
SLAM-based Tunnel Navigation System for
Autonomous Ground Vehicles

Sjur Grønnevik Wroldsen

December 17, 2020

Department of Engineering Cybernetics

Problem Description
Inertial navigation is often paired with measurments from the global navigation
satellite systems(GNSS) in order to avoid drift in position estimation. However,
GNSS measurements may not be available or uncertain under several conditions,
like when the vehicle is in an indoor environment. This has raised the need for
other navigation methods that can control the vehicle in situations where the
classical approach cannot be relied upon.

This thesis investigates the problem of navigating a slowly moving autonomous
vehicle through a tunnel autonomously. With the end goal of enabling the au-
tonomous vehicle to drive from an environment where GNSS is available to
navigate through a tunnel performing object avoidance and path planning si-
multaneously, this thesis proposes a LiDAR-based simultaneous localization and
mapping (SLAM) front-end estimating the odometry and building a map.

Page i

Abstract
Autonomous vehicles have seen an enormous growth in recent years. More-
over, autonomous vehicles require robust systems for navigation. Typically they
employ inertial navigation systems(INS) aided with measurements from global
navigation satellite systems(GNSS) to keep their estimates globally consistent.
In the case of bad satellite coverage, however, INS tend to drift quickly due to
drift that occur in inertial sensors.

To provide a backup to such a system, a feature-based LiDAR odometry sys-
tem is proposed. The proposed system extracts intrinsic shape signatures(ISS)
keypoints from the point cloud in order to reduce the dimensionality of the prob-
lem. The pose-invariant fast point feature histogram(FPFH) feature descriptor
is used for matching. Further the scan match is done following the fast pairwise
global registration(FPGR) method proposed in [25]. In order to create a robust
backup system, the challenges of LiDAR based navigation must be identified.
This is done through several simulated scenarios.

The proposed system shows that LiDAR navigation systems are prone to
drift, especially in the travelled distance. Following a simple path the system
yields a root mean square error(RMSE) of 20.2m in travelled distance and a
RMSE of 2.5◦ in heading. For a more complicated path the system yielded
a RMSE of 18.9m in travelled distance and a RMSE of 3◦ in heading. The
experiments also showed that the proposed system is unable to provide estimates
in real-time, raising the need for better and more efficient matching methods.

Feature-based LiDAR SLAM has shown great promise in 6 degrees of free-
dom(DOF) estimation for both aerial and ground vehicles. To keep global con-
sistency and suppress drift it is possible to fuse GNSS measurements into the
estimation. Other methods include implementing smoothing over a set of poses
and the detection of loop closures. Inertial navigation also include inertial sen-
sors, which makes it natural to investigate the fusion of this into the estimation
problem.

Page ii

Preface
This report is a result of a study performed at the 9th semester towards the
degree of Master in Technology at the Department of Engineering Cybernetics
at the Norwegian Institute of Science and Technology (NTNU). The study has
been completed in collaboration with Semcon Norge to investigate different
technology.

The result of this report is largely in the form of a literature review, in
addition to some testing and simulation of different implementations. The im-
plementations are a mixture of self-implemented methods and methods imple-
mented using open-source libraries.

Supervisor: Annette Stahl

Co-supervisor: Eirik Hexeberg Henriksen

Page iii

CONTENTS CONTENTS

Contents
Problem Description i

Abstract ii

Preface iii

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Goal of the project . 2
1.3 Challenges . 3
1.4 Contributions . 3
1.5 Outline . 3

2 Preliminaries 5
2.1 Sensors . 5

2.1.1 GNSS . 5
2.1.2 IMU . 5
2.1.3 LiDAR . 6

2.2 Simulation Frameworks . 6
2.2.1 Gazebo . 6
2.2.2 Unreal Engine . 6

2.3 SLAM . 7
2.4 Classical SLAM Problem . 7

2.4.1 EKF-SLAM . 7
2.4.2 FAST-SLAM . 7

2.5 Poses . 8
2.5.1 SO(3) . 8
2.5.2 SE(3) . 8
2.5.3 Lie Algebra . 9

2.6 Nonlinear solvers . 10
2.6.1 Gauss-Newton . 10
2.6.2 Levenberg-Marquardt . 10

2.7 Bayes Net . 11
2.7.1 Bayes Trees . 12

2.8 Graph-based SLAM . 12
2.8.1 Front-end and Back-end 12
2.8.2 Factor graphs . 13
2.8.3 Solution to the SLAM problem 15
2.8.4 Variable Elimination . 16

2.9 Point Cloud Registration . 17
2.10 Point Cloud Keypoints . 18

2.10.1 Harris Corners . 18
2.10.2 ISS3D . 18

2.11 Point Cloud Feature Descriptors 19
2.11.1 PFH . 19

Page iv

CONTENTS CONTENTS

2.11.2 FPFH . 19

3 State-of-the-art SLAM 20
3.1 LiDAR SLAM Systems . 20

3.1.1 LOAM . 20
3.1.2 LeGO-LOAM . 21
3.1.3 LIO-SAM . 22

3.2 iSAM2 . 23
3.2.1 Incremental Inference . 23
3.2.2 Incremental Variable Ordering 23
3.2.3 Fluid Relinearization . 24
3.2.4 Partial State Updates . 24

4 Development Platform 25
4.1 Simulation Framework . 25

4.1.1 MATLAB and Unreal Engine 25
4.1.2 Environment . 25
4.1.3 Point Cloud Representation 26
4.1.4 Simulation . 27
4.1.5 Point Cloud storage . 28
4.1.6 Challenges and shortcomings 28

4.2 Software Libraries . 29
4.2.1 GTSAM . 29
4.2.2 ROS . 29
4.2.3 Point Cloud Library . 30
4.2.4 OpenCV . 30
4.2.5 Pylie . 30
4.2.6 Open3D . 30

5 System Overview 31
5.1 System Architecture . 31

5.1.1 Feature Extraction Thread 32
5.1.2 Odometry Estimation Thread 32
5.1.3 Mapping Thread . 32

5.2 FPGR . 33
5.2.1 Pruning of Correspondences 33
5.2.2 Optimization . 33

6 Results 35
6.1 Experiments . 35

6.1.1 Simple Path Experiment 35
6.1.2 Challenging Path Experiment 35

6.2 Qualitative results . 36
6.2.1 Simple Path . 36
6.2.2 Challenging Path . 37

6.3 Quantitative results . 38
6.3.1 Dimensionality Reduction 38
6.3.2 Simple Path . 39
6.3.3 Challenging Path . 41

Page v

CONTENTS CONTENTS

7 Discussion 44
7.1 Consistency . 44
7.2 Robustness . 44
7.3 Reliability . 45
7.4 Uncertainty . 45
7.5 Future Work . 46

8 Conclusion 47

References 48

Page vi

LIST OF FIGURES LIST OF FIGURES

List of Figures
1 Summary of Lie algebra operations. Image taken from [8]. 9
2 Nonlinear solver procedure . 11
3 Front-end and back-end in a modern SLAM system. Figure from

[3]. 12
4 Example of a factor graph. Figure inspired by [5]. 14
5 Straight tunnel scenario . 26
6 Curved tunnel scenario . 26
7 Simulink connected to Unreal Engine 27
8 Trajectory of the ego-vehicle . 27
9 Point cloud in the middle of the tunnel 28
10 Pipeline showing data flow during and after simulation 29
11 System architecture . 31
12 Experiment trajectory . 35
13 Experiment trajectory . 36
14 Estimated map with trajectory in the simple path experiment . . 37
15 Estimated map with trajectory in the challenging path experiment 38
16 Clouds inbetween each step in feature extraction 39
17 Estimated trajectory plotted against ground truth in the simple

path experiment. The origin of the system is shifted to match
that of the real trajectory. 40

18 Errors in travelled distance and in heading for the simple path
experiment . 41

19 Estimated trajectory plotted against ground truth in the chal-
lenging path experiment. The origin of the system is shifted to
match that of the real trajectory. 42

20 Errors in travelled distance and in heading for the challenging
path experiment. 43

21 Errors in travelled distance and in heading the first 40 seconds of
the challenging path experiment. 43

Page vii

LIST OF TABLES LIST OF TABLES

List of Tables
1 Technical specifications for the LiDAR mounted on the front

bumper of the vehicle . 36
2 The amount of 3D points in the point cloud after each step . . . 39
3 Estimation time statistics from odometry estimation system for

the simple path experiment . 40
4 Estimation time statistics from odometry estimation system for

the challenging path experiment 42

Page viii

1 INTRODUCTION

1 Introduction

1.1 Motivation
Inertial navigation systems(INS) are the de facto standard for most autonomous
navigation purposes. However, INS heavily relies on bona-fide measurements
such as GNSS in order to avoid drift in the inertial sensors. This creates issues
whenever such measurements are unavailable, as is the case when an autonomous
vehicle drives through a tunnel. The issue arises since the vehicle has no means
to localize itself in the environment.

Simultaneous localization and mapping(SLAM) is a technique where the
goal is to estimate the motion of the ego-vehicle while simultaneously mapping
an unknown environment. In order to solve this problem, extensive computer
power and mapping sensors are required.

The SLAM problem has seen solutions based on the traditional inertial nav-
igation techniques. The first example is the Kalman filter solution, namely
EKF-SLAM, which solved the online SLAM problem. The ground-breaker for
solving the full SLAM problem was the particle filter solution called factored
solution to SLAM, abbreviated FAST-SLAM[21]. Typically these solutions in-
volved odometry sensors such as wheel encoders.

The recent solutions to the SLAM problem has involved using cameras to
estimate motion. This is called visual odometry(VO), and has either replaced
or been combined with other odometry sensors. VO has shown promise com-
pared to classical odometry sensors in terms of accuracy and drift. These SLAM
systems typically solve the bundle adjustment(BA) problem to estimate struc-
ture and/or motion. Modern systems based on these ideologies include ORB-
SLAM[13] and its predecessors, LSD-SLAM[6] and PTAM[12].

However, cameras as sensors suffer under different illumination conditions.
Additionally, the situational awareness is restricted to the field of view(FOV)
of the camera. This has motivated for the use of other sensors for autonomous
navigation. A technology which has shown promise in combination with SLAM
are LiDAR sensors (both solid state and scanning) to map the surroundings of
a vehicle. LiDARs offer real-time scanning of the environment with up to 360◦
FOV.

Unlike VO methods, LiDAR odometry methods can observe scale using only
a single sensor which in turn could give a more consistent map of the surround-
ings. Methods such as LiDAR odometry and mapping(LOAM)[23] is method of
estimating motion in 6 degrees of freedom(DOF) and creating 3D maps based
on 3D LiDARs. However, as it only is an odometry method, it is prone to drift
eventually. To minimize the effect of drift, a LiDAR-inertial odometry (LIO)
method was proposed in [18]. LOAM was also extended to include loop closures
in [17]. Other state-of-the-art LiDAR SLAM methods include Google Cartog-
rapher[9]. Unlike LOAM, Google Cartographer also requires IMU for 6DOF
estimation of pose.

LiDAR-based motion estimation techniques are typically divided into two
categories; scan-matching and feature-based methods. Scan-matching methods
are typically based off the iterative closest point(ICP) algorithm. Feature-based

Page 1

1 INTRODUCTION 1.2 Goal of the project

methods, however, aims to find robust points, match those and calculate the
transformation between the point clouds.

One of the largest issues in solving the SLAM problem is the computational
complexity. This is why graph-based SLAM methods may be the most popular
approach to modern SLAM, and is heavily researched. The main benefit of
graph-based methods is that they exploit the sparsity of the SLAM problem
optimally. Motivated by the similarities to the QR-decomposition, these meth-
ods typically involve representing the problem in the form of a factor graph
and exploit other graphical models such as the Bayes net. The state of the art
graph-based SLAM solution may be iSAM2[11], which also utilizes Bayes trees
to optimally structure the data in the factor graph.

A challenge when it comes to recording indoor datasets using any type of
exteroceptive sensors is the, as mentioned, lack of bona-fide measurements that
can be used as ground truth. To overcome this problem, simulators are typi-
cally used to maintain full control of both the environment and the motion of
the vehicle. Popular simulation software for robotics include Gazebo[14]. Re-
cently, MATLAB has also introduced a simulation framework for autonomous
navigation purposes, in cooperation with Unreal Engine[7]. The simulator in
this thesis is set up using MATLAB and Unreal Engine through the Automated
Driving Toolbox.

