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Abstract
This master thesis develops a hierarchical control system for a 4-wheel-individual-

steering (4WIS) vehicle, which is being created by the Norwegian agricultural

startup AutoAgri. A novel controller which allows simultaneous control of course

and yawrate is proposed. This controller uses the unique features of 4WIS vehi-

cles, and improves upon the existing 4WIS controllers by unifying standard 4WIS

driving-modes vehicles into a single framework. By unifying the driving-modes,

it removes the need for discountinuous mode switching and mode-selection logic.

A robust steering angle controller is developed using sliding-mode control (SMC).

The control systems are developed and integrated using Robot Operating System

2 (ROS2), and they are tested using Gazebo to simulate the vehicle. To demon-

strate the functionality of the system, we developed guidance and manual control

systems. The guidance system uses waypoints to generate a continuous curvature

path, and applies vector field guidance to control the course of the vehicle. In

the manual control system, the vehicle is controlled by a human operator using a

joystick input device.

The proposed control system is capable of handling a wide variety of cases and

some unmodelled disturbances. There is a problem with chatter in the steering

angle SMC which needs to be addressed before the control system can be applied

in practice, but several strategies to reduce this are discussed.
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Sammendrag
Dennemasteroppgavenutvikler et hierarkiskkontrollsystem for en4-hjul-individuelt-

styrt (4WIS) bil, som blir laget av det norske landbruksoppstartsselskapet Au-

toAgri. Et nytt type kontrollsystem som tillater simultan kontroll av kurs og

yawrate blir foreslått. Denne kontrolleren bruker egenskaper unikt for 4WIS biler,

og forbedrer eksisterende kontrollere ved å forene standard kjøremoduser inn

i ett rammeverk. Ved å forene kjøremodusene, fjernes behovet for diskontin-

uerlig modus-bytting og modus-seleksjonslogikk. En robust hjulstyringsvinkel-

kontroller blir utviklet ved å bruke sliding-mode kontroll (SMC). Kontrollsys-

temene er utviklet og integrert med Robot Operating System 2 (ROS2), og de blir

testet med Gazebo for å simulere bilen. For å demonstrere funksjonaliteten til

systemet, så utviklet vi guiding- og manuell-kontrollsystemer. Guiding systemet

bruker veipunkter for å generere en bane med kontinuerlig kurvatur, og vektorfelt

for å styre kursen til bilen langs banen. I manuell kontroll blir bilen styrt av en

menneskelig operatør ved hjelp av en joystick.

Det foreslåtte kontrollsystemet er i stand til å håndtere et variert antall tilfeller

og noen umodellerte forstyrrelser. Det har et problem med chatter, altså høy-

frekvente oscillasjoner, i hjulstyringsvinkel-kontrolleren sommå bli addressert før

kontrollsystemet kan bli tatt i bruk, men flere strategier for å redusere det blir

diskutert.
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1Introduction
Agriculture is on the verge of an automation revolution with many companies

dedicating their resources to it [21]. This is timely, since according to the UN, the

global population will hit 9.7 billion by 2050 and the food production needs to

increase by 70 % to accomodate this [4]. AutoAgri is a Norwegian company devel-

oping a novel agrictural vehicle designedwith autonomy inmind. It boasts several

advantages over typical agrictural vehicles, like reduced cost via autonomous op-

erations, reduced soil compaction via lower mass and better load distribution, and

reduced carbon footprint via a hybrid drivatrain [1]. The AutoAgri vehicle is a

drop-in replacement for mid-sized agrictural vehicles. It weighs about 2 metric

tonnes and is capable of carrying an additional 2 metric tonnes in payload. A

unique feature, is that it is a four-wheel-individual-steering (4WIS) vehicle, mean-

ing that each wheel can be steered and driven independently of the others. It

is designed to be fully autonomous, which allows the farmer to operate it when

conditions are ideal, as opposed to when the farmer is available. The vehicle can

operate in the field and give live feedback to the farmer about the progress and

any potential issues. It is equipped with collision avoidance sensors and software,

so that if any unexpected animals walk into the field, they will not get hurt. A

fully autonomous agricultural vehicle can increase the productivity, reduce the

need for pesticide and manual labour. But the road to full autonomy is long and

expensive, and the vehicle needs to prove its capabilities without autonomous

features first. Currently the vehicle is being developed for manual control, but it is

equipped with sensors to measure its surroundings and over time more and more

autonomous features will be added.

1.1 Main contributions

The main contributions of this work are given below.

Developed a hierarchical control system

This work develops a hierarchical control system insired by guidance and control

(GC). We demonstrate it by creating two applications; path-following and manual

control. In the path-following application, the vehicle is controlled via waypoints

which are specified through a graphical user interface (GUI). In themanual control

mode, the vehicle is controlled using joystick inputs.

Robust sliding-mode control of wheel steering angle

A sliding-mode controller is designed and implemented to robustly control the

steering angle of the wheels. Assumingwe can put an upper bound on the friction

1
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resistance experienced by thewheel, it is able to control the steering angle precisely

under unknown friction conditions. It does, unfortunately, have a problem with

chatter which could be problematic for real-life applications.

Novel no-slip based course-yawrate controller

This work presents a novel control system for 4WIS vehicles which controls course

and yawrate indepedently. This allows the vehicle to drive in any direction with

any orientation. It unifies the mode-based approach often employed with 4WIS

vehicles and is able to describe all no-slip based driving manouvers unique to

4WIS vehicles.

Other contributions

In addition to the contributions listed above, this work presents several minor

contributions. We

• developed a 4WIS vehicle simulator using Gazebo,

• implemented continuous curvature path-smoothing and applied it to vehicle

path-following,

To create the software in modular, loosely coupled components, we used Robot

Operating System 2 (ROS2) as a software framework.

1.2 Structure of report

The report is roughly divided into five parts; vehicle modeling, system design,

simulator, motion control systems, and applications.

Chapter 2 deals with modeling the vehicle. It presents equations of motion for

various components of the system, and it defines core concepts that will be used

throughout the text.

Chapter 3 presents the design of the system and the software engineering

considerations that went into it. It also explains the third party tools we have used

and what they contribute.

Chapter 4 presents the simulator that is used to evaluate the motion control

systems. It is based on Gazebo, and in this chapter we explain how the AutoAgri

vehicle was implemented inside Gazebo.

Chapters 5 and 6 presents the motion control systems that control the vehicle.

This includes the guidance-system for path-following, and the control system that

is responsible for setting actuator torques based on the reference signals. Results

from case studies are presented throughout these chapters as we build the control

system from the ground up.
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Chapter 7 presents two example applications demonstrating how the system

may be used in practice. The first example is manual control where we control the

vehicle via a Playstation controller. The second example is autonomous control

where we use a GUI to specify waypoints on a map, and use the motion control

system to follow those waypoints.

We wrap up the thesis by discussing the limitations, points of improvement,

and suggestions for feature work in Chapter 8.





2Vehicle Modeling
This chapter presents equations of motion for 4WIS vehicles. This chapter is in

large part based on Ch. 2 and 3 of the specialization project report [6]. We first give

an overview of the system, then we cover the relevant reference frames and vector

notation. After that, we present simplified equations of motion for specific aspects

of the system. We note that [6] gives a more complete description of dynamical

equations, but they have not been used in this work.

2.1 System overview

The AutoAgri vehicle is shown in Fig. 2.1a. It is a 4WIS vehicle, meaning that each

wheel is independently steered and driven. The wheels are driven by electric mo-

tors, which are powered either by an onboard lithium battery or a diesel generator.

Unlike many 4WIS vehicles, the wheels can be rotated 360 degrees, which opens

up many intersting movement patterns such as sideways driving and rotations on

the spot.

The weight of the vehicle is 2380 kg, and it is capable of carrying an additional

2000 kg load in between the wheels. The distance between the front and rear

wheels, called the wheelbase, is 2830 mm, and the distance between the left and

right wheels, called the track, is 2000 mm. All the wheels are identical and have

diameter 1010 mm and a width of 400 mm.

(a) Front view. (b) Rear view.

Figure 2.1: AutoAgri illustrations.

5
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2.2 Reference frames and vector notation

Tomodel the vehicle it is convenient to be able todescribepositions andvelocities in

different reference frames. The three main reference frames we use are illustrated

in Fig. 2.2, and they are the inertial, body, and wheel frames.

Inertial frame - {8}: The inertial frame has an arbitrary origin and is stationary

with respect to the Earth. In accordance with the litterature on automotive ve-

hicles (e.g. [17, 19]), we use an East-North-Up (ENU) convention for the inertial

system. Note that it is a Cartesian coordinate system, so the east and north compo-

nents represent distance from an origin, and not latitude and longitude as angles

relative to the Earth. Due to the rotation and curvature of the Earth, this system is

strictly speaking not an inertial reference frame, but since the vehicle will operate

over small distances compared to the size of the Earth, we believe it is a good

approximation.

Body frame - {1}: By rotating and translating the inertial reference frame to the

center of mass of the vehicle, we get the body frame. Alternatively, we can say

that the body frame defines the pose of the vehicle. If we assume the vehicle

operates on flat terrain, then its position can be described by two numbers (�, #)
representing distance in east and north directions from the origin. The orientation

of the vehicle is descibed by the yaw or heading, which is denoted#. To denote the

G8

H8

GFHF

G1

H1

Figure 2.2: Reference frames viewed from top.
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Gi

Hi

Gb

Hb

Gw
Hw

#

�

Figure 2.3: Reference frame orientations. Note that they are shown with the same

origin for illustrational clarity.

position of the body frame relative to the inertial frame, we use the vector notation

p8
1
=

[
�

#

]
(2.1)

In general the subscript gives a description of what the vector represents, and

the superscipt describes which frame it is decomposed in. There exists more

ellaborate vector notations, for instance as presented by [12], but we have not

found it necesarry here.

Wheel frame(s) - {F}: In addition to the body frame, eachwheel is given a reference

framewhich is centered on thewheel and rotated to alignwith the positive driving

direction of the wheel, as illustrated in Fig. 2.2. The wheels are denoted by

subscripts 8 9 where 8 ∈ {front, rear} = {�, '} and 9 ∈ {left, right} = {!, '}. Wheel

8 9 is positioned at p1
89
relative to the body frame. It is steered with an angle �8 9

relative to the body frame. For notational clarity, we will in many cases drop the

subscript 8 9 from the steering angle and other wheel states, and then it is implied

that the statements apply to all wheels equally. The orientation of the reference

frames are shown in Fig. 2.3.

2.2.1 Coordinate transformations

To express a vector from one coordinate frame in another, we need to apply a

coordinate transformation. The theory behind this is covered rigourosly in [12],

and we used it more actively in the specialization project [6]. The main tool we

need are rotation matrices. To rotate a two-dimensional (2D) vector, we use the

rotation matrix

R(#) =
[
cos# − sin#
sin# cos#

]
(2.2)
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Likewise, three-dimensional (3D) vectors are rotated about the z-axis using

RI(#) =

cos# − sin# 0

sin# cos# 0

0 0 1

 (2.3)

Note that (2.2) and (2.3) are essentially equivalent if we consider the 2D rotations

in (2.2) to be rotations about the z-axis. Using these definitions and the theory

covered in [34],we showed in the specializationproject [6] that the rotationmatrices

between the reference frames are given by

R1
8 = R(−#) ⇔ R8

1
= R(#) (2.4)

RF
1
= R(−�) ⇔ R1

F = R(�) (2.5)

This means that to rotate a body-frame vector x1 to the inertial frame, we would

use

x8 = R8
1
x1 = R(#)x1 (2.6)

Note that to express positions from one frame in another frame, we need to include

the translation component. For instance, say that the vehicle uses onboard sensors

to detect an obstacle at p1 relative to the vehicle. The obstacle’s position can then

be transformed to the inertial frame using

p8 = R8
1
p1 + p8

1
(2.7)

Reference frame transformations, especially with time-derivatives is covered in

depth in [12], so we defer there for more details.

2.3 Wheel modeling

In this sectionwe develop equations ofmotion for thewheel states. Eachwheel can

be steered and driven independently by two electric motors. To keep the model

simple, we do not model the motors in any detail. It is assumed that each motor

can be commanded to give a torque, and that torque is transfered immediately

to the wheel. There are two wheel states that we want to model. The angular

velocity $ and the steering angle �. To distinguish between the wheels later, we

use subscripts 8 9 to reference a specific wheel, but when no subscript is given, the

equations can be assumed to apply to all wheels.

The main external force that affects the wheels is friction between the tire and

ground. The specialization project report [6] devotes a chapter to exploring this

in detail, but here we give a brief summary of the results we found to be useful.

After that we derive a set of models for the equations of motion.
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G

E

EA = A$

$
A0

A

Figure 2.4: Wheel slip figure.

2.3.1 Slip

Consider a wheel driving in straight line as illustrated in Fig. 2.4. The load causes

the wheel tires to compress giving a radius A. The angular velocity of the wheel

is $. If the tire perfectly sticks to the ground, then the velocity of the wheel will

be the rotational equivalent velocity EA = A$, but due to resistance, frictional lag,

and other factors the actual velocity E may be different. The fact that the wheel’s

rotation may not be matched to the wheel’s velocity, gives rise to a phenomon

known as slip. There are several mathematical ways of defining slip. In [19], they

argue that slip only has a physical meaning if it’s limited to be within −1 and 1, so

they use the following defintion.

B =

{
A$−E
A$ for A$ ≥ E (driving)

A$−E
E for A$ < E (braking)

(2.8)

Note that they always divide by the larger velocity, but if we allow $ and E to take

on negative values, then this definition fails to limit the slip. An alternative and

simpler definition is used by [28] to study wheel dynamics. They use

B =
A$ − E
A |$ | (2.9)

The differences between the slip definitions are subtle, but it is important to re-

member that slip is a construct, meaning that it is a property of the system that

has over time been shown to be useful. There is no true definition of slip, but we

need to be careful not to apply results obtained with one definition without using

the same definition ourselves, atleast not without careful consideration.

2.3.2 Friction

The study of tire-road friction forces is a field in itself. It is particularly relevant

for control systems in autonomous vehicles, since research has shown that it has

difficult to control systems with friction without incorporating the friction model

into the controller [37]. This was also experienced in the specialization project,

where we found that we were only able to control the steering angle of the vehicle

in low-friction environments [6].
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� 5

�# �0

Figure 2.5: Static friction caused by asperities.

We begin by describing the two simplest friction models, namely static and

kinetic. After that we review Burckhardt friction, which is a model specifically

designed for tire-road friction.

Static and kinetic friction model

Static friction is a force that arises between two surfaces in contact with no relative

velocity. It is caused mainly by asperities on each surface which cause the surfaces

to "lock" together, as illustrated in Fig. 2.5. If we apply a force �0 , then the static

friction force resistingmotion is � 5 = �0 as long as the applied force does not exceed

the breakaway force. The breakaway force is the maximum static friction, which is

related to surface properties and weight. Summarizing the surface properties into

a parameter of static friction �B , we write

� 5 = sat

(
�0 , �B�#

)
(2.10)

where the saturation function is

sat (G, ") =


−" when G < −"
G when |G | ≤ "
" when G > "

(2.11)

If the applied force is bigger than �B�# , then the surfaces will move relative to

each other, giving rise to dry friction. One of the simplest models of dry friction,

is the Couloumb model which is commonly known as kinetic friction. It gives the

friction force as

� 5 = �:�#sgn (E) for E ≠ 0 (2.12)

Couloumb friction is similar in structure to static friction, but the parameter �: is
typically smaller than �B . This is illustrated in Fig. 2.6.

Burckhardt semi-empirical friction model

A friction model that improves upon the static/kinetic model presented above is

Burckhardt friction. Burckhardt is a fundamentally different type of model, as it is



2.3. WHEEL MODELING 11

�:

�B

E

� 5 (E)/�#

Figure 2.6: Combined static and kinetic friction.

Table 2.1: Example parameters for the simple Burckhardt model [5].

21 22 23

Asphalt, dry 1.2801 23.99 0.52

Asphalt, wet 0.857 33.822 0.347

Snow 0.1946 94.129 0.0646

Ice 0.05 306.39 0

a semi-empirical model designed for tire-road friction estimation. It was proposed

in [5] and is used extensively throughout the litterature (e.g. [19, 28]).

In Burckhardt’smodel, the friction parameter ismodeled as a function ofwheel

slip. There are several versions of Burckhardt’s model, but the simplest is

�(B) = 21 (1 − 4−22B) − 23B (2.13)

The parameters 28 have to be determined experimentally and will vary between

applications. Burckhardt and Reimpell [5] gives a table of typical values, which

we restate in Table 2.1. A plot of the model is given in Fig. 2.7.

Linear friction model

Note that around B = 0 in Fig. 2.7, the Burchkhardt model gives an almost linear

relationship between � and B. This is useful, since many vehicle applications will

operate with low slip, which means we can approximate the friction parameter

using a linear function

� = :B for small B . (2.14)

If we have determined the Burckhardt parameters, then : can be determined by

linearizing the Burckhardt model around B = 0. What we get then is

: = 2122 − 23 (2.15)
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0.2 0.4 0.6 0.8 1

0.5
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�

Asphalt, dry

Snow

Figure 2.7: Burckhardt friction.

This simplification is only valid in a small region around the origin. It should in

particular not be used if the slip exceeds the peak of the Burchkhardtmodel, which

is given by

Bpeak =
1

22

ln

(
2122

23

)
, (2.16)

since beyond the peak, the friction force changes drastically as we move from a

static to a kinetic region.

First order dynamical friction model

It is known that static friction models, that is friction models without dynamical

behaviour, are incapable of capturing effects like pre-sliding displacament and

frictional lag (e.g. [10, 12, 23]). It was shown in [25] that the friction force can be

modeled with a first order dynamical system

) ¤� 5 = � − � 5 (2.17)

) =
;

A |$ | (2.18)

where ; is the relaxation length, and � is for instance the Burckhardt model. The

relaxation length is a tire parameter related to rubber stiffness. It can be assumed

to be in the same order of magnitude as the tire radius.

2.3.3 Equations of motion

In this sectionwepresent equations ofmotion for thewheel states. Thewheel states

are the angular velocity $ and the steering angle �. The equations of motions were
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developed in the specialization project [6], and we restate them here as

�H ¤$ + A� 5 = �3 (2.19)

�I ¥� +" 5 = �B (2.20)

�H and �I are the moments of inertia for the wheel about the y- and z-axes, respec-

tively. A is the radius of the wheel. �3 is the driving torque, and �B is the steering

torque. Friction creates a force � 5 on the angular velocity, and a steering resistance

" 5 on the steering angle.

