
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Erlend K H
off

Functionally G
enerating M

usic w
ith Prefix Trees

Erlend Kilvik Hoff

Functionally Generating Music
Structures with Prefix Trees

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth

June 2021

M
as

te
r’s

 th
es

is





Erlend Kilvik Hoff

Functionally Generating Music
Structures with Prefix Trees

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Project Description

A piece of music is a complex structure, exhibiting shared patterns across multiple
dimensions in a hierarchical manner. Any given note in a musical composition can
be viewed in many contexts, such as melody, rhythm, and harmony. Successful mu-
sic exhibits a form of coherent repetition in all these contexts. A suspicion arises
that a great reason why most generated music today sounds lacking, is the inher-
ent difficulty designing software which can represent and generate such complex
structures. Expressing shared structure in both the long and short term, as well as
non-hierarchical relationships between arbitrary leaves, is especially difficult.

When tackling such a difficult problem with no clear solution, it might be ad-
vantageous to look at it through the lens of a different programming paradigm.
Functional programming is a paradigm which requires the programmer to think
in a way that is quite different from the imperative mindset. Functional languages,
such as Haskell, are notorious for being hard to learn and understand, but also
tend to give very neat and well-formed software. Could using a functional lan-
guage to design and implement a music generation software that addresses the
structure-related problems described earlier, lead to a unique and possibly better
solution?

In this project, the student shall:

• Do background research to learn the functional language Haskell sufficiently
to carry out the project.

• Do background research on previous work on representing and generating
music with a structural focus.

• Take this into account and design a system which can express and generate
musical structures.

• Implement this design in Haskell.
• Evaluate the system’s ability to generate well-structured music.
• Discuss the adequacy of the design and implementation for generating sound

musical structures.
• Discuss the suitability and experience of using Haskell for this task, com-

pared to an imperative language.
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Abstract

In this project, a novel system for generating music with a focus on a structure is
designed and implemented in Haskell. The system expresses and generates music
with shared material across multiple hierarchical levels and musical dimensions
with generative prefix trees, a structure designed in this project, based on previous
work by Yan Han [1]. A generalized generation process is proposed. It consists
of generating and applying a series of prefix trees, which each address a given
musical aspect, like rhythm, harmony, or melody. The prefix trees are generated
according to a meta-model structure called generative plan, in order to ensure
cohesion and variety in the output music. A generative example is designed to
demonstrate the systems ability to generate structured music. Here, structure is
randomized by randomising the generation of the prefix trees. Chord progressions,
rhythms and "playing patterns" are chosen from a small pool of hand-written can-
didates. Each generating piece exhibits a unique structure, with clear repetition
on all hierarchical levels. This structural freedom is something that lacks in most
music generations systems today, where a certain form is usually chosen a pri-
ori [2]. Many avenues for future work in improving the system ability to generate
music are outlined. Since the generative system is so abstract, its general principle
could also be applied to hierarchical structures in other areas, such as figures or
text.
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Sammendrag

I dette prosjektet ble et nytt system for å generere musikk med fokus på struk-
tur designet og implementert i det funksjonelle språket Haskell. Systemet rep-
resenterer og genererer musikk med delt struktur på tvers av flerer hierarkiske
nivå og musikalske dimensioner. Dette gjøres ved hjelp av en prefix-trestruktur
som ble designet i dette prosjektet basert på tidligere arbeider av Yan Han. En
generalisert prosess for generering med slike prefix-trestrukturerer ble presentert.
Denne består av å først generere en rekke prefixtrær som hver adressererer sin mu-
sikalske dimensjon, altså hvert sitt aspekt av musikken som kan anses individuelt,
slik som rytme, harmoni og melodi. Disse genereres etter en meta-modell kalt
"generative plan", for å sikre sammenheng og variasjon. For å demonstrere denne
generelle generative metodens egnethet ble et snevrere generativt eksempel de-
signet. Her ble den generelle metoden brukt til å generere akkordprogresjoner
med strukturert variasjon i rytme og spillemønster. Den genererte musikk hadde
en ny struktur hver gang, med tydelige repetisjoner på alle hierarkiske nivå. Denne
strukturelle friheten mangler fra my av dagen musikk-genereringssystemer, der
man i stedet gjerne velger form/struktur a priori, og lar algoritmens jobb heller
være å fylle denne strukturen. Gjennom hele arbeidet har det vært et tydelig fokus
på abstraksjon og generalitet. Det kan dermed tenkes at den generelle generative
metoden også kan overføres til andre domener, som viser en lignende hierarkisk
inndeling. Dette kan være generering av figurer, eller generering av tekst.
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Chapter 1

Introduction

Generating music is a notoriously difficult problem that has been tackled with
great interest throughout history. Since the time of Pythagoras, musicians have
used algorithmic procedures in their compositions. Famous examples include Bach’s
procedural counterpoint, Erik Satie’s Vexations, Schoenberg’s serialism and min-
imalist techniques by the likes of Steve Reich and John Cage.

With the advent of computer science, the field of computer generated music ap-
peared. Today, this is a thriving field, populated by both academics and artists.
This has resulted in great progress in different subtasks of composition, such as
melody generation, harmonisation and rhythm generation. Still, today’s music
generation systems still struggle with generating music that exhibits reasonable
long term structure, with reasonable repetitions of subpatterns, i.e. shared struc-
ture [2]. Solving this problem would be a major stepping stone towards better
generated music, since it appears that hierarchical structure is inherent to human
music perception [3].

Parts of these difficulties obviously arise from the fact that music composition
is a creative pursuit, which is not exactly what computers are known for handling
best. Still, the fact that certain composition tasks that are just as creative, such
as melody generation, has to a much greater degree been successfully carried out
by computers, leads one to think that there might also be a more technical reason
why generating music with varied and cohesive long term structure has not been
successfully done yet.

It is both the author’s and the supervisor’s suspicion that a great reason for why
this problem is so difficult is that music exhibits such a complex web of relation-
ships that representing and generating such data structures is incredibly difficult
in itself. In music, every note belongs to many groups, such as chords, motifs,
melodies, phrases, verses, choruses, etc. Each note is perceived in many contexts
at the same time, and there are recurring patterns in all these groups. Addition-
ally, one can decompose musical information into multiple dimensions, so that

1



patterns of repetition might occur in one dimension but not in the others. For
instance a given rhythmic pattern might reoccur, but with different chords, or a
given motif might reoccur, but in a transposed form. A need emerges for data
structure which can capture the shared patterns across these musical dimensions,
and thus be used to generate music that is explicitly structured.

1.1 Goals

In this project we want to design and implement a software that can express and
generate music with shared structure in both the long and short term. This shared
structure is in the form of repetitions of material in all musical dimensions, and
at every hierarchical level. We wish to come upon a generalized method for gen-
erating music with such shared material.

Parameterised Stylistic Constraints A major part of this generalization is that
the system should not inherently enforce any stylistic constraints on the music. We
do need some constraints on generation process for the music to be cohesive, but
these constraints should be passed as input arguments to the generative functions,
not be embedded into the code itself.

Focus on Structure The focus of this project is to generate music with novel
structures, i.e. music where the form is not chosen a priori, but is randomly gen-
erated. The line between form and content can be a bit fuzzy. In this project we will
use the term structure to refer to the relationships between notes and rests. Espe-
cially how notes are grouped together, and how such groups are further grouped
together, revealing patterns of relationships between different groups that are dif-
ferent for each musical aspect/dimension considered.

Other Aspects of Musical "Quality" not an Explicit Goal Since our focus is
on generating structures, we are not primarily interested in the other musical
aspects of the generated output. We will not measure our success on the quality
or listenability of the music, but rather on the systems ability to enforce shared
patterns. Thus, we will no go very deep into music theory, and keep the usage
of terms from music theory to a minimum. The average reader will probably be
familiar with most terms used, but when in doubt, the reader is encouraged to
look at the music theory glossary that is provided in the appendix, where a short
explanation of each used term will be provided.

Design and Implementation in Haskell The software is to be designed for and
implemented in the functional language Haskell. In order to do so, the language
first must be learned, which is quite a daunting task, as it is known for being
a difficult language for beginners who are unfamiliar with functional concepts.
Thus, in this project, learning Haskell can be considered a goal in itself.
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1.2 Motivation

This project is mainly motivated by two factors:

1. It is interesting from a software design perspective, for the reasons described
above.

2. It is interesting from an aesthetic perspective.

Point 2 is a major personal motivation for doing this project. With generated mu-
sic, one cannot point to a sentient being as its direct creator. This has very inter-
esting implications. Can such music be considered art, or at least appreciated for
its beauty? Most people can appreciate the beauty of things that are generated
by the laws of nature, like as a sunset, or a waterfall. This form of beauty can
give an almost mystical feeling, since it doesn’t involve the kind of communica-
tion between the creator and the user that is inherent to human-made products. It
is the authors opinion that the same thing can be said for generated music, where
a strange sort of beauty can appear from the void that is the lack of a sentient
creator. Working with this project will involve confronting these ideas, which is
endlessly interesting.

There is also another interesting aspect to generated music that has to do with
the following question: Are there some limits to human creativity that constrains
the pool of possible pieces that can be written? And does this mean that there is a
possibility that music that is generated from an entirely different creative process
can reveal new interesting ideas that a person, due to both cultural and possibly
neurological restrictions is not able to conceive of? If this is the case, then com-
puter generated music could serve a very interesting role in pushing the bounds of
human creativity and thus push the field of music composition forward. It could
serve to show us how music could possibly sound like, giving a joy that is similar to
listening to a new genre for the first time, or discovering the music of an entirely
different culture. While these ideas point to a future far ahead, if they are to be
realized, then music generation systems must be freed from a priori chosen forms.
It is of no use to simply automate the composition of corpus-bound compositions
like one would automate any other industrial process. The goal of computer gen-
erated music should be exploration and experimentation, and for this to be the
case, it is vital that also the form of a generated piece is itself generated.

1.2.1 Why Haskell?

Before starting this project I had no knowledge on how to program in Haskell. So
why was it chosen as the implementation language of this project? This decision
was motivated by a few reasons. The first of these was a personal interest in learn-
ing more about Haskell and functional programming in general. Haskell’s reputa-
tion as a difficult but beautiful language made it intriguing to explore. Secondly,
as functional programming requires a different mindset from the imperative way
of thinking, the hope is that this will also give a different approach to the cent-



ral problem in this project. As this problem of structure-generation is more or
less unsolved, looking at it from a different angle might be advantageous. Finally,
some initial research has indicated that there is already a decently-sized milieu
for handling music-related tasks in Haskell. Paul Hudak, one of Haskell’s creators
is also a musician, and has written a great book called The Haskell School of Music,
where Haskell is taught in a music context through the library Euterpea [4]. There
is also a conference on functional generation of art called FARM (Functional Art
Modeling and Design), where music generation in Haskell is a common topic.

1.3 Report Outline

• Background

◦ Haskell and functional programming in general
◦ The Euterpea library for music composition in Haskell
◦ Previous work on music structure

• Specification

◦ Requirements put on the software’s functionality, as well as its design
and implementation

• Design

◦ Presentation of the design for generating structured music

• Implementation

◦ Implementation of the design in Haskell

• Evaluation

◦ Evaluation of the system’s ability to generate structured music

• Discussion

◦ On the design
◦ On the Implementation.
◦ On using Haskell/functional programming for this project

• Conclusion

◦ Conclusion on the main takeaways from the project

https://functional-art.org/


Chapter 2

Functional Programming in
Haskell

This chapter serves as the necessary introduction to functional programming in
Haskell needed to understand and appreciate the work done in the later chapters.
As Haskell and functional programming in general is not well known to most im-
perative programmers, this chapter will start with the very fundamentals, and
work its way to the more abstract features of the language. The final section will
cover some guidelines for developing and designing Haskell software.

While the contents of this chapter is interesting for the unfamiliar reader, it is also
uncontroversial and can more or less be found in any introductory book to Haskell.
Thus the main source for learning the basics of Haskell was chosen based on how
educational it was. In our case, this was a book called "Learn You a Haskell for
Great Good" [5]. This is a famous and very popular beginners guide, recommen-
ded by the official Haskell website haskell.org, among others. Additional sources
used were Serrano’s book "Practical Haskell: A Real World Guide to Programming"
[6] and "The Haskell School of Music" [4] by Hudak. Certain examples were taken
from from the official Haskell Wiki. Since the material presented here is a general
introduction, and Haskell is a community-driven language, the official Haskell
Wiki deemed as an appropriate source, especially due to its reputation as well-
maintained and "official".

2.1 The Haskell Approach to Functional Programming

This section is based on the chapter Going Functional from "Practical Haskell"
[6]. It will explain what makes Haskell different from other programming lan-
guages, and the advantages that follow from these differences. The defining traits
of Haskell can be summarized like this:

• Functions are mainly pure, data is immutable, side effects are isolated
• Evaluation is lazy
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• Types are statically checked by the compiler
• The type system is polymorphic, based on parametricity and type classes.

The following four subsections will elaborate on these four characteristics.

2.1.1 Pure functions

Haskell is a functional language, and thus lends itself well to functional program-
ming. In functional programming, functions are treated as data. They can be as-
signed to a variable, and be both input to and output from another function. This
allows for a very high level of abstraction, and thus reuse of code.

Since Haskell is a purely functional language, its functions are pure expres-
sions. This means that, like mathematical functions, they always give the same
output when given the same input. Side effects are still possible, but they are
isolated from the pure part of the code.

The main benefit of purity is that it is easier to reason about code and test it,
since you can be sure that the outcome of a function depends only on its paramet-
ers. This is known as referential transparency. Just like in maths, a function cannot
change anything outside itself. It can just give an output based on an input.

2.1.2 Laziness

In Haskell, the evaluation of pure expressions is not dependent on the order of
their execution. In contrast to imperative languages, where the code acts as se-
quence of instructions to be carried out, in Haskell you tell the computer what
things are. This is known as being declarative.

Since pure expressions don’t need to be evaluated in a particular order, differ-
ent execution strategies are possible. The default execution strategy in Haskell is
lazy evaluation. With this form of evaluation, an expression is only evaluated when
it is needed to evaluate another one. This allows the expressions of infinite data
structures, such as the infinite list of positive integers [0..].

Sometimes we really need something to be executed in a given order, depend-
ing on some sort of state. This can still be done functionally by chaining function
calls utilizing a concept known as the monad. This is a concept that can be difficult
to grasp, and will be expanded on later.

2.1.3 Strong static typing

Type systems are a way of categorising the values that could appear during execu-
tion. Types are used to tag values, normally to restrict the set of possible functions
that can be applied on values with a given type. Such a system is clearly needed, as
most functions only really makes sense when applied to a certain set of values, and
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make no sense when applied to others. For instance, it would make sense to per-
form a division on doubles, but doing the same with strings is clearly meaningless.

In general, types can be checked at two times: At execution time, known as dy-
namic typing, or at compilation time, known as static typing. Haskell belongs to the
latter category. Its type system is very strong, which means that the number of type
errors that can be caught at compile time is very high. This gives the programmer
greater confidence in the code once it has compiled, because it is unlikely that a
type error will appear during execution. To quote a common saying in the Haskell
community: "Once it compiles, it works".

2.1.4 Polymorphism

The type system in Haskell exhibits great polymorphism. This means that types
can be abstract, defined to contain other types without specifying what this type
should be. For instance, the list type can contain any type inside it, and you can
define functions on lists that are independent on what the list actually contains.
What type the list actually contains is a parameter to the list type. This is known
as parametric polymorphism, and will be further elaborated on in section 2.4.

Another form of polymorphism in Haskell is the ability to group types by the ac-
tions that can be performed on them. This is known as type classes. For instance, it
is clear that the function map, which applies a given function to all the elements in
a list, could be abstracted to work on other data structures as well, such as trees,
graphs and sets. This concept is very high-level, and allows for great abstraction
and re-use of code.

2.2 Basic syntax

Since we now know the defining characteristics of Haskell, it is time to get to
know the language syntax itself. In this section, the basic syntax of Haskell will
be explained, as well as the basics of lists (the most fundamental data structure)
and types. This will give the minimal introduction needed to understand the more
in-depth features of Haskell covered in the succeeding sections. The main source
for this section is chapters 2, 3 and 4 in Learn You a Haskell for Great Good [5].

2.2.1 Defining values and functions

Defining Values In Haskell, values are defined like this:

number = 1
name = "Johnny"

As data is immutable in Haskell, once values are defined, they can never be changed.
All values must be lower case, as upper case is reserved for types.



Defining Functions Functions can be considered values with arguments. Thus
they also must be lower case. A function’s arguments are written after its name,
separated by a space. what the function returns is written after the equals sign:

add x y = x + y

Functions can also contain other functions:

average x y = (add x y)/2

Infix and Prefix Functions Infix functions are written between their arguments.
This is mostly done to make a function easier to read. To make a function written
with letters infix, we need to surround it with backticks. For instance, the div
function, which takes two integrals and does integral division between them, can
be be written prefix and infix like this:

div 92 10
92 `div` 10

Functions that are written with symbols (known as operators), such as *, + and
/, are by default infix. To make them prefix, we need to surround them by paren-
theses:

1 + 2
(+) 1 2

Let In and Where It is often useful to define expressions within the scope of a
function. This can be done with let in notation:

average x y =
let sum = add x y
in sum / 2

The same thing can also be achieved with where notation:

average x y = sum / 2
where sum = add x y

Pattern matching Functions can also be defined with pattern matching. This is
one of the most useful features of Haskell. Pattern matching consists of defining a
function with several different function bodies, where each function body defines
what the function should do for a given pattern of input. For instance:

is7 7 = True
is7 _ = False



Chapter 2: Functional Programming in Haskell 9

Here, we see that the function is7 is defined with separate function bodies for
different patterns, which makes for very clear and readable code. (the _ symbol
is used to indicate that the argument can be anything). During execution, the
compiler will check the patterns from top to bottom, and use the function body
which corresponds to the first pattern the input conforms to. This means the order
we specify the patterns in matters. If we instead defined our function like this:

is7 _ = False
is7 7 = True

The function would match with the first pattern, and thus return False for an input
value of 7, which of course is incorrect.

Control Structures In Haskell, there are a few different ways to put conditions
on on values. The first of these are if expressions:

greaterThan100 = if (>100) then "Great" else "Small"

In order to make if statements more readable when you have several conditions,
we can use guards:

greaterThan n
| n > 100 = "great"
| n > 1000 = "very great"
| otherwise = "small"

If the boolean expression within a guard evaluates to True, the corresponding
function body is used. If it evaluates to False, the next guard will be checked in
a similar fashion. The otherwise expression is simply defined as otherwise = True,
and thus will always evaluate to True, serving as a sort of catch-all.

Finally, we can use case expressions. These basically work as pattern matching
inside functions. The syntax for case expressions are pretty simple:

case expression of pattern -> result
pattern -> result
pattern -> result
...

Thus, we can redefine our is7 function like this:

is7 n = case n of 7 -> True
_ -> False

2.2.2 Defining Lists

Lists are by far the most common data structures in Haskell, and thus deserve
their own subsection in this minimal introduction. Lists are defined like this:



numbers = [1,2,3,4,5]

They can also be defined as ranges:

numbers = [1..5]

Since Haskell is a lazy language, we can define infinite lists. This can be very useful
when dealing with the concept of infinity:

positiveInts = [1..]

The : operator tacks an element onto a list. The way numbers has been defined
thus far is a special syntax for:

numbers = 1:2:3:4:5:[]

Basic List Functions Functions operating on lists are abundant in Haskell. The
more advanced ones will be covered in later sections. Some of the basics are:

• combining lists with the ++ operator:

>> numbers ++ [6,7,8,9,10]
[1,2,3,4,5,6,7,8,9,10]

• accessing elements:

>> head numbers -- first element
1
>> tail numbers -- list with head removed
[2,3,4,5]
>> last numbers -- last element
5
>> init numbers -- list with last removed
[1,2,3,4]
>> numbers !! 1 -- access by index
2

Many more basic functions exists, with self explanatory names, such as reverse,
sum and maximum.

List Comprehensions List comprehensions in Haskell are similar to set compre-
hensions in mathematics. If we wanted to express the set of all squares of natural
numbers that are smaller than 10, we would write the following set comprehen-
sion:

S = {x2 | x ∈ N, x ≤ 10}
If we wanted to express the same thing in haskell, we could use the following list
comprehension:

s = [x**2 | x <- [1..], x <= 10]

As we can see, the notation is very similar to that of set comprehensions. Here we
also see laziness being put to good use, with the expression of all natural numbers
as the infinite list [1..].
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2.2.3 Type Declarations and Typeclasses

While a more thorough explanation of types in Haskell will be given in section
2.4, this subsection will serve to give the minimal introduction to types needed to
understand further sections.

Type Declaration of Values While the compiler can infer the type of most val-
ues, we can also give a value a type declaration. This is done to help the compiler
in cases of ambiguity, and when we want to make the type explicit for the reader.
Values can be given a type declaration with the :: operator. Types are always writ-
ten in upper case. For instance, the type declarations for number and numbers are
as follows:

number :: Int
numbers :: [Int]

Type Declaration of Functions It is common to annotate a function with its type
declaration, as this makes it clearer for the reader what the function does. Also,
as previously stated, while types are inferred in Haskell, the compiler sometimes
needs help in cases of ambiguity. The type declaration for average is as follows:

average :: Int -> Int -> Double

As usual, the :: operator is used to indicate that a type declaration follows. The
arrows before the last type indicate that this is the type of the function’s output.
The preceding types are the types of the input. The reason why there are also
arrows between these has to do with currying, and is explained in subsection 2.3.2

Type Variables Type variables are used in the type declaration of polymorphic
functions. Let’s examine the type declaration of the head function:

head :: [a] -> a

The type variable a means that the head function can operate on lists of any type.
We can see that it is a type variable because it is lower case.

