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Abstract

Buildings account for 40 % of the world’s energy use and 36 % of the greenhouse gas emissions.

A large share of the energy is related to heating, ventilation, and air-conditioning (HVAC)

systems. Intelligent technologies, such as black-box models, for optimizing these systems will

be an excellent resource for reducing energy use without compromising human comfort.

The thesis aims to examine the parameter relevance related to data-driven models for

predicting indoor temperature. The findings in this thesis can lead to increased performance

of black-box models, with more accurate and less computational expensive predictions. The

investigations of parameters include both the black-box input parameters and the parameters

of the building.

The back-box model utilized is a hybrid multiple-input and multiple-output (MIMO) Long

short-term memory (LSTM) model. The data used as input for the LSTM model is generated

from buildings simulated in IDA Indoor Climate and Energy (IDA ICE). The building will

be tested for different internal gains, envelopes, and locations to get a wide variety of data.

The most utilized building is an office Passive House located in Trondheim, Norway. The

importance of input parameters for the data-driven model is evaluated by utilizing a feature

elimination method and the wrapper method.

The results show that a stable indoor temperature is crucial for prediction accuracy. Buildings

with stable temperatures often have a high thermal mass, heavy insulation, little glazed

envelope, and/or external shutters. A characteristic not suitable for prediction is variable

set-points in the HVAC system. The variation in the desired temperature is challenging to

predict and is amplified when the temperature difference between indoor and outdoor increases.

Regarding input parameters, daily time-index, equipment, and solar radiation are essential for

office buildings. The type of solar radiation varies based on the climate, where direct normal

radiation is suitable for cool climates, and solar radiation on a horizontal surface for temperate

climates. For buildings located in cool climates and/or has lower insulation meteorological

parameters are of more importance. Especially, outdoor temperature, and wind when little

insulation is utilized.

Time-indexes were the most essential input parameter, and the use of advanced time-indexes

will be the best measure to improve prediction accuracy in the model. Time-index is a number

that gives information regarding time, day, or similar. The time-indexes are strongly related

to the patterns of occupants, which further are strongly related to the use of HVAC systems,

lighting, and other appliances. The time-indexes are also strongly related to meteorological

values due to the sun’s correlation to the hourly time-index and the other parameters affected

by the sun. A sufficient time-index can therefore give information related to multiple factors

affecting the building energy use.

Another finding of this thesis is that there is little or no communication between zones in the

hybrid MIMO LSTM model. The lack of communication can be a drawback for either the

building utilized as input or the LSTM model. If the building was not perfectly heated or had

less internal insulation, the model might have captured the dynamic between zones. This due

to an increase in heat transfer through internal walls. It is also possible that another data-

driven model would be able to capture this interference without increasing the heat transfer

between zones.
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Summary in Norwegian

Bygninger st̊ar for 40% av verdens energiforbruk, og 36% av drivhus gassene. En stor andel

av denne energien er knyttet til bygninger, mer spesifikt, systemer for varme, ventilasjon,

og kjøling (HVAC). Intelligente systemer, som data-drevne modeller kan optimalisere disse

systemene og være en god ressurs for å redusere energiforbruket relatert til bygninger.

Målet ved denne oppgaven er å undersøke relevansen til parametere brukt i data-drevne

modeller for energiprediksjoner av bygninger. Funnene i denne rapporten kan derfor lede

til økt prestasjon av data-drevne modeller, hvorav modellene kan bli raskere og mer nøyaktige.

Parameterne som undersøkes i denne oppgaven er b̊ade inngangsparameterne til den data-

drevne modellen, og parameterne til bygget predikert.

I rapporten er det brukt en hybrid flere-inngang og flere-utgang (MIMO) Long short-term

memory (LSTM) modell. Data brukt som inngangsparametere til modellen er generert fra en

bygning designet i programmet IDA Indoor Climate and Energy (IDA ICE). Inngangsdataen

er generert i ulike versjoner, hvorav bygningskonvolutt, lokasjon, og rutiner endret for å teste

modellen p̊a et bredt utvalg senarioer. Bygningen mest brukt i testingen er et kontorbygg

med Passiv hus standard, lokalisert i Trondheim, Norge. Utgangsparameterne brukt gjennom

hele rapporten er innendørstemperatur. Evaluering av inngangsparametere er utført ved hjelp

av en elimineringsmetode og Wrapper metode. Resultatene i denne oppgaven viser at en

stabil innendørs temperatur er nødvendig for nøyaktige predikasjoner. Bygninger med stabile

temperaturer har ofte høy termisk masse, mye isolasjon, f̊a vinduer, og/eller persienner.

Et særtrekk ved bygg som ikke er passende for predikasjoner er at de har varierende set-

punkt temperatur. Variasjoner i temperaturen er utfordrende å forutse, som igjen øker med

differansen mellom innendørs og utendørs temperatur.

Funnene relatert til inngangsparameterne indikerer at daglig tidskonstant, teknisk utstyr og

solradiasjon er de viktigste inngangsparameterne. Typen solradiasjon varierer med klima,

hvorav direkte normal str̊aling er egnet for kjølig klima, og solstr̊aling p̊a en horisontal

overflate i temperte klima. N̊ar bygg er lokalisert i kjølig klima og/eller har lite isolasjon

er meteorologiske parametere av større betydning. Da spesielt utendørs temperaturen, og vind

dersom bygget har lite isolasjon.

Tidsindeks er inngangsparameteren av størst betydning, og forbedring av tidsindeks er det

beste tiltaket for å øke nøyaktigheten til prediksjonene. Tidsindekser er sterk relatert til

forbrukerens rutiner, som videre er sterkt relatert til rutinene til HVAC systemer, lys og annet

teknisk utstyr. Tidsindekser er ogs̊a sterkt knyttet til meteorologiske verdier, da solen er sterkt

korrelert med klokken. Andre meteorologiske verdier som temperatur og fuktighet blir sterkt

p̊avirket av solen, noe som ogs̊a kobler disse verdiene til en tidsindeks. En god tidsindeks kan

derfor gi informasjon om ulike faktorer som p̊avirker bygningers energiforbruk.

Et annet funn i oppgaven er at det er lite eller ingen kommunikasjon mellom sonene i den

hybride LSTM modellen. Mangelen p̊a kommunikasjon kan være grunnet mangel i den

data-drevne modellen, eller grunnet bygningen. Dersom bygningen ikke hadde vært perfekt

temperert eller ved mindre isolasjonene i de interne veggene, kunne utfallet vært annerledes.

Dette grunnet en økt varmetransaksjon mellom interne vegger, som kunne gjort det lettere for

modellen å oppdage samspillet mellom sonene.
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1 Introduction

1 Introduction

The first section of the introduction includes the background and motivation for this thesis.

The following section describes the problem statement, approach, and structure of the thesis.

1.1 Background and motivation

Challenges related to climate change stand before us. The increasing amount of greenhouse

emissions resulting from human industrial activities has lead to less biodiversity, ocean

acidification, and rising sea level [2]. The emissions causing these climate changes are strongly

related to energy production, and a global initiative to reduce greenhouse emissions is stated

in the Paris Agreement [3]. By 2030 Norway has a goal to reduce greenhouse gas emissions by

55% [4].

The building sector is the world’s most energy-demanding sector worldwide [5], accounting for

more than 40% of the energy use and 36% of the greenhouse gas emissions of the world [6].

In the U.S., the annual electricity use of buildings has increased from 25% of the country’s

electricity use in 1950, to 76% in 2012 [7, 8]. In 2017 buildings in the U.S. accounted for 13%

of the world’s total primary energy use [7], while Norwegian buildings accounted for 22% of the

country’s total energy use. Reducing energy use in this sector is therefore essential to reach

the climate goals.

For cold climate countries, heating is one of the most energy-demanding sectors regarding

building energy use [9]. As a consequence of reducing energy use related to space heating

and cooling in buildings, the buildings became tighter and more compact. Thus, ventilation

systems became an essential component in buildings to ensure a good indoor environment. The

energy use of heating, ventilation, and air-conditioning (HVAC) systems has increased over

the years [6], and have become one of the most energy-demanding sectors within a building.

Nevertheless, an adequate HVAC system is essential since humans spend 90% of their time

inside [10].

Prediction of indoor air temperature is an excellent tool to reduce the energy use related

to HVAC systems without compromising human comfort. On the contrary, information

about future temperatures can help increase human comfort by customizing the occupants’

temperature to a more extensive degree. The customization will reduce energy by avoiding

overheating and heating and cooling when zones are not in use. To implement accurate and

reliable predictions, engineering methods are of great importance.

1.2 Problem statement

The objective of this thesis has been to examine parameters’ importance in data-driven models

for building energy prediction. The parameters’ importance will be evaluated by testing a

data-driven model for multiple data-set and investigating the different sets’ performances.

The following tasks are answered:

• Literature study on the use of data-driven models for building energy prediction will

be included to define the state-of-the-art. A literature study of parameters affecting

the energy use in buildings will also be included, and the parameters’ effect on building

energy prediction.

1



1 Introduction

• Generation of training data-sets using IDA-ICE for a given sample building and

preliminary data analysis. These data-sets need to be large and rich.

• Testing and evaluation of a promising black-box modelling technique will be conducted.

Testing and evaluation of input parameters for black-box models for building energy

prediction will also be conducted.

• Discussion, examination, and assessment on improving performance for data-driven

models for building energy prediction will be included. These improvements include

evaluating necessary parameters and the date utilized as input. Discussion and evaluation

of buildings suitable for temperature predictions will also be included.

1.3 Scope

This thesis presents a literature review of building energy modeling. There are two different

approaches for estimating energy used in buildings: the building-physics approach and the

data-driven approach. The building-physics approach models the building behavior and

simulates it to calculate the energy use and the indoor climate conditions. The data-

driven approach is purely empirical, and the input and output variables are used to define

a mathematical description of the system. This type of model is efficient and easy to build

but requires training data based on historical data of the building[8]. This thesis will focus on

the data-driven approach and utilize the building-physics approach to generate testing data

for the data-driven model. [5]

Literature regarding energy use in buildings will also be presented in the thesis. The literature

will contain information about building envelope, outdoor climate, indoor climate, and different

forms of internal gains, in addition to data-driven models. Literature of energy use in buildings

not related to building energy prediction will not be included, such as the power market, costs,

power consumption, and similar topics mostly occurring outside the building’s boundary. The

literature regarding building energy modeling (BEM) will be included, here are both white-

and grey-boxes included, but black-box models will be emphasized. Information regarding

the development (except training, validation, and testing) and implementation of data-driven

models will not be included. The literature study also includes methods for evaluating

parameter importance in data-driven models.

The experiments conducted are done with a Long short-term memory (LSTM) model, a hybrid

multiple-input and multiple-output (MIMO). The model utilized revived input data from nine

of total 26 building zones and generated outputs for each zone. Since not all zones are included,

the model can not be classified as a full MIMO model from a building energy prediction

perspective. To limit the thesis only 24h prediction is included in the various tests.

The input data is generated from a small office building made in the white-box program IDA

ICE. The experiments involve testing the model’s reliability and how it is affected by different

internal gains, building envelopes, and climates. Evaluation of different zones is conducted

during all the different cases. Throughout the experiment, the indoor air temperature is the

output temperature of the data-driven model. The data-driven model was not developed by

me and has not been applied for control but can be used for it. The thesis will only evaluate the

given data-driven model. The different input files for the data-driven model were developed in

context with this thesis, and the process of the development will be included and evaluated.
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The changes done regarding internal gain include PI and P controller, office and residential

schedules for occupants and equipment, and seven different occupants schedules for an office.

In addition, tests splitting one zone into two and reducing the number of output parameters

were also conducted. All these experiments were only conducted for a Passive House envelope

located in Trondheim, Norway.

The different building envelopes tested are designed after the Norwegian building standard for

Passive House, TEK 17, and TEK 87. In addition, a Passive house with high thermal mass

and tests related to windows location and shutters are included. The different envelopes tested

are only tested for the office building located in Trondheim, Norway.

The building generated is also tested for different locations. To limit the results, only three

locations are included: Trondheim, Norway; Oslo, Norway; and Malaga, Spain. An experiment

where the orientation of the building is changed is also included. This was only conducted for

the Trondheim location. The prediction for the different locations is only conducted for the

Passive House envelope, set up as an office.

Regarding parameter relevance, a feature elimination method is conducted with detailed results

of the Passive house located in Trondheim, Norway, with an office schedule. The wrapper

method is also conducted for this building. In addition, the feature elimination is conducted

for different internal gains, envelopes, and climates, but to a smaller extent. The wrapper

method is conducted for the TEK 87 envelope and the Malaga location, in addition to the

Trondheim Passive House.

1.4 Hypothesis

Before conducting the experiments, some assumptions about the upcoming results were made.

These assumptions were based on acquired knowledge from Section 2. The assumptions are as

followed:

• The most important parameters for one building are most often the same for other

buildings. Since the energy behavior of buildings most often is affected by similar

parameters related to energy use.

• Buildings with less insulation and thermal mass are more weather dependant. Therefore

it is assumed that meteorological parameters are more important for these buildings.

• Office buildings are more dependant on occupancy than residential buildings due to the

short period of occupancy.

• Buildings in temperate climates are less weather-dependent than cool climates due to

smaller temperature differences between indoor and outdoor temperatures.

3
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1.5 Structure and content

This paper is divided into six chapters. The structure is as follows:

Chapter 1 - Introduction

This chapter includes an introduction to the study, including motivation and scope.

Chapter 2 - Literature review

Literature on energy use in buildings and BEM is included in this chapter. Regarding energy

use in buildings, energy features are included and their importance in modeling. Out of the

BEM models, data-driven models are emphasized, with detailed information about Artificial

neural networks (ANN) and Support vector machines (SVM). Further on, the study focus on

the state of art, development of models, and findings in other studies.

Chapter 3 - Method

This chapter holds information about the approach utilized when making the white-box models

utilized in the black-box model. Detailed information about the buildings is included for all

the different variations of the building. A general description of the black-box model is also

included, combined with detailed information about the approach utilized for the different

experiments with the black-box model.

Chapter 4 - Results

The results will be presented here, and include information regarding experiments where

different input parameters are utilized, changes in internal gains, building envelope, and

climate. During all these experiments, the accuracy of temperature prediction will be the

primary target. MAPE and indoor temperature will mainly present the results visualized with

box plots and bar charts.

Chapter 5 - Discussion

In this section, the results will mainly be discussed and connected to the literature. Most

of the experiments will be discussed and validated separately, followed by a general sum up,

where the relation between all the results will be drawn.

Chapter 6 - Conclusion

A conclusion of the experiments conducted is presented, along with suggestions for further

work. The conclusion includes the most important parameters and characteristics of buildings

suited for temperature predictions.
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2 Background

This section includes a literature study of data-driven models for energy predictions. The

section starts with a review of energy use in buildings, its effect on buildings, and how the

parameter is utilized in data-driven models. Further, building energy modeling (BEM) is

introduced, including white-, grey-, and black-box models. Further, the most popular data-

driven models are presented, followed by general information of data-driven models, a review

of previous studies, and methods for finding parameter relevance. The section ends with

information regarding modeling accuracy.

2.1 Energy use in building

This section will explain each building variable and its effect on buildings’ energy use

and energy modeling. Building energy use is mainly influenced by six factors: climate,

building envelope, energy systems, operation and maintenance, occupant activities, and indoor

environmental quality provided [11]. All of these parameters affect the energy use of buildings

in different ways. The average energy use related to each energy sector for a TEK 10 office

building in Norway is illustrated in figure 2.1.

Figure 2.1: Average energy use related to each sector in Norwegian TEK 10 office buildings[9]

2.1.1 Building envelope and characteristics

Building envelope mainly includes walls, windows, roof, foundation, air leakage, and

shading[12]. The performance of building envelopes has a very close relationship with building

energy use regarding space heating and cooling, which is the majority of global building energy

used. An energy-efficient building envelope is therefore essential to reduce the total energy

use. [12]

The designation “building characteristics” includes the parameters related to the building

envelope, orientation, heat transfer coefficient, absorption coefficient, and solar radiation [13].

These parameters affect the heat flow through the building’s boundary and the building’s

ability to store heat and cold.
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Building standard

The Norwegian building standards have evolved throughout the years, and as it evolves, the

share of energy used for heating decreases. Figure 2.2 illustrate the average share of energy used

in each energy sector for different Norwegian building standards. The decreasing proportion of

energy used for heating is mainly based on improvements in insulation and building structure,

decreasing the thermal time constant of the building. As the building structure gets more

insulated and thermal bridges are minimized, heat is better kept inside the building’s boundary.

thermal time constant

The thermal time constant describes the building’s response to changes in internal and

external conditions [14], and is the time it takes for the indoor temperature to change by

63.2% of the absolute difference between initial and final body temperature. [15].

Figure 2.2: Energy used for each energy sector in various building standards for Norwegian office buildings.
[9]

U-value represents the thermal transmittance through a construction [16] and is often used to

evaluate the insulation of a building. Another parameter often used to evaluate the building’s

ability to keep heat is thermal mass. Thermal mass is the materials’ ability to absorb and store

heat energy [17]. Buildings with low U-value often have a low energy demand for heating.

Importance in modeling

After a building is constructed, the building parameters remain relatively constant. Therefore,

they are irrelevant when using data-driven models for a specific building since historical data

often is necessary. However, when the study is based on multiple buildings or the model is

transferred between buildings, this data is beneficial. [13] However, when using a white-box,

these values are crucial and play a critical role in modeling the building. For grey-box models,

the importance of these input parameters varies from model to model, based on which part of

the model is black and which is white.
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2.1.2 Location and climate

Climate is defined as the average weather in a given area over a more extended period of

time[18]. A climate can be described by values, such as average temperature, rainfall, and

sunshine. Weather is defined as a combination of meteorological values for a given area for a

short period of time[19]. These meteorological values take many forms, such as temperature,

both ambient, dry-bulb, and wet bulb, solar radiation, humidity, rainfall, air pressure, and

wind velocity [13, 20]. However, it is essential to note that not all of these parameters are

independent.

Climate classification

In 1900, the Russian/German climatologist Wladimir Köeppen made a climate classification

system for the whole world. This classification system is one of the world’s most utilized

climate classification systems and classifies the world into different climate zones based on

various criteria. An updated version of this classification system was made by Peel et al.

[21] in 2007. The updated European climate classification is illustrated in Figure 2.3. This

updated classification map is based on meteorological data gathered from 4279 locations spread

worldwide and is made to have an accurate classification system where recent climate changes

are included. [21]

Figure 2.3: Updated climate classification of Europe[21]

Importance in modeling

The outdoor environment affects buildings to a great extent [22], mainly resulting in

temperature changes. Each building reacts differently to weather influences, depending on

the construction materials, internal load from occupants, provision of heating, ventilation, air-

conditioning systems, and control strategies [13]. Solar radiation and indoor temperature are

the most commonly utilized meteorological input parameters, primarily due to their effect on

the thermal demand and easy accessibility from weather forecast[13]. [1]
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Studies have been made in an attempt to simplify the impact weather has on building energy

prediction. White and Reichmuth [23] predicted a buildings’ monthly energy use by using the

average monthly temperature. This procedure was more accurate than predictions based on

heating and cooling degree days, which is the standard procedure for energy predictions. [20,

23] Wei et al. [24] predicted the occupancy level and energy use in an office building. Their

thesis identifies outdoor temperature as the most crucial input parameter.

Degree days

A Degree days compares the average outdoor temperature of the location to a standard

temperature, where a more extreme temperature lead to higher degree days [25]. A high

level of degree days usually results in a high level of energy use for cooling or heating [25].

Westphal and Lamberts [26] used simplified weather data to estimate the thermal loads of

non-residential buildings. The simplified data consisted of monthly average maximum and

minimum temperatures, atmospheric pressure, relative humidity, and cloud cover [20]. Their

results had certain limitations regarding the representation of thermal inertia influence on

annual cooling and heating load, but was good on low mass envelopes [26].

The connection between building loads and weather variables has also been researched. Cai

et al. [27] used deep learning and time-series techniques to conduct one-day ahead forecasts

of load levels. The paper concluded that outdoor temperature is the most valuable input

parameter among the meteorological ones regarding the prediction of building load. The

correlation between the other variables and building loads is insignificant. [13, 27]. Alberinia

et al. [28] examined the residential hot water and electricity demand in Italy. Their thesis

found that the outdoor temperature is irrelevant regarding electricity load in Italian residential

buildings below 24.4°C. The irrelevance is due to the common use of natural gas for heating,

in contrast to cooling, which utilized electricity. [28]

Zeng et al. [29] conducted a comparative study of data-driven models for building energy

prediction. This study states that the dry-bulb temperature, wet-bulb temperature and

enthalpy are the most influential meteorological parameters, while other factors, including

humidity level, etc., have negative or an insignificant effect on the energy usage [29]. The study

also states that the standardization of the parameters are beneficial to improve the reliability

of original data and dimension reduction, resulting in reduced computational complexity.

2.1.3 Occupancy and usage

Occupancy information can be divided into two categories; occupants behavior and occupancy

conditions. Occupancy behavior include the control occupants have over thermal environment,

windows, artificial lighting, shading devices, and appliances. [30, 31] The energy use in

buildings is, therefore, influenced by the behavior of occupants in various ways[32], depending

on the number of occupants, habits, and type of activity. The occupancy varies from building

to building, mostly dependent on the buildings area of use. Office buildings are mostly used

between 08.00-16.00; shops often have longer opening hours and consist of multiple working

shifts and varying occupation of costumers; factories may have occupants working around the

clock. The occupancy schedule greatly impacts the energy use of the building due to heating,

electricity plug, office equipment, and air-conditioning devices that occupants often use. Figure

2.4 and 2.5 illustrate the average daily power profile for different industries for both weekdays
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and weekends. [33]

Figure 2.4: Average power used hour
by hour by various businesses during

weekdays[34]

Figure 2.5: Average power used hour
by hour by various businesses during

weekends[34]

For residential buildings, the profile often looks a lot different. This power profile is often

characterized by the working hours of the occupants and has high peaks before and after

the regular working hours. Figure 2.6 illustrates a typical power profile for a weekday of a

household where both adults are not homemakers.

Figure 2.6: Average power profile for households where adults are not homemakers. The power usage is
represented hour by hour for a typical weekday[35]

Area of use

Studies have been made to investigate the relationship between the area of use, insulation,

and climate, Figure 2.7. The study shows that insulation makes the most significant impact

on the heating load, while climate makes the most significant impact regarding the cooling

load. When the insulation is poor, the climate makes an immense impact on the heating load.

Regarding the area of use, the energy profile is relatively constant for each case, and offices

come off as the most energy-intensive building of the three categories. [19]
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Figure 2.7: Heating and cooling load for different building purposes in different climates[19]

Importance in modeling

The number of occupants, activity level, and routine play a valuable role in building energy

prediction [36]. Occupancy-related data often affect the internal heat gains in zones and the

pattern of energy use. BEM tools usually include the effect of occupants in a simplified form,

for example, using a fixed schedule or multiplying a fixed value for metabolic heat gain with the

number of occupants. Metabolic heat is the heat evaporated from a body in a specific activity

[37]. Therefore, the BEM tools used in other studies and designs have varying accuracy, and the

results can be deterministic. [13, 22] Due to these simplifications, the study of incorporating

occupancy information into prediction models has a more significant potential to improve [36].

However, short leave of occupants and small deviations from the simplifications may not affect

the consumption to a large extent [13].

Accurate occupant data can be achieved by accessing detailed occupant-related data such as

occupancy and socio-economic data. However, acquiring relevant data related to occupancy

is challenging due to the lack of occupancy sensors and other privacy concerns. Even if the

occupancy information is acquired when establishing the model, it is challenging to obtain

during the use of the model. In addition to violate privacy concerns, the collection of occupancy

data is time-consuming and laborious in some situations. Therefore, an occupancy indicator

such as time-index is often utilized in studies to reveal the patterns and conditions of occupants.

[31]

Multiple studies have examined the impact occupants have on building energy use. Wei et al.

[24] proved that the number of occupants is more important than meteorological and indoor

climate information, in context with data-driven energy prediction. Wang et al. [38] found
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a strong linear relationship between plug loads power and occupants for working days. Plug

loads refer to energy used by equipment that is plugged into an outlet [39]. Sala-Cardoso et al.

[40] improved the prediction of the heating, ventilating, and air-conditioning (HVAC) thermal

power demand by predicting the activity indicator of occupants. This approach was validated

suitable to increase accuracy in energy prediction. [13]

In the study of Zeng et al. [29] various data-driven models were tested for energy prediction

on two separate offices, hotels, and shopping centers. The study showed that the accuracy of

the models depended on the building predicted. Comparing the accuracy for all models on all

the different buildings, all the models perform the best on hotels and worst on offices. [29]

2.1.4 Indoor environmental information

Building indoor climates include thermal-, atmospheric-, acoustic-, actinic- and mechanical

environment [10]. The main goal of a good indoor climate is to provide healthy and comfortable

conditions for occupants. In addition to comfortable conditions, a good indoor climate is also

proven to increase the efficiency of the occupants by more than 3% [41]. Therefore good

indoor climate is essential, and in Norway also required by Direktoratet for Byggkvalitet [42],

to achieve a good building [10].

Ventilation

To achieve good indoor air quality, ventilation is essential. The ventilation can be either natural

or mechanical, whereas natural ventilation is driven by pressure difference due to temperature

difference or wind. Mechanical ventilation often uses fans to move the air through the building

and can be split into two categories, constant air volume (CAV) and variable air volume (VAV).

VAV ventilation is often connected to sensors and has a set-point for when to ventilate and

when not to. The ventilation can be triggered by occupancy, CO2 level, or temperature. CAV

ventilation ventilates with a constant air volume. [10]

For buildings in Norway, there are several requirements regarding air quality and ventilation.

As for the CO2 level, it must not exceed a limit of 1000ppm CO2 [43]. To achieve this, the

supply air often needs to be filtrated in bigger cities, due to outdoor air pollution.

A high humidity level can lead to fungus and mold growth, which poses risks to humans [10].

A relative humidity (RH) of 40-60% is therefore acceptable in building to avoid this, whereas

50% RH is the most optimal for most cases [19]. For colder climates, a lower RH is preferable

to avoid condensation on windows, which further also can lead to mold and fungus. [10]

Relative humidity

When referring to humidity, the phrase relative humidity(RH) is often used. The relative

humidity is defined as the amount of water vapor in the air, expressed as a percentage of

the maximum amount that cold air can hold at a given temperature [44].

In-office buildings, a gross area of 15 m2 is required per person. Regarding ventilation, a

minimum airflow of 2.5 m3/h per square meter is required when the room is attended, and

0.7 m3 per square meter when not. In addition, an airflow of 26 m3/h has to be added per person

attending the room. These values are when “light activity” is assumed for the occupants. [42]
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Heating and cooling

In Norway office buildings have an average specific energy use of 230 kWh/m2 per year[6].

Meaning that they are very energy-intensive buildings. A great share of this energy is used

for space heating, Figure 2.1. The Koepper Climate Classification classifies Norway as a cool

country[21], which explains why the large amount of energy used for heating is necessary.

Heating of buildings is currently done by ether boilers, direct electrical heating, or central

heating systems [16]. Boilers can use solid, liquid, and gas as fuel. Electrical heating is a

practical and efficient system that can be improved by connecting to heap pumps. Central

systems generate heat centrally and transport it by a heat-carrying medium. [16]

TEK 17 is currently the newest building standard in Norway and gives regulations on technical

requirements and minimum standards for buildings to be built legally. Table 2.1 holds the

recommended indoor dry-bulb temperatures for various activities. When cooling is utilized, a

value close to 22°C is recommended. [42]

Dry-bulb temperature

Dry-bulb temperature is the most frequently used temperature expression and means the

ambient air temperature. This temperature is measured by a thermometer that is not

affected by the moisture of the air. [45]

Table 2.1: TEK17 recommended indoor dry-bulb temperature for various activity levels [42]

Activity group Light work Medium work Heavy work

Temperature [°C ] 19-26 16-26 10-26

Importance in modelling

Studies have shown that the activity level of occupants affects buildings with lower energy use

to a large degree. Both the user behavior and lifestyle can affect energy use up to a factor of

three. Their behavior related to heating can affect the energy use by changing the temperature

set-point, the number of heated rooms, and heating duration. These factors often have a

strong relation to gender, age, knowledge of control functions, and meteorological conditions.

Regarding cooling, the occupancy makes a significant impact on the system. Often, the choice

of a cooling system, duration and frequency of usage, choice of set-point temperature, and

maintenance frequency. It is also indicated that shading devices and lighting have a strong

influence on the HVAC system’s energy use. [46]

Due to the significant possible variations based on the specific occupant’s peregrinations and

habits, there is a considerable amount of potential error in this category. Wrong interpretations

of the occupants’ behavior can lead to enormous consequences on energy use and indoor

temperature. A case study conducted in China shows that the set-point of indoor air

temperature, the RH of the outdoor air, and the operation time of air handling units are

the factors most influential on the HVAC system [46].
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2.1.5 Equipment

Equipment includes all electronic devices not incorporated in the building, i.e., lighting and

plug loads. Appliances used for achieving a good thermal environment and air quality will not

be reviewed in this chapter.

Lighting

Artificial lighting usually does not affect energy use, primarily since energy use for lighting

is insignificant. The technology within lighting has a wide variety, with many low

energy demanding alternatives. Today, LED lighting is among the least energy-demanding

technologies. [47] However, in an energy-efficient building, the energy used for lighting plays

a more prominent role, and intelligent solutions must be made. An example of solutions that

will decrease the energy demand for lighting is daylight sensors, dimming the light as needed.

This solution takes advantage of natural light and is, therefore, energy efficient. [16]

The use of artificial lighting in buildings is influenced by both occupants’ behavior and the

building design[46]. There is a close link between the start of daily occupancy and switching-on

lighting in large open space offices[46]. Peak lighting hours are usually between 10.00 to 18.00,

with an average lighting use of more than 90% during weekdays. This peak information is

based on case studies from Norway, China, and Belgium. [46]

In small space offices, the occupant behavior plays a more important role in terms of lighting.

Studies show that occupants easily use more natural lighting in individual offices compared to

large open space offices. [46]

Appliances

Office appliances include computers, displays, copiers, printers, and similar plug-in loads. [46].

These appliances are usually switched on during office hours. The distinct difference regarding

energy-saving relies on the occupant behavior during office hours. Studies show that offices

with higher turn-off rates for appliances during off-hours save more energy. [46] For residential

buildings, the appliances are different and involve appliances for cooking and cleaning.

Importance in modeling

In the study of Wei et al. [24] it was found that the electricity use of appliances is the most

crucial input parameter when predicting the power used by air-conditioning (AC) systems. In

the project work[1] introductory to this study, the electricity used for lighting was found as

the third most crucial parameter input, F.4.
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2.2 Building energy modeling

Building energy models (BEM) can be split into three different categories. Purely physics-

based, “white-box”, purely empirical,“ black-box”, and a combination of these two, “grey-box”

. For all of these categories, there are multiple subcategories and sub-subcategories. [1, 13, 48,

49] An overview of the main categories within the focus of this study is given in Figure 2.8.

The emphasized models are related to the model tested in this thesis.

Figure 2.8: Classification of building energy models for building energy prediction [50]

White-boxes are purely physics-based, making it possible to track all the output parameters

through thermodynamic equations based on the input parameters. This property gives the

user full insight into the model, making the model fully transparent. The black-box is purely

empirical and models the building based on patterns in data. Therefore these models require

training with historical data from the same building. Due to the use of patterns in input data,

the actions taking place inside the model are impossible to track and out of reach for the user.