To determine the friction force � 5 we can use the Burckhardt friction model as

given in Section 2.3.2 assuming we have access to the above ground velocity v of

the wheel. The above ground velocity of the wheel is the velocity of the wheel

relative to the ground, which can be computed as the velocity of the wheel frame.

Determining the steering resistance " 5 is unfortunately more challenging. In the

specialization project, we estimated " 5 offline as

" 5 =
1

3

sgn

(
¤�
)
F�:�/ (2.21)

whereF is the width of the tire, but we found that using this offline estimate in the

control system yielded poor performance, which indicates that it is an imprecise

estimate. While the exact value of" 5 may not correspond to (2.21), we believe the

structure of the estimate is correct. Based on this we argue there exists an upper

bound " = :�:�= such that the inequality��" 5

�� ≤ " = :�:" (2.22)

is always satisfied for some fixed value of :. While this does not provide a basis to

simulate steering resistance, this property is used to derive a robust control system

in Chapter 5.

2.3.4 Quarter vehicle model

Using the equations of motion for a single wheel, we can create one of the simplest

vehicle models, namely the quarter vehicle model. We present two variations of

the quarter vehicle model, the first one allows two dimensional movement and is

used to illustrate a few core concepts. The second one is constrained to move only

in one direction and is useful for analysis and control systems design.

2D quarter vehicle model The 2D quarter vehicle model has a single wheel and a

mass, as illustrated in Fig. 2.8a. The wheel is moving horizontally in the GH-plane,

and has a heading � and angular velocity $ governed by (2.19) and (2.20). The

angle 
F is called the tire side-slip angle, and is the angle between the wheel

velocity v and the wheel heading. A related angle is the wheel sideslip angle,
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E, � 5
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(a) Side view.
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H1
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�

(b) Top view.

Figure 2.8: Quarter vehicle model.

denoted �F , which is the angle between the wheel velocity and the vehicle body’s

x-axis. These angles are illustrated in Fig. 2.8b. To compute these angles, we can

decompose the velocity vector in either the wheel frame or the body frame, and

use


F = atan2(EFH , EFG ) (2.23)

�F = atan2(E1H , E1G) (2.24)

We note that it is possible relate these quantities to a slip based friction model to

create a complete dynamical model for the quarter vehicle model, but we do not

need any more details than are given above for the current work.

1Dquarter vehiclemodel Avariation of the quarter vehiclemodel is the 1D quarter

vehicle model that was used by [28] to study vehicle dynamics and wheel simu-

lation stability. The model is illustrated by Fig. 2.8a, but we ignore the steering

angle. This means that it can only move in one direction.

The equations of motion are obtained by Newtonian mechanics using the dy-

namic friction model of Section 2.3.2 in combination with a linear friction model.

What we get then is

< ¤E = � 5 (2.25)

� ¤$ = −� 5 + �3 (2.26)

;

A |$ |
¤� 5 = :

A$ − E
A |$ | − � 5 (2.27)



2.4. LOAD TRANSFER 15

Note that we use (2.9) as a slip definition. This allows us to rewrite and get

¤E = 1

<
� 5 (2.28)

¤$ = − A
�
� 5 +

1

�
�3 (2.29)

¤� 5 = :
A$ − E
;
− A |$ |

;
� 5 (2.30)

This wheel model is interesting because it is almost linear, yet it still includes

essential features of the system like friction forces. If we consider D = �3 to be the

input and H = $ to be the output, then it is a passive system. To see this we use

the storage function

+ =
<

2

E2 + �
2

$2 + ;

2:
�2

5
(2.31)

Its time derivative is given by

¤+ = <E ¤E + �$ ¤$ + ;

:
� 5 ¤� 5 (2.32)

= E� 5 − A$� 5 + $�3 + � 5
(
(A$ − E) − A |$ |

:
� 5

)
(2.33)

= $�3 −
A |$ |
:
�2

5
(2.34)

= HD − )($, � 5 ) (2.35)

Since )($, � 5 ) ≥ 0 for all wheel states, we can write DH ≥ ¤+ , which means the

system is passive [18]. One might expect the system to be strictly passive in

practice, since if we stop applying torque then the wheel should slow down over

time and come to a stand still. This modeling inaccuracy stems from the fact that

we have not included any dampening effects.

2.4 Load transfer

When accelerating, the load experienced by each wheel will change. This effect

is called load transfer, and in the specialization project [6] we derived a set of

equations that describe this. For completeness, we will restate those results here.

Consider a vehicle with horizontal acceleration a1 =
[
0G 0H

]
as illustrated in

Figs. 2.9 and 2.10. Kiencke and Nielsen [19] defines inertia signals for the chassis

as the negative acceleration

a1
ch
= −a1 . (2.36)

In the specialization project we found that the load transfer equations are given

by a superposition of the unloaded and loaded configuration.

�/89 = �/89,unloaded + �/89,loaded (2.37)
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�/,rear �/,front

F!

<0G,ch
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;A ; 5
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ℎch
ℎ<

Figure 2.9: Load transfer setup, viewed from side.

�/�' �/�!

<∗
front

0H,ch

1�/2 1�/2

ℎcg

Figure 2.10: Load transfer setup, viewed from front.

Where the unloaded configurations are given by

�/�!,unloaded = <6

(
;'

;
−
ℎcg0G,ch

; 6

) (
1

2

−
ℎcg0H,ch

1�6

)
, (2.38)

�/'!,unloaded = <6

(
;�

;
+
ℎcg0G,ch

; 6

) (
1

2

−
ℎcg0H,ch

1'6

)
, (2.39)

�/'',unloaded = <6

(
;�

;
+
ℎcg0G,ch

; 6

) (
1

2

+
ℎcg0H,ch

1'6

)
, (2.40)

�/�',unloaded = <6

(
;'

;
−
ℎcg0G,ch

; 6

) (
1

2

+
ℎcg0H,ch

1�6

)
, (2.41)
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and the loaded configuration are given by

�/�!,loaded =

(
;' + ;<
;

�!,I −
ℎ<

;
�!,G

) (
1

2

−
ℎcg0H,ch

1�6

)
, (2.42)

�/'!,loaded =

(
; 5 − ;<
;

�!,I +
ℎ<

;
�!,G

) (
1

2

−
ℎcg0H,ch

1'6

)
, (2.43)

�/'',loaded =

(
; 5 − ;<
;

�!,I +
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2.5 Instantaneous center of rotation

The instantaneous center of rotation (ICR) is the point that every point on the

vehicle rotates about, and is illustrated in Fig. 2.11. For typical front-wheel steered

vehicles with Ackermann mechanisms, it will lie on a line collinear to the rear

axle, but 4WIS vehicles are able to control it to arbitrary positions. The main

reason we are interested in it, is because during normal driving all wheel will

point orthogonally to the ICR, and when the wheel direction is not orthogonal

to the ICR, the wheel will slip and potentially create large breaking forces. If we

want to develop an optimization based control strategy, then the ICR provides a

natural way to constrain the wheel states to each other. Using the body states, we

can determine the ICR of the vehicle relative to the body frame.

Assume the vehicle has horizontal velocity v = [EG , EH , 0]) and yawrate ¤#.
Then the ICR relative to the body is

GICR =
−EH
¤#

and HICR =
EG
¤#

(2.46)

This can be proved using rigid body kinematics. The velocity of the ICR can be

written as a sum of the velocity of the body and the angular velocity about the

Figure 2.11: All wheels pointing toward the ICR.
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ICR. By definition, the velocity of the ICR is zero, so we get
0

0

0

 =

EG
EH
0

 +

0

0

¤#

 ×

GICR
HICR

0

 (2.47)

Solving for GICR , HICR gives the above results, which we write as

p1
ICR

=
1

¤#


−EH
EG
0

 (2.48)

2.6 No-slip conditions

No-slip conditions, or no-slip assumptions, are assumptions that greatly simplify

the vehicle model, because they let us move from a dynamical vehicle model to a

kinematic vehicle model. There are two no-slip assumptions:

1. The tire sideslip angle 
8 9 (see Fig. 2.8b) of each wheel is zero. This implies

that the wheel velocity direction is aligned with the wheel direction.


8 9 = 0⇔ �8 9 = �8 9 for all wheels . (2.49)

2. The angular velocity of each wheel is matched to the ground velocity of the

wheel.

A$8 9 = E8 9 for all wheels (2.50)

Note that these assumptions are idealized approximations, and all wheels exhibit

slipwhendriving. This is becausewithout slip, thewheels generateno force,which

can be seen by plugging B = 0 into the Burckhardt model. A problem with the no-

slip assumptions is that they constrain the wheel states in highly non-linear ways,

which make it hard to use in optimization. This is mainly a problem if we want

to map fromwheel states to vehicle states, because most wheel state combinations

do not satisfy the no-slip assumption. These nonlinear constraints are related to

the ICR of the vehicle. If the ICR of the vehicle is pICR and the position of wheel 8 9

is p8 9 , then the wheel drives around the ICR with an instantaneous radius of

'8 9 =


pICR − p8 9




(2.51)

No-slip assumptionsgive that the speedof thewheel is E8 9 = A$8 9 , whichmeans that

the wheel "orbits" the ICR with an instantaneous orbital period )8 9 = 2�'8 9/A$8 9 .

Since all wheels must orbit the ICR with the same period, the wheels states are

constrained by )�! = )'! = )'' = )�'. Writing this out and simplifying since all

wheels have the same radius, we get

'�!

$�!
=
''!

$'!
=
'''

$''
=
'�'

$�'
(2.52)
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This constraint is only useful if we know the ICR, but the ICR is determined by

atleast two of {��! , �'! , �'' , ��'}. These non-linear constraints make it difficult to

apply optimization techniques to no-slip models, especially if we want to optimize

over the wheel state space (�8 9 , $8 9).





3System Design
Implementing vehicle simulation and control systems is a big software develop-

ment task. For this project, we have used the lessons we learned in the special-

ization project, and rebuilt most of what was made there from scratch. As we’ll

see, this has allowed us to take advantage of tools and software available in the

robotics community, and to create a simulatorwhich is easier tomaintain andmore

extensible for future work. In this chapter we describe the overall architecture of

the system, and the third party tools that we have used.

3.1 Design goals

The design goals of the system specifywhatwewant the end-product to be capable

of. The primary goal of this work is to develop and evaluate a hierarchical control

system for 4WIS vehicles, so the design of the system must facilitate that. Due to

the ongoing pandemic, it has not been feasible to test the developed systems on the

physical AutoAgri vehicle as was originally intended, so a simulator is used in its

place. Ideally, the simulator would be a perfect substitute for the AutoAgri vehicle,

emulating onboard sensors and actuator interfaces. But developing a simulator

with such accuracy is a big task, and since we knew from early on that we were not

going to perform field tests, we decided it was not worth the cost of implementing

such an accurate simulation.

The end-system should be capable of controlling a simulated version of the

AutoAgri vehicle, and it should provide both autonomous and manual modes of

control.

3.2 System overview

The system is divided into four main modules with distinct tasks; simulator, state

estimator, motion control, and operation. The simulator module does physics

simulation and sensor emulation. The state estimator module does sensor fusion

and state estimation. The motion control module controls the vehicle, translating

high-level motion commands into actuator torques. Finally the operation module

implements high-level operations that the vehicle can perform. This includes

providing an interface for an operator to control the vehicle either manually via

joystick commands or autonomously via waypoints. The top-level signal flow is

illustrated in Fig. 3.1.

Themain focus in this project has been developing a robust and capablemotion

control module. The other modules are minimally implemented, but we add

them to the architecture to illustrate what a more complete system may look like.

The system architecture is heavily inspired by guidance, navigation and control

(GNC) as presented in [13]. The GC part is contained in the motion control

21
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Motion control Simulator

State estimator

Operation

Figure 3.1: System overview.

module. An overarching design principle is that the modules should not need

to change if we port this to a real vehicle. All that is needed is to swap out

the simulator module with a real vehicle. The reason we strive for this is that

it allows us to test the software extensively in simulation before deploying it to

the vehicle. From a software engineering standpoint, this is preferable because

simulator tests can then test the actual implementation that is used on the vehicle,

before it is deployed. It saves us from having separate prototype and production

implementations, which makes the software development process more robust.

And the closer the simulator emulates the real vehicle, themorewecanbe confident

that simulator results will carry over to the real vehicle.

3.3 Software tools

To build the system, we decided it would be beneficial to use third party software

tools. The benefit of this is that it allows us to develop faster and better comply

with standard tools used by the robotics community. The two main tools we use

are ROS2 for building software, and Gazebo for physics simulation.

3.3.1 ROS2

ROS2 [30] is a framework for robotics applications, which has seen extensive

use in robotics research and some industrial applications [29]. For our purposes

it acts as a "software glue" that allows us to decompose the system into many

smaller modules, and glue them togheter with typechecked messages. We note

that there are other alternatives to ROS2 like ZeroMQ and Protocol Buffers, but

we chose ROS2 primarily due to prior experience with it. ROS2 aims to address

many of issues that have been found in its predecessor over the years, such as

high communication overhead, security options, embedded systems, real time

requirements, and much more. This means that ROS2 is not merely a research

tool. It is also a robotics framework made for the industry.
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"topicname" :

geometry_msgs/msg/Point
Node 1 Node 2

Figure 3.2: ROS2 example application.

float64 x
float64 y
float64 z

Listing 3.1: geometry_msgs/msg/Point

1 #include <geometry_msgs/msg/point.hpp>
2

3 geometry_msgs::msg::Point point;
4 point.x = ...
5 point.y = ...
6 point.z = ...

Listing 3.2: ROS2 message example in C++.

For our purposes, the two most important things it provides are

1. a way of dividing large software into smaller components called nodes, and

2. a message based communication layer for sending data between the nodes.

In addition to these features, ROS2 providesmany development tools that allow us

to introspect and debug running applications. An example application is shown

in Fig. 3.2. In it we have two executables running in parallel, called nodes. Node

1 publishes a message of type geometry_msgs/msg/Point, and node 2 subscribes to

it. The message is available globally in the system, so any number of nodes can

decide to subscribe to it. To subscribe, it needs to know the address of themessage,

called the topic, which is represented by a string. Sending and recieving messages

is handled by a data distribution service (DDS) and it can be configured to work

even when nodes are running on different devices.

For data integrity reasons, the messages are always typed. The type of the

message is specified in langauge independent interface description language (IDL)

files. For instance the message used above, geometry_msgs/msg/Point, is defined

in Listing 3.1. It consists of three 64-bit floating point numbers representing the

x-, y-, and z-components of a point. The ROS2 build system compiles these files

into language specific code. For instance, Listing 3.2 shows how ROS2 messages

can be accessed in C++. ROS2 comes with a large library of message types for

different purposes, and we can also create our own to represent specific aspects of
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the system. When we denote a message, we will refer to it using <package-name>/

msg/<type-name>. A list of the message types we have used and created are given

in Appendix B.

3.3.2 Gazebo

Gazebo [20] is a popular open source physics simulator, designed for robotics re-

search. Using Gazebo for vehicle simulation and integrating it with ROS2 requires

some setup, which we detail in Chapter 4.

3.4 Modules & interfaces

This section expands upon the system overview presented in Section 3.2. We

present all the modules that we have implemented and give the message types

that they use to communicate. To present the interfaces, we describe their physical

meaning and show the corresponding IDL files.

3.4.1 Simulator

The simulator module implements a simulationmodel, which is the most accurate

and detailed model we have of the vehicle. In the specialization project, we

found that implementing the equations of motion and getting good simulator

performance in a wide variety of scenarios was difficult. To mitigate this we

decided to use Open Dynamics Engine (ODE) to simulate the system instead. In

this project, we go one step further and delegate the entire simulation task to

Gazebo.

Input The input that the simulator allows are wheel commands. Specifically,

each wheel has two torque inputs, one for driving and one for steering. These

signals are wrapped in a vehicle_interface/msg/WheelCommand, which is given in

Listing 3.3.

Output Since we neglect state estimation in this project, we use the simulator

to publish ground truth data about the vehicle. The simulator publishes angu-

lar velocity, steering angle, and the steering angle rate for each in wheel in a

vehicle_interface/msg/WheelStatemessage, which is defined in Listing 3.4.

float64 drive_torque
float64 steer_torque

Listing 3.3: vehicle_interface/msg/WheelCommand
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float64 steering_angle
float64 steering_angle_rate
float64 angular_velocity

Listing 3.4: vehicle_interface/msg/WheelState

"wheel_ĳ/state" :

vehicle_interface/msg/WheelState

"pose" : geometry_msgs/msg/Pose

"twist" : geometry_msgs/msg/Twist
Simulator

"wheel_ĳ/command" :

vehicle_interface/msg/WheelCommand

"accel" : geometry_msgs/msg/Vector3

Figure 3.3: Simulator module interfaces.

geometry_msgs/Point[] points

Listing 3.5: vehicle_interface/msg/Waypoints

Theposition andorientationof thevehicle is representedby thebuilt inmessage

type geometry_msgs/msg/Pose. We alsopublish the body-framevelocity andangular

velocities in a geometry_msg/msg/Twist message. The acceleration of the vehicle is

published as a geometry_msgs/msg/Vector3 message. For more details of these

messages, we refer to Appendix B.

The simulator module along with its interface topics and interface types is

illustrated in Fig. 3.3.

3.4.2 Motion control

Themotion control architecture translates high-levelmotion commands to actuator

inputs. There are two modes of operation the architecture needs to support,

manual control and waypoint based control.

Input The main inputs of the motion control system are the motion commands.

In the waypoint mode, the controllers receives a vehicle_interface/msg/Waypoints

message as defined in Listing 3.5. The vehicle_interface/msg/Waypoints message

contains an ordered list of Cartesian coordinates, which is used to define a path

the vehicle should follow. In manual control mode, the vehicle controller re-

ceieves a vehicle_interface/msg/Guide message, which is defined in Listing 3.6.
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float64 course
float64 speed

Listing 3.6: vehicle_interface/msg/Guide

# Subscriber can use source to filter for relevant messages
string source
float64 yaw
float64 yawrate

Listing 3.7: vehicle_interface/msg/YawReference

The vehicle_interface/msg/Guidemessage says what direction the vehicle should

move (course) and with what speed.

In both modes, we can also control the yaw of the vehicle. This is specified

independently by a vehicle_interface/msg/YawReference message as defined in

Listing 3.7. The yaw reference message contains yaw and yawrate. In addition

it has a string attribute which says where the yaw-reference comes from. This is

useful because the vehicle should support multiple yaw-control modes. Inmanual

mode, it is typically more intuitive to control the derivative of a signal, so instead

of controlling yaw directly, we control yawrate. But in waypoint mode, it might be

most appropriate for the yaw to align with the path. By adding a source attribute

to the yaw-reference and allowing themotion control system to filter out irrelevant

yaw-reference sources, the system supports multiple yaw-control modes without

modification.