Typeclasses As previously stated, typeclasses are a key feature of Haskell that
allows the grouping of types according to what functions are allowed to be per-
formed on them. For instance, all types that can act like numbers, such as Int,
Double, Float etc. belong to the Num typeclass. Thus, the type declaration of add
can really be defined like this:

add :: Num a => a -> a -> a



Here we see that the => operator is used to indicate that the typeclass(es) apply
to the type(s) that follow. If we tried to use this function on a type that does not
belong to the Num typeclass, such as a String, the compiler would throw an error.
Examples of other often-used typeclasses are Eq for types that support equality
testing, Ord for types that can be orderedg and Show for types that can be shown
as strings. More abstract concepts that will be covered later, such as Functors,
Applicatives and Monads are also expressed in Haskell as typeclasses.

2.3 Working with Functions

With the minimal introduction out of the way, we can take a deeper look into how
we can work with functions in Haskell. Common techniques for writing functions
include pattern matching, recursion and building higher order functions. Higher
order functions are functions that either return functions or take them as input
parameters. The main source for this section is chapter 5 and 6 of Learn You a
Haskell for Great Good [5].

2.3.1 Pattern matching and recursion

Pattern matching can be used to define functions recursively. This is a common
way to define functions in Haskell. A classic example of recursion in Haskell is
getting the nth number of the Fibonacci sequence:

fib 0 = 0
fib 1 = 1
fib n = fib(n-1) + fib(n-2)

On Lists Recursion is commonly used in Haskell to iterate through lists, or sim-
ilar data structures. For example:

maximum [x] = x
maximum (x:xs) = max x (maximum xs)

This function gets the maximum of a list. The first function body says that if the
list contains only one element then this must be the largest element. This is the
edge case, needed for the function to terminate. The other function body says that
the maximum of a list is the largest value of (the first value) and (the largest of
the rest of the list). This is a common way of thinking when writing functions on
lists recursively: First think of all edge-cases, for some minimal input where the
answer is obvious, and then cover the general case by pattern matching to split
the list into a head and a tail [5].
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2.3.2 Higher order functions

Higher order functions are functions that either take a function as one of its ar-
guments, return a function, or do both [5]. Higher order functions is a really
powerful concept that is used a lot in Haskell.

Curried Functions

In Haskell, all functions take one parameter and return one value. So why can we
define functions that seemingly take multiple arguments, like for instance the add
function? The answer is that functions with multiple arguments really are curried
functions. As previously stated, functions can also return functions. For instance,
the type declaration of add can also be written like this:

add :: Num a => a -> (a -> a)

Here we can see that add is really a higher order function that takes a number
and returns a function. This function takes a number as input, and finally returns
a number. When evaluating add 4 5, what really happens is that first the function
add 4, which adds 4 to its input is created, and then this function is applied to 5.
This results in 9, the output of the entire function.

Currying allows the partial application of functions: we can create new functions
by leaving out parameters to a given function. For instance:

addTo4 :: Num a => a -> a
addTo4 = add 4

Here we can see that applying 4 and 5 to add is equivalent to applying 5 to addTo4:

>> add 4 5
9
>> addTo4 5
9

Map

Higher-order functions that take functions as input are very common in Haskell.
One of the most common of these, is map, which takes a function and a list as its
arguments, and applies that function to all of the list’s elements:

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

For instance, if we want to add 4 to every number in a list, we can do the following:



>> map (add 4) [1,2,3,4]
[5,6,7,8]

Here, we have used partial application to create the function add 4, which adds
4 to any number.

Filter

Another fundamental higher order function is the filter function. It takes a pre-
dicate (a boolean-valued function) and a list as its input, and outputs a list where
all the elements that don’t satisfy the predicate are filtered out:

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

Some examples:

>> filter (>2) [1,2,3,4]
[3,4]
>> filter even [1,2,3,4]
[2,4]

Fold

The final fundamental higher order function covered here is fold. It takes a binary
function as its first argument, a starting value (often referred to as an accumulator)
as its second argument, and a list as its third argument. The fold function then
applies the binary function to the accumulator and the first element of the list,
which results in a new accumulator. The binary function is the applied to the new
accumulator and the second value of the list, and so on until it has been through
the entire list. A fold can work either from the left of a list (foldl) or from the
right (foldr). For instance, a function that finds the sum of all the elements of a
list can be implemented very succinctly with a fold:

sum' :: Num a => [a] -> a
sum' = foldl (+) 0
>> sum' [1,2,3,4]
10

Folding is a very powerful concept that can be used anywhere you want to traverse
a list and return a value based on that traversion [5]. What is output by the fold
needs to be of the same type as the accumulator, but other than that, it can be
anything. We can for instance implement map with foldr, where the accumulator
is a list:
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map' :: (a -> b) -> [a] -> [b]
map' f xs = foldr (foldingFunc f) [] xs
foldingFunc f x acc = f x : acc

Lambda functions

We often want to define functions quickly in-line without giving them a name.
This can be done in Haskell with lambda functions. They are defined with a \,
which is meant to look like λ, the greek letter lambda. For instance:

sum = (\x y -> x + y)

Lambdas are often used as the argument to maps, filters and folds. For instance:

sum'' :: (Num a) => [a] -> a
sum'' = foldl (\x y -> x + y) 0

reverse' :: [a] -> [a]
reverse' = foldl (\acc x -> x : acc) []

This short but clear implementation of reverse’ shows the power of lambdas com-
bined with folds.

Application and Composition

In Haskell it is common to define functions as combinations of other functions.
There are two operators that make this process easier: the application operator
and the composition operator.

Application Normally, we need to use parenthesis to denote that a function is
applied to the result of a larger computation. The application operator $ can make
this notation simpler:

-- equivalent definitions of h:
h x = f (g x)
h x = f $ g x

In addition to saving parentheses, $ also has the advantage that it expresses the
notion of function application with a function. Thus it can be used to for instance
map the application to a value to a list of functions [5]:

map ($ 3) [(4+), (10*), (^2), sqrt]
[7.0,30.0,9.0,1.7320508075688772]



Composition In mathematics, function composition is defined like this:

f ◦ g(x) = f (g(x)) (2.1)

A special operator for composition is useful when chaining many functions to-
gether. That is why haskell has a composition operator ., which works just like in
mathemathics:

-- equivalent definitions of h:
h = \x -> f(g x)
h = f . g

The latter equation is much more succinct and readable.

2.4 Haskell’s Type System

Now that an introduction to functions in Haskell has been given, it is time to
look at types. Understanding the type system is a very important part of learning
Haskell. This section will explain the type system more in-depth, covering topics
such as algebraic datatypes, value constructors, type constructors, kinds and type
classes. The main source for this section is chapter 3 and the first half of chapter
8 in Learn You a Haskell [5].

2.4.1 Algebraic datatypes

In Haskell, a type is defined by the all the values that it can have. For instance,
Bool is defined like this:

data Bool = False | True

The part before the "=" symbol specify the name of the type. The part after "="
consists of value constructors, which specify what values the type can have. | is
read as "or".

Shapes In other to get to know algebraic datatypes better, we will look at a
modified version of an example from the section "algebraic data types intro" from
chapter 8 in Learn You A Haskell [5]: Let’s say that we want to define a type Shape,
that can either be a circle or a rectangle. A circle is defined by three numbers: its
radius and the 2D-coordinates of its centre. A rectangle is defined by the 2D-
coordinates of its two opposing corners:

data Shape = Circle Float Float Float | Rectangle Float Float Float Float

Here Circle is the value constructor for a circle, and Rectangle is the value con-
structor for a rectangle. Now, if we wanted to express a circle with a radius of 1
and a center in (0,0), we would write:
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ball = Circle 1 0 0

Let’s look at the types of ball and Circle:

ball :: Shape
Circle :: Float -> Float -> Float -> Shape

From the type of Circle, we can see that a value constructor is a function that
takes some parameters and returns a value of the type it belongs to.

Now, if we want to write a function that gets the surface of a shape, we can pattern
match on value constructors:

surface :: Shape -> Float
surface (Circle r _ _) = pi * r ^ 2
surface (Rectangle x1 y1 x2 y2) = (abs $ x2 - x1) * (abs $ y2 - y1)

Record syntax

Sometimes it can be confusing to define a value by using a value constructor and
its parameters in sequence. For instance, when defining the circle above, it might
be easy to forget which of the Floats represent the radius and which represent
the point. This confusion can be cleared up with record syntax, which looks like
this:

data Shape' =
Circle' {radius :: Float, x :: Float, y :: Float} |
Rectangle' {x1 :: Float, y1 :: Float, x2 :: Float, y2 :: Float}

Now, a circle can be constructed by specifying each field by name:

ball = Circle' {radius = 1, x = 0, y = 0}

2.4.2 Type constructors

Just like a value constructor can take values as parameters to create a new value,
a type constructor can take types as parameters to create a new types. To further
explain this concept, some common type constructors are covered in this subsec-
tion.

Maybe

The type constructor Maybe is used to represent a value that might or might not
exist. It is implemented like this:

data Maybe a = Nothing | Just a



Here we see that the type parameter a is a type variable, i.e. it can be any type.
The Maybe type constructor can be used to express functions that we know will
fail for certain values. An example of such a function, is find, from the Data.List
module:

find :: Foldable t => (a -> Bool) -> t a -> Maybe a

From its type signature, we can see that find takes a predicate function as its first
argument, and a value inside a type constructor of the Foldable typeclass as its
second argument. Foldable types are types that can be folded over, such as lists.
The function returns a type of Maybe a. It will return Just the first element from
the left in the structure (commonly a list) which satisfies the predicate, or Nothing
if no elements satisfy this predicate:

>> find (> 10) [0, 6, 12, 16]
Just 12
>> find (> 10) [0 .. 6]
Nothing

Maybe is useful because it clearly expresses the possibility of failure. If we see
from the type declaration that the function returns a Maybe a, we know that the
function might return nothing. This is a more graceful way of failing compared to
throwing errors, as the function does what the type signature says it will do, even
when no result can be given.

Lists and Trees

Data structures that contain data of a given type are created using type construct-
ors. Lists, for instance, are defined this way. Another common container for data
are binary trees:

data Tree a = EmptyTree | Node a (Tree a) (Tree a)

We see that a Tree can contain data of any type a. A binary tree is either empty,
defined by the parameterless value constructor EmptyTree, or it is a node contain-
ing a value, and two other Trees. This allows us to recursively build trees.

2.4.3 Kinds

Just like a value has a type, a type has a kind. This might sound confusing, but it
is actually rather simple. To get the kind of a type, we write ":k". Here are a few
examples:

>> :k Int
Int :: *
>> :k Maybe
Maybe :: * -> *
<< :k []
[] :: * -> *
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Concrete types, like Int, are denoted by a star *. Concrete types are types which
don’t take any type parameters. Values can only have concrete types. We see that
the kind of Maybe is * -> *. This means that it takes a concrete value as a para-
meter, and returns a concrete value. It wouldn’t make any sense for a value to be
of type Maybe, but if we give Maybe a concrete type, like String, we get a concrete
type Maybe String, which a value can have.

2.4.4 Defining type classes

As previously stated, a type class defines a one or more of functions that that all
types belonging to it must have an implementation of. To make a type belong to
a type class, we need to make it an instance of it. A type class is implemented as
a set of functions that can be used on types that are instances of it. For example,
the Eq type class, representing types that can be equated, is defined the following
way:

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)

We see that the type class contains two functions, "==" and "/=", which both
take two values of the same types as its arguments, and returns a Boolean value.
Next we see that these functions are implemented recursively, by stating that two
values are equal if the are not different, and different if they are not equal.

Deriving Instances To learn more about deriving instances, we will look at an-
other example from Learn You a Haskell [5]: Let’s say we have made our own data
type, called TrafficLight:

data TrafficLight = Red | Yellow | Green

If we wanted to equate this datatype with the == and /= operator, we would need
to make it an instance of the Eq type class. This can be done in two ways. The first
is to let Haskell automatically derive it with the derive keyword:

data TrafficLight = Red | Yellow | Green deriving (Eq)

Using derive will make a type an instance of the given type class with a default
implementation. In the case of Eq, values will be considered equal if the value
constructor and all the parameters are equal. This means that the parameters also
need to have an instance of the Eq type class.



Defining Instances The other way to make a datatype an instance of a type
class, is to define it by hand:

instance Eq TrafficLight where
Red == Red = True
Green == Green = True
Yellow == Yellow = True
_ == _ = False

If we look back to the class declaration for the Eq type class, we see that == is
defined in terms of /=, and vice versa, which is why we only need to overwrite
one of them in the instance declaration for TrafficLight. This is what is called
the minimal complete definition for the type class. It is the minimum of functions
that need to be defined in the instance of a type for to be part of the given type
class.

2.5 Some Higher Level Typeclasses

Haskell makes use of some quite abstract concepts, stemming from the branch of
mathematics known as category theory. This is where we get terms such as functors
and monads from [4]. These concepts are implemented in Haskell as type classes.
The most essential of these, monoids, functors, applicate functors and monads,
are covered here. While this is a very deep topic, we will restrict our scope to the
parts that are relevant to the implementation of our system. The main source for
this section is chapter 11 and 12 from Learn You a Haskell [5].

2.5.1 Monoids

A monoid consists of "an associative binary function and a value which acts as an
identity with respect to that function" [5]. For something to act as an identity with
respect to a function, this function called with a given value and this identity as its
arguments will result in the given value. For instance, for numbers, the number 0
along with the function + is a monoid. The binary function + adds two numbers
together producing a third number, and adding a given number with 0 will return
that number. 1 and * are also a monoid, since * is a binary function on numbers
that returns a number, and doing * 1 on any given number will return this number.
The monoid typeclass is implemented like this in Haskell:

class Monoid m where
mempty :: m
mappend :: m -> m -> m
mconcat :: [m] -> m
mconcat = foldr mappend mempty

Here, mempty is the identity, mappend is the binary function, and mconcat is a way
of applying mappend sequentially to a list of monoid values to flatten the list into
a single monoid value.
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Lists as monoids

List are also an instance of the monoid class. It’s implemented like this in Haskell:

instance Monoid [a] where
mempty = []
mappend = (++)

This makes sense, as "++" is a binary function that takes two lists and returns a
single list, and adding an empty list to a list results in an unchanged list.

2.5.2 Functors

The typeclass Functor is for types that can be mapped over. For a type to be able
to act like a functor, it needs to be a type constructor with one parameter, i.e be of
the kind * -> *. A common analogy for such types, is that of a "box" or a context".
Lists and trees for instance, can be viewed as a box or a context which contains
values of a given type. The same goes for Maybe a, where Just a contains a value
of type a.

Class Implementation with fmap

The Functor typeclass consists only of the function fmap, with no default imple-
mentation:

class Functor f where
fmap :: (a -> b) -> f a -> f b

From the type signature of fmap, we can see that it takes a function from type a to
b as its first argument, and type constructor f applied to a as its second argument.
It then applies this function to the element(s) inside the functor, returning a type
of f applied to b. In other words, it allows us to apply context-free functions to
values wrapped in a context. This can be made very clear if we write fmaps type
signature like this:

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

Here, it is made clear that fmap takes a function and returns a function with the
variables wrapped in a context. How fmaps works is also illustrated in figure 2.1.

Examples of Types as Functors

What follows are a few well known examples of types acting as functors:

Lists Lists are implemented as functors in a quite simple way:

instance Functor [] where
fmap = map



Figure 2.1: How fmap works for Functors. A solid box around a value represents
a context. The inputs are displayed in blue and the output is displayed in green.
This figure is based on a similar figure created by by Bhargava [7].

Maybe Maybe is implemented as functors like this:

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

It uses pattern matching on the value constructors. if it is an x is wrapped in a
Just, we apply f to x inside a Just. If it is Nothing, we simply return Nothing, as
we cannot apply a function to Nothing.

Binary Trees

instance Functor Tree where
fmap f EmptyTree = EmptyTree
fmap f (Node x left right) =

Node (f x) (fmap f left) (fmap f right)

For binary trees, fmap is implemented recursively. Applying fmap f to an empty
tree will naturally result in an empty tree. Applying fmap f to a Node will apply
f to the node’s value, and fmap f on both of its children.

2.5.3 Applicative Functors

Applicative Functors are Functors with extra functionality: They allow us to take
functions in a context, and map it to a a value in a context:
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Figure 2.2: How <*> works for applicatives. A solid box around a value represents
a context. The inputs are displayed in blue and the output is displayed in green.
This figure is based on a similar figure created by by Bhargava [7].

class (Functor f) => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

The first function, pure, takes a value of any type and returns an applicative func-
tor wrapped around the value. This is referred to as putting the value in in a
default context. The second function <*> looks very similar to fmap, except that
the function a -> b is wrapped in an applicative f. The function works by first
taking both f (a -> b) and f a out of their context. Then the function is applied
to the value of type a, resulting in a value of type b, which is then wrapped in a
context and returned. This process is illustrated in figure 2.2.

Maybe as an Applicative Functor

Maybe has an instance of the Applicative typeclass:

class (Functor f) => Applicative f where
instance Applicative Maybe where

pure = Just
Nothing <*> _ = Nothing
(Just f) <*> something = fmap f something

The default context of Maybe is Just, which makes sense. We see that <*> is imple-
mented by pattern matching. For Nothing, it always returns nothing. If we have
a function wrapped in a Just, we extract this function and apply it to the other
Maybe with fmap. This means we can do computations while keeping context:



Figure 2.3: How bind (»=) works for Monads. A solid box around a value rep-
resents a context. The inputs are displayed in blue and the output is displayed in
green. This figure is based on a similar figure created by by Bhargava [7].

Just (+2) <*> Just (2)
>> Just 4
Just (+2) <*> Nothing
>>Nothing
pure (+) <*> Just 3 <*> Just 5
>> Just 8

2.5.4 Monads

Monads are applicative functors with extra functionality. Let’s dive right in and
look at how its type class is implemented:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
x >> y = x >>= \_ -> y
fail :: String -> m a
fail msg = error msg

First, we see that the function return is just pure from the Applicative typeclass.
It takes a value and puts in its default context. The next function, »= (pronounced
"bind"), is the meat and bones of the Monad typeclass. It takes a value with a con-
text as input, unpacks it from this context, and applies the appropriate function
that returns a new value in the appropriate context [5]. This process is illustrated
in figure 2.3. Implementing bind along with return is enough for a minimal com-
plete definition of an instance of the Monad typeclass. The other two functions, »
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and fail are provided a default implementation. These are less important to how
monads function and are therefore ignored for now [8].

Maybe as a Monad

Monads allow us to combine functions that take context-free values and return
values with context. This is done with the »= operator. This is an infix operator,
with the value in a context on the left and the function on the right. Let´s see how
Maybe is implemented as a Monad [5]:

class Monad m where
instance Monad Maybe where

return x = Just x
Nothing >>= f = Nothing
Just x >>= f = f x
fail _ = Nothing

We see that the default context is Just. The unwrapping from context in the bind
function is done with pattern matching. Binding any function to Nothing returns
Nothing. Binding a function f to Just x applies this function to x.

Chaining Table Lookups The usefulness of Maybe as a monad is illustrated in
a modified version of an example from All About Monads [8]: Let’s say you need
to perform a series of lookups on the form Int -> Maybe Int. Each lookup might
either return Nothing, or it might be return a value in the form Just Int. So, how
do we chain these? The problem is that the types don’t match, since the output
is wrapped in Just. Clearly we need a way to unwrap the value from its context,
before applying the next lookup. This can be done with the bind operator:

lookupA :: Int -> Maybe Int
lookupB :: Int -> Maybe Int
lookupAB :: Int -> Maybe Int
lookupAB n = return n >>= lookupA >>= lookupB

We see that by composing the two look ups, (which each has the type signature Int
-> Maybe Int), with the bind operator, we have created a new function lookupAB,
that is also of type Int -> Maybe Int! If any of the lookups in lookupAB return
Nothing, the entire function will return Nothing. What the monad is doing for
us is abstracting out the concept of unpacking a value from a context and acting
accordingly to this context to return a value in a new context.

State as a Monad

A purely functional language cannot update a global state, as it violates referential
transparency. A common strategy to get around this problem is to "thread" a state
parameter through a sequence of functions, letting the state be updated along the
way [8]:



states (state0) =
let (a, state1) = f1 state0

(b, state2) = f2 state1
(c, state3) = f3 state2

in ([a,b,c], state3)

This approach works, but is difficult to maintain and generalise. Instead, we can
abstract away the threading of the state with the bind operator of a State monad.

The State Type Let’s take a look at how the State type is defined in Haskell [8]:

newtype State s a = State { runState :: (s -> (a,s)) }

We see that a State is defined as a function from an initial state to a tuple of a
resulting value and an updated state. Such a function is often called a stateful
computation [8]. It is wrapped in a type constructor State, which takes a state
variable of type s and a value of type a as its parameters. If we look at how we
defined our stateful computations by hand in states, we see that f1, f2 and f3 all
must have the same type as runState, since they take a state, and return a tuple
of an updated state and a returned value.