Grey-box models are a hybrid of black- and white-box models, meaning some outputs can be

traced and are based on equations and others not; which part and the amount of the model

that is black and white depends on the model. The concept of transparency of the models and

the amount of insight given to the user is illustrated in Figure 2.9. [5, 13, 51]

Figure 2.9: Transparency within the BEM models [52]
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2.2.1 White-box models

White-box models are based on the laws of thermodynamic and physic. The models rely on

detailed physical parameters as inputs and are used to model details of building components

[5]. The models can capture the building dynamic well; however, this detailed modeling is

pretty computationally expensive and time-consuming to develop and simulate [8, 33]. There

have recently been multiple attempts to simplify the white-box-based approaches, but these

simplifications are error-prone and often overestimate energy-saving of buildings [33].

IES VE, TRANSYS, IDA ICE, EnergyPlus, and SIMIEN are examples of BEM models utilizing

the white-box-based approaches. The models need detailed physical properties as input data,

making them suitable for buildings in the design phase, compared to data-driven modes, which

need historical data as input. These programs are often used for energy calculations in the

planning phase of new buildings. This type of modeling is also very informative and helpful

regarding operation strategy assessment [8], and optimization and control [53]. However, these

models do not perform well for the prediction of energy use for occupied buildings. This is

mainly due to insufficient knowledge about occupants’ interaction with the building, which is

a complicated phenomenon to predict. [54]

The pros of this kind of modeling are that it is easy to discover hidden errors, it is suitable

for small data sets, and they are very reliable [53, 55]. However, the models are complex,

require many parameters, a high number of iterations, a fast computer, and a large amount of

memory [8, 53], making them unsuitable for near real-time applications [54]. The advantages

and disadvantages of the model are summarized in Table 2.2.

Table 2.2: Strength and weaknesses related to the BEM White-box models [1]

Strengths Weaknesses

• Easy to discover hidden errors [55]

• Can provide good estimation accuracy

[8]

• Insight into physical processes [53]

• No need for training data [53]

• Usable for optimization and control

[53]

• Very reliable [53]

• Suitable for small data sets [53]

• Restricted

by the degree of understanding of

fundamental principles [53]

• Mathematical solutions methods are

often complex [53]

• Model complexity and debugging

increases with the size of the building

[53]

• Requires fast computers and large

amounts of memory [53]

• Time consuming to design test cases

[55]

• Require many parameters and high

number of iterations [8]

2.2.2 Grey-box models

Grey-box-based approaches are modifications of white-box-based approaches, using a

combination of physical- and empirical approaches [33, 51]. Due to this combination, the

model needs both physical properties and historical data as input parameters. However, which
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specific physical and historical data required depends on the model, making these models good

for situations where the information is partly known. One primary issue in current grey-box

models is computational inefficiency due to uncertain inputs and complex interactions between

elements [33]. [20]

The models are well suited for analyzing building energy behavior when the data is incomplete

or uncertain [20, 50]. All these scenarios are possible with good accuracy and high calculation

speed [53]. However, it is tricky to discover hidden errors [55]. The grey-box approach is

more simple compared to white-box models; the approach also allows to capture the buildings

dynamic more efficiently compared to pure empirical models [56].

Xingji Yu et al. [57] studied low order grey-box modeling of a building. In this study, the black-

box part of the model is based on linear time-interval, which considers the input parameters;

outdoor temperature, solar radiation, and heat gain. The output parameter for the black-box

part for the model was indoor dry-bulb temperature. The rest of this model was “white”, and

based on physical properties. General strengths and weaknesses related to grey-box models

are listed in Table 2.3.

Table 2.3: Strength and weaknesses related to BEM Grey-box models [1]

Strengths Weaknesses

• Designing test cases can be done in a

short period of time [55]

• Good at handling problems related to

small samples and missing data [50, 53]

• High calculation speed [53]

• Good accuracy [53]

• Transferable [53]

• Difficult to discover hidden errors [55]

• Need training data [53]

2.2.3 Black-box models

Black-box models, also called data-driven models, are purely empirical bases and uses the

correlation between operation data and statistical models for prediction [8]. To circumvent

the above shortfalls of white- and grey-box-based approaches, black-box-based approaches can

conduct a building energy consumption analysis based only on historical data without the

detailed knowledge of on-site physical information [33]. Feeding the model historical data is

called “training”, and is a big part of completing the model, combined with “validation” and

“testing”. The data used for training need to be on-site, covering a longer time. This is to

make the model able to predict the building behavior during various conditions [51].

Black-box models are widely applied in studies regarding building strategies for energy and

cost reduction [51]. This model is also suitable for energy prediction for existing building stock.

The black-box models can get hourly feedback from the HVAC module, making the AI-based

models predict the future behavior of energy use, being one of the significant advantages with

these models. [36]

Black-box models hold certain advantages compared to white- and grey-box models, such as

model simplicity, calculation speed, and learning capability. Due to the simple model structure,

the model is also easy and rapid to develop. The necessary input data are often convenient
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to collect. Indoor temperature and similar data can be updated hourly using feedback from

HVAC modules. Furthermore, using time series data, black-box models can predict the future

behavior of energy use. Whereas white-box models use a forward approach offering energy

estimation for a known structure only. [36]

Leading to the main advantages of black-box models, they only require a small number

of parameters that adequately represent the building’s performance. The white-box model

requires known structure and known parameters as they are subjected to input variables for

estimation. [36] More information about advantages and disadvantages connected to the black-

box model are given in Table 2.4.

Table 2.4: Strength and weaknesses related to BEM Black-box models

Strengths Weaknesses

• Easy to build and computationally

efficient [8]

• Need few parameters [53]

• High calculation speed [53]

• High complexity of calibration [53]

• High accuracy [53]

• Transferable [53]

• No transparency in terms of physical

interpretation [49, 53]

• Require long training period and

are bounded to building operating

conditions [8, 53]

• Not accurate when training data does

not cover all the forecasting range [8]

• Extremely complex [20]

• Very difficult to discover hidden errors

[55]

• Can not guaranteed to always comply

with physical laws. Most common in

cases with small training data. [57]

2.3 Data-driven methods

Black-box models, also called data-driven models, can be separated into two different main

categories, machine learning models and statistical models, Figure 2.8 [50]. Statistical models

often consist of a collection of probability distributions used to describe patterns of variability

where random variables or data may display [58]. Machine learning models are a method of

data analysis that automates analytical model building [59]. It is based on the idea that systems

can learn from data, identify patterns and make decisions with minimal human intervention

[59].

Many black-box models were established to predict the energy consummation, particularly

electricity usage, of buildings. Estimating the energy usage for long-, medium, or short-term

is of great importance for energy market planning and investments. Very short-term (i.e.,

minutes or hours ahead) estimation of energy use can significantly influence the final dispatch

for the national el. market. A precise prediction would therefore lead to more efficient energy

management. [33]

Artificial neural networks (ANN) and Support vector machines (SVM) are the two promising

data-driven approaches used for the prediction of building energy consumption [5, 33]. These

models are good at solving non-linear problems, making them very suitable in building energy
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prediction [20]. Both these methods require data for training, but their performance is in most

cases better than statistical models [5]. Due to this, it is chosen to only focus on machine

learning models, particularly ANN and SVM, in this study.

2.3.1 Artificial neural network (ANN)

Artificial neural network (ANN) are designed to mimic the basic architecture of the human

brain [5, 33]. The model consists of three main layers, which further can hold a large number

for layers [33, 48]. Inside each layer, there are many process units arrayed connected across

layers [33]. The main layers are the input layer, the hidden layer, and the output layer [48].

Figure 2.10 illustrates the schematic of a typical ANN. In this study, the input layers consist of

the training data generated in IDA ICE and listed in Chapter 3.3.3, where one input parameter

equals one layer. The output layers are the predicted indoor dry-bulb temperature for each

zone, where the output for one zone equals one of the output layers.

Figure 2.10: Schematic of typical ANN model [60]

The model employs data-driven, self-adaptive methods to perform non-linear modeling without

knowledge about relationships between inputs and outputs [22]. These properties are due to

the training process, which specifies all needed connection weights and biases before conducting

predictions [33]. The training will take advantage of available historical data, which will be

used as benchmarks to cultivate the proper response of the model for given inputs [33]. Due

to the training, ANN models can learn the relationship between the different input parameters

and capture fundamental information through training based on historical information [33].

The process units in ANN are arranged in a layer structure and have different process units in

every layer, as mentioned above. The connection between these units is based on a designed

architecture [33]. Figure 2.10 illustrates an example of a simple feed-forward ANN, where the

information flows in one direction through the three layers. To more effectively approximate

human brain activities, the model’s architecture can be arranged in a different order [33].

Two representations are back-propagation neural network (BPNN), Figure 2.11, and recurrent
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neural network (RNN), Figure 2.12 [33]. These models compute the error related to every

output and further propagates this information as negative feedback to tune the incoming

connection weight, and bias [33].

Figure 2.11: Schematic of a three
layer-BPNN [33]

Figure 2.12: Schematic of a three
layer-RNN [33]

ANN is the model with the best performance and most widely used within data-driven models

for building energy prediction [5, 20, 49]. The adaptability of the self-tuning process during

operation makes the model able to take accurate decisions during disturbances [8]. Researchers

have applied ANNs to analyze various types of building energy use in a variety of conditions

during the last twenty years [20]. These are parameters such as energy use, heating load,

cooling load, and optimization. However, there are still some disadvantages connected to the

model. Table 2.5 holds the strength and weaknesses related to the model.

Table 2.5: Strengths and weaknesses related to the data-driven model ANN

Strengths Weaknesses

• Able to to implicitly identify all non-

linear relationships between inputs and

outputs [13, 50]

• Can solve the problems with some

failed element on the Neural Network

[61]

• Can be applied and implemented in

any type of application [61]

• Limited ability to explicit relationships

between variables [50]

• Not cost effective [50]

• Can not directly deal with

uncertainties [53]

• Might consider noise as part of the data

pattern [50]

• Can not be generalised to different

buildings during different conditions

[50]

• Not flexible [50]

• Exposed to over-fitting [50]

• Required long time for training models

with a large number of networks [13]
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2.3.2 Support vector machines (SVM)

Another popular data-driven model is support vector machines (SVM). The method utilized

by SVM is attempting to separate categories of data by maximizing the margin between them,

Figure 2.13. This separation aims to find a function that predicts the results from the actual

target with some deviation [13]. This function can be used to solve classification and pattern

recognition problems [20, 62], to find underlying relationships between the nonlinear inputs to

the continuous actual values [33]. When SVM is used for regression problems, support vector

regression (SVR) is an essential tool for energy prediction of buildings [33].

Figure 2.13: Schematic illustration of SVM [13]

The main task of SVR is to construct a decision function through the training process based

on historical data [33]. This is necessary to be able to represent the behavior of the system

[50]. The given input of the historical data must ,therefore, not deviate from the actual target

more than the threshold [33].

Regarding the framework, SVM is superior compared to other models [33]. The framework

is easily generalized for different problems, and it can obtain globally optimal solutions [33].

In addition, the model is capable of dealing with nonlinear relations in a unique way [33].

However, the model is rather time-consuming for large-scale problems [33].

SVM models are used in research and industry to a great extent, primarily due to their high

efficiency in solving nonlinear problems, even with small training data [20]. SVMs are one

of the most robust and accurate algorithms [5], and the models’ have been widely applied in

building energy analysis [20]. A complete list of the advantages and disadvantages related to

SVM is given in Table 2.6.
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Table 2.6: Strengths and weaknesses related to the data-driven model SVM

Strengths Weaknesses

• Accurate in classification [48]

• Rapid in learning [48]

• Useful for big data-sets with multiple

input parameters [13, 48]

• Considers

data being close to the opposite class,

giving a reliable classification [48]

• Comparative to existing artificial

intelligence approaches in terms of

accuracy [20, 50]

• Less prone for over-fitting issues

compared to ANN [50]

• Not sensitive to the noisy data [13]

• Able to solve global minima instead of

local minima [13]

• Lack of universal method for selecting

appropriate Kernel function [50]

• Not cost-effective [50]

• Not flexible in assessing energy

conservation measures [50]

• Adoption by urban planners is complex

[50]

2.4 General information about data-driven models

This subsection includes information of different data-driven models, time-stamp of prediction,

input- and output parameters, and finalizing the model.

2.4.1 Models

The study of Zhao and Maloules [20] from 2012 examined models used for energy prediction

of buildings. Their study reviewed scientific papers regarding data-driven models and made a

comparative analysis of the models used to predict building energy use. A summary of their

results is presented in Table 2.7.

Table 2.7: Comparative analysis of data-driven models [20]

Methods Model

complexity

Easy to use Running

speed

Inputs

needed

Accuracy

Satistical Fair Yes Fairly high Hist. data Fair

ANNs High No High Hist. data High

SVMs Fairly high No Low Hist. data Fairly high

In 2018 Amasyali and El-Gohary [5] reviewed the field of energy predictions in buildings. Their

study investigated the use of different data-driven models in the field. The study found that

47% of the studies review used an ANN model, making this model the most widespread model.
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25% of the studies reviewed in the study utilized SVM to predict energy use, making this model

the second most popular model.

In 2020 Sum et al. [13] did a similar study reviewing data-driven models in the field of energy

prediction for buildings. Their study also showed that ANN was the most used data-driven

model in the field of study, used in approximately 65% of the studies reviewed. SVM was

the following most popular model, used in approximately 40% of the studies reviewed. In the

study of Sum et al. [13] more than 80% of the studies reviewed utilized multiple data-driven

models, while this was not given in the study of Amasyali and El-Gohary [5].

2.4.2 Prediction

After the models are trained and validated, the developed model can be used for real-time

energy prediction [13]. Amasyali and El-Gohary [5] reviewed the utilized prediction time

within the field of energy prediction for buildings. Their results showed that hourly prediction

was most utilized, 57% of the time. Their findings are illustrated in Figure 2.14. The findings

of Amasyali and El-Gohary [5] correspond to the findings of Sum et al. [13], and Daut et al.

[61], regarding the widespread utilization of one-hour prediction.

Figure 2.14: Statistic over utilized prediction for data-driven models [5]

Multi-step prediction

Multi-step prediction is when more than one prediction is made at a given time. Example in

the study of Li et al. [63] 16 steps ahead was predicted at each time-step, equals to a 4 hour

ahead prediction with data for every 15 minute. Multi-step prediction is useful for continuous

control, and monitoring of the system [13], and can efficiently capture the dynamic behavior

of the building [63]. Compared to one-step prediction, multi-step prediction is more complex

and can accumulate errors when increasing prediction step size [63]. Multi-step prediction is

utilized in most studies, including this one [13].

2.4.3 Output parameters

In 2017 Wang and Srinivasan [36] reviewed the field of energy prediction for buildings. Their

study found that the total building energy use was the most utilized output in the field of

study. Other outputs often utilized were energy used for heating & cooling, heating demand,

and cooling demand. Figure 2.15 illustrated the distribution of utilized output. [36] In 2018

Amasyali and El-Gohary [5] did a similar analysis. Their findings were similar. A large share
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of the studies uses total energy use as an output, followed by cooling demand and heating

demand. The results of this study are illustrated in Figure 2.16. [5]

Figure 2.15: Statistic over utilized
prediction output based on Wang and

Sirnivasan [36], 2017

Figure 2.16: Statistic over utilized
prediction output based on Amasyali

and El-Gohary [5], 2018

2.4.4 Input parameters

Meteorological information, historical data, and time-index are the three most important

factors for building energy prediction according to Sum et al. [13]. Air-conditioned buildings

often have constant indoor conditions, being one of the main reasons indoor environmental

information is not commonly used. Occupancy data are often difficult to collect, making this

parameter hard to utilize. However, this input parameter can be replaced by time-index data

since the behavior of occupants tends to occur in patterns. Building characteristics are usually

constant through a building’s life cycle, and due to this, they are often ignored in data-driven

models. [13] For residential buildings, studies have shown that the main factor affecting the

thermal load of the building are outdoor temperature, solar radiation intensity and historical

load [64]. An overview of the deviation of utilized parameters is given in Figure 2.17. Most

studies the figure is based on include multiple input parameters.

Figure 2.17: Deviation of input parameters utilized in studies [13]
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Historical data

Data-driven models use data patterns to execute prediction. Therefore, the model has to

be fed with information for a certain amount of time to learn the patterns. When the

model is ready for predictions, the pattern utilized is based on the data given earlier in

the training period, i.e., historical data. In recent years, historical data have been a more

utilized parameter in data-driven models due to its ability to increase prediction accuracy

[13].

This historical data can, for example, consist of heat demand, electricity use, or occupancy

information. Since the building characteristics most often are constant after build, heat

loads and similar information can be based on the historical information [13]. Wang et

al. [31] found that the historical energy use for heating is the most crucial input for heat

demand predictions. Ahmad et al. [54] found that the previous hour electricity use is the

most crucial parameter for energy prediction.

Time-index

Time-index means the stamp series for time [13]. It can, for example, be the hour of the

day, day of the week, or week of the month. The schedule of occupants tends occur in

patterns, meaning that the user tends to have the same pattern of energy use on the same

day, weekday, 14-days, or similar [13]. A time-index is, therefore, an excellent option to use

when occupants-related data is out of reach. Fan et al. [65] states that there is a correlation

between the occupants’ time-index and energy use. However, Wang et al. [31] state that

the time-index is negligible in residential buildings with district heating.

Wei et al. [24] found in their study that multiple data-driven modes, including ANN, tend to

deteriorate prediction accuracy when utilizing too many auxiliary input variables. Therefore,

feature extraction using PCA or similar methods plays an important role for energy prediction

models. [24] Mtibaa et al. [66] confirms this for LSTM models. More information about input

parameters utilized in building energy prediction is given in Chapter 2.5.

2.4.5 Training, validation and testing

The process of completing the models consists of three steps, training, validation, and testing,

which all rely on three different sets of data [49]. The data needs to be large, covering all

seasons, and rich, covering all possible scenarios [51]. Figure 2.18 illustrates an example of

how to divide available data into the three different sets of data required.
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Figure 2.18: Example of how to divide available data

Training the algorithm is the first step. In this step, the model is fed with the “training

data-set”, to try to find a pattern in the data given. The results accumulated in the training

are compared to the original data and adjusted if necessary. [49]

The next step is validation. The data-set for validation is used to provide an unbiased

evaluation of the implemented algorithm, already fit on training data, and tune its key modeling

parameters to enhance the fitting of the model [49]. The validation data must be different from

the training data. This difference is to avoid that the model only works for some data sets and

to prevent over-fitting, explained in Figure 2.19. [49]

The last step is testing, where the algorithm developed is run on the remaining data to provide

a final, unbiased evaluation of the model [49]. The model parameters and structure should not

be modified based on the result from the testing[65]. Therefore, the model is complete during

this step, and the testing is only performed to evaluate the performance of the model. As the

model is used, the data-driven models get more information, and the performance increases.

Distribution of data-sets

The data sets used to train, validate and test the model can be divided into multiple ratios.

The ratio used in most studies is a share of 50-90% for training, or training and validation

[49]. Meaning a ratio of 50-10% for testing [49]. It is also common to have an equal share of

data for testing and validation [49].

In the project work [1], tests were conducted to find a good distribution of data for training,

validation, and testing. During these tests, the data distribution resulting in the best

performance was 20% for testing, 40% for validation, and 40% for testing. All tests carried

out related to this experiment were done on one constant building, with the same data-driven

model, and the ratio for validation and testing was equal at all times. Some deviation may

occur for other cases, and it can not be stated that this is the best data distribution.

Type of data

In connection to the project work [1] an experiment regarding the type of data used for training,

validation, and testing was also conducted. In this experiment the available data, an entire

year, was split into equal parts, and the data used for training, validation, and testing varied

between them. However, training, validation, and testing were executed in that order, no

matter the data used.

In this experiment, the best performance was when the data from Jan. - Apr. was used for

training, May - Aug. for validation, and Sept. - Des. for testing. This experiment was also

conducted for one building only, using one data-driven model. Some deviation may therefore

occur. The full results from this experiment are enclosed in Appendix F.2.
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2.5 Review of previous parameter studies

Other studies are reviewed to capture the state-of-the-art and the parameters utilized for

various outputs. The review is conducted for ANN and SVM models, where only the most

relevant information about each study is included.

2.5.1 Parameters used in SVM models

The overview of the review is illustrated in Table 2.8. The review shows that the most utilized

input parameter is historical data, often as historical electricity use. As for output, the most

utilized ones are energy use and cooling load.

Table 2.8: Overview of reviewed articles using SVM models [33]

Building type Location Data-driven

model

Output Input

Four

commercial

buildings [67]

Singapore SVM Monthly energy

use

- OT

- RH

- SR

- Hist. el. use

Multiple [68] NSW, Australia SVM, BPNN Predicted

el.load

- Hist. el. use

100 Office

buildings [69]

Paris, France Parallel SVM Heating D., el.

load

- El. heating

- Total El.

Institutional

building [70]

Singapore GA + SVM Energy use - Energy use

Campus

building [71]

Guangzhou,

China

SVM + FCM Cooling load - Cooling load

Seven

residential

buildings [72]

Knox County,

Tennessee

LS-SVM Energy use

- Enviro. info.

- Time-index

- Hist. el. use

Office building

[73]

Guangzhou,

China

SVM, BPNN Cooling load

- Hist. cooling

- T

- RH

- SR

Note: BPNN = back-propagation neural network, Comp. = Compressor, D. = demand, El. = electricity,

Enviro. info. = environmental information, FCM = Fuzzy c-means clustering, GA = genetic algorithm, Hist.

= historical, LS-SVM = Least-squares support-vector machines, OT = outdoor temperature, RH = Relative

humidity, SR = Solar radiation, T = temperature

2.5.2 Parameters used in ANN models

The overview of the studies utilizing ANN models is included in Table 2.9. The table illustrated

that the studies reviewed often uses four or fewer input parameters, and the most common

input parameters are outdoor temperature and historical data.
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Table 2.9: Overview of reviewed articles using ANN models [33]

Building type Location Data-driven

model

Output Input

Holiday Passive

House [74]

44° latitude RNN - BPNN Energy use

- Season

- Insulation

- wall thickness

- HT coefficient

- Time index

Multiple within

a nation [75]

Turkey BPNN Net energy use

- GDP

- GNP

- Population

Offic building

[76]

Montreal ANN Dynamic chiller

el. D.

- OT

- Outdoor RH

- Chiller water T

- Comp. status

Office building

[77]

Turkey BPNN El. power use

one day ahead

- Previous load

- Hist. T,

- Occupancy

- Sin and cos

of the hour

Multiple within

same region [78]

NSW, Australia MIMO - FFNN El.D. halv-hour

ahead

- Hist. el. use

Seven

residential

buildings [79]

China BPNN Energy

used for heating

and cooling

- Building Env.

- Heating DD

- Cooling DD

Commercial

building [80]

Not

documented

BPNN Cooling D.

- Hist. cooling D.

- Air T

- RH

Seven

residential

buildings [81]

Ume̊a, Sweden BPNN Indoor-outdoor

T difference

- Supp. heat D.

- El. domestic D.

- Flag parameter

University

building [82]

Pennsylvania BPNN Energy

used for heating

and cooling

- OT

- RH

- Set-point T

- Occupancy

University/Office

building [83]

Sao Paulo BPNN Energy use
- OT

- time-index

Note: Comp. = Compressor, DD = degree day, D. = demand, El. = electricity, Evn. = envelope, GDP

= Gross domestic product , GNP = Gross national product , Hist. = historical, HT = heat transfer, OT =

Outdoor temperature, RH = relative humidity, T = temperature
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2.5.3 Parameter relevance

Investigation of parameter relevance has been conducted in other studies. This subsection will

review some studies in this field, which have utilized one or multiple methods for evaluation

of parameter relevance in regard of building energy use. Their approach and results will be

highlighted, as well as the building type. The studies in focus are “Prediction of occupancy

level and energy consumption in office building using blind system identification and neural

networks” by Wei et al., “Multi-criteria comprehensive study on predictive algorithm of hourly

heating energy consumption for residential buildings” by Wang et al., “Trees vs Neurons:

Comparison between random forest and ANN for high-resolution prediction of building energy

consumption” by Ahmad et al., and “Selecting the model and influencing variables for DHW

heat use prediction in hotels in Norway” by Ivanko et al.. None of these papers have the main

focus on parameter relevance in building energy prediction but all have included it in their

research.

The study of Wei et al. [24]

Building type: Commercial building

Location: Beijing

Occupancy data: Calculated from actual CO2 level

Output: Power used by AC system

Parameter ranking method: Feature extraction method - PCA

The study of Ahmad et al. [54]

Building type: Hotel

Location: Madrid

Occupancy data: Actual data from reservation system

Output: Total energy use

Parameter ranking method: Feature elimination - Compare results where the relevant

parameter is missing using accuracy matrices.

The study of Wang et al. [31]

Building type: High-class commercial skyscraper (ICC)

Location: Hong Kong

Occupancy data: Hourly time-index from actual data

Output: Total energy use

Parameter ranking method: Feature extraction method - Embedded method
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The study of Ivanko et al. [84]

Building type: Hotel

Location: Oslo, Norway

Occupancy data: Actual data from reservation system

Output: DHW heat use

Parameter ranking method: Feature extraction method - Wrapper method

The results from the studies are listed below. The output parameter for Wang et al. [31] and

Ahmad et al. [54] are equal, which may explain why the importance of input parameters are

corresponds.

Wei et al. [24]

1. Electricity use of appliances

2. Number of occupants

3. Electricity use of lighting

4. Solar radiation

5. Electricity use of fresh air appliances

6. Outdoor dry-bulb temperature

Wang et al. & Ahmad et al. [31, 54]

1. Historical heating consumption

2. Outdoor dry-bulb temperature

3. Relative humidity

4. Time index

5. Number of occupants

In the study of Ivanko et al. [84] the DHW heat use is predicted for a hotel, and input

parameters are evaluated. In this study, the most influential input parameters for all nine

different data-driven methods testes, including NN and SVR, were related to the occupants’

presence in the building. The three most important parameters were “the number of guests on

a given day”, “the number of guests the day before” and “an artificial variable used to predict

the daily variation of the guest presence”. Combined, these parameters were able to give a

reliable model of the DHW heat use [84].

2.6 Feature extraction methods

The selection of input parameters to prediction models is very important [54]. If there are

many input parameters, the prediction algorithm becomes complex, and the risk of over-fitting

increases [54]. Feature extraction methods can help reduce over-fitting, computational costs,

improve model performance and identify the intrinsic dimensionality of a given problem [54],

all without sacrificing the accuracy of the model [13].

In general, there are two different approaches for selecting model inputs. The first one relies on

the concept of subset selection. Typical methods of this type are wrapper, filter, and embedded

methods. A disadvantage with this type of method regards the redundancy of subset selection.

The other approach for selecting model inputs is based on feature reconstruction. An example

of a model in this category is principal component analysis (PCA). The method involves

projecting onto the first few principal directions. A new set of data with lower dimensions is

obtained through linear combinations of the original data. The main disadvantage connected
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to this method is that none of the original data can be abandoned, and it may therefore be

difficult to interpreter the input parameters. [54]

2.6.1 Variable ranking

Variable ranking use a scoring function to find the number of most relevant parameters to the

output. The Pearson correlation coefficient, equation 2.1, is a widespread function in terms

of energy prediction. In this equation rxy is the Pearson correlation coefficient between input

parameter (x), and target output parameter (y).The sample size is n, the individual sample

points are xi and yi, and the x and y are the mean value of input and output parameters. [13]

rxy =
Σn
i=1(xix)(yiy)√

Σn
i=1(xi − x)2

√
Σn
i=1(yi − y)2

(2.1)

The Pearson correlation coefficient is easy and quick to use and determines the strength and

direction of the linear relationship between two variables. Challenges related to this method

are determining the number of desired parameters. In addition, the method is only able to

calculate the relationship between individual variables and output instead of relationships

between subsets of input and output parameters. [13] The strengths and weaknesses related

to the method is given in Table 2.6.1.

Table 2.10: Strengths and weaknesses related to variable ranking [13]

Strength Weaknesses

Fastest and easiest to use Hard to determine desired number of

parameters

Quantitatively calculate the relevance

between individual variables and output

Can not consider the effect of inter-relevance

between input parameters and outputs

Can not select the best subset

2.6.2 Wrapper methods

Feature selection processes that focus on the relationships of the parameters to the classification

at the end of the machine learning protocol are called wrapper approaches [85]. The wrapper

method selects the best subset with the highest prediction performance in a specific learning

algorithm [13]. This method is one of the most precise methods since it detects possible

interactions between variables and takes the specific characteristics of the prediction algorithm

into account [84].

The wrapper analyses are cyclical in iterating over the same data set multiple times to identify

a subset of parameters that provide the best classification accuracy, making this method

computationally expensive [85]. Ivanko et al. [84] applied the Wrapper algorithm to categorize

the best set of influential variables regarding DHW heat used for a hotel. In this study, the

method showed high efficiency in determining the variables included in the prediction model.

An overview of the method’s strengths and weaknesses is given in Table 2.11.
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Table 2.11: Strengths and weaknesses related to wrapper method [13]

Strength Weaknesses

Subset selection considers inter-relevant of

input parameters

Computational expensive

More stable High risk of over-fitting

2.6.3 Filter method

Both filter and wrapper methods can be utilized to find the best sub-set selection of parameters,

meaning they consider the interrelationship between parameters [13]. In contrast to the

wrapper method, the filter method is independent of the machine learning algorithms [85].

Filter methods can be sorted into two different categories: Rank Based (i.e. variable ranking,

Chapter 2.6.1) and Subset Evaluation Based [13]. This subsection refers to the Evaluation

Based filter method.

Filter methods evaluate the importance of individual or subset of parameters through statistical

measures [13]. The method exploits the data set’s random characteristics and does not try to

understand why the particular parameters are relevant [85]. The parameter is related to the

end-classification, independent of the classification algorithm [85]. Filter methods are efficient

techniques in terms of computational complexity. However, the method is less stable compared

to others [13]. An overview of the method’s strengths and weaknesses is given in Table 2.12.

Table 2.12: Strengths and weaknesses related to filter method [13]

Strength Weaknesses

Fast and easy to use Less stable

Subset selection

Robust to over-fitting

2.6.4 Embedded methods

The embedded method integrates parameter selection into the learning algorithm [13]. For

example, adding regularization to data-driven models can be considered as an embedded

method [13]. Challenges related to this method regard the selected regularization method

and its lack of adapting the optimization procedure and ensuring optimum solutions. [13]

The embedded feature selection method, ridge regression, creates a parsimonious model when

the number of predicted variables in a set exceeds the number of observations or when a data

set has a high correlation between predicted variables [85]. Embedded methods, such as ridge

regression and LASSE, selects parameters during the modeling process and are embedded

within the black-box algorithm [85].
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Table 2.13: Strengths and weaknesses related to embedded methods [13]

Strength Weaknesses

Easy to use Unable to quantitatively present the

importance of parameters

Unnecessary to eliminate parameters

2.6.5 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is one of the most popular methods regarding feature

extraction [86]. The PCA technique reduces the dimensionality of data and removes

redundancy by seeking clusters of data points that can represent the main parameters of

the data [76]. Traditional PCA project parameters into a lower-dimensional sub-space with

linearly uncorrelated variables [13]. However, kernel PCA utilized a kernel function to map

nonlinear related inputs into a new feature space and further perform a linear PCA in this

space [13]. An overview of the method’s strengths and weaknesses is given in Table 2.14.