For the problem of navigating an autonomous ground vehicle through a
tunnel I propose a system based on using LiDARs as the main sensors. Li-
DARs are more suitable for the problem than other mapping sensors such as
cameras because tunnels typically have varied illumination conditions. Addi-
tionally, LiDARs provide a much larger FOV than cameras, opening up for a
higher situational awareness without adding more complexity. This is desirable
for path-planning and collision-avoidance systems, both of which are desirable
features of an autonomous system. To create different scenarios I provide sev-
eral simulation environments in which one or more LiDARs can be placed for
simulating an autonomous ground-vehicle navigating through a tunnel. The
simulations are carried out in MATLAB, inside of a custom-made environment
built in Unreal Engine. The data sets are then extracted from MATLAB and
written to a rosbag. This way it is possible to benchmark the performance of
a SLAM system in terms of both accuracy and speed. Furthermore I propose
SLAM front-end containing a LiDAR odometry and mapping method imple-
mented in Python using ISS keypoints and FPFH features following the idea of
the fast global registration method as proposed in [25].

1.2 Goal of the project
This thesis investigates the problem of navigating an autonomous ground ve-
hicle through a tunnel. The aim of this pre-project is to develop a realistic
simulation environment for autonomous ground vehicle purposes. One of the
criterias for the simulator is that it is possible to construct a wide variety of
different scenarios where it is possible to evaluate the performance of localiza-
tion techniques. Ultimately, the goal is to use this environment to investigate
the challenges related to using feature based LiDAR SLAM methods for the
purpose of navigating through a tunnel.

Page 2

1 INTRODUCTION 1.3 Challenges

1.3 Challenges
There are many challenges related to feature-based LiDAR SLAM. As for all
navigation systems, they have to be consistent in order to provide good esti-
mates. They have to be robust towards failure, as for example when loosing
track of its position, and towards noisy measurements. The system also needs
to be reliable in that it needs to be able to provide positional estimates with
real-time performance in order to be used for real-world applications.

1.4 Contributions
In order to address the challenges of LiDAR based SLAM I made an extensive
literature overview of graph-based SLAM optimization and current state-of-the-
art LiDAR SLAM methods. Initially the literature seemed overwhelming and I
struggled to get an overview, leading to a stagnation in progress.

To verify the performance of the proposed SLAM system I created a sim-
ulation environment in MATLAB and Unreal Engine in order to conjure data
from a wide spectra of scenarios where I had access to the ground truth. The
MATLAB solution was chosen because of their extensive examples, good tools
for confirmation and visualization and since I personally had no experience with
ROS and Gazebo.

After speaking to Kostas Alexis at NTNU early in November, however, I
received a strong recommendation to develop the SLAM system in the ROS
framework. Thereafter some time went to learning the ROS basics, and migrat-
ing some of the already created modules to use ROS.

The LiDAR odometry system proposed in this thesis is based on the fast
global registration method[25]. This method was chosen because of its robust
scan-matching techniques, as the matching process proved to be a challenge
initially.

My contributions can be summarized as follows

• Literature overview of graph-based SLAM

• Overview of current state-of-the-art feature-based LiDAR SLAM methods

• A modifiable simulation environment in which to evaluate SLAM imple-
mentations

• A simple LiDAR odometry and mapping module to address the challenges
of LiDAR navigation made in Python with ROS

1.5 Outline
The remainder of this thesis is organized as follows. Section 2 gives an overview
of the preliminaries relevant to the thesis. Section 3 gives an overview of cur-
rent state-of-the art SLAM methods. Section 4 gives an introduction to the
development platform, including the simulator and the software used in the de-
velopment of the LiDAR odometry and mapping module. Section 5 shows an
overview of the proposed system in terms of software architecture. Section 6

Page 3

1 INTRODUCTION 1.5 Outline

then presents the results before Section 7 discusses the results in light of the
goal proposed in Section 1.2. Finally Section 8 then provides a conclusion.

Page 4

2 PRELIMINARIES

2 Preliminaries
This section describes the preliminary information relevant for the thesis. The
opening sections give some preliminary information relevant for the thesis, be-
fore the focus turns to SLAM-specific theory and considerations. Section 2.1
gives an introduction to some of the relevant sensors. Section 2.2 introduces
some of the simulation frameworks for autonomous navigation.

Section 2.3 and Section 2.4 introduces the theory behind the classical SLAM
problem, and why it is difficult. Section 2.5 - 2.7 introduces the relevant theory
for modern SLAM. Section 2.8 introduces graph-based SLAM methods, putting
much concern on the back-end, and why they have become the standard way
of formulating a SLAM problem. Lastly, sections 2.9 - 2.11 focuses on the
front-end, describing methods used for registrating point clouds.

Much of the theory about SLAM is inspired by [2], [5] and [3].

2.1 Sensors
Typical for modern navigation systems is the use of satellites, IMUs and exte-
roceptive sensors. Exteroceptive sensors are sensors that provide information
about the environment outside the system itself. Typically used exteroceptive
sensors include LiDARs and cameras.

2.1.1 GNSS

Global navigation satellite systems(GNSS) are a common term for satellite-
based systems for navigation and positioning with global coverage. In total
there are four established systems: the American system GPS, the Russian sys-
tem GLONASS, the Chinese system BeiDou and the European system Galileo.
Together they provide the global location of GNSS-receivers.

The GNSS calculates position by triangulating the distance measure from
three different satellites simultaneously. The distance is calculated by measuring
the time it takes to transfer a radio signal from the satellite to the receiver on
Earth. The transfer time is then calculated by an atomic clock inside of the
satellite. Using these clocks give an extremely accurate measure of position,
which is why the GNSS measurements are often used as bona-fide measurements,
or in other words, treated as ground truth.

2.1.2 IMU

Inertial measurement unit(IMU) is a sensor measuring inertial forces. IMUs
have three axes, which are typically mounted along the body axes of the vehicle
to be controlled.

IMUs typically consists of accelerometers, gyroscopes and sometimes com-
passes. The accelerometer is able to measure linear accelerations along the axis
of the IMU, and the gyroscope measure the angular rates. Compasses measure
the heading. Using these measurements, it is possible to get an estimate of the
current position, velocity and orientation of the vehicle. This is done by inte-
grating the measured linear acceleration and angular rates. However, IMUs tend

Page 5

2 PRELIMINARIES 2.2 Simulation Frameworks

to drift over time and also has variable performance under different conditions.
This makes it undesirable to use IMUs on their own for long-time operations,
which is why it is often paired with GNSS measurements.

2.1.3 LiDAR

LiDAR is an acronym for “Light Detection and Ranging” and is a sensor based
off the time-of-flight(TOF) principle. To do so it uses a light source, a detector
circuit and the fact that light speed is constant in a given medium.

LiDAR sensors employ optical signals to measure the range to objects. This
is done by emitting the optical signal onto an object, called the target, before
detecting and processing the backscattered signal to determine the range. For
a TOF lidar, the range is calculated according to

R =
c

2
tOF (2.1)

where tOF is he time of flight and c is the speed of light in the given medium.
Also keeping the azimuth angle at which the laser was fired, and employing
several such lasers in an organized manner create what is known as the scanning
lidar.

2.2 Simulation Frameworks
There exists several simulation frameworks for robotics. Many of these are
open-source and contain alot of pre made content and environments. The two
that will be presented here are Gazebo and Unreal Engine, but other renowned
open-source frameworks like Webots[22] also exist.

2.2.1 Gazebo

Gazebo[14] is an open-source 3D dynamics simulator especially created to sim-
ulate a wide variety of robots in complex indoor and outdoor environments.
Additionally, the simulator has the opportunity to use different physics engines
and comes equipped with a vast suite of sensors and interfaces for a alot of
different applications.

Gazebo is a highly regarded simulator in the robotics community. In 2012
the Open Source Robotics Foundation(today called Open Robotics), the same
people who created ROS, took over the responsibility for the simulator. As a
result of this all data that comes from the simulator follows the ROS standards.
Open Robotics are also responsible for several highly renowned robotics com-
petitions, such as the DARPA challenge, all of which employ Gazebo as the
simulation environment. This has further contributed to giving Gazebo a huge
user community and pre-made scenarios for robotics.

2.2.2 Unreal Engine

Unreal Engine[7], more specifically Unreal Engine 4, is an open-source game
engine developed by Epic Games written in C++. It comes equipped with high-
quality graphics, a lot of pre-made building blocks with modifiable physics and
a GUI with both drag-and-drop and landscaping opportunities.

Page 6

2 PRELIMINARIES 2.3 SLAM

Unreal Engine is originally a game engine equipped with a GUI for designing
and creating game scenarios for a wide variety of developers. Therefore it comes
with a vast community and many different pre-made worlds and props. However,
it does not come equipped with typical navigation-purpose sensors such as IMUs,
LiDARs and cameras. This changed when MATLAB R2019b introduced the
opportunity to establish a connection between Simulink and Unreal Engine.

2.3 SLAM
Simultaneous Localization and Mapping (SLAM) is a problem that was intro-
duced in the 1980’s. It consists of two sub-problems; mapping the environment
and estimating the motion of an ego-vehicle inside it. However, its heavy compu-
tational needs has forced it to grow alongside the development of more powerful
computers, and effective nonlinear optimization methods. In addition, since it
relies on exteroceptive sensors it is clear that the popularity of SLAM has grown
with the development of better and cheaper exteroceptive sensors such as the
LiDAR as well.

2.4 Classical SLAM Problem
The classical SLAM problem is based on estimating pose, known as localization,
in an environment with an unknown prior. This requires an estimation of the
structure of the environment, often called a map. Mathematically this can be
expressed as estimating the joint pose-landmark vector Xk = [xT

k ,m
T]T given

the measurement vector zk at each time step, k. xk and m are known as the
poses and the map, respectively. The vector m = [lT1 , l

T
2 , ...l

T
m]T contains the

m landmarks inside the map at all times, and zk contains measurements of the
landmarks, li. Repeatedly estimating Xk for each time step allows for building
a map of the environment while exploring a scene. This procedure is often
referred to as SLAM[2].

2.4.1 EKF-SLAM

As SLAM was introduced to increase the robustness of inertial navigation, the
early solutions to the SLAM problem involve Kalman Filters(KF), more pre-
cisely the Extended Kalman Filter(EKF). EKF-SLAM solves what is called the
online SLAM problem. What this refers to is the fact that at every instance
in time, the EKF performs marginalization over all the previous poses, effec-
tively “forgetting” all about its trajectory in the estimation process. This allows
for fast computation times, as the complexity of the pose estimation does not
increase in size with time. However, the marginalization step also allows for
linearization errors to accumulate over time. Additionally, the innovation co-
variance matrix of the EKF tends to become very dense since the independence
structures involved in the SLAM problem is not exploited. As a result of this,
the EKF solution to the SLAM problem scales very badly as the number of
landmarks increases.

2.4.2 FAST-SLAM

As a solution to this the Rao-Blackwellized particle filter was introduced in
FAST-SLAM[21]. Rao-Blackwellization is a method of decreasing the dimen-

Page 7

2 PRELIMINARIES 2.5 Poses

sionality of a particle filtering problem. It involves separating the state space
into a linear part and a nonlinear part. The reason why a particle filter is needed
in the first place is because the estimation of the nonlinear states does not have a
closed-form solution. This solution is approximated by sampling particles from
a proposal density. With a Rao-Blackwellized particle filter only the nonlinear
states needs to be sampled by the particle filter. It is therefore desirable to keep
this as small as possible. For navigation purposes it is typically chosen to be
the state of the vehicle. The linear state can be optimally calculated by a linear
Kalman filter.

The particle filter approach samples trajectories, indirectly smoothing the
state vector of the vehicle. In turn this reduces the linearization errors that tend
to accumulate in the EKF-SLAM method. SLAM solutions that do not only
concern the current state, but also all previous states are said to solve the full
SLAM problem. However, as all particle filter solutions, Fast-SLAM involves
random sampling to some extent. This raised the question whether or not there
were other, more structured techniques to solving the problem. This is what
paved the way for the modern graph-based SLAM methods.

2.5 Poses
Poses in the SLAM problem consists of a position and an orientation. Poses are
often manipulated using transformation matrices which are part of the special
Euclidean group in three dimensions, often abbreviated SE(3). It is highly
nontrivial to express uncertainty and derivatives of these matrices, leading to
the necessity of Lie algebra. By using Lie algebra we can represent the pose as
a six-dimensional vector X = [tTωT]T consisting of a translational part t and
a rotational part ω. The theory in this section is inspired by and follows the
notation from [8].