The State Instance of Monad Let’s take a look at how the monad instance is
defined for State [8]:

instance Monad (State s) where
return a = State $ \s -> (a,s)
(State x) >>= f = State $ \s -> let (v,s') = x s in runState (f v) s'

We see that return simply takes a value and inserts it into a state function that
leaves the state unchanged. The bind function takes a State x and a function f,
and returns a new State. The stateful computation inside this returned State is
a function that first runs the stateful computation x on the input state s to get a
new state s’ and a new value v. It then applies f to this new value v to get a new
stateful computation, which then is applied to s’. In other words, we can see that
the new stateful computation is a composite of the stateful computation x and f
[5]. Now we can write our stateful function state with the State monad:

states' :: State s [a]
states' =

state f1 >>= (\a ->
state f2 >>= (\b ->
state f3 >>= (\c ->
return [a,b,c])))

states :: s -> (a,s)
states s0 = runState states' s0
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We see that the auxiliary function states’ takes care of the passing of the states
by chaining the stateful computations with the bind operator. We use state to
turn a stateful computation into a a State value. When providing the same s0 as
in our previous, manually state-passing definition of states, we will get the same
result.

Do Notation

Another useful aspect of monads in Haskell, is that they support a simple notation
that does away with the bind operators, known as do notation. With this notation,
the passing of states can be written like this [8]:

states :: State s [a]
states = do

a <- state f1
b <- state f2
c <- state f3
return [a,b,c]

Every line written after do is a monadic value [5]. We use <- to unwrap the value
from its context. When we compare this definition of states with the one that
uses the bind operator, we can see how each line in the do block corresponds to
one step in a chain of bind operations, and how this do notation is simply a lot
cleaner to read in many cases.

2.6 Input/Output

So far we have not covered how Haskell handles Input/Output. After all, any func-
tion that contains an I/O-action is by definition impure, since its result is depend-
ent on the outside world. A typical application of I/O in an imperative program is
writing something to the terminal, and then waiting for a result. In Haskell, where
expressions are evaluated lazily, how could we write such a program? The main
source for this section is chapter 14 and 15 from Haskell School of Music [4].

2.6.1 The IO Monad

The answer is that in Haskell, a special type constructor known as IO is used to
denote an action [4]. For instance, a value of type IO Int is an action that returns
an Int. Actions that don’t return any values, i.e. output actions, have a type IO
(), where the empty tuple, known as "no-op", is used to indicate that the returned
value has no significance.

Writing and Reading Strings from Terminal

Let’s take a look at a simple program that reads a string from the terminal and
returns the string in all caps:



main :: IO()
main = do

s <- getLine
putStrLn (map toUpper s)

We see that main is a function that returns a value of type IO(), i.e. an output I/O
action. The function is a monadic computation, written with do notation. We first
get an input string with the function getLine:

getLine :: IO String

This value is then unwrapped from the IO context, and then used in putStrLn,
which has the following type:

putStrLn :: IO()

Thus, with IO as an instance of Monad, we can perform a series of I/O-actions in
a single function.

Actions are Values

It is important to stress that while IO might seem a bit magical, IO is just a type
constructor like any other, which means that IO-actions are values [4]. Thus we
can for instance keep them in a list:

actions :: IO String
actions = [putStrLn "hello", putStrLn "goodbye"]

We can then use sequence to convert these actions from type [IO String] to IO
[()], i.e. execute these actions.

2.6.2 Randomness

Functions that can generate pseudo-random numbers is a feature of almost all pro-
gramming languages. Such functions are however by definition impure, as they
give a different result each time they are called. Therefore, to get random num-
bers in Haskell, we need to use IO to get a random seed. This is done with the
function newStdGen :: IO StdGen. (StdGen is the type for random seeds). Once
we have a random seed, we can use the pure functions inside the base module
System.Random to generate random numbers.

Generating Random Values with Pure Functions

The function random found in System.Random has the following type signature:

random :: RandomGen g => g -> (a, g)
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It takes a generator and returns a random value along with a new generator. The
default type of the random value is Int. If we want another type we need to specify
it in the type declaration. Since random also returns a new generator, we can use
this to generate a new value and so on. Let’s look at an example from Learn You a
Haskell, where the flipping of three coins is simulated [5]:

threeCoins :: StdGen -> (Bool, Bool, Bool)
threeCoins gen =

let (firstCoin, newGen) = random gen
(secondCoin, newGen') = random newGen
(thirdCoin, newGen'') = random newGen'

in (firstCoin, secondCoin, thirdCoin)

System.Random contains a lot of other useful random functions, such as randomR,
which generates a random value within a given range:

randomR :: RandomGen g => (a, a) -> g -> (a, g)

Randomness with State As the reader might have noticed, threeCoins works
by explicitly passing a state, the random generator, from function to function.
Thus we can make use the State monad, to abstract away the passing of seeds
[5]:

randomBoolSt :: State StdGen Bool
randomBoolSt = state (random :: (Bool, StdGen))

Now, we can easily define a function for tossing x amount of coins:

coins :: StdGen -> [Bool]
coins x gen = sequence . replicate x . randomBoolSt

The function sequence is part of Control.Monad and simply evaluates each mon-
adic action in a traversable structure from left to right, and collects the results in
a single monadic action.

2.7 Programming Guidelines

This section covers guidelines for developing software in Haskell. There are many
such guides out there, often with quite overlapping advice, where the differences
are mostly down to taste. It should also be mentioned that much of this advice
is not specific to Haskell, but applicable to software development in general. This
section is mainly based on the guidelines from the official Haskell wiki [9], Learn
You a Haskell [5], and the chapter "Architecting your application" in Serranos book
Practical Haskell [6].

2.7.1 Naming

As with all languages, Haskell has some conventions when it comes to naming:



Case Values, and thus functions, should be written in lowerCaseCamel. Types
should be written in UpperCaseCamel. Internal code can be written in snake_case
[9].

Names Names should be short and descriptive.Types and values should be named
based on their semantic domain, not their representation. I.e. it is better to name
a list of animals animals, than animalList [10].

2.7.2 Functions

The main guidelines for writing functions in Haskell are as follows:

Keep Functions Short and Sweet Functions should be "short and sweet". They
should do one thing and one thing only, and be written succinctly, to be as readable
as possible [9].

Maximize Code Reuse Splitting functions into smaller parts is also useful be-
cause it facilitates the reuse of functions in other functions. One should always
strive for code reuse, as it’s shorter and easier to maintain if a given functionality
is only written once [6].

Use Well-Known Functions In most cases, it is best to build functions from well-
known built-in functions. This makes them easier to read for others, and less likely
to fail, as they are built from well-known and well-tested building blocks. For in-
stance, when operating on lists, it is often better to use a combination of functions
such as map, filter and fold, instead of list comprehensions [6].

Avoid Partial Functions Partial functions are functions which only work for a
restricted set of possible inputs. One should try very hard to avoid such functions.
A type declaration should not lie. If a function might fail, make sure this is made
explicit in the type declaration by making it return Maybe a. If partial functions
are necessary, one should document their preconditions (if not obvious) and make
sure that they are only called when these conditions are guaranteed to be met [9].

2.7.3 Types

The main guidelines for writing types are as follows:

Use Maybe for Unsure Results If a unsure result need to be propagated, one
should avoid implementing it directly into the datatype [9]:

data Value a = Value a | Undefined

Instead, It is better to wrap it in a monad like Maybe:
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data Value a = Value a
Maybe (Value a)

This allows us handle failure more directly with the Maybe monad.

Use Type Signatures One should always write a type signature for every non-
trivial function. This works as a sort of documentation for the reader, making it
easier to understand what the function does [5].

In General: Make Illegal States Unrepresentable The goal of using types in
Haskell is to make illegal states unrepresentable, that is, to make Haskell’s strict
type checking able to catch potential errors since they will be manifested as type
errors [10] This sentiment is shared with Serrano [6].

2.7.4 General Guidelines for Software Design

In the chapter Architecting Your Application of Practical Haskell, Serrano gives a few
general guidelines on software design in Haskell [6]. Much of the more specific
advice has already been covered in previous subsections, so now we will look at
some more general tips:

Seperate the Pure from the Impure The general rule is to keep the impure parts
of the code separate from the pure functions. Pure functions are easier to test and
develop, since one can always be sure that they only depend on their input. The
core of the program should therefore consist of entirely pure functions. Thus one
can build functionality by building functions from functions handling different
sub-tasks. Each function can then be tested in isolation, without worrying about
other parts of the code.

Strive for Polymorphicity Writing functions so that they are as polymorphic as
possible is advantageous because it let’s you use the same function in different
ways. This will serve to maximize reuse. A high degree of polymorphism also
makes it easier to refactor code: if one for example wants a function to map on
trees instead of lists, this requires no extra work if it has been implemented to
work on any Functor.

Use Type Classes Wisely Type classes are a powerful tool for abstracting the
commonalities of data types. Almost every important programming concept in
Haskell is implemented as a type class [6]. One should try and implement one’s
concepts as type classes if it makes sense. However, type classes should not be
overused. Two cases where it is likely that the type class concept does not fit is if
a type class has only one instance, or if one is using type classes as a direct map-
ping of classes from object-oriented programming, which is an entirely different
concept.
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Euterpea

Euterpea is a Haskell library for computer music applications. It can handle note-
level tasks such as music representation and algorithmic composition, as well as
signal-level tasks such as low-level audio processing, sound synthesis, and vir-
tual instrument design. Since this project will focus note-level music generation,
we will only cover a selection of Euterpea’s note-level functionality, namely it’s
system for representing music, as well as its MIDI-functionality. As a source for
this chapter, we will use Haskell School of Music, written by Euterpea’s creators,
Donya Quick and Paul Hudak [4]. The latter was a famous musician and professor
in computer science at Yale University, and one of Haskell’s creators [11].

3.1 Representative Structures

In order to express musical concept, Euterpea employs a set of data structures,
which are presented here, from lower level types such as pitch and duration, to
the organisation of entire pieces of music.

3.1.1 Pitch and Duration

Pitch In Euterpea, Pitch is represented as a tuple of type PitchClass, Octave.
PitchClass is represented as a datatype of pitch classes within a scale:

data PitchClass = C | Cs | Df | D | Ds ...

Here Cs is short for C sharp, and Df is Short for D flat, and so on. Octave is rep-
resented as an integer.

AbsPitch A pitch can also be represented by it’s absolute value on a MIDI scale,
i.e a number from 0 to 127, where each number corresponds to a key on a MIDI-
keyboard:

type AbsPitch = Int
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To convert a Pitch to an AbsPitch we can use Euterpea’s built-in function absPitch,
and vice versa with pitch.

Duration Duration is in Euterpea expressed with the type synonym Dur:

Dur = Rational

In Haskell a Rational is a rational number. For convenience, Euterpea has a set of
predefined durations, for example:

wn, hn, qn :: Dur
wn = 1
hn = 1/2
qn = 1/4

Here, wn is short for whole note, hn short for half note and qn is short for quarter
note.

3.1.2 Primitives

In Euterpea, Primitives are used to represent the notion of a basic musical element
that can be either a Note or a Rest:

data Primitive a = Note Dur a | Rest Dur

As we can see, Primitives are implemented polymorphically. This allows us to
specify what sort of Primitive we want. if we want just pitch information, we
can use Primitive Pitch. If we also want to add volume information, we use
Primitive (Pitch, Volume).

3.1.3 Music

To represent a piece of music, Euterpea employs the data structure Music:

data Music a =
Prim (Primitive a) -- primitive value

| Music a :+: Music a -- sequential composition
| Music a :=: Music a -- parallel composition
| Modify Control (Music a) -- modifier

deriving (Show, Eq, Ord)

Prim The Prim wrapper is used to transform a Primitive to a Music value.

Parallel and Sequential Composition The operator :+: is used for sequential
composition, i.e. to place Music values after each other. This can also be done
with line, to transform a list of Music values to a single Music value. For parallel
composition , i.e. organising Music values so that they play simultaneously, we
use the :=: operator. The function chord, will transform a list of Music values to
a single Music value.
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3.2 MIDI Functionality

What is MIDI? "MIDI is short for “Musical Instrument Digital Interface” and is a
standard protocol for controlling electronic musical instruments" (page 125) [4].
It is fundamentally an interface for communicating musical events, such as note-
on, note-off, for each key. It is also able to communicate musical meta-events, most
often related to switching settings on a given synthesizer/virtual instrument. MIDI
does, like Euterpea’s Music type, only express abstract musical information, like
when to start and stop pitches on one or more instruments. What instrument is
actually used is up to the user.

MIDI in Euterpea Euterpea is able to stream Music values as MIDI with the
function play. Due to Haskell laziness, we can define infinite pieces of music, and
have them stream indefinitely with play. The only downside to lazily stream is that
there might be some latency for Music values which are especially time-consuming
to compute. If we want strict playback of finite pieces, we can use playS, which
computes the music before it is streamed. To write the music to a MIDI-file we
use writeMIDI. The process of converting a Music value, goes in multiple steps,
but essentially consists of flattening the structure so that is a list of music events,
captured in the data type MEvent:

data MEvent = MEvent {
eTime :: PTime, -- onset time
eInst :: InstrumentName, -- instrument
ePitch :: AbsPitch, -- pitch number
eDur :: DurT, -- note duration
eVol :: Volume, -- volume
eParams :: [Double]} -- optional other parameters
deriving (Show,Eq,Ord)

type Performance = [MEvent]

This structure is then converted to a series of MIDI-messages or a MIDI file de-
pending on if the user wants to stream midi or to simply save the piece as a MIDI
file. This process is illustrated in figure 3.1.



Figure 3.1: The process of converting a value of type Music to MIDI in Euterpea
[4].



Chapter 4

Previous Work on Musical
Structure

This chapter covers previous work on detecting, representing and generating mu-
sical structure. First, some papers which examine the inherence of hierarchical
structure in music are presented. Then some papers on the state of the art of
music generation are examined to find out how good current music generation
systems are at generating well-structured music. Finally, some systems which ad-
dress structure, both representative and generative, are presented. While we wish
to design and implement our system in Haskell, the literature search was not re-
stricted to systems implemented in this language.

4.1 Discovering Hierarchies Inherent in Music

In music, the notion of hierarchical structures is fundamental. Music is not merely
seen as a sequence of notes, but rather as a sequence of groups of notes, such
as motifs, melodies and chords, which further belong to larger groups, such as
phrases, periods, verses and choruses. But is this hierarchical division simply a
matter of convention, or is it fundamental to how humans compose and perceive
music? As the two following subsections will show, both neurological research and
statistical analysis seem to indicate the latter.

4.1.1 Automatic Analysis

Automatic analysis of popular music has revealed a tendency towards hierarchical
structure. Da et al. has demonstrated this by devising a method of automatically
detecting this hierarchical structure [12]. The system detects phrases by analys-
ing repetitions of note sequences. A similar notion of repetition is used to further
group these phrases into higher-level sections. Analysis revealed that most songs
in the corpus had two or three sections, which each consisted of one to six phrases,
where one to three of these very melodically distinct.
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This research also showed that musical elements, such as harmony, melody and
rhythm, all behaved differently at different hierarchical levels. This indicates that
different levels in the musical hierarchy serve different roles, instead of just essen-
tially being larger groupings of notes. For instance, half cadences were more often
seen at the end of phrases, and in the middle of sections. This also is consistent
with music theory, which states that a half cadence gives a sense of unreleased
tension, while full cadences give a sense of relief.

4.1.2 Human Perception

The tension within a piece of music is central to how it is percieved by humans.
While it is commonly known that tonal violations cause tension, research by Sun
et al. has indicated that an increase in tension is also associated with structural
violations, i.e. deviations from the listeners expectations for how the structure of
a piece of music should be [3]. Both a behavioral rating and EEG analysis showed
that structural violations elicited increasing and accumulating tension as the mu-
sic unfolded. Additionally, and maybe more importantly, violations at higher hier-
archical levels, such as periods, resulted in a larger and longer lasting tension
response than violations at the lower levels such as phrases. This suggests that
musical tension is processed hierarchically. Similar conclusions on humans ability
to generate and detect hierarchies when listening to music has been indicated by
Martins et al. [13].

4.2 State of the Art of Music Structure Generation

To examine how far the field of music generation has come in generating struc-
turally sound music, three major, newer state of the art articles were consulted.

4.2.1 An Open Challenge

The first of the consulted papers, A functional Taxonomy of music generation [14],
indicated that while research in music generation has achieved great progress
in generating different aspects of music such as melody, harmony, rhythm and
timbre, most systems struggle in creating structurally sound music:

Why then are we not using music generation systems in our day to
day lives? The above survey shows that an important overarching
challenge remains: that of creating music with long-term structure.
Long-term structure, which often takes the form of recurring themes,
motivs, and patterns, is an essential part of any music listening exper-
ience. (page 69:24) [14]

This sentiment is also displayed by Carnovalini et al. in their paper on the state
of the art of music generation systems [2]. In the subsection "Structure and Map-
ping" in the section "Open Challenges for Music Generation Systems" they claim
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that the challenge of generating longer pieces containing reasonable repetitions
and subdivisions is both difficult and often not considered.

A review paper on deep learning methods for music generation by Briot et al.,
seems to suggest that the problem of structure is especially prevalent in this field:

The music lacks some structure and appears to wander without some
higher organization, as opposed to human composed music which
usually exhibits some global organization (usually named a form) and
identified components [...] (page 989) [15]

4.2.2 Some Previous Works

While the task of generating music with reasonable global structure remains an
open challenge, there are works out there, that address this problem. This section
will cover five of these, which each use a different technique to represent and/or
generate musical structures. The first three were pointed out in the state of the
art papers.

GEDMAS: Musical Structure Generated with Markov Chains

GEDMAS, short for Generative Elecronic Dance Music Algorithmic System is a
music generation system that generates full electronic dance music compositions,
developed by Anderson et al. [16]. It uses a first order Markov chain model to
first generate an overall form, and then fill in this form with chord progressions,
melodies and rhythms. An nth-order Markov chain determines the probability of a
given event occurring based on what has happened n steps in the past. Thus, a first
order Markov chain is essentially a look-up table of transition probabilities. Figure
4.1 shows GEDMAS’s transition table for different sections in the overall form of a
piece. Each numbered capital letter refers to an 8-bar section of a piece. Sections
with the same letter are grouped together on a macro level. Within a given macro
section the numbers must be from 1 to x in rising order. The probabilites of each
Markov model are learned from a corpus.

Implementations of a Generative Theory of Tonal Music

A generative theory of tonal music (GTTM) is a well-known work of music the-
ory presented by music theorist Fred Lerdahl and linguist Ray Jackendoff in 1983
[17]. It is described as a search for the "grammar of music", inspired by the the-
ories of Noam Chomsky. An implementation of this system for analysis purposes
was proposed by Hamanaka et al. [18]. Here, a short explanation of GTTM 4 sub-
theories is found. These are: grouping-structure analysis, metrical-structure ana-
lysis, time-span reduction and prolongational reduction. The grouping-analysis
hierarchically organizes a series of notes into motives, phrases, periods and higher
musical structures. The metrical-structure analysis is concerned with a metric hier-
archy of quarter notes, half notes, whole notes, measures etc. It seeks to identify



Figure 4.1: Transition table for generating overall form in GEDMAS [16].

strong and weak beats. The time-span reduction assigns a structural importance of
parts of a melody. The prolongation reduction ascribes the tone pitches a hierarch-
ical importance in terms of their “tension,” “relaxation” or “duration". Figure 4.2
shows a simple melody with its corresponding time-span tree, grouping-structure
and metrical-structure.

GTTM For Generation In his paper Towards the Generation of Melodic Structure,
Groves utilises a modified gttm-representation that is based on intervals, for his
melody generation system [19].

Figure 4.2: A simple melody, with corresponding time-span tree, grouping-
structure and metrical-structure [18]
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MorpheuS: constraining recurrent patterns

MorpheuS is a music generation system by Herremans et al. that seeks to tackle the
problem of generating music with long-term structure [20]. It is able to generate
polyphonic pieces that both adhere to a given tension profile and feature repeated
patterns in both the long- and short-term. The tension profile describes how the
tension in a given piece should develop during its run time, and is expressed via a
mathematical model for tonal tension. Repeated patterns are extracted from tem-
plate pieces with a pattern detection algorithm.

The system’s generative algorithm takes a given tension profile and pattern struc-
ture as input, and then select pitches that best fit this profile with an optimization
algorithm that constrains the long-term structure that is given by the pattern struc-
ture. The system is quite successful, as music it has generated has been performed
live in concerts. Still, as the generation system generates music based on an input
piece, the generated output is highly constrained to the style of this input.

Kimon: Object-Oriented Hierarchies

In Formalising Form: An Alternative Approach To Algorithmic Composition, Hedelin
proposes Kimon, an object-oriented programming environment for computer-aided
composition [21]. Hedelin explores the relationship between the generative al-
gorithm and the resulting musical structure. He is critical of algorithms in which
musical form is not explicitly handled, but rather appears as a by-product of the
algorithm. He points out that context is at the core of how music is perceived,
where the listener "tends to structure the music in terms of parts, wholes and
form-structural functions" (page 251) [21]. In Kimon, his proposed system, music
is created as a hierarchy of musical objects, closer to how it is perceived, as groups
containing groups, shown in figure 4.3.