Table 2.14: Strengths and weaknesses related to PCA [13]

Strength Weaknesses

Relatively easy to use Hard to determine number of desired

parameters

Adequate when the original feature space

dimension is not too large

For kernel PCA, kernel function needs to be

properly selected

Unnecessary to eliminate parameters

2.6.6 Autoencoder (AE)

Autoencoder (AE) is a type of ANN that can learn a compressed nonlinear representation

of the input data [13]. An AE usually consists of two networks, an encoder, and a decoder.

The encoder maps original input to a low compressed dimension, and the decoder recovers

the original inputs from the compressed representation. AE has been utilized in some studies

regarding feature extraction in building energy prediction; however, it is still uncommon. The

reason for this is partly since the dimension of the original input parameter is usually small;

thus, AE would be computing intensively compared to other methods for feature extraction.

[13] Table 2.15 hold an overview of the method’s strengths and weaknesses.
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Table 2.15: Strengths and weaknesses related to AE [13]

Strength Weaknesses

Learn nonlinear representation of original

input

Computational expensiveness

More powerful for compressing

the dimension of features with lower loss of

information

2.7 Modelling accuracy

There are multiple possibilities for evaluating the performance of a data-driven model. This

section will include the methods utilized in most studies, including this one.

2.7.1 Over-fitting

In ANN models, the number of hidden layer neurons varies from problem to problem, depending

on the number and quality of the training pattern. If too few neurons are selected for the

hidden layer, under-fitting can occur. Whereas over-fitting can occur when too many neurons

are included. [54]

Over-fitting is a modeling error that occurs when a function is too closely fit to a limited set

of data points [87]. This concept is illustrated in Figure 2.19. In addition to the number of

neurons, choice of input parameters, number of layers [13], and other changes in the model’s

structure can lead to over-fitting. [54]

Figure 2.19: Illustration of over- and under-fitting [88]

2.7.2 Accuracy matrices

The models’ performance can be accessed and examined with the use of different accuracy

matrices [54]. The most utilized matrix is MAPE; mean absolute percentage error. This metric

calculates the average absolute error as a percentage [54]. RMSE; root mean square error and

MAE; mean absolute error are other accuracy matrices widespread in this field of study. All

the matrices is presented in equation 2.2–2.4. The different accuracy matrices provide different

information regarding the accuracy and forecasting of the model. Error percentage provides

a performance evaluation with normalized information, which is good when different models,
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studies, and building typologies are compared. RMSE equals standard deviation, when the

RMSE is calculated based on an average [89]. [49]

MAE(°C) =
1

n

n∑
i=1

|yforecast,i − yactual,i| (2.2)

MAPE(%) =
1

n

n∑
i=1

|
yforecast,i − yactual,i

yactual,i
| · 100% (2.3)

RMSE(°C) =

√√√√ 1

n

n∑
i=1

(yforecast,i − yactual,i)2 (2.4)

2.7.3 Box-plots

A box plot shows the minimum value, upper- and lower quartile, median, and maximum value

of a data set [90], and are often utilized in scientific papers. Figure 2.20 holds the meaning

related to each component of a box-plot. The square of the figure illustrates the area where

75% of the data-set lies. The whiskers illustrate the minimum and maximum values of the set.

The distance between the upper and lower quartile is called the interquartile range (IQR). A

data point is considered an outlier if it exceeds a distance of 1.5 times the IQR below the lower

quartile or 1.5 times the IQR above the upper quartile [90].

Figure 2.20: Explanation of box-plots [90]
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3 Methods

This chapter will include the methods used and detailed information on the experiments

conducted. First, the literature search will be reviewed, followed by detailed information

of the white- and black-box model utilized. The method utilized for the various experiments

will also be reviewed and are as followed:

White-box tests

• P-controller and PI-controller

• Different office occupancy schedules

• Residential occupancy and equipment

schedule

• One zone split in two

• Building standards: TEK 87, TEK 17,

Passive House, and Concrete building

• Change in window location

• Removal of external shutters

• Rotation of building

• Different climate: Trondheim, Oslo, and

Malaga

Black-box tests

• Multiple equal predictions

• Different input combinations

• Fewer zones

• Feature elimination

• The wrapper method

• Testing in different seasons

• Time-step accuracy

• Location of error

3.1 Literature search

When finding relevant literature for this study, three search databases were used; Google

Scholar, Scopus, and NTNU Open. In each database, articles were searched for based on

relevant keywords, usually combined with the word “building”. The most used keywords are

listed below.

• Data-driven

• Machine-learning

• Parameter

• Black-box

The relevance of the articles where thereby evaluated based on the title. All the information

found in the sources has been critically evaluated and compared with multiple studies to

determine whether the information is reliable. Information provided by secondary sources has

been verified by checking the original source. Secondary sources have also been used to a great

extent to find relevant articles and provide a broader range of information. In NTNU Open,

professors working in this field of study have been searched for, and meetings were arranged

to get more detailed information about the procedure utilized in their study.

When searching for literature, the year of publication has been of great importance. The

technology development within data-driven models evolves quickly, and the state-of-art is

challenging to capture.

3.2 Development of white-box model

For testing the data-driven model, training data is required. The training data utilized in this

study is generated by modeling and simulating a building in the white-box model IDA Indoor
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Climate and Energy (IDA ICE), a software developed by EQUA. IDA ICE is a simulation

tool with the possibility of detailed simulations of multi-zone models. It was chosen to use a

non-residential building for the primary building simulation. This decision was based on the

lack of data and research on this building type within our department of study and university.

The building modeled is a low-energy building due to the relevance these buildings have in

these studies.

Figure 3.1: Overview of the IDA ICE modeled building

It was desired to get a wide variety of results, meaning the building tested needs to be different

on multiple levels. A Base Case is therefore made which all the buildings are compared with.

All the variations of buildings are based on this particular Base Case. The Base Case is a small

office building made after the Norwegian Passive House standard for commercial buildings, NS

3701. The building is located in Trondheim, Norway.

The building design is a two-floor office building with eighteen personal offices, a lobby, three

meeting rooms, three corridors, and two bathrooms. The building is made after a template in

IDA ICE and adjusted to fit the Norwegian building standards. The simulation of the model

is from 01.01.2020 to 31.12.2020, with local weather data. Figure 3.1 gives an overview of the

IDA ICE modeled building, and Figure 3.2 holds an overview of the floor plan of the building.

The building has the internal dimensions to be 28.1m wide and 12.2m long.
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Figure 3.2: Floor plan of the building with zone names

3.2.1 HVAC system

For the ventilation, VAV is chosen. The VAV is determined by temperature and CO2 sensors

and uses Proportional Integral (PI) controllers. The set-point for heating is 21°C and 25°C for

cooling when the building is occupied. When the building is not occupied, the heating set-

point temperature is set to 17°C. A variable set-point is chosen to get a low-energy building.

Since a low-energy building is desired, the air handling units’ efficiency is set relatively high.

Both the supply and extraction fan has an efficiency set to 0,87. The air-to-air heat exchanger

has an efficiency set to 0,85, and both the heating and cooling coil has an efficiency set to

1.0. Regarding heating, cooling, and domestic hot water, the energy carrier is set to district

heating and cooling, and the COP factor is set to 1 for both. The HVAC system of the modeled

building is illustrated in Figure 3.3.
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Figure 3.3: Air handling unit for the Base Case

A section of the indoor temperature for all the zones of the Base Case is given in Figure

3.4. This indoor temperature will be the output parameter of the black-box model, where

the temperatures given in IDA ICE is the “actual” and therefore correct temperatures for the

building. From the figure, it is clear that Zone 8 does not reach the desired indoor temperature

of minimum 21°C during working hours. The other zones are, however, able to reach this

desired temperature.

Figure 3.4: Section of indoor temperature for the Base Case

Controller

Multiple experiments were conducted with different versions of the Base Case building. The

bias of this was to get a wide range of data, covering many different scenarios. Regarding the

HVAC system, these experiments were conducted.

• PI-regulator - Bace Case

• P-regulator

The controller used in the Base Case building is a PI-controller. This controller was chosen

since it is less sensitive to noise than a Proportional (P) controller. However, for one of the
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experiments conducted, the controller for the HVAC system is changed to a P-controller. For

all other experiments conducted, a PI-controller is utilized. The change of controller was done

in the IDA ICE tab “room unite” found under “general”. Experiments on the HVAC controllers

were only done for P- and PI-controllers, since PID-controller is not a build-in function in IDA

ICE.

3.2.2 Internal gains

Different schedules of occupants and equipment are also tested to see how the model act when

the internal gain is changed. The experiments conducted are listed below.

• Office schedule for occupants and equipment

Seven random occupant schedules for offices

• Residential schedule for occupants and equipment

• Zone 12 split in two

Occupancy

When making the data used for the model’s occupancy-related information, one week of actual

data from a real office is used. The data is stored in an excel file and multiplied by 52, covering

a full year. It was desired to test the model for different cases. Multiple random occupancy

schedules were therefore made based on the original one. When making multiple cases, excel

analyzed the original data for the specific time-stamp and randomized the number if the

original value was higher than zero. The excel function used to make random numbers was

“RANDBETWEEN”. When using this code, the lower value was 0.1, and the upper value

was 0.99. The random decimals were further multiplied with a set number of maximum

people for each zone, Table 3.1. The set number of occupants is a float, chosen based on the

area recommended per person for office buildings [42]. The activity and clothing level for all

occupants is set to 1,2 met and one clo, Table 3.2.

Table 3.1: Detailed information about internal gain for each zone

Zone 4 7 8 12 14 18 19 20 22

Size [m2] 14.76 11.86 65.80 27.00 26.60 27.00 25.38 12.05 14.95

No. occupants 2.36 1.90 13.16 8.10 4.04 8.10 7.61 1.93 2.40

No. standard PC 4.43 3.56 6.58 2.70 2.02 2.70 2.54 3.62 4.49

No. light bulbs 0.49 0,40 2.19 0.9 0.89 0.9 0.85 0.40 0.50

Table 3.2: Energy use related to internal gains

Occupant activity level 1.2 met (126 W)

Standard PC 125 W

Light bulbs 60 W

Residential occupancy

When making the occupancy schedule for the residential building, the inverse of the office

data was used. Meaning when the office was occupied, the residential building was not, and

opposite. Each hour of data was further randomized within the same given boundary. To

avoid that the buildings were too different, the same internal gain is utilized in the residential
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building as in the office building. Normally residential buildings are less occupied than office

buildings, but in this test, it was chosen to keep the same ratio for occupancy.

Zone 12 split in two

One zone, Zone 12, was split into two new ones to find how different room sizes affect the

model. The splitting was done by right-clicking on the zone and choosing the option “split

zone with wall” in IDA ICE. The wall was placed between the two windows of the zones and

a door was placed in the middle to make the new zone accessible. The two different layouts

of the zone is illustrated in Figure 3.5 and 3.6. The internal gains related to the two new

zones are listed in Table 3.3. There are more equipment and fewer occupants in the new split

zones compared to the original zone. This is to make the zone more similar to an office than

a meeting room and give the rooms a natural area of use.

Figure 3.5: The original layout of Zone 12 Figure 3.6: Layout of Zone 12 when
split in two

Table 3.3: Detailed information about internal gains for Zone 12 when split

Zone 12 - 1 12 - 2

Size [m2] 13.09 13.33

No. occupants 2.09 2.13

No. standard PC 3.93 3.99

No. light bulbs 1.31 1.33

Equipment

The use of equipment varies for most rooms, where larger rooms have less and smaller more.

This deviation is based on the building’s design as an office building, whereas small rooms are

designed as small offices for one to two occupants, while larger rooms are designed as meeting

rooms, lobby, or break area. Table 3.1 holds information about the amount of equipment and

light bulbs set for each zone, and Table 3.2 the energy use for each component.

A “standard PC” is chosen as the equipment variable to get a variable with relatable energy

use. During the simulation, the PC represents the energy use of all technical equipment in

offices, for example, printers, chargers, and coffeemakers. Most of the time, the building is set

up as an office building. During these times, the equipment schedule is set to on during office

hours, Figure 3.7. This schedule is chosen based on when the building is occupied.
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One of the experiments analyzes how the building behaves when it is used as a residential

building. During this case, the equipment schedule is set to almost the opposite of the office

schedule. This schedule is visible in Figure 3.8. This schedule is made based on Figure 2.6.

Figure 3.7: Equipment schedule for
office building

Figure 3.8: Equipment schedule for
residential building

3.2.3 Building envelope

Regarding the building envelope, there have been conducted several experiments where changes

have been made. The envelope of the Base Case is made after the Norwegian Passive House

standard. For all the simulations and experiments regarding the building envelope, the building

is located in Trondheim, Norway. This subsection will give detailed information about the

building envelope set for the Base Case, and the other cases. The experiments conducted in

this category are listed below.

• Building envelope

Passive House - Base Case

Concrete Building

TEK 17 building

TEK 87 building

• Change in window location

• Removal of external shutters

• Building orientation

Building standards

The building standard used in the Base Case is the Norwegian Passive House standard for

commercial buildings, NS 3701. Other building standards tested are TEK 17, TEK 87, and

NS 3701 with high thermal mass, further called the Concrete Building. The requirements for

the different building standards are given in Appendix B.

The u-values for all the buildings made in IDA ICE and their components are listed in Table

3.4. As seen in Table 3.5 the internal walls and internal floors are equal for both the Passive

House, TEK 17, and TEK 87. This decision was made to have as equal buildings as possible

without affecting the heat flow out of the building’s boundary to a large degree.
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Table 3.4: U-value for all the building elements in all building types utilized in the experiment [W/m2K]

I. wall E. wall I. floor E. floor Roof Window Door

TEK 87 building 0.619 0.288 0.773 0.291 0.192 0.826 1.980

TEK 17 building 0.619 0.206 0.773 0.173 0.174 0.826 0.943

Passive House 0.619 0.096 0.773 0.087 0.079 0.826 0.333

Concrete Building 1.148 0.115 2.091 0.087 0.099 0.826 0.333

Note: I. = Internal, E. = External

Table 3.5 holds information about the building construction utilized for the Passive House,

TEK 17 and TEK 87 buildings. The Concrete Building was included to see how the thermal

mass of the envelope changes the performance of the black-box model. Table 3.6 holds the

layers and dimensions of all the materials used in the Concrete Building envelope. According

to Direktoratet for byggkvalitet [91] these are specific layers external walls, floors, and roofs

must contain to be safe against natural stresses. Some of these layers include material that is

water- or windproof. In this study, the wall layers have been simplified, where a good u-value

and thermal mass are the construction aims.

Table 3.5: Materials in the construction, from inside to outside, for Passive House, TEK 17 and TEK 87 building

Interial wall External wall Internal floor Ground floor Roof

Inside

Gypsum(0.026m) Render(0.01m) Coating(0.005m) Coating(0.005m) LI(X)

Air gap(0.03m) Wood(0.07m) Render(0.02m) Concrete(0.2m) Wood(0.2m)

LI(0.03m) LI(X) Wood(0.15m) LI(X)

Air gap(0.03m) Render(0.01m)

Gypsum(0.026m)

Outside

TEK 87 X = 0.1m X = 0.1m X = 0.13m

TEK 17 X = 0.15m X = 0.15m X = 0.15m

PH X = 0.35m X = 0.4m X = 0.4m

Note: Coating = Floor coating, LI = Light insulation, PH = Passive House

Table 3.6: Detailed information about the building materials in IDA ICA for the Concrete Building

Internal wall External wall Internal floor Ground floor Roof

Inside

Gypsum(0.02m) Render(0.01m) Coating(0.005m) Coating(0.005m) Concrete(0.3m)

Air gap(0.03m) Concrete(0.3m) L/W concrete(0.02m) Concrete(0.2m) LI(0.35m)

Concrete(0.1m) LI(0.3m) Concrete(0.25m) LI(0.4m)

Air gap(003m) Render(0.01m)

Gypsum(0.02m)

Outside

Note: Coating = Floor coating, LI = Light insulation

The Passive House standard is specifically chosen for the Base Case due to the large probability

that a building with such advanced technology as a black-box probably also have a good

building envelope. The thermal mass of buildings often varies from building to building, based
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on the materials used. To learn more about how the model performs with a different thermal

mass, the Concrete Building was included as an experiment. TEK 17 is the newest, and

therefore most relevant building standard in Norway and was chosen based on this. TEK 87

is an older building standard and is chosen to get information about the older buildings.

Figure 2.2 illustrates that the total energy use is relatively equal for buildings with the building

standards TEK 87 and older. An outdated building standard (TEK 87) is therefore chosen

to include protected and similar buildings. In these buildings, it is possible to upgrade the

HVAC system, but upgrades on the building structure are more limited [92]. Therefore the

HVAC system and windows of all the buildings are however the same. This decision was made

to make sure the buildings did not deviate largely from each other. In the building envelope

used for the Passive House, the insulation in the external walls and roof is 350mm and 400mm

thick. These values are realistic for buildings located in northern countries, where Passive

Houses often use 300 - 400 mm insulation [93].

The annual energy use for the different building structures are given in Table 3.7, and 3.8

for the Base Case/Passive House. As expected, the building with the most insulation has the

lowest energy use and the least the most.

Table 3.7: The energy use of the different building standards given in kWh for total, kWh/m2 for per m2, and kW for
the peak demand (PD)

TEK 87 TEK 17 Concrete

Total Per m2 PD Total Per m2 PD Total Per m2 PD

Lighiting 1948 3.81 0.58 1948 3.81 0.58 1948 3.81 0.58

HVAC aux 2794 5.46 5.87 2456 4.80 6.12 1243 2.43 3.84

D. cooling 514 1.00 15.04 728 1.42 18.44 513 1.00 13.97

D. heating 22530 44.05 54.72 8508 16.63 20.41 8203 16.04 14.72

Equipment, tenant 16041 31.36 6.80 16043 31.36 6.80 16040 31.36 6.80

Total 43827 85.69 83.01 29683 58.03 52.36 27947 54.64 39.91

Note: PD = Peak demand, D. = District

Change in window location

One experiment is conducted to see the effect of windows location. In this experiment, the

windows on the west side of the building are removed in Zone 7, 20, and 22. In addition, there

is added another window on the southern side of Zone 4. For Zone 12, one of the windows on

the southern side is removed, and one is added one the east wall. Figure 3.9 illustrated the

new locations for the windows on the ground floor.

This experiment is also conducted where the windows are located on the opposite wall. For

this experiment, both windows in Zone 4 are located on the western wall, and both windows

in Zone 12 are located on the eastern wall. The locations of the windows for this experiment

are illustrated in Figure 3.10.
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Figure 3.9: Overview of one of the new locations for windows in the experiment ”location of windows”

Figure 3.10: Overview of the second locations for windows in the experiment ”location of windows”

Shutters

The simulated IDA ICE building has external shutters on all the windows. The shutters used

are generic shutter shade and are connected to a sun controller. More detailed information

about the settings for the shutter is given in Figure 3.11 and 3.12. In one experiment, these

shutters are removed from all the windows in the IDA ICE model to see how this affects the

black-box model.

Figure 3.11: Detailed information about
the shutter material

Figure 3.12: Detailed information about the
exterior shutters used in the IDA ICE model
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Rotated building

The orientation of the building may have some effect on the different zones. An experiment

where the building is rotated 180°was therefore conducted to see the impact of the orientation.

After the rotation, the northern side was facing south, and the west side was facing east. The

rotation was done in the “site” function to IDA ICE.

3.2.4 Different climate

To investigate the climate’s effect on the building, different locations for the building are tested.

In these experiments, the same building, the Base Case, is simulated in different locations. The

locations were chosen based on the desire to get a considerable variation in climate and more

reduced differences to see the effect. The utilized locations are listed below.

• Trondheim, Norway - Base Case

• Oslo, Norway

• Malaga, Spain

Oslo was specifically chosen to see the difference between small climate changes and distances.

Malaga was chosen due to its “temperate” classification in the Köeppen climate classification

[21]. The location of the utilized cities is illustrated in Figure 3.13.

Figure 3.13: Map over Europe marking the relevant cities used in this experiment

The climate is quite similar in Malaga, Spain, and Hong Kong [21]. The case where the Passive

House is located in Malaga may be similar to the case of Wang et al. [31] where a high-class

office building is simulated, giving a bias of comparison. Table 3.8 holds the annual energy use

for the building when it is located in the three different locations.

45



3 Methods

Table 3.8: The buildings energy use at different location, given in kWh for total, kWh/m2 for per m2, and
kW for the peak demand (PD)

Trondheim Oslo Malaga

Total Per m2 PD Total Per m2 PD Total Per m2 PD

Lighting 1948 3.81 0.58 1948 3.81 0.58 1948 3.81 0.58

HVAC aux 1320 2.58 4.81 1633 3.19 4.82 4777 9.34 7.16

D. cooling 594 1.16 15.92 691 1.35 15.77 18959 37.06 44.09

D. heating 7283 14.24 15.74 13764 26.91 21.29 5.61 0.01 0.51

Equipment 16040 31.36 6.80 16040 31.36 6.80 16041 31.36 6.80

Total 27185 53.15 43.85 34076 66.62 49.27 41730 81.58 59.14

Note: PD = Peak demand, D. = District

According to the Köeppen climate classification [21], Figure 2.3, Oslo is located in a mild

climate, and Trondheim in a cold. Therefore, the values used for district heating for these

locations are a bit odd, Table 3.8, since the building located in Oslo uses more energy on

heating than the Trondheim building. These values can be explained by Figure 3.14, which

illustrates the outdoor dry-bulb temperature used in the IDA ICE simulation for the two

locations. The figure illustrates that for the specific year simulated, the weather was cooler in

Oslo than in Trondheim.

Figure 3.14: Outdoor dry-bulb temperature for Oslo and Trondheim used in IDA ICE simulation

3.3 Black-box model

The black-box model utilized in this study is a hybrid of a multiple-input multiple-output

(MIMO). The model utilized only use input and outputs from nine of the buildings twenty-six

zones, making the model a hybrid and not a pure MIMO [53]. A hybrid MIMO was chosen

to reduce the complexity of the model while still getting more information about the whole

building. [66].
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The black-box algorithm used is the Long short-term memory (LSTM) model, an artificial

recurrent neural network (RNN). RNN models are the most utilized model among the machine

learning methods [8]. This popularity is due to the model’s flexibility and strong ability to

model the intricate patterns hidden in data. A schematic overview of the architecture of RNN

models is illustrated in Figure 2.12.

LSTM was first proposed by Hochreiter and Schmidhuber [94] in 1997 as a solution to the

vanishing and exploding gradient problem of the RNN. The main advantage of this model is

the use of gates to manage memory by choosing to upgrade the information or not [66]. LSTM

Network models can deal with non-linear HVAC systems and learn long-term dependencies

when processing time-series compared to traditional machine learning methods, such as SVM

and ordinary Neural networks (NN) [53, 66]. This advantage is due to the internal memory

cells of the LSTM model[66].

3.3.1 LSTM - hybrid - model

The model utilized was made in Keras, an open-source library for Python 3.4 version. Keras

is a high-level NN API made for Python and can run on TensorFlow. TensorFlow is an open-

source library made by Google for numerical computation and large-scale machine learning

[53]. The black-box model utilized in this study was designed by Gaurav Chaudhary, PhD.

candidate at NTNU, and is attached in Appendix C.

The model is a multi-time-step and multi-zone black-box model for multi-step predictions

of indoor air temperature. The model is an encoder-decoder network with a sequence-to-

sequence-based approach. This method utilizes multi-layered LSTM to map the input time

series sequence to a vector of fixed dimension. Further, another LSTM decodes the target time

series sequence from the vector. The LSTM model utilizes input data from the past four days

and predicts the indoor air temperature for the next 24 hours. [53]

NN is often characterized by a large set of hyperparameters, which defines the network’s

topology, computational power, and more. The hyperparameters value are used to control

the learning processes, making the proportion of the hyperparameters essential and the need

for them to be adequately configured important. This is to harness the functionality of the

network. Hyperparameters can not be learned in the training process but need to be initialized

manually. For LSTM models, hyperparameters include batch size, numbers of NN layers, size

of the input layers, size of output layers, number of epochs, and others. Table 3.9 holds

detailed information about the configuration of the LSTM model utilized in this study. The

batch number of the code was chosen to be 64. However, when the LSTM model had problems

running, the batch number was reduced to 32. This modification usually fixed the issue related

to running the model. [53]
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Table 3.9: Detailed information about the configuration of the hyperparameters utilized in the LSTM model

Hyperparameters

Batch size 64

Number of NN layers 100

Number of epochs 50

Dropout factor 0.3

Number of past time-steps utilized 384

Number of future time-steps 96

Number of input layers 54

Number of output layers 9

Preventing over-fitting of the predicted output parameters is important during the training

of the model. A dropout mechanism was therefore put forward to prevent this. During the

training process, some units are randomly discarded from a network at a certain probability.

The dropout rate was set to 0.3, Table 3.9. [53]

The time-step utilized is 15 minutes, meaning that the interval between the input data collected

and the output data predicted is 15 minutes. The number of past time-step utilized is 384,

Table 3.9. This number is utilized since it is the number of time-steps for four days, which is

the amount of training data needed for prediction. The future time-step of 96 represents the

number of time-steps predicted in each prediction and is the number of time-steps in a 24-hour

prediction with a 15-minute interval.

The number of input layers, 54, is the number of input parameters utilized, including the

output parameters, which are used as an input in the form of historical information about

the indoor air temperature. The nine output layers represent the nine zones where the

temperature is predicted. The theory related to choosing and analyzing good values for the

other hyperparameters is not included in this study and hence not discussed.

3.3.2 Training, validation and testing of LSTM model

As mention in Chapter 2.4.5 artificial models need to be trained, validated, and tested to

complete the model. This study is chosen to distribute the available data set with a distribution

rate of 60% for training, 20% for validation, and 20% for testing. This ratio was chosen since

it is the most utilized ratio in other studies [49], even though the Project work[1] concluded

that a large amount of data for testing and validation is of importance. Since the simulated

year, 2020, was a leap year, the assigned days for training equals 220, and the assigned days

for validation and testing are 73 days each. But as seen in Table F.1 in Appendix F.1 the error

related to both cases are fairly low. An illustration of the data distribution with a 60-20-20

ratio is given in Figure 3.15.
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Figure 3.15: Distribution of data for training, validation and testing. The indoor temperature illustrated is
for the Base Case Zone 7

3.3.3 Input parameters utilized

The LSTM model is used to predict the indoor air temperature of each zone, which is one of the

output parameters this particular model is well suited to predict [66]. The input parameters

for the model are generated in IDA ICE for each case building, Section 3.2. All the IDA ICE

files are saved as “unpacked”, and the values used are found within the energy folder. The

desired values are extracted from each file and saved in a combined csv file.

The time-step utilized was 15 minutes, and building information available in IDA ICE is

given in 10 minutes time-stamps. The values are therefore interpolated to fit the desired

case. A 15 minute time-step was chosen as a compromise since 10 minutes time-step is very

computationally expensive. In the project work [1], the accuracy-related to each time-step was

investigated, and little difference of accuracy was found for all the time-steps examined (10min,

30min, 60min). Therefore, a 15-minute time-step is considered a good choice, which will give

good and representative results. The input and output parameters used in this experiment are

given in Table 3.10.

The input parameters found most relevant and most utilized, based on the information found

in the literature study, are extracted from the generated white-box model and used to train

the black-box model. However, some of the parameters included are not as widespread and

assumed not essential to capture the energy behavior of the building, for example, wind speed,

sky cover, and lighting. These parameters are included to ensure their lack of importance.

In the parameter equipment, the parameter lighting is included as one of the equipment,

strengthening the assumed lack of importance related to this parameter. An overview of the

utilized input parameters is given in Table 3.10. The zone-related parameters, equipment,

heat demand, lighting, occupancy, and indoor temperature, include parameters for each zone

predicted. I.e., the parameter includes information about each specific zone.
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Table 3.10: Parameter variables used in the experiments

Input parameter Abbreviation Unit

Input 0 Outdoor dry-bulb temperature OT °C
Input 1 Relative humidity RH %

Input 2 Wind speed - East to west Wx m/s

Input 3 Wind speed - North to South Wy m/s

Input 4 Direct normal radiation SRNor W/m2

Input 5 Diffuse radiation on horizontal surface SRHor W/m2

Input 6 Sky cloud cover SC %

Input 7 Hour of the day h Integer

Input 8 Day of the week d Integer

Input 9 Equipment load in zone i Eq,i W/m2

Input 10 Heating demand in zone i Hd,i W/m2

Input 11 Lighting load in zone i Li,i W/m2

Input 12 Occupancy in zone i Occu,i Float

Input 13 Indoor temperature in zone i IT,i °C

Output parameter

Indoor temperature in zone i IT,i °C

3.3.4 Zones utilized

The black-box model utilized is a hybrid MIMO since more than one zone is incorporated,

while not all building zones are. During most of the experiments utilized, nine of the total

twenty-six zones are incorporated in the model. In all the nine zones, specific zone information

is used as input, and a corresponding output parameter is extracted. The specific zones utilized

in the model are chosen due to their location, with a desire to get as varied zoned as possible.

An overview of the building with zone names is given in Figure 3.2. All the zones are designed

after different areas of use. An overview of each zone’s area of use, orientation, and the floor

is given in Table 3.11.

Table 3.11: Information about the zones used in the study

Zone Floor Type Number of E.walls Direction of E.wall

4 1. Office 2 N + W

7 1. Office 2 S + W

8 1. + 2. Lobby 2 N + S

12 1. Meetingroom 2 S + E

14 1. Meetingroom 2 S + E

18 2. Meetingroom 2. N + E

19 2. Meetingroom 2 S + E

20 2. Office 2 S + W

22 2. Office 2 N + W

Note: E. = External
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3.3.5 Delimitation’s when presenting the results

When the tests were conducted a large amount of data is generated. To limit the results some

delimitations were taken.

Zones

It has been chosen to highlight specific zones when comparing the parameter relevance of

models. The highlighted zones are Zone 7, 8, 12, and 22. These specific zones were chosen

to get a broad representation of the zones, with a mix of large and small zones with different

orientations, floors and area of use.

MAPE of 24h prediction

For determining the accuracy related to each case, MAPE is used. To limit the results, it is

chosen only to compare MAPE for 24h prediction, meaning the prediction accuracy of time-

step number 96. MAPE is chosen due to its ability to evaluate with normalized information,

making it suitable for comparing different cases. More information about MAPE is given in

Chapter 2.7.2.

Average and box plot

Due to the time-step of data and method used for parameter evaluation, each case holds a set

of data with 96 * 73 values for each zone for each parameter tested. To present the data in a

comparable way, it is chosen to use average values and box plots when representing the results.

For the cases where many results are being compared, average values for prediction accuracy

are chosen, while when less data are compared, box plots are utilized.

3.3.6 Evaluating the model and parameter importance

Different experiments were conducted to evaluate the model and get more knowledge of its

performance during different situations. The experiments conducted regarding the model’s

behavior are listed below.

• Multiple equal simulations

• Fewer inputs, and different input combinations

• Fewer zones

• Feature elimination

• Feature extraction - Wrapper method

• Training, validating and testing in different seasons

• Locating the errors

Multiple equal simulations

The reliability of the black-box model was tested to see the variation between each simulation.

This was done by re-staring the model and running the black-box model with the same input

data. This was done when generating the results for Figure 4.2 and Section 4.1.2.

Standard deviation of feature elimination

When calculating the standard deviation (STD) the excel function “STDEV.S” was utilized.

