
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Sjur Grønnevik Wroldsen

LiDAR-Inertial SLAM System for
Tunnel Navigation of an Autonomous
Road Roller

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Sondre Midtskogen

June 2021

M
as

te
r’s

 th
es

is

Sjur Grønnevik Wroldsen

LiDAR-Inertial SLAM System for Tunnel
Navigation of an Autonomous Road
Roller

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Sondre Midtskogen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Autonomous operation can reduce human exposure to hazardous environments.
Additionally, it can improve time- and cost-effectiveness since several autonomous
vehicles can be operated by a single operator without being physically present.
This is favorable for many industries, among others the road construction industry.
The problem of autonomous operation of a road roller is the subject of study in this
thesis. Autonomous operation requires robust systems for navigation. Typically
navigation systems rely on inertial sensors aided by measurements from Global
Navigation Satellite System (GNSS) to keep their estimates globally consistent.
In the case of poor satellite coverage, however, these navigation systems tend to
drift quickly.

To help mitigate this drift, exteroceptive sensors such as a camera and/or a Light
Detection and Ranging (LiDAR) sensors are typically used. This thesis proposes
a simple feature-based LiDAR-Inertial Simultaneous Localization and Mapping
(SLAM) system. The system fuses information from a LiDAR, an Inertial Meas-
urement Unit (IMU), and a GNSS receiver for the problem of tunnel navigation.

The performance of the system is then evaluated on two simulated scenarios. To
the author’s knowledge, there exist no simulated data sets for this particular ap-
plication. Therefore a simulation environment was constructed in the pre-project
[1]. This framework is extended to include inertial sensors and GNSS in this thesis.
The results show that the LiDAR-Inertial SLAM system can provide a reasonable
estimate of its position, producing a Root Mean Square Error (RMSE) of 3.12m
on a trajectory performing a round trip going through the tunnel before turning
and traversing back through the same tunnel. However, the required standard for
documentation states that position must be guaranteed within ±0.2m, so the per-
formance is not in compliance with the standard. The results do further show that
the system underestimates its covariance, giving an Average Normalized Estim-
ation Error Squared (ANEES) of 9.85 with the 95% confidence bounds of [2.65,
3.37]. The results were achieved after smoothing when returning to the start po-
sition after re-exiting the tunnel.

iii

Sammendrag

Autonom drift kan redusere menneskelig utsettelse mot farlige miljøer. Det kan
også forbedre tids- og kostnadseffektiviteten ved at en menneskelig operator kan
operere flere autonome kjøretøyer på en gang uten å være fysisk tilstede. Dette er
gunstig for mange industrier, deriblant for veikonstruksjon. Denne avhandlingen
ser på problemet om autonom operasjon av en veivals. Autonom operasjon krever
robuste systemer for navigasjon. Tradisjonelt er slike systemer avhengige av å
kombinere treghetssensorer med globale satelittsystemer for navigasjon (GNSS)
for å holde estimatene globalt konsistente. I situasjoner med dårlig satelittdekning
vil derimot slike systemer ha en tendens til å opparbeide drift.

For å minske denne driften blir sensorer som kamera eller laserskannere (LiDAR)
ofte brukt. Denne avhandlingen foreslår et simpelt ‘feature’-basert LiDAR-Inertial
SLAM system som fusjonerer sensorinformasjon fra en IMU, en LiDAR og en GNSS
mottaker for tunnelnavigasjonsproblemet.

Systemet blir deretter evaluert på to ulike simulerte scenarioer. Til forfatterens
kjennskap eksisterer det ingen datasett til denne applikasjonen. Derfor ble det i
forprosjektet [1] utviklet en simulator i MATLAB. Simulatoren blir i denne avhand-
lingen utvidet til å inkludere en IMU og GNSS. Resultatene viser at LiDAR-Inertial
SLAM-systemet klarer å oppnå et bra estimat av posisjonen sin i planet, noe som
resulterer i en Root Mean Square Error (RMSE) på 3.12m på en tur-retur bane
gjennom tunnelen. Standarden for dokumentasjon av kompresjon av materiale
sier at posisjonen må kunne måles med en nøyaktighet på ±0.2m. Etter disse
standardene presterer ikke systemet bra nok. Resultatene viser videre at systemet
undervurderer kovariansen, noe som gir en Average Normalized Estimation Error
Squared (ANEES) på 9.85, der 95% konfidensintervallet tilsier at den skulle lagt
innenfor intervallet [2.65, 3.37]. Disse resultatene ble tatt etter ‘glattingen’ har
forekommet når veivalsen forlater tunnelen for siste gang.

v

Preface

This thesis is submitted in fulfillment of a degree as Master of science at the De-
partment of Engineering Cybernetics, Norwegian University of Science and Tech-
nology.

The work in this thesis extends the work done in the course TTK4550 ([1]). As a
result of this, sections 3.2, 3.5, and 3.6-3.10 are heavily inspired by the contents
of [1].

Working with this thesis has been exciting and challenging. It has given me a
broad insight on the challenges of creating simulated data, and the planning and
considerations that are necessary when designing a system from scratch.

Acknowledgments

I would like to express my great appreciation to my supervisors Annette Stahl
(NTNU) and Sondre Midtskogen (Semcon) for their guidance throughout the en-
tirety of the semester. A special thanks also to Eirik Hexeberg Henriksen (Yeti
Move) who also provided great insight and guidance during both the project thesis
and in the creation of this thesis.

I am particularly grateful for my housemates Aksel Heggernes, Herman Jakobsen,
Iver Myklebust, and Vebjørn Rognli and their support and comradery throughout
the year and for the entirety of my study.

Finally, I wish to offer my special thanks to my parents and family for their continu-
ous support and encouragement ever since I decided to pursue a master’s degree
in technology at NTNU.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xvii
Acronyms . xix
1 Introduction . 1

1.1 Motivation . 1
1.2 Aim of Study . 3
1.3 Contributions . 4
1.4 Outline . 5

2 Related Work . 7
2.1 Review of modern SLAM systems . 7
2.2 State-of-the-art LiDAR SLAM systems 8
2.3 IMU Preintegration On Manifold . 9

2.3.1 IMU Model . 9
2.3.2 Preintegration on Manifold . 10

3 Preliminaries . 11
3.1 Autonomous Vehicles . 11
3.2 Sensors . 12

3.2.1 Inertial Measurement Unit . 12
3.2.2 Global Navigation Satellite System 13
3.2.3 Light Detection and Ranging . 13

3.3 Inertial Navigation Systems . 13
3.4 Statistics . 14

3.4.1 Gaussian Distribution . 14
3.4.2 χ2 Distribution . 15
3.4.3 Maximum A Posteriori Estimation 15

3.5 Nonlinear Solvers . 16
3.5.1 Gradient descent . 16
3.5.2 Gauss-Newton Method . 17
3.5.3 Levenberg-Marquardt Method 17

3.6 Lie Theory . 18

ix

x 3ctionmark

3.6.1 Lie Groups . 19
3.6.2 Lie Algebra . 20

3.7 Odometry . 20
3.8 Point Cloud Alignment . 21
3.9 Feature Extraction . 22

3.9.1 Intrinsic-Shape Signatures . 22
3.9.2 Fast Point Feature Histogram 23

3.10 Factor Graphs . 23
3.11 Simultaneous Localization and Mapping 24
3.12 Graph-Based SLAM . 24

3.12.1 Loop Closure . 25
3.13 Metrics . 26

3.13.1 Root Mean Square Error . 26
3.13.2 Normalized Estimation Error Squared 26

4 Proposed Approach . 29
4.1 Software . 29

4.1.1 MATLAB and Unreal Engine . 29
4.1.2 Robotics Operating System . 30
4.1.3 Georgia Tech Smoothing and Mapping 30
4.1.4 Point Cloud Library . 31

4.2 Data Generation . 32
4.2.1 IMU . 33
4.2.2 GNSS . 34
4.2.3 Sensor Parameters . 34

4.3 LiDAR-Inertial SLAM System . 35
4.3.1 Front-end . 35
4.3.2 Optimization Back-end . 39

5 Results . 41
5.1 Sensor Comparison . 41

5.1.1 Experiment . 41
5.1.2 Results . 42

5.2 Loop Closure . 52
5.2.1 Experiment . 53
5.2.2 Results . 54

6 Discussion . 63
6.1 Sensor Comparison . 63
6.2 Loop Closure . 67

7 Conclusion and Further Work . 71
7.1 Future Work . 72

7.1.1 Testing . 72
7.1.2 Line Features . 72
7.1.3 Uncertainty Estimation . 72
7.1.4 Improved Loop Closures . 73
7.1.5 Exploit Situational Awareness 73

Contents xi

Bibliography . 75
A Hyperparameter Tuning . 79

A.1 Feature Association Hyperparameters 79
A.2 Keyframe Selection Hyperparameters 79
A.3 Loop Closure Hyperparameters . 80

B ROS Graph . 81
C Simulink Block Diagram . 83
D Simulation Environment . 85

D.1 Screenshots of Simulation Environment 85

Figures

1.1 No GNSS Coverage: The problem with relying on GNSS correc-
tion for autonomous navigation arises when driving from an area
with GNSS coverage to an area with no GNSS coverage. The fig-
ure shows a vehicle driving into a tunnel, therefore losing its GNSS
coverage. 2

3.1 Guidance, Navigation and Control: The navigation system is essen-
tial for any GNC system. It estimates the states and provides situ-
ational awareness. 12

3.2 Gaussian Distribution: The figure shows the curve of a normal dis-
tribution in one dimension with x-σ intervals. The percentages show
the likelihood of perturbations from the mean, µ, lying within the
different σ-intervals. 15

3.3 χ2 Distribution: The figure shows the pdfs of a χ2 distribution in
one dimension. Each curve is plotted with a different amount of
DoFs, denoted by k in the legend in the upper right. 16

3.4 Factor Graphs: The figure shows a factor graph displaying an ex-
ample navigation problem. The factors between the xs symbol-
ize odometry measurements. The landmarks are measured using
a LiDAR. The first x also has a prior and a GPS factor connected to it. 23

3.5 Modern SLAM Architecture: The figure shows how the different
responsibilities of a modern SLAM system are split between a front-
end and a back-end. 25

4.1 Rviz Visualization: The figure shows how the rviz module of ROS is
used to visualize the performance of the system. The white dots are
the currently viewed points, the red dots are the points contained in
the map and the axes symbolize the sensor. The surrounding purple
‘bubble’ is the one-sigma ellipsoid in three dimensions. 31

xiii

xiv 3ctionmark

4.2 Data Generation: The figure shows how the data is created before
being written to a format readable in ROS. The data is generated in
MATLAB using a link between Simulink and Unreal Engine. There-
after the produced .mat file is read in Python and written to a rosbag. 32

4.3 IMU Generation: The figure shows the results of the IMU measure-
ment generation. The top figure shows the accelerometer meas-
urements plotted against the real linear acceleration. The bottom
figure shows the gyroscope measurements plotted against the true
measurements. 33

4.4 Short-term Feature Tracking Pipeline: The figure shows the pipeline
of the short-term feature tracking module. The steps consist of fil-
tering, segmentation, feature matching and transformation calcu-
lation. 36

4.5 Back-end: The figure shows how the front-end prepares factors for
the measurements before sending them to the back-end, and at
what frequency they do so. The front-end delivers a rough pose es-
timate, while the back-end delivers a smoothed estimate whenever
a keyframe is recorded. 40

5.1 Experiment: The figure shows the trajectory of the sensor compar-
ison experiment. It shows a straight path starting outside the tunnel
on one side before exiting on the other side. The red crosses mark
GNSS measurements . 42

5.2 XY Position: The figures show the planar position for the sensor
comparison experiment. (a) shows the results using only LiDAR.
(b) shows the results when LiDAR odometry is fused with an IMU.
(c) shows the results when GNSS information is fused when leaving
the tunnel. The upper plot in each figure shows how the estimated
trajectories before and after smoothing match the ground truth tra-
jectory in the plane. The middle plot in each figure shows how the
estimated trajectory with its respective one-sigma ellipses around
every other pose. The lower plot in each figure shows the same as
the middle plot, but after smoothing. 45

Figures xv

5.3 Absolute Errors: The figures show how the planar errors develop
over time for the sensor comparison experiment. (a) shows the res-
ults when estimations are solely based on the LiDAR sensor. (b)
shows the results when fusing LiDAR and IMU sensory information
is fused. (c) shows the results when LiDAR, IMU, and GNSS inform-
ation is fused. The top plot of each figure shows how the absolute
error in the XY position develops before and after smoothing. The
bottom plot of each figure shows how the absolute error in head-
ing develops before and after smoothing as the vehicle traverses
the tunnel. 48

5.4 Planar NEESes: The figures show the NEESes over time for the
sensor comparison experiment. (a) shows the results when estim-
ations are solely based on the LiDAR sensor. (b) shows the res-
ults when fusing LiDAR and IMU sensory information is fused. (c)
shows the results when LiDAR, IMU, and GNSS information is fused.
The top plot of each figure shows the XY-plane positional NEES be-
fore and after smoothing along with the 95% confidence interval
bounds. The middle plot of each figure shows the heading NEES
before and after smoothing along with the 95% confidence inter-
val bounds. The lower plot of each figure shows the total NEES of
the planar states before and after smoothing along with their re-
spective 95% confidence interval bounds. 51

5.5 Experiment: The figure shows the trajectory of the loop closure ex-
periment. It is a straight trajectory, starting at the outside of the tun-
nel on one side before performing a loop and driving back through
the same tunnel. The red crosses mark GNSS measurements. 53

5.6 XY Position: Estimate vs Ground Truth Before Smoothing for the
loop closure experiment. (a) shows the results without the loop
closure module activated, while (b) shows the results with loop
closures enabled. The top plot in each figure shows the estimated
trajectory before and after smoothing plotted against ground truth.
The middle plot shows the estimated trajectory with the corres-
ponding one-σ ellipsoid plotted at every other pose. The bottom
plot shows the same as the middle, but after smoothing. 56

5.7 Absolute Errors: The figures show the absolute planar error over
time for the loop closure experiment. (a) Shows the errors without
loop closures enabled, while (b) shows the errors with loop closures
enabled. The top plot in each figure shows the absolute error in the
XY plane before and after smoothing. The bottom plot in each figure
shows the heading error before and after smoothing. The shaded
areas show where the GNSS coverage isn’t available. 58

xvi 3ctionmark

5.8 Planar NEESes: The figures show how the planar NEESes develop
over time before and after smoothing. (a) shows how the NEES de-
velops without loop closure enabled, while (b) shows how it devel-
ops with loop closure enabled. The top plot of each figure shows the
planar position NEES. The middle plot shows the heading NEES.
The bottom plot shows the total planar NEES. Every plot includes
its corresponding two-sided 95% confidence interval. 61

6.1 Sensor Comparison Experiment: The plot shows the absolute errors
from the sensor comparisons experiments. Each experiment is plot-
ted with the results before and after smoothing in the same color.
The results before smoothing are plotted as a solid line, while the
results after smoothing are plotted as a dashed line. 64

6.2 Sensor Comparison Experiment: The plot shows the development
of the NEESes from the sensor comparisons experiments. Each ex-
periment is plotted with the results before and after smoothing in
the same color. The results before smoothing are plotted as a solid
line, while the results after smoothing are plotted as a dashed line. 66

B.1 Overview of ROS Communication . 81

C.1 The Simulink used to perform the communication between Unreal
Engine. Data is then exported to the MATLAB workspace. 83

D.1 Birds-eye-view of simulation environment. 85

D.2 The tunnel seen from the start. The red trailer is the moving actor. . 86

D.3 Props are placed inside the tunnel. 86

Tables

4.1 LiDAR Specifications . 34

4.2 GNSS Specifications . 34

4.3 IMU Specifications . 34

5.1 Noise Specifications. All noises are to be considered as the diagonal
of a square matrix. Any off-diagonal elements are assumed zero. . . 42

5.2 RMSEs for the Sensor Comparison Experiment 52

5.3 ANEESes for the Sensor Comparison Experiment 52

5.4 Noise Specifications. All noises are to be considered as the diagonal
of a square matrix. Any off-diagonal elements are assumed zero. . . 54

5.5 RMSEs for the Loop Closure Experiment 62

5.6 ANEESes for the Loop Closure Experiment 62

A.1 Feature Extraction Hyperparameters 79

A.2 Map Alignment Hyperparameters . 79

A.3 Keyframe Selection Hyperparameters 79

A.4 Loop Closure Hyperparameters . 80

xvii

Acronyms

ANEES Average Normalized Estimation Error Squared. iii, v, xvii, 27, 52, 61, 62,
66, 67, 71

BA Bundle Adjustment. 7

BoW Bag-of-Words. 7, 26

DoF Degrees of Freedom. xiii, 15, 16, 26, 33, 49, 50, 59

EKF Extended Kalman Filter. 8, 13, 24

ESKF Error-State Kalman Filter. 13

FOV Field of View. 3, 7

FPFH Fast Point Feature Histogram. 23, 32, 35

GN Gauss-Newton. 17, 18

GNC Guidance, Navigation and Control. xiii, 11, 12

GNSS Global Navigation Satellite System. iii, v, xiii–xv, xvii, 1–5, 9, 13, 14, 25,
29, 32, 34–38, 41, 42, 44, 45, 47–54, 56, 58, 59, 63, 65–68, 71, 72