Figure 4.3: A hierarchy of musical objects denoting a small melodic sequence
[21]



Representing Music with Prefix Trees

The final existing system presented here is by Yan Han, presented at the FARM
conference [1]. It details a novel approach to representing shared patterns across
different hierarchical levels of a piece of music. This work serves as a basis for the
work done in this project, so it will therefore be covered in its own section 4.3.

4.3 Representing Music With Prefix Trees

Representing Music With Prefix Trees is a paper by Yan Han et. al, presented at the
conference Functional Art, Music, Modeling and Design [1]. It introduces the use of
a tree structure know as a prefix tree to concisely represent shared patterns across
the hierarchical structure of a given piece of music. The system is implemented in
Haskell. This section will cover the main ideas this paper introduces.

4.3.1 Basic types

Pitch To represent pitch, Han uses a datatype containing scale, octave and de-
gree information:

data ScalePitch = ScalePitch
{ _scale :: Scale
, _octave :: Octave
, _degree :: Degree
}

By defining pitch in terms of an underlying scale it is easier to carry a notion of
scale into the musical structure in later stages. One could simply use an integer
from 0-127 to represent pitch, each corresponding to one key on a MIDI key-
board. However, this would leave out a lot of information that is contained in the
scalePitch structure.

Musical Events The primitive musical element in Han’s design is that of the
event. This is the smallest playable musical element, i.e. either a note with a certain
pitch or a rest. A musical event is defined with ScalePitch, duration and volume.
Rests are represented as musical events with a volume of 0.

data Event = Event
{ _duration :: Dur
, _volume :: Volume
, _scalePitch :: ScalePitch
}
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4.3.2 Oriented Trees

A datastructure known as an oriented tree is used to represent the grouping struc-
ture of a piece of music as it unfolds in time. It is implemented like this in Haskell:

data Orientation = H | V -- Horizontal | Vertical

data OrientedTree a = Val a | Group Orientation [OrientedTree a]

As we can see, an oriented tree can have two kinds of nodes:

• Value nodes, which contain a Value of a given type
• Group nodes, which consist of a list of nodes, and an associated orientation,

vertical or horiziontal.

Horizontal groups are interpreted as unfolding sequentially in the given dimen-
sion, while in Vertical groups, its members are interpreted as unfolding in parallel
to each other. Oriented trees are thus able to express two-dimensional data struc-
tures. How an oriented tree is interpreted with regards to time is shown in figure
4.4 and 4.5.

Figure 4.4: How a horizontal group of vertical groups is interpreted with regards
to time. Circular nodes refer to groups and squares refer to values.

Expressing Music as a Hierarchy

Oriented trees are good for representing music, as they can be used to both cap-
ture musical information existing simultaneously and sequentially in time. For
instance, the structure in figure 4.4 can be used to represent a sequence of two
chords followed by a single note. Similarly, the structure in figure 4.5 can rep-
resent three musical lines starting simultaneously: Two containing three notes,
and one just a single note. If we consider music on the note level to consist of a
number of notes either occurring in parallel or sequentially in time, we see that
this oriented tree structure is sufficient to express an arbitrarily complex piece of
music.



Figure 4.5: How a vertical group of horizontal groups is interpreted with regards
to time.

Han also points out that this structure is advantageous because it is very similar
to how music is expressed in Euterpea. This makes it trivial to convert a piece
of music represented with this structure to Euterpea’s internal represenational
structure, so that it can be played as MIDI with Euterpea’s built in functionality.

4.3.3 Representing Locations in a Tree

To uniquely identify a given leaf in a tree, all we need is its path, the indices of
each branch taken to reach it. In music, where multiple locations in an oriented
tree contain the same information, or information that needs to be modified in
the same way, it is convenient to represent many paths in one value. To access
multiple elements in a tree, Han introduces two datatypes: Choice, and Slice.

Choice For a given group node, a Choice represents a selection of its children. It
is a datatype that can either be Some [Int], a list of the indexes of the elements
to be selected, or All, denoting every element:

data Choice = Some [Int] | All

Slice A slice is a list of choices, where the choice at a given index in the slice
represents the members to be selected at this depth level:

type Slice = [Choice]

How slices work is demonstrated in figure 4.6. We see that the left slice denotes
the path to the first member of all members of the top node, and that the right slice
denotes the path to all members of the first member of the top node. This ability to
represent multiple paths as one slice value is very useful. Slices express succinctly
a grouping of elements that are not explicitly grouped but still are related. If, for
instance, the first note of two successive motives are the same or related in any
other way, they can be grouped by the slice to the left in figure 4.6.
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Figure 4.6: How multiple elements in a tree can be accessed with slicing

Constructing slices

To construct slices, Han introduces the concept of slice modifiers. These are func-
tions that produce functions of type Slice -> Slice:

-- Sets the choice in a slice at index 0
atChords :: [Int] -> Slice -> Slice
-- Sets the choice in a slice at index 1
atVoices :: [Int] -> Slice -> Slice

This allows us to change the choice at a given level:

atChords [0, 1] [All, All] == [Some [0, 1], All]
atVoices [2, 3] [All, All] == [All, Some [2, 3]]

Slices can then be constructed by applying functions of type Slice -> Slice to a
default slice which contains the entire tree i.e. [All,All, ...]. This is useful as
it allows us to create slices by composition.

4.3.4 Transforming Multiple Locations in a Tree

To transform the events at multiple locations in a tree, Han introduces the concept
of tree modifiers:

data TreeModifier = TreeModifier
{ _slice :: Slice
, _modifier :: Event -> Event
}

It contains the slice denoting the locations of the events to be modified and the
function that is to be applied to these events. These modifiers can change any of
the elements of the given element, such as duration, scale, octave or scale degree.
In this way one can address on or more dimensions of a piece of music at multiple
locations, and thus represent shared patterns across multiple locations of the tree.



4.3.5 Expressing Shared Structure with Prefix Trees

Multiple tree modifiers can together represent a complex piece of music. Han
demonstrates how these tree modifiers can be represented concisely with a prefix
tree.

What are prefix trees?

"A prefix tree is a tree structure that represents a map from keys to values" [1].
The values are represented by a leaf, and the keys are represented by the nodes
along the path from root node to leaf. If there is shared material in these keys,
then prefix trees will serve as a form of compression. The classic example of a
prefix tree is when each key is a word, as shown in figure 4.7. Here we can see
that "CAR" is mapped to 1, "CAT" is mapped to 2, "COOL" is mapped to 3, and
"COP" is mapped to 4.

Figure 4.7: A prefix tree containing some words and their associated key

Musical Prefix Trees

Han’s general polymorphic implementation of prefix trees is as follows:

data PrefixTree v k = Leaf k v | Node k [PrefixTree v k] deriving (Show)

To use prefix trees to represent a piece of music, Han introduces MusicTree, which
maps slices to event modifiers:

type MusicTree = PrefixTree (Event -> Event) (Slice -> Slice)

Each slice is built by composing the slice modifiers along a path, leading to the
leaf containing the event modifier in question. A visual demonstration of how a
prefix tree can represent a piece of music, is shown in figure 4.8.
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Figure 4.8: How a piece of music, defined as the series of modifications on a
starting tree shown to the left is captured by the prefix tree on the right. Event
modifiers on the left correspond to event modifiers on the right of the same color.
[1]

Phrase Structure Musical Prefix Trees can also represent larger structures, such
as phrases. Figure 4.9 shows the slice structure of a phrase of Johannes Brahms’s
Waltz in A Flat Major Op. 39 No. 15. Each colored slice modifier in the code to
the left corresponds to the highlighted area of the same color in the sheet music
to the right. We see that each pattern is only specified once, even though it occurs
in multiple spaces.

Converting to Musical Oriented Trees

Han outlines a process for converting a Musical Prefix Tree to a Musical Oriented
Tree. The first step of this process is to get a list of tree modifiers from the prefix
tree from left to right:

toTreeModifiers :: MusicTree -> [TreeModifier]

The second step is to generate a starting tree filled with dummy events, based on
on the prefixtree:

makeStartingTree :: MusicTree -> OrientedTree Event



Figure 4.9: The slice structure of a phrase of music. [1]

The third and final step is to apply the list of tree modifiers to the starting tree,
implemented as a left fold:

toOrientedTree :: [TreeModifier] -> OrientedTree Event
toOrientedTree modifiers =

foldl' (flip applyModifier) (makeStartingTree modifier) modifiers

Since the process for converting from prefix tree to oriented tree and later to MIDI
is fully defined, a piece of music can be fully represented as a prefix tree.



Chapter 5

Specification

Our background research revealed that existing music generation systems struggle
with generating music which has shared material, i.e. repetitions, across multiple
hierarchical levels and multiple musical dimensions. What follows is a short elab-
oration on what is meant by hierarchies and dimensions in a musical context, and
why these are important to consider in music generation systems:

Hierarchies Our research covered in section 4.1 affirmed our belief that music
is inherently a hierarchical phenomena. Therefore, some sort of tree representa-
tion is unavoidable if the goal is to create well-structured music. Inspired by the
sentiments of Hedelin (subsection 4.2.2), we think it is better to explicitly handle
this tree-like nature of music than to make such a structure appear indirectly in
our generated pieces through some sort of algorithm.

Dimensions The term musical dimensions is used by Yan Han to refer to aspects
of music which can be separated out and viewed on their own. Examples of such
dimensions on the note level are duration and pitch (pitch can further be de-
composed into a scale degree and octave for a given scale). We can also consider
musical dimensions on a group level, such as scale, chord type, melody, rhythms,
different forms of arpeggiation. We can for instance play a given melody in many
different scales and rhythms, and still recognize it as the same melody. The ad-
vantages of decomposing our representation system into multiple dimensions is
that it enables us to express different structures of repetition for each dimension.
For instance, we can let a given rhythmic pattern reappear throughout a piece,
but for different chords.

The overarching goal of this project is to work towards the generation of music
with these structural traits. In order to reach this goal, a music generation soft-
ware is to be designed and implemented in Haskell. In order to refine and clearly
define our goals, we must specify our requirements with regards to the software’s
functionality, design and implementation.
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5.1 Functional Requirements

We put the following requirements on the functionality of the system, with regards
to user input and generative output:

Intended Use and Users The intended use of the software is for experimental
music generation and as a groundwork for further research. Therefore the inten-
ded user of the software is a person who is reasonably competent in programming,
ideally with a decent understanding of Haskell.

User Input From the user’s perspective, the system should not require any input
to generate music. Internally, the system should generate a random seed and use
this as input for the systems generative function, which should return the gen-
erated output. In order to shape the output’s sample space, i.e. the generation
process’ possible outcomes, the user should be able to modify parameters within
the source code itself.

Output Music The music should be generated on a note level, i.e. in MIDI
format. The system should stream out a piece of randomly generated music each
time it is run, across a MIDI channel that can be set by the user in main. The
generated music should consist of chords that display a the structured repetition
described at the start of this chapter, in both rhythm and playing patterns. By play-
ing pattern we mean they way a chord is broken, for instance by arpeggiation.
The output music should be cohesive and varied in its structure. The focus is on
structural novelty, not on maximising musical "quality" or listenability.

5.2 Design Requirements

In our design specification, we will separate our design into two aspects: repres-
entation, i.e. the ability to express musical ideas, and generation, the ability to
generate music in the chosen representation.

5.2.1 Representation

In order to be able to generate music with shared structure across multiple hier-
archical levels and dimensions, we need a representative system that can express
this:

Representing Shared Material Representing shared material across hierarchies
is a fundamental goal of our design. This should be handled by a representation
based on Han’s prefix trees, presented in section 4.3, since they tackle the problem
of representing tree structures with shared material head on. The fact that Han’s
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code is written in Haskell is of course a plus, and that it is a new, novel represent-
ation system, that has not been used for generation before. Additionally it is very
generalized, in the sense that is does not directly or indirectly enforce any styles
or aesthetic preferences.

Group-level Representations The system should be able to represent scales and
chords. To capture music’s hierarchical aspect, a full piece of music should be
represented as a tree-like structure which can arbitrarily group notes into groups
either unfolding parallelly or sequentially in time.

Primitives The primitives of our system should express the notion of notes and
rest, i.e. the fundamental musical events that can occur in a piece. The dimensions
of music are expressed by the the primitives, and thus they should be composed
of pitch and duration, where each can be accessed and modified separately.

5.2.2 Generation

In order to generate music with shared material, we want to design a system which
makes use of Han’s prefix tree representation, modified for generation.

Generalized Procedure We wish to design a generalized pipeline for generat-
ing music with shared structure that is as general and stylistically unbound as
possible. This will serve as a basis that can be further improved upon in the fu-
ture. Additionally it will serve to demonstrate the generality of generating music
with prefix trees. The generalized procedure should include a parameterised way
to generate prefix trees, and a way to chain multiple prefix trees together to gen-
erate a full piece of music.

Generative Example In order to get some musical output of the system, we
need to make some stylistic constraints. We want to design a system which makes
use of the generalized procedure to generate music with shared structure. It is
the generative example that the user will interface with via main. Thus, its design
should work to generate music with the characteristics specified in the section on
functional requirements on the output music.

5.3 Implementation Requirements

The design should be implemented in Haskell, by use of Euterpea’s MIDI function-
ality.

Code Quality We want well-formed software that is readable and as easy as
possible to understand and work with. The main mechanism towards achieving
this is by adhering to the programming guidelines featured in section 2.7.



Extensibility The program should be extensible. It should be easy for someone
who knows Haskell to look at the software and understand what’s going on. This
will be achieved with adequate code quality and documentation in the form of
useful comments.

Performance and Stability Performance is not a main factor. What is import-
ant is displaying the validity of the design’s high-level concepts. Still, perform-
ance should be good enough that we can lazily stream the music with Euterpea
without noticeable timing delays. We also require the implementation to be stable;
it should never fail to generate a piece of music.



Chapter 6

Design

This chapter covers the design of the system that was created in this project, based
on the specification presented in the previous chapter. First, the representational
structures will be presented, starting with the very basics and ending up with a
presentation of the systems musical trees and modified prefix tree. After that, we
will focus on how this representation system can be used in a generalized gen-
erative procedure, followed by a narrowed example of generation of structured
variations of chords progressions.

6.1 Basic Representational Structures

To generate structured music, we need to be able to express musical ideas with
data structures. This section will cover how basic musical elements are expressed
in this design, in bottom-up order, going from pitch and duration to notes and
rests, finally ending up at scales and chords.

6.1.1 Pitch and Duration

Pitch and duration are the very building blocks of of music: A piece of music can
fundamentally be considered as a set of pitches and durations structured in time.
Since we are using Euterpea’s MIDI functionality in this project, it makes sense to
also make use of its built-in Pitch and Duration data types. These are described
in the background chapter on Euterpea, in section 3.1.1. Another advantage to
using Euterpea’s built-in representations is that it allows us to use its many handy
functions, such as absPitch and pitch to convert back and forth between absolute
pitch and pitch.

6.1.2 Primitives: Notes and Rests

We will also use Euterpea for expressing Primitives, a common type for both Rests
and Notes. This is also for simplicity’s sake, for similar reasons as with pitch
and duration. The fact that Primitive is a polymorphic type is very convenient.
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For now, we will operate with Primitive Pitch as our primitive. Another op-
tion would be to include volume information, for more natural and expressive
performances, with Primitive (Pitch, Volume). This however was deemed to
cumbersome, especially since volume information is easy to add later, due to Prim-
itive’s polymorphism. This would simply be a matter of making our tree structure
an instance of Functor and mapping a function that adds volume information to
the tree.

Alternative: Expressing Pitch More Abstractly

An alternative to the approach chosen for this project, is to express pitch as a com-
posite of scale, scale degree and octave, like in Han’s design. This would yield the
same information as Euterpea’s Pitch type, but with greater dimensional separa-
tion, since all notes within a scale are related, and the same goes for notes of the
same scale degree, or notes of the same octave. Still, this was decided against, for
a few reasons:

1. Our representation is simpler and thus easier to work with.
2. Working "within the box" of Euterpea’s type system is always easier.
3. Our main goal with this design is more related to tree structure than the

primitives themselves. There is no reason to add more complexity than ne-
cessary if a simpler primitive will still demonstrate the structure-generation
abilities of the system.

4. We can still work with the notion of scales, scale degrees and so on at the
generative stage.

Still, the benefits of decomposing a pitch into more dimensions are not to be un-
derstated. At a later stage, abstracting pitch to a similar datatype as Han’s might
be benefitial.

6.1.3 Scales

A notion of scale is more or less unavoidable in order to generate music that
sounds reasonable. There are two notions of scale that we want the system to
have:

Scale as a Series of Pitches One way to define the C major scale is as the fol-
lowing pitch classes: C, D, E, F, G, A, B, where any note within that list belongs to
this scale. This notion of scale as the list of all notes that belong to it is a necessary
part of representing a Scale: If one were to select a random note from the C major
scale, one would need to know what the candidate notes are.

Scale as Root and Mode A more abstract notion of scale includes information
on what the root of the scale is, and the idea of a mode. For instance C major and C
minor are two different scales with the same root and different modes. Specifying
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a scale as a root and a mode is more abstract, shorter and more readable than as
a series of all allowed pitches.

Combining the Two with Scale Constructors

In order to be able to operate with the notion of root and mode, while still working
with scales as a list of allowed pitches, we use scale constructors, functions from
root and mode to a list of allowed pitches. The list of absolute pitches serves
analogously as a list of all the allowable keys to be played on a MIDI keyboard
within a given scale. An advantage of this as our main representation of scale is
that it is in principle possible to represent any scale. In our design we wish to
focus on the diatonic scale for now, i.e major, minor, and the rest of the modes.
These are by far the most popular scales in western music. Still, even though this
means that the scale constructors in this system only construct diatonic scales, we
can (at a later stage) construct and use other scales, such the chromatic scale, the
pentatonic scale, or any custom scale.

Including a Notion of Scale Degrees

The notion of scale degrees is fundamental in music generation, as it denotes
the role or function of a note within a given scale. With our notion of the notes
in a scale as all the absPitches it contains in rising order, the scale degree of a
note simply becomes its index modulo the zero-indexed amount of notes within
the scale. For diatonic scales, this number is 7. To handle conversion from a scale
degree within a give scale to an absolute pitch, and vice versa, two functions were
created, one for each direction.

6.1.4 Chords

A notion of grouping notes together as chords is fundamental to most music, and
it is required of our to design to create a type to represent it. Similarly to scales,
chords can both be defined by the series of notes they are made of, or by their
root, and their quality, e.g. major, minor. Thus, a similar solution to the one for
scales was decided for representing chords. Chords are constructed by their root
and quality, and represented as a series of pitches.

6.1.5 Musical Oriented Tree

A full piece of music is defined as a musical oriented tree: An oriented tree, similar
to the one defined by Yan Han, with time as the dimension the tree unfolds in and
the leaves as the musical primitives we detailed in section 6.1.2. Some advantages
of such a representation was detailed by Han, and will be restated and expanded
upon here:



Figure 6.1: Two different oriented tree representations of identical sounding mu-
sic. Notes that occur at the same time (given that all notes have the same dura-
tion) have the same color.

1. They succinctly and flexibly express how a piece of music unfolds in two
dimensions: notes can be grouped to occur either simultaneously or sequen-
tially.

2. They are not bound by any stylistic constraints, which was one of the spe-
cified requirements.

3. Their explicit tree structure allows us perform operations on multiple leaves
of trees and group them arbitrarily as needed.

4. They are easily converted to Euterpea’s Music Structure and thus Euterpea’s
MIDI playback.

An important aspect to consider with musical oriented trees is that they can ex-
press identical-sounding music in many different ways, as shown in figure 6.1.
This will make it more complex to determine how the music will turn out, espe-
cially which notes will be heard at the same time. If we for instance restricted
the representation system so that horizontal groups could contain vertical groups
but not the other way around, it would be much easier to determine which notes
are heard at the same time (essential information when trying to avoid disson-
ance). Still, there is a fundamental difference in the structural interpretations of
the concrete music that each of the trees represent. The left tree considers the mu-
sic a sequence of two chords, while the right tree considers the music two parallel
melodies. These are two very fundamentally different ways of viewing the music,
and this richness of expression is worth keeping.

6.2 Slicing Oriented Trees

The ability to access multiple nodes of a tree with slices is kept from Han’s design.
This is an essential part of the representation system, as the ability to group many
selections of leaves into one value is very useful when we want shared material
in multiple locations. Examples of such transformations that can be captured in
a slice are the last note of every other motif in a period, or the first chord of every
chord progression in the second chorus.
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Figure 6.2: A selection that cannot be represented as a single slice, but as com-
posite of two slices.

Expressiveness

Slices do have some limitations in their expressiveness: At each hierarchical level,
the same choice must apply to all nodes. Therefore some selections are not pos-
sible to represent in a single slice, as exemplified in figure 6.2. Still, this restricted
expressiveness also has some advantages: As exemplified in the introduction to
this subsection, the multiple paths expressed by slices usually map well to areas
where one would want the same musical transformations to be carried out. Thus,
the usage of slices will be of benefit for a generation algorithm, because they tend
to group musically related locations together by their nature. We can still apply
the same transformations to every location marked in blue in figure 6.2, but we
would need to use two slices.

