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Abstract

Facade height is a key variable in studying the character and scale of urban envir-

onments. However, accurately estimating the height requires high spatial accuracy

and complete building data, dependent on expensive and advanced state-of-the-art

methods. This study aims to lower the threshold for large-scale height estimation

by using more accessible technology. Specifically, we investigate how we can use

street-level imagery to estimate the facade height in a wider geographical region

by exploiting architectural principles, including symmetry and repetitive patterns.

In addition, we implement a method that automatically segments the facades into

separate floors and use extensive knowledge of their inherent features and attributes

to estimate the facade height.

To test our pipeline, we conducted an experimental study on street view imagery

in a contained geographical area of Trondheim, Norway. We automatically detected

facade objects to segment the floors with a RANSAC regressor and then applied

a set of defined urban rules to adjust the resulting height further. The results

indicated that segmenting the floors contributed to an accurate estimation of the

facade height and that the rules aided in adjusting the height estimation. We also

discovered that the quality of street view imagery significantly influenced the results.

Finally, to evaluate the method, we considered an optimal subset of imagery and

found that the correctness of the floor segmentation was 92%. Furthermore, we

achieved adequate results regarding the height estimation in the whole study area,

with progressively larger errors as the building height increased.
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Sammendrag

Fasadehøyde er en vesentlig faktor i studiet av bymiljøets karakter og omfang. Es-

timering av høyde krever nøyaktige romlige m̊alinger og komplett bygningsdata,

der begge avhenger av bruken av dyr og toppmoderne teknologi. Denne studien

har som mål å senke terskelen for å gjennomføre storskala høydeestimering ved

å benytte seg av lett tilgjengelig teknologi. Hovedsakelig ønsker vi å undersøke

hvordan bilder tatt fra gateniv̊a kan benyttes for å estimere fasadehøyden i et større

geografisk omr̊ade. Dette gjennomføres ved å utnytte symmetri og repeterende

mønstre basert p̊a arkitektoniske prinsipper. Vi implementerer en metode som auto-

matisk segmenterer fasadene i separate etasjer og bruker kunnskap om deres iboende

egenskaper og attributter for å estimere fasadehøyden.

Et eksperimentell studie ble gjennomført i den hensikt for å teste metoden p̊a bilder

tatt fra gateniv̊a i Trondheim, Norge. Fasadeobjektene ble automatisk detektert for

å videre segmentere etasjene med et regresjonsanalyseverktøy (RANSAC) og der-

etter ved å anvende v̊are definerte urbane regler for å ytterligere justere den resulter-

ende høyden. Resultatene indikerte at segmentering av etasjer bidro til en nøyaktig

estimering av fasadehøyden og at reglene supplerte med å styrke høydestimasjonen.

Det ble videre gjort kjent at kvaliteten p̊a bildene fra gateniv̊a i stor grad p̊avirket

resultatene. Evaluering av metoden resulterte i en korrekthet p̊a 92% for eteasjeseg-

mentering p̊a et utvalg bilder med god kvailtet. Videre ble det oppn̊add tilfredsstil-

lende resultater for høydestimasjonen i hele studieomr̊adet, med gradvis større feil

etter hvert som byggehøyden økte.
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1 Introduction

This chapter will present the motivation, existing state-of-the-art methods, intro-

duce the problem and our solution. Additionally, the research objectives are defined,

and an outline of the thesis is presented at the end.

1.1 Motivation

The global human population distribution has shifted from rural towards urban

settlements in the last two centuries, with more than 50% of people being urban as

of 2021. Moreover, it is predicted to be steadily increasing over the next decades,

estimated that approximately 69% of the world’s population would be living in cities

by 2050 (UNDP 2016). Furthermore, the rapid growth of cities significantly impacts

the socio-economic processes and has substantial environmental effects, posing a

considerable challenge to sustainable urban development. In turn, this gives rise

to the need of having up-to-date and consistent data on the characteristics of the

urban environment and its morphology, where the building height is considered one

of the key geometric parameters for understanding urban process regimes (Frantz

et al. 2021).

Earth has already been comprehensively mapped in 2D, yet, the vertical dimension

remains untapped of its limitless potential. Therefore, mapping inhabited areas as a

3D representation of reality require a description of the vertical dimension. This will

enable the description of building height and facade extent in urban environments.

Furthermore, as the parameters directly influence many quantities and relations,

they enable the description of the floor space and urban morphology (Esch et al.

2020).

The importance of building height as a parameter when regarding settlement char-

acteristics is undeniably significant. As such, the description and management of

the height contribute to enabling the reconstruction of 3D city models (Biljecki et

al. 2015), that in turn can be utilized to enable detailed analysis of the energy and
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environmental effects, including the estimation of renewable energy potential and

greenhouse gas emissions (Resch et al. 2016; Borck 2016), in addition to the man-

agement of smart cities and accurate interpretation of the population distribution

(Gong et al. 2011). Moreover, extensive knowledge of heights in an urban environ-

ment can contribute significantly to the planning and expansion of infrastructures

such as electricity systems, telecommunications, and water systems. In particular,

this is beneficial for developing countries, as stated by Duncan 2012, suggesting

that the adoption of 3D city modelling can improve the quality of life. However,

the reconstruction of 3D city models is a demanding and expensive task requiring

extensive knowledge and readily available geospatial data, severely limiting the feas-

ibility of arriving at an adequate solution. As of now, few open-sourced alternatives

have the spatial accuracy required for the particular task of estimating the height

and producing complete 3D city models.

1.2 State-of-the-art

The height of buildings can be estimated utilizing a vast array of geo-information

tools and remote sensing approaches. In the following, a selection of state-of-the-art

methods will be presented, such as high-definition surveying, remote sensing, and

aerial photogrammetry. We will also describe the shortcomings of existing methods,

both in terms of a technical and economic aspect.

The use of LiDAR to detect the height of buildings when considering the vertical

dimension can be accomplished through large-scale multi-source data analytic pro-

cedures by exploiting earth observation (OE) satellite data, such as the Sentinel-2,

with the use of digital terrain models (DTM) and normalized digital surface models

(nDSM) from the TanDEM-X digital elevation, as well as Open Street Map (OSM)

data and the Global Urban Footprint (GUF). This enables the generation of spa-

tially detailed maps of 3D building structures at a continental or global scale. The

subsequent quality of the output of this method is sufficiently accurate for describing

the urban morphology at a city level. Yet, for the precise estimation of individual

building heights, the results are still, in some cases, insubstantial (Esch et al. 2020).

2



While some methods rely on the complex use of remote sensing (LiDAR) with DTM

and DSM, various researchers have been exploring a more elementary approach using

celestial geometry and remote sensing satellite images to estimate building heights.

More specifically, various approaches in regards to the relationship between a build-

ing and its coincident shadows have been explored, e.g. Comber et al. 2012 and Qi

et al. 2016, where the latter applied their method on images acquired from Google

Earth. As such methods yields promising results, obtaining detailed features from

satellite images, such as shadows cast by buildings in an urban scene, provide chal-

lenges. In particular, the presence of intensity heterogeneity and feature complexity

complicates the shadow detection process, that is emphasised in the research done

by Liasis and Stavrou 2016. A more compound shadow-overlapping algorithm has

been developed by Kadhim and Mourshed 2018 with the incorporation of identifying

building shadow regions on very high resolution (VHR) satellite images with the use

of solar information gathered from image metadata, together with the application

of morphological operations and the Jaccard similarity coefficient, in turn enabling

a measure of similarity between the sets of data.

Photogrammetric analysis of satellite, aerial, or drone imagery and ALS-based

height estimations are generally more accurate when compared to the aforemen-

tioned space-borne methods due to increasing errors as the images are captured in

higher altitudes (Sirmacek et al. 2012; Baltsavias 1999). Moreover, they provide a

finer spatial resolution, increasing the accuracy of height estimations on individual

buildings, especially when paired with official cadasters or open-sourced building

footprints (Frantz et al. 2021). On the other hand, these methods provide results

that have a lesser spatial extent, as they are not covering large areas such as complete

countries or regions.

The existing methods present a set of technical and economic problems, as imple-

menting them requires extensive expert knowledge, many work hours, and access-

ibility to exceptional technology and other high-cost equipment. Another problem

is that the datasets are still proprietary and come with considerable data purchase

costs. In addition, the resulting data output from these approaches is of varying

quality, as large-scale height estimation includes systematic errors and overlapping

3



footprints when considering the spatial resolution and distinction of individual build-

ings (Frantz et al. 2021). Evidently, airborne laser scanning (ALS), photogrammetry,

airborne or space-borne VHR imaging all face the challenges of continuity and re-

gional inconsistency. Furthermore, the utilization of official cadastres or volunteered

geographic information (VGI) with open data alternatives to georeference the result-

ing height estimations to specific building footprints may cause problems concerning

spatial accuracy and completeness (Brovelli and Zamboni 2018).