GTSAM Georgia Tech Smoothing and Mapping. 30

HSE Health, Safety, and Environment. 1

ICP Iterative Closest Point. 3, 4, 8, 21, 22, 26, 31, 37, 38

IMU Inertial Measurement Unit. iii, v, xiv, xv, xvii, 1, 3–5, 7, 12–14, 25, 29, 30,
32–35, 37, 38, 41–45, 47–53, 63, 65, 67, 71, 72

INS Inertial Navigation System. 1, 3, 11–14

iSAM2 Incremental Smoothing and Mapping 2. 3, 9, 30

xix

xx 3ctionmark

ISS Intrinsic-Shape Signatures. 22, 32, 35

KF Kalman Filter. 13, 14, 26

Lego-LLOAM Lighweight and Ground-Optimized LiDAR Odometry And Mapping.
4, 8, 9

LiDAR Light Detection and Ranging. iii, v, ix, x, xiv, xv, xvii, 2–5, 7, 8, 12, 13,
20, 26, 29, 32–36, 38–54, 63–65, 67, 68, 71–73

LIO LiDAR-Inertial Odometry. 8, 9

LM Levenberg-Marquardt. 8, 17, 18

LOAM LiDAR Odometry And Mapping. 4, 8, 9, 67, 72

MAP Maximum A Posteriori. 15, 24, 25

NDT Normal Distribution Transformation. 21, 22

NEES Normalized Estimation Error Squared. xv, xvi, 4, 26, 27, 42, 48–51, 59, 61,
65–68

PCL Point Cloud Library. 31, 32

pdf probability density function. xiii, 14–16

PFH Point Feature Histogram. 23

RANSAC Random Sample Consensus. 63

RMSE Root Mean Square Error. iii, v, xvii, 4, 26, 52, 61, 62, 65, 69, 71

ROS Robotics Operating System. xiv, 30, 32, 35

SE(3) Special Euclidean Group. 19, 20

SLAM Simultaneous Localization and Mapping. iii, v, ix, x, 2–5, 7, 8, 11, 24–27,
29, 34–38, 40, 54, 65, 67, 69, 71, 72

SO(3) Special Orthogonal Group. 19

ToF Time-of-Flight. 13

VO Visual Odometry. 7

Chapter 1

Introduction

This master thesis is written in collaboration with Semcon Norge AS, who recently
started a collaboration project with SINTEF where the goal is to build a completely
autonomous road roller [2]. The road construction industry exposes its employ-
ees to environments with a lot of hazardous noise and vibrations. Therefore, re-
mote operation/surveillance yields a high Health, Safety, and Environment (HSE)
benefit for the employees. Additionally, the operation would be more cost- and
time-efficient, as a single operator could operate several vehicles at once from a
control room.

Autonomous vehicles require significant testing to ensure the safety of people
and the environment. In order to properly test a system, it is crucial to have some
indication of what the position of the system actually is, popularly deemed the
ground truth in estimation theory.

1.1 Motivation

Norway’s vast mountains and hills provide a challenge for the road construction
and autonomous vehicle industry, namely tunnels. The main requirement for a
good autonomous navigation system is a good method for localization of the
vehicle. In general, these methods rely heavily on the availability of high-precision
globally fixed measurements such as from a Global Navigation Satellite System
(GNSS). Systems such as Inertial Navigation System (INS) use the GNSS meas-
urements to correct for drift from the Inertial Measurement Unit (IMU). The issue
arises when an autonomous vehicle drives into an area where the GNSS measure-
ments are not available. This is the case when a vehicle drives through a tunnel,
as illustrated in Figure 1.1.

The vehicle in focus is a road roller. A road roller’s main objective is to compact the
concrete, soil, or gravel located in its operation area. The Norwegian standard for
road construction states that the soil compression has to cover the compression

1

2 1.1: Motivation

area a certain amount of times, with a few dependencies that can be found in
the manual [3, p. 185-200]. The manual also states that these passings has to be
well-documented. For the problem in focus, the road roller has to cover an area
six times. Through a tunnel this would require three round-trips.

Figure 1.1: No GNSS Coverage: The problem with relying on GNSS correction for
autonomous navigation arises when driving from an area with GNSS coverage to
an area with no GNSS coverage. The figure shows a vehicle driving into a tunnel,
therefore losing its GNSS coverage.

GNSS-denied navigation is a nontrivial problem because no measurements are
rooting the system to the real world. Without relying on costly inertial sensors, it
is generally hard to ensure that the vehicle provides accurate localization inside
this unknown environment. This inaccuracy is not acceptable for a safe autonom-
ous system. Modern methods mitigate errors that accumulate by creating a map
while traversing the unknown environment. This is known as the Simultaneous
Localization and Mapping (SLAM) problem.

SLAM is a problem addressing the complexity involved in estimating structure
and pose inside an unknown environment simultaneously. Solving these prob-
lems requires extensive computational power and exteroceptive sensors capable
of mapping the environment, such as a camera or a Light Detection and Ranging
(LiDAR) sensor.

All exteroceptive sensors have varied performances under different environmental
conditions. For example, cameras struggle under variable illumination conditions,
and LiDARs cannot guarantee proper measurements, for example, when it rains.
Tunnels are generally deemed dark environments, and therefore a camera is not
the optimal choice for tunnel navigation. LiDARs, on the other hand, do not suffer
under poor illumination conditions, making it a natural choice for this type of
problem.

A weakness of LiDAR motion estimation techniques is that the LiDAR records many
points at every scan. To utilize the full scan requires heavy computational effort.

Chapter 1: Introduction 3

Tunnel walls are typically clad with rocky surfaces, making it a feature-rich envir-
onment. Consequently, the computational complexity of the SLAM problem could
be mitigated by letting feature points represent each observed point cloud. This
approach is studied in [1].

Most autonomous navigation system already consists of an INS. Therefore, a frame-
work is needed for an effective and optimal fusion of the sensor information.
Modern SLAM systems are typically graph-based, and Incremental Smoothing and
Mapping 2 (iSAM2) [4] provides a factor graph framework utilizing other graph
structures such as the Bayes’ tree for optimal ordering and incremental smoothing.

Recording ground truth is particularly challenging for any indoor environment,
since there are no global indications of vehicle position, such as GNSS measure-
ments. GNSS measurements are often interpolated to acquire ground truth, but
this is not possible for indoor applications. Creating indoor ground truth data sets
can be done by manual setup, however this requires a lot of work for each de-
signed scenario and cannot guarantee exact results. Consequently, effective and
realistic simulators are often designed instead. In these simulators the designer is
in complete control of the environment at all times.

1.2 Aim of Study

The goal of this study is to analyze the performance of a LiDAR-inertial SLAM
system in a simulated environment. The simulated environment is inspired by the
autonomous road-roller project described in [2]. The problem is simply illustrated
in Figure 1.1. There exist no validated data sets for this particular problem of
tunnel navigation using ground vehicles to the author’s knowledge. In order to
have access to ground truth, a secondary goal of this master thesis is to develop
a realistic simulator that can easily simulate several scenarios where the system
can be tested.

For the problem of navigating an autonomous road roller through a tunnel, a sys-
tem based on the fusion of LiDAR, IMU, and GNSS sensors is proposed. LiDARs
provide a more robust solution to the problem compared to other mapping sensors
because of the various illumination conditions that may arise inside tunnels. An-
other benefit of using LiDARs is that they may provide a higher situational aware-
ness compared to, for example, cameras since they have a higher Field of View
(FOV). This is desirable for several reasons. It can be used by path-planning and
collision-avoidance modules of the system, which are essential to all autonomous
systems. By using effective feature extraction and matching methods, the added
complexity can be kept manageable. I suggest a feature-based point cloud registra-
tion system based on [1], with a map alignment based on a custom ICP algorithm
and loop closure detection as suggested in [5]. Further, the optimization of the
system is implemented using iSAM2, where the LiDAR, IMU, and GNSS estima-
tions are fused and incrementally smoothed. The data sets used to validate the

4 1.3: Contributions

system are created in the simulation environment detailed in [1], which is also
extended to simulate IMU and GNSS measurements. The performance of this sys-
tem will be assessed using Root Mean Square Error (RMSE) and a goodness-of-fit
measure based on the Normalized Estimation Error Squared (NEES), as suggested
in [6].

1.3 Contributions

The development started by implementing a similar system as suggested in the
pre-project [1] in C++. The Python system from the pre-project encountered
severe performance issues in terms of processing speed. Additionally, the librar-
ies used were uncompleted bindings from C++, which significantly reduced the
options during development.

After converting the system to C++, a custom ICP algorithm based on [7] for
aligning the currently viewed point cloud to the map was implemented. A custom
algorithm was chosen over existing solutions to include whitening based on un-
certainties and to include prior information from sensors like the IMU. This map
alignment was used following the ideas of systems such as Lego-LLOAM [5] and
LOAM [8], where they argue that this step reduces drift in the system.

After that, the MATLAB simulator was extended to include support for IMU and
GNSS measurements. This involved creating a more realistic vehicle model, which
was done by simulating a simple bicycle model as a vehicle. Additionally, a simple
path planner and controllers for the velocity and heading were set up to make the
vehicle model follow a specified route. After that, IMU simulations were easily
implemented by using MATLABs toolboxes. GNSS measurements were simulated
as normally distributed values around the positions outside the tunnel. Finally,
datasets were created and exported to a rosbag.

Afterward, the development of the SLAM system itself started. It started as a liter-
ature review of sensor fusion in a graph-SLAM system to provide an implement-
ation that was as effective as possible. Accordingly, the fusion of IMU and GNSS
information was added to the graph-SLAM system.

The final step of the project was to improve the global consistency of the system.
Inspired by the literature review from [1], the loop closure system from [5] was
implemented. This method was chosen because of its simplicity, in addition to
its effectiveness. However, a challenge was encountered when viewing the same
scene from two different angles.

My main contributions can be summarized as follows

• An extensive theory review surrounding the SLAM problem.
• An extended, highly modifiable, simulation framework for creating data sets

for tunnel navigation. The simulation includes data from LiDARs, IMUs, and

Chapter 1: Introduction 5

GNSS’s.
• A SLAM system implemented in C++ based on the fusion of LiDAR, IMU,

and GNSS sensory information.
• A study of the consistency and the performance of the mentioned SLAM

system with respect to uncertainty and estimation error.

1.4 Outline

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of
related work and state-of-the-art methods. Chapter 3 gives a review of the prelim-
inaries required to follow the methods mentioned in this thesis. Chapter 4 gives
an overview of the software, the data generation, and the architecture and pro-
cesses of the SLAM system. Chapter 5 presents the results achieved by the system.
In Chapter 6, the results are discussed. Lastly, Chapter 7 gives a conclusion of the
thesis and provides pointers for further development.

Chapter 2

Related Work

This chapter provides a summary of literature and systems relevant to this thesis.
Section 2.1 provides a review of modern SLAM systems. Section 2.2 gives a review
of state-of-the-art LiDAR SLAM systems. Finally, Section 2.3 gives a review of a
modern IMU preintegration scheme.

2.1 Review of modern SLAM systems

Modern navigation systems typically estimate motion using some visual sensors,
such as a camera. These are called Visual Odometry (VO) systems, and motion is
estimated by tracking features between consecutive camera images. VO has shown
promise in terms of drift compared to classical odometry sensors, such as Inertial
Measurement Unit (IMU) and wheel encoders [9]. VO systems typically solve the
Bundle Adjustment (BA) problem to estimate structure and/or motion.

Visual SLAM differs from VO by including loop closure to achieve global consist-
ency. There exist many different algorithms for managing loop closures. A com-
mon way to solve the loop closure problem is to use a Bag-of-Words (BoW) model.
Modern visual-SLAM that implements loop closure includes ORB-SLAM [10] and
its predecessors, LSD-SLAM [11] and PTAM [12].

Cameras do, however, rely on specific environmental conditions, such as illumin-
ation. Additionally, cameras are typically restricted to a low Field of View (FOV).
As autonomous vehicles need to have a high situational awareness to plan action
optimally, the low FOV of the cameras has motivated the usage of other sensors for
the SLAM problem. A technology that has shown promise for solving the SLAM
problem is LiDAR sensors. LiDARs offer real-time scanning of the environment
with up to 360◦ FOV.

LiDAR SLAM methods are, as opposed to visual SLAM methods, unaffected by
illumination conditions [13]. The LiDAR gives the opportunity to very accurately

7

8 2.2: State-of-the-art LiDAR SLAM systems

map the surrounding environments.

The motion estimation techniques in LiDAR SLAM are typically divided into two
categories; scan-matching and feature-based methods. Scan-matching methods
typically use the Iterative Closest Point (ICP) method, which aims at minimizing
the distance between two point clouds. As the LiDAR sensor provides points at a
high resolution, the challenge of LiDAR SLAM methods is the significant computa-
tional complexity associated with point cloud registration. To battle this, modern
LiDAR SLAM systems are typically based on the feature-based ideology. This fea-
ture extraction involves computing robust keypoints and feature descriptors and
utilizing KD-trees to significantly reduce the computations needed in the regis-
tration process. This approach is studied in [1]. Further, [7] suggests an ICP al-
gorithm using Levenberg-Marquardt (LM) optimization to speed up the algorithm.

Relying on a single modality is generally not a good idea for an autonomous nav-
igation system. Sensors have different operating conditions in which they operate
well, so the fusion of sensors that complement each other could prove benefi-
cial for a versatile SLAM system. Additional sensors may also massively improve
the navigation module. Therefore, modern LiDAR navigation systems often fuse
information from other sensors. Systems that fuse LiDAR and inertial sensors to
produce an estimate of motion are termed LiDAR-Inertial Odometry (LIO) sys-
tems.

The original formulations of the SLAM problem suffered from maintaining large
state spaces. The first solutions to the SLAM problem were based on the clas-
sical navigation paradigm, using Extended Kalman Filter (EKF) filters. However,
this quickly turned out to be an inefficient solution because it involved keeping
track and inverting large covariance matrices. This was improved using a Rao-
Blackwellized particle filter in FAST-SLAM [14]. Although the particle filter solu-
tion had its strengths, the inclusion of loop closure proved difficult due to the
absence of an explicit covariance matrix [15].

To overcome the computational complexity, but still keep an explicit covariance
matrix, modern SLAM methods typically formulate the navigation problem us-
ing graphs, like the factor graph as suggested in [16]. This representation allows
exploitation of the sparsity of the SLAM problem while providing a simple frame-
work for adding any sensor information.

2.2 State-of-the-art LiDAR SLAM systems

The related work in this section is based on the related work written for the pre-
project [1]. Most state-of-the-art LiDAR SLAM systems are based on LOAM [8],
which proposed an odometry estimation using lines in range-images by dividing
the estimation into a fast part providing rough estimates and a slow part provid-
ing fine estimates. One system that built on this formulation was Lego-LLOAM

Chapter 2: Related Work 9

[5], which is specialized for ground vehicles. Lego-LLOAM was also extended to
include loop closures. LIO-SAM [17] suggested a system based on the feature ex-
traction from LOAM including inertial sensor fusion and inclusion of GNSS meas-
urements. iSAM2 [4] provides a suitable framework for fusing information from
many different sensors in a factor graph while providing optimal ordering and
smoothing incrementally. For more details, the reader is strongly suggested to
read [4, 5, 8, 17].

2.3 IMU Preintegration On Manifold

Typically IMUs provide measurements at a much higher rate compared to other
sensors. Including a factor for each of these measurements would require increas-
ing the number of variables in the factor graph by an order of magnitude. This
is clearly not desirable, as it would slow down the optimization operation in the
factor graph. As a solution to this problem, [18] suggests a method for prein-
tegrating IMU measurements on the manifold to use in the factor graph. Section
2.3.1 derives the IMU state kinematics and section 2.3.2 explains how this model
is utilized to achieve preintegration of IMU factors on the manifold.

2.3.1 IMU Model

An IMU measures linear acceleration and the angular rates of the body frame,
b, referenced to some inertial frame. These measurements can be modeled as the
true acceleration and rates corrupted by white noise and a slowly developing bias.

ω̃b =ω+ bg +ηg (2.1)

ãb = RT (aw − gw) + ba +ηa (2.2)

where the superscript denotes the coordinate frame, R is the rotation matrix trans-
forming vectors in the body frame to the inertial frame, gw is the gravity given in
world coordinates, bg , ba, and ηg , ηa are the biases and noises on the gyroscope
and the accelerometer, respectively. Effects from the earth’s rotation are neglected
by assuming that the world coordinates are inertial. Further, following [18], the
IMU states behave according to the discretized kinematic model

R(t +∆t) = R(t)Exp((ω̃b − bg(t)−ηg(t))∆t) (2.3)

vw(t +∆t) = vw(t) + gw∆t +R(t)(ãb(t)− ba(t)−ηa(t))∆t (2.4)

pw(t +∆t) = pw(t) + vw(t)∆t +
1
2

gw∆t2 +
1
2

R(t)(ãb(t)− ba(t)−ηa(t))∆t2

(2.5)

where the Exp(·)-operator is defined as in Section 3.6.

