 0.010 3.906 1.060 12.400

CIFAR100 3 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 3 7 0.614 0.871 0.440 1.829 1.456 5.970 15.015 20.649

MNIST 7 3 DLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.986 0.989 0.039 0.040 0.003 0.002 17.521 10.427

MNIST 3 3 DLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.977 0.977 0.155 0.154 0.343 0.338 8.153 5.790

MNIST 3 7 DLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.988 0.994 0.096 0.108 0.215 0.227 3.978 3.945

MNIST 7 7 FCNet100 256 SGD 0.010 0.995 0.900 exp 500 0.001 3 7 7 0.978 0.994 0.037 0.069 0.066 0.076 9.663 7.282

MNIST 3 7 FCNet100 256 SGD 0.010 0.995 0.900 exp 500 0.001 3 7 7 0.965 0.999 0.483 0.487 0.878 0.873 1.885 3.758

MNIST 7 7 FCNet1000 256 SGD 0.010 0.995 0.900 exp 500 0.001 3 7 7 0.982 0.996 0.032 0.062 0.060 0.068 8.666 6.462

MNIST 3 7 FCNet1000 256 SGD 0.010 0.995 0.900 exp 500 0.001 3 7 7 0.968 1.000 0.605 0.608 0.984 0.986 1.932 3.208

MNIST 7 7 FCNet3000 256 SGD 0.010 0.995 0.900 exp 500 0.001 3 7 7 0.982 0.996 0.031 0.061 0.060 0.069 8.322 6.629

Continues on next page...
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MNIST 3 7 FCNet3000 256 SGD 0.010 0.995 0.900 exp 500 0.001 3 7 7 0.968 1.000 0.621 0.623 0.997 0.998 1.902 3.135

MNIST 7 3 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.964 0.968 0.140 0.156 0.008 0.007 27.821 30.966

MNIST 7 7 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.990 0.999 0.005 0.031 0.001 0.002 3.272 12.640

MNIST 7 7 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.991 1.000 0.004 0.028 0.002 0.002 6.344 10.296

MNIST 7 3 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.113 0.112 2.301 2.301 2.327 2.327 2.401 2.401

MNIST 7 7 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.113 0.112 0.112 0.113 2.329 2.329 0.112 0.113

MNIST 3 3 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.952 0.953 0.213 0.213 0.547 0.551 13.197 9.984

MNIST 3 7 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.988 0.998 0.072 0.086 0.194 0.195 2.664 4.684

MNIST 3 7 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.989 0.999 0.109 0.118 0.282 0.281 2.063 4.411

MNIST 3 3 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.973 0.970 0.222 0.215 0.508 0.494 10.290 5.299

MNIST 3 7 LeNet 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.990 0.998 0.998 0.990 0.301 0.300 0.998 0.990

MNIST 7 3 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.980 0.979 0.070 0.063 0.029 0.025 13.521 7.334

MNIST 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.988 0.996 0.016 0.044 0.010 0.010 8.224 10.766

MNIST 7 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.995 1.000 0.001 0.016 0.001 0.001 0.051 8.250

MNIST 3 3 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.967 0.964 0.258 0.255 0.538 0.526 6.954 5.182

MNIST 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.994 0.998 0.084 0.091 0.191 0.189 1.860 3.371

MNIST 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.993 0.999 0.149 0.156 0.336 0.335 2.453 10.378

MNIST 7 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.996 1.000 0.001 0.015 0.002 0.002 0.021 7.738

MNIST 3 7 SimpleDLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 3 7 7 0.993 0.999 0.063 0.074 0.147 0.154 1.205 3.006

CIFAR10 7 7 FCNet3000 512 Adam 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.280 0.271 2.714 2.703 5.336 5.357 32.401 27.625

CIFAR10 3 7 FCNet3000 512 Adam 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.239 0.237 2.366 2.363 4.007 3.996 13.864 13.392

CIFAR10 7 7 ResNet18 512 Adam 0.000 0.995 0.900 exp 300 0.001 3 3 7 0.856 0.971 0.083 0.518 0.121 1.722 7.750 15.244

CIFAR10 3 7 ResNet18 512 Adam 0.000 0.995 0.900 exp 300 0.001 3 3 7 0.762 0.848 0.756 0.898 1.103 1.372 5.587 10.844

CIFAR10 7 7 ResNet18 1024 Adam 0.010 0.995 0.900 exp 1000 0.001 3 3 7 0.905 0.998 0.007 0.515 0.003 0.592 5.206 13.261