1.3 Objective and the Proposed Solution

This method aims to enable large-scale building height estimation in urban envir-

onments using street-level imagery to segment floors and consider urban rules to

enhance the facade height estimation as a cheap alternative to the already existing

state-of-the-art methods available.

We propose a solution that entails exploiting facade patterns by acquiring know-

ledge of the facade objects and their relative positioning, enabling an overview of

the inherent structure that we can utilize when performing the floor segmentation.

We seek to estimate the facade height by applying a standardized metric for indi-

vidual floors and improving the estimation using urban rules that consider various

architectural principles.

The work conducted in this thesis is based on the premise of the following three

research questions:

Q1: Will the number of floors enable an adequate estimation of the facade height

by using floor segmentation on street-level imagery?

Q2: Will extensive knowledge about the features of a facade aid in the estimation

of the facade height?

Q3: Will extensive knowledge about the attributes of a building aid in the estima-

tion of the facade height?

4



1.4 Thesis Outline

In Chapter 2 we introduce the background knowledge and the fundamental concepts

that guided our work. In particular, the architectural principles and the underlying

symmetry inherent in building facades are unveiled and coupled to the urban land-

scape as a whole. Furthermore, we will present work done within facade parsing

and construction of grammar rules to form a theoretical framework for the rest of

the thesis.

Then, in Chapter 3 the structure of the method will be described in detail. At first,

we explain the pre-processing step, including the management of building inform-

ation data and street view imagery. Then, to describe the floors on facades, we

explain the implementation of our floor segmentation technique. Next, we present

a set of urban rules that are exerted to quantify an estimation of the real-world

counterpart. In the end, we generate a 3D model to visualize the final result of our

method.

Chapter 4 begins with a brief introduction of our experimental study, environment,

and study area. The following experimental results are then presented, and a two-

part evaluation is carried out. The final section of the chapter summarizes our key

findings, entailing a discussion that interprets the results and uncovers the limita-

tions of our method.

The thesis ends in Chapter 5 with concluding remarks answering the research ob-

jectives and summarizing the findings of our work. Finally, some suggestions for

future work are presented.
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2 Background Knowledge and Related work

This chapter will introduce background knowledge and related research and its rel-

evance to our method. Hence, a description of the architectural principles applic-

able for laying the foundation for recognising symmetries and patterns is presented.

Moreover, we will also introduce the work related to the process of logically struc-

turing buildings, recognizing their inherent features, including objects and patterns,

and subsequently modelling their facades as a whole.

2.1 Architectural Principles, Symmetry, and Patterns

The most prominent pattern within architectural principles is the use of combined

symmetries. Human perception depends on combined symmetries to reduce inform-

ation overload, as disorganized information is much harder to process for the human

(Figure 1). Such patterns of complex symmetries and mathematical relations are

often found in human creations, where architects and structural engineers cooper-

ate to ensure that mathematical principles are followed to construct a functional

building (Salingaros 2020).

Mathematics also impacts the aesthetic footprint of constructions, as proportional

ratios often are used to determine relative dimensions of architectural components

(Kappraff 2016). Relying on these observations, a generalization of the structure

of a building, or more specifically a building facade, can be done by exploiting the

mathematical relations found in the existing environment. Both temporal changes

and cultural influences within the field of architecture will provide minor and ma-

jor distinctions in the facade structure, particularly modern architecture known for

deviating from the traditionally applied architectural principle (Nia and Rahbari-

anyazd 2020). However, the underlying composition of buildings usually follows the

same mathematical principles and arrangements of the facade.

Such principles and patterns could also be applied at a larger scale, as the urban

space is a complex collection of buildings, blocks, and neighbourhoods separated by

6



a structured road network (Vanegas et al. 2010). Moreover, the underlying structure

of a city is defined by a large set of compound variables such as land policies and

regulations set by the local government, which again affects the individual features

of a building. For instance, most city areas apply certain building regulations to

ensure that national or local legal framework are met, e.g. requiring at least one

operable window with a clear view in each open living area as stated in Direktoratet

for Byggkvalitet 2017 (§13-4) and placed with a minimum height above the floor

as stated in Direktoratet for Byggkvalitet 2017 (§12-17). Urban areas elucidate the

outcome of this, as limited space between buildings causes a more dense distribution

of windows on the front and rear facade to fulfil the aforementioned regulations.

Figure 1: Research have shown that there is a strong positive correlation between
symmetry and aesthetic appreciation, where symmetry along the vertical axis is
usually perceived as more dominant compared to horizontal-symmetry (Aydin and
Mirzaei 2021).

The urban landscape, in general, has been significantly influenced by large-scale

urbanization, where limited space of land area has lead to a vertical expansion of

the cities worldwide and a centralized population density (Ding 2013). Furthermore,

a city is usually intentionally designed by urban planners that have applied urban

morphology elements to promote sustainable urban development, dividing the city

into a hierarchical network (Chen 2014; Li et al. 2004). I.e. offices, malls, and

7



other commercial buildings are often located in the city centre or other high-density

areas, implying that each division of the city may have its own city image following

certain characteristics such as a common height, building size, and facade pattern.

This follows the concept of building typology, which states that the set of buildings

serving the same function, usually share the same structural features Kelbaugh 1996.

The building typology also applies to sets of blocks and neighbourhoods, providing

coherence and shared meaning in the built environment. Therefore, interpreting

the area in context may give good indications on a general idea of the architectural

principle applied among the vast selection of diverse facade structure and patterns

current existing in the physical world today. In addition, other concepts such as

wholeness and harmony, as defined by Jiang 2016, could further strengthen the idea

of similarities among facade patterns and within neighbourhoods. Furthermore, as a

city is a concentrated reflection of the city culture, certain local features may further

shape the architectural principles and establishing a convincing theme of the urban

environment (Qiao, Yiqing 2017).

2.2 Floor Segmentation and Urban Rules

In general, the procedure of modelling the facade, building, and architecture have

been explored extensively throughout the last decades. However, these methods

focus solely on generating and reconstructing accurate 3D models. On the contrary,

our method aims to estimate the facade height by exploiting structural arrangement

and repetition of facade objects. The following related work will therefore cover

methods utilizing the same principles through the implementation of rules.

Becker and Haala 2009 proposed an automatic approach where grammar rules are

generated from observed 3D facade geometries and further used to create synthetic

facade structures for unknown building parts. Applying architectural principles

such as the column-wise arrangement of facade objects and their interrelationships,

grammar rules were derived and applied to verify and generate 3D models.

8



The parsing of building facades is crucial in semantically structuring buildings,

facades, and 3D city model reconstruction and is prevalent within the domain of

computer vision. In many cases, urban structures follow ordering principles and

characteristics of symmetry that can be exploited to describe urban morphology

and the inherent semantics accurately. Initially, the methods primarily depended

on prior knowledge and grammar rules proposed by human experts, including pars-

ing on weak architectural principles (Becker and Haala 2009).

However, newer methods have become better at reducing these challenges by basing

the parsing on shape grammar rules. Yet, prior knowledge is still constraining

the methods, making them harder to generalize and culminating in erroneous out-

put, such as irregular arrangements of facade objects and perspective distortion will

skew the results. With the application of deep learning, Schmitz and Mayer 2016 ap-

proached facade parsing as an image segmentation problem which yielded promising

results. Still, the network suffers from the lack of implementation of man-made rules

found on facades. Further on, image segmentation poses several challenges with the

great variations of environments and the occurrence of occlusions, visual perspective,

and changes in illumination (Liu et al. 2017).

Kong and Fan 2020 approached the problem by proposing a new pipeline based

on convolutional neural networks (CNNs), connecting semantic segmentation and

object detection by utilizing PSPNet and YOLO (Redmon and Farhadi 2018) for

parsing facade images. Semantic segmentation is carried out for parsing walls, and

object detection parses the following facade elements. The method is tested on

scenes with non-optimal conditions by including images with foreground occlusion,

varying illumination conditions, and complex backgrounds. The results from the

pipeline are good, proving the potential for the method as a general facade parser

dealing with complex scenes. The method can also be expanded upon by includ-

ing more grammar and context rules to improve their facade parsing subnetwork.

Furthermore, the pipeline can be applied to practical problems such as 3D model

reconstruction, facade height estimation, and renewable energy potential analysis.