10 2.3: IMU Preintegration On Manifold

2.3.2 Preintegration on Manifold

Preintegration of IMU measurements involves accumulating several measurements
into one total factor between so-called ‘key frames’. Let the frames at time k = i
and k = j be denoted by the subscripts i and j. For example, the orientation at
time k = i is denoted Ri and the relative orientation between time k = i and
k = j is denoted ∆Ri j := RT

i R j . To avoid having to repeat the integration every
time a relinearization happens, all IMU preintegration factors are defined through
a relative preintegrated measurement model derived in [18], given by

∆R̃i j = RT
i R jExp(δφ i j) (2.6)

∆ṽi j = RT
i (v j − vi − g∆t i j) +δvi j (2.7)

∆p̃i j = RT
i (p j − pi − v∆t i j − g∆t2

i j) +δpi j (2.8)

where the superscripts from (2.3) have been dropped for readability. The model is
derived under the assumption of constant bias for simplicity and can be extended
to include slowly varying biases, as shown in [18], using first-order expansions.
The model describes the measurements as a function of the state to be estimated
plus some random noise. The noise can be defined by

[δφT
i j ,δvT

i j ,δpT
i j]

T ∼N (0,Σi j) (2.9)

under the assumption that δφ i j is small.

Finally the residuals, which are used as factors in the factor graph, can be written
as

r∆Ri j
:= Log(RT

i R j) (2.10)

r∆vi j
:= RT

i (v j − vi − g∆t i j) (2.11)

r∆pi j
:= RT

i (p j − pi − v∆t i j − g∆t2
i j) (2.12)

Again, [18] explains how to include non-constant biases into the factors and add
factors between biases in the factor graph. The main benefit of this method is
that the integration does not commit to a linearization point, making it faster in
the case of relinearization. Also, the uncertainty is propagated on the manifold,
improving the correctness.

Chapter 3

Preliminaries

This chapter describes all the preliminary theory and information needed to un-
derstand the rest of the thesis. The chapter is organized as follows. Section 3.1
sets the scope of the theory and defines the usage. Section 3.2 gives an introduc-
tion to the sensors relevant to the system. Section 3.3 gives a brief explanation
of Inertial Navigation System (INS). Sections 3.4-3.6 provides the necessary tools
to perform optimization for the problem. Sections 3.7-3.9 explains the elements
necessary for odometry estimation. Sections 3.10-3.12 walks through the modern
framework for representing the SLAM problem. Finally, Section 3.13 goes through
the metrics used to analyze the system performance.

3.1 Autonomous Vehicles

Autonomous operation of vehicles is typically divided into several subsystems.
These subsystems are part of a Guidance, Navigation and Control (GNC) system.
The GNC system is shown in Figure 3.1. The colored boxes symbolize that the
systems are fully up to design by the developer. However, there is no way to know
how the true state of the vehicle develops after the commands from the actuators,
except through internal or external sensor information.

11

12 3.2: Sensors

Guidance Controller NavigationVehicle
SensorsActuatorsWaypoints

Estimated States,
Situational Awareness

Figure 3.1: Guidance, Navigation and Control: The navigation system is essential
for any GNC system. It estimates the states and provides situational awareness.

Inspired by: [19]

At the top level of the system, one finds the guidance block, which provides high-
level commands to the controller, such as waypoints for the vehicle to follow. The
controller block is responsible for acting on commands, which is done by providing
commands to the different actuators on the vehicle. There may be many levels
of controllers on a single vehicle, spanning from a path-following controller for
heading to a low-level PID controller on the motor.

As mentioned, one cannot know exactly what the vehicle states are at a given time
while it is operating. Additionally, sensor information may be unreliable over time
and under different conditions. Therefore it is necessary to include a navigation
system to estimate the states of the system optimally. Autonomy also involves
situational awareness, which is typically also a responsibility of the navigation
subsystem. These two responsibilities typically include estimation optimization
and fusion of information from many different sensors. For this thesis, the main
focus is on the navigation subsystem, marked with a red box in Figure 3.1.

3.2 Sensors

Typical for modern navigation systems is the use of satellites, inertial sensors, and
exteroceptive sensors. Exteroceptive sensors are sensors that provide information
about the environment outside the system itself. Typical exteroceptive sensors in-
clude LiDARs and cameras.

3.2.1 Inertial Measurement Unit

Inertial Measurement Unit (IMU) is perhaps the most commonly used sensor in
Inertial Navigation System (INS). An IMU consists of at least an accelerometer
and a gyroscope. Depending on the case, it may or may not contain other sensors,
such as magnetometers.

The accelerometer measure linear accelerations along the axes of the IMU, and the

Chapter 3: Preliminaries 13

gyroscope measures the angular rates. Compasses measure the heading. Combin-
ing these measurements provides the foundation to estimate the current position
and orientation of the vehicle in the world. IMUs carry much information at a high
frequency. However, IMUs tend to drift over time and have variable performance
under different conditions. Therefore it is undesirable to use IMUs on their own
for long-time operation, which is why it is typically paired with satellite systems
or other sensors for correction.

3.2.2 Global Navigation Satellite System

Global Navigation Satellite System (GNSS) is a common term for satellite posi-
tioning systems all around the world, such as GPS in the USA, Galileo in Europe,
and other satellite systems.

The GNSS calculates the position of a receiver by triangulating the distance meas-
ure from three different satellites simultaneously. The distance is calculated by
measuring the time it takes to transfer a radio signal from the satellite to the re-
ceiver on Earth. An atomic clock then calculates the transfer time inside of the
satellite. Using these clocks gives a highly accurate measure of position, which is
why the GNSS measurements are often used as bona-fide measurements, or in
other words, treated as ground truth.

3.2.3 Light Detection and Ranging

Light Detection and Ranging (LiDAR) sensors are Time-of-Flight (ToF) based sensors.
They measure the time it takes for an emitted light to reflect from an object and re-
turn to a detector in the sensor. By assuming a constant light speed in the medium
it gives an estimate of the distance to the given object.

Scanning LiDARs are typically created by employing many such lasers and keeping
track of the azimuth angle that they were emitted at. This allows for creating 3D
depth images, also known as point clouds.

3.3 Inertial Navigation Systems

An Inertial Navigation System (INS) typically consists of an IMU and a GNSS
receiver. The goal of an INS is to estimate the full 3D position of the vehicle, as
well as its attitude. This is popularly termed the pose of the vehicle. There are
well-established solutions to this problem, such as the Kalman Filter (KF) and
its predecessors such as the Extended Kalman Filter (EKF) and the more modern
Error-State Kalman Filter (ESKF). The general idea is to estimate the pose by
integrating the acceleration and angular velocity measured by the IMU. However,
the IMU tends to drift and therefore needs to be aided by the GNSS in order to

14 3.4: Statistics

maintain globally consistent results. The problem of dead-reckoning arises when
there are no GNSS measurements available over a long period of time, and the
estimation runs solely on measurements from the IMU.

3.4 Statistics

Statistics describes ways to model random variables. This typically involves calcu-
lating and estimating the first- and second-order moments, namely the mean and
covariance of the system. For an INS built using the KF, the goal is to estimate the
likelihood distribution of the state vector after a measurement has arrived, also
referred to as the posterior distribution of the system.

3.4.1 Gaussian Distribution

The Gaussian distribution, popularly called the normal distribution, is one of the
most widely used models for random variables. A Gaussian random variable in one
dimension is distributed with a mean, µ, and variance σ2. If the random variable
is a vector, then µ becomes a vector, and σ2 becomes a square covariance matrix
typically denoted P containing the variance of each random variable with itself
in addition to its covariance with the other variables in the vector. A randomly
distributed variable is typically denoted

x∼N (µ, P) (3.1)

Figure 3.2 shows how the probability density function (pdf) of the distribution
looks in one dimension. The different x-σ intervals are sketched in the figure. The
total probability that the value is contained within each x-σ perturbation away
from the mean, µ, can then be found by accumulating the probabilities that the
value is inside each interval on both sides.

Chapter 3: Preliminaries 15

μ μ+σ μ+2·σ μ+3·σμ−σμ−2·σμ−3·σ

P(μ−1·σ ≤ X ≤ μ+1·σ) ≈ 68,27 %

P(μ−2·σ ≤ X ≤ μ+2·σ) ≈ 95,45 %

P(μ−3·σ ≤ X ≤ μ+3·σ) ≈ 99,73 %

P(X ≤ μ) = 50 % = P(X ≥ μ)

P(X ≤ μ+1·σ) ≈ 84,13 %

P(X ≤ μ+2·σ) ≈ 97,72 %

P(X ≤ μ+3·σ) ≈ 99,87 %

0,13 % 2,14 %

13,59 %

34,13% 34,13%

13,59 %

2,14 % 0,13 %

Figure 3.2: Gaussian Distribution: The figure shows the curve of a normal distri-
bution in one dimension with x-σ intervals. The percentages show the likelihood
of perturbations from the mean, µ, lying within the different σ-intervals.

Source: [20]

In the navigation problem the state vector typically represents the mean, and the
measurements are assumed normally distributed around the ‘true’ state vector.
There are many reasons why this is convenient. Among other things, it makes all
the calculations much easier since any linear combination of normally distributed
values remains normally distributed. Furthermore, due to the central limit the-
orem, physical quantities such as measurement errors tend to converge towards
the normal distribution as the number of samples increases.

3.4.2 χ2 Distribution

The χ2 distribution is a commonly used distribution for hypothesis testing. The
distribution is a special case of the gamma distribution, and it occurs when per-
forming a summation of squared standard normally distributed values. The pdf of
the distribution with different values for the k DoFs is shown in Figure 3.3.

Because the summation of squared normally standard normally distributed val-
ues yields a χ2-distributed value distribution, the χ2 distribution is often used in
navigation to validate the consistency of estimations.

3.4.3 Maximum A Posteriori Estimation

Maximum A Posteriori (MAP) estimation concerns estimating the value of a ran-
dom variable that maximizes the posterior of the variable. The MAP estimator is
given by the equation

x̂ = argmax
x

px |z(x |z) (3.2)

where x is the random variable to be estimated and z is the observation. p(·)
denotes the pdf and the subscript denotes what random variable the distribution

16 3.5: Nonlinear Solvers

Figure 3.3: χ2 Distribution: The figure shows the pdfs of a χ2 distribution in one
dimension. Each curve is plotted with a different amount of DoFs, denoted by k
in the legend in the upper right.

Source: [20]

belongs to. Following Bayes’ rule, we can write

x̂ = argmax
x

px |z(x |z)

= argmax
x

pz|x(z|x)px(x)

pz(z)
= argmax

x
pz|x(z|x)px(x)

(3.3)

where the final step could be made because the denominator is independent of the
variable we wish to estimate. Therefore it does not matter for the maximization.

3.5 Nonlinear Solvers

The navigation problem is generally nonlinear, raising the need for nonlinear solv-
ers. Most nonlinear solvers are typically iterative and update a linearized solution
until some convergence criteria are met. The main difference between the nonlin-
ear solvers described in this section is the way they choose the step in the function-
minimizing direction.

3.5.1 Gradient descent

The gradient descent method is a first-order iterative optimization algorithm,
meaning that it uses the gradient of the objective function. The minimization is

Chapter 3: Preliminaries 17

done by moving in the opposite direction of the gradient, with the length defined
by some learning rate. The algorithm is shown in Algorithm 1.

Algorithm 1: Gradient descent method
In: Objective function f (x), learning rate α
Out: Minimization parameters x
while not converged do

x ← x −α∇ f (x)
end

3.5.2 Gauss-Newton Method

The Gauss-Newton (GN) method is a modification of Newton’s method, which
uses the curvature of the problem instead of the gradient. The curvature is given
by the Hessian of the objective function. However, the calculation of the Hessian is
not possible in many applications and requires to do inversions of large matrices,
which is undesirable. For a linear least-squares problem on the form

f (x) = ||Ax − b||2 (3.4)

The Gauss-Newton method would approximate the Hessian matrix by

∇2 f (x)≈ AT A (3.5)

This leaves us with the algorithm as shown in Algorithm 2.

Algorithm 2: Gauss-Newton Method

In: Objective function f (x), initial estimate x0

Out: Minimization parameters x
for t ← 0 to tmax do

A, b← Linearize f (x) at current estimate x t

τ← Solve the linearized problem AT Aτ= AT b
x t+1← x t +τ
if f (x t+1) is very small or x t+1 ≈ x t then

x = x t+1

return
end

end

3.5.3 Levenberg-Marquardt Method

Levenberg-Marquardt (LM) is a trust-region method that combines the gradient
descent method with the Gauss-Newton method to minimize an objective func-
tion. Much like the Gauss-Newton method, Levenberg-Marquardt repeatedly lin-
earizes the objective function and approximates the Hessian using the system

18 3.6: Lie Theory

matrix, A. However, unlike Gauss-Newton, Levenberg-Marquardt cannot achieve
an objective function value higher than the previous iteration. This is done by
smoothing the approximation of the Hessian from the Gauss-Newton. The ap-
proach given here is similar to Tikhonov regularization. The smoothing parameter,
λ, is updated based on whether or not the iteration produced a lower objective
function value. This makes the Levenberg-Marquardt method more stable than
the Gauss-Newton method. For the linear least-squares problem given in (3.4)
the smoothed Hessian matrix would be approximated by

∇2 f (x)≈ AT A+λdiag(AT A) (3.6)

Notice that that if λ is small, the equation gives the GN method. On the other
hand, if λ is large, the smoothing term becomes dominant.

The algorithm is given in Algorithm 3.

Algorithm 3: Levenberg-Marquardt Method

In: Objective function f (x), initial estimate x0

Out: Minimization parameters x

λ← 10−4

for t ← 0 to tmax do
A, b← Linearize f (x) at current estimate x t

τ← Solve the linearized problem (AT A+λdiag(AT A))τ= AT b
if f (x t +τ)< f (x t) then

Accept update, increase trust region
x t+1← x t +τ
λ← λ/10

else
Reject update, reduce trust region
x t+1← x t

λ← λ× 10
end
if f (x t+1) is very small or x t+1 ≈ x t then

x = x t+1

return
end

end

3.6 Lie Theory

The state vector in any navigation problems includes position and attitude, which
is typically parametrized into a vector of six quantities often referred to as the pose
of the vehicle. Poses are typically defined as [x , y, z,φ,θ ,ψ]T where x , y, z de-
scribe the position of the vehicle andφ,θ ,ψ describe the orientation of the vehicle

Chapter 3: Preliminaries 19

relative to some global coordinate system. However, the relationship between
these state variables is nonlinear, making them non-additive. As a result of this,
it is not straightforward to define perturbations and uncertainty using regular al-
gebra.

This section aims to describing the Lie theory necessary to understand the theory
behind the thesis. In particular, Lie theory is helpful to provide a framework for
describing uncertainty and perturbations on strict vector spaces, referred to as
manifolds. The theory in this section is paraphrased from [1].

3.6.1 Lie Groups

A Lie group is defined as smooth and differentiable manifold consisting of a set G
and a composition operation, ◦ that satisfies the group axioms

Closure under ◦ : X ◦Y ∈ G
Identity E : E ◦X = X ◦ E = X

Inverse X−1 : X−1 ◦X = X ◦X−1 = E
Associativity : (X ◦Y) ◦Z = X ◦ (Y ◦Z)

(3.7)

for elements X ,Y,Z ∈ G. Lie groups can also transform elements of other sets
through what is called a group action. A group action must fullfill the axioms

Identity : E · v = v

Compatibility : (X ◦Y) · v = X ◦ (Y · v)
(3.8)

The Lie groups to be considered in this thesis are the Special Orthogonal Group
(SO(3)) and the Special Euclidean Group (SE(3)).

Special Orthogonal Group

The Special Orthogonal Group (SO(3)) describes the set of 3D rotation matrices.
More formally, it is defined by

SO(3) := {R ∈ R3x3|RT R= I, det(R) = 1} (3.9)

The group action of the SO(3) on vectors is given by

R · v= Rv (3.10)

Special Euclidean Group

The Special Euclidean Group (SE(3)) describes rigid motion in three dimensions
and is more formally defined by

SE(3) := {T=
�

R t
0T 1

�

∈ R4×4|R ∈ SO(3), t ∈ R3} (3.11)

20 3.7: Odometry

The group action of the SE(3) on vectors is given by

T · v= Rv+ t (3.12)

3.6.2 Lie Algebra

Lie algebra gives us the ability to move between the manifold M, the tangent
manifold T M, denoted m, and the vector space Rm. The conversion between
vectors in Rm and Lie algebra elements in T M is done through the operators (·)∨

and (·)∧. They are defined by

Hat: (·)∧ : Rm→ m; τ∧ =
m
∑

i=1

τiEi (3.13)

Vee: (·)∨ : m→Rm; (τ∧)∨ =
m
∑

i=1

τiei (3.14)

where Ei describes the generators of m and ei describes the generators of Rm,
also known as the basis vectors. Further, the conversion between the Lie algebra
elements and the manifold is given by the exponential and logarithmic maps. Ad-
ditionally, the Exp operator and the Log operator have been defined as composite
operations converting between the vector space, Rm, and the manifold M. These
operations are given by

exp : m→M; X = exp(τ∧) (3.15)

log : M→ m; τ∧ = log(X) (3.16)

Exp : Rm→M; X = Exp(τ) := exp(τ∧) (3.17)

Log : M→Rm; τ = Log(X) := log(X)∨ (3.18)

In turn, these operators allow us to express perturbations on the manifold in terms
of linear algebra, which is crucial to optimally fuse information from different
sources, such as priors, sensors, etc.