The STDEV.S function calculates the STD in a sample set of data [95]. In this thesis, the

values inserted are related to when multiple equal simulations are conducted, such as in Section
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4.1. Since the same simulation only is conducted three to five times, the data used to find the

STD is limited and was only based on three to five values.

In Section 4.2.2 all the MAPE’s in Section 4.1, illustrated in Figure 4.6 - 4.8 is compared to the

STD in Appendix A. The MAPE’s utilized in the comparison is the average of the three similar

values related to each parameter. The difference between the MAPE’s, and when excluding

one parameter, is then calculated for each zone and parameter. Appendix A holds the STD for

each feature elimination, for each zone. The value generated when calculating the difference

between the MAPEs is then compared to the corresponding STD.

Few inputs

A simulation was done with fewer input parameters to investigate how the model is affected

by changes in inputs. An overview of the input parameters used is given in Table 3.12. This

procedure was utilized when creating part of the results in Figure 4.2.

The method was also used when testing different input combinations and how well the model

works on fewer inputs in Chapter 4.2.1. During this experiment all the input combinations

listed in Table 3.12 are tested. Experiments where meteorological data, time-index, and zone-

related information were removed, were also tested. During these experiments, all the inputs

in the relevant category were removed from the input file before training the model, and the

input combination is named after the missing parameters.

Table 3.12: Parameters used in experiment with few inputs

Input parameters Combination 1 Combination 2 Combination 3

Outdoor temperature Used Used

Relative humidity Used

Wind speed East to West Used

Wind speed North to South Used

Direct normal radiation Used

Diffuse radiation on horizontal surface Used

Sky cloud cover Used

Hour of the day Used

Day of the week Used Used

Equipment load in zone i Used Used

Heat demand in zone i Used Used

Lighting demand in zone i Used

Occupancy in zone i Used

Indoor temperature in zone i Used Used Used

Fewer zones

Experiments where zones were removed was conducted to see how the model’s accuracy changes

when fewer zones are included. In these experiments, only data from the relevant zones were

included in the input of the black-box model. The desired output of the model was also

modified to only include the relevant zones. This procedure was done when making parts of

results in Figure 4.2, and in Section 4.1.3. In Figure 4.2 the relevant zones are Zone 7, 8, 12,

and 22. In Chapter 4.1.3 all zones are included except Zone 8.

Feature elimination

This technique involves eliminating one and one input parameter individually, and training,
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validating, and testing the model without the missing parameter. The model’s accuracy

without the relevant parameter is then compared to the model’s accuracy with all parameters

and the cases where other parameters are missing. When illustrating these results, the name

of the missing parameter is the name of the tested case. In these experiments, the simulation

with high error signifies an input parameter of importance.

The new input file with the missing parameter is made by deleting the relevant parameter(s)

in the original csv file. In the LSTM model, the code is modified by changing the number

of input layers. The new number of input layers is 53-52 when a meteorological or time-

related parameter is removed and 45 when a zone-related parameter is removed, for example,

equipment or lighting. To limit the amount of prediction, feature elimination with solar

radiation and wind includes both perimeters in these categories. For zone-related information,

the parameter is removed for all zones.

The wrapper method

Both PCA and the Wrapper method have been considered for this study to evaluate the

parameter importance and find a good subset of inputs for the model. The PCA method was

desired to use due to its considerable popularity and ease of use. The Wrapper method was

chosen due to its ability to find subsets. In addition, the method has already been utilized at

this university, making the process of development more accessible.

These models are based on placing the data-driven model inside a “for loop”. More information

about the PCA and wrapper method is given in section 2.6. Unfortunately, the model utilized

in this study was not modified and suited for loops before the end of the timeline due to errors

accruing when the model was run multiple times. These experiments were therefore limited

due to the limited amount of time. Out of the possible experiments, only the wrapper method

was conducted.

The wrapper method aims to find the best possible input combinations for one specific model.

The model finds this input combination by running the model for every possible combination of

the inputs and printing the accuracy of the simulation. The input combinations tested are for

all possible combinations, with all possible amounts of inputs. All these possible combinations

were in this experiment set up in an excel sheet with a assigned name. When the predictions

of the wrapper method combined with the LSTM model is completed, the accuracy related to

each case is compared, where the best accuracy assigned the best input combination. In this

thesis, the wrapper method is tested for the Base Case, the Malaga building, and the TEK 87

building. For all of the cases tested, the output is indoor temperature; this parameter is an

additional input parameter for all cases. The model for the wrapper method utilized in this

thesis was developed in collaboration with PhD candidate Gaurav Chaudhary, and is attached

in Appendix D. The input file utilized to give all possible input combinations is attached in

Appendix E.

Testing in different seasons

An experiment where the training, validation, and testing phase is shifted was conducted to

see how the model act during different testing conditions. An overview of the three different

cases tested is given in Table 3.13 and illustrated in Figure 3.16. In the Base Case and all

other experiments, “Test = Season 3” is utilized.
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Table 3.13: Dates used for training, testing and validation

Test = Season 3 Test = Season 2 Test = Season 1

Training 01.01 - 07.08 26.05 - 31.12 14.03 - 19.10

Validation 13.08 - 24.10 01.01 - 13.03 20.10 - 31.12

Testing 20.10 - 31.12 14.03 - 25.05 01.01 - 13.03

During the Project Work[1], an similar experiment was done. The experiment concluded that

the accuracy for the model is lowest when the training and testing conditions are most similar.

Therefore, it is assumed that the model performs best during “Test = Season 3”.

Figure 3.16: Illustration of the different seasons for testing. The indoor temperature utilized in figure is form
Base Case, Zone 7

Time-step accuracy

The accuracy of each time-step is found by taking the average MAPE for each time-step for

all the different zones separately. This analysis was only conducted for the Base Case, but

similar results for the other cases are assumed.

Location of error

The location of errors was found by placing the plot of the indoor temperature above the

MAPE. The x-axis is equal for the two different plots. Further vertical lines are placed on top

of the two plots where the MAPE peaks. The MAPE utilized in this experiment is for 24-hour

prediction. Therefore, the x-axis represents the time when the prediction was conducted and

not the time of the predicted temperature.

54



4 Results

4 Results

In the experiments, a hybrid MIMO LSTM black-box model is utilized and evaluated to predict

indoor temperature for a building during various conditions. A Base Case with variation in

occupation schedules, building standards, and climates will be used as input for the model.

The Base Case is a small office building located in Trondheim, Norway, and build after

the Norwegian Passive House standard for commercial buildings, NS 3701. More detailed

information about the Base Case and the other variations is given in Section 3.2. Information

about the black-box utilized is given in Section 3.3.

The results start with evaluating the data-driven model utilized, followed by evaluating input

parameters, changes in the internal gains, different building envelopes, and different climates.

Finally, the time-step of the model is evaluated.

4.1 Evaluating the model

The tree accuracy matrices MAE, MAPE, and RMSE, are utilized to evaluate the model. These

are used to give a reasonable basis for comparison for other studies since utilized accuracy

matrices vary in other scientific papers. More information about the matrices is given in

Chapter 2.7.2.

RMSE equals standard deviation when RMSE is calculated based on average values [89]. The

STD of the indoor temperature generated from the IDA ICE Base Case is given in Table 4.1,

which indicated the variation of the actual indoor temperature. The RMSE, Figure 4.1, is

lower than the standard deviation of the input, meaning the accuracy is reasonable based on

the challenging output parameters.

Table 4.1: Standard deviation of the Base Case’s indoor temperature

Zone 4 Zone 7 Zone 8 Zone 12 Zone 14 Zone 18 Zone 19 Zone 20 Zone 22

1.605°C 1.649°C 2.450°C 1.518°C 1.466°C 1.621°C 1.521°C 1.749°C 1.686°C

Figure 4.1 shows the prediction accuracy related to each zone. Zone 8 has a higher error related

to it, followed by zone 22, 20, 4, and 7. Figure 3.2 illustrates the location of each zone, and

from this figure, it can be seen that Zone 8 is the two-story lobby with a glazed envelope, and

the other zones with a higher error are all smaller zones located west.

55



4 Results

Figure 4.1: Average MAE, MAPE and RMSE for the Base Case

The accuracy of the following results will be presented as the MAPE of the output. MAPE

provides a performance evaluation with normalized information, giving a basis for comparison

between the different cases [49], which is of importance in this study to compare the outcome

of all the experiments.

The reliability of the black-box model is tested by conducting multiple predictions with the

same input data. The average results related to this experiment are given in Figure 4.2, named

prediction one to five. The first prediction illustrated is the case illustrated in the previous

results. Table 4.2 holds the standard deviation related to each zone, based on the multiple

predictions executed. The average STD for all the zones is 0.028 %. The deviation given is

very low, which indicated that the model performs well and is stable.

Figure 4.2: Average MAPE for different predictions with equal input data, and experiments with less inputs
and fewer zones tested
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Table 4.2: The STD of the MAPE related to multiple predictions [%]

Zone 4 Zone 7 Zone 8 Zone 12 Zone 14 Zone 18 Zone 19 Zone 20 Zone 22

0.035 0.026 0.054 0.016 0.010 0.022 0.012 0.034 0.043

Tests with fewer zones and fewer input parameters were also conducted. These tests were done

to learn more about the behavior and stability of the model. During the test with fewer zones,

only Zone 7, 8, 12, and 22 were included. For the tests with less inputs, the input combination

“Combination 1” in Table 3.12 was used. The results of these two experiments are similar to

the original model, which strengthens the model’s credibility.

4.1.1 Testing in different seasons

In locations north of the equator, the sun is generally affecting the southern facade of buildings.

However, the sun angles are different for different seasons. Therefore, an experiment was

conducted where the testing occurs in different seasons. This experiment aimed to see whether

the more extensive error in Zone 4, Zone 7, Zone 20, and Zone 22, Figure 4.1, was related to

solar radiation and changed during different testing seasons.

Figure 4.3 illustrates the results for testing the Base Case in Season 1 (01.01 - 13.03), Season

2 (14.03 - 25.05) and Season 3 (20.10 - 31.12). As suspected, the testing in Season 3 gives the

best results, followed by Season 2. For Season 3 and Season 1, the MAPE is quite equal, only

with different magnitudes. For Season 2, the error is quite similar for all zones but slightly

higher for Zone 8 and Zone 14. Detailed information of the experiment is given in Section

3.3.6, where Figure 3.16 illustrates the indoor temperature for the different seasons tested.

Figure 4.3: MAPE for training, validation and testing in different seasons

Zone 8, testing in season 1

For testing in Season 1, the error related to Zone 8 is remarkably high. When the MAPE is

plotted together with indoor temperature, it is difficult to find a clear pattern for when the

error occurs, but it seems to be a trend that the MAPE is low when the temperature is high

and opposite, Figure 4.4. When the MAPE is plotted with the outdoor temperature, some

small patterns occur, Figure 4.5. This pattern involves a higher MAPE when the outdoor

temperature is low. However, this pattern is not very clear, and there are only slight hints

of this. Overall the trend is that the MAPE is low when the temperature is high. This

trend occurs both for small peaks and for more prominent areas, both for indoor and outdoor

temperatures.
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Figure 4.4: MAPE and indoor temperature for the testing phase of Zone 8, when testing in Season 1

Figure 4.5: MAPE and outdoor temperature for the testing phase of Zone 8, when testing in Season 1

4.1.2 Randomness of variable evaluation

A feature elimination method was adopted to learn more about the importance of each input

parameter. However, since the model is based on random numbers, the method is conducted

several times for the same input parameters. Figure 4.6 - 4.8 holds three different predictions

where the feature elimination is applied to the Base Case.

When comparing the three different cases, it is clear that the 1. and 2. perdition is most

different and that the 3. prediction is something in between the two first cases. The most

significant difference between the two cases is the input parameter daily time-index, which is

very sensitive and varies significantly. In addition, there is some difference regarding the error

related to Zone 8. The STD for all these predictions is given in Appendix A. The average STD

when feature elimination is conducted is 0.030 %.
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Figure 4.6: 1. prediction of feature elimination on the Base Case

Figure 4.7: 2. prediction of feature elimination on the Base Case
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Figure 4.8: 3. prediction of feature elimination on the Base Case

Deeper investigation of the daily time-index

Figure 4.9 illustrates a box plot of the daily time-index for the three different predictions.

In this figure, the first three boxes represent the same zone during different predictions, and

the next three another zone, and so on. When analyzing the figure, it is clear that all of the

cases have a similar median for all the different zones, while the average and 75% confidence

interval vary to a larger extend. In addition, all the cases consist of many upper outliers.

These outliers affect the average of each case and are the reason for the significant variations

in average. The MAPE for the case without the daily time-index has similar changes for each

prediction, which can be seen when comparing the MAPE for the different zones. Here the

changes in average, box size, whiskers, and outliers are quite identical for the different zones

related to each prediction.

Figure 4.9: Box plot of the daily time-index related to the three different predictions
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Figure 4.10 holds a box plot of six different predictions for Zone 8 where the daily time-index is

removed. The results of the following predictions lay between the first and second predictions

conducted, indicating that the results are more stable than first assumed based on Figure 4.9.

The figure illustrates that the first and second predictions are “extreme” cases in different

directions.

Figure 4.10: Box plot of the Base Case when daily time-index is removed for six different predictions, Zone 8

4.1.3 Accuracy when one zone i removed

When analysing Figure 4.1 - Figure 4.8 Zone 4, 7, 20 and 22 have a higher error related

to the prediction compared to Zone 12, 14, 18 and 19. All the zones with the lower error

share a minimum of one wall to another zone where the indoor temperature is predicted. An

experiment was conducted where Zone 8 was removed to see if this is the reason for the more

accurate results. The results from this experiment are illustrated in Figure 4.11.

When analyzing the results, it is clear that the changes in error related to each zone in this

test are negligible and that the zones affect each other to a small degree. This can be stated

based on the small changes in these results compared to the Base Case in Figure 4.6, primarily

when the STD related to each prediction is considered.

Figure 4.11: Prediction of feature elimination where Zone 8 is removed
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4.1.4 Variation in indoor temperature and internal gains

The variation in error related to each zone may have a context with the variations in indoor

temperature in each zone. Figure 4.12 represents the indoor temperature for all the zones

during the whole simulated year. Here Zone 4, 7, 8, 20, and 22 have a higher variation

in indoor temperature, seen from both the 75% confidence interval and the maximum and

minimum whiskers. These are the same zones that have a higher MAPE in Figure 4.1.

Figure 4.12: Box plot of indoor temperature for each zone in the Base Case

The heat demand for space heating is investigated to map the amount of external and internal

heat gain for each zone, Figure 4.13. The heat demand is higher for Zone 8, which can be

explained by the zones glazed envelope. Zone 4, 7, 19, 20, and 22 have a lower heat demand

than the other. These zones may have a more considerable amount of internal and external

heat gain than the others, which would be a reasonable explanation of the low heat demand,

especially when considering the high median indoor temperature for Zone 4, 7, 20, and 22.

Figure 4.13: Box plot of heat demand for each zone in the Base Case
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4.2 Parameter evaluation

This subsection includes the primary results regarding input parameters. Here are both feature

elimination and the wrapper method included.

4.2.1 Fewer parameters

Multiple experiments were conducted with different parameter combinations to see how the

model acts with less parameter input. Information about the method used for this experiment,

as well as the parameters included in the different cases are given in Chapter 3.3.6 and Table

3.12. For the input combinations “Meteorological”, “Time-index” and “Zone data” all input in

the named category is removed. Meaning that in “Zone data” the inputs related to information

in each zone are removed, in this case, equipment load, heat demand, lighting demand, and

the number of occupants.

When analyzing the results, it is clear that some combinations are similar to the Base Case

in error and others are not, Figure 4.14. “Combination 2”, “Meteorological” and “Zone data”

have equal or lower MAPE as the Base Case for all of the different zones, and maybe good

options for input combinations. The parameters missing in these cases may therefore be

unnecessary.

Figure 4.14: Average MAPE for different input combinations

When analysing the highlighted zones the trend continues, Figure 4.15 - 4.18. The case where

time-indexes are removed give the most error, followed by “Combination 3” and “Combination

1”. The high error related to time-indexes may indicate that one or both of these parameters

are of high importance. As seen from the figures, the lower whisker and the median are quite

similar for all the cases, which means that the lower values are quite similar. There are,

however, outliers for all cases. These data points may be the reason for the bigger variation

between the cases.
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Figure 4.15: MAPE for Zone 7 when
testing for different parameter

combinations

Figure 4.16: MAPE for Zone 8 when
testing for different parameter

combinations

Figure 4.17: MAPE for Zone 12 when
testing for different parameter

combinations

Figure 4.18: MAPE for Zone 22 when
testing for different parameter

combinations

4.2.2 Feature elimination

The results in Figure 4.6 give a good overview of the average MAPE when feature elimination

is conducted. This subsection will include more values related to the feature elimination of

the Base Case. Based on Figure 4.6, it seems like all the parameters are of equal importance,

except the input parameter daily time-index, which is of great importance. Box plots are made

for some zones to get a better insight into the effect of the input parameters. These results

are presented in Figure 4.19 - 4.22.

The box plots illustrated that the amplitude of error varies for the different zones and that

some parameters can have good results for some zones and bad for others. For Zone 7 and 22,

many parameters get a higher MAPE when missing than the case with all parameters. This

indicates that the parameters with a high error are of importance for the prediction of this

zone. For Zone 8 and 12, most parameters get a lower MAPE when missing, indicating that

these parameters are redundant.
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Figure 4.19: Feature elimination for
Zone 7, Base Case

Figure 4.20: Feature elimination for
Zone 8, Base Case

Figure 4.21: Feature elimination for
Zone 12, Base Case

Figure 4.22: Feature elimination for
Zone 22, Base Case

Average result of feature elimination

This experiment is conducted by calculating the STD of the average MAPE when all

parameters are included and the average MAPE of the feature elimination for one specific

parameter in one specific zone. The difference is then compared with the STD of that specific

parameter in that specific zone, Appendix A. If the difference is ± the STD, the importance

of the value is classified as uncertain. If the MAPE is higher than the STD, the parameter

is classified as essential and given the color green in the table. Parameters with lower values

than the STD are classified as damaging for the model and are given the color red.

Table 4.3 holds the difference of the average MAPE values for each parameter for all the office

zones predicted. The results show that the daily time-index is essential for all the zones. In

addition, the outdoor temperature has proven to be crucial for Zone 7, 20, and 22, while solar

radiation is essential for Zone 4 and 7. For Zone 20, several parameters are badly affecting the

model. These parameters have a neutral effect on the other zones.
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Table 4.3: The average difference between the MAPE with and without a feature, for the office zones [%]

Zone 4 Zone 7 Zone 20 Zone 22

Outdoor temperature 0.011 0.054 0.045 0.026

Relative humidity -0.001 0.003 -0.030 -0.023

Wind 0.031 0.011 0.013 0.035

Solar radiation 0.046 0.042 0.038 0.040

Sky cover -0.007 -0.009 -0.096 -0.030

Hourly Time-index -0.026 -0.023 -0.043 -0.036

Daily Time-index 0.589 0.506 0.452 0.513

Equipment 0.013 0.022 -0.006 -0.012

Heat demand -0.008 0.047 -0.020 -0.031

Lighting -0.015 -0.002 -0.031 -0.012

Occupancy -0.037 -0.027 -0.027 -0.032

When analyzing the results for the meeting rooms and lobby, Table 4.4, the daily time-index

also here stands out as essential, except for Zone 8. It seems like the outdoor temperature is

an essential parameter for Zone 12, 14, 18, and 19. For the parameters affecting the model

badly, sky cover negatively affects three of the zones.

Table 4.4: The average difference between the MAPE with and without a feature, for the meeting rooms and
lobby [%]

Zone 8 Zone 12 Zone 14 Zone 18 Zone 19

Outdoor temperature 0.036 0.013 0.013 0.004 0.010

Relative humidity -0.071 -0.005 0.002 -0.012 0.000

Wind -0.136 0.007 0.007 0.013 0.018

Solar radiation -0.063 0.007 0.012 0.009 0.017

Sky cover -0.084 -0.011 -0.012 -0.019 -0.020

Hourly Time-index -0.090 -0.011 -0.002 -0.015 -0.007

Daily Time-index 0.129 0.186 0.145 0.131 0.184

Equipment 0.004 0.001 0.011 -0.008 -0.007

Heat demand 0.035 0.009 0.022 -0.012 0.004

Lighting -0.060 -0.013 -0.006 -0.005 0.000

Occupancy -0.032 -0.008 0.003 -0.004 0.009

4.2.3 Wrapper method

The wrapper method was conducted of three different input files; The Base Case, The TEK

87 building, and the building located in Malaga. These cases were chosen to get a variety in

both building structure and climate. The results are divided into three different categories

based on the zones are of use, listed in Table 3.11. The principle of the wrapper method is

to test the model for all possible combinations. When this was conducted, each combination

was assigned a combination number (comb. nr.) to make it easier to extract combinations of

interest. The combination with best results is presented with their combination number, where

the inputs included in the combination if further explained in the following tables, based on

the information given in Table 3.10. Appendix E includes all combinations tested with their

assigned combination number.
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Small private offices

The zones classified as private offices are Zone 4, 7, 20, and 22 and are located on the west side

of the building. The results of the wrapper method for these zones are given in Table 4.5. The

table illustrated a small change in MAPE from best to the third-best case, and the difference

is between the STD for all zones, which means that the best result may be due to coincidence.

Many combination numbers from 82-98 are classified as good combinations for the Base Case,

where the combinations 82 and 85 occur twice each. For the TEK 87 building, combination

number 42 and 84 occur three times each, while combination number 82 occurs twice. For

the Malaga building, it is combination number 83 and 539, which are repeated. When

similar combinations get good scores multiple times across predictions, the credibility of the

combinations strengthens.

Table 4.5: Results of the wrapper method for small private offices. The minimum values represents the MAPE
[%], anf the comb.nr. represents the input combination of the wrapper

Base Case TEK 87 Malaga

Zone 4 7 20 22 4 7 20 22 4 7 20 22

Min. 0.570 0.644 0.666 0.611 0.963 1.194 1.187 1.080 0.443 0.498 0.491 0.576

Comb.nr 768 21 59 85 82 82 21 91 83 355 359 819

2. min. 0.593 0.703 0.685 0.621 1.015 1.227 1.226 1.101 0.450 0.502 0.492 0.590

Comb.nr 820 768 82 89 42 86 32 84 819 806 778 83

3. min. 0.593 0.703 0.685 0.621 1.025 1.230 1.235 1.105 0.462 0.503 0.510 0.602

Comb.nr 82 775 85 88 84 42 84 42 804 359 83 804

The parameters included in the various input combinations mentions in Table 4.5 is given

in Table 4.6. In the table, only combinations resulting in the two best MAPE are included.

A similarity with all the combinations is that almost all include the daily time-index. For

combinations 82-91, all meteorological and time-indexes are included, and the only variation

is the zone-related parameters. Due to these combinations’ good results, one can assume that

these parameters are valuable for small office zones.

Table 4.6: Parameters included in input combinations with best results for office zones

Comb. nr. 21 32 82 84 85 86 89 91 355 359 768 778 806 819

Input 0 - OT X X X X X X X X

Input 1 - RH X X X X X X

Input 2 - Wx X X X X X X X

Input 3 - Wy X X X X X X

Input 4 - SRNor X X X X X X X X

Input 5 - SRHor X X X X X X X X

Input 6 - SC X X X X X X

Input 7 - h X X X X X X X X X X

Input 8 - d X X X X X X X X X X X X X

Input 9 - Eq,i X X X X X X

Input 10 - Hd,i X X X X X X

Input 11 - Li,i X X X X X X

Input 12 - Occu,i X X
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Glazed lobby

For the lobby, Zone 8, none of the combinations repeat itself, Table 4.7. However, the difference

from best to second best MAPE varies significantly, 0.061, 0.046, and 0.033 %. These values

are higher than the average STD for parameter elimination of 0.030 %, which strengthens the

results to some degree. For the Base Case, the difference in MAPE is higher than the STD of

the zone, 0.054 %. Combination number 82 and 83 proved to be suitable for the office zones

and are included among the best combinations for the lobby.

Table 4.7: Results of the wrapper method for the lobby. The minimum values represents the MAPE [%], anf
the comb.nr. represents the input combination of the wrapper

Base Case TEK 87 Malaga

Zone 8 8 8

Min. 1.410 1.800 0.810

Comb.nr 59 20 83

2. min 1.471 1.846 0.843

Comb.nr 760 82 270

3. min 1.471 1.848 0.844

Comb.nr 794 1 6

The combinations with the best results are combination number 20, 59, and 83. The

inputs included in these combinations are given in Table 4.8. The only parameter these

two combinations have in common is the outdoor temperature. Therefore, this parameter

must be essential for this zone, especially since combination number 1 is listed as one of the

best combinations and only includes this parameter. The Malaga and TEK 87 building has a

good score on a combination only including one parameter, comb. nr. 1 and 6. These single

parameters must therefore be of high importance for these specific buildings.

Table 4.8: Parameters included in input combinations with best results for the lobby

Comb. nr. 1 6 20 59 83 270 760

Input 0 - OT X X X X

Input 1 - RH X X

Input 2 - Wx X X

Input 3 - Wy X X

Input 4 - SRNor X X X X

Input 5 - SRHor X X X

Input 6 - SC X X

Input 7 - h X X X

Input 8 - d X X X

Input 9 - Eq,i

Input 10 - Hd,i X X

Input 11 - Li,i X

Input 12 - Occu,i
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Medium sized meeting rooms

The results for the medium-sized zones are listed in Table 4.9. For the Base Case, the number

repeating itself is combination number 82, which occurs twice for this case. For the TEK 87

building, the combination number 82 also occurs multiple times, where combination number

20 and 618 also are popular. For the Malaga building, Zone 14 and 18 have the exact same

MAPE for the three best combinations. For the other predictions conducted, the MAPE varied

between the zones.

Table 4.9: Results of the wrapper method for meeting rooms. The minimum values represents the MAPE [%],
anf the comb.nr. represents the input combination of the wrapper

Base Case TEK 87 Malaga

Zone 12 14 18 19 12 14 18 19 12 14 18 19

Min. 0.408 0.381 0.413 0.365 0.443 0.506 0.506 0.549 0.450 0.521 0.521 0.415

Comb.nr 82 288 597 774 82 82 82 20 880 362 362 89

2. min 0.415 0.387 0.415 0.372 0.471 0.520 0.520 0.576 0.455 0.522 0.522 0.419

Comb.nr 21 768 599 809 42 618 618 82 874 841 841 353

3. min 0.415 0.387 0.415 0.372 0.474 0.524 0.524 0.590 0.456 0.526 0.526 0.422

Comb.nr 812 349 82 356 618 20 20 87 599 342 342 513

The parameters combination number 20 and 82 have in common are the outdoor temperature

and hourly time-index, which are the only parameters included in combination number 20.

Table 4.10 holds an overview of the input parameters included in the other combinations. A

similarity for most of the combinations is that at least one time-index is included, both for

most cases. Besides the time-indexes, wind from east to west, sky cover, and equipment are

often included.

Table 4.10: Parameters included in input combinations with best results for meeting rooms

Comb. nr. 42 288 353 362 597 599 618 774 809 841 874 880

Input 0 - OT X

Input 1 - RH X X

Input 2 - Wx X X X X

Input 3 - Wy

Input 4 - SRNor X X

Input 5 - SRHor X X X

Input 6 - SC X X X X X

Input 7 - h X X X X X X X

Input 8 - d X X X X X X X X X X X

Input 9 - Eq,i X X X X X X X

Input 10 - Hd,i X X X

Input 11 - Li,i X X X

Input 12 - Occu,i X X X
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4.3 Internal variation in the Base Case

Several experiments are carried out to learn more about how the data-driven model is affected

by internal changes. These experiments contain changes in occupancy schedules and HVAC

regulators.

4.3.1 HVAC controller

In the Base Case, a PI-controller is applied for controlling the HVAC system. In this part

experiment thus controller is replaced with a P-controller, Figure 4.23. Comparing the results

with the results where the PI-controller is applied, Figure 4.6 - 4.8, there is hardly any difference

in prediction accuracy.

Figure 4.23: Feature elimination with P-controller

A section of the indoor temperature when the two different HVAC controllers are utilized is

illustrated in Figure 4.24 - 4.27. The indoor temperature for the different zones is pretty equal

independent of the controller utilized. These results explain why the controller has such a

small impact on the model’s accuracy.

Figure 4.24: Indoor temperature for
Zone 7 with two different HVAC

controllers

Figure 4.25: Indoor temperature for
Zone 8 with two different HVAC

controllers
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Figure 4.26: Indoor temperature for
Zone 12 with two different HVAC

controllers

Figure 4.27: Indoor temperature for
Zone 22 with two different HVAC

controllers

4.3.2 Sensitivity to schedule changes

The schedule used in the predictions is random and based on an actual office schedule, making

them random for each hour but similar in occupancy time. The model is tested for several

similar office schedules to ensure that the building works similarly for similar schedules and

that these promising results are not by coincidence. These schedules have the same arrival

and departure time, but the amount of occupants varies at all times. Figure 4.28 holds the

average MAPE for the seven different schedules tested. The figure shows that the prediction

accuracy is quite similar for all cases. The small difference in MAPE can be due to variation

in prediction or the different schedules.

Figure 4.28: The average MAPE for different office schedules for the Base Case

Figure 4.29 - 4.32 illustrate the MAPE for the different schedules in each zone. Both the

median and average are quite similar for all the different schedules, for all zones. The confidence

interval is also of similar size and area for all the different schedules. As for the whiskers, both

minimum and maximum are quite equal. However, all the cases have a large number of upper

outliers. These outliers are the biggest variation between the different cases. From all of the

zones, Zone 8 has the most extensive variations in MAPE.
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Figure 4.29: Box plot of MAPE with
different schedules for Zone 7

Figure 4.30: Box plot of MAPE with
different schedules for Zone 8

Figure 4.31: Box plot of MAPE with
different schedules for Zone 12

Figure 4.32: Box plot of MAPE with
different schedules for Zone 22

4.3.3 Residential schedule

As for now, all the experiments conducted have been on an office building. To get a broader

understanding of the black-box model, the Base Case was transformed into a residential

building by changing the schedule of the occupants and equipment. These changes can be read

more about in Chapter 3.2.2. Figure 4.33 illustrated the MAPE for the residential building

when feature elimination is conducted.

The figure is quite similar to the corresponding figures for office buildings. The main difference

between the figures is the lack of importance for the input parameter daily time-index. The

lack of importance for this parameter may be coincidental or due to the changes in the building.
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Figure 4.33: MAPE for feature elimination for residential building

Residential - Solar radiation

The solar radiation may have some impact on the lack of importance for the input parameter

daily time-index. Figure 4.34 and 4.35 are combined plots with solar radiation and indoor

temperature. When comparing the figures, it is clear that the solar radiation coincides with

the occupation of the building and therefore amplifies the temperature difference between

occupied and not occupied conditions for the office building. For the residential building,

solar radiation occurs when the building is not occupied and, therefore, helps even out the

temperature difference between occupied and not occupied conditions.

Figure 4.34: Indoor temperature and solar radiation for the office building
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Figure 4.35: Indoor temperature and solar radiation for the residential building

Residential - Daily time-index

Figure 4.36 - 4.39 holds scatter plots of the daily time-index and indoor temperature for both

the residential and office building. In the figures, it is clear that there is a larger variation

in temperature throughout the day for the office zones. When analyzing the whole week, it

is visible that the indoor temperature is similar for all days for all the residential buildings,

while some office zones are a lower indoor temperature during weekends. This temperature

difference may be why the daily time-index is more important for an office building, which is

not occupied during weekends.