With most 3D buildings being reconstructed automatically or semi-automatically
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from LiDAR and image data, Fan et al. 2021 proposed an interactive approach for

VGI 3D buildings modelling and semantic labelling on images. The outline of the

facade was marked manually through the developed software, yielding high accuracy

LoD3-level 3D building models with no preliminary knowledge required by the users.

Despite promising results on a smaller scale, manual intervention is a still necessary

input, which will be laborious for reconstructing city models for large-scale analysis.

The architectural principles and related work presented in this chapter form the the-

oretical framework for the rest of the thesis. Considering the patterns inherent in

facades enables logical structuring and modelling, generating accurate and semantic-

ally rich 3D models to represent the urban scene. However, several challenges arise

when parsing facades as the diversity of the urban scene and complexity of facade

structures complicate extracting the relevant features, requiring high-quality im-

agery and a comprehensive dictionary of grammar rules. Furthermore, as previous

work has shown, exploiting simple patterns and repetition of objects is enough to

describe the vast majority of existing facades. Yet, the height has not been properly

described by the current methods, even though it is a highly prominent feature.

Therefore, our work aims to describe the vertical dimension, as made possible by

exploiting the same principles and ideas, to automatically generate a digital twin of

the urban environment, emphasising the third dimension.
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3 Floor Segmentation and Rule-based Height Es-

timation

In this chapter, we present our method. Initially, we lay out our approach to pre-

process the necessary data to segment floors on facades from street view imagery.

Then, we derive a set of urban rules from facade patterns to estimate the facade

heights.

3.1 Overview

The method is based on analyzing simple architectural features and patterns where

the number of detected floors clearly indicates the facade height and structure. A

RANSAC regressor was utilized to achieve the aforementioned segmentation, from

which the resulting output is highly dependent on the quality of the acquired street

view imagery and building data. Furthermore, a set of urban rules are deployed to

exploit the patterns and structure of facades and their inherent objects to provide

an estimation of the facade height. Finally, a 3D model visualizes the height estim-

ations.

Figure 2: This flowchart visualizes the main steps of our method.
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3.2 Pre-processing

The initial step of our method covers the task of collecting data and preparing it

for further utilization. It entails collecting and manipulating the input data, arran-

ging it so that the continuous integration and management become uniform. We

used several data sources to retrieve the necessary data combined for the ensuing

floor segmentation and height estimation. The method requires input that handles

building information, particularly the footprints and building types, and the corres-

ponding street-level imagery of the facades to connect the results with a real-world

counterpart.

3.2.1 Data Acquisition

When choosing the building information source, the consistency of the data and the

spatial accuracy were central properties to consider. In addition, the building in-

formation must be able to aid in georeferencing the facades and associate the digital

image files with locations in physical space. In this regard, we chose a data source

that could provide viable information befitting our requirements; OpenStreetMap

(OSM). It is a widely acknowledged collaborative project with high data quality and

appears to be consistently preferred over other open sources of retrieving spatial data

(Mooney and Minghini 2017).

Initially, the bounding coordinates of the study area were given as an input in a

query performed on the OSM database to gather all building footprints. In the

matter of terminology evolving the elements of OSM, a Way is defined as a linear

feature on the ground (e.g. road, wall, or river) and consists of an ordered list of

nodes which normally contains at least one tag to describe its features, such as the

building type as seen in Table 1 (OpenStreetMap 2021b). An additional retrieval

of building footprints, including enclaves and/or multiple exclaves, was necessary,

as such buildings are instead defined in the OSM data structure as multi polygon

Relations.
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As of yet, there exists no connection between the building Node and the Way de-

scribing the relation between the footprint and address node in OSM (Figure 3),

and acquiring the address of the building footprint is necessary, as it facilitates for

the subsequent process of connecting the fetched street-level images to its corres-

ponding building data. Therefore, we queried the OSM data and checked whether

the footprint polygon contained an address node to connect the address and the

building footprint itself. Furthermore, we also handled the filtering and exclusion

of undesirable building data. Consequently, whence building annexes (e.g. garages

and sheds) were removed from the building data as they contained no address node.

Finally, after connecting the footprints and address nodes, the data was extracted

and combined into a joint JSON file.

Figure 3: This figure illustrates how OpenStreetMap separates between nodes and
ways (houses). Each node contains a location with both coordinates and an address
(Source: OpenStreetMap 2021b).
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Table 1: OpenStreetMap JSON elements.

Type Common Attributes Tags Description

Node id, lat, lon
addr:city, addr:postcode,
addr:street, addr:housenumber

A node represents a specific point on the earth’s surface
defined by its latitude and longitude.

Way id, bounds, geometry building, amenity
A way is an ordered list of nodes used to represent linear features
and can be a closed boundary such as a building footprint.

Relation
id, bounds, members,
role, type, geometry

building, amenity
A relation is a multi-purpose data structure that describes
relationships between elements (nodes, ways, or other relations).

Next, when acquiring the facade imagery, the images were desired to be aligned

perpendicularly with the considered facade (Figure 4). This enables desirable beha-

viour for both the detection method and subsequent height estimation, as an image

would be less likely to produce erroneous features. However, the existence of data

that could guarantee this for a given study area is close to non-existing and requires

extensive manual data acquisition. Nevertheless, manually capturing the street view

imagery would indeed result in superior facade height estimates. Thus, balancing

manual and automatic data collection from the street view imagery providers (s.a.

Google Street View and Mapillary) essentially boils down to a trade-off between

data with low availability that is more facilitated and data with high availability is

less facilitated.

Figure 4: This figure illustrates the preferred scene of retrieving street-level facade
imagery, with the camera perpendicularly aligned with the building facade.
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Therefore, choosing the method for collecting street-level imagery was accomplished

by considering the quality and coverage of the imagery provider. We observed that

volunteered street view imagery (VSVI) platforms (e.g. Mapillary or KartaView)

provided less extensive street-level imagery coverage. Thus, choosing Google Street

View enabled us to automatically collect a satisfactory amount of imagery within

the broader geographical area with adequate quality. Furthermore, the retrieved

building addresses from OSM were used as input in the Street View Static API

to request street-level images specified by a location parameter. Using the address

string instead of longitude/latitude values, the API requests an image with a direct

view of the specified address location. In contrast, requesting a location using lon-

gitude/latitude returns an image that is closest to the position of the given location,

with a slightly higher margin for error. Moreover, handling addresses makes the

results more human-readable and facilitates communication when managing data

processing between OpenStreetMap and Google Street View. Using the address

text string as an HTTP URL request parameter contributes to the overall higher

performance of the method concerning the quality of street view imagery. Moreover,

an image is mainly taken from the road adjacent to the facade at street level, where

the street covers a larger portion of the lower part of the image. Therefore, tilting

the camera angle slightly upwards will increase the probability of including all floors

of a facade, namely on images of tall buildings where the distance between the cam-

era position and the facade is short. We did this by adjusting the pitch parameter,

representing the relative angle of the street view camera along the vertical axis.

3.2.2 Facade Object Detection

Further on, the detection of facade objects was conducted by integrating the facade

parsing pipeline developed by Kong and Fan 2020. The pipeline included three sub-

networks, where we only chose to consider the network handling window/door/balcony

detection. Using the Google Street View images as input (640x640 pixels), the fol-

lowing output was four normalized coordinates portraying the bounding boxes of

the detected objects, with a corresponding class label and precision threshold. We

chose to consider windows and doors throughout our method, as we assumed that
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these were the most influential features on a facade. The output was then saved

as a list of objects. Each object contained information about the positioning and

geometric extent used to segment the facade using the RANSAC floor segmentation

algorithm. In addition, we extended the object geometry to include the three points

on the centerline of the object, namely the left edge, right edge, and the centre of

mass of the bounding box.

Figure 5: This figure illustrates how adding three centerline coordinates can aid in
the floor segmentation process. The initially given bounding box coordinates (red)
from the detection method is shown in (a), and the added centreline coordinates
(yellow) is visualized in (b).

3.3 Determination of Floors on Facades

Facade heights can typically be expressed in either absolute metrics or as the num-

ber of floors. However, supplementary information about the arrangement and use

could also be derived from knowing the number of floors. In general, the floor-

to-floor height difference is negligible among a representative set of buildings with

similar use (e.g. residential), given the conventional use of standardized regulations

(Direktoratet for Byggkvalitet 2017). However, the architectural style and its in-

tegration into the surrounding terrain may cause variations in the interpretation of

the total facade height, as shown in Figure 6. Moreover, between distinct building
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types, the floor-to-floor height may also deviate strongly from the average practice

to meet the requirements of their service, in addition to internal variations within

the same structure (Council 2021).