3.7 Odometry

Odometry describes the use of sensors to estimate the position and orientation of
the vehicle over time and is essential for many robotics applications. Odometry es-
timation thus gives a relative estimate of how much a vehicle has moved between
two locations in a particular time window. Earlier forms of odometry were based
on using wheel encoders, but in modern systems it is more common to use visual
sensors such as cameras and LiDARs.

LiDAR odometry aims at estimating the odometry of a vehicle using LiDARs to cal-
culate the motion between point clouds. Typically it is divided into two categories;

Chapter 3: Preliminaries 21

feature-based point cloud registration and direct point cloud registration. Direct re-
gistration methods typically use algorithms such as Iterative Closest Point (ICP)
or Normal Distribution Transformation (NDT) directly on the full point cloud.
Feature-based registration, on the other hand, extracts features from the full point
cloud to decrease the problem’s dimensionality. The feature-based formulation has
shown to provide more accurate and faster solutions than the direct formulation
[15].

3.8 Point Cloud Alignment

Point cloud registration methods typically involve rigid alignment of an incoming
point cloud to one or several historic point clouds. Rigid alignment means that the
scale of the clouds is assumed constant and equal. The alignment problem for rigid
bodies consists of both translation and rotation, making it nonlinear. Therefore
it is important to have effective iterative solvers. Modern methods include the
aforementioned ICP and NDT methods. This section will give a brief explanation
of the inner workings of the ICP method.

Classic ICP aims at finding the transformation matrix, T, that minimizes the align-
ment error. Let M be the set of point correspondences. Then the problem can be
described mathematically as

T∗ = argmin
T

∑

(p,q)∈M

||Tp− q||2Σi
(3.19)

Where the || · ||Σi
denotes the Mahalanobis norm.

The problem is solved iteratively, yielding in the algorithm

Algorithm 4: ICP registration

In: Initial estimate T0, source point cloud P, target point cloud Q
Out: Optimal transformation T∗

for k← 0 to kmax do
M← Calculate point correspondences between P and Q
T∗← Minimize (3.19) using for example LM
Apply transformation T∗ to P
if converged then

return
end

end

However, it is not straightforward to calculate (3.19) without using the Lie frame-
work. To be expressed in Lie algebra, the system must be linearized around the

22 3.9: Feature Extraction

current estimate, which gives

ξ∗ = argmin
ξ

∑

(p,q)∈M

||T̂p+ JTp
T̂
ξ− q||2Σi

(3.20)

where ξ denotes the update step of T expressed in m and JTp
T̂

is the Jacobian of

the action of T on p with respect to the estimate T̂.

Exploiting this allows us to express the problem as a linear least squares, which
can be expressed as

ξ∗ = argmin
ξ

∑

i

||Aiξ− bi||2

= argmin
ξ

||Aξ− b||2
(3.21)

where

Ai = Σ
−1/2
i JTpi

T̂
(3.22)

bi = Σ
−1/2
i (qi − T̂pi) (3.23)

where the subscript i is added to clarify A contains a row for each correspondence,
and Σ−1/2

i is given by

Σ
−1/2
i = JTp

T̂
ΣσJTp

T̂
T (3.24)

and Σσ is a covariance matrix.

3.9 Feature Extraction

Feature-based point cloud registration requires robust, repeatable point detection
and description. These points are often referred to as keypoints. In order to en-
capsulate the information of a point as uniquely as possible, a descriptor is often
used. The process of extracting keypoints and descriptors incur a fixed-time cost
on each incoming point cloud. However, the goal is to decrease the number of
points needed, and the time it takes to match them in the registration process.
It has been shown that using features and keypoints provides a more stable and
faster solution to the registration process compared to solving the full cloud re-
gistration using classical methods such as ICP or NDT.

3.9.1 Intrinsic-Shape Signatures

Intrinsic-Shape Signatures (ISS)[21] keypoints are based on a view-invariant 3D
shape descriptor. ISS keypoints are calculated through a saliency measure, given
by the magnitude of the smallest eigenvalue of a point. According to [22], ISS
has proven to be a fast and reliable detector for recognition purposes. For more
details, the reader is referred to [1].

Chapter 3: Preliminaries 23

3.9.2 Fast Point Feature Histogram

Fast Point Feature Histogram (FPFH)[23] is a modification of Point Feature His-
togram (PFH) for problems requiring lower computational complexity. FPFH is a
pose-invariant local feature descriptor, described through an array consisting of
33 bytes for each point. The goal of the descriptor is to capture the description
of the surface around each keypoint as uniquely as possible for robust matching.
Its low dimensionality and complexity make it especially suitable for time-critical
applications such as navigation. For more details, the reader is referred to [1].

3.10 Factor Graphs

The classical way of representing navigational smoothing problems is through
matrices and matrix operations. However, newer formulations using graphical
models such as factor graphs have gained popularity due to their intuitive rep-
resentation. Furthermore, the factor graph can be shown to provide the same
performance as sparse matrix operations while still providing the insight to ef-
fectively manipulate the nodes of the graph optimally when new variables arrive
or relinearization is needed. An example factor graph for a navigation system is
shown in Figure 3.4.

x1 x2

l1

GPS

Odometry

LiDARs

x2

l2

Prior

Figure 3.4: Factor Graphs: The figure shows a factor graph displaying an example
navigation problem. The factors between the xs symbolize odometry measure-
ments. The landmarks are measured using a LiDAR. The first x also has a prior
and a GPS factor connected to it.

Source: [1]

A factor graph is a bipartite graph G = (F ,X ,E)with two different types of nodes:

24 3.12: Graph-Based SLAM

factor nodes fi ∈ F and variable nodes x j ∈ X . Edges ei j ∈ E can exist only between
factor nodes and variable nodes and are present if and only if the factor fi involves
a variable x j . Thus we can express each factor fi as a function of the variables x j
and a parametrization of the graph can be described by

f (X) =
∏

i

fi(Xi) (3.25)

Each factor fi can be expressed as

fi(Xi) = d[hi(Xi)− zi] (3.26)

where d denotes a certain cost function, hi denotes a prediction and zi denotes
the real measurement. This framework can incorporate measurement models as
well as process models in a similar manner. Ultimately the factor graph framework
boils down to an optimization problem over all the factors, resulting in the solution
[24]

X̂ = argmin
X

f (X) (3.27)

which under the right assumptions can be shown to be the MAP estimate. For
more details, the reader is referred to [1].

3.11 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is a problem handling the joint
estimation of both pose and landmarks. More accurately, it is the problem of map-
ping an unknown environment while keeping track of a vehicle’s position within
it. The first formulations of the SLAM problem were expressed as extensions of
the EKF framework. However, this involved keeping track of and inverting large
matrices that could grow infinitely large, making it ineffective for most real-world
applications. Later, FastSLAM proposed a Rao-Blackwellized particle filter solution
to the problem. This solution was much more scalable compared to the EKF ap-
proach, as it started exploiting the structural independence of the SLAM problem.
The details of this can be found in [1].

3.12 Graph-Based SLAM

Inspired by the independence exploitation introduced in FastSLAM, modern SLAM
systems, deemed graph-based SLAM systems, represent the SLAM problem using
a factor graph. However, the factor graphs require all factors to be in the form of
residuals. Therefore it is common to divide the system into two parts; the front-
end and the back-end, as depicted in figure 3.5.

Chapter 3: Preliminaries 25

Figure 3.5: Modern SLAM Architecture: The figure shows how the different re-
sponsibilities of a modern SLAM system are split between a front-end and a back-
end.

Source: [25]

Front-end

The front-end of the SLAM system is responsible for performing feature extraction
and data association. Data association includes both tracking of features between
frames in the short term and detecting loop closures. After the feature extrac-
tion and data association are performed, the data is delivered to the back-end as
residuals inserted into the factor graph.

Back-end

The back-end of the SLAM system is responsible for performing the estimation
itself. In the case of graph-based SLAM, this is implemented through a factor
graph. As mentioned, the problem typically boils down to MAP estimation and
involves sparse matrix calculations. Furthermore, modern back-end optimizations
also handle relinearization and reordering of variables if that is needed.

3.12.1 Loop Closure

The goal of any SLAM system is to estimate the position of a vehicle in an unknown
environment. However, if an estimate is given on some unknown scale or repres-
ented in an unknown coordinate system, it is not particularly useful for missions
that span large environments. Loop closures were introduced to cope with drift
in estimates and maintain global consistency. A loop closure means that a SLAM
system recognizes a scene it has visited before. Effectively, this allows correcting
for drift in estimates since it last visited this particular scene. This correction can
be compared to what is done in inertial navigation when a GNSS measurement is
used to correct for drift in IMU-estimations.

26 3.13: Metrics

There are many techniques to detecting loop closures. For 3D LiDAR SLAM sys-
tems, the techniques can be split into two different categories; segmentation-based
methods and alignment-based methods. The segmentation-based methods scan
the point cloud for objects, extract them, and add them to a Bag-of-Words (BoW)
model for later use. The alignment-based methods typically use ICP to fit the cur-
rent point cloud to a historic point cloud. The latter method is used in this thesis.

3.13 Metrics

3.13.1 Root Mean Square Error

The Root Mean Square Error is a popular metric for describing the error between
an estimated value and a truth value. The reason for its popularity is its close
relation to statistical moments, which is essential in estimation theory. In fact, the
RMSE metric describes the sample standard deviation of the prediction errors.
The RMSE metric is defined by the equation

rmse =

√

√ 1
N

∑

e2 (3.28)

where e is the estimation error and N is the sample size.

3.13.2 Normalized Estimation Error Squared

Normalized Estimation Error Squared (NEES) is a popular metric for analyzing
consistency, most often used in combination with tuning the KF. The NEES metric
gives an idea of whether or not the covariance justifies the estimates of the system.
The details are taken from [6, p. 238-245]. The metric is defined by the equation

εk = (x̂k − xk)
T P−1

k (x̂k − xk) (3.29)

where x̂k denotes the estimated state, xk denotes the true state, and Pk is the
covariance at time step k. If the states are modeled correctly, then εk is a χ2 dis-
tributed random variable with Degrees of Freedom (DoF) equal to the dimension
of the state. As a result of this, the NEES can be compared with a 95% confid-
ence interval. The higher the number of NEESes lie within this interval, the more
consistent the state model is with the true state model. A NEES higher than the
confidence bounds indicates an overconfident system, whereas a NEES lower than
the confidence bounds indicates an underconfident system. The lower and upper
bounds can be defined according to

lower = chi2inv(0.025, d) (3.30)

upper = chi2inv(0.975, d) (3.31)

Chapter 3: Preliminaries 27

where chi2inv describes the inverse cumulative distribution function of the χ2

distribution and d is the dimension of the state vector.

The NEES can be used to tune the process covariances of the system. An undercon-
fident system suggests that the system constantly overestimates the covariances.
This is generally easy to adjust for by decreasing the process noise covariances.
On the other hand, an overconfident system suggests that the system underes-
timates the covariance, which is clearly undesirable. This suggests increasing the
process noise covariances of the system. However, this may make the estimations
worse, yielding an increased NEES. This fact makes the problem of overconfidence
generally more challenging to adjust for than underconfidence.

Another way to analyze the NEES is to investigate how it develops for a reduced
state space. This can give insight into how the different process noise covariances
affect the different parts of the system. However, this disregards the covariances
between the removed states and may lead to unforeseen developments when go-
ing back to analyzing the entire state space. Often it is beneficial to study the
development of the NEES for a reduced state space, and tune it for the most ‘im-
portant’ states.

The NEES can also be analyzed in terms of its average. The Average Normalized
Estimation Error Squared (ANEES) can be used to measure the consistency of
the system on the entirety of the samples. When studying the ANEES, the limits
defined in (3.32) are changed. The lower and upper bounds are given by

lower = chi2inv(0.025, Nd)/N (3.32)

upper = chi2inv(0.975, Nd)/N (3.33)

where N is the number of samples, d is the dimensionality of the state vector and
chi2inv is the inverse cumulative distribution function of the χ2 distribution.

In this thesis, the NEES metric will be used to analyze the performance of a graph-
based SLAM system.

Chapter 4

Proposed Approach

This chapter presents the proposed approach for simulating the data, as well as
the proposed system for solving the tunnel navigation problem. Section 4.1 goes
through the relevant software and how it is used. Section 4.2 explains how the
simulator is extended from the pre-project [1] to include IMU and GNSS data.
Finally, Section 4.3 describes the front-end and the back-end of the LiDAR-Inertial
SLAM system.

4.1 Software

This section goes through the essential software and dependencies of the system,
and how they are used. The code itself can, at the moment of writing this thesis,
be found fully available at [26].

4.1.1 MATLAB and Unreal Engine

MATLAB is a well-known proprietary programming platform popularly used for ro-
botics purposes. It comes equipped with many toolboxes for many different applic-
ations. Among those toolboxes are Automated Driving Toolbox and Automated
Driving Toolbox Interface for Unreal Engine 4 Projects, which allows MAT-
LAB, more specifically, Simulink, places actors inside a simulation environment
created in Unreal Engine 4[27]. Unreal Engine is an open-source game engine
developed by Epic Games written in C++. It comes equipped with high-quality
graphics and tools for quickly creating simulated environments.

The Automated Driving Toolbox and Automated Driving Toolbox Interface
for Unreal Engine 4 Projects toolboxes allow placing a vehicle with several
exteroceptive and interoceptive sensors equipped inside the simulated environ-
ment created in Unreal Engine. The data can then be extracted in real-time. Ad-
ditionally, MATLAB has extra functionality for simulating vehicle dynamics, per-

29

30 4.1: Software

forming path planning, and much more, which is used in this thesis to create the
simulated data to evaluate the proposed system. The final Simulink diagram is
shown in Appendix C.

4.1.2 Robotics Operating System

Robotics Operating System (ROS)[28] is a development framework for creat-
ing scalable, standardized robotics software across many different development
platforms. This scalability is achieved by its network-like structure, where it is
possible to create ‘nodes’ that run independently of each other, and communica-
tion between them is achieved by using standardized messages. Additionally, ROS
comes equipped with a lot of tools and functionality for visualizing large streams
of data, as well as manipulating them to the desired format. Due to its consid-
erable popularity, it also has a large user community and is typically compatible
with most existing professional robotics systems and tools.

In this thesis, ROS handles all communication between the different modules of
the system. Because it is built on ROS it is easy to define a modular structure of
the system, where each part has its own responsibilities. This can be done because
ROS implements a vast variety of message types that are typically used in robot-
ics applications, as for example PointCloud2, Odometry, and Pose messages with
time stamps. ROS is also used to visualize the performance of the system. This
visualization is done via the rviz package, which provides tools for visualizing
navigation problems in three dimensions with uncertainty estimates. Figure 4.1
shows a snippet of this visualization software.

The entire ROS communication setup can be seen in Appendix B.

4.1.3 Georgia Tech Smoothing and Mapping

Georgia Tech Smoothing and Mapping (GTSAM)[29] is an optimization library
for navigation purposes written in C++. The optimization problem is represen-
ted using a factor graph. Among other things, GTSAM 4.0 implements the state-
of-the-art incremental inference algorithm iSAM2, which utilizes the Bayes-tree
structure to minimize the extent of changes coming into the factor graph. The
main advantage of this is that it maintains real-time performance even when the
graph grows very large. GTSAM also comes equipped with tools for preintegrating
measurements from IMU sensors and conversion between the Lie framework and
the normal matrix representations. All of these are features that are used in this
thesis.

The GTSAM framework is used to perform preintegration of IMU measurements,
as well as performing the optimization itself. Therefore, when compared to Figure
3.5, GTSAM performs actions for the back-end and the front-end. The preinteg-
ration is done in the front-end, while the iSAM2 framework is pure optimization

Chapter 4: Proposed Approach 31

Figure 4.1: Rviz Visualization: The figure shows how the rviz module of ROS is
used to visualize the performance of the system. The white dots are the currently
viewed points, the red dots are the points contained in the map and the axes
symbolize the sensor. The surrounding purple ‘bubble’ is the one-sigma ellipsoid
in three dimensions.

and belongs in the back-end.