2.5.1 SO(3)

The special orthogonal group in three dimensions, abbreviated SO(3), is the set
of rotation matrices fulfilling

SO(3) = {R ∈ R3×3|RRT = I,det(R) = 1} (2.2)

As matrices in the SO(3) are orthogonal, they fullfill R−1 = RT

The SO(3) matrices has a set of operations that describes how they com-
pose each other and how they affect vectors. The composition of two rotation
matrices are given by

Ra ◦Rb = RaRb (2.3)

and an action on vectors given by

R · v = Rv (2.4)

2.5.2 SE(3)

The special Euclidean group in three dimensions, abbreviated SE(3), is the set
of transformation matrices fullfilling

Page 8

2 PRELIMINARIES 2.5 Poses

SE(3) = {T =

[
R t
0T 1

]
∈ R4×4|R ∈ SO(3), t ∈ R3} (2.5)

where the inverse of a transformation matrix is given by

T−1 =

[
RT −RT t
0T 1

]
(2.6)

Like the SO(3) group, SE(3) group also contains a set of operation for
composition with other transformation matrices and action on vectors. The
composition is given by

Ta ◦Tb = TaTb (2.7)

and actions on vectors given by

T · v = Rv + t (2.8)

Figure 1: Summary of Lie algebra operations. Image taken from [8].

2.5.3 Lie Algebra

Lie algebra is a branch of algebra that concerns manipulating vectors that lie
on strict, high-dimensional vector spaces such as SO(3) and SE(3), referred to
as manifolds, in terms of operations familiar from linear algebra. Generally it
is not simple to express perturbations on these strict spaces, and at least not
in a way that allows us to express their derivatives and uncertainties. The Lie
algebra provides a framework for manipulating vectors on these spaces, such as
orientations and poses, in terms of operations familiar from linear algebra.

Lie algebra is defined in terms of Lie groups. A Lie group is defined as smooth
and differentiable manifold consisting of a set G and a composition operation, ◦
that satisfies the group axioms

Closure under ◦ : X ◦ Y ∈ G
Identity E : E ◦ X = X ◦ E = X

Inverse X−1 : X−1 ◦ X = X ◦ X−1 = E
Associativity : (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z)

(2.9)

Page 9

2 PRELIMINARIES 2.6 Nonlinear solvers

for elements X ,Y,Z ∈ G. Lie groups can also transform elements of other sets
through what is called a group action. A group action must fullfill the axioms

Identity : E · v = v

Compatibility : (X ◦ Y) · v = X ◦ (Y · v)
(2.10)

The most important functionality of Lie algebra is the ability to move be-
tween the manifold M, the tangent manifold TM and the vector space Rm,
summarized in Figure 1. The conversion between vectors in Rm and Lie algebra
elements in TM is done through the operators (·)∨ and (·)∧. They are defined
by

Hat: (·)∧ : Rm → m; τ∧ =

m∑
i=1

τiEi (2.11)

Vee: (·)∨ : m→ Rm; (τ∧)∨ =

m∑
i=1

τiei (2.12)

where Ei are the generators of m and ei are the generators of Rm, also known as
the basis vectors. Further, the conversion between the lie algebra elements and
the manifold is given by the exponential and logarithmic maps. Additionally,
the Exp operator and the Log operator has been defined as composite operations
converting between the vector space, Rm and the manifoldM. These operations
are given by.

exp : m→M; X = exp(τ∧) (2.13)
log :M→ m; τ∧ = log(X) (2.14)

Exp : Rm →M; X = Exp(τ) := exp(τ∧) (2.15)

Log :M→Rm; τ = Log(X) := log(X)∨ (2.16)

2.6 Nonlinear solvers
Typically the optimization back-end of a SLAM system boils down to maxi-
mum a-posteriori (MAP) estimation. These optimization problems are generally
nonlinear, of raising the need for efficient nonlinear solvers. Nonlinear solvers
typically follow the scheme depicted in Figure 2.

2.6.1 Gauss-Newton

The Gauss-Newton method approximates the Hessian of a quadratic problem
of the form (a− g(x))TF (a− g(x))) as H ≈ GTFG where G is the Jacobian of
g(x). Thus a single update step of the Gauss-Newton scheme is given by

xk+1 = xk + (GTFG)−1GTF (a− g(xk)) (2.17)

where a− g(xk) is often referred to as the residual, r.

2.6.2 Levenberg-Marquardt

The Levenberg-Marquardt algorithm is a trust-region method which takes basis
in the Gauss-Newton method above and tries to fix its convergence problems by

Page 10

2 PRELIMINARIES 2.7 Bayes Net

Choose a suitable estimate

Linearize the problem

Update the estimate

Solve the linearized problem

Figure 2: Nonlinear solver procedure

combining it with the well-known gradient-descent method. The minimization
scheme is given by

xk+1 ← (GTFG+ λD)−1GTFr (2.18)

Notice how if we let λ→∞ we get the gradient descent method, while if we set
λ = 0 we get the Gauss-Newton method. This compromise makes Levenberg
Marquardt a more stable method than Gauss-Newton, but a well-initialized
Gauss-Newton will outperform Levenberg-Marquardt.

2.7 Bayes Net
Bayes nets are directed acyclic graphs consisting of nodes V and egdes E . Each
node represents a random variable, xi, and egdes represent the conditioning that
expresses their relationship. Bayes nets are inspired by the probability chain
rule

p(x1, x2, ..., xn) = p(x1)p(x2|x1)...p(xn|xn−1, ..., x1)

=
∏
i

p(xi|πi) (2.19)

where πi are the parents of xi.

Page 11

2 PRELIMINARIES 2.8 Graph-based SLAM

2.7.1 Bayes Trees

Bayes trees, also called junction trees are data structures for representing cyclic
graphs with a Bayes net tree structure. This is done by creating “super-nodes” in
places where there are cycles. Typically this is done by utilizing maximal cliques
as nodes and their shared nodes as separators. This data structure constructs
the basis for iSAM2[11], which is the state-of-the-art factor graph algorithm.

2.8 Graph-based SLAM
Graph-based SLAM methods are perhaps the most popular solution to the
SLAM problem in recent years. Like most other modern day SLAM methods
they propose a solution to the full SLAM problem. The key idea is to represent
the dependencies between the poses and landmarks involved using probabilistic
graphical models, such as Bayes nets or Markov random fields. This is the base
of what is known as factor graphs.

2.8.1 Front-end and Back-end

In graph-based SLAM the estimation problem is normally divided into two
parts; the front-end and the back-end. The front-end takes care of all pre-
processing of the data in order for it to fit into the factor graph. This includes
feature extraction, short-term data association, long-term data association(for
loop closure) and possibly pre-processing of other data, as for example data
from an IMU in order to fit it into the graph. The back-end, on the other hand,
handles state estimation. For the full SLAM problem this involves performing
inference in the form of batch optimization on all the poses, which typically
is done through a MAP estimator[3]. The relationship between front-end and
back-end is shown in figure 3.

Figure 3: Front-end and back-end in a modern SLAM system. Figure from [3].

For the full SLAM problem, the goal is to estimate the set of poses and
landmarks X1:k = [XT

1 ...X
T
k]T for each incoming measurement zk, where zk =

hk(Xk) + wk. The set of such measurements are defined as Z = [zT1 ...z
T
k]T .

Thus, the MAP estimation can be expressed mathematically as

XMAP
1:k = argmax

X1:k

p(X1:k|Z) = argmax
X1:k

p(Z|X1:k)p(X1:k)

p(Z)
(2.20)

Page 12

2 PRELIMINARIES 2.8 Graph-based SLAM

where p(X1:k) is the joint probability distribution between all the Xi’s. The fac-
tor p(Z) is simply a normalization factor and is irrelevant for the maximization
problem. Therefore we can write

XMAP
1:k = argmax

X1:k

p(Z|X1:k)p(X1:k) (2.21)

Invoking an independence assumption on the measurement yields

XMAP
1:k = argmax

X1:k

p(X1:k)

k∏
i=1

p(zi|Xi) (2.22)

since a single measurement zi only depends on the state Xi. Notice how the
MAP estimator does not invoke any assumptions on either the measurement
model, hk(·) or the prior p(X1:k). Actually, MAP estimators, unlike Kalman
filters, do not need a distinction between a motion model and an estimation
model. This is a huge advantage, since this allows us to represent all of these
as factors. As we’ll see next, this leads to a more computationally efficient and
more visually pleasing representation of the SLAM problem.

2.8.2 Factor graphs

Factor graphs are a highly convenient representation of a problem when it comes
to performing inference. Formally, a factor graph is a bipartite graph F =
(U ,V, E) with two types of nodes: factors φi ∈ U and variables xj ∈ V. Egdes
eij ∈ E are between factor nodes and variable nodes[5]. An example of a factor
graph is shown in Figure 4. The nodes x1, x2, x3 represent poses, while l1, l2
represent landmarks. The black dots represent the factors φi. Notice that the
factors represent different sensor measurements and other constraints, such as
priors in the exactly same manner. Thus factor graphs can model arbitrary
interconnections between states in a general manner. The factors in a factor
graph can intuitively be viewed as springs relating landmarks and poses. The
goal of the MAP estimation is to find poses and landmarks that minimize the
tension of the overall graph.

Actually, the factor graph framework can be extracted directly from the
MAP framework, which will be investigated in this section.

The joint probability p(X1:k) in (2.22) can be rewritten using the general
product rule in probability

p(X1:k) = p(X1)p(X2|X1)p(X3|X2,X1), ..., p(Xk|Xk−1, ...,X1)

= p(X1)p(X2|X1)p(X3|X2), ..., p(Xk|Xk−1)
(2.23)

where the latter equation comes from the fact that all information about the
next state is given completely by the previous state. It is important to note
that without conditioning on the measurements, the poses xi are independent
of the map m. In addition the landmarks inside the map at time step i, l1:m,
are assumed independent of each other. With this information (2.23) can be

Page 13

2 PRELIMINARIES 2.8 Graph-based SLAM

Figure 4: Example of a factor graph. Figure inspired by [5].

rewritten as

p(X1:k) =p(x1)p(x2|x1)p(x3|x2)...p(xk|xk−1)

· p(m)

=p(x1)p(x2|x1)p(x3|x2)...p(xk|xk−1)∏
lj∈Z

p(lj)

(2.24)

where the latter equation is means that only measured landmarks affect the
states. Clearly this system is starting to look causal and on a form that can be
described in a graph. In order to emphasize that it is in reality the state X1:k

that is the goal of the optimization, the measurement likelihood p(zi|Xi) can
be expressed by the likelihood function l(Xi; zi) which is defined as a function
proportional to the measurement likelihood:

l(Xi; zi) ∝ p(zi|Xi) (2.25)

Combining (2.23) and (2.25) with (2.22) gives the expression

XMAP
1:k = argmax

X1:k

p(x1)p(x2|x1)p(x3|x2)...p(xk|xk−1)

·
∏
lj∈Z

p(lj)

·
k∏

i=1

l(Xi; zi)

(2.26)

where the maximization still holds due to the proportionality assumption made
in (2.25). Comparing these results to the factor graph in Figure 4, the prior
p(x1) can be seen as the factor with the “prior” text above it. The “odometry”

dots are described by the chain of conditional probabilities
k∏

i=1

p(xk|xk−1). Any

Page 14

2 PRELIMINARIES 2.8 Graph-based SLAM

measurement factors are described through
k∏

i=1

l(Xi; zi). Any non-existing priors

can simply be modeled as uniform probability over all possibilites. Defining each
of these factors by a common function φi(Xi) gives the global factor function

φ(X) =
∏
i

φi(Xi) (2.27)

Inserting this into our MAP estimator gives

XMAP
1:k = argmax

X1:k

φ(X)

= argmax
X1:k

∏
i

φi(Xi)
(2.28)

which enlightens the connection between the factor graph and MAP estimation.

2.8.3 Solution to the SLAM problem

Solving the MAP inference problem involves invoking some assumptions on our
model. Assuming all the factors φi(Xi) are normally distributed they can be
expressed:

φi(Xi) ∝ exp{−1

2
||hi(Xi)− zi||2Σi

} (2.29)

where ||e||2Σ denotes the Mahalanobis norm. Inserting into the MAP estimator
in (2.28), it can be expressed by the nonlinear least squares problem

XMAP
1:k = argmin

X1:k

∑
i

||hi(Xi)− zi||2Σi
(2.30)

where the argmin comes from the fact that we are instead using the negative
log posterior instead. Assuming all the factors φi(Xi) are normally distributed
is equivalent to assuming that all measurement models, the process model and
the priors are all distributed according to a Gaussian. Typically this problem
is solved using Gauss-Newton, Levenberg-Marquardt (LM) or other nonlinear
solvers, most of which involve successive linearization.