Figure 6: This figure shows the different facade height definitions and how they
are affected by architectural style and surrounding terrain. The dashed lines are
examples of the facade height, with cornice height (yellow) and ridge height (blue).

To accurately describe and interpret the structure and features of a building facade,

identifying key characteristics is conceivably important. In particular, the relations

between and among windows and doors are essential aspects to consider when at-

tempting to describe a facade. Given these objects, one can utilize metrics such

as the presence, quantity, and position of the objects to infer knowledge about the

semantics of the facade. Such knowledge is based on the inherent features of already

established architectural patterns that are fundamentally predictable and pragmatic.

A random sample consensus (RANSAC) algorithm from Scikit-learn was employed

to enable the segmentation of floors (sklearn.linear model.RANSACRegressor, Pedre-

gosa et al. 2021). The algorithm was used to allow robust estimation of parameters
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from subsets of inliers in the observed data, namely the centre coordinates of objects

(s.a. windows and doors) found by the aforementioned detection method, to fit a

model to determine separate floor lines. The additional centerline coordinates ad-

ded in the pre-processing will further enhance a potential floor line, especially where

the number of windows is low. As the RANSAC implementation can only estimate

one such model for a particular dataset, we tweaked the method to enable the fit-

ting of multiple lines to the observed data (Zuliani et al. 2005), enabling multi-floor

segmentation of facades on the provided street view imagery.

Figure 7: This figure illustrates how adding two extra centre line coordinates can aid
in the floor segmentation process, with window coordinates represented as points
(red) and intermediate/outlier windows (yellow).

A significant advantage of using the RANSAC algorithm in this particular case is

that the observed data is symmetrically structured and logically ordered, as facade

objects tend to follow standard architectural principles. Further on, the handling

of potential errors and inaccuracies arising from the previous steps was deemed

necessary in order to ensure greater consistency and easier manipulation of data

throughout the process. Therefore, we included a step for handling error correction

and adjustment of the output. We intended to manage the correctness of the rep-

resentation of the separate floors, rather than being an extensive step for handling

the inclusion and exclusion of specific facade objects for each floor. This is caused

by the fact that the number of floors is dependent on sets of objects constructing

each of the separate floors present on the facade. Therefore, when estimating the

facade height, sets of objects are more important and serve as a primary feature,

and individual objects only serve as secondary features.
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Figure 8: This figure shows a facade oriented perpendicularly (a) and a distorted
facade (b), where both are valid facades. The figures contain the facade outline
(black quadrilateral) with floors (yellow lines) and facade objects centres (red dots).

Managing the floors to represent a facade accurately required a reassessment of the

output generated by the RANSAC regressor. Even though the floor segmentation

was primarily returning valid and logically aligned floors (Figure 8), there was still a

possibility that the method had recognized arbitrarily fitted lines as floors. The issue

of overlapping and misaligned floor lines was one of the main problems arising from

this implementation of RANSAC, as the algorithm fits any model that is not rejected

due to its inherent restrictions (Figure 9). Evidently, the preceding behaviour was

deemed erroneous for the facade floor segmentation, requiring corrections to achieve

the desired outcome.

Figure 9: This figure shows two facades with invalid floor segmentation. Facade
(a) has overlapping floor lines, and facade (b) has misaligned and misclassified floor
lines. The figures contain the facade outline (black quadrilateral) with floors (yellow
lines), facade objects centres (red dots), misclassified floors (grey lines), objects that
could potentially be part of a misclassified floor (hollow blue dots) and objects part
of the misclassified floors (blue dots).
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We implemented the corrections by inspecting the object-to-object, object-to-floor,

and floor-to-floor relations of the segmented facade. By assessing these relations, we

determined if the floor lines erroneously intersected and merged the floors that were

too close in relation to the average distance between all floors. We also effectively

removed any floor lines that were misaligned and significantly deviated from the

average absolute slope of all floor lines, considering that the facade may be prone

to perspective distortion. By doing this, we were able to circumvent the issues

demonstrated in Figure 9.

3.4 Height Estimation by using Urban Rules

In some cases, it might be relevant to consider the spatial extent of the objects

contained on each floor, as an object can provide valuable information about the

mathematical relations of a facade. However, it is important to note that a single

object will not provide any significant information regarding the height of a building,

but a single object measured up against the sets of objects contained on the whole

facade may provide valuable insight.

With the refined images from the previous step, we improved the estimation of

the facade height by investigating the topography of the arrangement of objects

on the facade. Then, based upon commonly known architectural patterns observed

on existing facades, we exploited mathematical metrics and relations among the

detected objects and floor lines to adjust the relative physical height between the

floors. A set of rules were then applied to potentially adjust the estimated floor

height if the given rule returned a true statement.

1. Rule: Basements

The facade consists of a basement if the windows located on the lowest detec-

ted floor are significantly smaller than the rest.

Consequence: Reduce the height of the lowest floor.
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2. Rule: Shop Floor

The facade is a commercial service building if the windows located on the

lowest detected floor are significantly larger than the rest.

Consequence: Increase height of the lowest floor.

Figure 10: This figure shows two examples where the rules are relevant, i.e. the
presence of basement floor (a) and store floor (b). The figures contain the facade
outline (black quadrilateral) with floors (yellow lines), doors (green quadrilateral),
windows (blue quadrilateral) and facade objects centres (red dots).

We used general knowledge and observations to decide if a relation between objects

or sets of objects is decisive, in addition to manually tweaking variables to see which

values yield the best results. If neither of the aforementioned rules has been enforced,

we performed an additional search for any relevant building data. Particularly, using

the building type of a facade enabled further possible adjustment of the estimated

height, as it may contain relevant characteristics that influence the structure of a

facade (Figure 11).

1. Rule: Commercial

The building type is Commercial

Consequence: Increase height of all floors.

2. Rule: Service

The building type is Service

Consequence: Increase height of all floors.
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Figure 11: This figure shows an example of the floor-to-floor height: (a) residential
building; (b) commercial building.

In essence, the collection of the defined rules are based on a standardized floor height

and slight variations given certain features or attributes that are either decided by

mathematical relations found on the facade or from data extracted from the OSM

database. The standardized floor height is dependent on building regulations and

may therefore vary in different areas and countries. However, we assumed that

a general floor-to-floor height was around 250 centimetres for residential buildings

and 300 centimetres for commercial and service buildings (§ 12-7, § 12-8)(Chun and

Guldmann 2012).

Note that the minor height differences among neighbouring buildings caused by

variations in parapets, foundation heights, and floor thickness do not adversely affect

the scale, consistency, and character of a street scene (Council 2021). Therefore,

applying a standardized metric will give an accurate estimation of the urban scene

as a whole, generating a digital twin facilitating large-scale surveying and analysis

of the urban environment.

With the implementation of urban rules and floor segmentation, we performed a

large-scale estimation of the facade height for our given study area. Finally, we

combined mapping data from OSM and the Norwegian Mapping Authority (NMA).

Finally, we used software provided by our geomatics research group at NTNU to

generate a 3D model to visualize the results.
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3.5 Evaluation

In order to evaluate our method, we chose to decompose the problem into two parts.

One part checks the viability of our method when deployed on a large-scale urban

environment for height estimation. The other assesses the accuracy of the floor

segmentation and application of urban rules for an optimal subset of street-level

imagery through manual inspection.

To evaluate the resulting height estimations, we approached the problem by con-

sidering a LiDAR point cloud covering the study area to compare our results with

ground truth height data, extracted from LiDAR data provided by The Norwegian

Mapping Authority. The ground truth height values for each building in our dataset

were calculated by segmenting the LiDAR point cloud in the XY-plane using the

building footprint coordinates acquired from OSM and obtaining the average z-value

of the selected subset.

Additionally, the manual inspection of the selected subset of optimal facade im-

ages was performed to assess the correctness of the implemented floor segmentation,

thereby eliminating the influence of erroneous features caused by irrelevant factors

regarding segmentation quality. Initially, the correctness was measured by simply

comparing the detected and actual number of floors observed per the facade. Fur-

thermore, we measured the degree of error by counting the number of detected floors

that deviated from the true number. Finally, the impact of the defined rules was

checked by comparing whether there was an improvement of the height estimation

if a relevant rule was applied or not.
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4 Experimental Study

In this chapter, we will present the objective of the experiment, how the experiment

was conducted, and the subsequent results. First, we estimate the facade height of

buildings from street view imagery in the chosen study area by utilising our floor

segmentation and rule-based method. Then, we continue with presenting the results,

culminating in a discussion of the following output.