4.1.4 Point Cloud Library

Point Cloud Library (PCL)[30] is an open-source C++ library for manipulating
point clouds. It comes with much inbuilt functionality, such as effective algorithms
for feature extraction, feature matching, and match rejections for single clouds,
in addition to calculating transformations based on matched points. This includes
algorithms such as the ICP and its variants, the RANSAC algorithms in many dif-

32 4.2: Data Generation

ferent forms and calculation of point cloud normals, keypoints such as the ISS,
and descriptors like the FPFH. These features and many others are utilized in this
thesis.

PCL is very useful for manipulating point clouds. Comparing this to the architec-
ture shown in Figure 3.5, PCL is responsible for most of the ‘visual’ part of the
front-end. This includes feature tracking in the short term as well as long term.

4.2 Data Generation

In order to properly evaluate the proposed system, simulated data is generated.
The data is generated through MATLAB, using Unreal Engine to simulate objects
measured by the LiDAR sensor. The simulation environment is similar to the one
used in [1]. However, it is extended to include an IMU sensor and GNSS measure-
ments. The entire flow of the data generation scheme is shown in figure 4.2. The
simulation environment created in [1] can be seen in Appendix D.

MATLAB

Poses

Simulink

Pointclouds

MATLAB INFRASTRUCTURE

W
orkspace

Unreal Engine

Actors

LiDAR point clouds

.mat file

Python

After simulation

rosbag
data LiDAR SLAM System

 Ground truth poses

IMU Measurements
GNSS Measurements

Sensors
Poses

Data Generation Flow

Figure 4.2: Data Generation: The figure shows how the data is created before
being written to a format readable in ROS. The data is generated in MATLAB
using a link between Simulink and Unreal Engine. Thereafter the produced .mat
file is read in Python and written to a rosbag.

Inspired by: [1]

Chapter 4: Proposed Approach 33

4.2.1 IMU

In order to include the IMU sensor properly into the system, a more realistic
vehicle model was implemented. The vehicle model is implemented as a rigid
body with three DoF following a kinematic bicycle model. The body accelerations
and angular velocities are thereafter extracted from this model and sent to the
IMU sensor. The IMU measurements arrive in the NED frame and are after that
rotated to follow the same coordinate system as the LiDAR. Further, it is assumed
in the simulations that the IMU is perfectly aligned with the body frame of the
vehicle. The results of the IMU simulations are shown in figure 4.3.

0 20 40 60 80 100 120 140

6

4

2

0

2

4

6

8

10
Accelerometer

aimu

aimu

aimu

atrue

atrue

atrue

0 20 40 60 80 100 120 140

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Gyroscope
imu

imu

imu

true

true

true

Figure 4.3: IMU Generation: The figure shows the results of the IMU measure-
ment generation. The top figure shows the accelerometer measurements plotted
against the real linear acceleration. The bottom figure shows the gyroscope meas-
urements plotted against the true measurements.

34 4.3: LiDAR-Inertial SLAM System

4.2.2 GNSS

GNSS measurements are completely positional, and since the navigation module
does not affect the simulation, it is trivial to incorporate them after the simula-
tion is done. The measurements are simulated by assuming that they are normally
distributed around the ground truth. This assumption lets us generate the GNSS
measurements by perturbing the ground truth data by zero-mean noise. The noise
is generated according to the parameters of Table 4.2. Note that the GNSS meas-
urements are only added when the vehicle is outside the tunnel.

4.2.3 Sensor Parameters

The configured sensors are tuned according to Table 4.1, Table 4.2, and Table 4.3.
In addition, the gyroscope has a cross-bias with the accelerometer of 1.78×10−4.
This means that high accelerations will affect the gyroscope.

Table 4.1: LiDAR Specifications

Parameter Value

Detection range 50m
Range resolution 0.002m
Vertical FOV 40◦

Vertical resolution 1.25◦

Horizontal FOV 180◦

Horizontal resolution 0.16◦

Frequency 5Hz

Table 4.2: GNSS Specifications

Parameter Value

σ2
x 0.1m
σ2

y 0.1m
σ2

z 0.2m

Table 4.3: IMU Specifications

Parameter Accelerometer Gyroscope

Resolution 6.00× 10−4 1.33× 10−4

Constant Bias 0 0
Measurement Noise 1.54× 10−3 3.24× 10−5

Bias Driving Noise 3.92× 10−4 8.73× 10−5

Frequency 60Hz 60Hz

Chapter 4: Proposed Approach 35

4.3 LiDAR-Inertial SLAM System

4.3.1 Front-end

The vehicle studied in this thesis consists of three sensors used for navigation; a
LiDAR, an IMU, and a GNSS. The front-end is responsible for all pre-processing
of sensory information before it is added to the back-end. For the proposed sys-
tem, this includes the short-term feature tracking between LiDAR point clouds,
performing the map alignment, and refining the map before adding points to the
graph. Further, it also includes preintegrating IMU measurements, pre-processing
GNSS measurements, keeping track of the timing between the different sensors,
and detection of loop closures.

Short-term Feature Tracking

The vehicle is equipped with a 3D LiDAR sensor. All modern SLAM systems use
some visual sensor to estimate odometry. This is because these types of visual odo-
metry systems generally provide more robust and precise estimates compared to
inertial navigation systems without having to buy expensive sensors [31]. Addi-
tionally, inertial sensors require correction to perform well, which is not available
in an indoor scene.

The short-term feature tracking part of the front-end is responsible for solving
the pairwise point cloud registration problem. The proposed method is based on
using features and descriptors for matching and calculating the transformation
between a pair of point clouds. Similar to the method explored in [1], it involves
using the robust ISS keypoints and FPFH as descriptors. As opposed to the method
in [1], the rejections are based on the partial overlap between the point clouds.
The pipeline is shown in figure 4.4.

The first three steps in Figure 4.4 consist of removing NaN points, meaning points
that never measured anything. Thereafter, noise is reduced by voxel grid filtering.
This means downsampling all points within a small area to their centroid. After
this, the normals of the cloud are computed.

The next step is to remove the ground plane from the cloud. This is done by fitting
a plane to the points measured beneath the LiDAR corresponding to the height the
sensor is mounted to. Any points that lie in that plane are consequently removed
from the point cloud.

The final three steps of short-term feature tracking involve feature extraction and
matching, including the calculation of the relative transformation itself. As in [1],
the system uses ISS keypoints and FPFH descriptors to perform the matching. The
matching is thereafter done using a KD-tree for fast computation before matches
are rejected by using a partial overlap rejector. Finally, the transformation is cal-
culated before publishing the transformation over ROS.

36 4.3: LiDAR-Inertial SLAM System

Remove NaNs

Feature Tracking Pipeline

Raw point Cloud

Voxel Filtering

Calculate normals

Remove Ground Plane

Extract Features +
Descriptors

Detect + Reject
Correspondences

Calculate Transformation

Previous Cloud
Previous Descriptors

Publish Odometry
as ROS Message

Overwrite Previous

Figure 4.4: Short-term Feature Tracking Pipeline: The figure shows the pipeline
of the short-term feature tracking module. The steps consist of filtering, segment-
ation, feature matching and transformation calculation.

Keyframe Selection

A SLAM system aims to maintain a globally consistent estimate of the vehicle pose
and map at all times. This includes keeping a history of poses and points for an
indefinite amount of time. In order to reduce the number of variables to maintain,
a crucial part of any SLAM system is the selection of so-called keyframes. It is vital
for any SLAM system that their keyframes are as descriptive as possible to avoid
losing necessary information as time passes.

The proposed system fuses information from several sensors. Consequently, the
keyframe selection should not be dependent on a single sensor. A GNSS meas-
urement in an inertial navigation system is often considered to be very accurate
and is therefore used to account for drift. Therefore it is natural that anytime a
GNSS measurement is received, a new keyframe is recorded. Following the same
logic, a keyframe is also recorded whenever a loop closure is detected. Further, a
keyframe is selected whenever a fixed amount of distance has been covered since
the last keyframe, as suggested in [5].

Chapter 4: Proposed Approach 37

Map Alignment

Drift is a severe issue for any SLAM system. Drift occurs when there is nothing
rooting the estimates to the world. Since every pose is relative to the previous, drift
will gradually build over time. Essentially, the map and the estimated trajectory
will not be globally consistent and cannot be used to tell where the vehicle has
traveled. The proposed system uses a map alignment step to minimize the effects
of drift between each pose. This map alignment is based on ICP to adjust the
estimate from the short-term feature tracking.

After the short-term feature tracking is performed, the front-end fine grains the es-
timated odometry by aligning the currently viewed point cloud to the map. This is
done by a custom ICP algorithm, in order to add the possibility of adding whitened
priors from the IMU. The alignment follows algorithm 4 using LM from algorithm
3 as the kernel of the optimization between each iteration. The feature match-
ing inside the algorithm is a naive reciprocal closest-point matching algorithm in
every iteration. IMU priors are integrated into the solution by adding an extra row
to the A and b matrices in (3.21). The expression to be added into the matrices
is given by the difference between the predicted pose from the IMU and the last
predicted pose. Expressed mathematically, this gives

Aimu = I6x6 (4.1)

bimu = −Σ
−1/2
imu Log(Exp(ξ̂imu)

−1Exp(ξprev)) (4.2)

where the Log(·) and Exp(·) operators are defined in Section 3.6.

Map refinement

The map alignment process fine grains the pose with respect to the map. Con-
sequently, a map containing a lot of ‘poor’ points will only make the map align-
ment process worse. Therefore, the proposed system uses a map refinement thread
that selects ‘good’ points in order to complement the map alignment process as
well as possible. The map refinement process of the front-end runs on a separate
thread with a frequency of 1Hz. The best points are chosen according to a RANSAC
matching algorithm and further by comparing the selected points to points already
in the map to avoid duplicates.

Preintegration of IMU measurements

IMU sensors generally run on a very high frequency compared to the other sensors
of the system. Typically the sampling frequency lies around 100Hz, but it may
lie anywhere in the 60Hz-1000Hz range. Compared to sensors like GNSS, which

38 4.3: LiDAR-Inertial SLAM System

provides measurements with a frequency of < 1Hz, there are a lot of IMU meas-
urements between each GNSS measurement. Including a factor in the factor graph
for each IMU measurement would mean that the number of poses in the graph
would exceed 1000 for a run over 10 seconds. Clearly, this is undesirable for op-
timization purposes, as a single relinearization would require the recalculation of
many variables. Since the inner workings of the optimization use sparse matrices
and reordering algorithms, this would increase computation times by a signific-
ant amount. Therefore the proposed system follows the suggestions of [18] for
preintegrating IMU measurements between keyframes.

Timing Between Sensors

The factor graph formulation of the problem has a convenient representation that
makes including measurements with latency possible. This also goes for meas-
urements that, for some reason, have been received with a significant time delay.
These measurements would have to be discarded for a pure filtering system, and
valuable information may have been lost. However, handling such measurements
requires more overhead as one must be careful in inserting the measurement in
the correct place in the factor graph. For example, if a GNSS measurement arrives
late, this must not get added to the latest estimate, as this would severely ruin the
estimation.

Loop Closure Detection

Loop closures are the main difference between a SLAM system and an odometry
system. They are essential for maintaining global consistency. The proposed sys-
tem uses an ICP-based method for detecting loop closures, as suggested in [5].
However, this type of loop closure detection requires some overhead in order to
work as desired. The first part of the loop closure detection is to extract relevant
historic keyframes for the ICP algorithm to compare with. Relevant historic key-
frames are extracted according to the current estimated position of the robot, the
time the historic keyframes were recorded, and the relative heading between the
two keyframes. After that, a set amount of frames around this historic keyframe
are concatenated to form a larger segment. Finally, the ICP algorithm is used to
align the latest keyframe to the concatenated cloud, and an average Euclidean
distance score is used as a fitness measure to decide whether or not the latest
keyframe is taken from the same scene.

The difference in viewpoint is accounted for by scaling the search point according
to the difference in heading between the closest historic pose and the current pose.

Chapter 4: Proposed Approach 39

This new search point is calculated according to

xsearch = xcur rent + s×
|ψclosest −ψcur rent |

π
cos(ψclosest −ψcur rent) (4.3)

ysearch = ycur rent + s×
|ψclosest −ψcur rent |

π
sin(ψclosest −ψcur rent) (4.4)

zsearch = zcur rent (4.5)

where ψ denotes the heading and s is a scaling parameter based on the range
of the LiDAR. This equation makes it so that if the viewing angles are similar, the
search point is simply the current point. If the scene is viewed from two completely
different angles, then it accounts for the view indifference by searching s distance
away from the current point in the direction ψclosest −ψcur rent . In this thesis the
LiDAR has a range of 50m. Since viewing a point from two completely different
scenes could mean two LiDAR scans apart, 60m was found to be a good value for
s.

4.3.2 Optimization Back-end

As mentioned, the back-end is responsible for doing all the optimization. This
includes sparse matrix inference, smoothing, and relinearization if needed. The
proposed system uses the ISAM2 algorithm [4] as optimization engine. The ISAM2
tree in the system contains all the key poses as well as selected viewed points and
the estimated velocity and bias at these key poses. The interaction between the
front-end and the back-end is shown in figure 4.5.

40 4.3: LiDAR-Inertial SLAM System

Point cloud
Keyframe?

IMU
Preintegration

(10Hz)IMU data

Yes

NoFeature
Tracking Map Alignment

iSAM2
(Back-end)

Smoothed Pose Estimate
And Map

Rough Pose
Estimate

GNSS Processing
(Sporadic)

GNSS Measurement

LiDAR Loop Closure
(0.25Hz)

Map Refinement
(1Hz)

(10Hz)

Front-end

Figure 4.5: Back-end: The figure shows how the front-end prepares factors for the
measurements before sending them to the back-end, and at what frequency they
do so. The front-end delivers a rough pose estimate, while the back-end delivers
a smoothed estimate whenever a keyframe is recorded.

Chapter 5

Results

This section explains the experiments and the results of the experiments on a
superficial level. Section 5.1 shows how the system performs as more modalities
are added. This addition is evaluated by inspecting the uncertainties and errors
of a single passing through the tunnel. Thereafter, section 5.2 shows the results
achieved by the system using the loop closure algorithm as explained in Section
4.3.1. Likewise, the analysis is based on using errors and uncertainties. However, it
investigates when the vehicle travels back through the same tunnel. Each section
describes the process noise covariances used in the simulations. The remaining
hyperparameters can be found in Appendix A.

5.1 Sensor Comparison

5.1.1 Experiment

The experiment takes place in a simulated environment. The simulation consists
of a large ground vehicle passing through an approximately 200m long tunnel and
exiting the other side. The experiment is repeated three times, with an additional
modality (sensor) added for each repetition. In addition to the metrics discussed
in Section 3.13, the heading error is calculated, and the estimated trajectories are
shown alongside the ground truth trajectory. In total, the vehicle is equipped with
an IMU, a LiDAR, and a GNSS receiver. The GNSS measurements are received
before entering the tunnel and after leaving the tunnel and are marked by the red
crosses in figure 5.1. This experiment aims to study how the performance of the
estimation develops with the addition of more modalities. The inclusion of each
new modality is expected to yield a better result for the estimations.

41

42 5.1: Sensor Comparison

0 50 100 150 200 250 300
North [m]

30

20

10

0

10

20

W
es

t [
m

]

Figure 5.1: Experiment: The figure shows the trajectory of the sensor comparison
experiment. It shows a straight path starting outside the tunnel on one side before
exiting on the other side. The red crosses mark GNSS measurements

The experiments are run one by one. The figures are organized so that each sep-
arate experiment is divided into three subfigures. (a) is for the LiDAR-only exper-
iment, (b) for the LiDAR+IMU experiment, and (c) for the LiDAR+IMU+GNSS
experiment. After all experiments are shown, a summarizing caption is shown.
The errors are calculated by comparing the ground truth value with the estim-
ated value closest in time. The process noises are tuned to yield an approximately
consistent NEES without having a too large impact on the trajectory tracking. The
process noises are tuned according to Table 5.1.

Table 5.1: Noise Specifications. All noises are to be considered as the diagonal of
a square matrix. Any off-diagonal elements are assumed zero.

Parameter Value

Structure Noise(m) [0.1,0.1, 0.1]T

Odometry Position Noise(m) [0.1,0.1, 0.3]T

Odometry Attitude Noise(rad) [5× 10−3, 5× 10−3, 1× 10−6]T

GNSS Noise(m) [1.5,1.5, 0.3]T

Accel. Measurement Noise(m/s2/
p

Hz) [0.01,0.01, 0.01]T

Accel. Bias Driving Noise(m/s/
p

Hz) [5× 10−3, 5× 10−3, 5× 10−3]T

Gyro. Measurement Noise(rad/s/
p

Hz) [1× 10−5, 1× 10−5, 1× 10−5]T

Gyro. Bias Driving Noise(rad/
p

Hz) [1× 10−4, 1× 10−4, 1× 10−4]T

5.1.2 Results

This section goes through three repetitions of the experiment described above.
Firstly, the experiment will be performed using only a LiDAR. Thereafter, a LiDAR
and an IMU. Finally, the experiment will be repeated using all of the sensors,
namely, a LiDAR, an IMU, and a GNSS receiver.