Figure 4.36: Scatter plot of daily time-index and indoor temperature for Zone 7 in office and residential
building
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Figure 4.37: Scatter plot of daily time-index and indoor temperature for Zone 8 in office and residential
building

Figure 4.38: Scatter plot of daily time-index and indoor temperature for Zone 12 in office and residential
building

Figure 4.39: Scatter plot of daily time-index and indoor temperature for Zone 22 in office and residential
building
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4.4 Building envelope

The building envelope used in the Base Case is based on the Norwegian Passive House standard

for commercial buildings, NS 3701. This building envelope is chosen based on the likelihood

that a building with this advanced technology for temperature regulation would probably have

a good building envelope. However, to see how the black-box model behaves with a different

building envelope, different building envelopes are tested. All the different envelopes in this

section have the same occupants’ schedule, HVAC regulation, internal loads, and location.

4.4.1 Building standard

Four different building envelopes are tested to get a good range of data. These building

envelopes were based on different building standards: Passive House, TEK 17, and TEK 87.

In addition, a concrete building, similar to the Passive House except with a higher thermal

mass, is also tested. The concrete building is chosen to see how the model acts with a higher

thermal mass. The TEK 17 building standard is chosen since it is the newest standard for

“ordinary” buildings. TEK 87 was chosen to get information related to older buildings.

Figure 4.40: MAPE of feature
elimination for all building envelopes for

Zone 7

Figure 4.41: MAPE of feature
elimination for all building envelopes for

Zone 8

Figure 4.42: MAPE of feature
elimination for all building envelopes for

Zone 12

Figure 4.43: MAPE of feature
elimination for all building envelopes for

Zone 22
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The results illustrated in Figure 4.40 - 4.43 all show that the Concrete building has the lowest

MAPE and is, therefore, the building envelope most suitable for predictions. The accuracy of

the other building envelopes varies to some degree, but all over the Passive House have following

lowest MAPE, followed by the TEK 17 building. Regarding the parameter importance, all

envelopes had a higher error when the daily time-index was missing. The TEK 17 and TEK 87

buildings also had some increase in error when the outdoor temperature was missing.

4.4.2 Location of windows

As seen in Figure 4.6 -4.8 Zone 19 have the lowest MAPE for all cases. Zone 12, 14, and

18 also have significantly lower MAPE compared to the other zones. An experiment related

to changing the location of the windows was conducted to see if the variation in MAPE was

related to windows. An overview of the windows’ original and new position is given in Figure

3.2, 3.9, and 3.10.

Figure 4.44: Average MAPE of feature elimination when the location of windows are changed

When analyzing Figure 4.44 it seems like the results are equal to the Base Case. A deeper

investigation of the results is therefore included, Figure 4.45. This investigation includes all

possible window locations for the two zones. Here, it is clear that there are many more outliers

for the case with two windows on the northern wall for Zone 4. However, when examining

the indoor temperature for all the cases, Figure 4.46, the confidence interval for the indoor

temperature is quite similar for the three cases. However, the median for indoor temperature

is remarkably higher for the cases with two windows on the northern or western wall.
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Figure 4.45: MAPE for change in window location

Figure 4.46: Box plot of indoor temperature for different locations of windows

4.4.3 Removal of external shutter

An experiment where the external shutters on the building were removed was also conducted.

The results of this experiment are illustrated in Figure 4.47. Here the average error related

to temperature prediction increases when the shutters are removed. The increase in MAPE is

more significant for Zone 7, 14, and 20 than other zones. These are all zones facing south.
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Figure 4.47: Average MAPE with feature elimination for the building when external shutters are removed

4.4.4 Rotating the building

When rotating the building 180°the effect the building orientation has on each zone would

be revealed. Figure 4.48 illustrates the average MAPE for the rotated building with feature

elimination. When comparing the figure to Figure 4.6 - 4.8 there is no apparent difference, and

it is, therefore, reasonable to assume that the orientation has little importance on the building

for this particular case.

Figure 4.48: Average MAPE with feature elimination for the building when rotated 180°

A box plot of the indoor temperature is included, Figure 4.49, to ensure that the orientation of

the building does not affect the building to a large extent. The figure is identical to the Figure

4.12, which holds is the indoor temperature with the original building orientation. For sure,

one can say that the orientation is insignificant for temperature predictions for this particular

building.
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Figure 4.49: Box plot of indoor temperature for rotated building

4.4.5 Splitting one zone into two

The impact the size of the zone have on the model has also been examined, Figure 4.50 - 4.51.

This was done by splitting Zone 12 in two, as this originally was one large zone. The results

show that the original large zone has a more stable MAPE; however, the case has more outliers

than the smaller zones. The indoor temperature of the original Zone 12 has a lower and more

stable temperature compared to the others. For the two split zones, the results are almost

identical. As for the smaller zones, the results are quite equal, but Zone 12-2 has a slightly

higher MAPE regarding whiskers and outliers.

Figure 4.50: Comparison of MAPE for
Zone 12, when zone is split in two

Figure 4.51: Comparison of indoor
temperature for Zone 12, when zone is

split in two
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4.4.6 Comparing different cases of envelope

When comparing the results of the different experiments, the case with no exterior shutters has

the highest average error and the case where Zone 8 is removed the lowest. For Zone 7 and 20,

the error is lower for the “change in window location”. In this case, one window was removed

for Zone 7, 20 and 22, and relocated for Zone 4 and 12, as seen in Figure 3.9. The lower error

for Zone 7 and 20 may indicate that the number and location of windows are essential in some

cases.

Figure 4.52: Average MAPE for all zones for different building cases

4.5 Testing for different climates

The Base Case building is simulated in three different locations, Trondheim, Oslo, and Malaga,

to see how the climate affects the building. The different locations are chosen to get a good

representation of the different climates in the Koepper climate classification[21], as well as see

the effect of minor climate differences. The results show that the accuracy is best for Malaga,

and worst for Oslo, Figure 4.53 - 4.56. As seen throughout the results, the Oslo building is

more dependent on the outdoor temperature and daily time index.

Figure 4.53: Average MAPE for
feature elimination for Zone 7 in

different locations

Figure 4.54: Average MAPE for
feature elimination for Zone 8 in

different locations
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Figure 4.55: Average MAPE for
feature elimination for Zone 12 in

different locations

Figure 4.56: Average MAPE for
feature elimination for Zone 22 in

different locations

4.5.1 Indoor temperature for different climates

The indoor temperature of the testing period varies for all three different locations. The

Malaga building has a high indoor temperature compared to the others, and it can seem like

the temperature is mostly between 24 - 25°C for all the highlighted zones. As for the other

buildings, the temperature varies to a more considerable extent between the zones, and more

outliers can be found, Figure 4.57. Comparing the Trondheim and Oslo building, the most

significant difference between the two cases is more outliers for the Oslo case.

Figure 4.57: Box plot of indoor temperature for four four zones in three different climates

4.5.2 Space heating for different climates

When comparing the heat demand for the testing season for all the different locations, it is

clear that the Malaga building hardly has any, Figure 4.58. Zone 8 has a high heat demand

for the other buildings, and it seems like that capacity is maximized. For Zone 7, 12, and 22,

the median is higher for the Oslo building, while the confidence interval is more extensive for

Zone 12 and 22 in Oslo compared to Trondheim.
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Figure 4.58: Box plot of heat demand for four zones in three different locations

4.6 Modeling accuracy

The model utilized makes predictions for each 15min for the following 24h, at each time-step.

The results presented earlier only contain information about 24h prediction. This section will

give information about the prediction accuracy of the other time-steps and localize the peaks

of error.

4.6.1 Time-step accuracy

The accuracy-related to each time-step varies, Figure 4.59. A clear trend is that the accuracy

decreases with the time-step. However, the first few time-steps also have a higher MAPE. The

results presented indicate that the prediction accuracy is best for time-step 2-7, i.e., 0.5-1.45h

predictions.

Figure 4.59: MAPE for different time-steps of prediction
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When comparing the predicted temperature to the actual temperature, Figure 4.60 - 4.63, it

is clear that the predicted temperature is quite similar to the actual one. For all the cases, it

is the 15minute ahead prediction that is the most off regarding indoor temperature. For the

other predictions, it is challenging to separate the prediction accuracy.

Figure 4.60: Predicted temperature
versus actual temperature for different

time-steps of prediction, Zone 7

Figure 4.61: Predicted temperature
versus actual temperature for different

time-steps of prediction, Zone 8

Figure 4.62: Predicted temperature
versus actual temperature for different

time-steps of prediction, Zone 12

Figure 4.63: Predicted temperature
versus actual temperature for different

time-steps of prediction, Zone 22
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4.6.2 Location of error

To better understand how the model works, Figure 4.64, the MAPE is plotted with the indoor

temperature. As seen in the results, Zone 8 has immense changes in temperature and the

highest peaks in MAPE. When following the vertical lines placed over the MAPE peaks, one

can see that the peak often occurs then a change in the temperature pattern occurs. These

changes are both minimum values and the transition to the weekend.

Figure 4.64: Combined plot of the MAPE and indoor temperature for the Base Case/Passive house
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5 Discussion

The discussion will mainly focus on the results and try to explain and find connections between

them. All experiments are compared to the Base Case, Figure 4.6 - 4.8, if else is not stated.

5.1 Reliability of the black-box model

In this subsection, the reliability of the black-box model will be discussed. This includes

insecurities related to the white-box model utilized as input, the accuracy of the predictions,

time-steps, and the locations of errors.

5.1.1 Reliability of the white-box models

The results of the black-box model are generated based on the simulation of the white-

box model. Therefore, realistic values generated in the white-box model are crucial for the

reliability and realism of the black-box model. Therefore, simplification in the white-box

models needs to be confirmed not to affect the results in the black-box model.

One of the simplifications made in the white-box model is the schedule of occupants and

equipment. The schedule utilized is based on an actual office building regarding the hours

occupied. The number of occupants in each hour is, however, random. The randomizing of

the number of occupants can lead to more variations for each hour than realistically. A set

range of occupants is chosen, so the variation is within reasonable limits, but the values may

still be unrealistic. Another downside of setting the variation for each hour is that one may

miss out on the variation of occupancy within each hour. However, as assumed by Sun et al.

[13], short leave of occupants and minor deviations from the simplifications may not affect the

consumption to a large extent.

The schedule for the actual office building is only one week. Therefore, this schedule is

multiplied to cover a whole year, while the randomizing still occurs for each hour occupied,

meaning the occupied hours are equal for each weekday. The similarity in occupancy that

occurs every week may negatively impact the model and classify the time-indexes as more

valuable than they are for most cases. The importance of the daily time-index will probably

be most affected since every weekday is similar, in contrast to every hour, which varies. On

the other hand, the occupied hours for an office building will probably be similar for each

weekday due to set schedules by the employer, but variation may occur. The variation in set

schedule probably varies between buildings and may be more widespread after COVID-19 and

the normalization of home-office.

The same goes for the equipment schedule, which has the same time for turning on and off each

week. Realistic data would probably include some variation in the use of equipment for each

zone, based on the occupant’s habits, and for each day based on the fact that the occupants’

work is varied. However, office appliances are most often turned on during office hours [46],

but deviations can occur based on the occupant’s habits. How much this affects the model and

the parameter importance is hard to state since the variations can be immense due to different

turn-off ratios for each building. On-site measures of the buildings where this technology is

being utilized are therefore of great importance.
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Another deviation in the white-box models is the layers of the envelope. According to

Byggteknisk Forskrift [42] there are specific layers an external envelope must include, which

has been excluded in this study. These layers are included to make the building more resistant

to moisture damage. This simplification will not affect the results of the building [53], since

IDA ICE is a program for energy simulations and mainly calculates heat loss and not moisture

damages.

In cases where the Base Case is compared to other cases, the first prediction is utilized. This

is both when building standards and climate are compared. This particular prediction has a

significantly higher MAPE than the other similar predictions, Figure 4.6 - 4.10. However, the

increase of MAPE can be seen as small compared to the scale of error but still needs to be

kept in mind when comparing the results of the various tests. Therefore, the main source of

error for this thesis is the use of unrealistic schedules for occupants and equipment.

5.1.2 RMSE and STD

Comparing Figure 4.1 with Table 4.1 it is clear that all the RMSE values for the model are

lower than the STD from each particular zone. This indicated that the model is good, and the

results are valid [53]. The high STD for the input data indicates the degree of variation in the

output of the black-box model. The prediction data have a lower RMSE than the variation of

the actual data, indicating that the model can capture the behavior of the building and the

natural temperature variations.

These promising results may be due to an extensive training period that covers multiple

seasons. As seen in Figure 3.15 the training period covers Winter, Spring, and Summer, while

the validation season takes place during Autumn. The climate in November and December is

often similar to January and February, making these months suitable for testing since training

has been conducted in a similar season.

The ratio of data distribution for training, validation, and testing (60% - 20% - 20%) may

also play an essential part in the accurate prediction results. Dedicating this large share of

data for training will give the model insight into many different scenarios. However, the model

is only tested for the end of autumn/winter, meaning that the prediction accuracy given in

the model only accounts for these seasons. During summer or other seasons, the prediction

accuracy may be different. On the other hand, there is reason to believe that the model will

have similar or better performance for the following seasons since it already has experienced

it. This accusation accounts for all the different cases’ tested.

5.1.3 Randomness in the model

The black-box model utilized is based on random numbers. A goal, which is also a confirmation

that the model works and is accurate, is that the accumulated answers are equal for each

similar prediction. This similarity of results occurred when multiple predictions were done

for the utilized model, Figure 4.2. The small variations occurring in the results are assumed

acceptable, based on the larger variations in the STD of the input parameter. The STD

calculated for the multiple predictions are on average 0.028% when all parameters are included.

Based on this low value, one can assume that the model has a good performance and accuracy.
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When conducting multiple similar predictions, Figure 4.2, predictions with fewer input

parameters and fewer zones were also conducted. Compared to the identical predictions with

all inputs and all zones, the prediction with few inputs has a slightly higher error. This error

may be due to a bad combination of inputs or a lack of necessary information. The inputs

used are listed as “Combination 1” in Table 3.12. Either way, it strengthens the Base Case of

the model and that the inputs utilized are mostly good. The results are quite equal for the

case with fewer zones and when all are included, if not better.

When removing Zone 8 from the model’s input and output side, an increase of error was

expected for Zone 12, 14 and 18, since all of these have one shared wall with Zone 8. However,

no significant changes occur. This lack of change indicates that there is small communication

between the internal walls.

The model utilized is a hybrid MIMO model. One of the advantages of MIMO is that

communications between zones nearby occur in the form of possible heat flow through internal

walls. The results presented in Figure 4.11, shows that the assumed advantage is not present,

which Figure 4.2 also confirms. A similar accuracy indicates a small amount of communication

between the zones. Therefore, the accuracy was not sacrificed by utilizing a hybrid MIMO

model instead of a pure MIMO model for this exact case.

The lack of communication between the zones can be a drawback for the building generated

in IDA ICE or the LSTM model utilized. Maybe the LSTM model struggles to capture the

relation between zones since most zones are perfectly heated, and there is a minor temperature

difference and, therefore heat flow, between the zones. Zone 8 has the most varying indoor

temperature out of all the zones. This zone may therefore be perceived as noise for the other

zones instead of help. For another building or another model, these results may be different.

Testing this building with another data-driven model or a building with less insulation and

varying temperatures may give other results. Therefore, the experiment should be conducted

on the TEK 87 building or lower insulation in the internal walls.

5.1.4 Testing in different seasons

As expected, this experiment gave the best results for “Season 3”, and worst for “Season 1”.

This outcome may be due to less experience with cold temperature for “Season 1”. As seen in

the Project Work [1] the best accuracy occurs when the testing and training occur in periods

with similar temperatures. Moreover, as seen in Figure 3.15 the indoor temperature is similar

at the end and beginning of the year. If both the testing and training occurs in a temperate

season, the results may have been different.

The large MAPE may also be due to extreme values. The prediction was only conducted

once for both of the other cases, and since the model is based on random numbers, this may

explain the large values compared to the other cases. The likeliness of this is, however, small.

During the experiment where the same case was predicted multiple times, the results were

quite similar for all cases, and the STD was found to be 0.028 %. Based on this insecurity

range, the values are still remarkably high compared to “Season 3”. Therefore, it is assumed

that the model is entirely accurate, and extreme values for these cases seem unlikely.
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When analyzing Zone 8 for “Season 1” the MAPE tends to increase when the temperature

decreases; this is especially clear for the outdoor temperature, Figure 4.5. This may be

since a decrease of temperature, both indoor and outdoor, is equivalent to an increase of

temperature difference between set-point temperature and occupied temperature conditions.

A more considerable variation in temperature means more extensive temperature variation

throughout the day, which is naturally more challenging to predict than a stable indoor

temperature.

5.1.5 Time-step accuracy

The results show that the time-step accuracy decreased when the number of time-step predicted

ahead increases. This increase of error may be related to the insecurity that increases

the further away the prediction is, since the conditions can deviate more from the current

conditions. The large deviations for the first time-steps may be because the model emphasizes

the small changes occurring at the current time too much. If the temperature starts to rise,

the model thinks it will continue to, and opposite. For longer predictions, the current changes

are probably emphasized to a minor degree due to a long time until the prediction.

The downside of the longest prediction being the most incorrect is that long-term prediction is

the most valuable. Long-term predictions can be used for finding the optimal conditions based

on a long-term scenario. Short-term predictions may have resulted in other conditions based

on what seems like the best option from a short-term perspective. In addition, there may be

a time restriction for short-term predictions, which may lead to unfinished calculations for the

model.

5.1.6 Location of error

When the figure of the MAPE and indoor temperature for several zones are compared, a vague

pattern of the peaks in error occurs, Figure 4.64. The MAPE increases when a change in indoor

temperature patterns occurs, which often happens at the beginning or end of a weekend. The

figure also illustrates that the peaks are significantly higher for Zone 8. This is natural since

this zone has the most variation in indoor temperature.

The peak occurring in these moments may be due to a change of pattern in indoor temperature.

The indoor temperature is set to a set-point temperature of 17°C when not in use, while a

desired indoor temperature of 21-25°C is used otherwise. Then the building is set to a set-

point temperature; no energy is used for heating until the set-point temperature is reached.

During these conditions, the change in indoor temperature depends entirely on the external

environment. Hence the internal thermal loads are not existing at this time.

The significant peaks near weekends help explain why the input parameter daily time-index is

essential for the model and possible measures to minimize the peaks. Naturally, this sudden

change in building behavior is hard to predict. However, this change happens at the same time

every afternoon on weekdays. An improvement of the input variables related to time-index

may improve these errors. Combining the hourly and daily time-index may be a good measure

to better capture the transition.
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When the building is set to a lower set-point temperature, it is natural that Zone 8 is more

sensitive to the external environment. The sensitivity is due to the glazed envelope, which has

a higher u-value than the envelope used for the other rooms. Therefore, a higher outbreak in

terms of the error is expected for these envelopes.

The results show that the concrete building has a more stable indoor temperature compared

to the Base Case. The stable temperature is due to the building’s high thermal mass, making

the building less affected by external changes. The Malaga building does also have a stable

indoor temperature. The stability in terms of indoor temperature may result in lower peaks

in error for these buildings.

5.2 Affect of HVAC system and internal gains

This subsection will discuss the test conducted with different controllers and the effect

occupants and equipment has on the model.

5.2.1 HVAC controllers affect

When testing for different HVAC controllers, there was no difference found regarding the

performance of the black-box model. This lack of difference may be due to similar indoor

temperatures for the two different controllers. Similar conditions for indoor temperature

are expected with a PID-controller, which is better at adapting to challenging conditions.

Therefore, similar results are also expected regarding prediction accuracy with this controller.

The conditions given by the controller are suitable for all zones, except for Zone 8. Zone 8 does

not reach the desired indoor temperature and should have started the zone’s heating earlier.

If the settings of the HVAC system were better for Zone 8, the prediction accuracy might have

been better for the zone. This due to more stable temperature conditions.

5.2.2 Occupancy affect on the model

Different office schedules

When testing the model for sensitivity of different office schedules, Figure 4.28 - 4.32, the

model performs quite well. The average, median, confidence interval, and wishers are all

located in the same area for all the zones, except Zone 8, which has variations for all the

different schedules. These similarities indicate that the model is robust for different schedules

and that the schedule utilized is not good due to coincidence. Regardless, the results do not

strengthen the schedule’s degree of realism.

As for Zone 8, the variation was more prominent than for the others. As seen in the past test,

the variation for equal predictions for Zone 8 has an STD of 0.054 %. The more significant

variations occurring in Zone 8 regarding change of schedule may be due to the high STD. The

false assumption may very well be the case since the insecurity margin is only based on five

predictions. If this is the case, the models’ effect of different schedules is negligible. On the

other hand, there is a possibility that the glazed envelope has affected the MAPE, by making

the zone much more sensitive to internal gain and changes.

Residential occupancy

When analyzing the feature elimination for residential building, Figure 4.33, the first thing

noticeable is the daily time-index which have a similar result as the other parameters. This

similarity has rarely occurred in other predictions but does to some degree in the second
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prediction for the Base Case, Figure 4.7. The results of this may, therefore, be both random

or due to the schedule.

In contrast to the office building, the solar radiation helps keep a more constant indoor

temperature for the residential building, Figure 4.35. The stable temperature is possible due

to a good overlap of solar radiation when the building is not occupied, i.e., when the building is

not affected by internal gains or heat supply. Since the building is occupied during weekends,

the HVAC setting is equal most of the time, and when not, the solar radiation helps to keep

a stable indoor temperature. The constant HVAC settings combined with the overlap of solar

radiation may be why the daily time-index is not as crucial for this schedule.

When analyzing the scatter plot of the daily time-index for residential and office buildings, it is

here clearly illustrated that the indoor temperature is more stable for the residential building

throughout the week compared to the office building, Figure 4.36 - 4.39. This stability is

probably due to a more constant occupation all days of the week, resulting in a more constant

internal heat flow and HVAC settings.

The scatter plots, Figure 4.36 - 4.39, show that the indoor temperature vary to a much larger

extent for Zone 7, 8, and 22, compared to Zone 12. The small variations in temperature

regarding Zone 12 are probably since the room is quite large and has good insulation. These

are the main building characteristic differences between the zones. Besides, zone 12 only has

windows facing north, resulting in less heat gain from solar radiation. Unlike the others, this

zones is designed as a meeting room. The zones, therefore, have little equipment and can

be heavily occupied. These internal gains may positively affect the zone, resulting in a more

stable indoor temperature. The good modeling results for residential buildings also occur in

the study of Zeng et al. [29] where hotels had a lower MAPE than shopping centers and offices.

5.2.3 Equipment’s affect of the model

The use of equipment in all experiments is based on set schedules similar for all weekdays

and weeks. This simplification will probably weaken the importance of this parameter in the

tests conducted. For an actual building, this parameter will, therefore, probably be of more

importance.

In section 4.4.5 one zone is split into two smaller ones, resulting in a more varying MAPE and

increased and varying indoor temperature for the two new zones. The two new zones were

designed as offices and had more equipment and fewer occupants than the original zone. Due

to the more varying MAPE and increase of indoor temperature, there are reasons to believe

that the equipment greatly affects the indoor temperature. The results also indicate that

equipment information is a more valuable parameter than the number of occupants.

In the study of Zeng et al. [29] the results indicated that office buildings were the most

challenging building type to predict. The challenges may be due to the heavy use of equipment,

which contributes to internal heat gain challenging to predict. The use of energy-efficient

equipment will reduce the internal heat from these appliances and probably result in better

prediction accuracy of these zones.

5.3 Building envelopes affect

This subsection will discuss the building envelopes effect on the data-driven model. It includes

an evaluation of insulation, thermal mass, the use of windows, and room size.
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5.3.1 Affect of thermal mass and insulation

When analyzing the results of the building standard, the MAPE is lowest for the Concrete

building, followed by Passive house, TEK 17, and TEK 87, Figure 4.40 - 4.43 for Zone 7, 8, and

22. Meaning TEK 87 has the highest MAPE for these zones. These results are as expected,

and based on it, it can seem like high insulation and thermal mass is suitable for modeling

accuracy. This may be because high insulation prevents variation in temperature, something

that can be assumed is suitable for temperature prediction. The Concrete building has almost

the same u-value as the Passive House and still has a clear lower MAPE for the three different

zones. The low MAPE is probably due to the high thermal mass of the building, which can

store both heat and cold and be an excellent tool to achieve a more stable temperature. The

more stable temperature is probably the effect that is responsible for the lower MAPE.

As for Zone 12, the ranking of prediction accuracy is slightly different. The new ranking from

best to worst is Concrete building, Passive house, TEK 87, and TEK 17. This result is also the

case for some of the parameters in the other zones. This result is difficult to explain from an

energy modeling perspective since the structure of TEK 17 is more similar to the Passive House

and the Concrete building structure, which have better accuracy. The results may therefore

be due to variation in prediction accuracy.

Regarding parameter importance, the MAPE is relatively stable for all Concrete building and

Passive house cases, except for the parameter daily time-index. These similar results for other

parameters may be due to the stable temperatures of the building, making it easy to predict

no matter input parameters.

As for the TEK 17 and TEK 87 buildings, the MAPE related to each parameter elimination

varies more. The input parameters heat demand, outdoor temperature, and equipment stand

out as essential parameters for all the zones. These parameters are strongly related to the

indoor temperature regarding internal gain, space heating, and exfiltration of heat. Both the

buildings have reduced insulation and thermal mass compared to the other, which may be why

the MAPE is larger when these particular parameters are missing. Due to the buildings’ lack

of ability to store and keep heat, the parameters strongly related to heat gain and loss are

more important.

In Subsection 4.1, all rooms have the same external envelope, meaning the windows and

materials for the walls, floors, and roofs are equal. This envelope is the case for all zones,

besides Zone 8, which consists of mostly a glass envelope. The tests resulted in lower accuracy

for this zone compared to the others, which the significant temperature variation can explain,

Figure 4.12. The temperature variations are a consequence of the construction’s low thermal

mass and insulation, making the zone more sensitive to the external environment.

The desired indoor temperature for all the zones is 21°C - 25°C when occupied. As seen in

Figure 3.4 Zone 8 is the only zone not able to stay within these desired values. This flaw may

be of huge influence when predicting the indoor temperature and is one of the main reasons

the error is larger for this zone. The temperature never reaches the desired ones and therefore

never stabilized around a value. This temperature flaw is most lightly a consequence of a

glazed envelope, which has a high u-value and isolates the heat badly. This envelope are most

lightly also the reason for the large variations in both indoor temperature and heat demand,

Figure 4.12 - 4.13. These results correspond and strengthen the finding of insulation being an

excellent characteristic for buildings suited for temperature predictions.
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5.3.2 Affect of windows

In the experiment where the locations of some windows are changed, there are minor differences

in the MAPE related to parameter elimination, Figure 4.45. The main difference is related

to Zone 20 and 22, where the overall MAPE is reduced for both zones. This difference is

probably due to less external heat gain from solar radiation, which came from the second

window. Based on these results, it may seem like the prediction accuracy is better for zones

with fewer windows.

As seen in the results, only the MAPE for Zone 20 and 22 is reduced, not for Zone 4 and

7. Zone 4 still contains two windows, only in one different location. The results of moving

the window to the same facade had little impact on the prediction accuracy. For Zone 7, the

same changes have been made, as for Zone 20 and 22, even tho the impact is remarkably more

minor. This lack of impact can indicate that the window’s location significantly impacts the

higher the window is located since Zone 20 and 22 are on the first floor, while Zone 7 is on

the ground floor. This may be because windows located on a higher floor are more exposed to

radiation and convection.

When analyzing the MAPE for Zone 4 and 12 before and after the window’s location is changed,

remarkably more outliers can be found for Zone 4 “Two windows on the northern wall”. These

outliers may be because the wall utilized was tiny, and with two windows, it will almost be

like a glazed envelope on that particular facade. Moreover, as seen in Figure 4.12, the indoor

temperature varies more for glazed envelopes. As for Zone 12, the MAPE is quite similar for

all cases.

Regarding indoor temperature, a clear trend can be seen. For zones with two windows on the

northern or western wall, both the median and average indoor temperature are higher than

those with one window on other walls. The high temperature may be due to more intense solar

radiation. The more intense radiation may lead to a higher indoor temperature over a short

time; in contrast, when the windows are located on different walls, the external heat gain is

lower over a more extended period. From an energy engineering perspective, the more intense

radiation leading to a short period of temperature changes seems more challenging to predict

than a more even temperature increase over time. However, based on the results, it seems like

the window position does not affect the MAPE of the temperature prediction.

Shutters

When removing the external shutters of the building, the MAPE increased for Zone 7, 14, and

20, which all are zones facing south. For buildings north of the equator, the southern facade is

mainly exposed. Therefore, the location of the zones is probably the reason for the increase of

MAPE, due to the increase of external heat gain. The shutters used in this study are probably

of high quality and work well since both the MAPE and indoor temperature for the southern

zones are similar to the others when the shutters are utilized.

5.3.3 Affect of room orientation and size

Orientation

When changing the orientating of the building, the results are quite similar to the original

orientation, Figure 4.48. The small changes in these results are within the confidence interval,

based on the STD when the model is predicted multiple times, Figure 4.6 - 4.8. From these

results is may therefore seem like the orientation of the building is indifferent. The orientation
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will probably better impact the building if a less insulated building envelope was utilized or

the exterior window shutters were removed.

Size of zones

The size of the zone may affect the accuracy of the prediction. In the experiments conducted,

the small zones had more variations in indoor temperature than the larger ones, Figure 4.13.

The upper limit of the confidence interval is, however, similar. Smaller zones will probably be

more affected by internal and external gains than larger zones, as seen for the split Zone 12,

making them harder to predict. This may be the reason for the more significant MAPE for

Zone 4, 7, 20, and 22.

The temperature is more stable for Zone 12, 14, 18 and 19, compared to Zone 4, 7, 20 and

22, Figure 3.4, 4.12. The stable temperature may be why the MAPE is lower for these zones,

Figure 4.1. However, the heating demand for Zone 12, 14, 18, and 19 are greater than the

others, Figure 4.13, making it lightly that the temperatures of the other zones are more affected

by external or internal heat gain.

In section 4.4.5 one meeting room, Zone 12, is split into two smaller offices, resulting in a

more varying MAPE and increased and varying indoor temperature for the two new zones.

The increase of variation may be due to the excessive use of equipment in the zone. On the

other hand, it can also be due to the small size of the zone, which may be easier affected by

internal heat gain. The test of the split zone, either way, results in a more varying indoor

temperature for small offices than smaller rooms. This increased temperature variation may

explain why Zone 12, 14, 18, and 19 have a lower MAPE than Zone 4, 7, 20, and 22. These

results correspond to the results of Zeng et al. [29], where also offices were the most challenging

to predict.

The increase of temperature variations was either due to the heavily equipped zone, the size,

or a combination. Therefore, the experiment of the split zone should be redone, so the results

of the different experiments could be separated. In the new experiment, the conditions for

internal gains should be halved of the original zone. By utilizing this approach, it will be

easier to separate the results of equipment use and the ones related to the size of the zone.