Linearization can be done by means of the Taylor expansion. Thus we can
express

hi(Xi) = hi(X
0
i + ∆i) ≈ hi(X0

i) +Hi∆Xi (2.31)

where Hi is the jacobian of hi with respect to Xi evaluated at the working point
X0

i , and ∆Xi = Xi −X0
i is state update vector. Substituting into (2.30) gives

the linear least squares

∆XMAP
1:k = argmin

∆X1:k

∑
i

||hi(X0
i)− (zi −Hi∆Xi)||2Σi

(2.32)

where (zi−Hi∆Xi) is the prediction error. By rewriting the Mahalanobis norm
into a regular 2-norm expression, the linear least squares become

∆XMAP
1:k = argmin

∆X1:k

∑
i

||(Ai∆Xi − bi||22

= argmin
∆X1:k

||A∆X1:k − b||22
(2.33)

Page 15

2 PRELIMINARIES 2.8 Graph-based SLAM

where

Ai = Σ
−1/2
i Hi (2.34)

bi = Σ
−1/2
i (zi − hi(X0

i)) (2.35)

and A, known as the measurement Jacobian, contains the Ai-matrices and b
contains each individual measurement prediction error, bi. With this problem,
Guass-Newton gives an iterative update given by

∆X1:k = (ATA)−1ATb (2.36)

while Levenberg-Marquardt gives

∆X1:k = (ATA+ λI)−1ATb (2.37)

Clearly A will have many more rows than columns, as a single landmark often
gives rise to a measurement at several time steps. As a result of this, (ATA)−1

is much larger than A. It is also likely that it is much more dense, which makes
it desirable to calculate ∆X1:k without forming (ATA)−1. As the problem
grows with time, the brute force solution suggested above will become compu-
tationally ineffective. This raises the need for efficient sparse solvers, such as
QR- or Cholesky decomposition. As will be shown, exploiting the graph repre-
sentation of the problem opens for intuitive and efficient formulations of these
parametrizations. In graph-based methods this is done through what is called
the variable elimination algorithm.

2.8.4 Variable Elimination

The variable elimination algorithm converts the factor graph into a Bayes net
only dependent on the unknown variables X1:k. The main advantage of this is
that MAP inference becomes easy, but it simplifies sampling and/or marginal-
ization. In fact, the variable elimination algorithm is equivalent to performing
sparse matrix factorization, but this will not be shown in detail in this thesis.

The variable elimination algorithm converts a factor graph of the form

φ(X1:k) = φ(X1, ...,Xk) (2.38)

into a factored Bayes net probability density of the form

p(X1:k) = p(X1|S1)p(X2|S2)...p(Xk) =
∏
j

p(Xj |Sj) (2.39)

where the result above is achieved by factorization by choosing the variable
ordering as given by the set X1:k. Sj is the set of variables on which Xj is
conditioned on after elimination. For the last variable, the separator will be
empty, simply giving the prior p(Xk) for the final variable. However, it is not
necessarily given that the states must be arranged in this order. In fact, the
sparseness of the resulting problem is dependent on the ordering. Selecting the
ordering is equivalent to reordering the columns of the A matrix in (2.33) before
decomposing. Choosing an optimal ordering is a NP-hard problem, and can

Page 16

2 PRELIMINARIES 2.9 Point Cloud Registration

be done by for example the COLAMD[4] algorithm. The variable elimination
algorithm is given in algorithm 1.

Algorithm 1: Variable Elimination Algorithm
Result: Bayes net representation of factor graph
Specify elimination order O(X);
for each node Xi according to O(X) do

Si ← all nodes involved in factors adjacent to i except i;
ψ(Xi,XSi)←

∏
c∈ne(i)

φ(Xi);

p(Xi|Si)τ(Si)← ψ(Xi,XSi);
Add new factor τ(Si) back into the graph;
Insert p(Xi|Si) into the Bayes net;

end

After having assembled the Bayes net as above, the following inference prob-
lem can be described by an upper triangular matrix.

R1 T1,2 T1,3 . . . T1,k

0 R2 T2,3 . . .
...

0 . . .
.

...
0 0 0 . . . Rk

This may be recognized as the R-matrix of a QR-decomposition. In navigation
theory it is also often referred to as the square root information matrix. In a
general SLAM problem, many of the conditional factors, noted Ti,j will indeed
be zero for a well chosen variable ordering. The conditional densities can be
expressed as

p(Xj |Sj) = k exp{−1

2
||RjXj + TjSj − dj ||22} (2.40)

where dj is the new error after the factorization, Tj is a row vector containing
the residuals and the separator Sj is a column vector containing the separator
variables. This can be solved using back-substitution. For every iteration, the
MAP estimate for the separator Sj will be known, so the solution is given by

∆XMAP
j = R−1

j (dj −TjS
MAP
j) (2.41)

It is also worth noting that the covariance matrix is given by Σj = (RT
j Rj)

−1.

2.9 Point Cloud Registration
Recall that the SLAM problem consists of a front-end and a back-end. The MAP
estimation performed through factor graphs discussed so far concerns the back
end. The front-end of a SLAM system concerns building the factor graph, which
involves registrating how the different point cloud scans relate to each other and
performing data association to recognize landmarks. The registration of point
clouds are based off two different principles; scan-matching and feature-based
methods.

Page 17

2 PRELIMINARIES 2.10 Point Cloud Keypoints

The scan-matching problem uses entire point clouds to compute the best
rigid-body transformation between them. As point clouds tend to be rather
large, this becomes computationally heavy, and is prone to converge to a local
minima without proper initialization. Popular scan-matching methods include
the iterative closest points(ICP) algorithm and the normal distributions trans-
form(NDT).

Feature based methods extract keypoints in the point cloud, like egdes, cor-
ners, lines or curves to calculate the transformation. It is therefore necessary
that these points are repeatable so they can be utilized in consecutive scans.
This also involves data association, typically by the means of descriptors to rec-
ognize the keypoints between scans. Using features instead of the entire point
cloud significantly reduces the computational load on the system. In fact, fea-
ture based methods can be both faster and more accurate than scan-matching
methods. However, they require repeatable distinct features and are therefore
less robust in this manner.

2.10 Point Cloud Keypoints
Feature-based point cloud registration require robust, repeatable points in order
to find correspondences between point clouds. These robust points are often
referred to as keypoints. The extraction of key points associates a fixed-time
cost to each point cloud, but may severely decrease the amount of points that are
processed in the matching process. The keypoints in this section are discussed
on the basis of whats available in the PCL[16] library.

2.10.1 Harris Corners

Harris corner detector is perhaps the most classic detection algorithm that ex-
ists. For images it calculates the image gradients to estimate the eigenvalues of
each pixel in the image, before evaluating what is defined as the corner response
function (CRF). The Harris corner detector has an extension to estimate cor-
ners in 3D point clouds. This is done by replacing the image gradients from the
classic corner detector with the surface normals in the point cloud, and inserting
into the same CRF.

2.10.2 ISS3D

Intrinsic-shape signatures(ISS)[24] 3D keypoints are based off a view-invariant
3D shape descriptor. ISS keypoints are caluclated through a saliency measure,
given by the magnitude of the smallest eigenvalue of a point. The calculation
consists of three steps:

1. Calculation of the eigenvalue decomposition of the scatter matrix, which
describes the variance of the neighboring points.

2. Pruning of points with undesirable spread, given by a ratio test between
the eigenvalues.

3. Picking the points with the highest saliency measure in a neighborhood.

Page 18

2 PRELIMINARIES 2.11 Point Cloud Feature Descriptors

2.11 Point Cloud Feature Descriptors
A descriptor is a structure containing information that describes data. For
image systems, a descriptor is typically a representation of different features
that a point contains. Such descriptions may include information about the
shape, texture or intensity, among others. Descriptors are also separated into
local descriptors and global descriptors.

A local descriptor contains information about the features for a single point
in the point cloud, while global descriptors try to encapsulate information the
entire point cloud. Typically local descriptors are used for recognition purposes
while global descriptors are used for detection of objects. Therefore the rest of
this section will focus on local descriptors.

2.11.1 PFH

Point feature histograms (PFH)[15] is a pose-invariant local feature descriptor
which represents the surface model properties of a point. The goal is to quantify
the underlying geometric properties of a point. It does this by analyzing the
geometric relationship between the point and all neighbors within a sphere with
radius r. The geometrical properties are calculated for all points within the
neighborhood, giving a fully interconnected mesh within the radius. The fully
interconnectedness is necessary to precisely model the surface around the point.
The main downside with this descriptor is its computational complexity. The
complexity is given by O(nk2) where n is the number of points in the point
cloud and k is the number of neighbors for each point.

2.11.2 FPFH

Fast point feature histograms (FPFH)[15] is an extension to the aforementioned
PFH descriptor. The main benefit of using FPFH over a normal PFH is the
computational complexity. Compared to the complexity of O(nk2) for the PFH,
FPFH achieves a complexity of O(nk). The complexity is reduced by relaxing
the interconnectedness of the PFH. This simplification makes the FPFH un-
able to precisely capture the surface around the point, however according to
[15] it still retains most of the discriminative power. Additionally, the FPFH
histograms have alot fewer histograms, severely decreasing the computational
complexity associated with matching. This makes FPFH a much more desirable
descriptor for navigation purposes.

Page 19

3 STATE-OF-THE-ART SLAM

3 State-of-the-art SLAM
When building a SLAM system it is important to consider what problems other
state-of-the-art solutions have and what problems they have solved. Section 3.1
contains a quick description of a few state-of-the-art LiDAR SLAM systems.
Afterwards, Section 3.2 contains an introduction to ISAM2, which might be the
state-of-the-art graph-SLAM system when it comes to optimization.

3.1 LiDAR SLAM Systems
3.1.1 LOAM

LiDAR odometry and mapping(LOAM)[23] proposes a real-time SLAM method
by dividing the algorithm into two parts. One part handles the odometry and
runs on a high frequency. The other part handles the map creation, and runs on
a frequency at an order of magnitude lower than the odometry part to perform
fine matching and mapping.

LOAM is a feature-based method, so keypoints needs to be extracted in
order to estimate motion. The keypoints are carefully selected to contain both
sharp egdes and planar surface patches. Points are chosen according to a score
defined by

c =
1

|S| · ||XL
(k,i)||

||
∑

j∈S,j 6=i

(XL
(k,i) −XL

(k,j))|| (3.1)

where i is a point in the scan, S is the set of consecutive points around i and
XL

(k,i) are the coordinates of point i in LiDAR sweep k defined in a LiDAR
coordinate system L. After the scores have been calculated, the points in a scan
are sorted according to their c’s. Egde points are selected as the points with the
highest c’s and planar points as the points with the lowest c’s.

To ensure that points are distributed evenly within the environment, the scan
is separated into four identically sized subregions. Each subregion contributes
with 2 edge points and 4 planar points. To ensure good point selection, egde and
planar points can only be chosen if their scores are above or below a threshold,
respectively. To avoid ambiguity in point matching, selected points cannot lie
in the same neighborhood. Moreover, unreliable points are avoided by requiring
that no points lie on a surface patch parallell to the laser beam or on the
boundary of an occluded region. The egde points and planar points are then
added to the sets E and H.

Let the point cloud of the previous sweep be defined as Pk and the repro-
jected point cloud as P̄k. After identifying the egde and planar points of Pk+1,
the sets Ek+1 and Hk+1 are reprojected to the start of the sweep. Let the
reprojected sets be denoted Ẽk+1 and H̃k+1 This is done to minimize motion
distortion, and is valid as long as constant angular and linear velocities are
assumed during a sweep.

After the reprojection, egde lines are found by finding the closest neighbors
of an egde point in the current sweep, i ∈ Ẽk+1 to a point, j in the previous sweep
P̄k. Thereafter, a point l is picked as the point closest to i in the two consecutive
scans to point j. The egde line correspondence of i can then be identified as
(j, l) after checking that both l and j are egdes. For the planar matching, three

Page 20

3 STATE-OF-THE-ART SLAM 3.1 LiDAR SLAM Systems

points are needed. As when identifying egdes, points are matched by finding
the closest neigbor of a planar point in the current sweep, i ∈ H̃k+1, to a point,
j, in the previous sweep P̄k. Thereafter, a point l is picked as the point closest
to i in the two consecutive scans to point j. The third point is found by finding
the closest neigbor to i in the same scan as j, denoted m. After verifying that
all the points are planar, (j, l,m) are identified as the planar correspondences
of i.