4.1 Experiment environment

We developed the height estimation pipeline in a Python environment, utilizing

Overpass API (Olbricht 2021) to access OSM data and Google Street View Static

API (Google 2021) to access street view imagery in Google Street View (GSV) to

collect all required data for pre-processing. We employed the convolutional neural

network pipeline of Kong and Fan 2020 to enable facade parsing and object detection

of the input data. Then we implemented the floor segmentation algorithm using the

RANSAC regressor from Pedregosa et al. 2021. The 3D model representation was

done using the 3D model generation software from our Geomatics research group,

currently available in internal testing.

GPU: NVIDIA GTX 980 Ti

Processor: Intel Core i5-8600K CPU

Memory: 16 GB Memory

4.2 Study Area

The experiment was conducted as a two-fold case study within the region of Trond-

heim, Norway. The chosen area is enclosed with a rectangle (Figure 12), with

minimum and maximum longitude and latitude of respectively (63.40795, 10.33578)

and (63.44873, 10.46711). We did the study to carry out a large-scale survey of the
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area and ensure a comprehensive examination of the performance of our method.

The intention was to investigate the viability of the method as a large-scale analysis

tool and to check if it could be deployed in a complex city environment realistically.

To further examine the quality of the implemented floor segmentation and the ap-

plied rules, a manual selection of facade imagery was made in order to simulate an

optimal testing environment.

Figure 12: This figure shows the chosen study area of Trondheim, Norway (red
quadrilateral) (OpenStreetMap 2021a).

We intentionally chose the study area to cover multiple city district types to test the

flexibility of our method. Furthermore, Trondheim consist of several urban districts

with different characteristics, including industrial areas, city centres and suburban

areas. It is worth mentioning that the distinct features may influence our results

within the chosen study area, such as cultural and environmental factors. However,

the fundamental principles of a facade structure are shared between cities in general,

and the impact could be assumed to have minor significance. Additionally, given our

familiarity with the study area, our underlying knowledge was exploited to evaluate

further and interpret the results.

Table 2: Building types in OSM.

Residential Commercial Service Industry
Include Apartments, Terrace Retail, Commercial, Office School, University, Hospital, Kindergarten Warehouse, Industry
Exclude Garage, Shed
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4.3 Experimental Results

In this subsection, we provide the results of the main parts of our method: the floor

segmentation and the application of urban rules.

The collected data from OSM and Google was retrieved throughout March, April,

and May 2021. A total of 16288 unique buildings were extracted from the OSM

dataset within the study area. After filtering the building data through the pre-

processing step and disregarding any non-unique buildings, i.e. buildings not con-

taining an address node and areas lacking or erroneous street view imagery, 6233

buildings were included. Finally, the method disregarded 1283 images, and we ended

up with 4950 images that yielded adequate results considering the floor segmenta-

tion and rule-based height estimation. In addition, we selected 50 images distributed

uniformly throughout the study area to analyse the results further manually, all of

which concurred with the requirement of proper alignment to their respective facades

and were representative of the different district types (Figure 13).

Figure 13: Visualization of the results from an example subset of street-level imagery.
(a) The completed input from the pre-processing step with detected objects on
the facade imagery. (b) The corresponding plots from the RANSAC algorithm
with object coordinates (inlier points) where the different colours represent floor
affiliation. (c) The segmentation of each unique floor on the different facades.

In Figure 13, we see the input data from the pre-processing step (Figure 13a), the

plots from the RANSAC object fitting (Figure 13b), and a visualization of the final
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results of the floor segmentation of RANSAC displayed on corresponding the street-

view imagery (Figure 13c). We can observe that the detected floor lines are generally

fitted to the corresponding floors on the street-view images with satisfactory accur-

acy (Figure 14). Furthermore, as observed throughout the results, when considering

optimal street view imagery and a clear and distinct facade comprising an overall

symmetrical facade structure, the floor segmentation was frequently correct.

Figure 14: Visualization of the results of the multi-RANSAC regressor algorithm; in
(a) the object centres (red points) and floor lines (yellow lines) on the facade imagery,
and in (b) a plot of the corresponding segmented floors with object coordinates (red,
green, and blue points).

In contrast, we also observed that the floor segmentation on street-view images that

were sub-optimal in terms of positioning, alignment, occlusion and background noise

performed significantly worse (Figure 15). Specifically, we observed that the num-

ber of segmented floors varied depending on the framing of the street-level image.

Furthermore, the misalignment was observed as the image was slanted along the

road axis due to the image capture interval. In addition, the occlusion of facades

mainly came from trees, cars, and other city furniture. Finally, non-relevant facades

were sometimes included in the background or adjacent to the facade in question,

resulting in faulty floor segmentation, as seen in Figure 15. Nevertheless, the result-

ing number of floors estimated was adequate in many cases, or the images had no

detected facade objects or segmented floors. They were consequently disregarded as

part of the 1283 removed images.
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Figure 15: Example visualization of the floor segmentation results on street-level
imagery that was either incorrectly positioned, occluded, misaligned, or included
background noise.

Furthermore, Figure 16 shows a set of examples visualizing how the method per-

formed on buildings with complex facades, usually consisting of buildings with fewer

detected objects on each facade. We observed that the recurring issue of the complex

facades was mainly due to asymmetrical facade patterns and irregular distribution

of facade objects. As a consequence, no logical ordering of floors could be described

by our method.

Figure 16: Visualization examples of the floor segmentation results on street-level
imagery with complex facades.
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Moreover, Figure 17 represents a selection of buildings including a basement floor,

with the top row representing facades with correct basement detection and the

bottom row representing undetected basement floors. We see that the basements are

not considered mostly due to the detection method’s inability to discover the smaller

windows. In addition, we also observed that basement windows were in some cases

occluded by various objects (e.g. fences, cars, and vegetation). However, in most

cases, we could clearly distinguish between the size of the basement windows and the

windows above. The heights of the foundation on which the basement windows are

placed were repeatedly similar, facilitating for an accurate height estimation result

in total.

Figure 17: A set of facades where the basement rule has been applied on the detected
basements (top row), and a set of facades where the basement rule has not been
applied (bottom row).

An example of facades with shops is shown in Figure 18, and we can observe that the

shop floors remain undetected. We observed this recurring situation throughout the

results, as the detection method could not locate shop floor windows on numerous

facades.
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Figure 18: Visualization examples of the floor segmentation results on street-level
imagery with undetected shop floors.

Table 2 represents the building types found in our study area, yet most observed

buildings had no information about their type. Moreover, even the few building

types found, such as offices and universities, were mostly complex with abnormal

facade object size and distribution. Consequently, the impact of the rules was min-

imal.

Figure 19: A view of the resulting 3D model representing a neighbourhood in the
study area of Trondheim (3D model from Geomatics group, NTNU, Trondheim).

The final height estimation result on a large scale, as is visualized in Figure 19 and

Figure 20, gives an overall sufficient impression of the scale and character of the

urban environment. In particular, when observing areas with sporadically missing

or erroneous data, the neighbouring 3D buildings provide a decent representation of

the general area as a whole, based on the average value to adjacent 3D models and

the character of the urban block.
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Figure 20: 3D visualization of the results in the study area of Trondheim. (a) An
urban residential area, (b) a city centre, and (c) a suburban residential area.

Finally, comparing the generated 3D model to the real street view imagery, as presen-

ted in Figure 21, we can see a clear correlation between the two representations,

proving adequate height estimations for the particular area. In general, we observed

the best representations of the city environment in urban and suburban residential

neighbourhoods.

Figure 21: This figure shows a comparison between a street view image with a
shop floor (a) and its corresponding, one-story, 3D model representation (b). ((a):
Google, ”Streetview,” digital images, Google Maps (GoogleMaps 2021), photograph
of B̊ahus gate, 7030, Trondheim, captured: Aug 2020)

4.4 Evaluation

We chose to evaluate our method with a decomposed two-part approach. In the

first part, we intended to evaluate the correctness of the floor segmentation rigor-

ously. Whereas, in the second part, we evaluated the method based on how well

it performed as a large-scale height estimator and its accuracy of the portrayal of
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the real-world counterpart. In this subsection, we thereby present an evaluation of

the results, both the performance of floor segmentation on optimal images and the

height estimation in various scales.