Constructing Slices

Since Han’s system is created for the specific purpose of recreating a single piece of
music, its slice constructors are hardcoded, with functions such as atChords and
atPhrases. To accommodate generation, slice construction was generalized from
Han’s design. Now, choices at given hierarchical depths are accessed by a function
that is parameterised by the depth we want to access. Thus, we can generate
pieces with an arbitrary amount of levels, and still be able to slice the nodes at
each level.

6.3 Generative Prefix Trees

The Generative prefix tree is an essential part of the music representation system
in this design. This section will cover some aspects of Han’s original version that
were changed, and why these changes were made. It will also explain how musical
prefix trees are applied to musical oriented trees, and how they can be directly
converted to a musical oriented tree.



6.3.1 Problems with Yan Han’s Prefix Tree

We contacted Yan Han, author of Representing Music with Prefix Trees, and asked
if he thought it was feasible to use his prefix tree representation for generative
purposes. He replied that he thought it could be a "useful intermediate represent-
ation", but also described some weaknesses with the system:

It had a lot of weaknesses though - the main problem was that any
kind of non-hierarchical relationship (e.g. to between adjacent pitches,
or between arbitrary unrelated leaves on the tree) was difficult or
messy to express. In the end, the music sounded complex but pretty
weird. (Quoted with permission from Han)

Expressing relationships between arbitrary leaves (even adjacent ones), is, as
stated in the project description/introduction, a prerequisite for generating mu-
sic, as relationships between notes is fundamental to music. It is in these grouping
relationships that the repetition we seek occurs. Getting this right is therefore cru-
cial for the success of our generation system. A modification to Hans prefix tree
was proposed to allow for this.

6.3.2 Modifications for Generation

It is our purpose to modify Han’s prefix tree representation to better accommod-
ate generation, and to be able to more easily express relationships between the
leaves of the tree. This subsection will walk through the different aspects of this
modification.

The Problem with Leaves as Event Modifications

A way to solve our problem of expressing relationships between nodes is to use
transformations which work on multiple nodes. In fact, a lot of transformations
that we wish to perform make most sense when performed on a group of notes.
For instance, many transformations from classical music theory, such as inversion
and retrograde, only make sense when applied in a context of a sequence of notes.
Similarly, for chords, transformations such as inversions, only make sense when
considering a group of notes. In Han’s design, the leaves of the prefix tree are
functions of type Event -> Event, i.e. functions that operate on the note level.
This means that music is represented as a series of modifications on a starter tree,
note-by-note. One could envision a form of generation that featured functions on
groups of notes, while keeping the leaves functions that operate on the note level.
This would require a function that created a series of note-level functions, that
when applied in succession on a sequence of notes would result in a group modi-
fication. Still, one wishes for a less indirect solution that is simpler to implement.
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Figure 6.3: The difference between trees selected with the slice [All] and the slice
[All, All]

Introducing Tree Transformations

A simpler solution, that allows the direct transformation of groups of nodes, is to
make our prefix tree’s leaves functions of type OrientedTree -> OrientedTree.
Such a function will from now on be referred to as a tree transformation, or TT
for short. Due to how OrientedTree is defined algebraically and recursively, tree
transformations can work on both single notes, i.e. values wrapped in Val, and
groups of notes, wrapped in Group. In addition to allowing the modification of
both single notes and groups of notes, tree transformations also have a generative
advantage. Since we are able to modify any location in a tree, with a function
that outputs a tree, we can in principle use our new prefix tree to build trees. The
functions at the leaves of the tree can change the structure of the tree itself! Thus
it is clear that prefix trees with tree transformations as leaves allow for a very
general way of generating music.

Applying Tree Transformations

With our new prefix tree, oriented trees are transformed by applying tree trans-
formations to the subtrees that are selected by the given slice. This requires a
function that is fundamentally different to a function that applies event modific-
ations to each leaf in a slice. For such a function, a slice will always have a length
that is equal to the depth of tree, since leaves are the only values which can be
modified. In our case however, slices can refer to any location within a tree. Thus
we want the following functionality: If the slice consists of more than one choice,
the function should recursively apply itself to the trees in the first choice, with the
rest of the slice as an argument. If the input slice consists of just a single choice,
we have reached the end of the slice, and the tree transformation should be ap-
plied to each subtree in the choice. This form of slicing means that we can for
instance differentiate between the selection of All trees at a certain level from All
trees at another level. The difference between [All] and [All, All] is displayed in
figure 6.3.



6.3.3 Conversion from Prefix Tree to Oriented Tree

Prefix Trees essentially express a structured set of functions that can be applied
to an oriented tree. When specifying a piece of music entirely from a prefix tree,
we need some sort of default blank tree to apply this prefix tree to. The gener-
ation of such a starting tree is handled well by Yan Han, and is therefore only
slightly changed in this design to accommodate our new prefix tree. The rest of
the conversion process, however, is a bit different from Han’s design, due to our
new, generative prefix tree.

Combining Slice Transformations

Like in Han’s design, the conversion of a branch of slice transformations to a
single slice transformation is done by composing all slice transformations along
the branch, from top to bottom. This slice modifier is then applied to a default
slice, of type [All, All, ..]. The difference is that in our design, this slice has length
equal to the depth of the slice modifier, i.e. the deepest level that the slice modifier
addresses. This is because we need to be able to access arbitrarily deep levels of
the tree. As shown in figure 6.3, a slice will refer to nodes in a tree at a depth
equal to its length. Thus, if we applied the slice modifier to a default slice that
was of a fixed length, like the height of the tree, we could only access its leaves,
i.e Val’s. Additionally, the need for a slice transformation to be able to access ar-
bitrarily deep levels is furthered by the fact that the height of the oriented tree
might change from tree transformation to tree transformation within a prefix tree.

Transformative Instructions

The process of converting a prefix tree to an oriented tree makes use of an in-
termediate data structure that we call a transformative instruction, similar to tree
modifiers in Han’s design. Such an intermediate data structure is useful for keep-
ing track of which tree transformations should be applied to which slice. How a
transformative instruction is created from a given branch of a prefix tree is shown
in figure 6.4.

List of Transformative Instructions The overall process of converting a prefix
tree to a list of transformative instructions is the same as in Han’s design. While
the implementation is different, the main process still consists of going over each
branch from left to right to get a final list of tree transformations.

6.4 Generative Principle

Now that we have a music representation system that works well with generation,
it is time to formalise a general procedure for generating music with this repres-
entation system. This section will present the design for such a procedure. First



Chapter 6: Design 61

Figure 6.4: Tranformative instruction created from left branch of prefix tree. We
see that the slice is constructed by composing the slice modifiers along the branch,
and applying it to a default slice of length equal the depth of the total slice mod-
ifier.

we will give a short overview of our generative scheme, then go into detail on
how this scheme will be realized, by first covering how we generate prefix trees,
and then how we sequence them to generate a full piece.

6.4.1 Overview

The underlying idea of our generative principle is to parameterise the generation,
so that the generation process starts with abstract parameters and works its way
down to more concrete musical elements as it unfolds. This is pictured in figure
6.5. The generation process we envision essentially consists of generating prefix
trees that transform a given musical dimension in multiple ways in multiple loc-
ations, and then applying these prefix trees to an initial tree containing "musical
raw material". This raw material can be things such as chord progressions indic-
ating the overall harmonic development of the piece, or motifs that indicate the
motific core of a given melody. The initial tree can be obtained by conversion from
a generated prefix tree. This is because we have modified our prefix tree to be able
to do tree transformations, which includes growing the tree by insertions of other
trees, such as chords or motifs, or even larger structures of so desired.

Shared Material The reason we want to generate prefix trees is that this would
allow us to generate music with completely novel structure, where shared patterns
across different dimensions is baked in by default in the data structure.

Cohesion Within Each Dimension The idea is that each prefix tree will spe-
cialize in transforming a given musical aspect, such as rhythm, harmony etc. This
makes for a very clear generation process, where we can ensure that there is co-
hesion within each dimension.

Cohesion Between Each Dimension In order to make sure that there is cohe-
sion between each prefix tree, and thus between each musical dimension, we want
to employ a generative plan to our generation process. This is a meta-model struc-
ture that instructs and constrains the generation of each prefix tree. In order to



Figure 6.5: The general scheme we envision for generating music with prefix
trees

make sure that the output music is cohesive across all dimensions we need to
make sure that the plans fit well together. These plans can be written by hand, or
one could envision a generation function that generates a set of cohesive generat-
ive plans. For now, due to time constraints, we specify them by hand, in our final
generative example.

6.4.2 Generating Prefix Trees

The generative principle conceived in this design is based on the generation of
prefix trees. This chapter will cover the different aspects of the function we de-
signed.

Inputs to the Generative Function

We clearly need to enforce some constraints on the function that generates pre-
fix trees. After all, there is an endless amount of possible prefix trees that can be
generated, but only a certain selection of these will result in cohesive music. Ad-
ditionally, since generative prefix trees refer to concrete locations on the oriented
tree it is meant to transform, the set of possible "legal" prefix trees is further re-
stricted. Thus it is clear that some of the constraints on the generation process will
be determined by the oriented tree the prefix tree is to be applied to, and some
will determined by stylistic preferences. As stated in the specification, we wish not
to embed these constraints into the generative function itself, but rather to pass
them as input arguments. These considerations lead to our generative function
taking three inputs:
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1. The seed for the randomness aspect of the generation
2. A generative plan, containing aesthetic choices
3. The music oriented tree that is to be transformed

Generative Plan

The generative plan, (introduced in section 6.4.1), is a data structure that con-
tains all the parameters that dictate how the prefix tree should turn out that are
not directly related to oriented tree that is to be transformed. In the future, this
structure can be expanded to gain further explicit control of how the generated
prefix tree turns out. For now, it contains the following three parameters:

1. A list of all tree transformations that the prefix tree can contain
2. A function that gives the depth level in the given oriented tree that the

transformations should be transformed at
3. A skeletal tree denoting the shape of the prefix tree to be generated

List of Possible Tree Transformations The first parameter is very useful, be-
cause it is a general way of constraining the type of prefix tree the function should
generate. As stated in section 6.4.1, we want each prefix tree to only alter one di-
mension. For instance, if we wanted to create a prefix tree that transforms the
rhythm of a piece of music, this would be done by only include functions that
transform rhythm. To ensure rhythmic cohesion, we would only include functions
that generate rhythms that work well together. Alternatively, having for instance
a list of possible rhythms as an explicit field in the plan would make for a less
general and more messy generative plan.

Depth Function The reason why we include a certain depth that the slice trans-
formations should refer to, is that we often wish to address a certain hierarchical
level with our tree transformations. Some might only make sense at a give hier-
archical level, most often levels where we have groups of notes or a groups of
groups of notes. This is the case for the tree transformations in our generative
example, which will be further described in section 6.5.1. It seems to be a general
trait for tree transformations to only work as intended at certain locations in the
tree. One might be able to think of a case where it would be necessary for the
prefix tree to operate on multiple hierarchical depths, but this would be for very
avant-garde music. If deemed necessary, one could just apply more prefix trees,
each addressing a given depth.

Prefix Tree Shape A skeletal prefix tree denoting the shape of the prefix tree that
is to be generated, is included as a parameter to the generative functions. This
will allow us to control how many nodes and leaves the prefix tree will contain,
and how these are to be connected. The reason this is desired is twofold: First
of all, the shape of the prefix tree says something about the complexity of the



generated music. If there are many leaves, then we know that there are many
different functions applied to the tree. If there are many nodes, then we know
that there is a lot of shared structure in the resulting music. Secondly, prefix trees
of the same shape can have wildly different musical outcomes. It all depends of the
actual slice transformations and trees transformations contained within the trees.
Separating out the shape of the tree is thus natural. This also allows us to keep
a given fixed shape of the prefix tree for now, while still exploring the generative
variety of the system.

The Generation Function

The process of generating random prefix trees is as follows:

1. Get the skeletal prefix tree from the generative plan (skeletal prefix trees are
defined so that all its functions are identity functions, which simply return
the input it is given as its output)

2. Generate list of random depth-fixed slice transformations based on the depth
parameter in the generative plan and the oriented tree that is to be trans-
formed

3. Generate list of Tree Transformations based on generative plan
4. Insert list of random Slice transformations
5. Insert list of random Tree transformations

Generating Slice Transformations

The locations in which the generated prefix tree will modify the input oriented
tree is entirely determined by the slice transformations it contains. To ensure that
no slices in the prefix tree refer to locations that do not exist in the oriented tree,
their generation is constrained by the oriented tree that is to be transformed. The
general method for generating a slice transformation is:

1. Select a random depth from a range of allowable depths within the oriented
tree. The allowable depth is found in the generative plan.

2. For this depth, get the range of allowable children to access, determined by
the smallest amount of children that a node at this depth has.

3. Input the depth and allowable child range to the slice transformation con-
structor described in section 6.2.

Figure 6.6 shows what the terms depth and amount of children refer to in a tree.
The reason we get the smallest amount of children of the nodes at the given depth,
is one or more of the nodes might have less children than the others. A slice
with indexes larger than the amount of children for a given node would lead to
an error. In most musical cases, we want each node at a given depth to have
the same amount of children (often numbers like 2, 4 and 8), so this is not very
restricting. Overcoming this restriction would require each slice transformation to
be generated based on its location in the skeletal prefix tree, and what other slice
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Figure 6.6: The amount of children at each depth in a tree.

transformations are on its branch. This would make random generation of slice
transformations a lot more complex, and is therefore avoided for now.

Ensuring that the Prefix Tree only Access a Fixed Depth To make sure every
slice in a depth-fixed prefix tree refers to the depth given by the generative plan,
the slice transformation in the root node needs to transform the choice at this
depth. Since every path will contain the root, every transformative instruction in
the prefix tree will then transform the nodes at this depth. The rest of the slice
transformations need to refer to a depth that is equal to or smaller than the one
in the root node.

Insertion of List of ST’s and TT’s Into Prefix Tree

In order to insert the elements of a list into a prefix tree, we need a way to specify
where each of the lists elements should go. This problem was solved with an
enumeration function, that simply enumerates the elements of the prefix tree in
pre-order. Nodes and Leaves are enumerated separately (as they contain different
types). Figure 6.7 shows how a prefix tree is enumerated. It is important to stress
that the enumeration function keeps the information on what value was inside
the node before enumeration. Thus a function acting on the enumerated tree can
decide to either keep the original value or perform a function on it corresponding
to the index of a list of functions. The advantages of such a enumeration process
is that it allows the sequential application of a list functions to a tree, where each
function is to applied to a different node in the tree. In order to enumerate our
nodes, we need a state-like variable that keeps track of how many nodes are under
each node. Further details on how this is done will be given in section 7.4.5 in the
implementation chapter.

Insertion of Slice transformations Once we have an enumerated prefix tree,
we can insert a list of slice transformations into the tree, by for each node inserting
the element of the list that has an index equal to the node’s number. An advantage
of such a list insertion is that we know that first element of the list will be the root



Figure 6.7: An enumerated prefix tree. The Nodes (circles) and leaves (squares)
are enumerated seperately, both by pre-order traversal

Figure 6.8: How a list is inserted into the leaves of the prefix tree

element of the prefix tree. Thus we can easily specify the depth of the prefix tree
by first generating a depth-slice transformation, and then appending a random
list of n - 1 slice transformations.

Insertion of Tree Transformations The tree transformations in the prefix tree
are applied from left to right, i.e. in the same order as the leaves are enumerated.
Thus the list of TT’s that are added to the prefix tree are also in the same order as
the order they will be executed. This gives the generative function better control
of the outcome of the application of its resulting prefix tree, as opposed to just
random insertion. The insertion process is illustrated in figure 6.8.

6.4.3 Sequencing Generative Plans

The list of generative plans serves as a minimal model of the final piece. Once
the requested amount of generative plans have been generated, they need to be
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sequenced together to obtain the oriented tree containing the final piece of music.
Since the generative plans serve as meta-models instructing and constraining the
generation of each prefix tree, there is really no need to pass state around between
each tree, except for the updated seed value. The necessary amount of cohesive-
ness can be ensured through the generative plans themselves. Additionally, since
the generative function for each prefix tree also measures its target oriented tree
to ensure that it will fit, there is also no need to pass around size information on
the oriented tree, etc. The sequencing basically comes down to a folding function,
which will be described in detail in section 7.8.3 in the implementation chapter.

6.5 A Generative Example

In the previous section we have laid out the general principle of generating mu-
sic with prefix trees. Now it is time for a more concrete example, that clearly
demonstrates that this method can be very successful at generating music with
novel structures with shared material. As per the specification, the goal is to gen-
erate chord-based music, each displaying a different structure of shared patterns
in rhythm and playing style. Since there is no time to create our own chord pro-
gression generator, rhythm generator, melody generator etc, (all these tasks could
be a masters degree in themselves), we will "fake" this for now, by making a small
list of acceptable candidates and randomly choosing from it. The next sections will
cover the tree transformation functions we have created and the plans generating
a full piece of music.

6.5.1 Tree Transformations

To recapitulate, tree transformations are functions of type MusicOT -> MusicOT.
In other words, they take a musical oriented tree as input and return a trans-
formed musical oriented tree as output. This means that they can operate on val-
ues, groups of values, groups of groups of values, etc. This subsection will cover
the design of the tree transformations that were implemented as part of this pro-
ject.

Insertion

The simplest tree transformation is that of the insertion. This is simply the act of
ignoring whatever is in the location it works on, and inserting its argument there.
This is useful for generating the starting tree, by inserting a selection of chords,
motifs, etc.

Rhythm

The rhythm tree transformation takes as input a Rhythm (a list of durations always
summing up to 1) and the tree in question. It then copies this tree as many times



Figure 6.9: How the rhythm function takes a tree and a Rhythm, and creates a
new tree with the same total duration but different rhythm. The figure only shows
the durations of each Val, the pitch information remains the same.

as there are durations in the Rhythm, and sequentially maps the rhythm durations
divided by the original tree’s total duration on each tree in the group of trees. The
division by the original total duration ensures that total duration of the new tree
is the same as in the original tree, since the total duration of a Rhythm is always
1. The rhythm function allows us to insert rhythmic patterns into a piece of music
while retaining the pitch information. This process is depicted in figure 6.9.

Pattern

While the rhythm function adds information to a tree, the pattern function re-
moves it. It takes as input a list of lists of integers known as a Pattern, as well
as the tree to be transformed. A Pattern encodes which notes should remain in
a group of groups of notes. It encodes a sort of directional movement within the
notes of a given tree. Together with Rhythm, a Pattern denotes how a chord is to
be played. Using patterns along with slicing allows us to break chords up into their
components, in multiple locations in the tree. By first using rhythm to copy the
chord in a rhythmic manner, we can then break it up with patterns, to for instance
arpeggiate it. We can for instance give a certain arpeggiation to multiple chords
at different locations, helping us achieve a cohesive playing style throughout the
piece. How the function works is shown in figure 6.11.

Depth Since the pattern function is meant to operate on a group of group of
notes, it will only work as intended at certain locations in the tree. In this design,
we assume that the music tree has an even height, and thus we can specify that
the function should be applied at a certain depth relative to this height. As figure
6.10 illustrates, this depth is the height of the tree minus 2.
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Figure 6.10: The depth at which a pattern should be applied, relative to the
height of the tree: depth = height - 2

Figure 6.11: How the pattern function takes a tree and a Pattern, and creates a
new tree displaying the pattern. The figure only shows the Pitch of each Val, the
rest of the information remains the same.



6.5.2 Generating a Piece

In order to generate a piece with the generative scheme and tree transformations
presented here, we need to specify certain things by hand: A set of possible chord
progressions and the plans for each prefix tree. In the future, the process of select-
ing these could be automated, resulting in a fully generative system. Still, leaving
these to be specified by hand still results in music that is quite structurally varied.
As this is the goal of this generative example, we are satisfied with leaving this
part of the music hand-written for now.

Two plans

The idea is to create two plans, one for rhythms and one for patterns. The rhythm
function mapped to a list of pre-programmed Rhyhtms is used as the pool of tree
transformations for the rhythm plan, and the pattern function mapped to a list
of pre-programmed Patterns is used for the pattern plan. The reason we use the
rhythm plan first, is that it adds information, which is then "pruned" by the pattern
function.

What rhythms and patterns the actual plans should contain is up to the user. In
the implementation a set of candidates is implemented by the author. These are
then used to generate the music that is evaluated in chapter 8.



Chapter 7

Implementation

This chapter will explain how the design was implemented in Haskell. First, an
overview of each module and their interactions will be presented, before we go
into detail on the most important functions and data structures within each mod-
ule. The modules are presented in bottom-up order, ending up at Example.hs
and the function genPiece, which generates a random piece of structured music.
The function makestartingtree and the functions it depends on were taken from
Han’s implementation. In the few cases where material is identical or similar to
Han’s implementation, it is specified.

7.1 Overview

Modules An overview of the modules and their dependencies is shown in figure
7.1. Except for Euterpea the system only uses modules from Haskell’s base library.