We note that in addition to the special inputs given above, the motion control

system also gets feedback signals of vehicle and wheel states.

Output The output of the motion control system are actuator inputs. In our case,

the actuators aremotor torques thatwe send to the simulatorwith vehicle_interface

/msg/WheelCommandmessages.

The motion control interfaces are illustrated in Fig. 3.4.

Architecture

Themotion control system is responsible for taking a high level description of how

the vehicle should move, and executing it. To do this, we divide it into three main

layers. The upper layer is the guidance system, which is responsible for taking in a

path and determining which direction and speed the vehicle should move with in

order to follow the path. The middle layer is vehicle control, which is responsible

for coordinating the wheels. The bottom layer is the wheel control layer, which is

responsible for following the reference set by the vehicle control layer on a single
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"waypoints" :

vehicle_interface/msg/Waypoints

"guide" :

vehicle_interface/msg/Guide

Motion Control

"wheel_ĳ/command" :

vehicle_interface/msg/WheelCommand

Figure 3.4: Motion control module interfaces.

Guidance Wheel ControlVehicle Control
Yaw controller

"A EA , ¤#A
No-slip controller

Speed controller

Waypoints

[4]Path-smoother

Path-follower

Reference optimization

Steering angle

Angular velocity

�B �3

Figure 3.5: Motion control architecture.

wheel. This means that four copies of the wheel control layer run in parallel to

control all the wheels of the 4WIS vehicle. The motion control architecture is

shown in Fig. 3.5 with arrows showing the signal flow. More details on the motion

control modules are given in Chapters 5 and 6.

3.4.3 State estimation

The state estimationmodule is responsible for determining the states of the vehicle.

This involves sensor fusion to determine position, velocity, orientation, and wheel

states. And it involves determining other derived quantities like the load on each

wheel, or error detection. For this project, the state estimation module is added

to show where it fits in a complete system, but it has not been a focus. Since we

have access to ground truth data from the simulator, the main task of the state

estimation module is to relay the ground truth data.
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3.4.4 Operation

The operation module is the highest level in the system. It provides user-facing

interfaces to the vehicle, and it is where we place business logic relating to specific

operations that the vehicle should be capable of. For this project we have cre-

ated two operations; waypoint following and manual mode, to demonstrate the

capability of the system. More details on these are given in Chapter 7.

3.5 Bandwidth and time-scale separation

The GC architecture is a cascaded control system, where higher levels are used

to set references for the lower levels. This structure is chosen mainly due to its

simplicity and decoupled design, but it may affect the stability of the system. The

vehicle control system assumes that when it sends a reference to the wheel control

system, then that referencewill be followed immediately. In general a control layer

will neglect the dynamics of lower control layers because this assumption greatly

simplifies control design. To ensure that this assumption is valid, we need to have

bandwidth separation between the control layers.

Bandwidth separationmeans that thewheel controllers have higher bandwidth

requirements than the vehicle controllers. Doing bandwidth separation properly

requires system identification, which is beyond the scope of this project. In the

wheel control layer we use a referencemodel for the wheel which has a bandwidth

of $1 ≈ 3rad s
−1
. The vehicle control layer should then have a significantly lower

bandwidth than 3 rad s
−1
, otherwise the system may become unstable. This is

achieved by using a yaw reference model with a quarter of the bandwidth and

tuning the guidance system so it does not attempt too aggressive maneouvers.

In addition to bandwidth separation, the control systems should run on dif-

ferent time-scales. This is because the upper control layers have lower bandwidth

requirements than the lower layers, so running them at the same frequency is

computationally wasteful. This is particularly important in realtime, resource con-

strained systems. The frequency of each control layer should be related to the

required bandwidth of the layer, but without system identification, there is no

precise way of determining the frequencies. By trial-and-error, we found that

running the vehicle control layer at 50 Hz and the wheel control layer at 100 Hz

worked well in the simulated case studies, but the values are arbitrary. More work

is required in order to establish the bandwidth requirements at each control level.

3.6 Detailed architecture

A detailed architecture of the system is given in Fig. 3.6. It shows all the essential

modules that have been implemented and discussed above.
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4Simulator
The simulator is where we test the autonomous behaviour of the vehicle. In the

specialization project [6] we developed a vehicle simulator from scratch using

Python and ODE. Since we do not want developing and maintaining a simulator

to be a focus of this project, we decided that it would be beneficial to migrate to

the popular open source robotics simulator Gazebo. Doing this requires some

setup as Gazebo is not immediatly capable of doing vehicle simulations. Instead

it relies on a strong plugin system that allows users to modify and interact with

the simulator by writing C++ plugins. In this chapter, we present design decisions

behind the simulator, andwe detail how to set up Gazebo to simulate the Autoagri

vehicle. At the end we discuss some of the limitations our approach has, and

potential solutions.

We note that there is little research using Gazebo for similar use cases. Biber

et al. [3] used Gazebo to simulate a 4WIS agricultural robot called "BoniRob".

Unfortunately, that project dates back to 2012, and we were unable to aquire

source code for it.

4.1 Simulator assumptions

The main design principle behind the simulator is that it should be physically

reasonable. The primary goal of this project is to develop and experiment with

control systems. To test the control systems, it is not necessary to have accurate

simulation. But we should identify the differences between the simulator and

real-life and keep them in mind when we evaluate the results.

Since we only require physical reasonability, we implement the simulator as

a rigid-body simulation. This means that the objects have mass and geometry,

can collide and assert friction on one another, but they do not deform. Actually,

the rigid-body design decision is more of a constraint than a decision. Rigid-

body dynamics are easier to simulate and there exists openly available software to

simulate it, whereas solid-body dynamics is much more difficult.

Most of the equationspresented inChapter 2 assumesflat terrain. To investigate

the effect of unmodelled disturabances, we require that the simulator supports

sloped terrain.

4.2 Gazebo terminology

A Gazebo simulation consists of several elements, and they are structured neatly

into a hierachy, which we illustrate in Fig. 4.1. The top element is world, which

contains 5 distinct child elements. The scene element describes how the models

and lights are placed at the start of the simulation. The physics element describes

the settings for the physics engine, like which engine to use, stepsize and real

31
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World

Scene

Physics

Model

Link

Joint

Plugin

Plugin

Light

Figure 4.1: Gazebo terminology and hierarchy.

time factors. The model element is the primary element we are concerned with.

With the exception of lights, every object in the simulator is described by a model.

There can bemanymodel elements in a simulation. Theworld plugin tag describes

plugins that are attached to the world. These can modify world properties like

physics parameters, reset the simulation simulation, spawn or delete models, and

more. The light element describes the placement of lights which illuminate the

scene.

4.2.1 Models

As stated above, the model element are the objects we simulate, so it is where we

implement the vehicle and specify its physical properties. A model consists of one

or several links, and the links are held together by joints. Note that these terms

(link and joint) have the same meaning as in the broader robotics litterature (e.g.

[34]). In addition to this, a model may have plugins which allows the model to be

controlled by external commands. A detailed model structure is shown in Fig. 4.2.

4.2.2 Links

A link is a rigid body. It has inertial properties like mass and an inertia matrix.

To simulate interactions with other objects, it also has a collision geometry, which

defines an impenetrable region. To visualize the model, it has a separate visual

geometry. The main reason to separate collision and visual geometry, is that colli-

sion detection and resolution is computationally expensive, so it is advantageous

to use simple collision geometry primitives, like spheres, boxes, and cylinders.
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Model

Link

Pose

Inertial

Mass

Inertia

Visual

Geometry

Collision

Geometry

Sensor

Joint

Parent

Child

Axis

Plugin

Figure 4.2: Model element hierarchy.

4.2.3 Joints

Joints are used to connect links together. Behind the scenes, they are used to create

constraints that the simulation must maintain. They also provide a natural way

to add actuators to the simulation. There is a wide variety of joint types used in

robotics simulation, and [24] gives a comprehensive list in the context of ODE,

which is Gazebo’s default physics engine. To implement a basic vehicle, we only

need two joint types; rigid and continuous.

Rigid joints

Rigid joints are rigid connections between links. When two links are rigidly

connectected, they behave as a single link, meaning that they cannot rotate or

move relative to each other.
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Figure 4.3: Model illustration.

Continuous joints

Continuous joints are joints with a rotional axis. The position and orientation of

the rotational axis is defined in relation to the parent link. This means continuous

joints are a natural way to implement wheel and steering mechanisms. If we want

to constrain the steering angle, then revolute joints are equivalent to continuous

joints except with limited range of motion.

4.3 Gazebo setup

To create the Autoagri vehicle in Gazebo, we need to define its properties in the

model format shown in Fig. 4.2. This is done using unified robot description

format (URDF), which is an XML based file format. Since each wheel is identical,

it is natural to create a submodel for a single wheel that we can duplicate and place

on a chassis model.

4.3.1 Wheel model

The wheel is created using three links. The first link is the wheel base, which is

where the wheel model is rigidly attached to the chassis. The steering link is the

part of the wheel that rotate when the wheel steers. It is connected to the base link

via a continuous joint that allows rotation about the vehicle z-axis. To drive the

wheel, a tire link is created and attached to the steering linkwith a continuous joint

that allows rotation about the y-axis. This is illustrated and related to autoagri

vehicle in Fig. 4.4. The tire link is created using a cylinder, which is a primitive
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wheel base link

wheel steer link

wheel tire link

Figure 4.4: Wheel links and their physical interpretation.

shape in Gazebo. As a small graphical improvement we also add a 3D mesh to

the visual tag, but this does not affect the physics. Note that the cylinder, like all

other objects in Gazebo, is a rigid body. This means that properties like rubber

and terrain deformation is not simulated.

4.3.2 Chassis model

The chassis model is simpler as it does not have any moving parts. To model the

chassis, we use primarily a single link. In addition to this we add an optional tool

link which is rigidly attached to the chassis.

4.3.3 Complete model

The complete model is created by duplicating the wheel models and creating rigid

joints to connect them to the chassis where the wheels should be positioned. The

final link and joint structure is shown in Fig. 4.5. A screenshot of the complete

model is shown in Fig. 4.6. To verify that the joints were placed correctly, we made

the model transparent and enabled joint visualization. This is shown in Fig. 4.7.

There it can be seen that each wheel has its own coordinate frame with a small

yellow circle indicating the the wheel rotates about the green axis, which is the

wheel y-axis.

4.3.4 Model plugins

By default the model presented above does not do anything. It is simulated in

the physics engine, but we have no way of interacting with it through code. This
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Figure 4.5: Link and joint hierarchy in vehicle model.

Figure 4.6: Complete model.

is where plugins come into play. Plugins, or more specifically, model plugins,

are arbitrary pieces of C++ code that are attached to a model and called upon by

Gazebo on runtime. The Gazebo model application programming interface (API)

allows us to query properties of the model like position, velocity, link states, joint

states, and more, and apply forces and torques dynamically. Since the plugins are

written in C++, it is straight forward to integrate them with ROS2.

Keeping with the structure presented above, we create two plugins; one to

interact with a single wheel, and one to read out body states.
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Figure 4.7: Model with joint visualization.

Wheel plugin The wheel plugin is responsible for setting torques on the steer and

drive joints on a singlewheel. It does this by creating a ROS2 node and subscribing

to vehicle_interface/msg/WheelCommandmessages from the wheel command topic,

as illustrated in Fig. 3.3. It forwards the torque messages to their respective joints

in thewheelmodel using the GazeboAPI, which has amethod for applying torque

to a joint. In addition to setting torques, the plugins reads out the wheel states

using the Gazebo API. These wheel states are published using vehicle_interface

/msg/WheelStatemessages.

Vehicle plugin The vehicle plugin is loaded to the root of the vehicle model. It

does not affect the simulator directly, but it is used to publish the vehicle states

out of Gazebo and into the ROS2 ecosystem. It contains publishers for pose, twist,

and acceleration of the vehicle. These are published using the standard library

types geometry_msgs/PoseStamped, geometry_msgs/TwistStamped, and geometry_msgs

/Vector3Stamped respectively, which are given in Appendix B.

4.4 Limitations

The simulator developed in this project has several limitations. The main limi-

tations are what we can call interface realism. We interact with the simulator by

sending torque signals to the motors. This is reasonable as a signal with physical

meaning, but presumbably the motors on the vehicle do not allows us to control

torque directly. An improvement to the simulator would be to investigate what the

inputs of the motors are, and characterize their response curves. Additionally, the

simulator outputs ground-truth data, but this is problematic because the quality of

the data used in the control system is then unreasonably accurate and noise-free.

To make the simulator more realistic, we could emulate sensors such as wheel

encoders and GPS.
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Another limitation is the lack of terrain. It is only capable of simulating flat or

inclined surfaces, but this is not representative of a real field. The problem is that

in order to implement terrain, we also need to implement suspensions or other

vertical dynamics. With rigid-body simulation, the vehicle is incapable of driving

over small objects, because doing so requires several of the wheels to come off of

the ground.

There are several small improvements we can make to the simulator to make

it more realistic. One is to add real inertial parameters. Currently, the vehicle

properties are approximated using geometric primitives from Gazebo such as

boxes and cylinders. Using the CAD software the vehicle is designed in, we can

obtain the inertia matrix and center of mass which would make the simulation

more physically accurate. Another small improvement is to use a better friction

model. By default, Gazebo uses a version of static and kinetic friction which

is optimized for computational efficiency. Overriding this and implementing a

vehicle specific model such as the Burckhardt model would improve the simulator

accuracy.

We suspect implementing more advanced effects such as soft-body dynamics

and terrain deformation is not possible with Gazebo. This means that there are

many aspects that cannot be simulated accurately.

Despite the limitations, we believe the simulator achieves its design goal of

physical reasonability. If a control system has no chance of working, we should

be able to discover that using the simulator, but after simulator testing, the control

system needs rigorous testing on the real vehicle. The lack of sensor and interface

emulation is unfortunate, and if we were going to develop this simulator further,

those are the most important things we would tackle.
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The control system is the system which translates reference signals into actuator

inputs. Depending on the mode of operation the control systemwill either recieve

reference from the guidance system, or directly from the operation layer. From an

engineering perspective it needs to be robust and fault-tolerant. It should also be

verifiable. This means that it should either be provably correct, or it should use

standard control techniques that have been applied to similar problems in the past.

An overview of the control system and its submodules were given in Section 3.4.2.

In this chapter, we perform a litterature review of how similar vehicles have been

controlled in the past, and then we present each module of the control system in

detail, starting at the bottom with the wheel control layer and working upwards.

We present and discuss results after each control layer has been presented.

5.1 Litterature review

There exists relevant research, specifically onpath-followingand trajectory-tracking

for 4WIS vehicles. Yim [39] compares different steering modes available to 4WIS

vehicles and concludes that by using all the wheels actively, we can improve con-

trol performance over just using front-wheel steering. Setiawan et al. [32] presents

a guidance system for 4WIS vehicles based on bicycle vehicle model, but they

restrict their attention to zero-sideslip manouvers, meaning the vehicle is always

facing in the driving direction. In [31], they improve this design to allow parallel

steering mode, meaning all the wheels are steered to the same angle. Chen et al.

[7] designs a path-following controller based on linear optimal control, but their

setup requires small steering angles, and they make the rear-wheel steering angle

a linear function of the front wheels. This was done in order to improve steering

stability, but it makes the vehicle functionally equivalent to a typical front-wheel

steered vehicle.

Maybe themost relevant prior research is given by Ye et al. in [38]. They design

a four-mode control system for a 4WIS binmanaging robot. The robot theyworked

with was required to operate in tight confined indoor spaces. They argue that by

separating the control task into the four distinct modes illustrated in Fig. 5.1, and

designing a control system which selects the best mode for each operation, they

could achieve the best controllability and performance.

39
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(a) Ackermann steering. Emulates typical

front wheel driven vehicles.

(b) Active-front-active-rear. Front and rear

wheels are activated symmetrically so ICR

lies on the centerline.

(c) Spinning. Vehicle rotates about its center

point.

(d) Crab. All wheels are aligned and vehicle

can move in an arbitrary direction without

changing its orientation.

Figure 5.1: Steering modes for 4WIS vehicles used by [38]. Black dot is ICR.

5.2 Wheel control

5.2.1 Steering angle sliding-mode control

The steering angle is modeled by (2.20), which we restate as

� ¥� +" 5 = �B (5.1)

where � = �F,I is the wheel inertia about the z-axis. Wewant to control the steering

angle � to follow a reference input �A . The challenge is that the friction torque is

highly nonlinear and dependent on surface and tire parameters,
¤�, and �B . It

has been demonstrated that we cannot compansate for friction using standard

proportional-integral-derivative (PID) control, as it will often lead to limit cycles

and track errors [37]. Knowing this, we tried in the specialization project [6]

to compansate by estimating " 5 offline and using feedforward, but this did not

work probably because the offline estimatewas significantly different from the real

(online) value. We suspect that using an adaptive approach to estimate" 5 online
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Figure 5.2: Wheel control signals.

could work, but this remains an open question. A problemwith adaptive schemes

is that they are hard to make robust, and even simple adaptive laws may become

unstable in the presence of unmodelled disturbances [16]. Because it is important

that the steering angle controller is robust, we did not consider adaptive control to

be a viable option.