4.4.1 Evaluation of Floor Segmentation

The manual evaluation of the floor segmentation on the subset of 50 manually se-

lected facades is presented in Table 3 and Table 4. Table 4 presents the correct-

ness of the floor segmentation, applied rules and their associated errors. Over-

all, the correctness of the floor segmentation yields good results with an accur-

acy of 0.92. Furthermore, a total of four facades had segmentation errors with

MeanErrorDegree = 1.250 and StandardDeviation = 0.274, MinErrorDegree = 1, and

MaxErrorDegree = 2. Three facades were segmented with ErrorDegree = ±1 and

one facade was segmented with ErrorDegree = ±2.

Table 3: Evaluation results of the floor segmentation.

Buildings
Segmentation

Errors
Error
Degree

Basement
Detection

Shop
Detection

1-10 0 - 5/6 0/2
11-20 2 1, 1 3/3 1/2
21-30 2 1, 2 4/5 -
31-40 0 - 2/3 1/3
41-50 0 - 5/5 2/2

46/50 - 19/22 4/9

Table 4: Statistical floor segmentation results.

Mean Standard Deviation Variance Max Min
1.250 0.274 0.075 2 1

We observed that the applied basement rule yielded significantly better results when

compared to the applied shop rule. In total, the basement rule was applied on

22 facades with a correctness of 0.867, compared to the nine facades containing a

shop with correctness of 0.444. It is worth mentioning that none of the rules was

incorrectly applied in situations where they were not relevant.
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4.4.2 Evaluation of Height Estimation

The height comparison between the estimated heights and the ground truth data

in our study area is visualized in Figure 22. The apparent missing data can be

explained by the inability to estimate any or too few facade heights, in addition to

having detected no buildings contained within a particular unit of the hexbin. As a

result, we can see that the bulk of our estimated heights had a value in the bottom

part of the spectrum with height difference values ranging from 0 to 2 floors (0 to

5 meters). Hereof, we can presume that the height estimations were, for the most

part deviating from the ground truth with one or fewer floors when disregarding the

roof height. This can be further visualized in Figure 23. An interesting observation

from Figure 22 is that hospital complex, university campuses, and industry zones

located in our study area were the main benefactors of the poor height estimations.

Figure 22: The hexbin plot represents the difference between the ground truth
heights and estimated heights. The legend shows the height difference in meters in
six distinct categories.

Further elucidation from Figure 23 emphasises the distribution’s discrete nature,

as buildings are individually considered, with a one-to-one relationship between

33



the estimated heights and the ground truth. It is worth noting that the height

estimation is segmented into explicit intervals as the rules assign a limited set of

values. Meanwhile, the ground truth is collected from a wide range of values in the

vertical dimension of the LiDAR output.

Figure 23: Visualization of the height results compared to the corresponding ground
truth heights from the distribution of buildings in the whole study area of Trond-
heim, sorted from smallest to largest height values.

Evident from the distribution curves in Figure 23, the height difference can be

observed to vary between 0 to 5 meters, with a Mean0≤y≤5 = 2.537m, for buildings

ranging from 5 to 10 meters. In contrast, the difference between building heights

beyond 10 meters diverges with a Meany≥10 = 14.372m. Thus, the aforementioned

observations seem to be correlating with the results found in Figure 22.

Generally, the larger values in Figure 22 can be explained by the presence of taller

buildings or complex facades within the hexbin unit, as they often are erroneously

estimated. For example, the university campus area of NTNU is a compound scene of

several large buildings with many facade objects and a varying degree of complexity,

causing significant deviation in the difference between ground truth heights and

estimated heights (Figure 22). This is an obvious limitation of our method since

the height estimation became increasingly erroneous when the buildings went past

20 meters high (Figure 23).
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Table 5: Statistical height estimation results.

Height Estimation Ground Truth Heights
Mean 6.850 9.922
Standard Deviation 3.554 7.733
Variance 12.631 59.803
Max 25.000 55.340
Min 2.500 1.490

Moreover, the statistics in Table 5 explain the relation of the height estimation and

the ground truth heights. As a result, we can observe that there is a clear distinction

in the statistical data between the two, highlighting the tendency that the ground

truth heights were on average greater than the estimated heights, as can be seen

with the logical expressions MeanGT > MeanEstimate and MaxGT �MaxEstimate.

Figure 24: Visualization of the normal distribution of height results compared to
the normal distribution of ground truth heights from the distribution of buildings
in the whole study area of Trondheim.

Figure 24 illustrates the central properties of the two datasets by highlighting the

distribution of the height values. As expected, we observed that the height estim-

ation results were distributed with a relatively small V arianceEstimate = 12.631m

about the MeanEstimate = 6.850m, as a consequence of the limited set of values

generated and the absence of higher buildings compared to the ground truth data.

Furthermore, we observe that about 68% of the estimated buildings were distributed

in the height range xε (3.297, 10.403) within one standard deviation σ, as calculated

from Pr(µ− 1σ ≤ X ≤ µ+ 1σ) ≈ 68.27%. Meanwhile, the ground truth is distrib-
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uted within the range x ε (2.189, 17.655) about MeanGT = 9.922m. Moreover, there

was an uneven distribution of heights when comparing the estimations and ground

truth values, further supporting the observations made earlier in Figure 23.

Figure 25: Visualization of the height estimation results compared to the ground
truth heights from the distribution of buildings in the selected street B̊ahus gate. (a)
Shows the distribution of heights for the estimated heights and the corresponding
ground truth heights. (b) Shows the distribution of heights for the estimated heights
and the ground truth heights adjusted with the mean difference.

An evaluation of a selected residential area was done to more accurately evaluate

how the method performs on a smaller scale with recurrently similar architectural

patterns. The result of the height estimation can be seen in Figure 25, with seem-

ingly better results. By adjusting the ground truth height with the mean difference,

the data was closer fitted to the height estimations, resulting in a matching height

profile.

Figure 26: Visualization of the height estimation, both with the inclusion and ex-
clusion of detected basement floors on the buildings in B̊ahus gate.
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By disregarding detected basements added from the applied basement rule, we can

see how the resulting height profile would have been estimated only regarding regular

floors (Figure 26). Therefore, we deduce that the implemented rules result in a more

accurate height estimation, as a consequence that it gives a better approximation

to the ground truth heights in this particular area (Figure 25).

Finally, we can see a trend that the various errors found in our results were mostly

found within clearly separated areas, typically service or industrial areas. Further-

more, we observed that a reason for this might be their inherent facade complexity

and tall stature. In contrast, we observed that the floor segmentation correctly

estimated the number of floors, especially in urban/suburban residential areas. Fur-

thermore, the applied rules contributed to an increase in height estimation accuracy.

4.5 Discussion

The following subsection will discuss how the data acquisition step, with the man-

agement of building information and street view imagery, impacts the floor segment-

ation and rule-based height estimation and the final results’ quality.

4.5.1 Building Information Acquisition

The pre-processing of the data can be regarded as having a significant impact on

the overall quality of the results. Evidently, the importance of data acquisition and

management evolve around facilitating an optimal floor segmentation and height

estimation. We witnessed from the results that high-quality input with clear and

distinguishable features allowed for more effective estimation and less erroneous

output.

The data integrity of OSM is dependent on the regularity of community updates that

implicates variations in data quality provided by the OSM communities in various

areas. Nevertheless, the data accuracy is not significantly impaired with the use

of OSM as the primary data source, as the spatial accuracy and completeness of
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the data were adequate (Brovelli and Zamboni 2018). Moreover, building type and

amenity were observed to be an infrequently distributed tag and rarely found in our

study area.

Furthermore, gathering the contained address nodes within the building footprints

from OSM was a resource-heavy and mathematically complex process resulting in

systematic errors. It was not guaranteed that a node was located within its corres-

ponding footprint, and as a result, some building footprints that would have been

viable for further processing were excluded. Upon inspecting the 6233 returned vi-

able buildings of the total 16288 buildings in the study area, we observed that most

of the excluded footprints were building annexes (e.g. garage, shed), yet several

buildings were still erroneously disregarded. This was particularly true for buildings

described as multi-polygon relations in the city centre or townhouses in residential

areas, as the address nodes were sometimes outside the limits of the footprint.

In some areas, the complete absence of building footprint information may result

in an inability to georeference the output of our method, hence requiring a way of

managing this limitation. Here, creating a generic building extent mimicking the

footprint at the location the photo was captured, based on the number of windows

detected on the horizontal line, aligning it to the terrain and surrounding buildings

would be necessary.