The Composition of main A Haskell program is essentially one nested function,
i.e. one function which calls other functions, which then call other functions, and
so on. Figure 7.2 shows the composition of the most important functions of the
system, and the modules they belong to. For clarity’s sake, this figure leaves out
the Random.hs module and the less important functions. The system is run from
main, the only impure function of the system, see figure 7.3. It calls the IO function
getStdGen to get a random seed and then calls Example.genPiece to generate a
piece from this seed:

main = do
gen <- newStdGen
playDev 6 $ Example.genPiece gen
-- | ^ the midi channel you want to stream through

To generate a random piece, the user must run GHC’s interactive environment
with the command ghci, open Main.hs with the command :l Main, and then run
main.

71



Figure 7.1: Overview of the modules in this implementation and their dependen-
cies. The module an arrow points to imports the module this arrow points from.

Figure 7.2: A figure showing the tree of the most important function calls from
main, and what modules they belong to. An arrow pointing from a function f to
function g indicates that f calls g.
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Figure 7.3: How our system is divided into an impure shell and a purely func-
tional core.

7.2 Scale.hs

The module Scale.hs is used for generating scales. A scale is represented as the
datatype Scale:

type Root = PitchClass
data Scale = Scale Root Mode

To get the list of absolute pitches that a given Scale consists of in a given octave,
we use scaleAbsPitches:

scaleAbsPitches :: Scale -> Octave -> [AbsPitch]
scaleAbsPitches (Scale root mode) octave =

let rootAbs = absPitch (root, octave)
ff acc x = acc ++ [last acc + x]

in foldl ff [rootAbs] (intervals mode)

This function uses foldl to build a scale by adding each interval of the mode to
the last AbsPitch in the accumulated scale, starting with the root. We use the
function intervals to get the intervals of a given mode:

intervals :: Mode -> [Int]
intervals mode =

let majorIntervals = [2, 2, 1, 2, 2, 2, 1]
mIdx = modeIdx mode

in drop mIdx majorIntervals ++ take mIdx majorIntervals

modeIdx :: Mode -> Int
modeIdx mode =

let modes = [Major, Dorian, Phrygian, Lydian, Mixolydian, Minor, Locrian]
in fromJust $ elemIndex mode modes

The function uses modeIdx to get the index of a given mode in the order specified
by the list modes. Now, getting the intervals of a given mode is as simple as taking
each interval after mIdx and appending the intervals before mIdx.



7.3 Chord.hs

The module Chord.hs is another small module, used for generating chords based
on a Pitch and a Mode. A chord is represented in the datatype Chord:

data Chord = Chord { root :: PitchClass
, pitches :: [Pitch]
} deriving (Show)

To get a given chord, we use getChord:

getChord :: Pitch -> Mode -> [Int] -> Chord
getChord r@(rootPC, octave) mode intervals =

let scale = map pitch $ scaleAbsPitches (Scale rootPC mode) octave
in Chord { root = rootPC

, pitches = r : (map (scale !!) intervals)
}

This function takes the root of the chord, the mode, and the intervals from the
root (in terms of scale degrees), the rest of the chord notes should have. To get a
triad, we use getTriad:

getTriad :: Pitch -> Mode -> Chord
getTriad pitch mode = getChord pitch mode [2,4]

7.4 Trees.hs

The Trees.hs module contains all the tree data structures that are used by the
system, and the basic functions that operate on them. In this module, the trees
are implemented polymorphically: they are defined independently of the type of
the values they contain. Both OrientedTree and PrefixTree are implemented
identically to Yan Han’s implementation, shown in section 4.3.

7.4.1 Constructing Slice Transformations

A slice is the primary data structure used to access the nodes of the tree structures
in this system. Just like in Han’s design, a slice is a value containing multiple
paths to nodes at a certain depth corresponding to the index of the last choice in
the slice. Their implementation is identical Han’s version, seen in section 4.3. To
construct a slice transformation that transforms the slice at a given depth, we use
atDepth:

atDepth :: Int -> [Int] -> (Slice -> Slice)
atDepth depth selection slice =

let (a, b) = splitAt depth slice
in a [Some selection] ++ tail b
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This function simply splits the slice at the index given by depth, and inserts a
choice selecting the given selection, overwriting whatever choice was previously
there.

7.4.2 Accessing Subtrees of an Oriented Tree

To get the subtrees in a given Choice, we use the auxiliary function subTrees’:

subTrees' :: Choice -> OrientedTree a -> Maybe [OrientedTree a]
subTrees' _ (Val x) = Nothing
subTrees' All (Group _ ts) = Just ts
subTrees' (Some idxs) (Group _ ts) =

if maximum idxs > length ts then Nothing else Just $ map (ts !!) idxs

This function returns a list of type Maybe [Oriented Tree a], since it can fail for
certain inputs. The function will return Nothing if one tries to get the subtrees of
a Val (there are none by definition), and if one tries to get a subtree by an index
that is larger than the amount of children in the given Group.

Access Subtrees by Slice To access the subtrees of an oriented tree given by a
Slice, we use the function subTrees:

subTrees :: Slice -> OrientedTree a -> Maybe [OrientedTree a]
subTrees _ (Val x) = Nothing
subTrees [] tree = Just [tree]
subTrees (c : cs) tree =

let flatten = fmap concat . join
in flatten $ (sequence . map (subTrees cs)) <$> (subTrees' c tree)

This is a recursive function. The terminal condition is when the slice is empty, in
which case we will simply return Just the tree inside a list. When we have a slice
consisting of at least one choice, we recursively apply subTrees, by mapping it to
all the subtrees in the first choice, given by subTrees’. Since both subTrees’ and
subTrees take a tree and return a list of trees in the Maybe context, we need to
make use of Maybe’s instance of Monad and Functor to combine these functions.
The meat and bones of subTrees is in it’s last line, which is quite dense. We will
go through this line step by step, and examine how the type changes:

1. (subTrees’ c tree): We apply subTrees’ to the first choice in the slice, to
get a value of type Maybe [OrientedTree a]

2. (sequence . map (subTrees cs)): This function is applied inside the Maybe
with <$>. It first maps subTrees cs (cs is the rest of the choices), onto each
tree in the list. This will result in a value of type [Maybe [OrientedTree a]].
We then apply the monad function sequence, which will give a value of type
Maybe [[OrientedTree a]]).



3. flatten: Function 2 applied to function 1 with <$>, will result in a value of
type Maybe (Maybe [[OrientedTree a]]). We then apply flatten to this
value, which will first use the monad function join to flatten the two Maybe’s
into one, and then use fmap concat to concatinate the double list inside the
maybe, resulting in a final value of type Maybe [OrientedTree a].

Maybe’s instance of monad is implemented so that sequence returns Nothing if
any of the elements in the list is Nothing. If There are only Just’s in the list, we
get Just the list. The other monad function we use, join, works in the same way.
Thus, if any of the subTrees calls return a Nothing, the entire function will return
Nothing, which is what we want.

7.4.3 Applying Tree Transformations

A fundamental part of this system is the ability to apply a tree transformation to
an OrientedTree in the multiple locations contained in a Slice. This is done with
the function applyTT:

applyTT :: Slice -> TT a -> OrientedTree a -> Maybe (OrientedTree a)
applyTT _ tt (Val x) = Nothing
applyTT slice tt tree@(Group o ts) =

if length slice > height tree
then Nothing
else Just $ applyTT' slice tt tree

Since tree transformations can only be applied to Groups, we have the function
return Nothing if applied to a Val. If the length of the slice is not greater than the
height of the tree, we use the auxiliary function applyTT’:

applyTT' :: Slice -> TT a -> OrientedTree a -> OrientedTree a
applyTT' [c] tt (Group o ts) = Group o $ (applyTo c) tt ts
applyTT' (c:cs) tt (Group o ts) = Group o $ (applyTo c) (applyTT' cs tt) ts

Since applyTT’ is only called from applyTT when pattern matched on Group, we
don’t need to include a pattern for Val for this function. We see that when the
function is called with a slice consisting of a single choice, we apply the tree trans-
formation to the subtrees in the choice. When the function is called with a slice
consisting of more than one choice, we recursively apply applyTT’ to each sub-
tree in the choice. We use applyTo to get a function that applies the TT to the
appropriate subtrees, depending on the choice:

applyTo :: Choice -> ( (a -> a) -> [a] -> [a] )
applyTo c = case c of

All -> map
Some idxs -> zipSome idxs

If the choice is All, we simply map the tree transformation to each subtree. If the
choice is Some idxs we use zipSome to only apply the TT to the subtrees in the
choice, leaving the rest intact:
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zipSome idxs f ts =
zipWith (\t idx -> if idx `elem` idxs then f t else t) ts [0..]

The function zipSome is also present in Han’s implmementation under a different
name.

7.4.4 Shape Functions

Our design requires us to get different measurements from oriented trees. These
are the height of a given tree and the amount of children of a given node. The
function height is implemented recursively:

height :: OrientedTree a -> Int
height (Val a) = 0
height (Group o trees) = 1 + maximum (map height trees)

children :: OrientedTree a -> Int
children (Val a) = 0
children (Group o trees) = length (trees)

Children at Depth We also need to get a list of the amount of children of each
node at a given depth:

childrenAtDepth :: OrientedTree a -> Int -> Maybe [Int]
childrenAtDepth tree depth =

map children <$> subTrees (replicate depth All) tree

This function uses subTrees to get a list of subtrees at the given depth of the tree.
The function children is then applied to each of these to get a list of the amount
of children each node has at this depth. We need to use functor aplication with
<$> to apply map children inside the result of subTrees, as it is of type Maybe.

7.4.5 Elevation and Enumeration

An important part of this design is the ability to insert the elements of a list onto
the nodes of different tree structures. An example of what we mean by this shown
in figure 6.8 in the design chapter. This functionality is implemented with the
elevate function:

elevate :: (Functor f, Enumerable f) => [a] -> f a -> f a
elevate list = fmap ff . enumerate where

ff (idx, x) = if idx < length list then list !! idx else x

As we can see, it is implemented as a specialization of a general way to map
a function to the elements in a tree, where the function is depending on a given
index. To give a node in the tree a corresponding index, we enumerate them in the
order of a pre order traversal. The neccessity of both mapping and enumeration is



made clear in elevate’s type signature, where a must be both a Functor, and an
Enumerable, a custom type class we have implemented for enumeration. The next
sections will show how we make our trees an instance of both these type classes.

Our Trees as Functors

To be able to use fmap on our trees, we need to make it an instance of Functor.

OrientedTree The functor instance of OrientedTree is defined like this:

instance Functor (OrientedTree) where
fmap f (Val a) = Val (f a)
fmap f (Group o ts) = Group o (map (fmap f) ts)

Since functions only can be applied to the values inside the OrientedTree’s leaves,
when fmap is applied to a group it simply recursively applies fmap to each member
of the group.

PrefixTree Since PrefixTree is a type constructor that takes two types, we need
to partially apply the first type to make it an instance of Functor. When we want
to map on the keys of a prefix tree, we define its instance of Functor like this:

instance Functor (PrefixTree v) where
fmap f (Leaf k v) = Leaf (f k) v
fmap f (Node k ts) = Node (f k) (map (fmap f) ts)

When we want to use fmap on the values of a prefix tree, we need to define a
newtype, with the arguments reversed:

newtype PrefixTree' k v = PT' {pt :: PrefixTree v k}

Now we can make this reversed prefix tree an instance of Functor:

instance Functor (PrefixTree' k) where
fmap f (PT' (Leaf k v)) = PT' $ Leaf k (f v)
fmap f (PT' (Node k ts)) = PT' $ Node k (map (pt . fmap f . PT') ts)

Our Trees as Enumerables

We have defined our own typeclass Enumerable, for things that can be enumer-
ated. It is defined like this:

class Enumerable e where
enumerate' :: Int -> e a -> (Int, e (Int, a))

The enumerate’ function is an auxiliary function, called by enumerate, which is
defined like this:
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enumerate :: Functor f => Enumerable f => f a -> f (Int, a)
enumerate = snd . enumerate' 0

As we can see, enumerate’ takes an integer, which is the value that the first node
of the enumerable should take on, along with the enumerable itself, and returns
a tuple containing the number we should add to number of the current node to
get the number of the next node, and the enumerated enumerable. "The number
we should add to number of the current node to get the number of the next node"
is the amount of enumerated nodes in the previous subtree, hereby denoted as
"size". This function is used recursively to enumerate a tree.

OrientedTree as enumerable Let’s take a look at how enumerate’ is defined
for OrientedTree:

instance Enumerable (OrientedTree) where
enumerate' n (Val x) = (1, Val (n, x))
enumerate' n (Group o ts) = (sum sizes, Group o enodes)

where (sizes, enodes) = enumerateSubTrees n ts

As we can see, a Val is enumerated by inserting n into Val and tagging along a size
of 1. A group of trees is enumerated by returning its size (the sum of the sizes of
each child), along with the new enumerated group. As only Vals are enumerated,
the size of a group is synonymous with the amount of Vals in it.

To enumerate each subtree in the group, we use the function enumerateSubTrees:

enumerateSubTrees :: Enumerable e => Int -> [e x] -> ([Int], [e (Int,x)])
enumerateSubTrees startSize (x:xs) =

let totalsize = (sum . map fst)
ff prev x = prev ++ [enumerate' (startSize + totalsize prev) x]

in unzip $ foldl ff [enumerate' startSize x] xs

We see that is a folding function that takes a list of non-enumerated sub-trees and
returns a list of enumerated sub-trees. It takes the accumulator (list of enumerated
nodes thus far) and appends the next enumerated node. It always updates the
current number by adding the total size of the previous subtrees to the starting
size.

PrefixTree as enumerable The instance of enumerable for a normal prefix tree
(i.e. when we want to enumerate the keys of the tree) is defined like this:

instance Enumerable (PrefixTree v) where
enumerate' n (Leaf k v) = (1, Leaf (n, k) v)
enumerate' n (Node k ts) = ((sum sizes) + 1, Node (n, k) enodes)

where (sizes, enodes) = enumerateSubTrees (n + 1) ts

We see that it is very similar to OrientedTree’s instance, except for the fact that
since the keys are enumerated, we need to add 1 to the size of a Node, and to the
starting number when enumerating the sub trees.



PrefixTree’ as enumerable The instance of enumerable for a reversed prefix
tree (i.e. when we want to enumerate the values of the tree) is defined like this:

instance Enumerable (PrefixTree' k) where
enumerate' n (PT' (Leaf k v)) = (1, PT' $ Leaf k (n,v))
enumerate' n (PT' (Node k ts)) = (sum sizes, PT' $ Node k (map pt enodes))

where (sizes, enodes) = enumerateSubTrees n (map PT' ts)

Since we here are only interested in enumerating the values of the prefix tree, i.e.
the leaves, this implementation is essentially the same as that of OrientedTree.
Since we are using the newtype wrapper PT’ to reverse the arguments, we need
to add it to pattern match on and return values of type PrefixTree’.

7.5 MusicTrees.hs

The MusicTrees.hs module contains the Musical Trees, i.e. the polymorphic trees
implemented in Structure.hs, with music types. It also contains functions to
convert between these structures.

7.5.1 Musical Oriented Trees

Musical oriented trees are expressed as the type MusicOT:

type MusicOT = OrientedTree (Primitive Pitch)

Conversion to Euterpea’s Music type

A value of type MusicOT can be converted into Euterpea’s Music type (so we can
play it as MIDI with play), with the function toMusic:

toMusic :: MusicOT -> Music (Pitch, Volume)
toMusic (Val x) = valToMusic (Val x)
toMusic (Group H trees) = line $ map toMusic trees
toMusic (Group V trees) = chord $ map toMusic trees

This function is implemented almost identically in Han’s implementation. The
functions line and chord are from Euterpea, and combine a list of musical values
into a melodic line (i.e. sequentially) and a chord (i.e. parallelly) respectively.
Converting a Val to music is done with the function valToMusic:

valToMusic :: MusicOT -> Music (Pitch, Volume)
valToMusic (Val (Note dur p)) = Prim ((Note dur (p, 75)))
valToMusic (Val (Rest dur)) = Prim (Rest dur)

This is to be able to reduce the volume of our output music (100 is a little harsh).
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7.5.2 Musical Prefix Trees

A musical prefix tree is implemented by the type MusicPT:

type MusicPT = PrefixTree (MusicOT -> MusicOT) (Slice -> Slice)

Its leaves are the left paramater, which tree transformations, and its nodes are the
right parameter, which are slice transformations.

Conversion to MusicOT

The conversion process from MusicPT to MusicOT makes use of an intermediate
data type TI, short for Transformative Instruction:

data TI = TI { slc :: Slice, tt :: (MusicOT -> MusicOT)}

A musical prefix tree can be considered a compressed version of a list of trans-
formative instructions. Converting a MusicPT to a list of TI’s is done with toTIs:

toTIs :: MusicPT -> [TI]
toTIs pt =

let stss = getAllPaths pt
tts = getAllValues pt

in zipWith toTI stss tts

We see that the function first uses getAllPaths from the Trees.hs module to get
a list of all paths in the prefix tree, where each path is a list of keys from root to
leaf. This results in the value stss of type [[Slice -> Slice]]. Similarly, to get
tts, a list of all tree transformations, we use getAllValues. To get a list of all TI’s,
we use zipWith, to zip the two lists into one list with the binary function toTI:

toTI :: [Slice -> Slice] -> (MusicOT -> MusicOT) -> TI
toTI sts ttrans =

let slice = foldl (\slc st -> st slc) (smallestDefault sts) sts
in TI { slc = slice, tt = ttrans}

This function uses foldl to apply all slice transformations from left to right to
a default slice. This default slice is the smallest possible slice of only All, of
depth equal to the deepest slice transformation in sts. This default slice is found
by smallestDefault:

smallestDefault :: [Slice -> Slice] -> Slice
smallestDefault sts = replicate ((getDeepest sts) + 1) All

getDeepest :: [Slice -> Slice] -> Int
getDeepest sts = maximum $ map getDepth sts

getDepth :: (Slice -> Slice) -> Int
getDepth st = fromJust . findIndex (isSome) . st $ repeat All



Here we see that we find the smallest default slice by finding the deepest slice
transformation in sts. This is done with getDepth. Since a slice transformation
is a function, we need to apply it to some default slice to find its depth. This
slice is an infinite list of All’s. Slice transformations are defined to only transform
one depth, which means that its depth will equal the index of the first Some in the
resulting slice from its application to a default slice. Since all slice transformations
are generated to modify one depth, findIndex should never fail, thus fromJust
is applied to extract the index from its Maybe context.

Applying TI’s Once we have converted a MusicPT to a list of type [TI], we use
applyTIs to apply these to a MusicOT:

applyTIs :: [TI] -> MusicOT -> MusicOT
applyTIs tis tree = foldl applyTI tree tis

applyTI :: MusicOT -> TI -> MusicOT
applyTI tree (TI slice tt) = fromJust $ applyTT slice tt tree

We see that this function uses foldl to apply each TI from left to right to the tree.
applyTI uses applyTT from the Structure.hs module, which returns a value of
type Maybe (OrientedTree a). Thus we need to apply fromJust to the result.
This assumes that applyTT returns a value of type Just (MusicOT).

Applying MusicPT’s Using transformative instructions and their functionality,
applying a MusicPT to a MusicOT is really simple:

applyPT :: MusicPT -> MusicOT -> MusicOT
applyPT pt = applyTIs (toTIs pt)

To directly convert a musical prefix tree to a musical oriented tree, we use the
function toMT:

toMT :: MusicPT -> MusicOT
toMT pt = applyPT pt (makeStartingTree (toTIs pt))

This function uses Han’s function makeStartingTree to generate an empty start-
ing tree based on the prefix tree. The prefix tree is then applied to the starting
tree.

7.6 Transform.hs

The module Transform.hs contains tree transformations, which are functions of
type MusicOT -> MusicOT. The two fundamental tree transformations used in our
system is rhythm and pattern.
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7.6.1 Rhythm

Rhythms are expressed as a list of Durations:

type Rhythm = [Dur]

Rhythm transformations are performed with the function rhythm:

rhythm :: Rhythm -> MusicOT -> MusicOT
rhythm rm tree =

let td = totDur tree
ts = (replicate (length rm) tree)

in Group H $ zipWith (\d t -> fmap (giveDuration (d/td)) t) rm ts

This function simply replicates the input tree once for each duration in the input
rhythm, and then returns a horizontal group of these trees, with the durations of
the rhythm inserted with zipWith. Each duration in the rhythm is scaled by the
total duration of the original tree, as to return a tree with identical total duration
as the input tree. To get the total duration of a given tree, we use totDur:

totDur :: MusicOT -> Dur
totDur (Group H trees) = sum $ map totDur trees
totDur (Group V trees) = maximum $ map totDur trees
totDur (Val x) = getDur x

The total duration of a horizontal group is the sum of the total duration of all its
subtrees, while the total duration of a vertical group is simply its longest duration.
To insert a given duration into a node of tree, we use fmap giveDuration to apply
giveDuration inside the tree:

giveDuration :: Dur -> Primitive Pitch -> Primitive Pitch
giveDuration dur (Note d p) = Note dur p

7.6.2 Pattern

Patterns denote a selection of notes within a group of groups (see design chapter
section 6.5.1 for more info). They are expressed by the type Pattern:

type Pattern = [[Int]]

A pattern transformation is performed with the function pattern:

pattern :: Pattern -> MusicOT -> MusicOT
pattern p (Val x) = Val x
pattern p (Group o groups) =

Group H $ zipWith extract (concat $ repeat p) groups

Patterns are infinite structures, which is achieved with concat $ repeat. We zip
together the pattern with the groups with the function extract:



extract :: [Int] -> MusicOT -> MusicOT
extract xs (Val x) = Val x
extract xs (Group o ts) =

let sel = sort xs
in if length ts > maximum sel then Group V $ map (ts !!) sel

else extract (unique $ init sel ++ [last sel - 1]) (Group o ts)

We want to be generous in our implementation of extract, i.e. we do not want it to
be able to fail. If none of the selections in xs are larger than the amount of subtrees
inside the Group o ts, we can simply get the selected subtrees. If not, we modify
our list of selections to accommodate the tree. We recursively call extract, with
a sel that has its maximum selection reduced by 1, until the maximum is smaller
than the length of ts.