CIFAR10 7 7 ResNet18 1024 Adam 0.010 0.995 0.900 exp 1000 0.000 3 3 7 0.931 1.000 0.000 0.859 0.000 0.005 0.017 89.479

CIFAR10 3 7 ResNet18 1024 Adam 0.010 0.995 0.900 exp 1000 0.001 3 3 7 0.870 0.972 0.267 0.610 0.683 0.788 5.621 16.823

CIFAR10 3 7 ResNet18 1024 Adam 0.010 0.995 0.900 exp 1000 0.000 3 3 7 0.880 0.997 0.128 0.460 0.386 0.902 6.959 24.010

CIFAR10 7 7 ResNet18 1024 Adam 0.010 0.500 0.900 ms 1000 0.000 3 3 150 0.935 1.000 0.000 0.900 0.000 0.001 0.010 66.934

CIFAR10 7 7 ResNet18 1024 Adam 0.010 0.500 0.900 ms 1000 0.001 3 3 150 0.899 0.991 0.026 0.494 0.010 0.778 5.669 16.719

CIFAR10 3 7 ResNet18 1024 Adam 0.010 0.500 0.900 ms 1000 0.001 3 3 150 0.865 0.944 0.339 0.655 0.694 0.757 7.095 17.396

CIFAR10 3 7 ResNet18 1024 Adam 0.010 0.500 0.900 ms 1000 0.000 3 3 150 0.898 1.000 0.182 0.413 0.474 0.736 2.403 19.141

CIFAR10 7 7 ResNet18 512 Adam 0.000 0.000 0.900 7 300 0.001 3 3 7 0.851 0.952 0.138 0.519 0.250 1.755 10.245 12.286

CIFAR10 3 7 ResNet18 512 Adam 0.000 0.000 0.900 7 300 0.001 3 3 7 0.781 0.862 0.688 0.834 1.008 1.267 6.386 10.810

CIFAR10 7 7 ResNet18 1024 Adam 0.010 0.000 0.900 7 1000 0.001 3 3 7 0.782 0.806 0.585 0.710 1.998 2.504 16.300 13.644

CIFAR10 7 7 ResNet18 1024 Adam 0.010 0.000 0.900 7 1000 0.000 3 3 7 0.924 0.999 0.005 0.805 0.000 0.028 18.560 103.220

CIFAR10 3 7 ResNet18 1024 Adam 0.010 0.000 0.900 7 1000 0.001 3 3 7 0.807 0.828 0.745 0.780 1.006 1.043 7.244 9.975

CIFAR10 3 7 ResNet18 1024 Adam 0.010 0.000 0.900 7 1000 0.000 3 3 7 0.895 0.995 0.064 0.397 0.183 0.797 9.023 19.532

CIFAR100 7 7 FCNet3000 512 Adam 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.061 0.063 13.443 13.631 36.039 36.912 206.069 179.007

CIFAR100 3 7 FCNet3000 512 Adam 0.010 0.995 0.900 exp 500 0.001 3 3 7 0.051 0.048 13.651 13.745 35.070 35.275 235.672 169.895

CIFAR100 7 7 ResNet18 1024 Adam 0.010 0.995 0.900 exp 1000 0.001 3 3 7 0.639 0.935 0.243 1.613 0.713 5.470 7.049 19.080

CIFAR100 7 7 ResNet18 1024 Adam 0.010 0.995 0.900 exp 1000 0.000 3 3 7 0.641 1.000 0.000 4.731 0.000 17.627 0.888 73.412

CIFAR100 3 7 ResNet18 1024 Adam 0.010 0.995 0.900 exp 1000 0.001 3 3 7 0.635 0.967 0.435 1.341 0.891 3.797 3.122 17.521

CIFAR100 3 7 ResNet18 1024 Adam 0.010 0.995 0.900 exp 1000 0.000 3 3 7 0.573 0.988 0.101 2.200 0.249 6.991 12.408 28.764

CIFAR100 7 7 ResNet18 1024 Adam 0.010 0.500 0.900 ms 1000 0.001 3 3 150 0.637 0.889 0.371 1.544 1.117 5.079 9.023 20.528

CIFAR100 7 7 ResNet18 1024 Adam 0.010 0.500 0.900 ms 1000 0.000 3 3 150 0.642 1.000 0.000 5.190 0.000 19.032 1.029 94.879

CIFAR100 3 7 ResNet18 1024 Adam 0.010 0.500 0.900 ms 1000 0.001 3 3 150 0.635 0.947 0.471 1.355 0.973 3.817 4.127 18.957