While estimating " 5 accurately is hard, it is relatively straight forward to

bound it. Assume we have determined a bound so we can say��" 5

�� ≤ " (5.2)

We can use this bound to design a sliding-mode control (SMC) scheme for the

steering angle. Say we want to converge on a constant reference signal �A . The

error states are 41 = � − �A 1 and 42 = ¤41. The error dynamics are given by

¤41 = 42 (5.3)

¤42 = −�−1" 5 + �−1�B (5.4)

With SMC, we control the system to a sliding surface which we can prove to be

asymptotically stable. The surface we want to control to is B = 0 in

B = 42 + �41 (5.5)

If we can reach B = 0, then we have 0 = 42 + �41 = ¤41 + �41 which means 41 (and

42 = ¤41) converges exponentially on the origin. Consider the Lyapunov function

1
Since this is a difference of angles, one may want to use the smallest signed angle as an error state,

and then this expression would be wrong. However using smallest signed angle is only appropriate

if the steering angle is unconstrained. If the steering angle is constrained, then we argue using the

smallest signed error is innapropriate because we need to be able to distinguish between 0, 2�,−2�
and other similar angles.
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and its derivative

+ =
1

2

B2

(5.6)

¤+ = B
(
−�−1" 5 + �−1�B + �42

)
(5.7)

Using

��" 5

�� ≤ " we can write

¤+ = �−1B
(
��42 −" 5

)
+ �−1B�B

≤ �−1 |B |
����42 −" 5

�� + �−1B�B

≤ �−1 |B |
(
��|42 | +

��" 5

��) + �−1B�B

≤ �−1 |B | (��|42 | +") + �−1B�B

= �−1
(
|B |�(42) + B�B

)
= �−1B

(
sgn (B) �(42) + �B

)
(5.8)

where we have defined

�(42) = ��|42 | +" (5.9)

From (5.8), we can see that by using

�B = −
(
�(42) + �0

)
sgn (B) (5.10)

where �0 > 0, we obtain

¤+ ≤ −�−1 |B |�0 (5.11)

Since
¤+ < 0 for all B ≠ 0 and + is radially unbounded, the system is globally

asymptotically stable. Note that it is globally asymptotically stable even though it

is an angle controller. One could argue that the steering angle controller should

operate on error states defined with the smallest signed angle, which maps angles

to the range (−�,�], but we believe this is not appropriate in this case. This is

because the real AutoAgri vehicle has a constrained steering angle, so we need to

be able to distinguish between 180 deg and −180 deg. A consequence of this is that

if the steering angle is currently −180 deg, and we command it to go to 180 deg,

an angle which is functionally equivalent, then the wheel will make a full rotation

using this controller. We repeat that this is by design, and in Section 5.2.4 we show

how we avoid the problematic behaviour described above.

In addition to being globally asymptotically stable, the origin is finite time

stable, meaning that we will reach the sliding surface in finite time. This can be

seen by realising that |B | =
√
B2 =
√

2+0.5
, and rewriting (5.11) as

¤+ +
√

2�−1�0+
0.5 ≤ 0 (5.12)

Appendix A.1 outlines a proof that this implies that the system will converge to

+ = 0 within a finite time CA (dependent on the initial conditions).
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Using (5.10) is in theory fine, but in practice it will lead to high frequent

oscillations about the sliding surface, called chattering. This is caused by the

sgn (B) discontinuity around B = 0, and is a known problem of SMC (e.g. [13, 18]).

To mitigate chattering, a common approach is to replace sgn (B) with a soft sign

that is continuous about the origin. We use

softsign(B) =
{
B/& for |B | ≤ &

sgn (B) otherwise

(5.13)

so the final sliding mode control law becomes

�B = −
(
�(42) + �0

)
softsign(B) (5.14)

Khalil [18] discusses convergence and stability for SMC with this modification.

They show that B will stabilize to |B | ≤ & in finite time, but there is no guarantee

that B converges to zero. This means that the error may not converge to zero either

as the sliding mode becomes ¤41 = −�42 + B where |B | ≤ &. In theory we can make

the error arbitrarily close to 0 bymaking � large or & small, but this will bring back

the chattering problems. With SMC we have to settle for a compromise between

some steady state error and chattering.

5.2.2 Robust rate-limited steering angle control

A problem that can occour with the SMC is that it is very aggressive, meaning it

will command unreasonably large actuator torques. To combat this, we develop

another robust control strategy for the steering angle rate
¤�. This can be integrated

with a proportional controller to control the stering angle �.

Robust steering angle rate control Consider again the steering angle system

� ¥� +" 5 = �B (5.15)

and assume that we can bound the steering resistance such that

��" 5

�� ≤ ". We

want to control
¤� to track the reference

¤�A . Define the error signal 4 = ¤�A − ¤� and

write the Lyapunov function as

+ =
1

2

42

(5.16)
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We can then put an upper bound on the derivative using a similar reasoning as

with the sliding mode controller.

¤+ = 4 ¤4

= 4
(
¥�A − (�−1�B − �−1" 5 )

)
= �−14

(
� ¥�A +" 5

)
− �−14�B

≤ �−1 |4 |
(
�
�� ¥�A �� + ��" 5

��) − �−14�B

≤ �−1 |4 |
(
�
�� ¥�A �� +")

− �−14�B

= �−14
(
�
�� ¥�A ��sgn (4) +"sgn (4) − �B

)
(5.17)

Selecting �B so that
¤+ < 0 for all 4 ≠ 0, we can use

�B =
(
�
�� ¥�A �� +" + �0

)
sgn (4) (5.18)

where �0 is a margin used to ensure
¤+ < 0. Because

¤+ ≤ −�−1�0 |4 | = −: |+ | for
some : > 0 the system is finite time stable, so

¤� will converge on
¤�A in a finite

reaching time. Refer to Appendix A.1 for details.

The structure of this controller is essentially identical to a sliding mode con-

troller. Thus we expect the same chattering problems that we discussed in Sec-

tion 5.2.1 to reapear here, and we expect that replacing sgn (4) with softsign(4) is
beneficial here as well. The final robust rate control law is then

�B =
(
�
�� ¥�A �� +" + �0

)
softsign(4) (5.19)

Rate-limited steering angle control Using the controller proposed above, we can

control the steering angle rate in the presence of complex friction forces. To control

the steering angle, we use a rate limited proportional control law.

¤�A = sat

(
 ?(�A − �), ¤�F,limit

)
(5.20)

The reason to use rate limited control law, is thatwe can explicitly set themaximum

steering rate. In theory this will give worse tracking performance compared to

the sliding mode controller of Section 5.2.1, but we expect that it will give more

reasonable results when applied in practice.

5.2.3 Angular velocity control

The angular velocity of a wheel is modeled as

� ¤$ + A� 5 = �F (5.21)
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where � = �F,H is the inertia about the driving axis. Our goal is to control $ to

a constant reference $A . To do this we will expand the state space to include the

wheel velocity and a dynamical friction model using the quarter vehicle model as

presented in Section 2.3.4, which we restate here.

¤E = 1

<
� 5 (5.22)

¤$ = − A
�
� 5 +

1

�
�3 (5.23)

¤� 5 = :
A$ − E
;
− A |$ |

;
� 5 (5.24)

As noted in Section 2.3.4, the system is passive, which is good news since then

using a passive control law in a feedback connection will result in a passive closed

loop system [18]. Note that in steady state conditions, we have ¤E = 0 ⇒ � 5 = 0.

This means that a proportional controller is sufficient if we want to converge on a

constant reference $A . Thus the angular velocity control law is

�3 =  ?4$ (5.25)

4$ = $A − $ (5.26)

If there is an unmodelled disturbance which causes some driving resistance, then

the controller above will lead to steady-state error, so it stands to reason that we

should implement an integral effect to compensate for this. We decided against

this, because we implement integral effects in the control layer above instead.

5.2.4 Reference model and optimization

Using the control systems given above, we can control the steering angle � and the

angular velocity $. This is in principle all that is needed from a wheel controller,

but if we want to apply this in practice there are some additional aspects we have

to deal with.

The steering anglemay be limited so that it cannot turnmore than (for instance)

a full rotation each way, that is |� | ≤ 2�. Another related issue is that the steering

angle and angular velocity are coupled, since driving one way is equivalent to

reversing the opposite way. Mathematically we can say that the state pair (�, $)
is equivalent to (� + :�,−$) for any integer :. Of course making an additional

full turn with the wheel will also give an equivalent state (� + :2�, $) for any

integer :. This equivalency class between the states, means that we can improve

the wheel control system selecting the equivalent input which is "closest" to the

current wheel state. To do this we assign a cost to moving from the current wheel

state to a given reference state. We think it is desirable to minimize wheel turning,

so we write the cost as the smallest absolute steering angle difference.

�(�, �A) = |� − �A | (5.27)
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When thewheel controller is given a reference (�∗A , $∗A) to follow, it first solve a small

discrete optimization problem to find the equivalent referencewith the lowest cost.

Given a reference (�∗A , $A∗) and a state (�, $). The closest equivalent reference

with the same angular velocity is

�1

A = � + ssa(�∗A − �) (5.28)

$1

A = $∗A (5.29)

Where the smallest signed angle function ssa(�) computes the smallest signed

equivalent angle of �. A trigonometrically inspired implementation is

ssa(�) = atan2(sin�, cos�) (5.30)

If we allow reversing the wheels, then two more references should be considered,

namely

(�2

A , $
2

A ) = (�1

A + �,−$A) (5.31)

(�3

A , $
3

A ) = (�1

A − �,−$A) (5.32)

To find the optimal reference, we compute the costs �8 = �(�, �8A), and select the

reference with the lowest cost. In a real application, the steering angles may be

constrained, which can be implemented by extending the cost function to include

a high cost of exceeding the constraints. Once the optimal references (�∗A , $∗A)
are determined, we use reference models to ensure that the signals sent to the

controllers (�A , $A) are feasible. The steering angle references are filtered through

a second-order reference model, as recommended by [13], given by

�A
�∗A
(B) =

$2

0

B2 + 2�$0B + $2

0

(5.33)

where � is the damping ratio and $0 is the natural frequency. The angular velocity

references are filtered through the first-order reference model

$A
$∗A

=
1

1 + )B (5.34)

where ) is the time constant.

5.2.5 Chattering statistic

Sections 5.2.1 and 5.2.2 proposes two controllers which both experience chattering.

To evaluate them against one another, we need a way to measure chatter, but there

are no standard ways to do this. With SMC, one can look at the standard-devation

of the sliding surface B since it should oscillate about 0, but this is not applicable

to the robust rate controller. Because of this, we propose a controller-independent
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way to measure chatter. It operates on the control signal D directly and it has the

same unit as D, which gives it a physical interpretation.

Given a discrete control signal D8 for 8 = 1, . . . , # , compute the smoothened

control signal DB
8
by smoothing the signal with a normalized Hanning window.

The Hanning window is defined in [8] by

ℎ8 = 0.5 − 0.5 cos

(
2�8
" − 1

)
for 0 ≤ 8 ≤ " − 1. (5.35)

The normalized Hanning window is then given by

F8 =
ℎ8∑"−1

9=0
ℎ 9

(5.36)

To compute the smoothened control signal, we convolve D8 with F8 , using

DB8 =

"−1∑
9=0

D8F8−9 (5.37)

where D8 = 0 for 8 < 0 and 8 > # . The choice of Hanning window versus any other

triangular window function is is an arbitrary choice. We look at the difference

between the smoothened and original signal

ΔD8 = D8 − DB8 (5.38)

When the difference is small, the original signal is approximately constant. To

estimate the chatter in the original signal we compute the standard deviation of

ΔD8 .

chatter = std(ΔD1 ,ΔD2 , . . . ,ΔD# ) (5.39)

We have not been able to find this or any similar metrics in the litterature. The idea

is that chattering is related to the variance/standard deviation of the signal, but the

signal has a time-varyingmean, sowe cannot use the typical formulas for standard

devation. By smoothening the signal, we create local estimates of the mean, so

we assume ΔD8 = D8 − DB8 is a zero-mean signal, which allows us to compute its

standard devation using statistical formulas. More analysis and work is required

in order to verify that this is a good measure of chatter, but from experience it

tends to give results around the same order of magnitude as the visible chatter in

the signal.

5.2.6 Parameters

The wheel controller parameters are given in Table 5.1. The parameters were

mostly arrived at through trial and error. We believe the parameters are set within

the correct order of magnitude, but the exact value are for the most part arbitrary.
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Table 5.1: Wheel controller parameters.

(a) Angular velocity controller parameters.

 ? 250

(b) Sliding mode steering angle controller.

� 5

& 5

" 2�I
�0 0.1

(c) Robust-rate steering angle controller.

 ? 5

¤#max 60 deg/s
& 5

" 2�I
�0 0.1

(d) Reference models.

) 1

$0 4

� 0.9

The exceptions are the maximum steering resistance " and the reference model

parameters. The steering resistance " was determined by using the Gazebo GUI

to incrementally add torques to the steering angle until it started to move. We

then expressed this in terms of the load on the wheel and found that it was almost

twice the load, so " = 2�I . The reference model parameters, particularly $0 and

� for the steering angle, have a big effect on the performance of the system once

the vehicle control layer is involved. From experimenting, we found that setting

$0 lower than 4 could lead to oscillations, probably due to lack of bandwidth

separation. This is discussed more in Section 6.5.3.

5.2.7 Results

In the preceding sections, we have developed two steering angle controllers and

an angular velocity controller. In this section we compare the steering angle

controllers against one another, and we evaluate the angular velocity controller.

Tohave a fair comparison,we created two cases for the steering angle controllers

to track. The first case is a step response from 0 to 1 radians, and the second

case is a linear ramp function with slope 0.5 rad s
−1
, meaning the wheels will

do approximately one rotation every 13 seconds. The reference steering angles

are shown in Fig. 5.3. Note that the ramp doesn’t start immediately, which is

done to give the system some time to initialize. The goal of these tests are to

evaluate specific aspects of the controllers. The step-response is primarily used

to test convergence on a constant reference. Good performance will look like fast

convergence, and when it has converged, the controller will use little control input

to stay on the reference. With the ramp-response, we want to see how the system

tracks a time-varying reference, and we are particularly interested in the mean
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(a) Case 1: step function reference signal.
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(b) Case 2: ramp function reference signal.

Figure 5.3: Reference signal for steering angle controller cases. �∗A is the reference
signal and �A is the reference model signal which is sent to the controller.

error and chattering statistics.

Sliding-mode controller

The SMC is tested on the references shown in Fig. 5.3. The step response results

are given in Fig. 5.5 and Table 5.2. In Figs. 5.4a and 5.4b, we can see that the

error quickly converges to zero when the reference input is constant. During the

transient phase, there was a peak error of 5.967 deg, and the final error was 0.021

deg.

Based on the step response case, the sliding-mode controller is able to converge

on a constant reference signal quickly. The results for the time-varying case are

given in Fig. 5.7 and Table 5.3. From Fig. 5.6c, we can see that there is significantly

more chatter compared to the step response, and this is evident by the chatter

metric which grew from 184.449 N m to 428.484 N m.

Robust rate-limited controller

Testing the robust rate-limited controller on a step response, we obtain the results

given in Fig. 5.9 and Table 5.4. The steering angle converges in about 2 s, and there

is little chatter in the commanded torque, especially after converging. Testing

the controller on the time-varying reference case, we get the results presented

in Fig. 5.11 and Table 5.5. With time-varying reference, the chatter increases

substantially from 23.320 N m to 476.903 N m. The robust rate-limited controller

is able to maintain track of the time-varying reference with mean error 2.331 deg.

Steering angle controller comparison

Section 5.2.1 and Section 5.2.2 presents two robust steering angle controllers. Since

we can only use one of them, we evaluate them against one another in this section.

The peak error of the robust rate-limited controller grows to 17.417 deg, which is
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Figure 5.5: Front-left wheel step plots with sliding mode controller.

Table 5.2: Front-left wheel step performance metrics with sliding mode controller.

Metrics

Mean absolute error [deg] 0.263

Stationary deviation [deg] 0.021

Chatter [Nm] 184.449

Peak torque [kNm] 5.120

Mean torque [kNm] 0.078

significantly higher than the 5.967 deg that the sliding mode-controller gave. The

reason for this is that the rate-limited controller saturates when given such a large

step input, because the reference model does not have a rate limitation. This can

be clearly seen in Fig. 5.12, where the robust rate-limited controller saturates at

¤#max = 60deg s
−1
.

Based on the results above, we see no significant difference between the robust

rate-limited controller and the SMC. Theoretically, they are equally robust in the

sense that their robustness proofs rely on the sameassumption. Wehave found that

the robust rate-limited controller experiences less chatter for constant references

and more for time-varying ones. It also tends to use less torque, but in the time-

varying case, it had a higher peak torque. We acknowledge that the differences
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Figure 5.7: Front-left wheel ramp plots with sliding mode controller.

Table 5.3: Front-leftwheel rampperformancemetricswith slidingmode controller.

Metrics

Mean absolute error [deg] 2.520

Chatter [Nm] 428.484

Peak torque [kNm] 3.782

Mean torque [kNm] 0.904

in the controllers may be a matter of parameter tuning. But since we see no

significant difference between the controllers, we decided to go forward with

SMC. The primary reason for this choice is that SMC is backed by the robust

control litterature, which gives it credence.

Angular velocity controller

To evaluate the angular velocity controller, we apply a step input from 0 to

8.25 rad s
−1
, which corresponds to the vehicle moving at 15 km h

−1
. The reference

signal and reference model are shown in Fig. 5.13. To avoid wheel misalignment

forces, the SMC was used to keep all wheels pointing forward. Applying the

step response, we get the results in Fig. 5.15. Note that we only show results for

the front left wheel because we found no difference in the wheels’ responses. In
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Figure 5.9: Front-left wheel step plots with robust rate-limited controller.

Table 5.4: Front-left wheel step metrics with robust rate-limited controller.

Metrics

Mean absolute error [deg] 0.636

Stationary deviation [deg] 0.000

Chatter [Nm] 23.320

Peak torque [kNm] 2.452

Mean torque [kNm] 0.021

Fig. 5.14a, we can see that the angular velocity tracks the reference with some

lag, and the error peaks at 158.614 deg/s. After about 7 s, the error converges

to zero. It is probably possible to increase the gains so that the error converges

faster, but since the simulator does not implement the physical limitations of the

vehicle, we decided against it, as it may lead to irreproducible results in the field.

Without doing system identification, it is hard to say whether the results given

above are reasonable, but intuitively it seems that even a midsized agricultural

vehicle should be able to go from 0 km h
−1

to 15 km h
−1

in 7 s.
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Figure 5.11: Front-left wheel ramp plots with robust rate-limited controller.

Table 5.5: Front-left wheel ramp metrics with robust rate-limited controller.

Metrics

Mean absolute error [deg] 2.331

Chatter [Nm] 476.903

Peak torque [kNm] 4.349

Mean torque [kNm] 0.807
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Figure 5.12: Steering angle rates.
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Figure 5.13: Angular velocity step function reference signal. $∗A is the reference

signal and $A is the reference model signal that is sent to the controller.
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nal and $A is the reference model signal that

is sent to the controller.
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Figure 5.15: Angular velocity tracking plots of step response from 0 to 8.25 rad s
−1
.

Table 5.6: Angular velocity trackingmetrics of step response from 0 to 8.25 rad s
−1
.

Metrics

Stationary deviation [deg/s] 0.028

Peak torque [kNm] 0.692
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5.3 Vehicle control

The vehicle controller is the top layer in the control system. It gets a high-level de-

scription of how the vehicle should move and orient, and translates it into steering

angles and angular velocities, as illustrated in Fig. 5.16. Movement is described

with the desired course "3 and desired speed EA . Orientation is described with

the desired yaw #A or desired yawrate ¤#A .