5.4 Climates impact on modeling

Analyzing Figure 4.53 - 4.56 it is clear that the building located in Oslo has the highest MAPE

and Malaga the lowest. The indoor temperature for the different locations varies to some

extend, Figure 4.57. For Oslo and Trondheim, the whiskers are below the desired temperature

of 21°C. For Malaga, the temperature is never below this limit, which means that the indoor

temperature in Malaga is similar for when the building is occupied and not, in contrast to

Trondheim and Oslo. Since the HVAC conditions are similar for all cases, one can assume

that no heating is needed in the building. This is confirmed in Figure, 4.58. The absence of

heating in the building probably makes the prediction easier for the model due to one less

parameter to take into account. The absence of space heating, including a small variation in

indoor temperature, may be the main reason for the low MAPE for this location.

Regarding the results for the heat demand, The Malaga case does not have any, while

Trondheim and Oslo have quite similar heating demands. Due to the lack of heating needed,

the Malaga building probably has some cooling demand. Considering the indoor temperature
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reaches the maximum value for all zones, Figure 4.57. Information about the cooling demand

is out of reach for the black-box model and may be one downside of utilizing a warmer climate

with these particular input parameters. However, when analyzing the indoor temperature for

the various zones, there is a slight variation between the Malaga zones, in contrast to the Oslo

and Trondheim zones. The similar conditions for the building zone may also be a reason for

the location’s low MAPE.

When analyzing the parameter sensitivity for the Malaga building, the results are quite

similar for all variables, except the daily time-index, which is of great importance. The

parameter influence varies more for the other locations, where outdoor temperature stands

out as necessary. The outdoor temperature may be a more valuable input parameter in cooler

climates due to the larger temperature difference between set-point temperature and desired

temperature. Since the lower limit of acceptable temperature changes depending on if the

building is occupied or not, the gap between the two set-point temperatures will be more

significant. However, the upper limit for indoor temperature is constant no matter if the

building is occupied or not, making the temperature difference smaller throughout the week

for temperate climates since conditions are similar at all times.

The results presented represent the model’s performance when testing is conducted from

October to December. At this time, the outdoor temperature is very low for the Nordic cities

and tempered for Malaga. The low outdoor temperature leads to an increase of temperature

difference between indoor and outdoor for these cases. While in Malaga, one can assume that

the conditions are more similar to each other. If the testing was conducted during another

season, it is reasonable to assume that the results would be different. During the summer, the

conditions between inside and outside are much more similar for the Nordic cities, while for

Malaga, the outdoor temperature is remarkably higher. Testing in this season will, therefore,

probably result in better accuracy for cooler climates.

When testing is conducted in a different season, it is also reason to believe that the parameter

importance changes. During this season, the solar radiation is probably much more prominent,

and therefore, probably of more importance for all climates. For Nordic cities, the conditions

between indoor and outdoor temperature are much more similar. The use of outdoor

temperature as an input parameter is therefore probably of less importance during these

seasons.

As seen in Subsection 4.1.1, the MAPE is higher for testing in a warmer season. This accuracy

would probably be improved by conducting the training for parts of the warm season, for

example, by starting the training period in mid-July and testing from April. Alternatively,

training for a more extended period, so that the past summer is included in the training period.

5.5 Input parameters

The input parameters utilized in this experiment were chosen based on previous studies’

parameters combined with the intuition of what parameters are essential to predict indoor

temperature. As seen in Table 2.8 and 2.9, the input parameters mostly utilized by others

are utilized in this thesis as well. The same goes for the input parameters of Wei et al. [24],

Waseem et al. [54], and Wang et al. [31].

A wider variety of parameters should have been tested and validates to capture possible hidden

gaps regarding utilized input parameters. Experiments of a much more extensive scale would,
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however, be both computationally expensive and time-consuming. The decision of only using

the parameters utilized by others seems reasonable to get a wider variety of tests, based on the

results indicating that four input parameters are sufficient to achieve an accurate prediction.

As seen in Section 2.5, few studies utilized indoor temperature as output in the data-driven

model, making this a research gap. The parameter evaluation done by others may therefore not

correspond to the answers found here. However, most of the studies aim to capture the dynamic

of the building from an energy perspective. Heating and cooling account for a large share of

the total energy use of buildings [9], and are therefore a central part of the energy dynamic

of the building. Space heating and cooling are also strongly related to indoor temperature.

Therefore, the findings of parameter evaluation and similar might be transferable to this study.

5.5.1 Feature elimination evaluation

In Section 4.1.2 the feature elimination is conducted three times for the Base Case. The results

here vary to some degree, and the average STD for all parameters and zones regarding feature

elimination is 0.030%. Therefore, a variation of this degree may be acceptable in other cases

where feature elimination is conducted without claiming that the change in accuracy is due to

the parameter. The average STD when all parameters are included is 0.028%, which is lower

than the average STD when feature elimination is conducted. This strengthens the method of

use and indicates that some parameters are necessary to achieve an accurate model.

When analyzing each parameter individually, the case where the daily time-index is missing

stands out a great deal, both with a large confidence interval, wishers, and many upper outliers,

Figure 4.15 - 4.18. For Zone 7, 12, and 22, the error is more outstanding than for Zone 8, which

has many parameters with a more significant outbreak. These larger outbreaks of results may

be due to the less insulated envelope, making the zone more sensitive to internal and external

changes.

For Zone 8, the parameters relative humidity, wind, solar radiation, sky cover, hourly time-

index, lighting, and occupancy have a lower MAPE than the case where all are included. This

may indicate that these parameters are not crucial for an accurate model and can be neglected

without sacrificing the accuracy for this zone. The other parameters may, however, be of

greater importance.

As for Zone 7, 12, and 22, equipment, lighting, relative humidity, occupancy, wind, and outdoor

temperature stands out as essential parameters, besides the daily time-index, 4.15 - 4.17. Most

of these parameters have a higher MAPE than when all parameters are included, indicating that

these parameters are of greater importance. As the IDA ICE is set up, the input parameter

equipment includes information about lighting. One of these parameters may therefore be

enough, as seen in the experiment with input combinations.

The feature evaluation of Zone 8 stands out remarkably from the others due to multiple

parameters with better accuracy than when all parameters are included. This may be due to

multiple reasons. However, the zone’s most significant difference is the envelope, making the

zone more sensitive to external changes, and meteorological values more critical. The glazed

envelope has low thermal mass and u-value, making it miserable to store heat. Therefore, the

envelope may be why this zone is much more sensitive to changes than the others. However,

when analyzing the results in Table 4.4, most of the meteorological parameters have a slight

negative impact on the model. However, this impact is tiny and within the STD of most
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parameters and may therefore be of coincidence.

When analyzing the results when the STD is considered, it is clear that the daily time-index

is a parameter of colossal importance for this building. Other parameters of importance for

the Base Case are the outdoor temperature, solar radiation, and equipment. The excellent

result for daily time-index can be explained by the similar schedule for occupants and

equipment, while the cool climate can justify the importance of outdoor temperature. The

experiment in Section 4.4.5 showed that the equipment has a considerable contribution of

internal gain compared to occupants. The immense contribution may explain their importance

for temperature predictions.

Parameters that seem damaging for the model are sky cover, relative humidity, wind, hourly

time-index, heat demand, and lighting. These parameters may be perceived as noise and

are best to eliminate. Both sky cover and relative humidity affect the indoor temperature of

the building to a small extend and are strongly related to solar radiation. The use of solar

radiation may therefore be sufficient to cover the information given in these two inputs. The

parameter lighting is included in the parameter equipment and may therefore be damaging as

an individual parameter in addition to the equipment.

5.5.2 Combinations of inputs

When analysing the different combinations of inputs, Figure 4.14, “Combination 3” and “Time-

index” clearly stands out as bad combinations. Both combinations have a higher MAPE than

the other combinations and the case where all parameters were included. Both combinations

miss the input parameter daily time-index, emphasizing the importance of this parameter, as

stated earlier. Figure 4.19 - 4.22 illustrated that input combinations “Combination 3” and

“Time-index” hold many upper outliers. These outliers may be caused by the lack of the input

parameter daily time-index, which was the cause of the outliers in Figure 4.9.

Combination “Combination 2”, “Meteorological” and “Zone data” all have equal or lower

MAPE than the case with all input parameters. These results indicate that both meteorological

values nor zone-related information are crucial for the model. The meteorological information

may be of less importance due to the heavy insulation of the building. However, if another

envelope was utilized in the testing period, their values might be of greater importance. The

zone-related information may be redundant since all the parameters are closely connected to the

time-indexes in the sense of schedules. If the equipment varies significantly, these parameters

might be more valuable.

“Combination 2” stands out as the best combination of input. This may be due to a good

combination of both time-index, meteorological, and zone-related information. Comparing

the results of “Combination 2” with “Combination 1”, it may seem like the parameters heat

demand and lighting are not necessary, and that solar radiation is more valuable than relative

humidity. This is based on their absence in “Combination 2”.

5.5.3 Evaluation of the wrapper results

When analyzing the results of the wrapper method, the STD must be kept in mind. The

bias of the wrapper method is to predict for all possible input combinations. Since there is

uncertainty related to all the predictions conducted, and the prediction for each parameter

combination is only conducted once for each input file, the results can be misleading due to
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coincidence. The STD for the MAPE related to multiple predictions is given in Table 4.2, and

can give an indications of the randomness. However, as seen in Appendix A the STD varies

for each parameter removed. Therefore, the STD related to each specific input combination is

difficult to find without running the same prediction multiple times, which was not conducted.

The wrapper method is conducted three times with three different input files. Repetition of

the same combination numbers for the different cases will strengthen the reliability of the

combinations and make the results more trustworthy. Combination number 82 is repeated

multiple times for the Base Case and TEK 87 buildings, both for the small private offices and

the meeting rooms. In addition, combination number 83, which holds most of the same input

parameters, is repeated multiple times for the Malaga building. These repetitions strengthen

the importance of the input parameters included in these combinations: meteorological and

time-indexes, plus equipment for 82 and heat demand for 83.

For the glazed lobby, both solar radiation and outdoor temperature are typical parameters

in the best combinations. For the TEK 87 building, two combinations with a relatively low

number of parameters get a good result. Therefore, it can be assumed that these parameters,

outdoor temperature and hourly time-index, are of great importance for this case. For the

Malaga building, the same thing occurs, but with the input parameter solar radiation.

The Base Case and TEK 87 building are located in Trondheim, which has a cool climate

and is tested during the winter. The temperature difference between the indoor and outdoor

conditions is, therefore, most likely relatively high. In addition, the zone examined has a glazed

envelope, resulting in a large heat transfer from inside to outside. Information regarding the

outdoor temperature is naturally an important parameter, which indicates the zone’s heat

loss. For the Malaga building, which is located in a temperate climate, the temperature is

probably more similar between inside and outside, resulting in little heat transfer due to small

temperature difference. It is, therefore, natural that outdoor temperature information is of less

importance. However, solar radiation will increase the indoor temperature significantly and

may therefore be a parameter of importance. For the buildings located in the Nordic climates,

heat gain due to solar radiation is insignificant compared to the immense heat loss through

the glazed envelope. Hence, this parameter may be of less importance for these cases.

For the Malaga building, Zone 14 and 18 got the same MAPE for the three best cases. This

seems unusual and may be due to a hidden error. However, the difference in the other results

for these zones indicates that the results may be due to coincidence. The other experiments

with the Malaga building have utilized the same input file and generated different results for

the two zones. This also strengthens the reliability of these results.

The best cases for the Malaga building, except combination number 82, do not include any

meteorological parameters except diffuse radiation on horizontal. One can therefore assume

that this is the most crucial meteorological parameter for temperate climates. The zone-related

parameters most often occurring are heat demand and lighting. The importance heat demand

seems somewhat strange since little heat demand is needed for this case during the testing

phase, Figure 4.58.

For the Base Case, the parameters most often included in the best combinations are

outdoor temperature, direct normal solar radiation, and the time-indexes. However, wind

from east to west and relative humidity also occur multiple times for the meeting rooms.

Combination number 82 is the most frequent combination number for this building and holds
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all meteorological variables. Most of these parameters may therefore be of importance for these

zones. However, this can not be said for sure due to contradicting results in Section 4.2.1.

For the TEK 87 building, combination number 20 and 618 seems very promising, in addition

to combination number 82. The two combinations include the outdoor temperature, wind

from east to west, sky cover, time-indexes, and equipment information, which may be essential

when less insulation is utilized. In addition, combination number 82 and the other common

combinations for TEK 87 small office zones include all meteorological parameters, which is

more critical when less insulation is utilized.

For the meeting rooms and private offices, almost all combinations with a good score include

the daily time-index, and many also include the hourly time-index. When feature elimination

was conducted, time-index parameters also got a good score. Based on the good results for the

two different tests, one can assume that time-indexes, especially daily time-index, are essential

input parameters for the schedule utilized in these experiments.

5.5.4 Connection between occupancy schedule and time-index

As seen in the experiment, the daily time-index varies largely, while the other parameters

are more stable. When examining Figure 4.9 it is clear that the result contains many upper

outliers when daily time-index are removed, compared to Figure 4.15 - 4.18. Explaining why

the average MAPE varies more than the median for this case. These large amounts of outliers

indicate a lack of stability, and the input parameter may be essential to achieve accuracy.

The occupants’ schedule is random for each time-step throughout a week, multiplied by 52

to cover a whole year. This means that the occupants’ schedule is identical every Monday,

Tuesday, etc. Making the daily time-index more valuable than the hourly time-index since the

patterns for each weekday is identical and not the pattern for each hour a week, which means

that there is no pattern for 13.00 for all days in a week. A time-index combining both hour

and day would, however, be the absolute best time-index. The use of extensive engineering

methods can develop such time-index.

The type of schedule pattern utilized in the model will not be the case for an actual building.

There the pattern will be more mixed between daily and hourly, and maybe also monthly time-

index. The behavior of occupants tends to occur in patterns [13]. Therefore, a good time-index

will be necessary for an actual building even though the patterns are not as straightforward

as simulated.

Black-box models are trained to learn patterns in data. Simplifications regarding a schedule

will therefore be remembered and use in its prediction. Therefore, the model will perform

poorly in situations where the simplifications are not relatable to the actual happenings since

it is not trained for these scenarios. This may, for instance, happen if occupancy deviates from

a fixed schedule or heat gain from occupants vary to a large extent.

As mentioned in Section 2.1.3, the occupancy-related data are often simplified in studies due

to challenges regarding accessibility. Due to privacy concerns, the data will still be challenging

to collect after the model is developed. These challenges highlight the importance of a good

time-index that can be used to gather information about the occupancy pattern. Such time-

index is used as occupancy data in the study of Wang et al. [31]. Data related to the number

of occupants attending each zone can be collected by the use of CO2 sensors, such as in the
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study of Wei et al. [24]. Both of these parameters are easily assessable in buildings and can

give a good representation of the occupancy.

A trend occurring is that indoor temperature increases as the week goes and then falls during

the weekend. This temperature increase may be due to internal gain and heat stored in the

thermal mass overnight, making it easier for the building to reach the desired temperatures

the days after one weekday. For a residential schedule, the building is occupied every day.

Therefore, the heat stored in the building mass is more constant since it cannot make large

drops during weekends. This may also be a factor explaining the less importance of the daily

time-index.

5.6 Suitable buildings for prediction models

The tests conducted indicate that there are specific buildings more suited for temperature

prediction. The characteristics found suitable for prediction will be review in this subsection.

5.6.1 Characteristic related to building envelope and structure

Throughout the results, the perdition has had the best performance on buildings with a stable

indoor temperature. Therefore, a confident characteristic with suitable buildings is a stable

indoor temperature. A stable indoor temperature can be achieved with a large thermal mass,

preferably combined with heavy insulation. A building with these properties will be affected

by external changes to a small degree.

Glazed facades have a low U-value, i.e., have a high heat transfer rate. Therefore, the glazed

envelopes often will be the primary heat transfer source through the building’s boundary.

Buildings with little glazed envelopes will probably be suitable buildings. For windows, the

thesis has proven a more stable temperature for zones with few windows spread out on the

external walls, compared to multiple windows on the same external wall. This finding was

more prominent and is, therefore, more critical for high floors. Therefore, the location of a

building’s windows should be carefully evaluated, with these findings considered.

Shutters are an excellent tool for reducing external heat from solar radiation, and therefore

a good characteristic for sufficient buildings. As seen in the experiment, the prediction

performance of the southern zones decreased when shutters were removed; the performance

for the other zones was similar to with shutters. The shutters will, either way, help keep a

stable indoor temperature when installed, no matter room orientation, but for buildings north

of the equator, southern facades are more exposed to solar radiation. If the building does not

have good quality shutters, fewer windows on the southern facade are a good characteristic for

buildings north of the equator.

The experiments conducted also indicate that small offices are more challenging to execute

predictions for. Office buildings with more open landscapes and larger rooms will probably

have a better prediction accuracy. As seen in the tests conducted, larger rooms are less affected

by internal and external gain, leading to a more stable indoor temperature.

The prediction accuracy for the Malaga building was better than for the buildings located in

Nordic cities. The increase of accuracy may be due to the season of the testing period, making

the indoor and outdoor temperature conditions quite similar in Malaga. These conditions

are of great advantage since the thermal time constant becomes lower when the temperature

difference decreases. Therefore, a building located in a sheltered area may be more suitable
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due to a decrease in heat transfer by convection. On the other hand, a sheltered location

may lead to problems during the summer where cooling is needed, and wind can be a great

tool to execute natural ventilation. An optimal location for the building is therefore hard to

find. However, buildings located in climates where the outdoor temperature is relatively stable

throughout the day, or even year, seem like more suitable buildings.

5.6.2 Characteristics related to the HVAC system and use

As seen in the experiment, thermal mass is a good characteristic for good prediction

performance. The thermal mass of the building does not only depend on the envelope; it

can also be achieved by furniture. Therefore, heavily furnished, preferably with high thermal

mass furniture, is a characteristic for suitable buildings for prediction. These types of furniture

will increase the total mass of the building and make the building more similar to the Concrete

case.

The difference in accuracy related to predictions of the Malaga building is probably strongly

related to the high indoor temperature making the indoor conditions similar throughout the

day. While for the buildings in Nordic climates, the HVAC setting was changed to a lower

set-point value when the building was no longer occupied. Buildings with similar set-point

temperatures throughout the day may therefore be more suited for prediction. Examples of

buildings with these settings may be hotels, hospitals, residential buildings, or other buildings

occupied most parts of the day.

Changing the HVAC settings to make the building more suitable for prediction may not be

a good idea. This will increase the energy use of the building and contradict the original

motivation. An evaluation regarding the desired outcome is therefore necessary before making

the building less energy efficient.

The tests conducted indicate that the equipment affects zones predominantly, especially smaller

ones. Therefore, buildings with a high turn-off rate of equipment, lighting, and other appliances

will have a more stable indoor temperature. A high turn-off rate is therefore characteristic

for buildings suitable for perdition. Buildings with presence control for lighting and other

appliances will have a similar result and may also be suitable.

Another advantage of lighting and similar appliances connected to present control is that the

input parameters are reduced. As seen in this study, the daily time index becomes the most

valuable input parameter due to its strong connection to occupancy presents which further

have a solid relationship to lighting, equipment, heat demand, and the number of occupants.

If similar is done for an actual building, the parameters needed to conduct predictions will be

reduced, making the model less time-consuming and computationally expensive.

Occupancy data is challenging to collect due to privacy concerns. Connecting other parameters

to the occupancy by presents control will strengthen the occupants’ patterns, making it easier

for the model to learn them. This will simplify the collection of data without violating the

occupants’ privacy.

5.6.3 Modelling measures to increase prediction accuracy

As seen throughout the results, the daily time-index is the input parameter of most importance.

The importance became extremely clear in the experiments in Section 4.6.2. Here one can see
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when the peaks of MAPE occur, and it a vague trend at the start or end of a weekend. A

good representation of the time-index is therefore important to conduct accurate predictions.

A good time-index can be developed by merge both daily and hourly time-index. The merge

will give a more detailed representation of the patterns occurring. The time-index can also

be connected to a calendar, making it easier for the model to find the holidays when the

building is not occupied. Improvements in the time-index will probably decrease the peaks

occurring around weekends. A better representation of the occupants’ schedule can be achieved

by connecting each occupant’s personal calendar to the time-index. However, this connection

needs to be voluntary not to break any privacy concerns. The connection to personal calendars

may better represent each occupants’ energy pattern and make the indoor temperature more

customized after each occupants’ schedule.

The accuracy related to each time-step decreases after time-step two to five, i.e., 0.5hour to

1.25 hours ahead prediction. A prediction of this degree will therefore give the most accurate

results. However, long-time predictions are more valuable than short-time since they can

be used for finding the optimal scenario based on long-term consequences. Therefore, it is

recommended not to predict for shorter than 0.5 hours ahead since this is the most accurate

prediction available. Any desired predictions can be conducted for long-time predictions, but

the values should be re-predicted closer to the happening to get the most accurate result

possible.

Many meteorological parameters are affected by the sun, such as outdoor temperature, relative

humidity, and solar radiation. The sun is strongly related to the hourly time-index since the

rising and setting time occurs in a stable pattern throughout the year. Due to the sun’s

strong relation to both time-index and other meteorological parameters, a strong connection is

developed connecting the two parameters. The connection between meteorological parameters

and time-index contributes to explain the importance of this parameter.

The black-box model can also be connected to the meteorological forecast for buildings with

lower thermal mass or less insulation. The forecast can improve the predictions due to more

accurate information about the external conditions of the building. However, connection

to meteorological forecast is probably unnecessary for buildings with advanced envelopes or

located in temperate climates since the external environment influences them to a small degree.
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6 Conclusion

The objective of this study was to investigate parameters affecting data-driven models for

building energy predictions. Parameters studied include parameters of the data-driven

model and general building parameters, respectively input parameters, the number of output

parameters, building envelopes, locations, and internal gain. The study was conducted by

testing a data-driven model with input data generated from a white-box model. The data-

driven model applied is a hybrid multiple-input and multiple-output (MIMO) Long short-term

memory (LSTM) model with indoor temperature as predicted output.

The findings in this thesis indicate that a stable indoor temperature is essential for accurate

temperature predictions. Buildings with stable temperature profiles have heavy thermal mass,

heavy insulation, reduced and spread out glazed facades, and exterior shutters on windows.

These characteristics indicate that a high thermal time constant, resulting in smaller and

slower changes in indoor temperature, is crucial for accurate temperature predictions.

Glazed envelopes have large heat transfer through the body, including transfer of solar radiation

and space heating. Resulting in heat flows which can go both ways. These behaviors are

challenging to predict due to the sensitivity of meteorological changes. When windows are

located on the same wall, solar radiation at a given time is emphasized, resulting in intense

external heat for a short period. Spreading out the windows will even out the external heat.

In the tests conducted, the set-point temperature varied based on occupancy. The temperature

variations were amplified when the temperature difference between inside and outside

increased. This resulted in challenging conditions for the model. Thus buildings with similar

temperature conditions inside and outside or the same HVAC settings throughout the day will

achieve better prediction accuracy.

The results also indicate that the input parameter daily time-index is highly significant. Time-

index is a value describing the time. The index is used to learn patterns and is therefore

strongly connected to occupants and their habits, including equipment, lighting, and HVAC

systems. The parameter is also connected to meteorological parameters such as the sun and the

parameters affected by it. A sufficient time-index is, therefore, crucial for achieving accurate

predictions. Due to simplifications in schedules, the results may have been exaggerated in this

thesis. However, due to the prominent results, it concludes that this parameter is vital.

The parameter evaluation indicates that time-index, equipment, and solar radiation are

essential parameters for office buildings. Meteorological parameters are more important for

buildings with less insulation and/or located in cool climates. Primarily, outdoor temperature,

followed by the wind from east to west. For warmer climates, heat demand is one of the

additional parameters resulting in a good score. This is, however, strange since the building

utilized hardly uses any heat demand. Regarding solar radiation, “direct normal radiation” is

essential for cool climates, and “diffuse radiation on horizontal surface” for temperate climates.

For residential buildings, the daily time-index is less valuable.

Another finding of the thesis is that there is little or no communication between the zones.

The lack of communication may be a drawback for the data-driven model or the building.

However, this indicates that the modeling accuracy was not sacrificed by not utilizing a pure

MIMO model for this thesis.
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6.1 Further work

This subsection includes ideas for further work and potential focus areas for the future. The

ideas presented will not be discussed further in this thesis since the topics are outside the

scope.

• Conduct the wrapper method and/or feature elimination to a larger extent, multiple

times and for more building types, to get more certain results. Other parameter

evaluation methods should also be conducted due to the varying results for feature

elimination and the wrapper method. Examples of methods that can be utilized are

PCA, Filer, or other methods explained in Section 2.6.

• The findings in this thesis indicated that there is no communication between the zones,

this can be investigated. The LSTM model can be tested for another building that is

not perfectly heated to see how the results change. The insulation between the internal

walls can also be minimized to see how this affects communication. Another possible

experiment is to test this building for another data-driven model to see if the findings

are transferable to other models.

• The experiment of splitting one zone into two should be reexamined with an equal amount

of internal gain as the large zone. This will clarify the answers related to the effect of

equipment and room size.

• Conducting these experiments with other output parameters could be of interest, since its

degree of transferability will appear. Total energy use, energy demand, heating demand,

or cooling demand, should be tested. These are the most utilized outputs, Table 2.9-

2.8. Confirming the degree of transferable through different outputs would extensively

minimize the need for research in potential research gaps, such as indoor temperature.

• The time-index showed to be of great importance for the data-driven model. Testing

the model for å real building, instead of a simulated one, would clarify how much this

parameter was affected by the simplifications of the IDA ICE model, and give more

reliable results. The real building may also be able to discover possible gaps related to

the use of generated input data.

• The data-driven model produced accurate results and seems to be a reliable tool.

Implementing it in a real building and making it work with actual data would be the

next natural step in this research. In the implementation, the set-point temperature

should be implemented as an input and output temperature, and be controlled based on

the predictions made in the data-driven model. The findings in this thesis can be used

to reduce the input parameters for the data-driven models. Since sensors and similar

equipment for data collection are expensive, this thesis’s results may reveal potential cost

savings when implementing the model.
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A Standard deviation of results

Appendix

The appendix includes additional information utilized to execute and evaluate the tests

conducted in the thesis. The first part of the appendix includes the STD related to feature

elimination. Further, the building standards utilized when creating a white-box model are

included, followed by the code of the LSTM and the wrapper method. In addition, the main

finding from the Project work [1] is included.

A Standard deviation of results

The standard deviation from the tests conducted in Section 4.1.2 is given i Table A.1 - A.2.

The table illustrated that the variation is bigger for Zone 8 and the various zones’ heat demand.

Table A.1: Standard deviation of the feature elimination for the Base Case, for Zone 4, 7, 8, 12, and 14 [%]

Zone 4 Zone 7 Zone 8 Zone 12 Zone 14

All parameters 0.045 0.027 0.011 0.021 0.012

Outdoor temperature 0.037 0.030 0.040 0.002 0.002

Relative humidity 0.042 0.055 0.098 0.018 0.021

Wind 0.058 0.037 0.051 0.014 0.013

Solar radiation 0.031 0.033 0.103 0.011 0.009

Sky cover 0.036 0.037 0.161 0.010 0.008

Hourly Time-index 0.053 0.079 0.092 0.009 0.017

Daily Time-index 0.292 0.255 0.173 0.107 0.086

Equipment 0.055 0.051 0.056 0.009 0.017

Heat demand 0.080 0.110 0.120 0.031 0.047

Lighting 0.039 0.051 0.086 0.014 0.012

Occupancy 0.054 0.073 0.116 0.009 0.009

Table A.2: Standard deviation of the feature elimination for the Base Case, for Zone 18, 19, 20, and 22 [%]

Zone 18 Zone 19 Zone 20 Zone 22

All parameters 0.029 0.013 0.038 0.058

Outdoor temperature 0.002 0.007 0.028 0.021

Relative humidity 0.011 0.018 0.035 0.016

Wind 0.018 0.022 0.031 0.054

Solar radiation 0.022 0.016 0.042 0.049

Sky cover 0.015 0.023 0.048 0.041

Hourly Time-index 0.014 0.017 0.015 0.044

Daily Time-index 0.091 0.103 0.246 0.273

Equipment 0.021 0.025 0.061 0.056

Heat demand 0.010 0.009 0.009 0.036

Lighting 0.009 0.008 0.021 0.016

Occupancy 0.021 0.023 0.076 0.069

A-1



B Building standards

B Building standards

This section includes some of the requirements for the building standards TEK 87, TEK 17

and Passive House.

B.1 TEK 87

The requirements regarding the building structure for TEK 87 is given in Table B.1.

Table B.1: TEK 87 requirements for u-value when the indoor temperature exceeds 18°C [42]

External wall External roof Floor to ground External windows External doors

≤ 0.30 W/(m2K) ≤ 0.20 W/(m2K) ≤ 0.30 W/(m2K) ≤ 2.40 W/(m2K) ≤ 2.00 W/(m2K)

B.2 TEK 17

The requirements regarding the building structure for TEK 17 is given in Table B.2.

Table B.2: TEK 17 requirements for u-value in buildings [42]

External wall External roof Floor to ground External windows & doors

≤ 0.22 W/(m2K) ≤ 0.18 W/(m2K) ≤ 0.18 W/(m2K) ≤ 1.2 W/(m2K)

B.3 Passive House

Criteria that must be met for a building to be considered a Passive House [96]:

• The space heating energy demand most not exceed 15 kWh/m2 of net living space or

10 W/m2 peak demand.

• The total energy used for heating, hot water, and domestic electricity must not exceed

60 kWh/m2 per year.

• In terms of Airtightness, a maximum of 0.6 air changes per hour at 50 Pascals pressure

(ACH50), as verified with an onsite pressure test (in both pressurized and depressurized

states).

• Thermal comfort must be met during all seasons, with less than 10% of the hours in a

given year over 25°C.

• All opaque building components of the exterior envelope of the house must be well-

insulated. For cool-temperate climates, this means a maximum u-value of 0.15 W/m2K

• The window frame must be well-insulated, with Low-E glazing and filled with argon

of krypton. For a cool-temperate climate, the maximum u-value for windows is

0.80 W/m2K. The g-value must be around 50%.

• At least 7% of the heat from exhaust air must be recovered and transferred to the fresh

air[96]. The efficiency of the heat recovery system in the passive house must be at least

70%[97].

• Uncontrolled leakages through gaps must be less than 0.6 of the total house volume per

hour during a 50 PA pressure test.

• All thermal bridges must be minimized as far as possible.
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C LSTM model

C LSTM model

The following code is the MIMO MISO hybrid LSTM model utilized in this thesis. The model

is made by PhD candidate Gaurav Chaudhary at NTNU.