Chapter 5: Results 43

The upper plot of each of the three figures in Figure 5.2 shows the estimated tra-
jectory before and after smoothing plotted against the ground truth trajectory for
the three experiments. The other two plots show the estimated trajectory before
and after smoothing, with the respective one-sigma ellipsoid around every other
pose. The plots in Figure 5.2a show a shorter ground truth trajectory. The reason
for this is that the trajectory has been truncated when there are no estimations,
which is the case when the system runs using only the LiDAR sensor and the
vehicle drives out of the tunnel. Notice that when using only the single modality,
estimate before and after smoothing is exactly alike, which is valid for the entirety
of the experiments using LiDAR only.

North [m]

40

20

0

20

40

W
es

t [
m

]

Position

GroundTruth
BeforeSmoothing
AfterSmoothing

North [m]

40

20

0

20

40

W
es

t [
m

]

Before Smoothing with Covariance

XYPos

0 50 100 150 200 250
North [m]

40

20

0

20

40

W
es

t [
m

]

After Smoothing with Covariance

XYPos

Estimated Position Vs True Position

(a) LiDAR only

Figure 5.2b shows the trajectory when fusing LiDAR and IMU sensory information.

44 5.1: Sensor Comparison

The final estimates are purely based on IMU dead-reckoning prediction, which
arrives when the LiDAR times out. Figure 5.2c shows the same trajectory, but the
fusion also includes GNSS measurements when the vehicle leaves the tunnel. The
latter figure shows a smaller one-sigma ellipsoid in the smoothed trajectory.

North [m]

40

20

0

20

40

W
es

t [
m

]

Position

GroundTruth
BeforeSmoothing
AfterSmoothing

North [m]

40

20

0

20

40

W
es

t [
m

]

Before Smoothing with Covariance

XYPos

0 50 100 150 200 250
North [m]

40

20

0

20

40

W
es

t [
m

]

After Smoothing with Covariance

XYPos

Estimated Position Vs True Position

(b) LiDAR+IMU

Chapter 5: Results 45

North [m]

40

20

0

20

40

W
es

t [
m

]

Position

GroundTruth
BeforeSmoothing
AfterSmoothing

North [m]

40

20

0

20

40

W
es

t [
m

]

Before Smoothing with Covariance

XYPos

0 50 100 150 200 250
North [m]

40

20

0

20

40

W
es

t [
m

]

After Smoothing with Covariance

XYPos

Estimated Position Vs True Position

(c) LiDAR+IMU+GNSS

Figure 5.2: XY Position: The figures show the planar position for the sensor com-
parison experiment. (a) shows the results using only LiDAR. (b) shows the results
when LiDAR odometry is fused with an IMU. (c) shows the results when GNSS
information is fused when leaving the tunnel. The upper plot in each figure shows
how the estimated trajectories before and after smoothing match the ground truth
trajectory in the plane. The middle plot in each figure shows how the estimated
trajectory with its respective one-sigma ellipses around every other pose. The
lower plot in each figure shows the same as the middle plot, but after smoothing.

Figure 5.3 shows how the absolute errors of the system develop over time as the
vehicle traverses the tunnel for the three experiments. The top plot in each figure
shows the absolute error when comparing the position in the XY plane with their
respective ground truth counterpart. The bottom plot in each figure shows the

46 5.1: Sensor Comparison

error in the vehicle’s heading compared with the ground truth.

The absolute XY position error in figure 5.3a shows an approximately linear trend,
reaching its peak at around 8m towards the end of the tunnel. The heading error
shows no apparent trend. However, it oscillates at around 1 degree for the most
part. Towards the end, it spikes and reaches its peak at around 3.6 degrees.

0

2

4

6

8

E
rr

or
 [m

]

XY Position Error

Before Smoothing
After Smoothing

0 5 10 15 20 25 30 35 40
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
rr

or
 [d

eg
]

Heading Error

Before Smoothing
After Smoothing

 Absolute Errors

(a) LiDAR only

The absolute XY positional error in figure 5.3b shows an increasing trend that
stops as the vehicle is in the middle of the tunnel before slightly increasing again
and reaching the peak at around 6m when the vehicle is reaching the end. When
there is information from several sensors, the difference between the smoothed
and non-smoothed curves becomes apparent. The heading error shows no appar-

Chapter 5: Results 47

ent trend. However, it increases towards the end of the tunnel, reaching its peak
at around 6 degrees.

Figure 5.3c shows an increasing trend before smoothing, but an approximately
constant error after smoothing. Before smoothing, it reaches its peak just before a
GNSS measurement arrives at approximately 8m. Like the previous experiments,
the heading error shows no apparent trend; however, it is generally smaller after
smoothing. Both curves reach their peak towards the end of the tunnel. The tra-
jectory before smoothing peaks at approximately 5.5 degrees right before the
GNSS measurement. The trajectory after smoothing peaks at approximately 4.5
after the GNSS measurement.

0

1

2

3

4

5

6

E
rr

or
 [m

]

XY Position Error

Before Smoothing
After Smoothing

0 5 10 15 20 25 30 35 40
Time [s]

0

1

2

3

4

5

6

E
rr

or
 [d

eg
]

Heading Error

Before Smoothing
After Smoothing

 Absolute Errors

(b) LiDAR+IMU

48 5.1: Sensor Comparison

0

2

4

6

8

E
rr

or
 [m

]

XY Position Error

Before Smoothing
After Smoothing

0 5 10 15 20 25 30 35 40
Time [s]

0

1

2

3

4

5

E
rr

or
 [d

eg
]

Heading Error

Before Smoothing
After Smoothing

 Absolute Errors

(c) LiDAR+IMU+GNSS

Figure 5.3: Absolute Errors: The figures show how the planar errors develop over
time for the sensor comparison experiment. (a) shows the results when estima-
tions are solely based on the LiDAR sensor. (b) shows the results when fusing
LiDAR and IMU sensory information is fused. (c) shows the results when LiDAR,
IMU, and GNSS information is fused. The top plot of each figure shows how the
absolute error in the XY position develops before and after smoothing. The bot-
tom plot of each figure shows how the absolute error in heading develops before
and after smoothing as the vehicle traverses the tunnel.

Figure 5.4 displays how different NEESes (as described in section 3.13) develop
over time before and after smoothing for each experiment. The top plot shows the
NEES of the positional states in the XY plane. This state vector is two-dimensional,

Chapter 5: Results 49

and is therefore compared to a χ2-distribution with two DoF. For the first experi-
ment, shown in Figure 5.4a, the results after smoothing differ a negligible amount
from the results before smoothing because there is a prior on the first pose. Fig-
ure 5.4a shows that the XY position lies within the 95% confidence interval 98%
of the time both before and after smoothing for the experiment using a LiDAR
only. Figure 5.4b shows that the XY position manages to lie within the bounds
95% confidence interval 95.3% of the time before smoothing and 96.9% of the
time after smoothing when fusing LiDAR and IMU sensor information. Figure 5.4c
shows that the fusing LiDAR, IMU, and GNSS sensor information results in an XY
position NEES of 98.5% of the time before smoothing and 100% of the time after
smoothing.

0

2

4

6

XY Position NEES
Before Smoothing: (98.3 inside 95.0 confidence interval)
After Smoothing: (98.3 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0

1

2

3

4

5

Heading NEES
Before Smoothing: (98.3 inside 95.0 confidence interval)
After Smoothing: (96.7 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

Total Planar NEES
Before Smoothing: (66.1 inside 95.0 confidence interval)
After Smoothing: (65.0 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

(a) LiDAR only

The middle plot shows the NEES of the heading state. Following the same method,
this is compared to a χ2-distribution with one degree of freedom. When using only

50 5.1: Sensor Comparison

the LiDAR sensor, Figure 5.4a shows that the system lies within the 95% confid-
ence interval 98.3% of the time both before and after smoothing. Figure 5.4b
shows that including IMU information results in 90.6% of the heading NEESes
lying inside the 95% confidence interval before smoothing, while 92.3% of the
NEESes lie inside the interval after smoothing. The final experiment including
GNSS information before the vehicle enters the tunnel and after the vehicle leaves
results in the system achieving 84.6% of the heading NEESes inside the interval
before smoothing and 84.8% of the NEESes after the smoothing.

0

2

4

6

8

XY Position NEES
Before Smoothing: (95.3 inside 95.0 confidence interval)
After Smoothing: (96.9 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0

2

4

6

Heading NEES
Before Smoothing: (90.6 inside 95.0 confidence interval)
After Smoothing: (92.3 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0 5 10 15 20 25 30 35 40

0

10

20

30

40

Total Planar NEES
Before Smoothing: (73.4 inside 95.0 confidence interval)
After Smoothing: (32.3 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

(b) LiDAR+IMU

The bottom plot shows the total planar NEES. As this state vector is three-dimensional,
the confidence interval is taken from a χ2-distribution with three DoF. According
to figure 5.4a, the LiDAR-only experiment achieves its NEESes inside the 95%
confidence interval 66.1% of the time. Figure 5.4b shows that fusing IMU and
LiDAR information gives 73.4% of the total planar NEESes inside the 95% confid-

Chapter 5: Results 51

ence interval before smoothing, while 32.3% of the NEESes are inside the interval
after smoothing. When including all the sensory information available, the system
achieves its total planar NEESes inside the 95% confidence interval 70.8% of the
time before smoothing and 87.9% of the time after smoothing.

0

2

4

6

XY Position NEES
Before Smoothing: (98.5 inside 95.0 confidence interval)
After Smoothing: (100.0 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0

5

10

15

Heading NEES
Before Smoothing: (84.6 inside 95.0 confidence interval)
After Smoothing: (84.8 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0 5 10 15 20 25 30 35 40

0

20

40

Total Planar NEES
Before Smoothing: (70.8 inside 95.0 confidence interval)
After Smoothing: (87.9 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

(c) LiDAR+IMU+GNSS

Figure 5.4: Planar NEESes: The figures show the NEESes over time for the sensor
comparison experiment. (a) shows the results when estimations are solely based
on the LiDAR sensor. (b) shows the results when fusing LiDAR and IMU sensory
information is fused. (c) shows the results when LiDAR, IMU, and GNSS inform-
ation is fused. The top plot of each figure shows the XY-plane positional NEES
before and after smoothing along with the 95% confidence interval bounds. The
middle plot of each figure shows the heading NEES before and after smoothing
along with the 95% confidence interval bounds. The lower plot of each figure
shows the total NEES of the planar states before and after smoothing along with
their respective 95% confidence interval bounds.

52 5.2: Loop Closure

The RMSEs and the ANEESes summarize the results on the entirety of the tra-
jectory. The RMSEs and ANEESes for each included modality before and after
smoothing are shown in Table 5.2 and Table 5.3.

Table 5.2: RMSEs for the Sensor Comparison Experiment

State Experiment Before Smoothing After Smoothing

North
LiDAR 4.66m 4.66m
LiDAR + IMU 4.25m 4.13m
LiDAR + IMU + GNSS 4.33m 1.03m

West
LiDAR 1.32m 1.32m
LiDAR + IMU 1.61m 0.45m
LiDAR + IMU + GNSS 1.03m 0.46m

Planar Position
LiDAR 4.85m 4.85m
LiDAR + IMU 4.55m 4.15m
LiDAR + IMU + GNSS 4.46m 1.13m

ψ

LiDAR 1.35◦ 1.35◦

LiDAR + IMU 1.97◦ 2.17◦

LiDAR + IMU + GNSS 1.94◦ 1.58◦

Table 5.3: ANEESes for the Sensor Comparison Experiment

State Experiment
Before

Smoothing
After

Smoothing
Confidence

Interval

XY Position
LiDAR 1.50 1.50 [1.52, 2.54]
LiDAR + IMU 2.56 1.49 [1.54, 2.52]
LiDAR + IMU + GNSS 1.43 0.92 [2.43, 3.62]

ψ

LiDAR 0.38 0.38 [0.67, 1.39]
LiDAR + IMU 0.78 0.93 [0.68, 1.38]
LiDAR + IMU + GNSS 1.14 2.74 [0.69, 1.37]

Total
LiDAR 8.1 7.9 [2.41, 3.66]
LiDAR + IMU 12.88 13.67 [2.43, 3.63]
LiDAR + IMU + GNSS 10.79 4.14 [2.43, 3.62]

5.2 Loop Closure

This section shows the results achieved with a simple and naive loop closure de-
tection algorithm.

Chapter 5: Results 53

5.2.1 Experiment

The experiment takes place in the same simulated environment as Section 5.1.
The road roller is equipped with three sensors; a LiDAR, an IMU, and a GNSS
receiver. Additionally, a simple loop closure algorithm is implemented to provide
a higher global consistency. As mentioned in 1.1, the road roller is at minimum
required to do a set number of passings over the material to comply with the road
construction standards. The purpose of the experiment is therefore to investigate
how the road rollers performance would change when driving through an already
visited scene, and how it changes from the first time it drove through. The loop
closure detection algorithm is expected to yield a better result for the estimations
when passing through an already visited area.

100 50 0 50 100 150 200 250 300 350
North [m]

30

20

10

0

10

20

W
es

t [
m

]

Figure 5.5: Experiment: The figure shows the trajectory of the loop closure ex-
periment. It is a straight trajectory, starting at the outside of the tunnel on one
side before performing a loop and driving back through the same tunnel. The red
crosses mark GNSS measurements.

The figures are organized similarly as in the previous section. Each figure is di-
vided into two subfigures. (a) shows the results without loop closure activated,
and (b) shows the results with loop closure activated. After both subfigures are
displayed, a summarizing caption is displayed. The errors are calculated by com-
paring the ground truth value with the estimated value closest in time. The process
noises are tuned according to Table 5.4

54 5.2: Loop Closure

Table 5.4: Noise Specifications. All noises are to be considered as the diagonal of
a square matrix. Any off-diagonal elements are assumed zero.

Parameter Value

Structure Noise(m) [0.1,0.1, 0.1]T

Odometry Position Noise(m) [0.1,0.1, 0.3]T

Odometry Attitude Noise(rad) [5× 10−3, 5× 10−3, 1× 10−6]T

GNSS Noise(m) [1.5,1.5, 0.3]T

Accel. Measurement Noise(m/s2/
p

Hz) [0.01,0.01, 0.01]T

Accel. Bias Driving Noise(m/s/
p

Hz) [5× 10−3, 5× 10−3, 5× 10−3]T

Gyro. Measurement Noise(rad/s/
p

Hz) [1× 10−5, 1× 10−5, 1× 10−5]T

Gyro. Bias Driving Noise(rad/
p

Hz) [1× 10−4, 1× 10−4, 1× 10−4]T

5.2.2 Results

This section shows the results achieved by the complete LiDAR SLAM system on
the round trip shown in Figure 5.5. Figure 5.6 shows the position in the XY plane.
Figure 5.6a shows the trajectories without loop closure enabled and Figure 5.6b
shows them with loop closure enabled. The top plots show the estimated position
before and after smoothing plotted against the ground truth. The middle plots
show the estimate before smoothing, where every other pose is marked with its
respective one-σ ellipsoid. Poses are marked with x. The bottom plots show the
same as the middle plot, but the estimate is taken after smoothing when the tra-
jectory is finished.

Chapter 5: Results 55

40

20

0

20

40

W
es

t [
m

]

Position

GroundTruth
BeforeSmoothing
AfterSmoothing

40

20

0

20

40

W
es

t [
m

]

Before Smoothing with Covariance

XYPos

0 50 100 150 200 250 300 350
North [m]

40

20

0

20

40

W
es

t [
m

]

After Smoothing with Covariance

XYPos

Estimated Position Vs True Position

(a) Without Loop Closure

56 5.2: Loop Closure

40

20

0

20

40

W
es

t [
m

]

Position

GroundTruth
BeforeSmoothing
AfterSmoothing

40

20

0

20

40

W
es

t [
m

]

Before Smoothing with Covariance

XYPos

0 50 100 150 200 250 300 350
North [m]

40

20

0

20

40

W
es

t [
m

]

After Smoothing with Covariance

XYPos

Estimated Position Vs True Position

(b) With Loop Closure

Figure 5.6: XY Position: Estimate vs Ground Truth Before Smoothing for the loop
closure experiment. (a) shows the results without the loop closure module activ-
ated, while (b) shows the results with loop closures enabled. The top plot in each
figure shows the estimated trajectory before and after smoothing plotted against
ground truth. The middle plot shows the estimated trajectory with the corres-
ponding one-σ ellipsoid plotted at every other pose. The bottom plot shows the
same as the middle, but after smoothing.