7.7 Random.hs

We use the module Random.hs to generate random values, and to thread random
seeds through a series of n random functions. To get a random element from a list
of candidates, we use the function getRandom:

getRandom :: (RandomGen g) => [a] -> g -> (a, g)
getRandom list seed =

let randomIdx = randomR (0,(length list) -1) seed
in (list !! fst randomIdx, snd randomIdx)

This function uses randomR from the the System.Random module to get a random
index from list and then returns the element at this index along with the new
seed. To get n random values from a list, we use getRandoms:

getRandoms :: Int -> [a] -> State StdGen [a]
getRandoms n = sequence . replicate n . state . getRandom

This function uses the State monad from Control.Monad.State. It first creates a
list of n State monads containg the stateful computation getRandom. The Monad
function sequence is then used to convert a list of State monads to a State monad
containing a list, i.e. going from a type of [State StdGen a] to a type of State
StdGen [a]. Now, generating an arbitrary amounts of random numbers from a
list is simple: For instance if we want to generate 3 random numbers, we call
runState (getRandoms 3) seed, which will return a tuple of the list of random
numbers and the new seed. When we want to get one random number from each
list in a list of lists, we use getRandomss:

getRandomss :: [[a]] -> State StdGen [a]
getRandomss = sequence . map (state . getRandom)

The function name ending with "ss" imply a list of list, just like a single "s" implies
a list.
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7.8 Generation.hs

The Generation.hsmodule contains functions for generating musical prefix trees.
It also contains functions for chaining together prefix tree generations and the
meta-model data structures used in this process.

7.8.1 Generative Plans

Generative plans are implemented as types with record syntax:

data Plan = Plan { _ttPool :: [MusicOT -> MusicOT]
, _ttDepth :: MusicOT -> Int
, _skeleton :: MusicPT
}

7.8.2 Generating Prefix Trees

The process of randomly generating a MusicPT based on a seed, generative plan,
and the MusicOT it is to be applied to, is implemented in the function genPT:

genPT :: StdGen -> Plan -> MusicOT -> (MusicPT, StdGen)
genPT gen plan ot =

let skel = _skeleton plan
(sts, gen2) = randomDFSTs gen (keysAmt skel) ot (_ttDepth plan ot)
(tts, gen3) = randomTTs gen2 (valuesAmt skel) (_ttPool plan)

in (elevateValues tts $ elevate sts $ skel, gen3)

As we can see, the seed is manually threaded through (and updated by) each
random generation function, and finally output at the end. We use the elevate
function to insert the lists of slice transformations and tree transformations into a
default tree that is generated based on the general shape of the prefix tree.

Generating a Random List of Slice Transformations

The function used by genPT to generate a random list of depth-fixed slice trans-
formations is called randomDFSTs, which is a specialised version of the general
function randomSTs:

randomSTs :: StdGen -> Int -> OrientedTree a -> [Int] -> ([Slice -> Slice], StdGen)
randomSTs gen n ot depthRange =

let (depths, gen2) = randomDepths gen n depthRange
(children, gen3) = randomChildren gen depths ot

in (zipWith st depths children, gen3)

This function generates a random list of depths in the range specified by dep-
thRange. This list is passed as argument to randomChildren to get a random list
children, where each child corresponds to the depth at the same index in depths:



randomChildren :: StdGen -> [Int] -> OrientedTree a -> ([Int], StdGen)
randomChildren gen depths ot =

let childRanges = map (childRange ot) depths
in runState (R.getRandomss childRanges) gen

The function childRange is used to determine the list of possible children within
each tree and depth:

childRange :: OrientedTree a -> Int -> [Int]
childRange tree depth =

let cad = childrenAtDepth tree depth
in case cad of

Just children -> [0 .. (minimum $ children) - 1] -- 0-index
Nothing -> [0]

childrenAtDepth returns a type wrapped in Maybe, which is handled by return-
ing a default range of [0] if childrenAtDepth returns Nothing. (This is further
discussed in the implementation discussion in section 9.2.2). To ensure that each
slice transformation only refers to children that actually exist in the OrientedTree,
we use minimum to get the amount of children of the node at this depth with the
lowest amount of children. Once we have all depths and corresponding children,
we zip with st to generate our slice transformations:

st :: Int -> Int -> (Slice -> Slice)
st depth child = atDepth depth [0..child]

Random Depth-Fixed Slice Transformations To generate random depth-fixed
slice transformations, we use randomDFSTs:

randomDFSTs
:: StdGen -> Int -> OrientedTree a -> Int -> ([Slice -> Slice], StdGen)

randomDFSTs gen n ot depth =
let (dfst, gen2) = randomDFST gen ot depth

(sts, gen3) = randomSTs gen2 (n - 1) ot [0..depth]
in (dfst : sts, gen3)

This function first generates a random depth-fixed slice transformation, i.e. a slice
transformation that is fixed to transform the slice at a given depth:

randomDFST :: StdGen -> OrientedTree a -> Int -> (Slice -> Slice, StdGen)
randomDFST gen tree depth =

let ([child], gen2) = randomChildren gen [depth] tree
in (atDepth depth [0..child], gen2)

When we generate the rest of the slice transformations, we need to make sure
that they cannot have depths that are deeper than dfst, by passing a depth range
of [0..depth] to randomSTs. Finally we place dfst first in our exported result, to
make this the root of the generated MusicPT.
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Figure 7.4: A block diagram displaying how the function sequencePlans works
to generate a piece of music from a list of plans and a starting oriented tree and
a seed. Input values are shown in blue and output values in green.

7.8.3 Sequencing Generative Plans

A list of generative plans can be sequentially applied to a MusicOT with the func-
tion SequencePlans:

sequencePlans :: StdGen -> [Plan] -> MusicOT -> (MusicOT, StdGen)
sequencePlans gen plans startTree =
foldl (\(tree, gen) plan -> nextOT gen plan tree) (startTree, gen) plans

This function has a tuple of the starting tree and starting seed as its accumulator.
We fold over this accumulator with the list of plans, using the function nextOT to
get the resulting MusicOT from the seed, generative plan, and current MusicOT:

nextOT :: StdGen -> Plan -> MusicOT -> (MusicOT, StdGen)
nextOT gen ptPlan otree =

let (newPT, gen2) = genPT gen ptPlan otree
in (applyPT newPT otree, gen2)

We see that this function first generates a MusicPT, and then returns the pt-transformed
MusicOT along with the updated seed. A block diagram displaying how sequen-
cePlans works is shown in figure 7.4.

7.9 Example.hs

The module Example.hs contains the code for how a piece is generated in our
generative example. The module only exports one function, genPiece, which gen-
erates a piece of music:

genPiece :: StdGen -> Euterpea.Music (Pitch, Volume)
genPiece gen =

let (cps,gen2) = genChordProgs 2 gen
chordsTree = genStartingTree cps



(final, gen3) = sequencePlans gen2 ptPlans chordsTree
in toMusic final

ptPlans = [rhythmPlan, patternPlan]

rhythmPlan = Plan { _ttPool = map rhythm' [ronettes, n, evn 4]
, _ttDepth = \tree -> measureDepth tree + 1
, _skeleton = defaultPT'
}

patternPlan = Plan { _ttPool = map pattern [full, waltz, sadwaltz, falling]
, _ttDepth = \tree -> measureDepth tree
, _skeleton = defaultPT''
}

Here ronettes, n, evn 4 are rhythms, and full, waltz, sadwaltz, and falling are
patterns implemented in Example.hs. Some examples of their implementation:

full = [[0,1,2]]
falling = [[2], [1], [0]]
n = [(qn + en), (qn + en), qn]
ronettes = [(qn + en), en, hn]



Chapter 8

Evaluation

After designing and implementing our music generation system, is it time to eval-
uate its generated output. The music will be evaluated on the grounds of the
specification made in the paragraph Output Music in the functional requirements
section 5.1. The requirements are quickly summarized here:

1. The generated music should display hierarchical structure, and there should
be shared material both within and across hierarchical levels.

2. The structure of the output music should be both cohesive and varied.
3. The focus is mainly on structural novelty, not on quality. Additionally, we

will not focus on the quality of the other aspects of the music.

8.1 Structure Visualization

To get a clearer picture of how good the system is at generating music with re-
peating structure across and within multiple hierarchical levels, we will look at a
visualization of the MIDI files of three representative pieces. In these figures, time
is along the horizontal axis, and MIDI-notes are on the vertical axis. Wave files
of the pieces are included in the zip file, and links to listen to each piece will be
provided in the figure texts. The reader is strongly encouraged to listen along to
get a clearer view of the structure of each piece.

All three pieces are generated from a starting tree with the same initial struc-
ture, where there are 2 possible 2-chord progressions that can be inserted, chosen
from a pool of the the following candidates: "CMaj7 FMaj7", "C6 G6", and "CMaj7
C6". These chord progressions where chosen from personal taste, as it is the struc-
tural variation of rhythms and playing patterns that is interesting to evaluate, not
the actual chords themselves.
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8.1.1 First piece

The first MIDI file to be inspected is generated with seed 1492526188 532080812.
Figure 8.1a shows an overview of the entire piece, which indicates that it has a
ABA’B structure, where A’ is a modified version of A. Figure 8.1b shows a closer
comparison of A and A’. We see that all subsections of A and A’, i.e A1, A1’ and
A2 contain the same chords. What makes them different from each other is the
way these chords are played. A2 is identical in both sections, but A1 and A1’ are
different in the first three notes of each chord. In A1 these notes are played in
a descending arpeggio, while in A1’ these notes are played with the full chord.
Listening to the piece reveals that while the playing pattern varies, all chords in
both A1 and A1’ are played with the same underlying rhythm.

8.1.2 Second piece

The second piece we will inspect is generated with seed 1622411450 299661201.
This is piece with a lot of repetion, on all hierarchical levels. We see from figure
8.2a, That on the highest level, this piece can be divided into two sections, A and
A’. It clear that A’ is very similar to A, as they both contain three identical sub-
sections, A1 and A1’ respectively, and that each of these subsections indicate the
same harmonic outline. Figure 8.2b gives a closer comparison of A1 and A1, re-
vealing that they both end with the same section A13. They rest of the hierarchical
division is similar, but each subsection is different in the playing patterns. This is
made clear by figure 8.2c, which shows that both A11 and A11’ share the same
"skeleton" indicated in white, but that A11’ has a playing patern with much fuller
chords. Additionally, the two chords of A11’ both end with an identical rhythm
and pattern, that is different from the three preceding ones, indicated in yellow.
In A11, this is not the case.

8.1.3 Third piece

The third piece is generated from seed 1492566202 504813877 and is displayed
in figure 8.3. This piece is divided into more unique high-level sections that the
previous two, but has far fewer notes. Thus one figure suffices to highlight the
most important shared material. We can see that the piece has a ABCA structure.
The chords in section A, B1 and C are the same, but played differently. The notes
inside the yellow boxes display the same playing pattern. Thus we can see shared
material between sections. This pattern is played at half speed in section A, and
returns in section C for the first 3 chords.

8.2 Discussion on Musical Output

As the visual inspection in the previous section demonstrated, the generated music
has varied structure, with clear repetitions of rhythms and playing styles. Repe-
tition occurs on all hierarchical levels, and patterns are shared across different
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(a) Structural overview: We see that the piece has an ABA’B Structure, where A’ is a modified version
of A.

(b) Closer comparison between A and A’. The yellow and light blue rectangles indicate repeated
material.

Figure 8.1: The structure of the first generated piece. Figure 8.1a gives an over-
view of the entire piece, while figure 8.1b gives a closer comparison of section A
and section A’. It can be listened to here.

https://www.youtube.com/watch?v=SBSIyufk1WQ


(a) Structural overview: We see that the piece has an AA’ structure, where both A and A’ contain
three identical subsections.

(b) Closer comparison of section A1 and A1’.

(c) Closer comparison of section A11 and A11’. Colored boxes indicate shared material. The notes
highlighted in white show an underlying pattern in both sections.

Figure 8.2: The structure of the second generated piece. Figure 8.2a gives an
overview of the entire piece, while figure 8.2b gives a closer comparison of section
A1 and section A1’. Figure 8.2c takes an even closer look, comparing A11 and
A11’. The piece can be listened to here

.

https://www.youtube.com/watch?v=SVoVh2pCvfc
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Figure 8.3: The third generated piece. Since it contains far fewer notes that the
first and second piece, a single figure suffices to highlight it’s structure. The yellow
boxes indicated shared material. The piece can be listened to here

.

levels. Most of the generated music sounds fairly "musical", even if its structure is
sometimes a bit strange. This is to be expected, since the structures are randomly
generated. Still, the structural strangeness is consistent. A weird little quirk in a
given composition will usually return later in a modified for later in the piece.

Variety and Cohesion We see that a clear structural variety both within and
between pieces. Additionally, the degree of repetition varies for each piece: The
second generated piece contains a lot of repetition, while the first and third is more
varied. Since the same rhythmic patterns and playing styles consistently reoccur
throughout a piece, the output music also sounds quite cohesive.

Some Weaknesses

Even though the output music successfully lives up to our goals with regards to
structue, it also has clear weaknesses. These weaknesses are mostly in musical as-
pects that were not within the scope of this project. Thus, the following criticisms
of the output music serve as a guide for possible future work:

• There are no rests in the music, every note lasts until the next note in its
respective group. (Even though our system was able to represent rests, the
generative example did not generate them.)

• Every note has the same volume, which makes the music sound a bit mech-
anical.

• Many songs feature a little section where the chords are played plainly: one
full chord per bar. This is where no transformations have been applied.

• The music essentially only consists of chords. It would be greatly improved
if there were melodic lines on top of these chords.

• The structures could be of greater "musical quality".
• The emotional development/narrative of a given piece can be improved.

https://www.youtube.com/watch?v=o9ey9HRzAlE




Chapter 9

Discussion

The evaluation of the generated output revealed that the system designed and
implemented in this project was largely successful at meeting the functional spe-
cification. Still, in this project, the design of the system is just as important as its
functionality. The same goes for the implementation. Thus both of these can be
considered important results in themselves, and therefore deserve their own ex-
tensive discussion in light of their specification requirements. After a discussion on
both the design and implementation, this chapter will feature a discussion on us-
ing Haskell for this project. Haskell was chosen as the implementation language,
with a hope that it would be advantageous to view the problem from the different
viewpoint that this language provides. We will discuss whether this turned to be
true or not, and comment on the general experience of developing software in
Haskell.

9.1 On the Design

In this section, the design of the system is evaluated with regards to its require-
ments specified in section 5.2. Just like in the design chapter, we will start with
covering representation, before moving on to generation.

9.1.1 Representation Structures

The representation system used in this design consisted of a time-based represent-
ation in the form of musical primitives structured in an oriented tree, as well as a
compressed representation of transformations on these oriented trees, in the form
of prefix trees. In this section we will discuss how well our representative system
performed, especially focusing on the tweaks we made to Han’s representation.

Musical Oriented Trees and Primitives

The structure used for representing a piece of music as it unfolds in time was a
musical oriented tree, an oriented tree where the leaves were of type Primitive
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Pitch. Working explicitly with trees gave us full control of the structure of the res-
ulting music. The oriented tree was very expressive, but still manageable to work
with. In the design chapter we mentioned that their potential for complexity might
make it difficult to understand how certain oriented trees will actually translate
to music. For smaller structures, such as little melodies or chord progressions, this
was not the case. However, it turned out to be true for larger pieces, especially
generated ones. When inspecting a generated piece of music in the form of an ori-
ented tree, it was often quite difficult to see how it would sound. One would need
to listen to the MIDI file to get a clear picture. Still, this was a minor problem, as
diagnosing a generated piece was just as easy to do by inspecting and listening to
the MIDI file using external software.

Greater dimensional decomposition The primitives that made up the leaves
of the oriented tree were a data structure that could either be a note or a rest.
A note was decomposed into a pitch and an octave. This was expressive enough
for the purposes of our generative example, but when/if this system is expanded
for more general generation, one should aim to decompose the primivites in even
more dimensions. As mentioned in the design chapter, it would likely be useful to
define our musical structures in terms of scale. Thus we could decompose pitch into
a scale, scale degree and octave, and represent chords in terms of their degrees
within the scale. Additionally one could also include a volume dimension to be
able to generate more natural sounding performances.

Representing Shared Material with Prefix Trees

The structure we chose for representing shared material was the prefix tree. As
previously stated, a prefix tree is essentially a compressed version of a map, where
the shared elements of the keys are expressed only once. Our musical prefix tree
expressed the same thing as a list of transformative instructions, with the addi-
tional ability to explicitly express the shared choices within each TI’s slice. This
allowed us to control the amount of shared material within a given piece of music,
which was essential to our design. Thus, one the whole, the use of prefix trees for
music generation can be deemed a success.

Challenges Still, due to their abstract nature, prefix trees do have some disad-
vantages. First of all, they can be difficult to work with. It takes some time to
get an intuition for what the result of applying a given prefix tree to an oriented
tree will be. Additionally, one could argue that while prefix trees are effective,
they might be a somewhat "unnatural" tool for composing music, as they are un-
known to most musicians, with no real analogous term in music theory. However,
when used for generation, this is not really a problem from the user’s perspect-
ive as they are only handled internally by the software. Additionally, since part of
our motivation for generating music was the possibility of music output which is
"creatively unbound" from human thinking, the fact that the generative system’s
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composition process is not close to what a human would do is actually more of
an advantage. Anyway, their unique expressiveness when it comes to representing
shared patterns, makes handling their somewhat non-intuitive nature worth the
trouble.

9.1.2 Tree Transformations

In this design, we modified Yan Han’s prefix tree by changing the leaves from event
modifications, which were functions that modified single notes within the leaves
of an oriented tree, to a type of function we called tree transformations. These
were functions that modified the oriented tree itself. This was advantageous, as it
allowed us to apply the functions in the prefix tree to groups of notes and groups
of groups of notes, which was a prerequisite for the two main transformations we
designed, rhythm and pattern. It also allowed us to build out the structure of a
piece, by using functions such as insert.

Challenges with Tree Transformations

Still, as expected, this increased expressiveness came with some challenges with
designing a well-formed system: Tree transformations can in principle be applied
anywhere in an oriented tree, but from a musical context, each tree transforma-
tion usually only makes sense to apply in certain locations. For instance, the tree
transformation pattern was designed to work on groups of groups of notes, while
rhythm makes most sense to apply to a group of notes. Thus it is clear that a way
to control where tree transformations can be applied is needed. In our design,
we solved this problem by generating prefix trees so that each tree transforma-
tion would be applied at the same, predefined depth, specified in relation to the
height of the oriented tree. As our evaluation showed, this worked well from a
functional perspective. Internally however, it would sometimes lead to problems
if the oriented tree had a non-uniform height, which would often be the case. This
was because rhythm increases the height of the subtree it is applied to by 1, which
will lead to a non-uniform height if this function is not applied to every subtree
at its required depth in the tree. This problem was solved in the implementation
stage, where the tree transformations were implemented so that they would not
crash when applied to input that they are not designed for. For instance, the ap-
plication of pattern to a single Val will simply return the Val unaltered. Thus
application of tree transformations where they make no sense will be equivalent
to not applying a tree transformation at all. This will result in the amount of tree
transformations that were specified by the generative plan being reduced, which
is not ideal.

Possible Solutions

It is clear that the application of tree transformations needs to be carefully con-
trolled due to the sheer variety of possible outputs and inputs they can have, and



that the depth-based control mechanism in our design is not sufficient to handle
this task. Possible solutions to this problem are to either disallow tree transform-
ations that increase or decrease tree height, force such tree transformations to be
applied so they will result in a tree with uniform height, or change the way we
apply tree transformations so that they are not fixed to a given depth, but rather
fixed to a given type of input tree. The latter solution is the most general, but
probably the one that is most difficult to design. It would require that the way
we generate prefix trees is further restricted by the oriented tree it is to be ap-
plied to, so that each slice in a given branch only points to subtrees which the tree
transformation is suited for. This could be a function that inspected each branch
in the prefix tree and adjusted them so that it they only refer to the correct type
of subtree. The type of tree that a tree transformation could be applied to could
be part of an expanded tree transformation structure with added metadata.

9.1.3 Generative Principle

The generative principle in this design was to generate a series of prefix trees
where each addresses a given dimension in the music, and sequentially apply these
to a starting tree that contained the raw musical information that the piece should
be based upon. In order to ensure cohesiveness, each prefix tree was generated
based on a generative plan, as well as the oriented tree that the prefix tree was to
be applied to. To examine how well this systems worked to achieve the goals of
our specification, we will look at each goal individually.