After performing the matching, the point-to-line distance is given by

dE =

∣∣∣(X̃L

(k+1,i) −X
L

(k,j)

)
×
(
X̃

L

(k+1,i) −X
L

(k,l)

)∣∣∣∣∣∣XL

(k,j) −X
L

(k,l)

∣∣∣ (3.2)

where i ∈ Ẽk+1 and (j, l) is the corresponding egde line. The point to plane
distance is given by

dE =

∣∣∣∣∣∣
(
X̃

L

(k+1,i) − X̄
L
(k,j)

)(
X̃

L

(k,j) − X̄
L
(k,l)

)
×
(
X̃

L

(k,j) − X̄
L
(k,m)

)∣∣∣∣∣∣∣∣∣(X̃L

(k,j) − X̄
L
(k,l)

)
×
(
X̃

L

(k,j) − X̄
L
(k,m)

)∣∣∣ (3.3)

This relationship between distance and pose can be minimized using Levenberg-
Marquardt to obtain TL

k+1.

The mapping algorithm in LOAM maps the point cloud in world coordi-
nates. The mapping algorithm extracts points in the exactly same manner as
the odometry algorithm, however, ten times as many feature points are used.
Each point cloud is then downfiltered using a voxel grid and stored in 10m cu-
bic areas. When correspondences are found, in the same manner as above, the
distances between them are minimized using Levenberg-Marquardt to fine-grain
the map and the transformation.

The voxel grid downfiltering of the map, however, makes it hard to perform
loop closure detection and integrate other absolute measurements such as GNSS
into the system. As a result of this, LOAM performs no loop closures and the
method will drift over time.

3.1.2 LeGO-LOAM

Lightweight and Ground-Optimized Lidar Odometry and Mapping (LeGO-LOAM)[17]
is an extension of LOAM adapted to use on UGVs. LeGO-LOAM uses the same
features as LOAM, however it differs in the way it uses these features. LeGO-
LOAM also includes support for loop-closures and point cloud segmentation to
robustify the selected features.

Since UGVs often have their LiDAR sensor close to the ground it is quick to
identify unreliable features such as from grass and tree leaves as good features.
These features need to be omitted in the estimation process. To do this, the
point cloud is transformed to a range image. From the range image all the
points in the ground plane is labeled as ground points. The remaining points

Page 21

3 STATE-OF-THE-ART SLAM 3.1 LiDAR SLAM Systems

are then passed through a clustering process. To only keep the reliable features,
only clusters containing more than 30 points are used for estimation.

LeGO-LOAM divides the issue of pose estimation into two separate opti-
mization problems; one for the lateral states and one for the longitudinal states.
Like LOAM, it extracts planar and egde features into two sets, denoted F t

p and
F t
e respectively. The points are then matched with respect to the feature sets

of the previous point cloud, denoted Ft−1
p and Ft−1

e . To make the matching
more robust, only points that kept its label over two estimation cycles are con-
sidered in the matching. The matched points are then used for optimization.
The first step in the optimization process is to compute the lateral transforma-
tion [tz, θroll, θpitch] using the features matched between F t

p and Ft−1
p . In the

second step the longitudinal transformation [tx, ty, θyaw] is computed using the
the features matched between F t

e and Ft−1
e , with the estimated lateral transfor-

mation as constraints in the optimization. Both optimizations are solved using
Levenberg-Marquardt.

The mapping module of LeGO-LOAM matches the set of extracted features,
denoted {Ft

e,Ft
p}, to a surrounding point cloud map, denoted Q̄t−1, in order to

give a refined pose transformation. Like in LOAM it runs on a lower frequency
than the pose estimation, and uses Levenberg-Marquardt to obtain the final
transformation. LeGO-LOAM differs from LOAM in the way it stores the map.
LOAM stores the map as one large continuous map, while LeGO-LOAM stores
the map as each individual feature set, M t = {{Ft

e,Ft
p}∀t}, for each pose. The

surrounding map used for refining the pose can be found by choosing the k most
recent feature sets, assuming no drift. Loop closure detection is then performed
by using ICP to find matches in the set of individual features for each pose.

3.1.3 LIO-SAM

LiDAR-Inertial Odometry Smoothing And Mapping(LIO-SAM)[18] is a odom-
etry estimation method that fuses LiDAR and IMU data in the estimation
process. In addition to fusing IMU information it has support for maintaining
global consistency through GNSS measurements and loop closures.

As LIO-SAM fuses IMU data, its internal state vector is modified to include
both body velocities and IMU-biases. To fuse the IMU information into a factor
graph, it applies preintegration methods. In short, this is done by collecting all
the IMU measurements between two poses in the factor graph and gathering
them as a single factor. IMU preintegration into the factor graph makes the
optimization problem jointly optimize the IMU bias as well.

The features used in LIO-SAM is equal to the features used in LOAM.
However, unlike LOAM it doesn’t perform any cloud-to-cloud optimization,
but rather perform fixed-lag smoothing over the most recent n keyframes. A
keyframe, Fi, is a LiDAR frame represented in body frame, consisting of both
the feature sets extracted, meaning Fi = {F e

i , F
p
i }, where F e

i denotes the egde
features and F p

i denotes the planar features at time step i. Keyframes are cho-
sen when the change in robot pose, xi+1 exceeds a user-defined threshold with
respect to the previous pose, xi. Any LiDAR frame between two keyframes are
discarded. The idea of keyframes helps keep both the factor graph and the map
sparse, and the memory consumption to a minimum. This is ideal for a system

Page 22

3 STATE-OF-THE-ART SLAM 3.2 iSAM2

to operate in real-time.

After the n most recent keyframes are extracted, {Fi−n, ...,Fi}, they are
transformed into the world coordinates according to the transformations
{Tn−1, ...,Tn}. The feature maps are then merged, forming a voxel map, de-
noted Mi. After the map is created, the newly obtained LiDAR frame Fi+1 is
matched to Mi using the predicted transformation from the IMU, T̃i+1 as the
initial transform. The rest of the matching follows that of LOAM.

In addition to the preintegrated IMU factors, LIO-SAM contains support for
GPS factors. If the timestamps of the GPS measurements do not match those
of the LiDAR frames, they are linearly interpolated to match the time stamp of
the LiDAR frames. In addition to using GPS for global consistency, LIO-SAM
also has support for loop closures. It uses the same loop closure method as
discussed in the LeGO-LOAM method.

3.2 iSAM2
iSAM2 is an algorithm for doing nonlinear incremental optimization. It exploits
the expressivity of factor graphs to manipulate the square root information ma-
trix in a visual and intuitive manner, as we showed in Section 2.8.4. As the
name suggests, iSAM2 is an improvement of the original algorithm iSAM[10].
The original iSAM library argued purely based on linear algebra, and the con-
tributions of iSAM2 is a result of the data being structured and visualized in
another form, namely the Bayes tree. Using the Bayes tree, ISAM2 is able to
update only the affected variables by investigating cliques. Further, the ordering
given to the variable elimination algorithm given in algorithm 1 can be found
through a constrained COLAMD algorithm.

In all, the Bayes tree representation gave the opportunity to introduce in-
cremental variable ordering and fluid relinearization as opposed to the periodic
variable reordering and periodic relinearization that was used in iSAM[11]. In-
cremental inference and Partial state updates are additional features in ISAM2
that contributed to reducing the computational cost of the algorithm.

3.2.1 Incremental Inference

By storing the square root information matrix in the form of a Bayes tree, incre-
mental inference can be performed simply by editing the top of the tree. This
can be done because all the information flows upwards towards the root of the
tree. Also, the information from a factor will not enter the variable elimina-
tion process before the first variable of that factor is eliminated. This means
that a new factor cannot influence any other variables that are not beneath its
variables in the Bayes tree.

3.2.2 Incremental Variable Ordering

A good variable ordering results in minimal fill-in, as mentioned in Section 2.8.4.
For the Bayes tree, variable reordering can be done incrementally at each step
performing incremental inference. This eliminates the need for periodic variable
reordering. ISAM2 uses a constrained COLAMD algorithm to find the optimal
variable ordering. The constraint is present by forcing the recently accessed

Page 23

3 STATE-OF-THE-ART SLAM 3.2 iSAM2

variable to the end of the ordering. This is expected to be efficient in most
cases, except for large loop closures.

3.2.3 Fluid Relinearization

Fluid relinearization is performed by keeping track of the validity of the lin-
earization point for each variable. By doing this, ISAM2 can perform the ex-
pensive step of relinearizing the model only when the current estimate of a
variable deviates from its linearization point by more than a threshold, β. The
fluid relinearization follows algorithm

Algorithm 2: Fluid Relinearization
In: Linearization point Θ, delta ∆ Out: Updated linearization point Θ,
marked cliques M
1. Mark variables in ∆ above threshold β : J = {∆j ∈ ∆||∆j | > β}.
2. Update linearization point for marked variables ΘJ := ΘJ ⊕∆J .
3. Mark all cliques M that involve marked variables ΘJ and all their

ancestors.

3.2.4 Partial State Updates

Partial state updates involves only updating the states necessary to recover a
nearly exact solution. It is inspired by the fact that changes to the top of the
Bayes tree is often limited. For example, new measurements has only local
effect as it only does not give much information on old variables. Partial state
updates is performed by following algorithm 3. The major benefit of partial
state updates is a significant saving in computation time without having a large
effect on the result.

Algorithm 3: Partial State Update
In: Bayes tree F Out: Update ∆ Starting from the root clique Cr = Fr:

1. The current clique Ck = Fk : Sk

compute update ∆k of frontal variables Fk from the local conditional
density P (Fk|Sk)

2. For all variables ∆kj
in ∆k that change more than a threshold α:

recursively process each descendant containing such a variable

Page 24

4 DEVELOPMENT PLATFORM

4 Development Platform

4.1 Simulation Framework
Recorded indoor dataset often lack ground truth as a result of lacking bona-fide
measurements as GNSS measurements. This raises the need for a realistic simu-
lator in order to test the performance of SLAM implementations. Without some
form of ground truth, there is no saying how consistent or accurate an estimate
is, making it hard to quantify the performance of a SLAM implementation. It
is necessary to have a simple interface for extracting and storing data and it is
advantageous if the setup is simple. Since NTNU students have access to the
proprietary program MATLAB, the decision of a simulation framework fell on
the combination of MATLAB and Unreal Engine. This Section describes how
the simulator is set up in terms of the environment and how the point cloud is
generated.

Section 4.1.1 sheds some light on the different possibilities that MATLAB
introduced to the simulation environment. Section 4.1.2 describe how the en-
vironment itself is set up. Section 4.1.3 describes how the the point cloud is
created. Further, Section 4.1.4 will explain how the simulation is executed and
how the data is represented in the simulation. Section 4.1.5 describes the pro-
cess of storing the data sets in a rosbag after the simulation is complete. Lastly,
Section 4.1.6 will discuss some of the challenges and the possible shortcomings
of this specific simulator.

4.1.1 MATLAB and Unreal Engine

When MATLAB released MATLAB R2019b they introduced functionality for
instantiating actors inside a custom Unreal Engine environment using a com-
bination of Automated Driving Toolbox and Automated Driving Toolbox
Interface for Unreal Engine 4 Projects. This made it possible to sim-
ulate “real-world” scenarios with different exteroceptive sensors and evaluate
the data real-time. The supported sensors as of MATLAB R2020b are Li-
DARs, probabilistic radars and both fisheye and normal cameras. All sensors
come with modifiable parameters and is easily exported out of the simulation
environment through Simulinks To Workspace-block. MATLAB also provides
several pre-made scenarios directed towards autonomous navigation, in addition
to examples and tools for visualization.

4.1.2 Environment

The environment itself is created in Unreal Engine, whilst the initialization of
the ego-vehicle and the sensor is done through Simulink. In order to create
the tunnel itself a hollow cylinder is placed around the road. However, this
hollow cylinder was very poor in features, which is unrealistic for most man-
made tunnels. To fix this issue, the walls were covered with stone meshes with
random rotation in order to create a feature-rich environment. For realism, a
sidewalk was also added.

In order to verify that the SLAM algorithm works under different circum-
stances, two different environments are created. The simplest one describes a
straight road tunnel. It is created with base in MATLABs pre-created scenario

Page 25

4 DEVELOPMENT PLATFORM 4.1 Simulation Framework

“Straight Highway”, in which the tunnel is simply wrapped around the road. In
addition to the feature rich walls, several actors are placed inside the tunnel.
These are namely two cones, a traffic barrel and a stationary SUV. These were
placed to verify that the point cloud came out as expected. The result can be
seen in Figure 5.

Figure 5: Straight tunnel scenario

The other environment is created with basis in MATLABS pre-created sce-
nario “Curved Highway”. In order to create a curved tunnel, many copies of the
tunnel is made, shrinked and slightly rotated in order to simulate a curvature.
The result is shown in Figure 6.