5.3.1 No-slip yawrate-course control

A big advantage of 4WIS vehicles is their ability to control course and yaw inde-

pendently. This is what allows them to drive sideways and rotate on the spot. To

take advantage of this, we develop a control law which can control both yawrate

and course simultaneously. The controller presented here is fundamental to the

system, as it bridges the gap between the vehicle states and the wheel states. The

primary inputs to the controller are shown in Fig. 5.16, and they are desired course

"3, commanded yawrate ¤#2 and commanded speed E2 . In addition to this the

controller also has access to the vehicle states like position, orientation, and their

derivatives.

The relationship between sideslip �, course " and yaw # is defined by [13] as

" = � + # (5.40)

Using this, we express the commanded sideslip as a function of the desired course

and actual yaw.

�2 = "3 − # (5.41)

Vehicle Control

¤#2

#∗A , ¤#∗A
Yaw control

� 5 ; $ 5 ;

� 5 A $ 5 A

�A; $A;

�AA $AA

"3
No-slip control

E2

EA
Speed control

Figure 5.16: Vehicle control signals.
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The vehicle now has a commanded sideslip and speed, meaning the commanded

velocity relative to the body is given by

v2 = E2

cos �2
sin �2

0

 (5.42)

Denote the position ofwheel 8 9 relative to the body asp8 9 . The commandedvelocity

of wheel 8 9 relative to the ground is a sum of the vehicle velocity and rotational

velocity, given as

v8 9 ,2 = v2 + ¤#2 ẑ × p8 9 (5.43)

Under no-slip conditions as given in Section 2.6, the wheel states (�8 9 , $8 9) are
fully2 determined by the wheel velocity v8 9 ,2 . This is reasonable because the body
velocity v and ¤# uniquely determine the ICR of the vehicle, as shown in Section 2.5.

Each wheel’s y-axis must point toward the ICR, meaning that the wheel direction

is orthogonal to the line that points toward the ICR.

No-slip conditions imply that the wheel sideslip must be equal to the steering

angle. Eq. (2.24) then gives that the steering angle references as

�∗8 9 ,A = atan2(E8 9 ,H , E8 9 ,G). (5.44)

No-slip conditions also require that the angular velocity of wheel is equal to the

ground speed of the wheel divided by the radius, that is

$∗8 9 ,A =



v8 9 ,2




A
. (5.45)

Note that the wheels angular velocity reference $∗
8 9 ,A

will always be positive with

this setup. The reference optimization described in Section 5.2.4 that is imple-

mented in thewheel control layer, will find an equivalent reference and potentially

reverse the wheels.

In Fig. 5.17, we illustrate how the no-slip controller aligns the steering angle

with the ICR.

Feasability of the wheel references

Using ahigh level description of the vehicle as presented above to translate between

vehicle state references towheel state references canbeproblematic. This is because

many of the details of the vehicle are abstracted away. For instance the no-slip

model has no notion of time delays and wheel actuators. It is reasonable to

question whether the wheel references $∗
8 9 ,A

and �∗
8 9 ,3

that are found by using this

model can even be executed on real hardware. To check whether it is possible

2
Except if the speed of the wheel is zero, i.e.



v8 9 ,2


 = 0. Then the vehicle rotates about wheel 8 9

and �8 9 can take on any value.
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¤#2
v2

Figure 5.17: Wheel angles computed with ¤# = 1, EG = 3, and EH = 0.5. The ICR is

illustrated as a black dot. Note that all wheels point orthogonally to the ICR.

we compute the derivatives of the wheel references. We argue that if there is a

natural way to constrain ¤$∗
8 9 ,A

and
¤�∗
8 9 ,A

by constraining ¤"2 , ¥#2 or ¤v2 , then the wheel

references computed using this controller can always be made feasible by using

slowly varying inputs.

For clarity we will drop the subscript 8 9 in the derivations below, but the

derivations apply to all wheels. Denote the computed velocity of the wheel by

v8 9 ,2 = vF with components EF,G and EF,H , and norm ‖vF ‖ = EF . The derivative of
�A is

¤�∗A =
d atan2(EF,H , EF,G)

dC

=
1

E2

F

(
−EF,H

dEF,G

dC
+ EF,G

dEF,H

dC

)
=
(vF × ¤vF)I

E2

F

(5.46)

From (5.46) we see that it is unfortunately not possible to put a finite upper bound

on
¤�A in terms of | ¤vF | or other vehicle states. This makes physical sense, because

as the norm of vF goes to zero, the wheel has no speed relative to the ground. The

no-slip model defines the steering angle by the speed relative to the ground, so in

this situation the steering angle is actually undefined.

This may be important to account for, because when thewheel is stationary, the

no-slipmodelwill compute$∗A = 0, but the computed value of �∗A could be anything

between −� and �. If the wheel controller does not account for this, then it will

try to control the steering angle to the undefined arbitrary value computed by

(5.44), when the best option would probably be to stand still. While it is important,

we do not account for it in the system as it stands now. We believe the reference
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optimization module in the wheel controller can be extended to deal with this

by adding the current wheel state to the optimization problem if the commanded

velocity is low enough, but this is left for future work.

Fortunately, the angular velocity reference $∗A is better behaved. The position

of wheel 8 9 relative to the body is pF because we remove the subscripts for clarity.

The velocity of the body is denoted v. The derivative of $∗A is given as

¤$∗A =
1

A

d



v2 + ¤#2 ẑ × pF




dC

=
1

A

(
%


v2 + ¤#2 ẑ × pF




%v2

¤v2 +
%


v2 + ¤#2 ẑ × pF




% ¤#2

¥#2

)
=

1

A

(
v)2
‖v2 ‖

¤v2 + ‖ẑ × pF ‖ ¥#2
)

(5.47)

Note that ¤$∗A is linear in ¤v2 and ¥#2 , which means it is straightforward to constrain.

As a rough upper bound, we can write

| ¤$∗A | ≤
1

A
| ¤v2 | + ‖pF ‖

�� ¥#2 �� (5.48)

Based on the above analysis, we argue the control systems should implement

some logic to prevent problems where �∗A is undefined. This can easily be checked

because �∗A is undefined when $∗A is zero. Controlling the angular velocity using

the references given by this control should not pose any problems, because if the

controller inputs are smoothly varying, then the angular velocity output will also

be smoothly varying. By implementing a referencemodel for the vehicle controller

inputs we can ensure this is the case, but this is left for future work.

5.3.2 Speed control

The speed controller gets a reference speed EA from the guidance system and

computes a commanded speed E2 which is sent to the no-slip controller. A simple

approach for this is to use pure feedforward so that E2 = EA , but we found that

this leads to some steady state error. To mitigate this, we extend the feedforward

controller with a proportional-integral (PI) controller, and write

4E = EA − E (5.49)

E2 = EA +  ?4E +  8
∫

4E dC (5.50)

5.3.3 Yaw control

When it comes to controlling yaw, there are several modes of operation the vehicle

controller needs to support. In a typical farming application, we may want the
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yaw to follow the course of the path, since then the tool mounted on the vehicle is

aligned with the path. Likewise we may want the yaw to follow the course of the

vehicle "3, which resembles driving like a typical car. But with 4WIS vehicles we

can control the yaw indepedently of the course. In manual operation, we believe

it is more intuitive to control the yawrate than the yaw. All this is to say that we

need both yaw control and yawrate control.

Section 5.3.1 presents a control system for controlling the yawrate ¤#, but it
provides no guarantee that the yawrate converges on the commanded yawrate ¤#2 .
This means we need to include an integral effect if we want the controlled state to

converge on the reference. We believe that accurate yawrate control is not required,

because we are not aware of any farming or driving operations that require tight

control of yawrate. It is however important to control the yaw, since it determines

the direction the tool is pointed in. Based on these considerations we decided to

only employ integral action on the yaw controller.

Yawrate controller The yawrate controller controls the yawrate ¤# to the desired

yawrate ¤#A , which either comes as an external signal or is decided by the yaw

controller below. To control the yawrate, it sets the commanded yawrate ¤#2 using
feedforward and a proportional effect given by

4 ¤# = ¤#A − ¤# (5.51)

¤#2 = ¤#A +  ?4 ¤# (5.52)

Yaw reference model The yaw reference signal #∗A is filtered through a reference

model. This is done to ensure smooth control signals, which allows us to increase

the gains and improve tracking performance [13]. The reference model we use is

the second order linear model given by

#A
#∗A
(B) =

$2

0

B2 + 2�$0B + $2

0

, (5.53)

where $0 is the natural frequency and � is the damping ratio. Since #A represents
an angle, we need to make a slight modification to this reference model. Instead

of giving it the external signal #∗A directly, we compute the equivalent angle of #∗A
which is closest to the reference model. This is done by

#∗A := #A + ssa(#∗A − #A) (5.54)

Note that #∗A is redefined by this transformation.

Yaw controller To control the yaw, we can use the yawrate controller given above.

Then we need to design a yawrate reference ¤#A . A natural way to do this is to use
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Table 5.7: Vehicle controller parameters.

(a) Speed controller.

 ? 1

 8 0.1

(b) Yawrate controller.

 ? 1.0

(c) Yaw controller.

 ? 4

 8 2

 3 4

¤#max 60 deg/s

(d) Yaw reference

model.

$0 1

�0 0.9

a saturated PID controller.

4# = #A − # (5.55)

¤#A = sat

(
 ?4# +  8

∫
4# dC +  3 ¤4# , ¤#max

)
(5.56)

The reason to use a saturated controller is to ensure that the desired yawrates

generated by the controller are reasonable. Saturating the controller also allows

us to increase the gains, which improves tracking performance.

5.3.4 Parameters

The parameters for the vehicle control system are given in Table 5.7.

5.3.5 Results

Speed controller

The speed controller developed in Section 5.3.2 is tested on a step response from 0

to 20 km h
−1
, and the results are given in Fig. 5.19 and Table 5.8. In Fig. 5.18a, we

can see there is a slight overshoot before the speed converges on the desired speed.

Using this controller, the vehicle accelerates to 20 km h
−1

in about 6 s, which could

be unrealistic for such a large vehicle. As with thewheel controllers, we need to do

system identification before we can make that judgement. An approach to make

the response more realistic is to employ a reference model on the desired speed.

We did not implement a reference model, because the desired speed is constant in

our implementation3, but a more complete system would need to account for it.

Yawrate controller

We test the yawrate controller on a step response from 0 to 15 deg/s. The results

are given in Fig. 5.20. Looking at the yawrate error in Fig. 5.20a, we see that it has

a slight overshoot, but it converges within about 3 s. Note however that there is

a stationary deviation of 0.575 deg/s, which stems from the fact that the no-slip

model is a simplified model and the controller does not include an integral effect.

3
See details in Section 6.3.
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Figure 5.19: Speed controller plots for step response from 0 to 20 km h
−1
.

Table 5.8: Speed controller performance metrics for step response from 0 to

20 km h
−1
.

Metrics

Stationary deviation [km/h] 0.002

Peak torque [kNm] 1.673

Chatter [Nm] 0.841

Yaw controller

The yaw controller is tested with a step response from 0 to 60 deg, and the results

are shown in Fig. 5.22 and Table 5.9. The controller is able to follow the reference

model with a peak error of 8.959 deg, but it does need 8 s before it converges on

the reference value. We believe this could be improved with controller tuning, but

from a practical standpoint, we think the performance is sufficient is it stands now.
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(b) Yawrate.

Figure 5.20: Step response applied to yawrate controller.
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(a) Yawwith step input and referencemodel.

#∗A is the reference input that was sent to the

controller. #A is the reference model signal.

# is the yaw of the vehicle.
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Figure 5.22: Step response plots for yaw controller.

Table 5.9: Step response performance metrics for yaw controller.

Metrics

Mean absolute error [deg] 1.335

Stationary deviation [deg] 0.294

Peak yawrate [deg/s] 32.293

5.4 Limitations

The hierarchical control system presented above provides a good basis for con-

trolling the vehicle. The results above indicate that it works well in theory and in

simulated case studies, but there could be problems if we port it to the real vehicle.

A big potential problem is the chattering caused by both SMC and robust rate con-

trollers. When the wheels get a constant steering angle reference, the measured

chatter was the lowest. This can be seen in Figs. 5.4c and 5.8c, where the measured

chatters were 184.449 N m and 23.320 N m, respectively. In the time varying cases,
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both controllers exhibit significant chatter, and the steering torque jumps signifi-

cantly from timestep to timestep, as can be seen in Figs. 5.6c and 5.10c. This has

not been a problem in simulation because we do not simulate motor dynamics so

the commanded torque is applied immediately. We suspect that if we add motor

dynamics to the simulation, then the results would be significantly worse and

perhaps unstable. To reduce the chatter, we can increase softregion parameter &,
which will increase the steady-state error of the controller. The steady-state error

of the SMC in the step response case was 0.021 deg, which is very low. So we

believe there is room to increase & without a noticable performance decrease.

Another limitation of the system is that it outputs torques. This is convenient

because the simulator accepts torques as inputs, but a complete system needs

to output motor signals. This could be done via a motor driver or a hardware

abstraction layer beneath the wheel control layer, since we suspect that solving

this could be hardware specific.

A related problem to the ones described above is that we do not know how

well the controllers and results described here translate to the real vehicle. This is

because we have not done system identification on the vehicle. By doing system

identification and creating a detailed data-driven model for the vehicle, we would

be able to create a more accurate simulation, which could give us more confidence

in the results.





6Guidance System
The guidance system is the system that tells the vehicle where to move. It gets

a list of ordered waypoints, constructs a continuous path betweeen them, and

tells the vehicle control layer how to follow the path. The signal flow is shown

in Fig. 6.1. The waypoints are used by a path-smoothing algorithm to create an

internal representation of the smoothened path. This is then used by a path-

following algorithm to generate course and speed setpoints.

A path is a continuous curve through space which the vehicle should follow

to get from a starting position to an end position. A commonly used (e.g. [13, 22])

mathematical definition for a path is that it is

Definition 6.1 (Path). A path is geometric curve P3(C?) ∈ R@ where C? ∈ [0, 1] [13].

The variable C? is the path-parametrization variable, which iswithout a physical

interpretation. By geometric curve, we mean that we are only concerned with the

shape of the curve over the entire domain C? ∈ [0, 1]. Infinitely parametrizations

can exist for the same geometric curve1, but they are all considered equivalent.

Designing a continuous function P3(C?) directly is difficult so a common ap-

proach is to specify a list of waypoints, and then generate a path from those

waypoints. There are many technical details and design decisions surrounding

this, and Lekkas [22] provides an extensive resource on the topic.

In this chapter we use the theory covered by Lekkas to build a path-smoothing

system suitable for path-following. Additionally we will cover some practical

aspects that are relevant for software implementation and the end user. We then

use the path-smoothing system to implement path-following.

1{P3(C0? ) for all 0 ∈ R} are all the same geometric curve.

Waypoints

"3

¤"3

E3

Guidance

Path-smoother

Path-follower

Path*

Figure 6.1: Vehicle guidance signals.
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6.1 Waypoint specification

Waypoints are used in many industries as input to the guidance system. From an

end-user perspective, waypoints provide an intuitive and fast way to give a path

to a vehicle. The exact definition of a waypoint depends on the application, but

an example is a longitude-latitude pair ()8 ,�8). Over short distances, waypoint

positions can instead be described with Cartesian coordinates. The pair could

be extended with properties like altitude, heading, and speed depending on the

application. To keep the description simple, we have for this project usedCartesian

coordinates to describe the waypoints.

Definition 6.2 (Waypoint). A waypoint is a pair of Cartesian coordinates in the

inertial frame.

waypoint8 = p8 =
[
G8 H8

]
(6.1)

We have not done any work relating to automatic waypoint generation. Many

path-planning algorithms naturally fit this description, but from an operational

perspective of the AutoAgri vehicle, we believe more value is gained from easily

specifying waypoints, rather than automatic path planning. So we decided it was

more important to explore intuitive ways of adding waypoints. Figure 6.2 shows

an example of QGroundControl (QGC) being used to build a lawnmover pattern

across a small field close to Dragvoll, Trondheim. More details are presented in

Chapter 7. The guidance system is agnostic as to how thewaypoints are generated,

so in this chapter we assume we are given a list of waypoints denoted

Waypoints = {p1 , p1 , . . . , p# } (6.2)
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Figure 6.2: QGC lawnmover pattern setup using surveys.

6.2 Path-smoothing

Anoperator or apath-planning systemcreates anordered list ofwaypoints thatwill

be used to create a path. From this, we can choose to build either an interpolating

or an approximating path. The difference is that interpolating paths are required

to pass through all the waypoints, whereas approximating paths are not. In this

project we decided to use approximating paths as they are easier to work with

with the parametrization that will be discussed in the subsequent sections.

6.2.1 Path segment types

The path-smoothing system needs a palette of path types that it can connect

together to build a large path. Depending on the segment type, these segments are

used to connect twoor threewaypoints, and there are several to choose from. In this

workweare only concernedwith straight, circular, andFermat spiral segments. We

mention that Lekkas also discusses clothoids and spline interpolating path-types

like Beziér curves. Clothoids have many of the same properties as Fermat spirals,

but they do not have a closed form expression, whichmakes them computationally

demanding. Lekkas argues against the use of spline interpolating paths because

it is hard to show that they have continuous curvature. In the following sections,
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we present the path segment types that are used in this work.

Linear path segments

The simplest way to generate a path from a two waypoints is to connect themwith

a straight line. Given waypoint positions p8 and p8+1, the straight path between

them is

P(C?) = p8(1 − C?) + C?p8+1 = p8 + C?(p8+1 − p8) (6.3)

Circular path segments

A circular arc path is defined by circle center p2 , circle radius ', starting angle 
0,

and ending angle 
1. It is then given by

P(C?) = p2 +
[
' cos

(

0 + C?(
1 − 
0)

)
' sin

(

0 + C?(
1 − 
0)

) ] (6.4)

Fermat spiral path segments

The Fermat spiral is a curve described by the polar coordinate expression

A = :
√
� (6.5)

By shifting this expresion to be centered on pB , rotating it with angle "B , and
expressing it in Cartesian coordinates we get the parametrization used by Lekkas.

P(�) = pB +
[
:
√
� cos

(
�� + "B

)
:
√
� sin

(
�� + "B

) ] (6.6)

Note that � = ±1 decides the turning direction. The spiral is parametrized in

terms of the angle �. In Fig. 6.3, we illustrate full rotations of Fermat spirals in

both directions. To aid in software implementation, we found it helpful to modify

this paremetrization slightly. In [22], they assume � ∈ [0, �end] and use � to change

the direction. We remove � as a parameter and allow � to take on negative values.