Figures 5.7a and 5.7b show the errors in the XY plane without and with loop
closure enabled, respectively. The shaded areas are sketched to show where GNSS
coverage is available and not. GNSS coverage is not available where the graph
inside the grey sketched area. It is available in the lighter parts of the graph,
namely the start, middle, and end of the graph. The top plot shows the absolute

Chapter 5: Results 57

error in the XY position, while the bottom plot shows the absolute error in the
heading. They are both compared to the ground truth. The top plots of both Figure
5.7a and Figure 5.7b shows that the error before smoothing increases linearly
before reaching its peak just before leaving the tunnel. After smoothing, however,
they differ, and neither of them shows a linearly increasing trend. Outside the
tunnel, the system maintains a low error. During the return through the tunnel,
Figure 5.7a shows that the system errors increase faster. Figure 5.7b shows that the
system with loop closure contains the error for a little while before an increasing
trend is re-initiated during the return through the tunnel.

0

5

10

15

20

E
rr

or
 [m

]

XY Position Error

Before Smoothing
After Smoothing

0 20 40 60 80 100 120 140
Time [s]

0

5

10

15

20

25

E
rr

or
 [d

eg
]

Heading Error

Before Smoothing
After Smoothing

 Absolute Errors

(a) Without Loop Closure

The bottom plots show that the heading error maintains a low value for the en-

58 5.2: Loop Closure

tirety of the run after smoothing. Before smoothing it increases approximately
linearly outside of the tunnel. A significant peak appears just after re-entering the
tunnel. The plot shows that the trajectory after smoothing is kept almost constant
or is slowly increasing.

0

2

4

6

8

10

E
rr

or
 [m

]

XY Position Error

Before Smoothing
After Smoothing

0 20 40 60 80 100 120 140
Time [s]

0

5

10

15

20

25

30

E
rr

or
 [d

eg
]

Heading Error

Before Smoothing
After Smoothing

 Absolute Errors

(b) With Loop Closure

Figure 5.7: Absolute Errors: The figures show the absolute planar error over time
for the loop closure experiment. (a) Shows the errors without loop closures en-
abled, while (b) shows the errors with loop closures enabled. The top plot in each
figure shows the absolute error in the XY plane before and after smoothing. The
bottom plot in each figure shows the heading error before and after smoothing.
The shaded areas show where the GNSS coverage isn’t available.

Chapter 5: Results 59

Figure 5.8 shows how the planar NEES develops throughout the trajectory with
and without loop closure. It is shown without loop closure enabled in Figure 5.8a,
and with loop closure in Figure 5.8b. Similar to the previous figure, the shaded
areas and light areas indicate where there is and is not GNSS coverage. The top
plot shows the XY position NEES, which is compared to a χ2 distribution with two
DoFs. It shows that the estimation before smoothing lies within the 95% confid-
ence bounds 67.8% of the time without loop closure and 90.1% of the time with
loop closure. After smoothing, it lies within the confidence interval 68% of the
time without loop closure, while it lies within the confidence bounds 61% of the
time with loop closure.

The middle plots show the NEES of the heading state. Consequently, this is com-
pared to a χ2 distribution with one DoF. It shows that the system achieves a head-
ing NEES that lies within the 95% confidence bound 76.8% of the time before
smoothing and 81.5% after smoothing without loop closure. With loop closure, it
lies within the same confidence bounds 90.1% of the time before smoothing and
97.3% of the time after smoothing.

The bottom plots show the total planar NEES. This state vector is three-dimensional.
Hence it is compared to a χ2 distribution with three DoFs. It shows that the sys-
tem achieves a total planar NEES that lies within the 95% confidence bounds
76.8% before smoothing and 81.5% after smoothing without loop closure. With
loop closure enabled, the same tuning yields a system that lies within the con-
fidence bounds 86.2% of the time before smoothing and 68.1% of the time after
smoothing.

60 5.2: Loop Closure

0

10

20

30

40

50

60

XY Position NEES
Before Smoothing: (67.8 inside 95.0 confidence interval)
After Smoothing: (68.0 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0

10

20

30

40

Heading NEES
Before Smoothing: (76.8 inside 95.0 confidence interval)
After Smoothing: (81.5 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

Total Planar NEES
Before Smoothing: (57.6 inside 95.0 confidence interval)
After Smoothing: (54.5 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

(a) Without Loop Closure

Chapter 5: Results 61

0

10

20

30

XY Position NEES
Before Smoothing: (90.1 inside 95.0 confidence interval)
After Smoothing: (61.0 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0

10

20

30

40

Heading NEES
Before Smoothing: (90.1 inside 95.0 confidence interval)
After Smoothing: (97.3 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

0 20 40 60 80 100 120 140

0

10

20

30

40

Total Planar NEES
Before Smoothing: (86.2 inside 95.0 confidence interval)
After Smoothing: (68.1 inside 95.0 confidence interval)

Before Smoothing
After Smoothing
Lower Bound
Upper Bound

(b) With Loop Closure

Figure 5.8: Planar NEESes: The figures show how the planar NEESes develop
over time before and after smoothing. (a) shows how the NEES develops without
loop closure enabled, while (b) shows how it develops with loop closure enabled.
The top plot of each figure shows the planar position NEES. The middle plot
shows the heading NEES. The bottom plot shows the total planar NEES. Every
plot includes its corresponding two-sided 95% confidence interval.

The overall results on the trajectory are summarized by the RMSEs and ANEESes.
The RMSEs are shown in Table 5.5 and the ANEESes are shown in Table 5.6. The
tables show the results with and without the loop closure module enabled before
and after smoothing.

62 5.2: Loop Closure

Table 5.5: RMSEs for the Loop Closure Experiment

State Experiment Before Smoothing After Smoothing

North
Without Loop Closure 5.89m 3.08m
With Loop Closure 3.57m 3.07m

West
Without Loop Closure 5.00m 1.03m
With Loop Closure 0.69m 0.55m

Planar Position
Without Loop Closure 7.73 3.25m
With Loop Closure 3.64m 3.12m

ψ
Without Loop Closure 7.26◦ 2.47◦

With Loop Closure 6.48◦ 0.99◦

Table 5.6: ANEESes for the Loop Closure Experiment

State Experiment
Before

Smoothing
After

Smoothing
Confidence

Interval

XY Position
Without Loop Closure 5.84 7.04 [1.72, 2.31]
With Loop Closure 2.97 8.59 [1.72, 2.31]

ψ

Without Loop Closure 3.64 2.84 [0.80, 1.22]
With Loop Closure 2.20 0.54 [0.80, 1,22]

Total
Without Loop Closure 9.14 10.34 [2.65, 3.37]
With Loop Closure 4.62 9.85 [2.65, 3.37]

Chapter 6

Discussion

This chapter aims at providing a detailed discussion of the results represented
in Chapter 5. Section 6.1 discusses the results relevant to the sensor comparison
experiment conducted in Section 5.1. Similarly, Section 6.2 discusses the results
relevant to the loop closure experiment conducted in Section 5.2.

6.1 Sensor Comparison

The goal of the sensor comparisons experiments in Section 5.1 is to study how
the performance develops as more modalities are added to the system. This lets
us investigate how the LiDAR can be incorporated to contribute to improving the
standard navigation system. This section will investigate factors that influenced
the results of the different experiments and how they may be further improved.

Before discussing the results, it is important to note that there is an element of
randomness in the estimation system. The map building process uses a RANSAC
algorithm for outlier removal. Therefore the results may slightly vary from run
to run, even though the system is tuned with the same hyperparameters. This
should, however, not have a great impact but is worth keeping in mind when
comparing the different runs. For example, the LiDAR+IMU run displayed as a
green line in Figure 6.1 suggests that the system has better estimates inside the
tunnel than the system that also includes GNSS measurements. This does not
make sense since there are only IMU and LiDAR measurements available inside
the tunnel. Therefore, the general trend shown by each experiment is what should
be analyzed.

Figure 5.2 shows that the LiDAR-only experiment provides a shorter estimated
trajectory compared to the others. The same can be seen by studying the blue line
in Figure 6.1. LiDAR sensors cannot perform any odometry estimates when there
is no structure available, and since the trajectory ends outside the tunnel, the
final part has no structure. This result highlights a weakness of motion estimation

63

64 6.1: Sensor Comparison

based on LiDARs, and exteroceptive sensors in general, namely that they require
structure. Relying on a single modality alone is rarely applicable in a real-world
application since any sensor has different conditions in which it will not work.
Consequently, the inclusion of inertial sensors is natural, seeing as most modern
autonomous vehicles already have these types of systems incorporated.

0

2

4

6

8

E
rr

or
 [m

]

XY Position Error

LiDAR Before Smoothing
LiDAR After Smoothing
LiDAR+IMU Before Smoothing
LiDAR+IMU After Smoothing
LiDAR+IMU+GNSS Before Smoothing
LiDAR+IMU+GNSS After Smoothing

0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

E
rr

or
 [d

eg
]

Heading Error

LiDAR Before Smoothing
LiDAR After Smoothing
LiDAR+IMU Before Smoothing
LiDAR+IMU After Smoothing
LiDAR+IMU+GNSS Before Smoothing
LiDAR+IMU+GNSS After Smoothing

 Absolute Errors

Figure 6.1: Sensor Comparison Experiment: The plot shows the absolute errors
from the sensor comparisons experiments. Each experiment is plotted with the
results before and after smoothing in the same color. The results before smoothing
are plotted as a solid line, while the results after smoothing are plotted as a dashed
line.

Notice in Figure 6.1 that the blue dotted line and the solid blue line lie on top
of each other. The reason for this is that the smoothing does not have any ef-

Chapter 6: Discussion 65

fect on the trajectory relying only on the LiDAR sensor. Smoothing occurs due
to the fusion of information from several sources. Thus, smoothing cannot occur
if there is only one modality and there is no other form of estimates, such as a
loop closure. That is the case for the LiDAR-only run. Furthermore, inspecting the
trajectories before smoothing also shows that the trajectories do not differ signi-
ficantly in estimation error, neither in XY position nor heading error. However, the
smoothed trajectories appear to be less ‘spiky’ and generally provide lower error
than before smoothing. The difference becomes evident when studying the traject-
ory with GNSS. After smoothing (the dashed line), the estimation system shows
an approximately constant error at around 1m for the entire trajectory. The full
system should outperform the others since the GNSS measurements would cor-
rect for any drift that accumulated through the tunnel. Table 5.2 confirms that
the smoothing generally reduces the error. The largest contribution towards error
reduction is shown in the LiDAR+IMU+GNSS experiment for the ‘North’ state,
where the RMSE goes from 4.33m before smoothing to 1.03m after smoothing.
This correction could be especially beneficial when including loop closures. Loop
closures are relative, so a good estimate of the state before loop closure has been
detected could also improve the estimation of the new state. Also notice that the
inclusion of IMU decreases the RMSE of the ‘West’ state after smoothing, from
1.32m without IMU to 0.45m with IMU. This decrease indicates that the inclusion
of the IMU and GNSS improves the estimation errors of the system, particularly
after smoothing.

Although the system so far seems to be improving with the addition of more
modalities, the RMSE of the heading state, ψ, gets noticeably worse. However,
the comparison of the heading errors in Figure 6.1 shows that the errors behave
somewhat likewise throughout the run. Towards the end, after the LiDAR-only
estimation has stopped running, the LiDAR + IMU and the LiDAR + IMU + GNSS
experiments further increase in heading error. A reason for this might be that
the final LiDAR estimation is poor due to the map alignment being very sparse,
which gives a bad initialization of the heading before leaving the tunnel. This er-
ror could be improved by adding a heading estimation based on the difference
between two consecutive GNSS measurements. It could also be improved by in-
troducing an uncertainty estimation based on ‘goodness-of-fit’ of the alignment,
which then should make the poor alignments of the map more uncertain and thus
trusted less in the estimation.

Figure 6.2 shows a comparison plot of all the NEESes in the plane. Notice that
even though the X Y -position NEES and the heading NEES lie inside the confidence
bounds most of the time, the total planar NEES exceeds the bounds often in almost
all the cases. This difference arises because studying the separated state spaces
assumes that their covariances are decoupled. Heading and the XY position are
closely linked, so this assumption is not fulfilled. The only line that does not follow
this trend is the full LiDAR-Inertial SLAM system, which manages to lie inside
the confidence bounds 87.9% of the time after smoothing, as shown in Figure

66 6.1: Sensor Comparison

0

2

4

6

8
XY Position NEESes

LiDAR Before Smoothing
LiDAR After Smoothing
LiDAR+IMU Before Smoothing
LiDAR+IMU After Smoothing
LiDAR+IMU+GNSS Before Smoothing
LiDAR+IMU+GNSS After Smoothing
Lower Bound
Upper Bound

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Heading NEESes

LiDAR Before Smoothing
LiDAR After Smoothing
LiDAR+IMU Before Smoothing
LiDAR+IMU After Smoothing
LiDAR+IMU+GNSS Before Smoothing
LiDAR+IMU+GNSS After Smoothing
Lower Bound
Upper Bound

0 5 10 15 20 25 30 35 40
Time [s]

0

10

20

30

40

50

Total Planar NEESes

LiDAR Before Smoothing
LiDAR After Smoothing
LiDAR+IMU Before Smoothing
LiDAR+IMU After Smoothing
LiDAR+IMU+GNSS Before Smoothing
LiDAR+IMU+GNSS After Smoothing
Lower Bound
Upper Bound

Figure 6.2: Sensor Comparison Experiment: The plot shows the development of
the NEESes from the sensor comparisons experiments. Each experiment is plotted
with the results before and after smoothing in the same color. The results before
smoothing are plotted as a solid line, while the results after smoothing are plotted
as a dashed line.

5.4c. Comparing this to Figure 5.4c shows that the trajectory after smoothing
also provides a very low covariance. Thus, the NEESes are not low because the
covariance explodes, and we can conclude that the estimations are close to the
truth. Studying the full system error after smoothing (the red dashed line) in the
upper plot in Figure 6.1 further confirms this statement. The ANEES displayed
in Table 5.3 also confirms that the model is close to being consistent. It makes
sense that the full system is the one that provides the ‘best’ results in terms of
consistency since GNSS measurements are rooted directly in the global frame.
However, as mentioned earlier, the system does not estimate heading based on
consecutive measurements. GNSS only measures position, but in itself, it does not

Chapter 6: Discussion 67

provide any orientation information. Therefore, the NEES of the heading does
not improve after a GNSS measurement is received. This may be a reason why
the total ANEES in Table 5.3 still lies outside the confidence interval.

During the experiments, a source of error was found to be the occlusion of parts
the scene during the alignment. The system had a tendency to provide poor estim-
ates in these situations, especially when relying on LiDAR-only. A reason for these
types of errors probably comes from the fact that the LiDAR-odometry estimation
is based on point features. Modern LiDAR odometry systems, like LOAM, use a
combination of line features and planar features, which in turn could make the
system more robust in general. However, for the experiments with more sensors,
these errors are not as apparent. This indicates that the custom alignment al-
gorithm incorporating IMU priors adjusts for this, making the system more robust.

6.2 Loop Closure

The intention of the loop closure experiment shown in Section 5.2 is to show that
a system including loop closure will help improve the global consistency and the
performance of the position estimation when the road roller has to perform con-
tinuous operation or drive in and out the tunnel. This section will further discuss
the different factors that influenced the results and how to improve the system.

Figure 5.6 shows the estimated position without and with loop closure. The tun-
nel spans the area from roughly around 20m to 220m in the North direction.
Comparing Figure 5.6a and Figure 5.6b clearly shows the effects of not having
loop closure. In Figure 5.6a we see that the vehicle on its way back starts driving
through a location it earlier mapped as a tunnel. The final correction in Figure
5.6a comes from the GNSS measurement arriving. In addition to recognizing the
location as seen earlier and correcting, Figure 5.6b shows that the covariance el-
lipsoid towards the end of the round trip is a lot smaller before smoothing than
the covariance ellipsoid when no loop closure is made. They seem to be very small
for both round trips after smoothing, but this is because the GNSS measurement
significantly reduces the covariances.

Comparing the observation made in Figure 5.6 to Table 5.6 shows that even
though the covariances are smaller, the ANEESes are significantly smaller before
smoothing. This suggests that the estimations are indeed more correct, which can
be confirmed by studying Table 5.5.

Figures 5.7 and 5.8 can be studied to see where the full LiDAR SLAM system be-
nefits from the loop closure, and where the challenges of including loop closures
lie. Figure 5.8 shows that the system with loop closure drastically outperforms the
system without loop closure in terms of heading consistency. The system manages
a heading NEES inside the 95% confidence bounds over 90% of the time before
and after smoothing. The spike in the heading error in Figure 5.7 comes from the

68 6.2: Loop Closure

system re-initializing the estimates because structure appears after having dis-
appeared. These estimates take some time to stabilize. This instability causes a
spike in the estimate, and thus in the NEES as well. This event shows that LiDAR
motion suffers from unstable estimates when there is little structure. However,
the system with loop closure then recognizes a previously viewed location and
quickly goes to zero. On the other hand, the one without loop closure does not,
and a steady-state error in the heading is visible throughout the second passing
through the tunnel. As a result, the X Y -position error will also rise much higher
since the vehicle estimates its driving in a completely different direction.