Figure 6: Curved tunnel scenario

4.1.3 Point Cloud Representation

How the point cloud is built varies for different LiDAR vendors dependent on
the software of the sensor itself. Some choose to represent their measurements
as a series of range-bearing measurements, while other apply some preprocessing
before it is streamed out of the sensor. Some data representations include, but
are not restricted to, range-bearing intensity points, XYZ intensity points and
XYZ points.

For the MATLAB simulator, each point cloud is represented as a VnxHnx3
where Vn is the decided by the vertical resolution and FOV of the LiDAR, Hn

Page 26

4 DEVELOPMENT PLATFORM 4.1 Simulation Framework

is decided by the horizontal resolution and FOV. Each point is represented as
an XYZ coordinate relative to the body frame of the vehicle. Note that the
simulator does not include intensity, making the usage of descriptors exploiting
intensity, such as SIFT, impossible.

4.1.4 Simulation

Once the environment is created, the Simulink model required to instantiate
the simulation is very simple, as shown in Figure 7. It consists of a Simulation
3D Scene Configuration block, and an arbitrary amount of actor and sensor
blocks. The former block is the most important, and is recognized as the middle
block in Figure 7. This block handles the communication with the Unreal Engine
environment. It is important to configure the priority of the blocks correctly to
enable communication. This is explained thoroughly in MATLABs tutorials1.
The remaining blocks are From- and To Workspace-blocks and simply export
the data for further use.

Figure 7: Simulink connected to Unreal Engine

The simulated scenario is specified through certain waypoints from which a
trajectory is created. To make a smooth trajectory from the specified waypoints,
they are interpolated using the smoothPathSpline2. An example of a trajectory
is shown in 8. This function gives poses in 2D, which are fed as input into the
[x, y, ψ]T states of the vehicle, where x and y are the xw and yw positions of
the vehicle origin defined in reference to the world coordinates, whilst ψ is the
heading of the vehicle relative to the world frame. The simulator follows a left-
hand coordinate system with the x-axis pointing forward, the y-axis pointing
rightwards and z-axis pointing upwards. This is the reason for the negative gain
blocks input into the Ego Vehicle-block in Figure 7.

0 50 100 150 200 250

X (m)

-10

0

10

Y
 (

m
)

Reference Path

Figure 8: Trajectory of the ego-vehicle

1https://se.mathworks.com/help/driving/ug/how-3d-simulation-for-automated-driving-
works.html

2https://se.mathworks.com/help/driving/ug/select-waypoints-for-3d-simulation.html

Page 27

4 DEVELOPMENT PLATFORM 4.1 Simulation Framework

To make the simulator as realistic as possible, a truck is used as the ego-
vehicle. The vehicle is equipped with two 3D-lidars in order for the vehicle to
be aware of its surroundings at all times. Both LiDARs technical specifications
as given in table 1. Visualized in MATLAB, the point cloud at a specific time
is shown in 9. The car that can be seen in the point cloud is one of the static
actors as mentioned earlier.

Figure 9: Point cloud in the middle of the tunnel

4.1.5 Point Cloud storage

After the simulation is complete and the data is recorded it is stored in .mat-files.
In order to utilize this data optimally for our SLAM implementations the .mat-
files are then read using Pythons scipy library and further stored in rosbags. In
order to mimic the time delay between each full scan from the simulator, each
point cloud is stored with the same frequency as specified in the simulator. This
can be done since the data set also contains specs about the LiDAR itself, and
the frequency is ensured using ROS’ inbuilt rate class. The entire pipeline of
how the simulation is performed and the data is stored is shown in Figure 10

4.1.6 Challenges and shortcomings

Unreal Engine is not a classical robotics simulator, but it is made to create
games in a wide variety with a simple GUI. Additionally it is a relatively new
feature, meaning it has not gone through many iterations of development. A
shortcoming of the simulator is that LiDAR scans aren’t provided as continuous
streams, as a real-world LiDAR would have. This makes it harder to quantify the
effect of motion distortion, which is an issue to deal with for LiDAR odometry
methods.

Another challenge was the coordinate system of the simulator. Initially this
led to confusion since the simulation environment did not act as expected.

Page 28

4 DEVELOPMENT PLATFORM 4.2 Software Libraries

MATLAB

Poses

Simulink

Pointclouds, ground truth poses, et...

MATLAB INFRASTRUCTURE

W
o

rk
s
p

a
c
e

Unreal Engine

Actors, sensors + poses of acto...

LiDAR point clouds

.mat file

Python

After simulation

rosbag
data LiDAR Odometry and Mapping System

Figure 10: Pipeline showing data flow during and after simulation

4.2 Software Libraries
The software of the SLAM system is implemented in Python 3.6.12. Most SLAM
systems are implemented in C++ for optimized speed, but to investigate the
theory and to give a proof-of-concept this thesis is implemented in the more
user-friendly Python. The rest of this section gives an overview of the different
Python libraries used in the SLAM system.

4.2.1 GTSAM

GTSAM is a factor graph library implementing the iSAM2 algorithm. It exploits
factor graphs and Bayes networks instead of direct sparse matrix algebra to
optimize the structure of the problem for a most probable configuration. As it
is meant for back-end optimization, it does not come equipped with a sensor
front-end.

4.2.2 ROS

Robotic operating system (ROS)[19] is an open-source distributed and modular
platform for developing robotics software. It is perhaps the most popular frame-
work for SLAM (and many other applications) due to its extensive collection of
tools, libraries and conventions combined with the fact that it can be equipped
across a wide variety of platforms through a simple communication interface.

Another benefit of using ROS is that it has a standardized inbuilt data-
storage type called rosbag. Rosbags allows us to read data as if it was real-time
using time-stamps.

Page 29

4 DEVELOPMENT PLATFORM 4.2 Software Libraries

4.2.3 Point Cloud Library

Point cloud library (PCL)[16] is a highly established open-source library for
point cloud manipulation. It contains functions for extracting keypoints, com-
puting descriptors, point cloud registration and alot more, which makes it highly
relevant for LiDAR SLAM. It is also compatible with ROS and has several open-
source bindings to Python.

4.2.4 OpenCV

OpenCV[1] is an open-source library for image manipulation. The reason for
including the OpenCV library for this thesis is because it has good descriptor
matching functionality.

4.2.5 Pylie

Pylie is a small Lie-algebra library for Python created by Trym Haavardsholm.
It contains classes and functions for manipulating poses and composing vectors
lying on both the SE(3) and SO(3) groups.

4.2.6 Open3D

Open3D[26] is an open-source library for manipulating 3D data, such as point
clouds. It is used supplementary to PCL since the Python bindings for PCL
aren’t very comprehensive. The main functionality for the open3D library is to
calculate the ISS3D keypoints in the feature extraction module.

Page 30

5 SYSTEM OVERVIEW

5 System Overview
The goal of this section is to give an overview of the system and show how the
estimation process is executed. It starts by giving an overview of the system
architecture in Section 5.1. Section 5.2 gives a brief introduction to the fast
pairwise global registration algorithm.

5.1 System Architecture
An overview of the system is shown in Figure 11. It consists of three main
threads running in parallell: A feature extraction thread, an odometry thread
and a mapping thread. The figure shows an additional visualization module,
which is set up using the 3D visualization tool rviz, which is a part of the ROS
framework.

Normals

Extract ISS

FPFH

Deserialize

RANSAC

FPGR

Graph

Prev point cloud

Deserialize

Map filter

Transformation

World pose

Point cloud

Serialize

Visualization module...

Feature Extraction Thread Mapping Thread

Odometry Estimation Thread

Serialize

Raw point clouds

Segmentation

Outlier fil...

Figure 11: System architecture

Page 31

5 SYSTEM OVERVIEW 5.1 System Architecture

5.1.1 Feature Extraction Thread

Feature extraction is an essential part of every feature-based LiDAR navigation
system. The main task of the feature extraction thread is to extract robust
features for the system to use for matching purposes. Finding few, but rep-
resentative features can severely decrease the computational complexity of the
cloud-to-cloud tracking problem. The extraction consists of several steps, with
the pipeline visualized in the feature extraction thread in Figure 11.

The first step is segmentation of the point cloud. The goal of this step is
to find the ground plane of the point cloud and remove it for the remainder of
the process. After this the point cloud goes through a statistical outlier removal
filter which removes all points where standard deviation of the average distances
to its k-nearest neighbors surpasses that of the point cloud in general. This step
is especially important in real-world applications to remove noisy points from
the point cloud, however it showed very little effect in the simulations.

The remaining steps of the feature extraction thread concerns extracting
robust features and descriptors to be used for motion tracking. Firstly, the
normals are computed. The normals are necessary for the computation of alot
of robust keypoints as it contains information about the surface around a point.
Afterwards, the ISS3D keypoints introduced in Section 2.10.2 are calculated.
This step is very important for computational complexity, as it reduces the
amount of points by an order of magnitude. The ISS3D keypoints have also
shown to be robust enough to still provide enough information to perform motion
tracking. The final step of feature extraction is to calculate the FPFH features
discussed in Section 2.11.2. The message is then serialized and published to
a ROS topic for it to be used in motion tracking in the odometry estimation
thread.

5.1.2 Odometry Estimation Thread

The odometry estimation thread handles the cloud-to-cloud estimation of mo-
tion. It maintains a copy of the previous point clouds as well as its feature
descriptors. First, the point cloud is refined by running it through the model-
fitting algorithm RANSAC. The model that showed the best performance was
a cylinder-model. Afterwards, the features are matched with respect to the
previous frame and motion is estimated through the fast pairwise global reg-
istration(FPGR) as suggested in [25]. The algorithm ensures robust feature
matching through a reciprocal test and a tuple test before estimating the odom-
etry using Gauss-Newton on a Geman-McClure penalty function. Details are
provided in Section 5.2. After the odometry is estimated it is passed to a fac-
tor graph implemented in GTSAM, and pose is estimated. As a final step, the
current refined point cloud is transformed to world coordinates and published
to a ROS topic for the mapping thread to use.

5.1.3 Mapping Thread

The goal of the mapping thread is to refine the map for visualization purposes.
It does this by representing the map as a KDTree and comparing the points in
the map with the points in the incoming point cloud. If the map contains no

Page 32

5 SYSTEM OVERVIEW 5.2 FPGR

points in a 2m radius of point from the incoming point, it is added to the map.
The map is then published to be used for visualization purposes.

5.2 FPGR
Fast pairwise global registration(FPGR)[25] is an algorithm for registration of
three-dimensional surfaces with only partial overlapping. It requires no initial-
ization and [25] argues that it can align surfaces at an accuracy comparable
to ICP while being an order of magnitude faster. The method consists of two
steps; Pruning the correspondence set and solving the optimization problem.

5.2.1 Pruning of Correspondences

The pruning of the correspondence test is done in three parts; calculating the
initial correspondence set using FPFH features, finding good matches by the
reciprocal test and checking compatibility using the tuple test. Let P and Q be
the sets of which we wish to calculate the transformation between. Further let
p and q be points in the sets, respectively. Finding the initial correspondence
set is done by finding the nearest neighbor for each descriptor of a point in
P , defined as F (p), in Q.

Performing the reciprocal test involves calculating the the nearest neighbor
for every point in Q, F (q). Any correspondence from the initial correspondence
set is only valid if the nearest neighbor of a descriptor in point p, F (p) is F (q)
and the nearest neighbor of a descriptor in point q, F (q) is F (p). This way
correspondences are only valid if the proposal of a nearest neighbor is reciprocal.

The tuple test involves checking compatibility of sets of points within the
new correspondence set. This is done by randomly picking 3 correspondence
pairs, (p1, p2, p3), (q1, q2, q3) from the correspondence set, and calculating the
ratio

∀i 6= j τ <
||pi − pj ||
||qi − qj ||

<
1

τ
(5.1)

[25] also suggest τ = 0.9. Any tuples of correspondences that pass this test is
added to a final correspondence set used for the optimization.

5.2.2 Optimization

The objective function proposed by [25] is given by

E(T, L) =
∑

p,q∈K
(lp,q||p−Tq||2 + ψ(lp,q)) (5.2)

where

ψ(lp,q) = µ(
√
lp,q − 1)2 (5.3)

lp,q = (
µ

µ+ ||p−Tq||2
)2 (5.4)

and µ is a tuning coefficient that increases the convexity of the problem.