Aesthetic Parameterisation

One of the requirements for this design was that the generation process should be
parameterised, to be able to control of the generated output and enforce cohesion
and variety. The parameters for how a prefix tree was to be generated were con-
tained within a generative plan, which contained general aesthetic choices and
a pool of possible tree transformations that prefix tree could contain. The idea
of a generative plan as a sort of meta-model worked well to ensure cohesive-
ness while maintaining a generalized generative pipeline. Possible improvements
could be to add more parameters to it, to further control the generated output.
Generative plans were in charge of ensuring cohesion both within and across di-
mensions. For now they are written by hand by the user, but in the future one
could implement a function which generates a set of plans based on a set of input
parameters. In other words, one would need to design a meta-plan to oversee the
whole generation process.

Generating Random Structures

A fundamental requirement of this design was for the system to generate novel
musical structures. As prefix trees represent the type of structures we were after,
the most logical way to handle generating such structures was thus to generate
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prefix trees. The design for this generation process was based on randomising the
slice transformations and tree transformations of a "skeletal prefix tree", which
was given as part of the generative plan. The skeletal prefix tree denoted the
shape of the prefix tree, which allowed us to control the complexity of the gener-
ated structure from the generative plan. The process of random-generating slice
transformation was constrained so that each slice key only addressed subtrees at
a certain depth given in the generative plan.

Generation of Slice Transformations From a functional point of view, our method
for generating slice transformations worked well. In the future, it could be im-
proved by giving the generative plan more explicit control of how the slice trans-
formations should turn out. In our design, each slice transformation in a prefix
tree addressed the nodes from 0 to a random number within the range of chil-
dren in the oriented tree for the depth in question. A better solution would be to
define a pool of possible indexes in the generative plan, and having the algorithm
choose from this, while keeping them within the range of possibility given by the
oriented tree it is to be applied to. A natural example of such a pool of indexes
would be the numbers defined by n2− 1 where n is a natural number, i.e. 0, 1, 3,
7, etc. This will result a sectional division in 2,4,8 and so on, which is common to
western music.

Prefix Tree Skeletons Separating out the shape of the prefix tree from its con-
tent was advantageous in order to control complexity. Since we have not con-
trolled the generation of slice transformations so that they do not overlap, this was
especially useful. The amount of leaves in the prefix tree determines the amount
of transformations. We noticed that more than three leaves for a prefix tree lead
to a high chance of overly complex music. If there is much overlap here, some
sections can for instance have very complex and fast rhythms while others are
very slow. This problem could be solved by a variable in the generative plan that
controls the probability that a randomly generated slice transformation is unique
from the ones that are already generated.

Generating Music with Shared Patterns

A major goal of our design was for the system to generate music with shared
patterns across multiple hierarchical levels and dimensions. Our system handled
this well by generating a dedicated prefix tree for the shared material in each
dimension, which gave clear and explicit control from the generative plan.

Co-variaton of Patterns With our random prefix tree generation algorithm, the
shared material of each dimension were treated independently. In most music,
these might co-variate, for instance a certain rhythm might tend to go well with a
certain chord change and a certain playing pattern. One could define a parameter
for the amount of co-variation of patterns in the generative plan. This would be



the probability that a given slice transformation is equal to the corresponding one
in the previous plan’s list of slice transformations. What is important to consider
here is that the more dimensions are separated out, the more one likely has to
enforce co-variation of patterns to avoid chaotic music. One could also envision
a system where the function that generates prefix trees also has access to pre-
vious prefix trees in the generative pipeline, so that it would know which tree
transformations are applied where, which would be useful information to inform
which tree transformations should be applied on the basis of which have already
been applied.

9.2 On Implementation

The design was implemented in Haskell. The requirements specified for the im-
plementation were mostly met:

• Every impure I/O-action is handled by the outer layer defined in main, which
made the generative core purely functional.

• The system seemed quite stable. While this was not exhaustively tested,
its final iteration was run for around 100 times and never crashed for any
seeds, which is about the level of stability we required of our system.

• Its performance was also adequate: The generation seemed to happen in-
stantly and could be streamed lazily with no stutters or timing issues.

• The fact that the code was clearly divided into modules, with a great degree
of polymorphism, made it quite extensible.

In other words, the implementation can mostly be deemed a success. Still, an
important requirement for our implementation was that it should follow the pro-
gramming guidelines given in section 2.7 in the background chapter on Haskell.
It is in adhering to these that there are some areas where there is room for im-
provement.

9.2.1 Polymorphism

The implementation is mostly polymorphic. This is especially true in case of the
tree structures, since all general tree operations are located in Trees.hs and all
operations specialised to music are in MusicTree.hs. A possible improvement is
to create a generalized tree type that both OrientedTree and Prefix Tree are
specializations of. This would allow the use of generalized functions for opera-
tions that apply to both, such as a height function. In our implementation, this
was however not necessary, as the only common functionality needed was enu-
meration. Here, each type of tree required a different form of enumeration, which
is why the best solution was to create an Enumerable typeclass that each tree was
made an instance of.
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9.2.2 Functions

The majority of the functions implemented adhered to the programming guidelines.
They were defined with type signatures, and were kept "short and sweet". We
strove to use well-known higher order functions such as map and fold, instead of
recursion and list comprehension, which can be harder to read. An exception to
this was when working with trees. Although we did implement both trees as an in-
stance of Functor, which allowed the extensive use of fmap, most other operations
relied on recursion. In a future implementation, one could have implemented the
trees as instances of typeclasses like Foldable and Traversible, to allow greater
use of generalized access functions. The greatest sin towards the programming
guidelines was in our use of partial functions.

Partial Functions

While we did our best to avoid partial functions, i.e. functions that only work
for a certain subset of its legally defined input, there are certain functions in the
implementation that are in fact partial:

atDepth The function atDepth is used to create slice transformations. This is a
partial function that should ideally return a value wrapped in Maybe: If one tries
to call it with a depth that is larger than the length of the slice, the function will
crash. The reason we accepted this was that if atDepth returned a function of
type Slice -> Maybe Slice, this would also change the type of our prefix tree
to contain slice transformations of this type. This was deemed too cumbersome,
because it would mean that one would need to use the Maybe monad to compose
these functions. While such a solution might be more technically correct, it would
involve a lot of complexity to solve a problem which is actually quite trivial. Our
solution, which was to make sure the function which calls atDepth only does it
on slices with an appropriate length, works just as well in practice.

getDepth The function getDepth is used to get the depth at which a given slice
transformation will transform its input slice. This is done by applying it to an
infinite default slice, consisting only of the choice All. The index of the first (and
only) Some will correspond to the depth of the slice transformation. This works
as long as a slice transformation only modifies one level, which in our case it
does, but will give the wrong answer otherwise. Thus the function only works for
certain input, but this is not captured in the type signature. This could be solved by
embedding in the type of slice transformations that they only can transform one
level. Here one could make slice transformations a datatype which also contains
the depth of of the slice expressed as an Integer. This would remove the need for
getDepth entirely.



childRange Another function that is problematic due to its partial nature, is
childRange. Its job is to get the range of indexes of the children for the nodes at
a given depth. This is done with childrenAtDepth, which returns Nothing if one
tries to get the children at the depth of the leaves of the tree. Due to the prob-
lem with applying tree transformations at certain depths discussed in 9.1.2, this
will sometimes happen. This is solved in childRange by simply returning [0] in
the case of childrenAtDepth returning Nothing. Since pattern is implemented
so that it does not fail even when called on Val’s, this is an acceptable solution
to avoid failure, but it is highly suboptimal, and should be improved in future
iterations. This is a problem created in the design that is solved in the implement-
ation. It would not occur if a better control mechanism for the application of tree
transformations was designed.

9.2.3 Typeclasses

Typeclasses were mostly used to great effect in this implementation. The State
monad was used for random number generation, the Maybe monad was used for
handling failure, and our own typeclass Enumerable was implemented for things
that can be enumerated. As previously mentioned, we could have used typeclasses
more extensively when dealing with trees. The implementation of enumerate’ is a
stateful computation, so the Statemonad could have been used here. Additionally
we could possibly have avoided recursion had we implemented a general way to
traverse the trees as an instance of Traversible or a similar typeclass.

9.3 On using Haskell vs. an Imperative Language

In order to do this project, I had to learn Haskell. Many people say that learning
Haskell is like learning to program all over again, and there might be some truth
to that statement. So the question remains, how was it different to design and
implement a system with our requirements in Haskell versus how it would have
been with an imperative language like Python? The comparison will be informed
by a similar project done in Python, as well as a decent amount of experience with
imperative languages in general. First, we will discuss how using Haskell shaped
our work on generating music structures, and then we will discuss the general of
experience of software development in Haskell.

9.3.1 Generating Structures

It is clear that the system was designed with a functional mindset. The generative
process required the application of tree transformations, i.e. functions, in a struc-
tured way. This was captured in the generative prefix tree, where both the nodes
and the leaves were functions. This was possible because in functional program-
ming, functions are values. Thus, having functions as the elements of trees, lists,
or any other data structure, is just as natural as any other type of value, like an
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integer. While it is technically possible to implement our design for a generative
prefix tree in an imperative language, this form of thinking is not encouraged.
Without a functional mindset, it is not a solution one would think of, and if one
did it would most likely be so difficult to implement that one would design an-
other type of solution instead.

In general, we observe that the ability to treat functions like values is extensively
used in our design: One of the most fundamental functions of our system applyTT
takes a tree transfomation, a function, as its argument. Similarly, functions of type
Slice -> Slice are passed around and composed very easily.

Still, Haskell’s lack of imperativeness also gives rises to some challenges. This
is mostly when one quickly wants to get an idea down into code. In a language
like Python, it is very easy to translate the functionality that one desires into code.
In Haskell, however, a different way of thinking is required, which, at least for a
beginner, makes it more time-consuming to create the functionality one desires.
One could argue that there is an inherent imperativity to composition, as it clearly
can be considered a process of first do this then that etc. Haskell still allows us to
use monads to write imperative code, but it needs to be more well thought out and
it’s pipeline more explicit. In the long run this is an advantage, but one does lose
the free, creative, instant results that an imperative language might offer. This
could however improve the more one gets used to Haskell and functional pro-
gramming in general. A paper on harmony generation in Haskell by Magalhaes,
speaks to the advantages of music generation in Haskell: "Functional Composition
without explicit mutable state provides a composable way for defining a pipeline
of independent processes, making the global algorithm easier to understand and
adapt." [22]. This ended up ringing through in the case of the generative pipeline
in this project as well, where the generative pipeline was defined in a very clear
and composable way.

9.3.2 Haskell Software Development in General

The process of developing software in Haskell has overall been a positive exper-
ience. The fact that we are forced to work with pure functions means that it is
relatively easy to manage the complexity of the system. Every function can be
tested in isolation, and if it works as desired for all input, that is all that is re-
quired. This also makes refactoring easier, because changing the way a function
works internally will not affect anything else. The disadvantage to such a pure
system is that one cannot print out the result of computation within a function to
see its result. This makes it harder to debug longer and more complex functions.
This however is no disadvantage if you follow the principle of "short and sweet"
and divide larger s into smaller sub-function, which is better anyway. This makes
testing larger functions a matter of testing its components.



Strict Type Checking and the Compiler In general developing with Haskell re-
quires one to work with the compiler, to check for type errors etc. The strictness
of the type system proved to be really useful when developing, as code that ac-
tually compiled very rarely failed. The only case where the compiler comes short
is when there are problems with pattern matching. An incomplete pattern can
not be caught in the compiler, it will only be discovered at run time. The same is
true for partial functions. Some care must therefore be taken to make sure that all
possible inputs are handled with pattern matching. This is especially hard when
recursion is involved.

9.4 Future Work

An important aspect of the requirements for both the design and implementation
was extensibility. We wanted to design and implement a software which could be
used as a base for future work. As our discussion has revealed, the work done in
this project on generating music structures lays down a solid foundation for future
work.

9.4.1 Generate better structures

One possible avenue for future work is to survey music theory sources and transfer
theories on good musical structure to an improved system for prefix tree genera-
tion. Our project displayed how one can use prefix trees to generate music with
random, novel structures. The question now remains how one can further con-
strain this generation process to generate music with more pop-friendly, sensible
structures. Possible questions are how to include a beginning and end, how to
improve transitions between sections, how to more clearly enforce the idea of a
measure, and how to parameterise the generation process so that we can further
control structural style.

9.4.2 Integrating Other Generative Algorithms

In our generative example, we "faked" random generation of chords, rhythms and
playing patterns by randomly selecting from a list of pre-written candidates. In
the future one could try and integrate existing generative algorithms for this pur-
pose, or write new ones. As the generative principle outline here takes care of the
musical structure, i.e. form, a greater variety of randomly generated musical raw
material, i.e. content, would be integral for our system to generate varied music.

9.4.3 Meta-Plan

In our design, the plans for each prefix tree needed to be specified by hand. A pos-
sible next step could be to create a system which contained a meta-plan, i.e a list
of higher-level parameters such as "key/mood", "structural complexity", "pattern
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co-variation", etc., and a way to convert such a meta-plan to a list of generative
plans. This could serve as a generative interface for the type of music the user
wants to create, or these parameters could simply be randomised.

9.4.4 Linear Tension Narrative

Most music has a sense of narrative to it, where musical tension ebbs and flows
to build and release emotional responses in the listener. Per now, our system does
not consider this explicitly. The musical material inserted by the first prefix tree,
(chords in the case of our generative example), does outline the musical devel-
opment of the piece. Still, the way the prefix trees are generated and applied will
simply create structured variations on these chords, without considering the order
in which the musical events will occur. The generative algorithm will essentially
transform the given music as if it was a static tree phenomena. An avenue for fu-
ture research could be to integrate a notion of time in the generative prefix trees.

Two ideas are presented here: The first is to make the generative process’ final
prefix tree modify the "tension" dimension of the piece. This would require a more
abstract, scale-parameterised representation as we have previously mentioned in
our discussion on primitive representation. We know that the given tension of a
piece is highly bound to the notion of cadence (see nomenclature). Thus we could
let the last prefix tree transform certain locations, such as the end of higher hier-
archical levels, to either end in a cadence (i.e. release tension) or a half-cadence
(i.e. build tension). Alternatively one could look into how Herremans et al. uses
optimization techniques to constrain a given piece to a given tension profile [20].

9.4.5 Multiple voices

An important aspect of music, which our design does not cover, is polyphony, i.e.
multiple musical voices occurring at the same time. The generative example does
produce polyphonic music in the sense that there are chords, but the chords are
directly inserted, and not stacked on top of each other. In other words, the generat-
ive system works by building music sequentially, but does not combine its inserted
elements in parallel. This was a deliberate decision because parallel composition
adds much complexity, as one would have to make sure each voice fits both se-
quentially and in relation to the other parallel voices. In order to do this, one will
often first compose one voice as it unfolds in time, say a melody, and then adapt
the other material, like chords, so that they fit the first voice.

In order for such a system to work, it is essential to keep track of what notes
are playing at the same time. As mentioned in our discussion on prefix trees, their
great expressibility come with the disadvantage that this is not trivial to determ-
ine. This is because a vertical group can contain horizontal groups, so that when
viewed only in its group, a given node can appear to sound on its own, but when
viewed in a greater context it is clear that the other horizontal group that is played



in parallel contains a note which happens to land on the same beat. This is illus-
trated in figure 6.1.

Possible methods A simple solution to this problem would be to only allow
vertical groups to contain notes, so that we would be certain that the only way
two notes could occur simultaneously is if their in the same vertical group. This
is not a bad idea, and it is still possible to express all music with this approach.
Still, if we for instance have a melody line playing over a set of chords, it would
make much more sense to group these as two separate vertical voices. This would
make it a lot easier to keep track of what is actually the melody and what are the
chords. This would require a system for summing up durations along the nodes
of each vertical groups and keep track of what notes will occur at the same time
as a given note. One could envision a function which would take the path of a
given node, as well as the tree the node is in, and then give out a list of all other
nodes/notes that occur simultaneously.

9.4.6 Using Prefix Trees to Generate Structure in Other Fields

Due to our great emphasis on abstraction and polymorphism, we have come upon
a generalized process for generating 2D tree structures with shared material. The
two musical dimensions in our musical oriented could easily be replaced with
two dimensions from another domain entirely. The same goes for the prefix tree,
which essentially encodes the shared locations in this tree where it should be
transformed. Thus one can easily envision that our generalized system can be
modified to work on domains unrelated to music. Maybe the two dimensions in
the oriented tree can be dimensions along a 2D plane, so that our prefix tree
system can be used to generate two dimensional pictures with shared content
across both different sections of the 2D-plane and across different colors? A similar
argument can be made for any structure which exhibits a tree-like structure, and
in which there is significant shared material by hierarchically unrelated nodes.
Maybe the generation of text is a possible application area? Generative plans, the
meta-model mechanism for ensuring cohesion when generating prefix trees could
also be ported to the given domain in order to ensure cohesion. It is clear that this
is a very interesting avenue for future work.



Chapter 10

Conclusion

The goal of this project was to design and implement a music generation sys-
tem in Haskell. This system was to generate music with hierarchical structure and
shared material across and within the levels of this hierarchy. Background research
indicated that such a structure is inherent to most music, and that current music
generations system are not adequately capable of generating music which exhibits
it.

The prefix tree designed by Yan Han worked well to represent music with shared
structure. In order to accommodate generation, they were modified in our design
by changing the type of the leaves to tree transformations. While this increased
expressiveness came with some challenges, it was also highly useful, as it allowed
us to directly express how any group within an oriented tree should be trans-
formed in multiple locations. The general music generation scheme we designed,
was based on sequentially applying a set of these prefix trees each randomly gen-
erated to address one musical dimension. The meta-model structure generative
plan worked well to ensure cohesion. The generative system was quite successful
at generating music which exhibited the structure we were after.

Learning and working with Haskell did constitute a challenge, but had some ma-
jor advantages. Haskell’s functional features were integral to our design, since it
depended on being able to treat functions like values; both the nodes and the
leaves of the prefix trees were functions.

To our knowledge, the generative system designed in this project is entirely novel.
It outlines a general technique for generating structures, and thus much effort was
put on making the system as extensible as possible, to facilitate future work. As
revealed in our discussion, there are many avenues for improving this system’s
music generation abilities. Since generation system is so generalized, it could also
be applied in entirely different areas which also exhibit a similar tree-like struc-
ture with patterns of shared material. Possible candidates for such future work
are figures and texts.
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Music Theory Glossary

This glossary gives a short introduction to the most fundamental terms in music
theory. The source for this glossary is the Oxford Companion to Music [23]. For
further details, the reader is encouraged to look at the online version, which can
be found here. Another useful introductory resource is Revisiting Music Theory
[24].

Pitch A fundamental dimension of a musical sound. A pitch is heard as either
high or low, depending on its frequency, where pitches with higher fre-
quency are perceived as higher, and vice versa.

Note Represents the pitch and duration of a musical sound.

Interval The difference between two notes in terms of pitch. Acoustically speak-
ing an interval is defined in terms of frequency ratios, but more commonly
it is defined as the amount of steps, or semitones, between two notes on
the chromatic scale.

Octave An octave is the most consonant interval, which gives the impression of
duplicating a note at a higher pitch.

Scale A scale consists of all the notes used or usable in the music of a particular
period, culture or work, sorted by ascending or descending pitch. The basic
function of a scale is to define and regulate the pitches in a performance
or a composition.

Chromatic Scale A scale which divides the octave into 12 notes with equal inter-
vals, corresponding to the twelve keys in an octave on the piano keyboard.

Diatonic Scale A diatonic scale is a set of seven notes, in which the pitch intervals
add up to an octave. It is considered the basic scale of western art music.
The two most common diatonic scales are the major and minor scales. a
given diatonic scale is defined by it’s intervals, and may begin on any root
note. For instance C major and D major contain the same intervals, but
starts on different notes.

Chord Two or more notes played together.
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Triad A chord consisting of a root and two other notes. If the interval between
the two first notes is 3 semitones and the interval between the second and
third are 2 semitones, then it is a major chord. If it the intervals are 2 and
3 semitones respectively, it is a minor chord.

Cadence A melodic or harmonic motion that is assosiated with the ending of a
musical group, such as a section, phrase, or an entire composition.

Full Cadence Gives a sense of harmonic or melodic closure by arrival in the root
note or chord of the scale.

Half Cadence Gives a sense of harmonic or melodic tension by ending on the
fifth scale degree or fifth chord of a given scale.

Consonance A quality to an interval or chord which in itself seems complete and
stable.

Dissonance The opposite of consonance: A quality to an interval or chord which
in itself gives a sense of tension and a need for resolution to consonance.

Scale Degree Indicates a note by its position in its scale sorted by ascending or-
der. In diatonic scales each scale degree is associated with a given function.
Two examples of these are the first scale degree, the root, which is called
the tonic and is associated with stability, and the fifth scale degree, which
is called the dominant and is associated with tension.

Broken Chord A chord where the notes are played individually, i.e. not at the
same time.

Inversion An inverted melody is a mirrored version of its original form. Where
the original melody ascends, the inverted melody descends and the other
way around.

Retrograde A reversion of the original melody, i.e. read form right-to-left instead
of left-to-right.
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