1000 import pandas as pd

import numpy as np

1002 from sk l ea rn . p r ep ro c e s s i ng import MinMaxScaler

import matp lo t l i b . pyplot as p l t

1004 import t en so r f l ow as t f

import os

1006 from sk l ea rn . met r i c s import mean abso lu te e r ro r

from sk l ea rn . met r i c s import mean squared error

1008 from math import sq r t

1010 n past = 384

n fu tu r e = 96

1012 n f e a t u r e s i npu t = 54

n f e a tu r e s ou tpu t = 9

1014 z o n e l i s t = [4 ,7 , 8 , 12 ,14 ,18 ,19 ,20 ,22 ]

1016 numlayer = 100

dropout f a c to r = 0 .3

1018 epoch num = 50

batch num = 64

1020

nameofcase = ' TRD Concrete PassivHus Off ice OccupancySchedule1 ' #wri t e t h i s

f o r every case

1022 f eaturesremoved = ' none ' #ex 'A'
f i l enamecsv = r ' InputFileTRDConcreteOfficeSCH1 '+ featuresremoved+ ' . csv '

1024

f i l e name iden t = ' past−'+s t r ( n past )+ ' f u tu r e−'+s t r ( n fu tu r e )+ ' '+nameofcase+ ' '+
featuresremoved

1026

data d f=pd . r ead c sv ( f i l enamecsv , sep= ' , ' , header=0 ,)

1028 de l data d f [ 'Unnamed : 0 ' ]
d a t a s ca l ed = data d f

1030 s c a l e r s={}

1032 f o r i in data d f . columns :

s c a l e r = MinMaxScaler ( f e a tu r e r ang e =(−1 ,1) )

1034 s s = s c a l e r . f i t t r a n s f o rm ( da ta s ca l ed [ i ] . va lue s . reshape (−1 ,1) )

s s=np . reshape ( s s , l en ( s s ) )

1036 s c a l e r s [ ' s c a l e r '+ i ] = s c a l e r

da ta s ca l ed [ i ]= s s

1038

#DATA SPLIT

1040 mu l t i p l i e r = 24∗4
T arr1 = 220 ∗ mu l t i p l i e r

1042 T arr2 = 73 ∗ mu l t i p l i e r

T arr3 = (366−( T arr1 + T arr2 ) ) ∗ mu l t i p l i e r

1044 arr1 , arr2 , ar r3 = np . s p l i t ( data sca l ed , [ T arr1 , ( T arr1 + T arr2 ) ] )

t r a i n = arr1

1046 va l i d a t e = arr2

t e s t = arr3

1048

de f s p l i t s e r i e s ( s e r i e s , n past , n fu tu r e ) :

1050 # n past ==> no o f past ob s e rva t i on s
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# n fu tu r e ==> no o f f u tu r e ob s e rva t i on s

1052 X, y = l i s t ( ) , l i s t ( )

f o r window start in range ( l en ( s e r i e s ) ) :

1054 past end = window start + n past

fu ture end = past end + n fu tu r e

1056 i f f u tu re end > l en ( s e r i e s ) :

break

1058 # s l i c i n g the past and fu tu r e par t s o f the window

past , f u tu r e = s e r i e s [ window start : past end , : ] , s e r i e s [ past end : future end ,

: ]

1060 X. append ( past )

y . append ( fu tu r e )

1062 re turn np . array (X) , np . array (y )

1064 #TRAIN VAILDATE TEST DATASET

X train , y t r a i n = s p l i t s e r i e s ( t r a i n . va lues , n past , n fu tu r e )

1066 X tra in = X tra in . reshape ( ( X tra in . shape [ 0 ] , X tra in . shape [ 1 ] , n f e a t u r e s i npu t ) )

y t r a i n = y t r a i n . reshape ( ( y t r a i n . shape [ 0 ] , y t r a i n . shape [ 1 ] , n f e a t u r e s i npu t )

)

1068 y t r a i n=np . d e l e t e ( y t ra in , range (0 , n f e a tu r e s i npu t−n f e a tu r e s ou tpu t ) , 2) #

assuming a l l output f e a t u r e s are in end

X val idate , y v a l i d a t e = s p l i t s e r i e s ( v a l i d a t e . va lues , n past , n fu tu r e )

1070 X va l idate = X va l idate . reshape ( ( X va l idate . shape [ 0 ] , X va l ida te . shape [ 1 ] ,

n f e a t u r e s i npu t ) )

y va l i d a t e = y va l i d a t e . reshape ( ( y va l i d a t e . shape [ 0 ] , y v a l i d a t e . shape [ 1 ] ,

n f e a t u r e s i npu t ) )

1072 y va l i d a t e=np . d e l e t e ( y va l i da t e , range (0 , n f e a tu r e s i npu t−n f e a tu r e s ou tpu t ) ,

2)

X test , y t e s t = s p l i t s e r i e s ( t e s t . va lues , n past , n fu tu r e )

1074 X test = X tes t . reshape ( ( X tes t . shape [ 0 ] , X tes t . shape [ 1 ] , n f e a t u r e s i npu t ) )

y t e s t = y t e s t . reshape ( ( y t e s t . shape [ 0 ] , y t e s t . shape [ 1 ] , n f e a t u r e s i npu t ) )

1076 y t e s t=np . d e l e t e ( y t e s t , range (0 , n f e a tu r e s i npu t−n f e a tu r e s ou tpu t ) , 2)

X tra in . shape , y t r a i n . shape , X va l ida te . shape , y v a l i d a t e . shape , X tes t . shape ,

y t e s t . shape

1078

#LSTM MODEL

1080 encode r input s = t f . keras . l a y e r s . Input ( shape=(n past , n f e a t u r e s i npu t ) )

encode r l 1 = t f . keras . l a y e r s .LSTM( numlayer , r e t u r n s t a t e=True , dropout=

dropout f a c t o r )

1082 encoder outputs1 = encode r l 1 ( encode r input s )

en code r s t a t e s 1 = encoder outputs1 [ 1 : ]

1084 decode r input s = t f . keras . l a y e r s . RepeatVector ( n fu tu r e ) ( encoder outputs1 [ 0 ] )

d e code r l 1 = t f . keras . l a y e r s .LSTM( numlayer , r e tu rn s equence s=True , dropout=

dropout f a c t o r ) ( decoder inputs , i n i t i a l s t a t e = encode r s t a t e s 1 )

1086 decoder outputs1 = t f . keras . l a y e r s . TimeDistr ibuted ( t f . keras . l a y e r s . Dense (

n f e a tu r e s ou tpu t ) ) ( de code r l 1 )

model e1d1 = t f . keras . models . Model ( encoder inputs , decoder outputs1 )

1088 model e1d1 . summary ( )

1090 #TRAINING MODEL

r edu c e l r = t f . keras . c a l l b a c k s . LearningRateScheduler ( lambda x : 1e−3 ∗ 0 .90 ∗∗ x )

1092 r e du c e l r 1 = t f . keras . c a l l b a c k s . Ear lyStopping ( monitor= ' v a l l o s s ' , pa t i ence=7)

model e1d1 . compi le ( opt imize r=t f . keras . op t im i z e r s .Adam( l r =0.00001 , beta 1 =0.9 ,

beta 2 =0.999 , e p s i l o n=None , decay=0.0 , amsgrad=False ) , l o s s=t f . keras . l o s s e s .

Huber ( ) )

1094 h i s t o ry e1d1=model e1d1 . f i t ( X train , y t ra in , epochs=epoch num , va l i d a t i on da t a=(

X val idate , y v a l i d a t e ) , b a t ch s i z e=batch num , verbose=1, c a l l b a c k s =[ r educ e l r ,

r e du c e l r 1 ] )
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1096 #SAVE MODEL

f i l ename h5 = 'Model Epoch−'+f i l ename iden t

1098 model e1d1 . save ( f i l ename h5+” E1D1 10min . h5” )

1100 #PREDICTING

pred e1d1 o r i=model e1d1 . p r ed i c t ( X tes t )

1102 pred e1d1 = pred e1d1 o r i

y t e s t s c a l e d = y t e s t

1104

f o r j in range (0 , l en ( z o n e l i s t ) ) :

1106 s c a l e r = s c a l e r s [ ' s c a l e r Zone '+s t r ( z o n e l i s t [ j ] )+ ' ta i rmean ' ]
pred e1d1 [ : , : , j ]= s c a l e r . i nv e r s e t r an s f o rm ( pred e1d1 [ : , : , j ] )

1108 y t e s t s c a l e d [ : , : , j ]= s c a l e r . i nv e r s e t r an s f o rm ( y t e s t [ : , : , j ] )

1110 de f MAPE( Y actual , Y Predicted ) :

mape = np .mean(np . abs ( ( Y actual − Y Predicted ) /Y actual ) ) ∗100
1112 re turn mape

1114 #SAVING PREDICTION ERROR

f = open ( ' Al l Er ro r s '+f i l ename iden t+ ' .CSV ' , ”a” )

1116 z o n e l i s t = [4 ,7 , 8 , 12 ,14 ,18 ,19 ,20 ,22 ]

f o r i in range (0 , l en ( z o n e l i s t ) ) :

1118 f o r j in range (1 , n fu tu r e+1) :

rmse1 = sq r t ( mean squared error ( y t e s t s c a l e d [ : , j −1, i ] , pred e1d1 [ : , j −1, i

] ) )

1120 mape1= MAPE( y t e s t s c a l e d [ : , j −1, i ] , pred e1d1 [ : , j −1, i ] )

mae1 = mean abso lu te e r ro r ( y t e s t s c a l e d [ : , j −1, i ] , pred e1d1 [ : , j −1, i ] )

1122 pr in t ( 'Zone '+s t r ( z o n e l i s t [ i ] ) , end=” , ” )

p r i n t ( ”Timestep ” , j , end=” , ” )

1124 pr in t ( 'MAE : %.4 f ' % mae1 , end=”, ”)

p r i n t ( 'RMSE : %.4 f ' % rmse1 , end=”, ”)

1126 pr in t ( 'MAPE : %.4 f ' % mape1)

f . wr i t e ( 'Zone '+s t r ( z o n e l i s t [ i ] )+ ' , '+ 'Timestep '+s t r ( j )+ ' , '+ 'MAE, '+s t r (

round (mae1 , 4 ) )+” , ”+ 'RMSE, '+s t r ( round ( rmse1 , 4 ) )+” , ”+ 'MAPE, '+s t r ( round (mape1 , 4 )

)+”\n” )
1128 pr in t ( i )

f . c l o s e ( )
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D Wrapper method

The following code is the code for executing the wrapper method, which is utilized in this

thesis. The code is made in collaboration with PhD candidate Gaurav Chaudhary at NTNU.

1000 import pandas as pd

import numpy as np

1002 from sk l ea rn . p r ep ro c e s s i ng import MinMaxScaler

import matp lo t l i b . pyplot as p l t

1004 import t en so r f l ow as t f

import os

1006 from sk l ea rn . met r i c s import mean abso lu te e r ro r

from sk l ea rn . met r i c s import mean squared error

1008 from math import sq r t

1010 n past = 384

n fu tu r e = 96

1012 numlayer = 100

dropout f a c to r = 0 .3

1014 epoch num = 50

batch num = 32

1016 z o n e l i s t = [4 ,7 , 8 , 12 ,14 ,18 ,19 ,20 ,22 ]

1018 f i l enamecsv = r ' InputF i l eMalagaPass iveHouseOf f i c e Al l . csv '
mapefi lename = 'Malagawrapper . csv '

1020

###Import CSV data

1022 d a t a d f o r i g i n a l=pd . r ead c sv ( f i l enamecsv , sep= ' , ' , header=0 ,)

de l d a t a d f o r i g i n a l [ 'Unnamed : 0 ' ]
1024 d a t a d f o r i g i n a l . head ( )

1026 ###Import case data

c a s e d f=pd . r ead c sv ( ' wrapperMethodInoutFile . csv ' , sep= ' , ' , header=0)

1028

###make f i l e f o r MAPE

1030 import csv

header1 =[ ]

1032 header2 =[ ]

1034 header1 . append ( 'Case Number ' )
header2 . append ( 'Case Number ' )

1036

f o r i in range (0 , l en ( z o n e l i s t ) ) :

1038 f o r j in range (1 , n fu tu r e+1) :

header1 . append ( 'Zone '+s t r ( z o n e l i s t [ i ] ) )

1040 header2 . append ( 'Timestep '+s t r ( j ) )

1042 with open ( mapefilename , ' a ' , newl ine= ' ' ) as f :

wr i t e = csv . wr i t e r ( f )

1044 wr i t e . writerow ( header1 )

wr i t e . writerow ( header2 )

1046

f o r inum in range (1 ,883) :

1048

casenum = inum

1050 xc=ca s e d f . l o c [ casenum −1] . va lue s . t o l i s t ( )

xc = [ x f o r x in xc i f s t r ( x ) != 'nan ' ]
1052 de l xc [ 0 ]
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de l xc [ 0 ]

1054 xc = [ i n t ( x ) f o r x in xc ]

1056 copyloc =[ ]

f o r i in range (0 , l en ( xc ) ) :

1058 i f 0<=xc [ i ]<=8:

copyloc . append ( xc [ i ] )

1060 i f 9<=xc [ i ]<=12:

f o r x in range (0 , 9 ) :

1062 copyloc . append ( xc [ i ]+(x∗4) )
f o r y in range (45 ,54) :

1064 copyloc . append (y )

1066 data d f = d a t a d f o r i g i n a l . i l o c [ : , copy loc ] . copy ( )

data d f . head ( )

1068 n f e a t u r e s i npu t = len ( copyloc )

p r i n t ( n f e a t u r e s i npu t )

1070 n f e a tu r e s ou tpu t = 9

f i l ename iden t = ' past−'+s t r ( n past )+ ' f u tu r e−'+s t r ( n fu tu r e )+ ' Case '+s t r (

casenum )

1072

###Sca l i ng the va lue s

1074 da ta s ca l ed = data d f

s c a l e r s={}
1076 f o r i in data d f . columns :

s c a l e r = MinMaxScaler ( f e a tu r e r ang e =(−1 ,1) )

1078 s s = s c a l e r . f i t t r a n s f o rm ( da ta s ca l ed [ i ] . va lue s . reshape (−1 ,1) )

s s=np . reshape ( s s , l en ( s s ) )

1080 s c a l e r s [ ' s c a l e r '+ i ] = s c a l e r

da ta s ca l ed [ i ]= s s

1082

mu l t i p l i e r = 24∗4
1084 T arr1 = 220 ∗ mu l t i p l i e r

T arr2 = 73 ∗ mu l t i p l i e r

1086 T arr3 = (366−( T arr1 + T arr2 ) ) ∗ mu l t i p l i e r

arr1 , arr2 , a r r3 = np . s p l i t ( data sca l ed , [ T arr1 , ( T arr1 + T arr2 ) ] )

1088 t r a i n = arr1

va l i d a t e = arr2

1090 t e s t = arr3

p r i n t ( t r a i n . shape , v a l i d a t e . shape , t e s t . shape )

1092

###Converting the s e r i e s to samples f o r supe rv i s ed l e a rn i ng

1094 de f s p l i t s e r i e s ( s e r i e s , n past , n fu tu r e ) :

X, y = l i s t ( ) , l i s t ( )

1096 f o r window start in range ( l en ( s e r i e s ) ) :

past end = window start + n past

1098 f u tu re end = past end + n fu tu r e

i f f u tu re end > l en ( s e r i e s ) :

1100 break

past , f u tu r e = s e r i e s [ window start : past end , : ] , s e r i e s [ past end :

future end , : ]

1102 X. append ( past )

y . append ( fu tu r e )

1104 re turn np . array (X) , np . array (y )

1106 X train , y t r a i n = s p l i t s e r i e s ( t r a i n . va lues , n past , n fu tu r e )

X tra in = X tra in . reshape ( ( X tra in . shape [ 0 ] , X tra in . shape [ 1 ] ,

n f e a t u r e s i npu t ) )
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1108 y t r a i n = y t r a i n . reshape ( ( y t r a i n . shape [ 0 ] , y t r a i n . shape [ 1 ] ,

n f e a t u r e s i npu t ) )

y t r a i n=np . d e l e t e ( y t ra in , range (0 , n f e a tu r e s i npu t−n f e a tu r e s ou tpu t ) , 2)

#assuming a l l output f e a t u r e s are in end

1110 X val idate , y v a l i d a t e = s p l i t s e r i e s ( v a l i d a t e . va lues , n past , n fu tu r e )

X va l idate = X va l idate . reshape ( ( X va l idate . shape [ 0 ] , X va l ida te . shape [ 1 ] ,

n f e a t u r e s i npu t ) )

1112 y va l i d a t e = y va l i d a t e . reshape ( ( y va l i d a t e . shape [ 0 ] , y v a l i d a t e . shape [ 1 ] ,

n f e a t u r e s i npu t ) )

y va l i d a t e=np . d e l e t e ( y va l i da t e , range (0 , n f e a tu r e s i npu t−n f e a tu r e s ou tpu t

) , 2)

1114 X test , y t e s t = s p l i t s e r i e s ( t e s t . va lues , n past , n fu tu r e )

X tes t = X tes t . reshape ( ( X tes t . shape [ 0 ] , X tes t . shape [ 1 ] , n f e a t u r e s i npu t ) )

1116 y t e s t = y t e s t . reshape ( ( y t e s t . shape [ 0 ] , y t e s t . shape [ 1 ] , n f e a t u r e s i npu t )

)

y t e s t=np . d e l e t e ( y t e s t , range (0 , n f e a tu r e s i npu t−n f e a tu r e s ou tpu t ) , 2)

1118

t f . ke ras . backend . c l e a r s e s s i o n ( )

1120 encode r input s = t f . keras . l a y e r s . Input ( shape=(n past , n f e a t u r e s i npu t ) )

encode r l 1 = t f . keras . l a y e r s .LSTM( numlayer , r e t u r n s t a t e=True , dropout=

dropout f a c t o r )

1122 encoder outputs1 = encode r l 1 ( encode r input s )

en code r s t a t e s 1 = encoder outputs1 [ 1 : ]

1124 decode r input s = t f . keras . l a y e r s . RepeatVector ( n fu tu r e ) ( encoder outputs1 [ 0 ] )

d e code r l 1 = t f . keras . l a y e r s .LSTM( numlayer , r e tu rn s equence s=True , dropout=

dropout f a c t o r ) ( decoder inputs , i n i t i a l s t a t e = encode r s t a t e s 1 )

1126 decoder outputs1 = t f . keras . l a y e r s . TimeDistr ibuted ( t f . keras . l a y e r s . Dense (

n f e a tu r e s ou tpu t ) ) ( de code r l 1 )

model e1d1 = t f . keras . models . Model ( encoder inputs , decoder outputs1 )

1128 model e1d1 . summary ( )

1130 TRAIN = 1

i f TRAIN:

1132 ###Training the model

r e du c e l r = t f . keras . c a l l b a ck s . LearningRateScheduler ( lambda x : 1e−3 ∗
0 .90 ∗∗ x )

1134 r e du c e l r 1 = t f . keras . c a l l b a c k s . Ear lyStopping ( monitor= ' v a l l o s s ' ,
pa t i ence=7)

model e1d1 . compi le ( opt imize r=t f . keras . op t im i z e r s .Adam( l r =0.00001 , beta 1

=0.9 , beta 2 =0.999 , e p s i l o n=None , decay=0.0 , amsgrad=False ) , l o s s=t f . keras .

l o s s e s . Huber ( ) )

1136 h i s t o ry e1d1=model e1d1 . f i t ( X train , y t ra in , epochs=epoch num ,

va l i d a t i on da t a=(X val idate , y v a l i d a t e ) , b a t ch s i z e=batch num , verbose=1,

c a l l b a c k s =[ r educ e l r , r e du c e l r 1 ] )

1138 HISTORY = 1

i f HISTORY:

1140 ###Plot h i s t o r y

p l t . p l o t ( h i s t o ry e1d1 . h i s t o r y [ ' l o s s ' ] )
1142 p l t . p l o t ( h i s t o ry e1d1 . h i s t o r y [ ' v a l l o s s ' ] )

p l t . t i t l e ( ”E1D1 Model Loss ” )

1144 p l t . x l ab e l ( 'Epochs ' )
p l t . y l ab e l ( ' Loss ' )

1146 p l t . l egend ( [ 'Train ' , ' Valid ' ] )
p l t . show ( )

1148

pr in t ( 'Casenumber i s ' , casenum )

1150
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SAVEMODEL = 1

1152 i f SAVEMODEL:

###Save model

1154 f i l ename h5 = 'Model '+f i l ename iden t

model e1d1 . save ( f i l ename h5+” E1D1 10min . h5” )

1156

USEMODEL = 0

1158 i f USEMODEL:

from keras . models import load model

1160 f i l ename h5 = 'Model '+f i l ename iden t

model e1d1 = load model ( f i l ename h5+” E1D1 10min . h5” )

1162

PREDICT = 1

1164 i f PREDICT:

###Pred i c t i ng

1166 pr ed e1d1 o r i=model e1d1 . p r ed i c t ( X tes t )

pred e1d1 = pred e1d1 o r i

1168 y t e s t s c a l e d = y t e s t

###Sca l i ng back p r ed i c t i on

1170 f o r j in range (0 , l en ( z o n e l i s t ) ) :

s c a l e r = s c a l e r s [ ' s c a l e r Zone '+s t r ( z o n e l i s t [ j ] )+ ' ta i rmean ' ]
1172 pred e1d1 [ : , : , j ]= s c a l e r . i nv e r s e t r an s f o rm ( pred e1d1 [ : , : , j ] )

y t e s t s c a l e d [ : , : , j ]= s c a l e r . i nv e r s e t r an s f o rm ( y t e s t [ : , : , j ] )

1174

SAVE ERROR = 1

1176 i f SAVE ERROR:

###Save e r r o r met r i c s data

1178 de f MAPE( Y actual , Y Predicted ) :

mape = np .mean(np . abs ( ( Y actual − Y Predicted ) /Y actual ) ) ∗100
1180 re turn mape

al lmape =[ ]

1182 al lmape . append ( casenum )

f o r i in range (0 , l en ( z o n e l i s t ) ) :

1184 f o r j in range (1 , n fu tu r e+1) :

mape1= MAPE( y t e s t s c a l e d [ : , j −1, i ] , pred e1d1 [ : , j −1, i ] )

1186 al lmape . append ( round (mape1 , 4 ) )

with open ( mapefilename , ' a ' , newl ine= ' ' ) as f :

1188 wr i t e = csv . wr i t e r ( f )

wr i t e . writerow ( al lmape )

1190

t f . ke ras . backend . c l e a r s e s s i o n ( )
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E Input combinations for Wrapper method

The following lines represental all the possible combinations the wrapper method was tested

for. The Fist number represents the combination number, and the following number the output

parameter, followed by the parameters included. The corresponding input for each number is

given in Table 3.10.

1000 Output Input

Case 1 13 0

1002 Case 2 13 1

Case 3 13 2

1004 Case 4 13 3

Case 5 13 4

1006 Case 6 13 5

Case 7 13 6

1008 Case 8 13 7

Case 9 13 8

1010 Case 10 13 9

Case 11 13 10

1012 Case 12 13 11

Case 13 13 12

1014 Case 14 13 0 1

Case 15 13 0 2

1016 Case 16 13 0 3

Case 17 13 0 4

1018 Case 18 13 0 5

Case 19 13 0 6

1020 Case 20 13 0 7

Case 21 13 0 8

1022 Case 22 13 0 9

Case 23 13 0 10

1024 Case 24 13 0 11

Case 25 13 0 12

1026 Case 26 13 0 1 2

Case 27 13 0 1 3

1028 Case 28 13 0 1 4

Case 29 13 0 1 5

1030 Case 30 13 0 1 6

Case 31 13 0 1 7

1032 Case 32 13 0 1 8

Case 33 13 0 1 9

1034 Case 34 13 0 1 10

Case 35 13 0 1 11

1036 Case 36 13 0 1 12

Case 37 13 0 1 2 3

1038 Case 38 13 0 1 2 4

Case 39 13 0 1 2 5

1040 Case 40 13 0 1 2 6

Case 41 13 0 1 2 7

1042 Case 42 13 0 1 2 8

Case 43 13 0 1 2 9

1044 Case 44 13 0 1 2 10

Case 45 13 0 1 2 11

1046 Case 46 13 0 1 2 12

Case 47 13 0 1 2 3 4

1048 Case 48 13 0 1 2 3 5

Case 49 13 0 1 2 3 6
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1050 Case 50 13 0 1 2 3 7

Case 51 13 0 1 2 3 8

1052 Case 52 13 0 1 2 3 9

Case 53 13 0 1 2 3 10

1054 Case 54 13 0 1 2 3 11

Case 55 13 0 1 2 3 12

1056 Case 56 13 0 1 2 3 4 5

Case 57 13 0 1 2 3 4 6

1058 Case 58 13 0 1 2 3 4 7

Case 59 13 0 1 2 3 4 8

1060 Case 60 13 0 1 2 3 4 9

Case 61 13 0 1 2 3 4 10

1062 Case 62 13 0 1 2 3 4 11

Case 63 13 0 1 2 3 4 12

1064 Case 64 13 0 1 2 3 4 5 6

Case 65 13 0 1 2 3 4 5 7

1066 Case 66 13 0 1 2 3 4 5 8

Case 67 13 0 1 2 3 4 5 9

1068 Case 68 13 0 1 2 3 4 5 10

Case 69 13 0 1 2 3 4 5 11

1070 Case 70 13 0 1 2 3 4 5 12

Case 71 13 0 1 2 3 4 5 6 7

1072 Case 72 13 0 1 2 3 4 5 6 8

Case 73 13 0 1 2 3 4 5 6 9

1074 Case 74 13 0 1 2 3 4 5 6 10

Case 75 13 0 1 2 3 4 5 6 11

1076 Case 76 13 0 1 2 3 4 5 6 12

Case 77 13 0 1 2 3 4 5 6 7 8

1078 Case 78 13 0 1 2 3 4 5 6 7 9

Case 79 13 0 1 2 3 4 5 6 7 10

1080 Case 80 13 0 1 2 3 4 5 6 7 11

Case 81 13 0 1 2 3 4 5 6 7 12

1082 Case 82 13 0 1 2 3 4 5 6 7 8 9

Case 83 13 0 1 2 3 4 5 6 7 8 10

1084 Case 84 13 0 1 2 3 4 5 6 7 8 11

Case 85 13 0 1 2 3 4 5 6 7 8 12

1086 Case 86 13 0 1 2 3 4 5 6 7 8 9 10

Case 87 13 0 1 2 3 4 5 6 7 8 9 11

1088 Case 88 13 0 1 2 3 4 5 6 7 8 9 12

Case 89 13 0 1 2 3 4 5 6 7 8 9 10 11

1090 Case 90 13 0 1 2 3 4 5 6 7 8 9 10 12

Case 91 13 0 1 2 3 4 5 6 7 8 9 10 11

12

1092 Case 92 13 1 2

Case 93 13 1 3

1094 Case 94 13 1 4

Case 95 13 1 5

1096 Case 96 13 1 6

Case 97 13 1 7

1098 Case 98 13 1 8

Case 99 13 1 9

1100 Case 100 13 1 10

Case 101 13 1 11

1102 Case 102 13 1 12

Case 103 13 1 2 3

1104 Case 104 13 1 2 4

Case 105 13 1 2 5

1106 Case 106 13 1 2 6

Case 107 13 1 2 7
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E Input combinations for Wrapper method

1108 Case 108 13 1 2 8

Case 109 13 1 2 9

1110 Case 110 13 1 2 10

Case 111 13 1 2 11

1112 Case 112 13 1 2 12

Case 113 13 1 2 3 4

1114 Case 114 13 1 2 3 5

Case 115 13 1 2 3 6

1116 Case 116 13 1 2 3 7

Case 117 13 1 2 3 8

1118 Case 118 13 1 2 3 9

Case 119 13 1 2 3 10

1120 Case 120 13 1 2 3 11

Case 121 13 1 2 3 12

1122 Case 122 13 1 2 3 4 5

Case 123 13 1 2 3 4 6

1124 Case 124 13 1 2 3 4 7

Case 125 13 1 2 3 4 8

1126 Case 126 13 1 2 3 4 9

Case 127 13 1 2 3 4 10

1128 Case 128 13 1 2 3 4 11

Case 129 13 1 2 3 4 12

1130 Case 130 13 1 2 3 4 5 6

Case 131 13 1 2 3 4 5 7

1132 Case 132 13 1 2 3 4 5 8

Case 133 13 1 2 3 4 5 9

1134 Case 134 13 1 2 3 4 5 10

Case 135 13 1 2 3 4 5 11

1136 Case 136 13 1 2 3 4 5 12

Case 137 13 1 2 3 4 5 6 7

1138 Case 138 13 1 2 3 4 5 6 8

Case 139 13 1 2 3 4 5 6 9

1140 Case 140 13 1 2 3 4 5 6 10

Case 141 13 1 2 3 4 5 6 11

1142 Case 142 13 1 2 3 4 5 6 12

Case 143 13 1 2 3 4 5 6 7 8

1144 Case 144 13 1 2 3 4 5 6 7 9

Case 145 13 1 2 3 4 5 6 7 10

1146 Case 146 13 1 2 3 4 5 6 7 11

Case 147 13 1 2 3 4 5 6 7 12

1148 Case 148 13 1 2 3 4 5 6 7 8 9

Case 149 13 1 2 3 4 5 6 7 8 10

1150 Case 150 13 1 2 3 4 5 6 7 8 11

Case 151 13 1 2 3 4 5 6 7 8 12

1152 Case 152 13 1 2 3 4 5 6 7 8 9 10

Case 153 13 1 2 3 4 5 6 7 8 9 11

1154 Case 154 13 1 2 3 4 5 6 7 8 9 12

Case 155 13 1 2 3 4 5 6 7 8 9 10 11

1156 Case 156 13 1 2 3 4 5 6 7 8 9 10 12

Case 157 13 1 2 3 4 5 6 7 8 9 10 11

12

1158 Case 158 13 2 3

Case 159 13 2 4

1160 Case 160 13 2 5

Case 161 13 2 6

1162 Case 162 13 2 7

Case 163 13 2 8

1164 Case 164 13 2 9

Case 165 13 2 10
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E Input combinations for Wrapper method

1166 Case 166 13 2 11

Case 167 13 2 12

1168 Case 168 13 2 3 4

Case 169 13 2 3 5

1170 Case 170 13 2 3 6

Case 171 13 2 3 7

1172 Case 172 13 2 3 8

Case 173 13 2 3 9

1174 Case 174 13 2 3 10

Case 175 13 2 3 11

1176 Case 176 13 2 3 12

Case 177 13 2 3 4 5

1178 Case 178 13 2 3 4 6

Case 179 13 2 3 4 7

1180 Case 180 13 2 3 4 8

Case 181 13 2 3 4 9

1182 Case 182 13 2 3 4 10

Case 183 13 2 3 4 11

1184 Case 184 13 2 3 4 12

Case 185 13 2 3 4 5 6

1186 Case 186 13 2 3 4 5 7

Case 187 13 2 3 4 5 8

1188 Case 188 13 2 3 4 5 9

Case 189 13 2 3 4 5 10

1190 Case 190 13 2 3 4 5 11

Case 191 13 2 3 4 5 12

1192 Case 192 13 2 3 4 5 6 7

Case 193 13 2 3 4 5 6 8

1194 Case 194 13 2 3 4 5 6 9

Case 195 13 2 3 4 5 6 10

1196 Case 196 13 2 3 4 5 6 11

Case 197 13 2 3 4 5 6 12

1198 Case 198 13 2 3 4 5 6 7 8

Case 199 13 2 3 4 5 6 7 9

1200 Case 200 13 2 3 4 5 6 7 10

Case 201 13 2 3 4 5 6 7 11

1202 Case 202 13 2 3 4 5 6 7 12

Case 203 13 2 3 4 5 6 7 8 9

1204 Case 204 13 2 3 4 5 6 7 8 10

Case 205 13 2 3 4 5 6 7 8 11

1206 Case 206 13 2 3 4 5 6 7 8 12

Case 207 13 2 3 4 5 6 7 8 9 10

1208 Case 208 13 2 3 4 5 6 7 8 9 11

Case 209 13 2 3 4 5 6 7 8 9 12

1210 Case 210 13 2 3 4 5 6 7 8 9 10 11

Case 211 13 2 3 4 5 6 7 8 9 10 12

1212 Case 212 13 2 3 4 5 6 7 8 9 10 11

12

Case 213 13 3 4

1214 Case 214 13 3 5

Case 215 13 3 6

1216 Case 216 13 3 7

Case 217 13 3 8

1218 Case 218 13 3 9

Case 219 13 3 10

1220 Case 220 13 3 11

Case 221 13 3 12

1222 Case 222 13 3 4 5

Case 223 13 3 4 6
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E Input combinations for Wrapper method