To conclude how the management of building information and its acquisition im-

pacted the results of our method, moreover by assessing the consequences that fol-

lowed from the exclusion of building footprints and consequent building information,

we found that even though some data was lost in the process and by utilizing a VGI

open data platform, gathering footprints to georeference the results proved to be ad-

equate, as seen in Figure 20. Consequently, the most important aspect to consider

when facilitating the correct georeferencing of footprints is that their coordinates

should be properly aligned to represent the real world counterpart as accurately as

possible. Furthermore, by examining the 3D visualisation of the results, the foot-

prints were aligned and positioned relative to the base map satisfactorily. Finally,

the building information, especially the footprint, serves to enable the connection
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of data and reconstruction of 3D models to visualize the estimated heights of build-

ings. The selection of provider, albeit authority cadastres or volunteered open data,

is important to consider as completeness and spatial accuracy are critical metrics.

4.5.2 Street View Imagery and Floor Segmentation

The main problems arising from using street view imagery were perspective distor-

tion, occlusion and background noise (Figure 15). The problems mainly emerged

as the fetched images were framing the facade at an angle or that arbitrary objects

occluded a facade. The way this method manages misaligned floors largely con-

tributed to adequate results. However, in some cases, distortion of the image was

large enough that the floors were mistakenly regarded as errors and consequently

removed. This resulted in faulty segmentation of facades by not including actual

floors whilst simultaneously including erroneously detected floors.

Additionally, occlusion reduced the number of potential objects detected, as they

were either completely or partially hidden by objects such as trees, city furniture,

or cars. Moreover, as the ratio of occluded facade objects and the total number

of facade objects increase, the segmentation would become progressively more un-

reliable. In turn, if the detection step were unable to find an adequate amount

of significant features, the semantics and symmetries inherent in the facade would

become lacking.

Moreover, the aforementioned errors impact the overall performance of the floor

segmentation in the case of automatic data acquisition, as a fair amount of images

fetched from GSV were either misaligned with the address coordinate of the building

or considerably occluded (Figure 15). Even though some images suffered from this,

they were removed as they included too few facade objects, and consequently, no

floor lines were detected.

The method showed promising results regarding floor segmentation whenever these

problems did not considerably influence the images. Moreover, as observed from

the results of the manual selection, control of environment variables significantly
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increase the results as these errors were reduced to a minimum. Therefore, by

manually acquiring and selecting images, occlusion and perspective distortion could

be avoided altogether. Ultimately, the method was able to adequately segment

floors given this particular problem, especially when street-level images were aligned

optimally to the given facade (Figure 13).

Figure 27: This figure shows the perspective distortion that may occur when fetch-
ing an image for a particular address (red quadrilateral) in (a), and the occlusion
of a facade due to vegetation (b). (Google, ”Streetview,” digital images, Google
Maps (GoogleMaps 2021), (a): Photograph of Kjøpmannsgata 42, 7030, Trondheim,
captured: Aug 2020; (b): Photograph of P. A. Munchs gate 6, 7030, Trondheim,
captured: Aug 2020)

Another error that may arise from street view imagery is the problem of accurately

estimating the number of floors of individual buildings in densely built-up areas, as

images are fetched at different positions along the street, and may either incorrectly

display the facade at an angle or regard neighbouring facades as well when estimating

segmenting the facade in question (Figure 28). However, we observed that this

was not a substantial problem when evaluating buildings in homogeneous areas

as buildings were often aligned in height, implying that their structural scale was

recurrently similar. Even buildings with clear distinctions did not divide largely

from the area in regards to the facade height. This can be explained by regulations

of building density that local authorities may enforce, which was relevant for our

case study as stated in Direktoratet for Byggkvalitet 2017 (§5).
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Figure 28: Visualization examples of the floor segmentation results on street-level
imagery that had neighbouring facades or facades located in the rear, where the
detected facade objects acted as background noise and contributed to faulty floor
segmentation.

Nevertheless, the detection of nearby facades and their objects, particularly in situ-

ations where other facades were located in the background of an image (i.e. other

facades partially obscured by the facade in question), impacted the resulting floor

segmentation. Considering the background noise, the method erroneously recog-

nised patterns from the detected objects in some cases and consequently segmented

floors in a faulty way, as we see in the results (Figure 28). This could have been

avoided by implementing a way of detecting and isolating individual facade outlines

in order to manage each of them separately, as Kong and Fan 2020 mentioned could

be a future improvement to their pipeline. However, even though this occurred, we

observed satisfactory results in most areas where this was relevant (s.a. city centres),

as seen in Figure 20. As for the manually selected imagery, this was largely avoided

as the facades were aligned optimally.

Furthermore, since only street-facing facades can be observed, a given facade pic-

tured on a street view image is not necessarily the most significant one, as buildings

may have variable facade heights or include too few significant features overall. The

former is especially true for buildings with gabled or saltbox roofs as one or more of

the facades are dissimilar, increasing the difficulty of properly selecting the facade

to estimate or simply making it impossible as all facades may need to be considered

to give an adequate result of the building as a whole.

Using only a single image per building footprint had its limitations regarding quality

assurance, which also applied when dealing with images taken in areas with steep
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terrain. In such areas, the facade height of buildings will vary with one or multiple

floors depending on which angle the building was observed from. We observed, as

in Figure 29b, that the resulting floor segmentation was three floors. Meanwhile,

in Figure 29a, the left facade would likely be segmented into two floors. Thus,

providing a clear indication that the method was highly dependent on the angle at

which the image was captured.

As such, collecting images of multiple facades for each building may provide a com-

plete view of the building. However, problems arise as this would significantly

increase the complexity of the floor segmentation process, where more dimensions

must be considered, and the architectural patterns become three-dimensional. Fur-

thermore, this would be redundant for the cases where buildings are flat or hipped,

meaning that it would only be conciliatory to implement if all roof types were pre-

viously known, implying that the generality of the method outweighs the specific

cases where this is relevant, at least when not considering the aforementioned roof

types.

Figure 29: This figure shows an example of a building in a steep terrain where
the estimated height will vary depending on the position of the taken street view
image. Image (a) shows both facades of the building with the segmented facade in
(b) enclosed in the red quadrilateral. Image (b) shows the floor segmentation of
the given street view image provided. (Google, ”Streetview,” digital images, Google
Maps (GoogleMaps 2021), photograph of Rosenborg gate 28a/b, 7043, Trondheim,
captured: Aug 2020)
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Moreover, the applied facade object detection pipeline (Kong and Fan 2020) is a

robust facade parser yielding sufficient results and works on complex scenes quickly

and accurately. In addition, various window sizes and shapes could be detected

without much trouble. However, the parser struggles with modern architecture

and reflection on windows, as the method remains untrained to detect objects in

these specific environments. Our method performed some error correction to prevent

gross errors, where the detection method was flawed, thereby providing substantially

better results.

We observed that storefronts often remained undetected in city centre areas due to

not implementing the shop detection network and can therefore be regarded as a

pervasive error. Furthermore, errors arise from the inability of the used detection

subnetwork to handle reflectivity of windows, significantly restraining the current

implementation. Respectively, the detection method we used could be supplemented

by adding a sub-network specifically handling the detection of shop windows, given

the recurrent nature of shops in the urban environment. This is particularly relevant

in city centres, where the exclusion of shop floors may constitute a large percentage of

the total facade height, significantly skewing the results and altering the surrounding

environment’s scale, consistency, and characteristics (Figure 30; 31).

Figure 30: This figure shows a single detected floor (yellow line) of a storefront
facade in (a), and the corresponding 3D building model at the location of the facade
with a dashed outline representing the undetected floor in (b).
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Figure 31: Comparison of the floor segmentation results on street-level imagery with
detected (a) and undetected (b) shop floors.

To summarize our findings regarding the floor segmentation, it was evident that the

method could determine the number of floors on facades at an adequate accuracy.

Finally, the quality of the images significantly influenced the output of the floor

segmentation, meaning that a properly aforethought selection of imagery would be of

great importance regarding the ability of our method to detect the floors adequately.

Based on how the number of floors segmented on a facade, the knowledge of facade

features, and building attributes influences the results, we can conclude that the

method sufficiently estimates the number of floors, as evident in Figure 13.

4.5.3 Height Estimation and Urban Rules

With the research objectives in mind, we showed that syntactic knowledge of the

architectural patterns and structure of facades could improve the estimation of the

facade height based on street view imagery. Several rules could be implemented

into the method to cover more patterns. However, only the most influential features

impacting the height were utilized to arrive at the most beneficial result without

over-complicating the process. It could be argued that the most evident factor

for parsing a facade is the generally applied floor height standards, which we have

exploited to enable a logical arrangement of the facade.
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Moreover, the additional rules were implemented to enhance the results by exploiting

variables, primarily to strengthen the height estimation from the floor segmentation

and thereby account for less predictable features on a facade. However, as observed

in the results, the impact of the rules was negligible, given that the coverage of

building types in our study area was nominal.