CIFAR100 3 7 ResNet18 1024 Adam 0.010 0.500 0.900 ms 1000 0.000 3 3 150 0.582 0.987 0.085 2.318 0.191 7.599 9.711 43.225

CIFAR100 7 7 ResNet18 512 Adam 0.000 0.000 0.900 7 300 0.001 3 3 7 0.549 0.939 0.202 2.228 0.513 6.832 11.559 15.936

CIFAR100 3 7 ResNet18 512 Adam 0.000 0.000 0.900 7 300 0.001 3 3 7 0.531 0.906 0.510 1.751 1.166 4.449 7.361 12.660

CIFAR100 7 7 ResNet18 1024 Adam 0.010 0.000 0.900 7 1000 0.001 3 3 7 0.405 0.427 2.162 2.364 4.881 5.512 17.339 16.486

CIFAR100 7 7 ResNet18 1024 Adam 0.010 0.000 0.900 7 1000 0.000 3 3 7 0.618 0.996 0.013 7.125 0.000 25.151 25.721 147.561

CIFAR100 3 7 ResNet18 1024 Adam 0.010 0.000 0.900 7 1000 0.001 3 3 7 0.558 0.631 1.368 1.569 2.737 3.562 8.437 13.461

CIFAR100 3 7 ResNet18 1024 Adam 0.010 0.000 0.900 7 1000 0.000 3 3 7 0.559 0.967 0.127 3.300 0.130 10.702 23.490 47.198

MNIST 7 7 FCNet3000 256 Adam 0.000 0.995 0.900 exp 500 0.001 3 7 7 0.983 0.997 0.028 0.058 0.056 0.063 7.274 6.294

MNIST 3 7 FCNet3000 256 Adam 0.000 0.995 0.900 exp 500 0.001 3 7 7 0.965 1.000 0.690 0.693 1.074 1.084 1.907 3.315

CIFAR10 7 7 DLA 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 7 3 150 0.953 1.000 0.001 0.208 0.002 0.015 0.025 8.921

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 7 7 150 0.828 1.000 0.001 0.710 0.001 2.993 0.004 10.203

CIFAR10 7 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 7 3 150 0.946 1.000 0.001 0.236 0.001 0.038 0.038 9.484

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 7 7 150 0.608 1.000 0.004 1.900 0.005 4.487 0.768 9.867

CIFAR100 7 7 ResNet18 1024 SGD 0.100 0.500 0.900 ms 1000 0.001 7 3 150 0.768 1.000 0.004 1.086 0.008 4.050 1.003 11.873

CIFAR100 3 7 ResNet18 1024 SGD 0.100 0.000 0.900 7 1000 0.001 7 3 7 0.699 0.999 0.092 1.119 0.241 3.653 2.665 16.029

MNIST 7 7 DLA 1024 SGD 0.100 0.000 0.900 7 300 0.001 7 7 7 0.996 1.000 0.001 0.016 0.002 0.002 0.039 7.763
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II.I Supplementary plots

Figure 5: This is the seen behaviour when the CIFAR-100 experiment (see fig. 4.7)
is ran with inclusion of a multistep learning rate scheduler. The milestone reached
at epoch 150 causes the learning rate to be a 10th of its original value, this causes
stabilisation enough for the archetype to continue it’s gradient descent. However
the batchwise filtering causes our own approach to stagnate at a lower accuracy.
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(a) The average number of raw batches of data that were sampled from the dataset in
order to construct one filtered batch. The further into training, the higher the chances
are of having epochs occur with few or no training steps being performed.

(b) The average number of samples that were passed through the model but were
discarded because the batch size was already reached.

(c) The average ratio of samples that passed through the model that ultimately were
included in the batch. Through training, this grows smaller and smaller, as the model
has gotten better and better, and gradually reject more and more samples.

Figure 6: Various effects of using a batch accumulation procedure.
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Figure 7: Archetype Trainer Flow
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Figure 8: Soft Accuracy Filtering: An example case in which we are working
on a 4-class problem. Samples that are either incorrectly classified, or samples
that are correctly classified, but not far enough from the decision boundary to
be considered properly learnt yet will be accepted. In this case, the left-side
sample is accepted, because it’s incorrectly classified. The second (in the middle)
is rejected, because the sample is correctly classified, and falls well within the
decision boundary of the model. The third is accepted, because the network has
yet to manage to confidently distinguish it from other classes.
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