1224 Case 224 13 3 4 7

Case 225 13 3 4 8

1226 Case 226 13 3 4 9

Case 227 13 3 4 10

1228 Case 228 13 3 4 11

Case 229 13 3 4 12

1230 Case 230 13 3 4 5 6

Case 231 13 3 4 5 7

1232 Case 232 13 3 4 5 8

Case 233 13 3 4 5 9

1234 Case 234 13 3 4 5 10

Case 235 13 3 4 5 11

1236 Case 236 13 3 4 5 12

Case 237 13 3 4 5 6 7

1238 Case 238 13 3 4 5 6 8

Case 239 13 3 4 5 6 9

1240 Case 240 13 3 4 5 6 10

Case 241 13 3 4 5 6 11

1242 Case 242 13 3 4 5 6 12

Case 243 13 3 4 5 6 7 8

1244 Case 244 13 3 4 5 6 7 9

Case 245 13 3 4 5 6 7 10

1246 Case 246 13 3 4 5 6 7 11

Case 247 13 3 4 5 6 7 12

1248 Case 248 13 3 4 5 6 7 8 9

Case 249 13 3 4 5 6 7 8 10

1250 Case 250 13 3 4 5 6 7 8 11

Case 251 13 3 4 5 6 7 8 12

1252 Case 252 13 3 4 5 6 7 8 9 10

Case 253 13 3 4 5 6 7 8 9 11

1254 Case 254 13 3 4 5 6 7 8 9 12

Case 255 13 3 4 5 6 7 8 9 10 11

1256 Case 256 13 3 4 5 6 7 8 9 10 12

Case 257 13 3 4 5 6 7 8 9 10 11 12

1258 Case 258 13 4 5

Case 259 13 4 6

1260 Case 260 13 4 7

Case 261 13 4 8

1262 Case 262 13 4 9

Case 263 13 4 10

1264 Case 264 13 4 11

Case 265 13 4 12

1266 Case 266 13 4 5 6

Case 267 13 4 5 7

1268 Case 268 13 4 5 8

Case 269 13 4 5 9

1270 Case 270 13 4 5 10

Case 271 13 4 5 11

1272 Case 272 13 4 5 12

Case 273 13 4 5 6 7

1274 Case 274 13 4 5 6 8

Case 275 13 4 5 6 9

1276 Case 276 13 4 5 6 10

Case 277 13 4 5 6 11

1278 Case 278 13 4 5 6 12

Case 279 13 4 5 6 7 8

1280 Case 280 13 4 5 6 7 9

Case 281 13 4 5 6 7 10
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E Input combinations for Wrapper method

1282 Case 282 13 4 5 6 7 11

Case 283 13 4 5 6 7 12

1284 Case 284 13 4 5 6 7 8 9

Case 285 13 4 5 6 7 8 10

1286 Case 286 13 4 5 6 7 8 11

Case 287 13 4 5 6 7 8 12

1288 Case 288 13 4 5 6 7 8 9 10

Case 289 13 4 5 6 7 8 9 11

1290 Case 290 13 4 5 6 7 8 9 12

Case 291 13 4 5 6 7 8 9 10 11

1292 Case 292 13 4 5 6 7 8 9 10 12

Case 293 13 4 5 6 7 8 9 10 11 12

1294 Case 294 13 5 6

Case 295 13 5 7

1296 Case 296 13 5 8

Case 297 13 5 9

1298 Case 298 13 5 10

Case 299 13 5 11

1300 Case 300 13 5 12

Case 301 13 5 6 7

1302 Case 302 13 5 6 8

Case 303 13 5 6 9

1304 Case 304 13 5 6 10

Case 305 13 5 6 11

1306 Case 306 13 5 6 12

Case 307 13 5 6 7 8

1308 Case 308 13 5 6 7 9

Case 309 13 5 6 7 10

1310 Case 310 13 5 6 7 11

Case 311 13 5 6 7 12

1312 Case 312 13 5 6 7 8 9

Case 313 13 5 6 7 8 10

1314 Case 314 13 5 6 7 8 11

Case 315 13 5 6 7 8 12

1316 Case 316 13 5 6 7 8 9 10

Case 317 13 5 6 7 8 9 11

1318 Case 318 13 5 6 7 8 9 12

Case 319 13 5 6 7 8 9 10 11

1320 Case 320 13 5 6 7 8 9 10 12

Case 321 13 5 6 7 8 9 10 11 12

1322 Case 322 13 6 7

Case 323 13 6 8

1324 Case 324 13 6 9

Case 325 13 6 10

1326 Case 326 13 6 11

Case 327 13 6 12

1328 Case 328 13 6 7 8

Case 329 13 6 7 9

1330 Case 330 13 6 7 10

Case 331 13 6 7 11

1332 Case 332 13 6 7 12

Case 333 13 6 7 8 9

1334 Case 334 13 6 7 8 10

Case 335 13 6 7 8 11

1336 Case 336 13 6 7 8 12

Case 337 13 6 7 8 9 10

1338 Case 338 13 6 7 8 9 11

Case 339 13 6 7 8 9 12
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E Input combinations for Wrapper method

1340 Case 340 13 6 7 8 9 10 11

Case 341 13 6 7 8 9 10 12

1342 Case 342 13 6 7 8 9 10 11 12

Case 343 13 7 8

1344 Case 344 13 7 9

Case 345 13 7 10

1346 Case 346 13 7 11

Case 347 13 7 12

1348 Case 348 13 7 8 9

Case 349 13 7 8 10

1350 Case 350 13 7 8 11

Case 351 13 7 8 12

1352 Case 352 13 7 8 9 10

Case 353 13 7 8 9 11

1354 Case 354 13 7 8 9 12

Case 355 13 7 8 9 10 11

1356 Case 356 13 7 8 9 10 12

Case 357 13 7 8 9 10 11 12

1358 Case 358 13 8 9

Case 359 13 8 10

1360 Case 360 13 8 11

Case 361 13 8 12

1362 Case 362 13 8 9 10

Case 363 13 8 9 11

1364 Case 364 13 8 9 12

Case 365 13 8 9 10 11

1366 Case 366 13 8 9 10 12

Case 367 13 8 9 10 11 12

1368 Case 368 13 9 10

Case 369 13 9 11

1370 Case 370 13 9 12

Case 371 13 9 10 11

1372 Case 372 13 9 10 12

Case 373 13 9 10 11 12

1374 Case 374 13 10 11

Case 375 13 10 12

1376 Case 376 13 10 11 12

Case 377 13 11 12

1378 Case 378 13 1 3 4

Case 379 13 1 3 5

1380 Case 380 13 1 3 6

Case 381 13 1 3 7

1382 Case 382 13 1 3 8

Case 383 13 1 3 9

1384 Case 384 13 1 3 10

Case 385 13 1 3 11

1386 Case 386 13 1 3 12

Case 387 13 1 3 4 5

1388 Case 388 13 1 3 4 6

Case 389 13 1 3 4 7

1390 Case 390 13 1 3 4 8

Case 391 13 1 3 4 9

1392 Case 392 13 1 3 4 10

Case 393 13 1 3 4 11

1394 Case 394 13 1 3 4 12

Case 395 13 1 3 4 5 6

1396 Case 396 13 1 3 4 5 7

Case 397 13 1 3 4 5 8
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E Input combinations for Wrapper method

1398 Case 398 13 1 3 4 5 9

Case 399 13 1 3 4 5 10

1400 Case 400 13 1 3 4 5 11

Case 401 13 1 3 4 5 12

1402 Case 402 13 1 3 4 5 6 7

Case 403 13 1 3 4 5 6 8

1404 Case 404 13 1 3 4 5 6 9

Case 405 13 1 3 4 5 6 10

1406 Case 406 13 1 3 4 5 6 11

Case 407 13 1 3 4 5 6 12

1408 Case 408 13 1 3 4 5 6 7 8

Case 409 13 1 3 4 5 6 7 9

1410 Case 410 13 1 3 4 5 6 7 10

Case 411 13 1 3 4 5 6 7 11

1412 Case 412 13 1 3 4 5 6 7 12

Case 413 13 1 3 4 5 6 7 8 9

1414 Case 414 13 1 3 4 5 6 7 8 10

Case 415 13 1 3 4 5 6 7 8 11

1416 Case 416 13 1 3 4 5 6 7 8 12

Case 417 13 1 3 4 5 6 7 8 9 10

1418 Case 418 13 1 3 4 5 6 7 8 9 11

Case 419 13 1 3 4 5 6 7 8 9 12

1420 Case 420 13 1 3 4 5 6 7 8 9 10 11

Case 421 13 1 3 4 5 6 7 8 9 10 12

1422 Case 422 13 1 3 4 5 6 7 8 9 10 11

12

Case 423 13 1 4 5

1424 Case 424 13 1 4 6

Case 425 13 1 4 7

1426 Case 426 13 1 4 8

Case 427 13 1 4 9

1428 Case 428 13 1 4 10

Case 429 13 1 4 11

1430 Case 430 13 1 4 12

Case 431 13 1 4 5 6

1432 Case 432 13 1 4 5 7

Case 433 13 1 4 5 8

1434 Case 434 13 1 4 5 9

Case 435 13 1 4 5 10

1436 Case 436 13 1 4 5 11

Case 437 13 1 4 5 12

1438 Case 438 13 1 4 5 6 7

Case 439 13 1 4 5 6 8

1440 Case 440 13 1 4 5 6 9

Case 441 13 1 4 5 6 10

1442 Case 442 13 1 4 5 6 11

Case 443 13 1 4 5 6 12

1444 Case 444 13 1 4 5 6 7 8

Case 445 13 1 4 5 6 7 9

1446 Case 446 13 1 4 5 6 7 10

Case 447 13 1 4 5 6 7 11

1448 Case 448 13 1 4 5 6 7 12

Case 449 13 1 4 5 6 7 8 9

1450 Case 450 13 1 4 5 6 7 8 10

Case 451 13 1 4 5 6 7 8 11

1452 Case 452 13 1 4 5 6 7 8 12

Case 453 13 1 4 5 6 7 8 9 10

1454 Case 454 13 1 4 5 6 7 8 9 11

Case 455 13 1 4 5 6 7 8 9 12
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E Input combinations for Wrapper method

1456 Case 456 13 1 4 5 6 7 8 9 10 11

Case 457 13 1 4 5 6 7 8 9 10 12

1458 Case 458 13 1 4 5 6 7 8 9 10 11 12

Case 459 13 1 5 6

1460 Case 460 13 1 5 7

Case 461 13 1 5 8

1462 Case 462 13 1 5 9

Case 463 13 1 5 10

1464 Case 464 13 1 5 11

Case 465 13 1 5 12

1466 Case 466 13 1 5 6 7

Case 467 13 1 5 6 8

1468 Case 468 13 1 5 6 9

Case 469 13 1 5 6 10

1470 Case 470 13 1 5 6 11

Case 471 13 1 5 6 12

1472 Case 472 13 1 5 6 7 8

Case 473 13 1 5 6 7 9

1474 Case 474 13 1 5 6 7 10

Case 475 13 1 5 6 7 11

1476 Case 476 13 1 5 6 7 12

Case 477 13 1 5 6 7 8 9

1478 Case 478 13 1 5 6 7 8 10

Case 479 13 1 5 6 7 8 11

1480 Case 480 13 1 5 6 7 8 12

Case 481 13 1 5 6 7 8 9 10

1482 Case 482 13 1 5 6 7 8 9 11

Case 483 13 1 5 6 7 8 9 12

1484 Case 484 13 1 5 6 7 8 9 10 11

Case 485 13 1 5 6 7 8 9 10 12

1486 Case 486 13 1 5 6 7 8 9 10 11 12

Case 487 13 1 6 7

1488 Case 488 13 1 6 8

Case 489 13 1 6 9

1490 Case 490 13 1 6 10

Case 491 13 1 6 11

1492 Case 492 13 1 6 12

Case 493 13 1 6 7 8

1494 Case 494 13 1 6 7 9

Case 495 13 1 6 7 10

1496 Case 496 13 1 6 7 11

Case 497 13 1 6 7 12

1498 Case 498 13 1 6 7 8 9

Case 499 13 1 6 7 8 10

1500 Case 500 13 1 6 7 8 11

Case 501 13 1 6 7 8 12

1502 Case 502 13 1 6 7 8 9 10

Case 503 13 1 6 7 8 9 11

1504 Case 504 13 1 6 7 8 9 12

Case 505 13 1 6 7 8 9 10 11

1506 Case 506 13 1 6 7 8 9 10 12

Case 507 13 1 6 7 8 9 10 11 12

1508 Case 508 13 1 7 8

Case 509 13 1 7 9

1510 Case 510 13 1 7 10

Case 511 13 1 7 11

1512 Case 512 13 1 7 12

Case 513 13 1 7 8 9
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E Input combinations for Wrapper method

1514 Case 514 13 1 7 8 10

Case 515 13 1 7 8 11

1516 Case 516 13 1 7 8 12

Case 517 13 1 7 8 9 10

1518 Case 518 13 1 7 8 9 11

Case 519 13 1 7 8 9 12

1520 Case 520 13 1 7 8 9 10 11

Case 521 13 1 7 8 9 10 12

1522 Case 522 13 1 7 8 9 10 11 12

Case 523 13 1 8 9

1524 Case 524 13 1 8 10

Case 525 13 1 8 11

1526 Case 526 13 1 8 12

Case 527 13 1 8 9 10

1528 Case 528 13 1 8 9 11

Case 529 13 1 8 9 12

1530 Case 530 13 1 8 9 10 11

Case 531 13 1 8 9 10 12

1532 Case 532 13 1 8 9 10 11 12

Case 533 13 1 9 10

1534 Case 534 13 1 9 11

Case 535 13 1 9 12

1536 Case 536 13 1 9 10 11

Case 537 13 1 9 10 12

1538 Case 538 13 1 9 10 11 12

Case 539 13 1 10 11

1540 Case 540 13 1 10 12

Case 541 13 1 10 11 12

1542 Case 542 13 1 11 12

Case 543 13 2 4 5

1544 Case 544 13 2 4 6

Case 545 13 2 4 7

1546 Case 546 13 2 4 8

Case 547 13 2 4 9

1548 Case 548 13 2 4 10

Case 549 13 2 4 11

1550 Case 550 13 2 4 12

Case 551 13 2 4 5 6

1552 Case 552 13 2 4 5 7

Case 553 13 2 4 5 8

1554 Case 554 13 2 4 5 9

Case 555 13 2 4 5 10

1556 Case 556 13 2 4 5 11

Case 557 13 2 4 5 12

1558 Case 558 13 2 4 5 6 7

Case 559 13 2 4 5 6 8

1560 Case 560 13 2 4 5 6 9

Case 561 13 2 4 5 6 10

1562 Case 562 13 2 4 5 6 11

Case 563 13 2 4 5 6 12

1564 Case 564 13 2 4 5 6 7 8

Case 565 13 2 4 5 6 7 9

1566 Case 566 13 2 4 5 6 7 10

Case 567 13 2 4 5 6 7 11

1568 Case 568 13 2 4 5 6 7 12

Case 569 13 2 4 5 6 7 8 9

1570 Case 570 13 2 4 5 6 7 8 10

Case 571 13 2 4 5 6 7 8 11
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E Input combinations for Wrapper method

1572 Case 572 13 2 4 5 6 7 8 12

Case 573 13 2 4 5 6 7 8 9 10

1574 Case 574 13 2 4 5 6 7 8 9 11

Case 575 13 2 4 5 6 7 8 9 12

1576 Case 576 13 2 4 5 6 7 8 9 10 11

Case 577 13 2 4 5 6 7 8 9 10 12

1578 Case 578 13 2 4 5 6 7 8 9 10 11 12

Case 579 13 2 5 6

1580 Case 580 13 2 5 7

Case 581 13 2 5 8

1582 Case 582 13 2 5 9

Case 583 13 2 5 10

1584 Case 584 13 2 5 11

Case 585 13 2 5 12

1586 Case 586 13 2 5 6 7

Case 587 13 2 5 6 8

1588 Case 588 13 2 5 6 9

Case 589 13 2 5 6 10

1590 Case 590 13 2 5 6 11

Case 591 13 2 5 6 12

1592 Case 592 13 2 5 6 7 8

Case 593 13 2 5 6 7 9

1594 Case 594 13 2 5 6 7 10

Case 595 13 2 5 6 7 11

1596 Case 596 13 2 5 6 7 12

Case 597 13 2 5 6 7 8 9

1598 Case 598 13 2 5 6 7 8 10

Case 599 13 2 5 6 7 8 11

1600 Case 600 13 2 5 6 7 8 12

Case 601 13 2 5 6 7 8 9 10

1602 Case 602 13 2 5 6 7 8 9 11

Case 603 13 2 5 6 7 8 9 12

1604 Case 604 13 2 5 6 7 8 9 10 11

Case 605 13 2 5 6 7 8 9 10 12

1606 Case 606 13 2 5 6 7 8 9 10 11 12

Case 607 13 2 6 7

1608 Case 608 13 2 6 8

Case 609 13 2 6 9

1610 Case 610 13 2 6 10

Case 611 13 2 6 11

1612 Case 612 13 2 6 12

Case 613 13 2 6 7 8

1614 Case 614 13 2 6 7 9

Case 615 13 2 6 7 10

1616 Case 616 13 2 6 7 11

Case 617 13 2 6 7 12

1618 Case 618 13 2 6 7 8 9

Case 619 13 2 6 7 8 10

1620 Case 620 13 2 6 7 8 11

Case 621 13 2 6 7 8 12

1622 Case 622 13 2 6 7 8 9 10

Case 623 13 2 6 7 8 9 11

1624 Case 624 13 2 6 7 8 9 12

Case 625 13 2 6 7 8 9 10 11

1626 Case 626 13 2 6 7 8 9 10 12

Case 627 13 2 6 7 8 9 10 11 12

1628 Case 628 13 2 7 8

Case 629 13 2 7 9
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E Input combinations for Wrapper method

1630 Case 630 13 2 7 10

Case 631 13 2 7 11

1632 Case 632 13 2 7 12

Case 633 13 2 7 8 9

1634 Case 634 13 2 7 8 10

Case 635 13 2 7 8 11

1636 Case 636 13 2 7 8 12

Case 637 13 2 7 8 9 10

1638 Case 638 13 2 7 8 9 11

Case 639 13 2 7 8 9 12

1640 Case 640 13 2 7 8 9 10 11

Case 641 13 2 7 8 9 10 12

1642 Case 642 13 2 7 8 9 10 11 12

Case 643 13 2 8 9

1644 Case 644 13 2 8 10

Case 645 13 2 8 11

1646 Case 646 13 2 8 12

Case 647 13 2 8 9 10

1648 Case 648 13 2 8 9 11

Case 649 13 2 8 9 12

1650 Case 650 13 2 8 9 10 11

Case 651 13 2 8 9 10 12

1652 Case 652 13 2 8 9 10 11 12

Case 653 13 2 9 10

1654 Case 654 13 2 9 11

Case 655 13 2 9 12

1656 Case 656 13 2 9 10 11

Case 657 13 2 9 10 12

1658 Case 658 13 2 9 10 11 12

Case 659 13 2 10 11

1660 Case 660 13 2 10 12

Case 661 13 2 10 11 12

1662 Case 662 13 2 11 12

Case 663 13 3 5 6

1664 Case 664 13 3 5 7

Case 665 13 3 5 8

1666 Case 666 13 3 5 9

Case 667 13 3 5 10

1668 Case 668 13 3 5 11

Case 669 13 3 5 12

1670 Case 670 13 3 5 6 7

Case 671 13 3 5 6 8

1672 Case 672 13 3 5 6 9

Case 673 13 3 5 6 10

1674 Case 674 13 3 5 6 11

Case 675 13 3 5 6 12

1676 Case 676 13 3 5 6 7 8

Case 677 13 3 5 6 7 9

1678 Case 678 13 3 5 6 7 10

Case 679 13 3 5 6 7 11

1680 Case 680 13 3 5 6 7 12

Case 681 13 3 5 6 7 8 9

1682 Case 682 13 3 5 6 7 8 10

Case 683 13 3 5 6 7 8 11

1684 Case 684 13 3 5 6 7 8 12

Case 685 13 3 5 6 7 8 9 10

1686 Case 686 13 3 5 6 7 8 9 11

Case 687 13 3 5 6 7 8 9 12
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E Input combinations for Wrapper method

1688 Case 688 13 3 5 6 7 8 9 10 11

Case 689 13 3 5 6 7 8 9 10 12

1690 Case 690 13 3 5 6 7 8 9 10 11 12

Case 691 13 3 6 7

1692 Case 692 13 3 6 8

Case 693 13 3 6 9

1694 Case 694 13 3 6 10

Case 695 13 3 6 11

1696 Case 696 13 3 6 12

Case 697 13 3 6 7 8

1698 Case 698 13 3 6 7 9

Case 699 13 3 6 7 10

1700 Case 700 13 3 6 7 11

Case 701 13 3 6 7 12

1702 Case 702 13 3 6 7 8 9

Case 703 13 3 6 7 8 10

1704 Case 704 13 3 6 7 8 11

Case 705 13 3 6 7 8 12

1706 Case 706 13 3 6 7 8 9 10

Case 707 13 3 6 7 8 9 11

1708 Case 708 13 3 6 7 8 9 12

Case 709 13 3 6 7 8 9 10 11

1710 Case 710 13 3 6 7 8 9 10 12

Case 711 13 3 6 7 8 9 10 11 12

1712 Case 712 13 3 7 8

Case 713 13 3 7 9

1714 Case 714 13 3 7 10

Case 715 13 3 7 11

1716 Case 716 13 3 7 12

Case 717 13 3 7 8 9

1718 Case 718 13 3 7 8 10

Case 719 13 3 7 8 11

1720 Case 720 13 3 7 8 12

Case 721 13 3 7 8 9 10

1722 Case 722 13 3 7 8 9 11

Case 723 13 3 7 8 9 12

1724 Case 724 13 3 7 8 9 10 11

Case 725 13 3 7 8 9 10 12

1726 Case 726 13 3 7 8 9 10 11 12

Case 727 13 3 8 9

1728 Case 728 13 3 8 10

Case 729 13 3 8 11

1730 Case 730 13 3 8 12

Case 731 13 3 8 9 10

1732 Case 732 13 3 8 9 11

Case 733 13 3 8 9 12

1734 Case 734 13 3 8 9 10 11

Case 735 13 3 8 9 10 12

1736 Case 736 13 3 8 9 10 11 12

Case 737 13 3 9 10

1738 Case 738 13 3 9 11

Case 739 13 3 9 12

1740 Case 740 13 3 9 10 11

Case 741 13 3 9 10 12

1742 Case 742 13 3 9 10 11 12

Case 743 13 3 10 11

1744 Case 744 13 3 10 12

Case 745 13 3 10 11 12
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E Input combinations for Wrapper method

1746 Case 746 13 3 11 12

Case 747 13 4 6 7

1748 Case 748 13 4 6 8

Case 749 13 4 6 9

1750 Case 750 13 4 6 10

Case 751 13 4 6 11

1752 Case 752 13 4 6 12

Case 753 13 4 6 7 8

1754 Case 754 13 4 6 7 9

Case 755 13 4 6 7 10

1756 Case 756 13 4 6 7 11

Case 757 13 4 6 7 12

1758 Case 758 13 4 6 7 8 9

Case 759 13 4 6 7 8 10

1760 Case 760 13 4 6 7 8 11

Case 761 13 4 6 7 8 12

1762 Case 762 13 4 6 7 8 9 10

Case 763 13 4 6 7 8 9 11

1764 Case 764 13 4 6 7 8 9 12

Case 765 13 4 6 7 8 9 10 11

1766 Case 766 13 4 6 7 8 9 10 12

Case 767 13 4 6 7 8 9 10 11 12

1768 Case 768 13 4 7 8

Case 769 13 4 7 9

1770 Case 770 13 4 7 10

Case 771 13 4 7 11

1772 Case 772 13 4 7 12

Case 773 13 4 7 8 9

1774 Case 774 13 4 7 8 10

Case 775 13 4 7 8 11

1776 Case 776 13 4 7 8 12

Case 777 13 4 7 8 9 10

1778 Case 778 13 4 7 8 9 11

Case 779 13 4 7 8 9 12

1780 Case 780 13 4 7 8 9 10 11

Case 781 13 4 7 8 9 10 12

1782 Case 782 13 4 7 8 9 10 11 12

Case 783 13 4 8 9

1784 Case 784 13 4 8 10

Case 785 13 4 8 11

1786 Case 786 13 4 8 12

Case 787 13 4 8 9 10

1788 Case 788 13 4 8 9 11

Case 789 13 4 8 9 12

1790 Case 790 13 4 8 9 10 11

Case 791 13 4 8 9 10 12

1792 Case 792 13 4 8 9 10 11 12

Case 793 13 4 9 10

1794 Case 794 13 4 9 11

Case 795 13 4 9 12

1796 Case 796 13 4 9 10 11

Case 797 13 4 9 10 12

1798 Case 798 13 4 9 10 11 12

Case 799 13 4 10 11

1800 Case 800 13 4 10 12

Case 801 13 4 10 11 12

1802 Case 802 13 4 11 12

Case 803 13 5 7 8
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1804 Case 804 13 5 7 9

Case 805 13 5 7 10

1806 Case 806 13 5 7 11

Case 807 13 5 7 12

1808 Case 808 13 5 7 8 9

Case 809 13 5 7 8 10

1810 Case 810 13 5 7 8 11

Case 811 13 5 7 8 12

1812 Case 812 13 5 7 8 9 10

Case 813 13 5 7 8 9 11

1814 Case 814 13 5 7 8 9 12

Case 815 13 5 7 8 9 10 11

1816 Case 816 13 5 7 8 9 10 12

Case 817 13 5 7 8 9 10 11 12

1818 Case 818 13 5 8 9

Case 819 13 5 8 10

1820 Case 820 13 5 8 11

Case 821 13 5 8 12

1822 Case 822 13 5 8 9 10

Case 823 13 5 8 9 11

1824 Case 824 13 5 8 9 12

Case 825 13 5 8 9 10 11

1826 Case 826 13 5 8 9 10 12

Case 827 13 5 8 9 10 11 12

1828 Case 828 13 5 9 10

Case 829 13 5 9 11

1830 Case 830 13 5 9 12

Case 831 13 5 9 10 11

1832 Case 832 13 5 9 10 12

Case 833 13 5 9 10 11 12

1834 Case 834 13 5 10 11

Case 835 13 5 10 12

1836 Case 836 13 5 10 11 12

Case 837 13 5 11 12

1838 Case 838 13 6 8 9

Case 839 13 6 8 10

1840 Case 840 13 6 8 11

Case 841 13 6 8 12

1842 Case 842 13 6 8 9 10

Case 843 13 6 8 9 11

1844 Case 844 13 6 8 9 12

Case 845 13 6 8 9 10 11

1846 Case 846 13 6 8 9 10 12

Case 847 13 6 8 9 10 11 12

1848 Case 848 13 6 9 10

Case 849 13 6 9 11

1850 Case 850 13 6 9 12

Case 851 13 6 9 10 11

1852 Case 852 13 6 9 10 12

Case 853 13 6 9 10 11 12

1854 Case 854 13 6 10 11

Case 855 13 6 10 12

1856 Case 856 13 6 10 11 12

Case 857 13 6 11 12

1858 Case 858 13 7 9 10

Case 859 13 7 9 11

1860 Case 860 13 7 9 12

Case 861 13 7 9 10 11
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1862 Case 862 13 7 9 10 12

Case 863 13 7 9 10 11 12

1864 Case 864 13 7 10 11

Case 865 13 7 10 12

1866 Case 866 13 7 10 11 12

Case 867 13 7 11 12

1868 Case 868 13 8 10 11

Case 869 13 8 10 12

1870 Case 870 13 8 10 11 12

Case 871 13 8 11 12

1872 Case 872 13 8 9 10

Case 873 13 8 9 11

1874 Case 874 13 8 9 12

Case 875 13 8 9 10 11

1876 Case 876 13 8 9 10 12

Case 877 13 8 9 10 11 12

1878 Case 878 13 8 10 11

Case 879 13 8 10 12

1880 Case 880 13 8 10 11 12

Case 881 13 8 11 12

1882 Case 882 13 9 11 12
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F Results from Project Work

The main results from the Project work [1] conducted this Autumn is presented in this section.

The experiments conducted in the Project work were for a MISO LSTM model, which this

thesis hybrid MIMO LSTM model is based on. The single zone utilized as an output in the

Project work is a small office with one external wall facing north and an internal wall shared

with Zone 8. The building utilized in the Project work quite similar to the Base Case of this

thesis, with some new adjustments.

F.1 Ratio for data distribution

This subsection includes the results when different ratios for training, validation, and testing

were tested. Table F.1 holds the average accuracy values for each ratio. Here the first value,

testing, includes the data related to the start of the year, the validation of the following, and

testing the end of the year.

Table F.1: Accuracy with different ratios for training, validation and testing

Train - Validate - Test RMSE [C] MAPE [%] MAE [C]

20% - 40% - 40% 0,106 0,333 0,077

30% - 35% - 35% 0,137 0,426 0,100

40% - 30% - 30% 0,121 0,336 0,079

50% - 25% - 25% 0,171 0,684 0,153

60% - 20% - 20% 0,197 0,814 0,180

70% - 15% - 15% 0,135 0,424 0,096

80% - 10% - 10% 0,152 0,461 0,107

F.2 Accuracy for testing in different seasons

This subsection includes the accuracy for testing the model for different seasons. Table F.2

holds the average MAPE, MAE and RMSE values for this experiment. Here “Season 1”

includes data from 01.01 - 30.04, “Season 2” 01.05 - 31.08, and “Season 3” 01.09 - 31.12.

Table F.2: Average error with different seasons for different tasks

Train(33%) Validate(33%) Test(33%) RMSE [C] MAPE [%] MAE [C]

Season 1 Season 2 Season 3 0.086 0.274 0.061

Season 1 Season 3 Season 2 0.148 0.450 0.109

Season 2 Season 3 Season 1 0.153 0.490 0.119

Season 2 Season 1 Season 3 0.260 0.606 0.137

Season 3 Season 1 Season 2 0.389 0.965 0.258

Season 3 Season 2 Season 1 0.101 0.275 0.064
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F.3 Time-stamp accuracy

This subsection includes results for test executed to find the error related to each time-stamp.

Table F.3 hold the average RMSE, MAE and MAPE values.

Table F.3: Average error with different time-step

RMSE [C] MAPE [%] MAE [C]

10 min 0.088 0.263 0.062

30 min 0.080 0.269 0.058

60 minutes 0.156 0.460 0.099

F.4 Parameter relevance

Table F.4 includes the results of the feature elimination conducted during the Project work

[1].

Table F.4: Average error related to each feature

RMSE [C] MAPE [%] MAE [C]

Outdoor temperature 0.131 0.324 0.072

Direct radiation 0.069 0.210 0.046

Radiation on surface 0.113 0.317 0.070

El. cooling 0.115 0.312 0.069

El. equipment 0.105 0.295 0.065

El. heating 0.093 0.252 0.055

El. lighting 0.121 0.335 0.074

El. mech. Supply air 0.148 0.404 0.089

Heat gain/loss 0.130 0.364 0.081

Number of occupants 0.101 0.284 0.062
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