We then write � in terms of the path variable C? as

� = �begin + C?(�end − �begin) (6.7)

where C? ∈ [0, 1]. By making �begin > �end we can change the turn direction with-

out using the turn direction parameter �. The Fermat spiral is now parametrized

as

P(�) = pB +
[
:sgn (�)

√
|� | cos(� + "B)

:sgn (�)
√
|� | sin(� + "B)

]
(6.8)

The curvature of the Fermat spiral is given by [35] as
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(b) Clockwise turn (� = −1).

Figure 6.3: Examples of Fermat spirals with : = 1 and � ranging from 0 to 2�.
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Figure 6.4: Curvature of Fermat spiral with : = 1.

�(�) = 1

:

2

√
�(3 + 4�2)
(1 + 4�2)3/2

for � ≥ 0 (6.9)

Extending the curvature formula to allow � < 0, we write

�(�) = 1

:

2sgn (�)
√
|� |(3 + 4�2)

(1 + 4�2)3/2
(6.10)

The curvature is illustrated in Fig. 6.4.



70 CHAPTER 6. GUIDANCE SYSTEM

5 10 15

2

4

6

8

10

Figure 6.5: Path constructed with straight segments.

Combined path segments

If we are given = paths P8(C?) for 8 = 1, 2, . . . , = where C? ∈ [0, 1] for all the paths

individually. Then the path described by following all of the subpaths is given as

P(C?) =



P1(=C?) for C? ∈ [0, 1/=)
· · ·
P8(=C?) for C? ∈ [(8 − 1)/=, 8/=)
· · ·
P=(=C?) for C? ∈ [(= − 1)/=, 1]

(6.11)

6.2.2 Path smoothing

Now that we have a collection a path segment types, we turn our attention to the

path-smoothing problem. We want to use the paths described above to create a

connected path between the waypoints.

The most straightforward way to do this is to use straight path segments be-

tween the waypoints, as illustrated in Fig. 6.5. According to [22], such paths are

infeasible for underactuated vehicles. And even though they are feasible for fully

actuated vehicles, they require the vehicle to stop and turn at each waypoint. This

problem can be seen by looking at the curvature of the path, which is zero every-

where except at the waypoints where it is infinite. Due to this problem, we will

explore two more sophisticated methods of path smoothing; circular smoothing

and spiral smoothing.

Circular path-smoothing improves upon the straight line approach, by adding

circle segments at each turn. By doing this, we create a variant of Dubin’s path2

which is shown to be the fastest path between two poses for particles moving

with constant speed and a maximum curvature constraint [11]. Figure 6.6 shows

2
Strictly speaking, Dubin’s path applies to interpolating curves, but we are designing an approxi-

mating curve.
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Figure 6.6: Path constructed with straight and circular segments.

a circularly smoothed path. The algorithm for constructing this path is given in

Appendix C. To the human eye, a circularly smoothed path may look good, but

as [22] argues, it also has a curvature discontinuity. The straight line segments

have curvature 0 and the circle segments have curvature 1/'. This is problem-

atic because to maintain track during the transitions between the line and circle

segments, the wheel need to follow a step response, which is infeasible in practice.

Fermat spiral path-smoothing

To solve the curvature discontinuity problem, [22] proposes that we use Fermat

spirals in the turns. This is reasonable because as Fig. 6.4 shows, the curvature of a

Fermat spiral changes continously and is 0 at � = 0 sowe can use them to transition

out of straight line segments into turns. We will now restate the path-smoothing

algorithm presented by [22], and give the small modification we used since we

allow � < 0.

Before starting we need to specify the maximum curvature parameter �max.

Assume we are given three consecutive waypoints p8−1, p8 , and p8+1 as illustrated

in Fig. 6.7a. We will smooth the path by constructing two mirrored spirals: one

exiting the straight path from p8−1 to p8 denoted P(�), and one entering the straight

path from p8 to p8+1 denoted P̄(�). This is illustrated in Fig. 6.7b.

Compute the normalized velocities in and out of center point as

vin =
p8 − p8−1

‖p8 − p8−1‖
(6.12)

vout =
p8+1 − p8
‖p8+1 − p8 ‖

(6.13)

From these we can also compute the courses as

"in = atan2(vin,H , vin,G) (6.14)

"out = atan2(vout,H , vout,G) (6.15)
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Figure 6.7: Fermat smoothing illustrations.

The course change from the turn is computed as

Δ" = ssa("out − "in) (6.16)

where ssa is the smallest signed angle function. The turn direction � is computed

as

� = sgn (Δ") (6.17)

The first spiral path P(�) goes from � = 0 to � = �mid. To determine �mid we

express the course change as a function of �. Following [22], we use

Δ"(�) = � + atan(2�) (6.18)

Ideally we would invert this to find �(Δ"), but this is not possible. Instead we’ll

exploit the fact thatΔ"(�) is continuous anddifferentiable to find�mid numerically.

At the midpoint, the course must have changed by exactly half of the total course

change. This means that �mid is defined by

|Δ" |
2

= �mid + atan(2�mid) (6.19)

Note that we take the absolute value Δ". This is not required, but it ensures that
�mid > 0which simplifies some the remaining steps. Lekkas, and reference therein

[26], recommends using Halley’s method to solve this. Halley’s method is a root

finding algorithm, meaning it solves 5 (G) = 0. In [36], it is given as

G=+1 = G= −
2 5 (G=) 5 ′(G=)

2 5 ′(G=)2 − 5 (G=) 5 ′′(G=)
(6.20)
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To solve (6.19), we use

5 (�) = � + atan(2�) − |Δ" |/2 (6.21)

5 ′(�) = 1 + 2

1 + 4�2

(6.22)

5 ′′(�) = − 16�

(1 + 4�2)2 (6.23)

and we initialize it at �0 = 0. [26] found that �= converged with tolerance 10
−3

after only one iteration3, but in practice we will do multiple iterations of (6.20)

until it converges.

Now that the domain is determined, we need to determine the scale parameter

:. Looking at (6.9), we see that the : is used to scale the curvature, so it has to be

set so that the spiral does not exceed the curvature constraint �max. Fermat spirals

always have a maximum curvature at � =

√√
7

2
− 5

4
, and the curvature is strictly

increasing on 0 ≤ � <

√√
7

2
− 5

4
. Thus the point of maximum curvature on the

domain 0 ≤ � ≤ �mid is

��,max = min

©­«�mid ,

√√
7

2

− 5

4

ª®¬ (6.24)

To maintain the curvature constraint, we use �(��,max) = �max in (6.9) and solve

for the scaling parameter. This gives

: =
1

�max

2

√
��,max(3 + 4�2

�,max
)

(1 + 4�2

�,max
)3/2

(6.25)

Now that we have determined the shape and orientation of the spiral, all that

remains is determining the start position pstart and end position pend, which are

where the positions where the spirals intersect with the straight line paths as

shown in Fig. 6.7b. To determine the spiral positions, we use Fig. 6.7c. The length

;1 is the x-component of the Fermat spiral relative to the starting position and

orientation. To determine ;2, we define an angle 
 which satisfies 2
 + |Δ" | = �.
Along with the height ℎ, this allows us to compute ;2. Putting it all togheter, we

have


 =
� − |Δ" |

2

(6.26)

ℎ = :
√
�mid sin(�mid) (6.27)

;1 = :
√
�mid cos(�mid) (6.28)

;2 = ℎ/tan(
) (6.29)

; = ;1 + ;2 (6.30)

3
Meaning that

�� 5 (�1)
�� < 10

−3
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Figure 6.8: Fermat smoothing around waypoint.

By combining the above equations with the normalized velocities in and out of the

center point, we compute the spiral positions as

pstart = p8 − ;vin (6.31)

pend = p8 + ;vout (6.32)

Now that all the variables are determined, we can create the smoothed path be-

tween p8−1 and p8+1 via p8 . First construct a straight path from p8−1 to pstart. If the

turn direction is positive (Δ" > 0), then add the following spirals to the path

P(�) = pstart +
[
:sgn (�)

√
|� | cos(� + "in)

:sgn (�)
√
|� | sin(� + "in)

]
with � = C?�mid (6.33)

P̄(�) = pend +
[
:sgn (�)

√
|� | cos(� + "out)

:sgn (�)
√
|� | sin(� + "out)

]
with � = (C? − 1)�mid (6.34)

If the turn direction is negative, then add the following spirals instead

P(�) = pstart +
[
:sgn (�)

√
|� | cos(� + "in + �)

:sgn (�)
√
|� | sin(� + "in + �)

]
with � = −C?�mid (6.35)

P̄(�) = pend +
[
:sgn (�)

√
|� | cos(� + "out + �)

:sgn (�)
√
|� | sin(� + "out + �)

]
with � = (1 − C?)�mid (6.36)

Following the above paths, we get a continuous curvature path from p8−1 to pend.

If p8+1 is the final waypoint, then we finish with a straight path from pend to p8+1.

Otherwise we repeat the process untill we reach the final waypoint. Doing this

process for the path illustrated previously, we get the path shown in Fig. 6.8. The

same path is illustrated in Fig. 6.9 with different curvature parameters. We can

see that when the maximum allowed curvature is bigger, then the path will have

sharper turns. The curvature will always be continuous, but the vehicle may need
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Figure 6.9: Fermat smoothing with different curvature parameters.

to slow down in order to make the turn if the curvature parameter is too high.

Another thing to notice in Fig. 6.9, is that paths with lower curvature will deviate

more from the straight line path, especially in sharp turns. This property is called

allowance and is discussedmore in [22], where they gave a closed form expression

for the allowance of Fermat spirals.

allowance = ℎ = :
√
�mid sin(�mid) (6.37)

6.2.3 Closest point determination

Since a smoothed path consists of several path segments, we need to determine the

segment that is closest to our current position. We note that this is only applicable

to path-following, and not trajectory-tracking. With trajectory-tracking, we specify

how the path parameter C? changes as a function of time, and then P(C?)will be the

point on the path that we should track. With path-following we are agnostic to the

value of C? , so we must consider the entire path. To find out which path segment

the vehicle is closest to, we compute the minimum distance to each segment

individually. The segment with the lowest minimum distance is the segment the

vehicle is closest to.

Computing the distance from a point to a line segment or a circle segment is

trivial, so we will not cover those cases. However, computing the distance from a

point to a Fermat spiral is not straight forward, so we will cover it in depth.

Closest point on Fermat spiral A general Fermat spiral is given as

P(�) = pB + :sgn (�)
√
|� |

[
cos(� + "B)
sin(� + "B)

]
(6.38)

where

� = �begin + C?(�end − �begin) (6.39)
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We want to determine the value of � that is closest to a given position p, denoted
�closest. That is, we want to solve a constrained optimization problem

�closest = argmin(‖P(�) − p‖) (6.40)

To initialize the optimization method, we sample the spiral at a small number4

of � values in the domain, and select the best value. After this, we solve it as an

unconstrained optimization problem.

A problem with this parametrization is that its derivative has a singularity at

the origin. To solve this, [22] and reference therein [27], propose that we use a

coordinate transformation D =
√
�. This works in the setup used by [22], since

they formulate the spiral so that � ≥ 0. To simplify implementation we have

allowed negative values of �, which won’t work in the suggested transformation.

To remedy this we make a slight modification and instead use the transformation

D = sgn (�)
√
|� | (6.41)

With this transformation, we have � = sgn (D) D2
, and the Fermat spiral becomes

P(D) = pB + :D
[
cos

(
sgn (D) D2 + "B

)
sin

(
sgn (D) D2 + "B

) ] (6.42)

Reformulating the optimization problem we have

Dclosest = argmin(‖P(D) − p‖) (6.43)

This is equivalent to minimizing the distance squared, which we can write as a

cost function

�(D) = (P(D) − p))(P(D) − p) (6.44)

The optimal value of D is given by the minimum of the cost function, which we

can find by solving
d�
dD = 0.

d�

dD
= 2(P(D) − p)) dP

dD
(6.45)

Using the new parametrization, we can compute the derivative as

dP
dD

= :

[
cos

(
sgn (D) D2 + "0

)
sin

(
sgn (D) D2 + "0

) ] + 2:sgn (D) D2

[
− sin

(
sgn (D) D2 + "0

)
cos

(
sgn (D) D2 + "0

) ]
(6.46)

Using gradient descent, we could find the minimum with the above equation.

But by computing the second derivative aswell and employing Newton’s method

we can in theory improve the convergence rate on the optimal value. Another

4
We used 10 samples, but the scheme doesn’t seem sensitive to this.
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advantage of Newton’s method is that it does not require us to tune a stepsize

parameter. The second derivative of the cost function is

d
2�

dD2

= 2

(
dP
dD

))
dP
dD
+ 2(P(D) − p)) d

2P
dD2

(6.47)

The second derivative of the spiral parametrization is

d
2P

dD2

= 6:sgn (D) D
[
− sin

(
sgn (D) D2 + "0

)
cos

(
sgn (D) D2 + "0

) ]
+ 4:D3

[
− cos

(
sgn (D) D2 + "0

)
− sin

(
sgn (D) D2 + "0

) ] (6.48)

The above expressions allowus to find
d�
dD = 0withNewtonsmethod by computing

D8+1 = D8 −
d�

dD
/ d

2�

dD2

(6.49)

until

��� d�
dD

��� < & where & is a threshold we set to 0.001. After D8 converges to D
∗
, we

compute �∗ = sgn (D∗) (D∗)2. If �∗ is between �begin and �end, then �closest = �∗.
Otherwise we fallback to using the best sampled value from the initialization.

6.2.4 General path properties

Path velocity

The path velocity at a point C? is given by

v? =
dP
dC

=
%P
%C?
¤C? (6.50)

Assume the desired velocity is E3. Then
dP
dC gives the direction for the path velocity

and E3 gives the magnitude. Based on this we write the path velocity as

v? = E3v̂? (6.51)

v̂? =
%P

/
%C?

%P

/
%C?



 (6.52)

We note that [22] gives a closed form expression for ¤C? for Fermat-spirals which

can be used in (6.50), and the expression they obtain is equivalent to the one above.

Path acceleration

The path acceleration at a point C? is given by

a? =
d

2P
dC2

=
d

dC

%P
%C?
¤C?

=
%2P
%C2?
¤C2? +

%P
%C?
¥C? (6.53)
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Path curvature

Assume a point on the path P(C?) has velocity v? = [EG , EH] and acceleration

a? = ¤v? = [0G , 0H]. According to [9], the signed curvature is then given by

� =
EG0H − EH0G
(E2

G + E2

H)3/2
(6.54)

which we can rewrite as

� =
1

v?


3

(
v? × ¤v?

)
I

(6.55)

Path courserate

Since the course of a path is given as "? = atan2(EH , EG), the courserate is given by

¤"? =
d atan2(EH , EG)

dC

=
1

v?


2

(
−EH

dEG

dC
+ EG

dEH

dC

)
=

1

v?


2

(
v? × ¤v?

)
I

(6.56)

6.3 Path-following

Path-following is the problem of moving the vehicle so it converges on a path

and follows it. Contrary to trajectory-tracking, path-following specifies the path

independent of time, so the vehicle is allowed to converge anywhere on the path. In

this section we present a guidance system that solves the path-following problem.

A full guidance system needs to determine the desired course "3 and a desired

speed E3, but in this project we have not done any work to determine the desired

speed dynamically, so it is given as a constant parameter to the system. The

consequences of this are discussed in in Section 6.6.

6.3.1 Course determination

Course determination in guidance systems is a common problem in autonomous

systemswithmanypopular solutions. In [13], Fossenprovides a survey of different

guidance laws for marine crafts. From an engineering perspective, we argue it is

desirable to use a simple guidance system, because it is easier to understand their

failure modes and limitations. Based on this we decided to implement lookahead-

based guidance as presented by [2]. Lookahead-based guidance is a vector-field

guidance method, which in its simplest form means that the guidance law has a

closed form expression. This is contrary to optimization based methods.
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Figure 6.10: Cross-track error and guidance law.

To determine a desired course, we compute the cross-track error 42C , which is

defined as the error perpendicular to the path, as illustrated in Fig. 6.10. To do

this in software, we first need to determine the path-parameter C? that is closest

to the position of the vehicle. This is done by following the procedure outlined

in Section 6.2.3. The position of the path is then P(C?), so the position error of the

vehicle relative to the path in the inertial frame is

e8? = p − P(C?) (6.57)

By using the course of the path "?(C?), we can express the error in the Serret-Frenet

frame [12] as

e 5? = RI

(
−"?(C?)

)
e8? (6.58)

The cross-track error is by definition the y-component of e 5? .
In [2], they propose the guidance law

"3 = "? + "A(42C) (6.59)

where

"A(42C) = "0
2

�
atan(− ?42C) (6.60)

The approach angle "0 is a tunable parameter which controls the angle the vehicle

approaches the path at when the cross-track error is large. Figure 6.11 illustrates

the vector field for following a straight line path and the desired trajectory that the

vehicle should follow.

A problem with (6.59) and (6.60) is that is designed for straight paths. During

turns, the vehicle will thus only attempt to converge on a line tangential to the

closest point on the curve, which could lead to significant cross-track error. To

counteract this, we propose an extension of (6.60), which is to compute the path-

curvature � and feeding it forward to the guidance law with

"3 = "? + "A(42C) +  �E3� (6.61)
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Figure 6.11: Vector field converging on straight line path defined by H = 0.

where  � is a tunable parameter controlling how strong the curvature term should

be. We note that we have not seen this type of curvature modification in the path-

following litterature. If we compare (6.55) with (6.56), we see that we can write

E3� = ¤"? . This means that we can interpret "? +  �E3� = "? +  � ¤"? as predicting
the path-curvature into the future, which we suspect may improve tracking on

curved paths.

6.4 Parameters

The parameters for guidance system are given in Table 6.1.

Table 6.1: Guidance system parameters.

�max 0.5 m
−1

 ? 0.5

 � 0

"0 60 deg

E3 10 km h
−1
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6.5 Results

We test the guidance system on two distinct cases. In the first case, the vehicle

starts far away from a straight line path and should converge on it. In the second

case, the vehicle is presented with the lap shown in Fig. 6.12, and it should follow

it counter-clockwise. When following the laps, we start the vehicle in the origin so

that the initial error does not dominate the results. Since the second case contains

both right and left, small and big turns, and long and short straight segments, we

argue it is a representative example of what the vehicle should be capable of, so

we can use it to analyse the effect of different system parameters.