To be able to express (5.2) in terms of Gauss-Newton optimization T is
linearized locally as a 6-dimensional vector according to the Lie algebra covered

Page 33

5 SYSTEM OVERVIEW 5.2 FPGR

in Section 2.5.3. This gives the vector ξ = (ω, t) where ω are the rotational
components and t are the translational components of the transformation. The
Gauss-Newton is then solved as

Tk+1 = Exp(−JT
r Jrξ − JT

r r) ◦Tk (5.5)

where Exp(·) is defined as in Section 2.5.3, r is the residual vector and JT
r is

its Jacobian. Notice that the system only optimizes the pose, meaning that it
treats the structure as given.

Experimentally it was found that the Jacobian should be constricted to
prioritize residuals in the longitudinal directions, otherwise the system tended
to drift in the roll, pitch and altitude.

Page 34

6 RESULTS

6 Results
This section represents the results achieved by the LiDAR odometry system on
several simulated scenarios of a truck driving through a tunnel. The simulation
environment is introduced in Section 4.1.2. The goal of the experiments is to
investigate whether or not LiDAR odometry estimation is able to provide a
solution to the problem, and to unveil some of the challenges related to the
problem.

The experiments are shown in Section 6.1. The qualitative results are rep-
resented in Section 6.2, and the quantitative results are represented in 6.3.

6.1 Experiments
The two experiments are supposed to investigate two different spectra of chal-
lenges related to LiDAR odometry estimation. The first experiment is a rela-
tively simple scenario of a truck driving straight through a completely empty
tunnel with no actors. It will prove as a proof-of-concept and highlight some of
the “basic” challenges of the proposed solution.

The second experiment shows a truck driving through a tunnel following a
more complicated path with several props placed inside the tunnel. It serves
to show that the proposed solution has the potential to solve more complex
scenarios, and also highlight some challenges that must be resolved before the
solution can be deployed in practice.

6.1.1 Simple Path Experiment

The simulated trajectory is depicted in 12. It shows the trajectory of a vehicle
driving in a straight line through a tunnel. The vehicle covers a total of 220m
over a time period of 60 seconds. No props were placed inside the tunnel. The
experiment uses data only from the LiDAR mounted on the front bumper, which
has the specifications given in 1.

0 50 100 150 200 250

X (m)

-10

0

10

Y
 (

m
)

Reference Path

Figure 12: Experiment trajectory

6.1.2 Challenging Path Experiment

The simulated trajectory is depicted in Figure 13. It shows the trajectory of
a vehicle following a path involving several turns approximately covering 330m
over 60 seconds. Inside of the tunnel there are placed several props, including
two small traffic cones, a traffic barrel and a static car. Notice how the path
starts outside the tunnel, goes through the tunnel before turning and driving
halfway back through the same tunnel. The vehicle remains inside the tunnel
for approximately the first 40 seconds. After the vehicle has driven out of the

Page 35

6 RESULTS 6.2 Qualitative results

tunnel, it makes a crude turn before driving back through the same tunnel.
The experiment uses data only from the LiDAR mounted on the front bumper,
which has the specifications given in 1.

0 50 100 150 200 250

X (m)

-10

0

10

Y
 (

m
)

Reference Path

Figure 13: Experiment trajectory

Table 1: Technical specifications for the LiDAR mounted on the front bumper
of the vehicle

Parameter name Numerical value
Detection range 50m
Range resolution 0.002m
Vertical FOV 40◦

Vertical resolution 1.25◦

Horizontal FOV 180◦

Horizontal resolution 0.16◦

Frequency 15Hz

6.2 Qualitative results
This section investigates the qualitative results of the proposed LiDAR-based
odometry estimation solution on two different data sets. The qualitative results
focus on the consistency of the map and the estimated trajectory.

6.2.1 Simple Path

The map created when following the simple path is shown in 14. Notice that
neither the trajectory nor the map contains any sudden skips or discontinuities.

Page 36

6 RESULTS 6.2 Qualitative results

Figure 14: Estimated map with trajectory in the simple path experiment

6.2.2 Challenging Path

The map created is shown in full in Figure 15. Notice that after the vehicle has
driven out of the tunnel at approximately 200m north, there is a sudden shift
in the trajectory. Also notice that the map is completely continuous up until
this point.

Page 37

6 RESULTS 6.3 Quantitative results

Figure 15: Estimated map with trajectory in the challenging path experiment

6.3 Quantitative results
This section investigates the quantitative results of the proposed LiDAR-based
odometry estimation solution on two different data sets. Section 6.3.1 shows how
the feature extraction module and the RANSAC procedure severely decreases
the amount of points in the point cloud while and Section 6.3.2 and Section
6.3.3 represents the results on the individual experiments.

6.3.1 Dimensionality Reduction

The feature extraction module decreases the dimensionality of the point cloud
for each filtering step. The density of each cloud is shown in Figure 16. The
dimension of the clouds is shown in table 2.

Page 38

6 RESULTS 6.3 Quantitative results

(a) Raw point cloud (b) Cloud after removing ground plane

(c) Cloud after ISS keypoint extraction (d) Cloud after RANSAC

Figure 16: Clouds inbetween each step in feature extraction

Table 2: The amount of 3D points in the point cloud after each step

Extraction step # of points
Raw cloud 36000
Removed floor 16093
ISS extraction 683
RANSAC fit 226

The dimensionality of the problem is thereby reduced from 36000 three-
dimensional points in the raw point cloud to 226 three-dimensional points to be
processed in the matching procedure.

6.3.2 Simple Path

Figure 17 shows the estimated trajectory plotted against the true trajectory for
the simple path experiment. The first point clouds are empty, so the origin of
the estimate is set to match that of the real system. Figure 18 shows how the
planar errors develop over time. The upper plot shows the error in travelled
distance, while the lower plot shows the error for the heading estimate.

Page 39

6 RESULTS 6.3 Quantitative results

The upper plot in Figure 18 shows a linear trend for the development of the
covered distance throughout the entire trajectory. This resulted in an root mean
square error(RMSE) of 20.2m, with the error reaching its maximum of 33.4m
after approximately 58 seconds. The lower plot in Figure 18 shows that the
error in heading fluctuates alot around zero. The heading error has an RMSE
of 2.5◦, and reaches its maximum of 6.4◦ after 60 seconds, which is at the end of
the trajectory. Notice that both of the maximum errors come at the end of the
trajectory, which is when the vehicle is at the end of the tunnel and the LiDAR
point cloud becomes sparse.

The timing statistics of the simple path problem is shown in table 3. The
most important statistics for a system operating in the real world are the max-
imum execution time and the standard deviation.

Table 3: Estimation time statistics from odometry estimation system for the
simple path experiment

Statistic Numerical value
Mean 0.871s
Median 0.918s
Standard deviation 0.292s
Maximum 2.034s
Minimum 0.216s

−20 −10 0 10 20 30
West[m]

0

50

100

150

200

No
rth

[m
]

Estimated trajectory vs ground truth
Estimate
Truth

Figure 17: Estimated trajectory plotted against ground truth in the simple
path experiment. The origin of the system is shifted to match that of the real
trajectory.

Page 40

6 RESULTS 6.3 Quantitative results

0

10

20

30
[m

]
Error in distance travelled

0 10 20 30 40 50 60
time[sec]

−5.0

−2.5

0.0

2.5

5.0

[d
eg

]

Error in ψ

Planar errors

Figure 18: Errors in travelled distance and in heading for the simple path ex-
periment

6.3.3 Challenging Path

Figure 19 shows the estimated trajectory plotted against the true trajectory for
the challenging path experiment. As the first three point clouds given to the
system were empty, the origin of the estimated trajectory has been shifted to
match that of the true trajectory. Figure 20 shows how the planar errors develop
over time. The upper plot shows how the error develops for the travelled distance
and the bottom plot shows how the error develops for the heading estimates.

For approximately the first 40 seconds, the vehicle remains inside the tun-
nel.This is the situation where one could expect a LiDAR odometry system
to function optimally. Figure 21 shows how the planar errors develop during
this part of the trajectory. The RMSE in terms of distance travelled for the
40 seconds is approximately 18.9m. The trend is linearly increasing, reaching a
plateau at approximately 29.5m after 35 seconds. Investigating the lower plot of
Figure 21 shows that the peak error in the first 40 seconds is approximately 6.9◦
after 2 seconds. At this part of the trajectory the vehicle performs a turning
maneuver. The RMSE of the heading estimation in the first 40 seconds is 3.0◦.
After the first 40 seconds, the heading estimation error exceeds 180◦, as seen in
Figure 20.

The timing statistics of the odometry estimation system is shown in table
4. The most important statistics for a system to be used in the real world are
the maximum time and the standard deviation, as they hold information about
the worst-case scenario and how large the deviation from the mean one could
expect most of the time.

Page 41

6 RESULTS 6.3 Quantitative results

Table 4: Estimation time statistics from odometry estimation system for the
challenging path experiment

Statistic Numerical value
Mean 0.588s
Median 0.582s
Standard deviation 0.307s
Maximum 1.450s
Minimum 0.006s

0 10 20 30 40 50 60
West[m]

0

50

100

150

200

250

No
rth

[m
]

Estimated trajectory vs ground truth
Estimate
Truth

Figure 19: Estimated trajectory plotted against ground truth in the challenging
path experiment. The origin of the system is shifted to match that of the real
trajectory.

Page 42

6 RESULTS 6.3 Quantitative results

0

20

40

60
[m

]
Error in distance travelled

0 10 20 30 40 50 60
time[sec]

−200

−100

0

100

[d
eg

]

Error in ψ

Planar errors

Figure 20: Errors in travelled distance and in heading for the challenging path
experiment.

0

10

20

30

[m
]

Error in distance travelled

0 5 10 15 20 25 30 35
time[sec]

−10

−5

0

5

10

[d
eg

]

Error in ψ

Planar errors

Figure 21: Errors in travelled distance and in heading the first 40 seconds of
the challenging path experiment.

Page 43

7 DISCUSSION

7 Discussion
This section discusses the results represented in Section 6. The discussion aims
to provide insight to the strengths and weaknesses of the odometry system
according to the challenges introduces in Section 1.3 and its applicability as
part of a larger SLAM system.

7.1 Consistency
The proposed odometry estimation system is supposed to be part of a larger
SLAM system providing back up to an inertial navigation system in the case
of bad GNSS coverage, illustrated in this case by the vehicle driving through
a tunnel. It is necessary for a backup system to be consistent, at least locally.
Looking at Figure 14 shows that the system is able to produce a continuous
estimate of the trajectory and map of the tunnel. However, Figure 15 shows
that when the system looses track, such as when driving out of the tunnel, the
vehicle suddenly estimates that it drives through the tunnel wall it mapped
earlier. This situation arises because the estimation is purely only an odometry
estimation, and does not consider the map at all. The consistency of the system
could be increased by smoothing over a history of the last poses, and possibly
also matching towards old point clouds.

7.2 Robustness
The upper part of Figure 17 and Figure 19 shows that the system initially is
able to provide a somewhat good estimate of the trajectory. Investigating Figure
17 shows that the estimation has a tendency to drift even in the simplest case
of driving through an empty tunnel. A reason for this might be that a single
bad estimation of orientation can throw the system completely off course. The
robustness could be increased by introducing smoothing over a history of poses
into the estimation system.

Figure 19 shows another challenge of the estimation problem. This problem,
however, is more general for all estimation systems; namely how to handle the
case of lost track. After the vehicle has left the tunnel, the underlying connectiv-
ity assumption of the cloud-to-cloud odometry estimation system falls through.
As a result of this it is almost completely random how it reinitializes. A system
for resuming or reinitalizing track in a reasonable must be developed in order
for the system to be used in practice.

The error in distance travelled is apparent in both experiments. Comparing
the performance of the system on the simple scenario to the first 40 seconds
of the challenging scenario should yield approximately equal results in terms of
traversed distance, as it is equal in both scenarios except for the little maneuver
in the beginning of the challenging trajectory. The RMSEs in travelled distance
achieved in the simple scenario and the challenging scenario were 20.2m and
18.9m respectively. RANSAC introduces some form of randomness into the sys-
tem, which may be why the two differ. However, the difference may also come
from the fact that it is easier to predict transformations when more significant
maneuvers are made, as is the case for much of the challenging scenario. The
drift in distance travelled might be reduces by introducing smoothing, as men-

Page 44

7 DISCUSSION 7.3 Reliability

tioned earlier. Another way to reduce this error is to introduce other odometry
information. Typically, autonomous ground vehicles include sensors such as
IMUs or wheel encoders, and therefore it might be beneficial to investigate the
inclusion of this information as well.