The lack of knowledge regarding the physical metrics on the facade and its sur-

rounding elements limits the extension of supporting rules. Knowing the outline of

the facade and its relative width and height could considerably improve the task of

defining the facade, similar to the work done by Fan et al. 2021. The mathematical

relations between the facade objects and the facade outline could then be utilized

to determine a very accurate size of the facade by applying standardized sizes of

facade objects such as windows and doors.

The fact that the facade height of a building may vary given the angle of obser-

vation and the shape of one particular facade is a case that introduces potential

misinterpretations. This is especially true regarding buildings with gabled roofs,

where facades are pairwise the same height, causing the height estimation to differ

with a whole floor dependent on which facade side has been detected.

Residential and commercial buildings predominantly follow standardized facade pat-

terns, which fit and endow good results with our applied method. However, our

method struggles with complex facades that deviate from the traditionally applied

architectural principles, particularly concerning modern or complex facade arrange-

ments (Figure 16).

Further on, service and industry buildings such as churches, hospitals and ware-

houses usually have a very distinct and unique facade structure (Figure 32), in

addition to abnormal floor-to-floor heights. This is a difficulty for facade parsing

methods, as no obvious facade structure can be detected. Therefore, by exploiting

building types, one could bypass the floor segmentation task when no facade objects

were observed by giving a fixed height value based on the building type to yield

more accurate results.
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Following the concept of building typology from Chapter 2, perceiving a building

in relation to its placement in the hierarchical network of the urban scene could

therefore be beneficial, as there exist evident correlations between building struc-

tures and their surrounding enclave or neighbourhood. The consistency of similar

characteristics and features among neighbouring buildings could be advantageous

in cases where the absence of height data occurs on one or multiple buildings in a

given area, illustrated through an example in Figure 33.

Figure 32: This figure gives an example of how two churches share similar features
within their unique facade pattern, consequently leading to similar facade height.
((a): Google, ”Streetview,” digital images, Google Maps (GoogleMaps 2021), pho-
tograph of Kongens gate 5, 7011, Trondheim, captured: Aug 2020; (b): Google,
”Streetview,” digital images, Google Maps (GoogleMaps 2021), photograph of Jar-
leveien 44, 7041, Trondheim, captured: Aug 2020))

Calculating statistical variables can prove to be beneficial for increasing the coverage

of the method, as regarding city blocks and enclaves can help estimate missing or

erroneous height data by exploiting the dispersion and deviation of a given urban

block typology. Moreover, by examining confined homogeneous areas, we see that

implementing specific rules could accordingly consider erroneous or lack of height

data where the presence of an architectural standard is of high probability. Depend-

ing on the scale of the confined area and the corresponding average height variance

(Table 5), setting building heights of missing data to the mean will contribute to an

overall better model for infrastructure analysis.
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Figure 33: This figure illustrates an example of where using the estimated height of
the surrounding neighbouring buildings would give an accurate result on a building
with no estimated height due to a non-existing or bad quality street view image.
Image (a) is the generated 3D building model missing the estimated height of a
building, and image (b) is the corresponding Google Maps image of the actual street.
(Google, ”Streetview,” 3D model, Google Maps (GoogleMaps 2021), 3D model of
Frode Rinnans veg 50, 7050, Trondheim, captured: May 2021)

Evaluating the large-scale viability of our method applied in the study area, partic-

ularly comparing the estimated heights and the ground truth heights gathered from

LiDAR data from the Norwegian Mapping Authority, we can see a clear correlation

between the height estimations and the ground truth heights (Figure 23). The ap-

parent systematic height difference can be explained because the height estimations

represent the facade height, contrary to the ground truth data, which is based on

the relative height from the DTM to the highest point on the roof, often deviating

from the facade height. In addition, when ascertaining the height difference results,

we calculated the average height difference to be 2.91 meters when excluding the left

and right tails, and only considering the height values y ε (2.5, 20.0). This underlines

the fact that the height estimations are prone to a systematic height variation, as the

roofs and various construction components are included in the ground truth data.

Furthermore, interpreting the results in Figure 25, we see by comparison that the

height deviates on average with a value of 3.018 meters for the focused area. Given

that we initially chose 2.5 meters as the standard floor height and assuming that the

roof height was the same as the floor-to-floor height, it could be beneficial to increase

our stated floor-to-floor height by a couple of decimeters to achieve a closer value

to the ground truth height. Floor thickness, foundation height and other minor

attributes influencing the total facade height could be factoring features causing the
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deviating value. Additionally, our ground truth data may be inadequate in some

cases, as the LiDAR approach will struggle with adjacent trees and other obstacles

occluding the roof outline, causing erroneous ground truth values as seen in Figure

34.

Figure 34: This figure illustrates an example showing the segmented facade (a)
with an estimated height of 5 meters, and a corresponding 3D model view (b),
demonstrating how the ground truth value (of 16 meters), can be assumed to be
a consequence of an error as the height of the tree (red quadrilateral) was encom-
passed in the building footprint. (Google, ”Streetview,” 3D model, Google Maps
(GoogleMaps 2021), 3D model of Aaengveien 9, 7020, Trondheim, captured: May
2021)
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5 Conclusion and Future Work

In this chapter, we conclude our research and experiments in light of our research

goals, in addition to highlighting the work that could be interesting to pursue in the

future.

5.1 Conclusion

This thesis aimed to investigate the utilization of floor segmentation and rule-based

height estimation on street-level imagery to enable large-scale analysis of an urban

environment. A key prospect of our approach was to respond to the shortcomings

of state-of-the-art methods by answering the stated research questions Q1, Q2 and

Q3.

Q1: Will the number of floors enable an adequate estimation of the facade height

by using floor segmentation on street-level imagery?

Q2: Will extensive knowledge about the features of a facade aid in the estimation

of the facade height?

Q3: Will extensive knowledge about the attributes of a building aid in the estima-

tion of the facade height?

In this work, we have presented a method exploiting the properties of man-made

building principles such as regularity and symmetry within facades. Based on the

analysis conducted in our experimental study, we can conclude that our method

provided promising height estimation results in our study area, given its cultural,

temporal and topographic footprint.

The results indicate that segmenting the facade into distinct floors contributed to a

realistic representation of the building and could be exploited to estimate the height

and the scale of the urban scene. Therefore, to answer research question Q1 we can

conclude that our work definitely supports this presumption.
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Moreover, the application of urban rules can assist in the task of increasing the

quality of the height estimation. When applying relevant rules, we observed that

it converged to the ground truth data. By exploiting the features and attributes

inherent in facades, we gained knowledge of the building facade as a whole, yielding

promising results. To answer research question Q2, we observed that in most cases,

the height was approximated closer to the ground truth when we applied the rules.

We can conclude that such knowledge can aid in improving the height estimation.

However, we observed that rules were highly dependent on the quality of object

detection and the correct segmentation of floors, therefore providing variable results.

Given the choice of building information source, we experienced that some building

attributes were sparsely set throughout the study area, culminating in limited data

and the inability of extracting extensive knowledge. Subsequently, we deduce that

the results were inconclusive and are therefore unable to answer the research question

Q3. However, our results indicate the potential that the aforementioned attributes

may have had, given a higher presence of such data.

We conclude that our method for segmenting floors and estimating heights is a

sufficient tool for representing the scale and character in an urban environment.

However, the accuracy of the output is highly influenced by the quality of building

information and street view imagery, emphasizing the significance of proper quality

assurance of the pre-processing step. In addition, the availability of data and the

current trends within modern architecture pose challenges that need to be considered

in the future.

5.2 Future Work

In this work, we tested the method in a relatively homogeneous and concentrated

area. Future work should be able to transfer the method to other regions without

a significant decrease in estimation accuracy. As such, climate, culture and the

inherent topography of an area must be accounted for to provide a more robust

method. Furthermore, our method is unable to generate generic models where data
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is non-existing, limiting the method as an open alternative in areas where cadastres

are incomplete.

Therefore, future works should aim to combine open source and official cadastres

to increase coverage or enable georeferencing of generic models that provide ad-

equate estimations without relying on existing datasets. Furthermore, the utilized

detection method primarily relies on the relations of doors and windows to estim-

ate the height, providing the rudimentary architectural structure and describing the

most prominent patterns. However, given the complexity of the interaction between

building components, it is evident that much more information can be extracted and

used to derive an extended set of rules. A good starting point would be detecting

the facade outline, as it would be beneficial in properly distinguishing individual

buildings. Thus, calculating mathematical properties on the facade, such as ratio,

presence, and relative distance, would ease the task of describing the facade.
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