6.5.1 Straight line convergence

The straight line path starts in the origin and follows the x-axis positively. The

vehicle is initialized at [20, 20]. Also the initial yaw angle is 180 deg and it should

be controlled to 0 deg. The results for this case are given in Fig. 6.13. Looking

at the cross-track error in Fig. 6.13a, we see that it starts at 20 m, and after about

20 s it converges on zero. The yaw, which is controlled to be the same as the path

course, converges in about 10 s, which can be seen in Fig. 6.13b. Based on this

simple case, we are confident that the system is able to converge on a path when it

starts far away. But we suspect that this only applies when the path is straight. We

believe that the guidance system provides no guarantees that it is able to converge

on curved paths, because it is designed for straight paths.

6.5.2 Baseline case

To evaluate the performance of the GC system and compare the effect of different

parameters, we setup a baseline case. The baseline we use is the lap shown in

Fig. 6.12 with curvature 0.5 m
−1
. Additionally, we set the desired speed of the

20 0 20
0

10

20

30

40

Figure 6.12: Lap with curvature at 0.5.
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Figure 6.13: Straight line converge results.

vehicle to 10 km h
−1
. The results for this case are given in Fig. 6.15 and Table 6.2,

and for visual reference, a screenrecording of the case is uploaded to https:

//youtu.be/m5kxQ7tw4iU.

Looking at the cross-track error in Fig. 6.14a, we see that it has many spikes

corresponding to the turns in the path, and the peak cross-track error was 1.030

m. The vehicle is able to maintain track of the path during straight line driving.

This indicates that the guidance system is suboptimal during the turns. Even the

small third turn at (10, 30) leads to significant cross-track errors.

6.5.3 Effect of reference model

A possible explanation for poor performance during turns is that the wheels are

not allowed to turn fast enough. To investigate this, we disable the referencemodel

and rerun the experiment. The results are given in Fig. 6.17 and Table 6.3.

Without the wheel reference model, the mean cross-track error decreased from

0.226 m to 0.098 m, and the effect of this is clear in the trajectory plot in Fig. 6.16c

where it is hard to see any significant overshoot even during turns. The cost is

a large increase in chatter, from 70.666 N m to 518.598 N m, and similarly a large

increase in peak steering torque from 2.582 kN m to 14.108 kN m. In a real system,

these costs are presumably not acceptable, so removing the reference model is not

a viable option.

The fact that the GC system has better performance when the wheel reference

model is removed is an indication that we do not have sufficient bandwidth sep-

aration between the control layers. The upper control layers expect the wheel

control layer to be able to follow more aggressive commands than it is capable of.

To test this hypothesis, we increase the natural frequency of the wheel steering

angle reference model from 4 rad s
−1

to 6 rad s
−1
. The results for this case are given

in Fig. 6.19 and Table 6.4.

Making the reference model faster by increasing the natural frequency im-

proves the cross-track error from 0.226 m to 0.143 m. As with the case above, we

https://youtu.be/m5kxQ7tw4iU
https://youtu.be/m5kxQ7tw4iU
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Figure 6.15: Guidance plots on a simple lap.

Table 6.2: Guidance performance metrics on a simple lap.

Metrics

Mean cross-track error [m] 0.226

Peak cross-track error [m] 1.030

Mean speed error [km/h] 0.243

Steering chatter (front left) [Nm] 70.666

Peak steering torque (front left) [kNm] 2.582

Peak steering rate (front left) [deg/s] 108.929

see an increase in chatter and peak steering torques compared with the baseline

case, but it is significantly less than when the reference models are removed.

6.5.4 Effect of speed and curvature

Another strategy for improving performance during turns is to decrease the speed

of the vehicle. There are several reasons this may improve performance. When
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Figure 6.17: Guidance plots on a simple lap without wheel reference model.

Table 6.3: Guidance performance metrics on a simple lap without wheel reference

model.

Metrics

Mean cross-track error [m] 0.098

Peak cross-track error [m] 0.507

Steering chatter (front left) [Nm] 518.598

Peak steering torque (front left) [kNm] 14.108

Peak steering rate (front left) [deg/s] 108.428

going slower, the dynamics of the vehicle have more time to converge on the

controller setpoints, so transient effects matter less. Another reason is that the

friction forces that the vehicle needs to generate in a turn are related to the circular

acceleration of the vehicle, which is given by E2/A where E is the circular speed and

A is the radius of rotation. By decreasing the speed, the wheels are not required to

generate as much friction.



6.5. RESULTS 85

0 20 40 60
0.0

0.2

0.4

0.6
[m

]

(a) Cross-track error.

0 20 40 60

0

2

4

6

8

10

[k
m

/h
]

(b) Speed error.

20 0 20
E [m]

0

10

20

30

40

N
 [m

]

path
vehicle

(c) Trajectory.

Figure 6.19: Guidance plots on a simple lap with faster wheel reference model.

Table 6.4: Guidance performance metrics on a simple lap with faster wheel refer-

ence model.

Metrics

Mean cross-track error [m] 0.143

Peak cross-track error [m] 0.716

Steering chatter (front left) [Nm] 105.184

Peak steering torque (front left) [kNm] 5.904

Peak steering rate (front left) [deg/s] 107.025

To test the effect of speed, we reduce the desired speed of the vehicle from

10 km h
−1

to 5 km h
−1

and rerun the same lap presented above. The results are

given in Fig. 6.21 and Table 6.5. By decreasing the desired speed of the vehicle, the

peak cross-track error drops from 1.030 m to 0.381 m.

Note that since E2/A = �E2
, there is a relation between speed and curvature.

Based on this formula, we hypethesize that by doubling the speed to 20 km h
−1

and
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Figure 6.21: Guidance plots on a simple lap with lower speed. Desired speed is

5 km h
−1
.

Table 6.5: Guidance performance metrics on a simple lap with lower speed. De-

sired speed is 5 km h
−1
.

Metrics

Mean cross-track error [m] 0.069

Peak cross-track error [m] 0.381

Steering chatter (front left) [Nm] 48.762

Peak steering torque (front left) [kNm] 3.790

Peak steering rate (front left) [deg/s] 88.277

quartering the curvature to 0.125 m
−1

as compared with the baseline, we should

obtain a comparable tracking performance. The results for this case are presented

in Fig. 6.23 and Table 6.6. Looking at the performance metrics in Table 6.6, and

comparing themwith Table 6.2, we see that the performance is significantly worse

in this case. The mean cross-track error increased from 0.226 m to 0.472 m. If we
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Figure 6.23: Guidance performance on a lap with high speed (20 km h
−1
) and low

curvature (0.125 m
−1
).

Table 6.6: Guidance performancemetrics on a lapwith high speed (20 km h
−1
) and

low curvature (0.125 m
−1
).

Metrics

Mean cross-track error [m] 0.472

Peak cross-track error [m] 1.533

Steering chatter (front left) [Nm] 285.706

Peak steering torque (front left) [kNm] 3.674

Peak steering rate (front left) [deg/s] 73.013

look at the cross-track error plot in Fig. 6.22a, we see the error rarely converges to

zero. This is probably because there are not enough long straight line segments in

the path for the vehicle to stabilize on. In either case, this result seems to disprove

the hypothesis that the curvature and speed have the relationship given above.

We argue that the curvature-speed relationship is only relevant when the friction
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Table 6.8: Guidance performance with curvature feed-forward.

 � = 0  � = 0.1  � = 0.3

Mean cross-track error [m] 0.226 0.182 0.327

Peak cross-track error [m] 1.030 0.869 1.860

Steering chatter (front left) [Nm] 70.666 221.300 272.665

Peak steering torque (front left) [kNm] 2.582 7.092 12.068

Peak steering rate (front left) [deg/s] 108.929 114.874 136.908

Table 6.9: Guidance performance with curvature feed-forward and desired speed

5 km h
−1
.

 � = 0  � = 0.1

Mean cross-track error [m] 0.069 0.106

Peak cross-track error [m] 0.381 0.690

Steering chatter (front left) [Nm] 48.762 151.560

Peak steering torque (front left) [kNm] 3.790 4.798

Peak steering rate (front left) [deg/s] 88.277 103.689

forces are the limiting factor. If the wheel is able to operate in a region of static

friction, then it may be able to turn faster than dictated by the relationship above.

Thus we suspect that the reason the performance is significantly worse in this

scenario, is that the guidance system requires faster wheel and vehicle dynamics

in order to track the path at 20 km h
−1
. Using the faster reference model, we obtain

the results in Fig. 6.25 and Table 6.7. It performs significantly better with mean

cross-track error 0.302 m, as opposed to 0.472 m, but it is still worse than the

baseline which had 0.226 m.

6.5.5 Effect of curvature feedforward

In Section 6.3, we proposed using the curvature of the path to compensate for

turns, but we set the curvature feedforward gain to  � = 0, so it has not been

active in any of the results presented above. In Table 6.8, we present performance

metrics with  � = 0.1 and  � = 0.3, respectively. For quick reference, the baseline

performance metrics are restated also restated.

Using  � = 0.1 there is a improvement in the peak cross-track error from 1.030

m to 0.869 m. When we increase the gain further to 0.3, the peak error increases

to 1.860 m. Interestingly, we found the using  � = 0.1 and decreasing the desired

speed to 5 km h
−1

led to worse performance. Results for that case are given in

Table 6.9. When the desired speed is 5 km h
−1

themean cross-track error increased

from 0.069 m to 0.106 m, and likewise for the peak cross-track error.

The results shown above indicate that there is a relationship between the cur-
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Figure 6.25: Guidance plots on a lap with high speed (20), low curvature (0.125)

and faster wheel dynamics.

Table 6.7: Guidance performance metrics on a lap with high speed (20), low

curvature (0.125) and faster wheel dynamics.

Metrics

Mean cross-track error [m] 0.302

Peak cross-track error [m] 0.934

Steering chatter (front left) [Nm] 357.142

Peak steering torque (front left) [kNm] 4.746

Peak steering rate (front left) [deg/s] 75.715

vature feedforward gain and the desired speed. By finding that relationship and

tuning the feedforward gain to the speed, we can increase tracking performance

during turns. But if we get the tuning incorrect, then the performance of the

guidance system worsens. Because of this, we decided to keep  � = 0, so unless

otherwise stated, the curvature feedforward term is disabled.
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Figure 6.26: Vehicle on sloped terrain. Picture from beginning of https://youtu.
be/9PLcTj5GGQw.

6.5.6 Effect of sloped terrain

The vehicle model the controller is based on has several simplifying assumptions.

One of the assumptions is flat terrain. A consequence of this is that the controllers

do not try to compensate for the terrain directly, and instead rely on integral action

in the upper control levels. All the results presented above are with flat terrain,

but to investigate the effect of unmodelled disturbances, we rerun the simulations

with the lap recreated on a surface with slope 15 deg. For reference, a video of

this is uploaded to https://youtu.be/9PLcTj5GGQw, and a screenshot is shown

in Fig. 6.26. The results are presented in Fig. 6.28 and Table 6.10.

The results show an increase in mean cross-track error from 0.226 m to 0.263

m, and the peak cross-track error increased from 1.030 m to 1.284 m. The biggest

difference is seen in the speed error. In the baseline case in Fig. 6.14b, the speed

error converges quickly to a value close to zero, and the mean error was 0.243

km h
−1
. When the vehicle works in sloped terrain, the speed error in Fig. 6.27b

takes a long time to converge, and the mean speed error is 2.468 km h
−1
. This can

be clearly seen at 0:32 in the video when the vehicle changes from going slightly

downhill to directly uphill, and the vehicle almost comes to a standstill.

We think that the speed tracking performance can be improved by making the

integral effect of the speed controller greater. Looking at the period from 20 s to

40 s in Fig. 6.14b, which corresponds to 0:35 to 1:00 in the video, we can see that

https://youtu.be/9PLcTj5GGQw
https://youtu.be/9PLcTj5GGQw
https://youtu.be/9PLcTj5GGQw
https://youtu.be/9PLcTj5GGQw?t=32
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Figure 6.28: Guidance plots on a lap sloped terrain.

Table 6.10: Guidance performance metrics on a lap sloped terrain.

Metrics

Mean cross-track error [m] 0.263

Peak cross-track error [m] 1.284

Mean speed error [km/h] 2.468

Steering chatter (front left) [Nm] 222.915

Peak steering torque (front left) [kNm] 7.117

Peak steering rate (front left) [deg/s] 102.345

the vehicle slowly gains speed as it travels uphill. It stands to reason that a more

aggressive integral action would correct for the slope faster.
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6.6 Limitations

There exists several problemswith the path-smoothing systemwe have presented.

One problem is that there is no error checking on the waypoints, and if the way-

points are too close together then the smoothened path will be invalid. This is

illustrated in Fig. 6.29. It may be possible to modify the algorithm to prevent this,

but this is something we leave for future work. There are two ways to mitigate

this. We can

1. increase the maximum curvature to allow sharper turns, or

2. increase the distance between the waypoints.

The results above demonstrate that the speed of the vehicle should have an effect on

the maximum curvature. 4WIS vehicles are even able to handle infinite curvature

when stationary. A problem is that the speed is specified as a constant parameter

and not computed dynamically from the path. A possibility is to add curvature

and speed data to each waypoint. Then the path-smoothing would be able to use

the maximum curvature at each waypoint, and we could interpolate the speed

between the waypoints.

Another limitation is that the we do not support self-intersecting paths. This is

because when we compute the distance to the path, we always consider the entire

path. This was done to keep the implementation simple, but a real implementation

has to solve this problem. In Ch. 12 of [2], they propose a software architecture

for dealing with this and many other path-following related problems for small

UnmannedAerial Vehicles (UAVs), and the architecture seems like it would extend

to ground based vehicles as well.

The curvature of Fermat spiral is continuous, but it changes rapidly close the

origin as illustrated in Fig. 6.4. In practice, this means that at the start of a turn,

the vehicle has to rapidly change direction, which requires rapid wheel responses.

To reduce these problems, we can reduce the maximum curvature parameter.

But since the curvature of Fermat spirals starts to decrease after turning 15 deg,
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decreasing the curvature parameter will increase the size of the turns significantly.

Based on this we suggest that instead of using Fermat spirals throughout the turn,

we should insteaduse Fermat spirals to transition into andout of circular segments.

Fraichard and Scheuer [14] develops an algorithm for this using Clothoids instead

of Fermat spirals, butwe believe a similar algorithm could be developed for Fermat

spirals.

When we tested the vehicle on sloped terrain, we found that it was able to

maintain track, but it struggled maintaining speed. This is because the controllers

do not account for the extra force needed to drive uphill. We believe this problem

could be tuned away with more integral action on the speed controller, but we

shouldalsomodel this extra resistance so thatwe canuse it actively in the controller.





7Example Applications
In this chapter, we want to take a step back and consider how the control systems

developed in this project can be used in a complete system. To do this we present

twoworking protoype applications. In the first application, we connect the system

to a Playstation controller and use it to control the vehicle manually. In the second

application we use an open source flight control software to control the vehicle via

waypoints. The goal of creating these example applications is primarily to sketch

out what features a complete system may contain. Because this has not been a big

focus of this project, we decided to take several shortcuts in the implementation.

So the implementations we present are not robust or finalized, but they allow us

to experiment with the vehicle interface.

7.1 Manual control with Playstation controller

The Playstation 4 controller, called Dualshock 4, is typically used for video games.

It is illustrate in Fig. 7.1 with a button layout. Using Bluetooth we connect it to

the computer. Linux recognizes it as a joystick input device, so we could use the

Linux input driver or a more high-level API like SDL2 to communicate with it.

Fortunately, there is already a ROS2 package called joy which implements joystick

drivers formany controllers, including the Dualshock 4. It publishes the controller

state as a sensor_msgs/msg/Joy message. To control the vehicle we setup the left

joystick, denoted L3, to control the courserate and yawrate, and the right joystick,

denoted R3, to control the yawrate. We also programmed R2 and L2 triggers on

the back to accelerate and brake, respectively.

To be specific, the manual control module is implemented in the operation

layer, as illustrated in Fig. 3.6. It computes a desired course "3, desired speed

E3, and desired yawrate ¤#3 for the vehicle. Moving the left joystick left and right

creates a signal from -1 to +1, denoted L3!', and likewise for the right joystick.

(a) Top. CC BY 3.0 (b) Rear. CC BY 3.0

Figure 7.1: Dualshock 4 controller layout.

95

https://www.kernel.org/doc/Documentation/input/input.txt
http://wiki.libsdl.org/CategoryJoystick
https://index.ros.org/p/joy/
https://commons.wikimedia.org/wiki/File:Dualshock_4_Layout.svg
https://commons.wikimedia.org/wiki/File:Dualshock_4_Layout_2.svg
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The desired courserate is given by the left joystick as

¤"3 = L3!' . (7.1)

The desired yawrate is given as

¤#3 = ¤"3 + 0.2R3!' = L3!' + 0.2R3!' (7.2)

The reason both joystick feed into the yawrate, is that then yaw will follow the

movement direction of the vehicle. This may not be desired in all situations, but

for this prototype we found that it made the most intuitive sense. When the L2 or

R2 triggers are pressed, we update the desired speed using

¤E3 =


1 if R2 pressed

−0.8E3 if L2 pressed

0 otherwise

(7.3)

A video of the vehicle being controlled with this button layout is uploaded to

https://youtu.be/00WzG6nqd84. It is hard to tell from the video, but the joystick

control presented above gives an intuitive way to control the vehicle, but there are

a couple of issues with it. One problem is that when the vehicle is stationary, there

is no way to tell which direction it is going to accelerate. This is evident at 0:52 in

the video were we press the R2 to accelerate, and the vehicle reverses. Another

problem is that the we don’t scale down the joystick input for courserate in (7.1),

which could lead to aggressive driving.

7.2 Waypoint control with QGroundControl

Manual control is useful for maneuvering the vehicle over short distances or

through tight spaces, but to execute long-running farming operations, we need

a way to design a mission that the vehicle should execute. Based on prior experi-

ence with UAVs, we knew that QGC provides a powerful waypoint based mission

planning system. QGC is designed for aerial vehicles, so most of its features are

not applicable for farming vehicles. The only aspect of QGC that we have used

is the mission planner, which provides a map of the world and allows us to draw

waypoints on themap. A video of QGC being used to create amission is uploaded

to https://youtu.be/D7ouowuOn14. In the video, we use the survey feature of

QGC, which creates a lawnmover pattern across a large area. Figure 7.2 shows a

screenshot from the video close to the end when the mission is finalized.

QGC is a fully capable ground station, and it is typically used to communicate

with and control the vehicle during operation. But setting up this with the current

system requires a substantial amount of work, so we decided not go this route.

To get the waypoints out of QGC and into the guidance module, we save the

https://youtu.be/00WzG6nqd84
https://youtu.be/00WzG6nqd84?t=52
https://youtu.be/D7ouowuOn14
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Figure 7.2: Waypoint setup in QGC.

mission as a plan-file, which is a custom JSON based file format used by QGC.