7.3 Reliability
Another important aspect of the system is to be reliable for real-time opera-
tion. It is interesting to investigate the timing statistics in the two experiments.
The timing statistics of the two experiments are shown in table 3 and table 4.
These tables show that there is a large difference between the amount of time
needed for estimation in the two experiments. The simple trajectory experi-
ment require almost 1.5x for estimation compared to the challenging trajectory
experiment on average. A reason for this might be that the simple trajectory
covers less distance in more time, giving room for more matches in each itera-
tion. Additionally, the challenging trajectory scenario has a period where the
point cloud becomes very sparse, and even completely empty. This drives down
the average, but looking at the median and the standard deviation in the two
experiments shows that it is the case in general as well. Investigating the max-
imum time needed to produce a single estimate shows that the simple scenario
require 2.034 seconds while the challenging scenario require 1.450 seconds. This
might be because the problem converges faster for larger maneuvers.

As a measure of reliability, the most important statistics are the worst-case
execution time and the standard deviation, which in this case are 2.034 seconds
and 0.292 seconds for the simple trajectory experiment, respectively. For the
challenging trajectory scenario they are 1.450 seconds and 0.307 seconds, respec-
tively. LOAM[23] argues that their system, which delivers odometry estimates
at 10Hz is suitable for real-time operation. For the challenging scenario one
could expect the most of odometry estimates to arrive every 0.588± 0.307 sec-
onds. This heavily exceeds the delivery time of LOAM. For the simple scenario
this consideration is even worse. Therefore, more efficient implementations must
be investigated before it is ready to be used for real-time operation. Addition-
ally, the proposed LiDAR odometry system does only consider cloud-to-cloud
matching. As mentioned earlier, smoothing could improve the performance of
the system. This would incur even more processing time needed for estimation,
so the effectiveness of the proposed system needs improving.

7.4 Uncertainty
Uncertainty is an important part of estimation. The LiDAR odometry system
proposed does not include any sort of uncertainty measure in its estimation.
This is very undesirable for any sort of navigation system as it makes the inclu-
sion of other sensors suboptimal. The inclusion of GPS or IMU measurements
is useless without any measure of what estimates are considered “bad” and what
are considered “good”. Therefore, to be used in a SLAM system the LiDAR
odometry estimation needs to include an uncertainty measure. Methods for
estimating uncertainty between cloud matches are proposed in [20].

Page 45

7 DISCUSSION 7.5 Future Work

7.5 Future Work
Currently the motion estimation is only cloud-to-cloud based, meaning it is
prone to drift. Moreover, the optimization problem in 5.2 treats the surround-
ing structure as a constant. Performance could probably be improved by also
optimizing the structure. Also, although odometry systems have tendencies to
drift since they do not optimize over the entire map, they typically implement
some sort of smoothing over a history of poses. Since the end goal is to build
a SLAM system for an autonomous ground vehicle, smoothing over both map
and a history of poses needs to be implemented.

A SLAM system also needs to include loop closures. This involves investi-
gation of different LiDAR-based loop closure methods. For example, methods
such as LeGO-LOAM[17] implement loop closures by comparing ICP between
the current and old views.

As the system is to prove as a backup system for an inertial navigation
system, it would be natural to extend the integrate IMUs in the odometry esti-
mation process. A necessity for the integration of other sensors is to provide an
estimate of uncertainty in the LiDAR odometry. Integrating other sensor infor-
mation could also help improve the robustness of the system in either feature-
poor environments or when the point cloud becomes very sparse. Inspiration
on how to do this could be found in methods such as LIO-SAM[18].

In order to be used for real-world applications the system needs to be able
to provide motion estimates on a stable high frequency. To be able to provide
estimates on a higher frequency, more efficient implementations need to be in-
vestigated. This could include restructuring the architecture of the system. For
example, improvements could be made by moving the RANSAC step shown in
the odometry estimation thread in Figure 11 into the feature extraction thread.

The main limiting factor of the work has been the programming language
used for development. The PCL library bindings towards Python are community-
made and none of them are especially comprehensive. This severily limits the
opportunities the library originally has. Additionally, although GTSAM has
bindings towards Python that are created by authors of the library itself, its
bindings aren’t complete either. Therefore a possible improvement is to migrate
the system to C++, which is the most commonly used programming language
for SLAM applications. Migration to C++ could even improve the real-time
performance of the system.

Page 46

8 CONCLUSION

8 Conclusion
This thesis has presented an analysis of some challenges related creating a SLAM
system in the context of ground-based tunnel navigation. They have been inves-
tigated using a simple feature-based odometry estimation mapping system in a
simulated environment. The possibility of using this system as the front-end of
a larger SLAM system has also been investigated. The proposed system consists
of three modules, one for feature extraction, one for odometry estimation and
one for mapping. The feature extraction module severely decreases the amount
of points to be processed in the other modules by an order of magnitude.

The results shows that the simulated environment provides a feature rich en-
vironment where feature-based LiDAR odometry estimation is able to provide
a reasonable estimate of the trajectory. However, the proposed system tends to
drift quickly in the estimation of travelled distance, and is not robust towards
single bad estimates in heading. Moreover, the proposed system is not suit-
able for real-time operations, as the odometry estimates arrive too infrequent.
Additionally, the system needs robust methods for reinitialization after track is
lost.

Future work should focus on decreasing drift and improving real-time per-
formance. A way to decrease the drift of the travelled distance estimate is to
include smoothing over a history of old poses and point clouds. This could also
provide robustness in the heading estimates. Drift could also be suppressed by
introducing loop closures and GNSS measurements as global consistency mea-
sures into the system. Other sensory information such as from inertial sensors
like IMUs are used in state-of-the art methods such as LIO-SAM, and are natural
extensions to our system since it is to be part of an INS. Real-time performance
could be improved by dividing the system into several estimation cycles, such
as done in methods like LOAM, where the first cycle provides a rough estimate
and the later cycles improve the previous estimations.

Page 47

REFERENCES REFERENCES

References
[1] G. Bradski. “The OpenCV Library.” In: Dr. Dobb’s Journal of Software

Tools (2000).

[2] Edmund Brekke. Fundamentals of Sensor Fusion.

[3] C. Cadena et al. “Past, Present, and Future of Simultaneous Localization
And Mapping: Towards the Robust-Perception Age.” In: IEEE Transac-
tions on Robotics 32.6 (2016), 1309–1332.

[4] Timothy A. Davis et al. “Algorithm 836: COLAMD, a Column Approx-
imate Minimum Degree Ordering Algorithm.” In: ACM Trans. Math.
Softw. 30.3 (Sept. 2004), 377–380. url: https://doi.org/10.1145/
1024074.1024080.

[5] Framl Dellaert and Michael Kaess. Factor Graphs for Robot Perception.
Vol. 6. 2017.

[6] J. Engel, T. Schöps, and D. Cremers. “LSD-SLAM: Large-Scale Direct
Monocular SLAM.” In: European Conference on Computer Vision (ECCV).
2014.

[7] Epic Games. Unreal Engine. Version 4.23. Jan. 30, 2019. url: https:
//www.unrealengine.com/en-US/.

[8] Trym Vegard Haavardsholm. A handbook in Visual SLAM. 2019.

[9] Wolfgang Hess et al. “Real-Time Loop Closure in 2D LIDAR SLAM.”
In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). 2016, pp. 1271–1278.

[10] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. “iSAM: Incre-
mental Smoothing and Mapping.” In: Robotics, IEEE Transactions on 24
(Jan. 2009), pp. 1365 –1378.

[11] Michael Kaess et al. “ISAM2: Incremental Smoothing and Mapping Using
the Bayes Tree.” In: Int. J. Rob. Res. 31.2 (Feb. 2012), 216–235. url:
https://doi.org/10.1177/0278364911430419.

[12] Georg Klein and David Murray. “Parallel Tracking and Mapping for Small
AR Workspaces.” In: Proc. Sixth IEEE and ACM International Sympo-
sium on Mixed and Augmented Reality (ISMAR’07). Nara, Japan, 2007.

[13] Raul Mur-Artal, J. Montiel, and Juan Tardos. “ORB-SLAM: a versa-
tile and accurate monocular SLAM system.” In: IEEE Transactions on
Robotics 31 (Oct. 2015), pp. 1147 –1163.

[14] Open Robotics. Gazebo. Version 11.0.0. Jan. 30, 2019. url: http : / /
gazebosim.org/.

[15] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. “Fast point feature
histograms (FPFH) for 3D registration.” In: 2009 IEEE international con-
ference on robotics and automation. IEEE. 2009, pp. 3212–3217.

[16] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library
(PCL).” In: IEEE International Conference on Robotics and Automation
(ICRA). Shanghai, China, 2011.

Page 48

https://doi.org/10.1145/1024074.1024080
https://doi.org/10.1145/1024074.1024080
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://doi.org/10.1177/0278364911430419
http://gazebosim.org/
http://gazebosim.org/

REFERENCES REFERENCES

[17] Tixiao Shan and Brendan Englot. “LeGO-LOAM: Lightweight and Ground-
Optimized Lidar Odometry and Mapping on Variable Terrain.” In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2018, pp. 4758–4765.

[18] Tixiao Shan et al. “LIO-SAM: Tightly-coupled Lidar Inertial Odometry
via Smoothing and Mapping.” In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 5135–5142.

[19] Stanford Artificial Intelligence Laboratory et al. Robotic Operating Sys-
tem. Version ROS Melodic Morenia. May 23, 2018. url: https://www.
ros.org.

[20] Zuolei Sun et al. “Inferring laser-scan matching uncertainty with condi-
tional random fields.” In: Robotics and Autonomous Systems 60.1 (2012),
pp. 83 –94. url: http://www.sciencedirect.com/science/article/
pii/S0921889011001746.

[21] Sebastian Thrun et al. “FastSLAM: An Efficient Solution to the Simul-
taneous Localization And Mapping Problem with Unknown Data.” In:
Journal of Machine Learning Research 4 (May 2004).

[22] Webots. http://www.cyberbotics.com. Ed. by Cyberbotics Ltd. Open-source
Mobile Robot Simulation Software. url: http://www.cyberbotics.com.

[23] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in
Real-time.” In: Robotics: Science and Systems. Vol. 2. 9. 2014.

[24] Y. Zhong. “Intrinsic shape signatures: A shape descriptor for 3D object
recognition.” In: 2009 IEEE 12th International Conference on Computer
Vision Workshops, ICCV Workshops. 2009, pp. 689–696.

[25] Qian-Yi Zhou, Jaesik Park, and V. Koltun. “Fast Global Registration.”
In: ECCV. 2016.

[26] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern
Library for 3D Data Processing.” In: arXiv:1801.09847 (2018).

Page 49

https://www.ros.org
https://www.ros.org
http://www.sciencedirect.com/science/article/pii/S0921889011001746
http://www.sciencedirect.com/science/article/pii/S0921889011001746
http://www.cyberbotics.com

	Problem Description
	Abstract
	Preface
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goal of the project
	Challenges
	Contributions
	Outline

	Preliminaries
	Sensors
	GNSS
	IMU
	LiDAR

	Simulation Frameworks
	Gazebo
	Unreal Engine

	SLAM
	Classical SLAM Problem
	EKF-SLAM
	FAST-SLAM

	Poses
	SO(3)
	SE(3)
	Lie Algebra

	Nonlinear solvers
	Gauss-Newton
	Levenberg-Marquardt

	Bayes Net
	Bayes Trees

	Graph-based SLAM
	Front-end and Back-end
	Factor graphs
	Solution to the SLAM problem
	Variable Elimination

	Point Cloud Registration
	Point Cloud Keypoints
	Harris Corners
	ISS3D

	Point Cloud Feature Descriptors
	PFH
	FPFH

	State-of-the-art SLAM
	LiDAR SLAM Systems
	LOAM
	LeGO-LOAM
	LIO-SAM

	iSAM2
	Incremental Inference
	Incremental Variable Ordering
	Fluid Relinearization
	Partial State Updates

	Development Platform
	Simulation Framework
	MATLAB and Unreal Engine
	Environment
	Point Cloud Representation
	Simulation
	Point Cloud storage
	Challenges and shortcomings

	Software Libraries
	GTSAM
	ROS
	Point Cloud Library
	OpenCV
	Pylie
	Open3D

	System Overview
	System Architecture
	Feature Extraction Thread
	Odometry Estimation Thread
	Mapping Thread

	FPGR
	Pruning of Correspondences
	Optimization

	Results
	Experiments
	Simple Path Experiment
	Challenging Path Experiment

	Qualitative results
	Simple Path
	Challenging Path

	Quantitative results
	Dimensionality Reduction
	Simple Path
	Challenging Path

	Discussion
	Consistency
	Robustness
	Reliability
	Uncertainty
	Future Work

	Conclusion
	References