We then created a small library to parse the plan-file and extract the waypoints as

latitude-longitude pairs. Since the guidance system expects Cartesian waypoints,

weneed to convert the latidude-longitudepairs toCartesian coordinates. There are

many ways to do this properly, taking into account the curvature of Earth, terrain

features, and more, but since this is just a prototype, we decided to do something

simpler. We define the first waypoint as the origin. To get ENU coordinates, we

define the x-axis as east, which is positively increasing latitude �, and the y-axis as

north, which is positively increasing longitude ), as illustrated in Fig. 7.3. Assume

Earth is a sphere with radius 'Earth = 6371km. This allows us to compute the great

circle distance between the waypoints.

Given two latitude-longitude pairs, (�0 , )0) and (�, )), the great circle distance
is the shortest on-surfacedistancebetween them. Several formulas exist to compute

it. In [15], and reference therein [33], they compute the great circle distance 3 as

3 = 'Earth2 (7.4)

2 = 2 atan2(
√
0,
√

1 − 0) (7.5)

0 = sin
2

(
) − )0

2

)
+ cos)0 cos) sin

2

(
� − �0

2

)
(7.6)

https://dev.qgroundcontrol.com/master/en/file_formats/plan.html
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Figure 7.3: Latitude (�) and longitude ()). CC BY-SA 3.0

To compute the Cartesian equivalent (G, H) of waypoint (�, )), we use

G = 3(�0 , )0 ,�, )0)sgn (ssa(� − �0)) (7.7)

H = 3(�0 , )0 ,�0 , ))sgn
(
ssa() − )0)

)
(7.8)

where (�0 , )0) is the first waypoint, and 3(·) is computed using (7.4) to (7.6).

After saving the mission-plan file, the waypoint module in the operation pack-

age sends the waypoints to the guidance system for the vehicle to follow. This pro-

cess is illustrated in a video that can be found at https://youtu.be/Sdw67MjuN_U.

A screenshot from the video is given in Fig. 7.4. In the screenshot we can see QGC

being used to make the path, Gazebo being used to visualize the vehicle, and RViz

being used to give a live preview. The video covers the whole path, but it is sped

up since at normal speed it takes about 14 minutes to cover.

https://no.m.wikipedia.org/wiki/Fil:Latitude_and_longitude_graticule_on_a_sphere.svg
https://youtu.be/Sdw67MjuN_U
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Figure 7.4: Waypoint control with QGC. Top left is Gazebo. Bottom left QGC.

Right half is RViz.





8Discussion & Conclusion
In this project, we have developed and evaluated a hierarchical control system for

4WIS vehicles, and we have created two example applications to see how they

could work in practice. In this final chapter we retrace the report and discuss

what works well and what needs improvement. We also suggest features that our

system lacks that we believe are needed in a real implementation.

8.1 System design

An important focus of this work has been to create a modular and extensible soft-

ware architecture for the system. This was done by separating the motion control

task into independent layers. The wheel control layer is responsible for control

of a single wheel, and the vehicle control layer is responsible for coordinating the

wheels. This provides a decoupled software architecture, but there could be issues

moving this from simulation to real hardware.

One problem with the system design is error handling. A more complete

systemwouldbe equippedwith sensors and code todetect errorsduringoperation.

Take for instance the case of excessive wheel slip on one of the wheels. Excessive

wheel slip can be detected by comparing measurements from a wheel encoder to

the inertial measurements of the vehicle. If the wheel control system detects this

error condition, it can either handle it internally, or it can relegate the task to the

vehicle control system above. If it handles it internally, then the wheel controller

might need to ignore references from the vehicle controller for a period of time,

which could lead to errors in the vehicle controller. If it relagates error handling to

the vehicle controller, then we lose some decoupling between the layers, because

the vehicle control layer then needs to be able to control the wheels aswell. It is

possible to make the case that we can improve fault tolerance and error handling,

and thus robustness, by creating amore tightly coupled,monolithicmotion control

system, but a cost of this would be a system that is harder to understand and

modify. The hierarchical motion control system is optimized for readability and

normal operation. Since it mostly uses standard control techniques, it is easier to

understand and tune its parameters.

There are many practical aspects that we have not accounted for in this work.

From a control perspective, the two main things we have neglected are available

onboard sensors and actuator limitations. In the detailed system arhitecture in

Fig. 3.6, we show where a state estimation module would fit in, but since we

have only worked with simulator cases we have not needed to implement state

estimation. In the simulator we have access to noise-free data on every imaginable

state in the system, but this is unrealistic because many states cannot be measured

directly so they have to be estimated. An example ofwhere this could be a problem

is the angular velocity controller. To control the angular velocity we proposed a

101
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proportional controller, and we argued that based on the passivity of the system it

should be able to follow constant references. To improve tracking of time-varying

references, one could add a derivative effect, and this would probably work in

theory and simulator cases. But adding derivative effect to the angular velocity

controller, assumes that we are able to estimate the angular acceleration of the

wheel. If the wheel is equipped with a typical wheel encoder, which can only

measure angle and angular velocity, then the acceleration estimate will be noisy.

Over the course of this work, we have attempted to limit ourselves to only use

states that we believe are possible to estimate or measure, but this would have to

be revised once a more detailed specification of the sensors are in place.

Another aspect of the system we have not considered is braking. The wheel

controller calculates a drive torque �3 which we input to the motor. But often

wheels have a separate actuator for braking, and this could be relevant particularly

for emergency braking. Emergency braking, for instance in the case that a person

or an animal walks in front of the vehicle, does not fit neatly in the system decribed

here. The way we would implement it now is that the guidance system would

send a speed reference EA = 0 to the vehicle control system. This would then

need to propagate through the control hierarchy and reference models, and the

vehicle would smoothly come to a standstill. Based on the step response test of the

speed controller, this could take as much as 5 s, which means that if the average

speed of the vehicle was 10 km h
−1
, then it would have travelled approximately

13 m since the braking was initiated. For normal operation this may be acceptable,

but emergency braking might need to use more of the capabilities of the system to

brake as fast as possible. This could involve using friction estimation to maximize

the braking force from each wheel, and purposefully misaligning the wheels to

create an even larger braking force on the vehicle.

8.2 Performance

To evaluate the performance of the control system there are many metrics we

can look at. The primary goal of this project has been to find a control system

arhictecture suitable for theAutoAgri vehicle. Insteadof fine-tuning the controllers

to obtain optimal simulator performance, we decided it was more beneficial to

investigate how the different tuning parameters affect the system, and to look for

problems that need to be mitigated in a full system.

The results presented in the Chapter 6 show that there are several issues with

the current system. A key issue is that the speed of the vehicle has a strong

influence on how sharp turns it is able to make. By reducing the speed from

10 km h
−1

to 5 km h
−1
, we could reduce the mean cross-track error from 0.226 m

0.069 m on the baseline case. During the straight line segments, the vehicle is able

to maintain track with centimeter precision, even at high speeds. The problem

that needs to be addressed is that the speed of the vehicle should not be a constant
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parameter to the system. The results show that ifwe change the speeddynamically,

increasing it for long straight segments and reducing it for the turns, the vehicle

should be able to maintain high tracking performance on the entire path. From

an operational perspective, it makes sense that the operator should be able to

specify the speed, so we think a good solution is embed the desired speeds into

the waypoints, and interpolate the speed between the waypints. A related issue is

that the curvature parameters are the same for all the turns. The path-smoothing

algorithm supports independent curvature parameterswithout anymodifications,

so the main problem is deciding how the curvatures should be specified. Again,

we believe a good option is to embed the curvature parameter into the waypoints,

since then the operator gets more control of how the path will look. One could

argue that we should also redesign the path-follower to be capable of following

curved paths, because the system we proposed is only designed to converge on

straight paths. While this would probably improve performance during turns, we

suspect the main problem lies in speed determination. Typical farming operations

will involve driving in straight linesmajority of the time, so based on thiswe do not

think it is necesarry to use a more sophisticated course-law to account for turns.

Another issue that we need to address is chattering caused by the steering

angle controller. Chatter is mainly a problem when the steering angle controller

tries to track a time-varying reference. Looking at step response in Fig. 5.4c, we see

that there is almost no chatter on the control signal once the system has stabilized,

but in the time-varying case of Fig. 5.6c the control signal never stabilizes. In

Section 5.4, we argued that there is room to increase the softregion parameter & to
reduce chatter without sacrificing performance significantly. The main reason we

get significant chatter is that the steering resistance bound

��" 5

�� ≤ " is estimated

offline, and in order to guarantee robustness the estimate cannot be a tight bound.

The steering angle SMC gets its robustness by adding margins on top of margins,

and the end-result is a controller which is designed to overcompansate for the

steering resistance. To reduce chatter, we could estimate " online, which would

hopefully give a tighter bound, leading to less chatter. We found that the wheel

reference model also had a big impact on chatter. When we removed it from

the baseline case, the chatter increased from 70.666 N m to 518.598 N m. This is

probably because removing the referencemodel causes large jumps in the reference

to be sent to the controller. Before this controller can be deployed, we need to

determine what level of chatter is acceptable. Since chatter causes wear and tear

on electromechanical system, and it is a known problem of SMC, we recommend

that alternative robust control strategies should be investigated as well.

We observed that the performance of the motion control system was strongly

dependent on the parameters to the wheel reference model. This means we need

to ensure bandwidth separation between the control layers, either by making the

wheel control layer faster, or the vehicle control layer slower, but the bandwidth of

each layer should be identified by doing system identification on the vehicle. The
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Figure 8.1: Baseline and sloped terrain trajectories.

reference model parameters that we used in this project were selected based on

physical intuition, but we acknowledge that they may be pessimistic or optimistic.

A problem related to this is that the vehicle controller does not account for the

dynamics of the wheel controller. Instead it relies solely on bandwidth separation,

but we have observed that if the bandwidth separation between the controllers

is insufficent, then the vehicle will tend to oscillate around the path. To mitigate

this, it might be possible to use the wheel reference models actively in the vehicle

controller. This is especially applicable if we want to implement an optimization

scheme in the vehicle controller, where we would replace the complex wheel

dynamics with the linear wheel reference models.

When we tested the vehicle on sloped terrain, we found that the tracking

performance was slightly worse, but we suspect that the root cause was not related

to the slope directly. Instead, the slope of the terrainmagnified problems that were

already present in the system, particularly track loss during turns. We suspect this

because when the vehicle was driving in a straight line, even perpendicularly to

the slope, it did not struggle to keep on the path. But the slope had a big effect the

speed error, which indicates that the speed controller was not aggressive enough.

We believe that this is the primary reason why the tracking performance was

worse with sloped terrain. On the downhill sections, the vehicle built up a more

momentum which lead to greater overshoots during turns. We can demonstrate

this by overlaying the baseline trajectory with the slope trajectory, which is done

in Fig. 8.1. If we compare this with the speed error plot in Fig. 6.27b or the video

of the case1, we can see that the vehicle is traveling downhill and going faster

compared to the baseline. As stated before, this could be counteracted by having

a more aggressive speed controller and integral effect. In addition to this, we

should consider expanding the model to include non-flat terrain. By modeling

1
1:15 in https://youtu.be/9PLcTj5GGQw

https://youtu.be/9PLcTj5GGQw
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the additional resistance and using feedforward to account for it, we believe it is

possible to significantly improve speed tracking when driving on terrain.

8.3 Future work

Throughout the report and in this chapter, we have mentioned many places were

the system can be improved. To wrap up the thesis, we present a short-list of

the improvements we believe are most important, particularly for bringing the

autonomous features developed here to the AutoAgri vehicle.

System identification: We should perform system identification on the vehicle in

order to build a data-driven model. This will allow us to build a more accurate

simulation and tune the controllers and reference models.

Chatter reduction: If we are going to use SMC or similar control techniques to

control the steering angle, we should look for ways to reduce chattering.

Motor drivers: In order to apply the control system to the AutoAgri vehicle, we

need to translate the control systemoutputs tomotor signalswith amotor driver. If

the motor driver does not allow torque control, then this might require a redesign

of the wheel controllers.

State estimation: All the signals that are used in the control system need to be

either measured or estimated in the real vehicle. This could be a big task, but

assuming GPS is available, we can use a standard inertial navigation system to

estimate position, velocity, acceleration, orientation, and angular rates. This can

extendedwithmeasurements from thewheels to estimatewheel states and friction

parameters for each wheel.

Mechanical limits: On the AutoAgri vehicle, the wheel steering angles are con-

strained, and this is a mechanical limitation that the wheel controller must main-

tain. We believe the reference optimization scheme in the wheel controllers can be

trivially extended to deal with this by adding a large (functionally infinite) cost of

violating the constraints.





ALemmas
A.1 Finite time stability

Assume a system has a Lyapunov function + which satisfies

¤+ + 
+� ≤ 0 (A.1)

where 
 > 0 and 0 < � < 1. This is a separable differential equation. Solving it we

get

d+

dC
≤ −
+�

(A.2)

+−� d+ ≤ −
 dC (A.3)

We integrate both sides from C = 0 to C, and get∫ +(C)

+(0)
+−� d+ ≤

∫ C

0

−
 d� (A.4)

1

1 − �
(
+(C)−�+1 −+(0)−�+1

)
≤ −
C (A.5)

(A.6)

Denote the reaching time by CA which iswherewe guarantee that C ≥ CA ⇒ +(C) = 0.

Inserting C = CA , +(CA) = 0 and +(0) = +0 into the above expression gives

1

1 − �
(
+(CA)−�+1 −+−�+1

0

)
≤ −
CA (A.7)

1

1 − �+
−�+1

0
≥ 
CA (A.8)

CA ≤
+−�+1

0


(1 − �) (A.9)

Since CA < ∞ for all +0, 
 > 0 and 0 < � < 1, this proves that the system will

converge to +(C) = 0 within the finite reaching time CA .
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BInterface definitions
B.1 Custom definitions

B.1.1 vehicle_interface/msg/Guide

float64 drive_torque
float64 steer_torque

B.1.2 vehicle_interface/msg/Waypoints

geometry_msgs/Point[] points

B.1.3 vehicle_interface/msg/WheelCommand

float64 drive_torque
float64 steer_torque

B.1.4 vehicle_interface/msg/WheelLoad

float64 load

B.1.5 vehicle_interface/msg/WheelState

float64 steering_angle
float64 steering_angle_rate
float64 angular_velocity

B.1.6 vehicle_interface/msg/YawReference

# Subscriber can use source to filter for relevant messages

string source
float64 yaw
float64 yawrate

B.2 Standard library definitions

B.2.1 std_msgs/msg/Header

http://docs.ros.org/en/noetic/api/std_msgs/html/msg/Header.html

uint32 seq
time stamp
string frame_id
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B.2.2 geometry_msgs/msg/Point

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Point.html

float64 x
float64 y
float64 z

B.2.3 geometry_msgs/msg/Pose

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Pose.html

Point position

Quaternion orientation

B.2.4 geometry_msgs/msg/PoseStamped

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/PoseStamped.

html

std_msgs/Header header

Pose pose

B.2.5 geometry_msgs/msg/Twist

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Twist.html

Vector3 linear

Vector3 angular

B.2.6 geometry_msgs/msg/TwistStamped

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/TwistStamped.

html

std_msgs/Header header

Twist twist

B.2.7 geometry_msgs/msg/Quaternion

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Quaternion.html

float64 x
float64 y
float64 z
float64 w

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Point.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Pose.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/PoseStamped.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/PoseStamped.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/TwistStamped.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/TwistStamped.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Quaternion.html
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B.2.8 geometry_msgs/msg/Vector3

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Vector3.html

float64 x
float64 y
float64 z

B.2.9 geometry_msgs/msg/Vector3Stamped

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Vector3Stamped.

html

std_msgs/Header header

Vector3 vector

B.2.10 sensor_msgs/msg/Joy

http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Joy.html

std_msgs/Header header

float32[] axes

int32[] buttons

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Vector3.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Vector3Stamped.html
http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Vector3Stamped.html
http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Joy.html




CCircular path smoothing algorithm
This appendix presents an algorithm for constructing a circularly smoothed path

between three waypoints, which can be extended to construct a path between

any number of waypoints. It is an approximating path, meaning it does not pass

through the intermediary waypoint, but it does end on the final waypoint. This

is related to Dubin’s path [11], but Dubin’s path also handles orientations and

requires the the path passes through the intermediary waypoints.

Consider three succesive waypoints p0, p1, and p2. We want to create a cir-

cularly smoothed path from p0 to p2 via p1 as illustrated in Fig. C.1. We want

to smooth out the path using a circle segment with radius A, which is given as a

parameter.

First compute the normalized velocities and turn direction �

v0 =
p1 − p0

‖p1 − p0‖
(C.1)

v1 =
p2 − p1

‖p2 − p1‖
(C.2)

� = sgn ((v0 × v1)I) (C.3)

The path-normals that point into the turns at p0 and p2 are given by

n0 = �

[
−E0,H

E0,G

]
(C.4)

n1 = �

[
−E1,H

E1,G

]
(C.5)

The center of the circle segment is at the intersection of the straight line segments

given by

;0(C0) = p0 + An0 + C0(p1 − p0) (C.6)

;1(C1) = p2 + An1 + C1(p2 − p1) (C.7)

The intersection is then given by ;0(C0) = ;1(C1), which we can write as

p0 + An0 + C0(p1 − p0) = p2 + An1 + C1(p2 − p1) (C.8)

⇔
[
p1 − p0 p1 − p2

] [
C0
C1

]
= p2 + An1 − p0 − An0 (C.9)

This system is invertible as long as the points are not colinear, so we can solve for

C0 and C1. The circle center is the given by

p2 = p0 + An0 + C0(p1 − p0) (C.10)
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p0 p1

p2

p0 + An0 + C0(p1 − p0)

p2 + An1 + C1(p2 − p1)

n0

n1

A

Figure C.1: Circular path smoothing illustration.

Recall that a circle segment is parametrized as

P(C?) = p2 +
[
A cos

(

0 + C?(
1 − 
0)

)
A sin

(

0 + C?(
1 − 
0)

) ] (C.11)

We have now established p2 , so we need to determine 
0 and 
1. The tangent

points where the path will turn into and out of the circle segment are given by

pC0 = p0 + C0(p1 − p0) (C.12)

pC1 = p2 + C1(p2 − p1) (C.13)

The vector from the circle center to the tangent points are −n0 and −n1. The angles

are then given by


0 = − atan2(=0,H , =0,G) (C.14)


1 = − atan2(=1,H , =1,G) (C.15)

To avoid unwanted behaviour, we recompute 
1 to ensure that it is the closest it

can be to 
0.


1 := 
0 + ssa(
1 − 
0) (C.16)
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