The loop closure generally gives a better estimate of the heading and position for
the system with a lower covariance, according to Tables 5.5 and 5.6. The same
can be seen by studying the Figure 5.8. However, Figure 5.7b shows an undesir-
able effect that only occurs when activating the loop closure module. In the first
run through the tunnel, the figure shows that the error after smoothing peaks in
the middle of the tunnel and with a peak similar to the peak before smoothing.
Without loop closure, the peak in error after smoothing is significantly smaller.
A reason for this may be the search point scaling in the loop closure detection
algorithm suggested in Section 4.3.1. The loop closures connect differences in
pose between the different key poses. Since the loop closure is connected through
the poses and not the scene it views, it may result in a compromise between the
current pose and the historic pose. This could be the reason for the ‘wave’-like
behavior in the top plot of Figure 5.7b, which also reflects in the NEES plot in
Figure 5.8b.

Although the loop closure seems to have a desirable effect when tested on the
simulated data set, it must be mentioned that the naive loop closure algorithm
implemented is based on the current estimate. Therefore it will not be able to find
any loop closures if there is too much drift or for some other reason has provided a
very poor estimate of its location. This case could arise, for example, in a very long
tunnel where the vehicle does not exit and receive GNSS measurements. Addition-
ally, this type of loop closure algorithm requires significant overhead and tuning
of several hyperparameters, such as history search radius, fitness toler-
ance and history keyframe extraction number. The algorithm is, in fact, very
susceptible to these parameters, especially the fitness tolerance, which decides
how good an alignment must ‘fit’ before a loop closure is decided. These paramet-
ers are typically different based on the use-case and the environment it is used
in. Therefore, this solution is not optimal for an autonomous system that should
operate inside any environment.

The Norwegian standards for documentation of road construction work [3, p. 185]
(translated to english) states that

The extent and scope of the compaction work shall be located in the
horizontal plane by means of GNSS or other forms of dynamic pos-
itioning with satisfactory accuracy. The requirement for the location

Chapter 6: Discussion 69

also applies in tunnels and other areas with a lack of satellite cover-
age. The equipment must be able to store compression and position-
ing data and have a system for transferring the results to a central
database. The location must have an accuracy of ±0.2m or better.

The quote can be seen as two separate requirements. Number one is the ability
to store compressed positioning data and store it in a central database. This is
something any SLAM system should be able to do and is therefore fulfilled. The
second part states that it has minimum requirements for the accuracy of the es-
timations. This requirement shows that the estimation system needs significant
improvements before being realized in the real world. The results in Table 5.5
showed that the RMSE is most extensive in the X -direction, reaching ±3.07m for
the complete system. Thus the main point of improvement lies in the along-track
error. Even so, the RMSE in the Y -direction was ±0.55m for the complete system
and does therefore not lie inside the requirements neither.

Chapter 7

Conclusion and Further Work

The first part of the thesis was to extend the simulator for the problem of tunnel
navigation using slowly-moving ground vehicles to include an IMU and a GNSS.
The simulation environment proved to yield a feature-rich environment where the
navigation module could be tested, as seen in Figure 4.1.

The sensor comparison experiment in Section 5.1 shows that the LiDAR can be
successfully combined with more modalities to provide a better estimation of the
pose. The LiDAR-Inertial SLAM system showed that it could provide consistent
estimates of its trajectory after syncing with GNSS when leaving the tunnel. How-
ever, the total planar ANEESes in Table 5.3 showed that the system underestimates
the couplings between the planar states, and further work is required to model
the dynamics better.

The loop closure experiment showed that loop closures helps reducing the RMSEs
and the ANEESes of the system, as shown in Tables 5.5 and 5.6. This joint reduc-
tion indicates that the loop closure is beneficial and provides better estimates for
the pose of the road roller when re-visiting a previously visited scene. Since the
road roller is required to perform several passings, the inclusion of loop closure
seems beneficial for an autonomous road roller.

The main goal of the thesis was to analyze the performance of a LiDAR-inertial
SLAM system in a simulated environment. The LiDAR-inertial SLAM system shows
improved results in terms of estimation error when adding more modalities and
loop closures. It does, however, struggle to achieve an uncertainty estimate that
coincides with the estimation error, especially after smoothing. The system did not
comply with the documentation requirements in the standards for Norwegian road
construction. However, despite the strict requirements, I believe that a LiDAR-
Inertial SLAM system could provide a solution capable of complying with these
requirements.

71

72 7.1: Future Work

7.1 Future Work

Although the proposed system seems to perform decently on the simulated data,
many improvements must be made before implementing this system in full scale.
Therefore, this section will focus on the next step towards a full-scale implement-
ation of the system.

7.1.1 Testing

Although the full LiDAR SLAM system seemed to perform well on the entire tra-
jectory, the system needs to be qualitative testing on a real-world data set to val-
idate that the simulation provides realistic results. When deemed sufficiently ac-
curate, the navigation module should then be tested in unison with a validated
control module to provide further insight into improvements and challenges with
the current system.

Due to the lack of known datasets for autonomous ground-vehicle tunnel navig-
ation combining IMU, GNSS and LiDARs, the simulator data has not been com-
pared to real data sets. This comparison is required to check the validity of the
simulations.

7.1.2 Line Features

Systems such as LOAM and all systems that extend it use the line features and
planar features suggested in [8]. Since a source of error during the experiments
was found to be poor matching when part of the scene is occluded, it may be
beneficial to implement a front-end more similar to LOAM to make the system
more robust.

7.1.3 Uncertainty Estimation

The suggested LiDAR odometry estimation produces volatile estimates when the
system observes few points. A way to mitigate this is to increase the covariance
in these situations, thus ‘trusting’ the IMU measurements more. For this to work,
the system needs to provide an estimate of its covariance. An approach was tried
using the spread of the points in the point cloud after alignment in the odometry
estimation module to yield an estimate of the covariance in∆x ,∆y,∆z. However,
this did not have the desired effect and was removed from the final implementa-
tion. A significant improvement would be to improve the uncertainty estimation,
which would make the fusion of the sensor information more optimal.

Chapter 7: Conclusion and Further Work 73

7.1.4 Improved Loop Closures

As mentioned in Section 4.3.1, the system uses a naive approach to detecting loop
closures. A huge advantage of loop closures is that it is possible to correct for drift
after a long operation time. Since the suggested approach is dependent on the
positional estimate, it cannot guarantee to even search for loop closures if the
drift is large enough. Therefore, to fully exploit the strengths that loop closures
provide, the system could implement a loop closure detection algorithm similar
to that of [32] which provides place recognition based on segments.

However, it is worth noting that a challenge may arise when testing such a detector
in the simulated environment because simulated objects may appear alike.

7.1.5 Exploit Situational Awareness

The current navigation system builds a map of its surroundings. A natural next
step of development for the system would be to use this map and the incoming
LiDAR measurements to produce guidance commands for the complete system.
From the map and LiDAR measurements, it is possible to produce an occupancy
grid and produce an optimal plan for traversing the tunnel and compacting the
concrete as efficiently as possible while avoiding obstacles.

Bibliography

[1] S. G. Wroldsen, SLAM-Based Tunnel Navigation System for Autonomous Ground
Vehicles, 20th Dec. 2020.

[2] Autonomous Road Roller Project - A cooperation between Sintef, Semcon and
AF Gruppen, https://www.sintef.no/prosjekter/2019/autonom-vals/,
Accessed: 2021-05-15.

[3] S. Vegvesen, Norwegian standard manual for road construction, 2018. [On-
line]. Available: https : / / www . vegvesen . no / _attachment / 2364236 /
binary/1269980.

[4] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard and F. Dellaert,
‘ISAM2: Incremental Smoothing and Mapping Using the Bayes Tree,’ Int.
J. Rob. Res., vol. 31, no. 2, pp. 216–235, Feb. 2012, ISSN: 0278-3649. DOI:
10.1177/0278364911430419. [Online]. Available: https://doi.org/10.
1177/0278364911430419.

[5] T. Shan and B. Englot, ‘LeGO-LOAM: Lightweight and Ground-Optimized
Lidar Odometry and Mapping on Variable Terrain,’ in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), IEEE, 2018,
pp. 4758–4765.

[6] ‘State Estimation in Discrete-Time Linear Dynamic Systems,’ in Estimation
with Applications to Tracking and Navigation. John Wiley Sons, Ltd, ch. 5,
pp. 199–266, ISBN: 9780471221272. DOI: https://doi.org/10.1002/
0471221279.ch5. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/0471221279.ch5. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/0471221279.ch5.

[7] A. W. Fitzgibbon, ‘Robust registration of 2d and 3d point sets,’ Image and
Vision Computing, vol. 21, no. 13, pp. 1145–1153, 2003, British Machine
Vision Computing 2001, ISSN: 0262-8856. DOI: https://doi.org/10.
1016/j.imavis.2003.09.004. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0262885603001835.

[8] J. Zhang and S. Singh, ‘LOAM: Lidar Odometry and Mapping in Real-time,’
in Robotics: Science and Systems, vol. 2, 2014.

75

https://www.sintef.no/prosjekter/2019/autonom-vals/
https://www.vegvesen.no/_attachment/2364236/binary/1269980
https://www.vegvesen.no/_attachment/2364236/binary/1269980
https://doi.org/10.1177/0278364911430419
https://doi.org/10.1177/0278364911430419
https://doi.org/10.1177/0278364911430419
https://doi.org/https://doi.org/10.1002/0471221279.ch5
https://doi.org/https://doi.org/10.1002/0471221279.ch5
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471221279.ch5
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471221279.ch5
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471221279.ch5
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471221279.ch5
https://doi.org/https://doi.org/10.1016/j.imavis.2003.09.004
https://doi.org/https://doi.org/10.1016/j.imavis.2003.09.004
https://www.sciencedirect.com/science/article/pii/S0262885603001835
https://www.sciencedirect.com/science/article/pii/S0262885603001835

76 7.1: Future Work

[9] K. Yousif, A. Bab-Hadiashar and R. Hoseinnezhad, ‘An Overview to Visual
Odometry and Visual SLAM: Applications to Mobile Robotics,’ Intelligent
Industrial Systems, vol. 1, Nov. 2015. DOI: 10.1007/s40903-015-0032-7.

[10] R. Mur-Artal, J. Montiel and J. Tardos, ‘ORB-SLAM: a versatile and accurate
monocular SLAM system,’ IEEE Transactions on Robotics, vol. 31, pp. 1147–
1163, Oct. 2015. DOI: 10.1109/TRO.2015.2463671.

[11] J. Engel, T. Schöps and D. Cremers, ‘LSD-SLAM: Large-scale direct monocu-
lar SLAM,’ in European Conference on Computer Vision (ECCV), Sep. 2014.

[12] G. Klein and D. Murray, ‘Parallel tracking and mapping for small AR work-
spaces,’ in Proc. Sixth IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR’07), Nara, Japan, Nov. 2007.

[13] C. Debeunne and D. Vivet, ‘A Review of Visual-LiDAR Fusion based Sim-
ultaneous Localization and Mapping,’ Sensors, vol. 20, no. 7, 2020, ISSN:
1424-8220. DOI: 10.3390/s20072068. [Online]. Available: https://www.
mdpi.com/1424-8220/20/7/2068.

[14] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto and E. Nebot,
‘Fastslam: An efficient solution to the simultaneous localization and map-
ping problem with unknown data,’ Journal of Machine Learning Research,
vol. 4, May 2004.

[15] Z. Lu, Z. Hu and K. Uchimura, ‘Slam estimation in dynamic outdoor en-
vironments: A review,’ in Intelligent Robotics and Applications, M. Xie, Y.
Xiong, C. Xiong, H. Liu and Z. Hu, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 255–267, ISBN: 978-3-642-10817-4.

[16] V. Indelman, S. Williams, M. Kaess and F. Dellaert, ‘Information fusion in
navigation systems via factor graph based incremental smoothing,’ Robotics
and Autonomous Systems, vol. 61, no. 8, pp. 721–738, 2013, ISSN: 0921-
8890. DOI: https://doi.org/10.1016/j.robot.2013.05.001. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S092188901300081X.

[17] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti and R. Daniela, ‘LIO-SAM:
Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping,’ in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2020, pp. 5135–5142.

[18] C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, ‘IMU Preintegration
on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation,’
Jul. 2015. DOI: 10.15607/RSS.2015.XI.006.

[19] J. González Agudelo, ‘Contribution to the model and navigation control of
an autonomous underwater vehicle,’ Ph.D. dissertation, Jul. 2015.

[20] Wikipedia commons, https://commons.wikimedia.org/wiki/, Accessed:
2021-05-11.

https://doi.org/10.1007/s40903-015-0032-7
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.3390/s20072068
https://www.mdpi.com/1424-8220/20/7/2068
https://www.mdpi.com/1424-8220/20/7/2068
https://doi.org/https://doi.org/10.1016/j.robot.2013.05.001
https://www.sciencedirect.com/science/article/pii/S092188901300081X
https://www.sciencedirect.com/science/article/pii/S092188901300081X
https://doi.org/10.15607/RSS.2015.XI.006
https://commons.wikimedia.org/wiki/

Bibliography 77

[21] Y. Zhong, ‘Intrinsic shape signatures: A shape descriptor for 3D object re-
cognition,’ in 2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, 2009, pp. 689–696. DOI: 10.1109/ICCVW.
2009.5457637.

[22] S. Salti, F. Tombari and L. D. Stefano, ‘A performance evaluation of 3d
keypoint detectors,’ in 2011 International Conference on 3D Imaging, Mod-
eling, Processing, Visualization and Transmission, 2011, pp. 236–243. DOI:
10.1109/3DIMPVT.2011.37.

[23] R. B. Rusu, N. Blodow and M. Beetz, ‘Fast point feature histograms (FPFH)
for 3D registration,’ in 2009 IEEE international conference on robotics and
automation, IEEE, 2009, pp. 3212–3217.

[24] V. Indelman, S. Williams, M. Kaess and F. Dellaert, ‘Factor graph based in-
cremental smoothing in inertial navigation systems,’ in 2012 15th Interna-
tional Conference on Information Fusion, 2012, pp. 2154–2161.

[25] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid
and J. Leonard, ‘Past, Present, and Future of Simultaneous Localization
And Mapping: Towards the Robust-Perception Age,’ IEEE Transactions on
Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[26] S. G. Wroldsen. (2021). ‘Code: LiDAR-Inertial Slam System For Tunnel
Navigation of an Autonomous Road Roller,’ [Online]. Available: https:
//github.com/Sjurinho/ttk4900 (visited on 04/06/2021).

[27] Epic Games, Unreal Engine, version 4.23, 30th Jan. 2019. [Online]. Avail-
able: https://www.unrealengine.com/en-US/.

[28] Stanford Artificial Intelligence Laboratory et al., Robotic Operating System,
version ROS Melodic Morenia, 23rd May 2018. [Online]. Available: https:
//www.ros.org.

[29] F. Dellaert, ‘Factor graphs and GTSAM: A hands-on introduction,’ Georgia
Institute of Technology, Tech. Rep., 2012.

[30] R. B. Rusu and S. Cousins, ‘3D is here: Point Cloud Library (PCL),’ in IEEE In-
ternational Conference on Robotics and Automation (ICRA), Shanghai, China,
May 2011.

[31] M. Aqel, M. H. Marhaban, M. I. Saripan and N. Ismail, ‘Review of visual
odometry: types, approaches, challenges, and applications,’ SpringerPlus,
vol. 5, Dec. 2016. DOI: 10.1186/s40064-016-3573-7.

[32] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart and C. Cadena, ‘Seg-
match: Segment based place recognition in 3d point clouds,’ in Interna-
tional Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 5266–
5272.

https://doi.org/10.1109/ICCVW.2009.5457637
https://doi.org/10.1109/ICCVW.2009.5457637
https://doi.org/10.1109/3DIMPVT.2011.37
https://github.com/Sjurinho/ttk4900
https://github.com/Sjurinho/ttk4900
https://www.unrealengine.com/en-US/
https://www.ros.org
https://www.ros.org
https://doi.org/10.1186/s40064-016-3573-7

Appendix A

Hyperparameter Tuning

A.1 Feature Association Hyperparameters

Table A.1: Feature Extraction
Hyperparameters

Parameter Value

Voxelgrid Leaf Size 0.2
Normal Radius 0.5
ISS Salient Radius 1
ISS Non-Max Radius 0.6
ISS Saliency Threshold 0.8
Minimum Number Of Features 30

Table A.2: Map Alignment Hy-
perparameters

Parameter Value

Max Iterations 100
Function Value Tolerance 0.05
Step Size Tolerance 10−8

A.2 Keyframe Selection Hyperparameters

Table A.3: Keyframe Selection Hyperparameters

Parameter Value

Keyframe Save Distance 3
GNSS Keyframes True
Loop Closure Keyframes True

79

80 A.3: Loop Closure Hyperparameters

A.3 Loop Closure Hyperparameters

Table A.4: Loop Closure Hyperparameters

Parameter Value

History Keyframe Search Radius 100
History Keyframe Search Number 10
Minimum Time Passed 60
Minimum Keyframe Fitness Score 0.6

Appendix B

ROS Graph

Figure B.1: Overview of ROS Communication

81

Appendix C

Simulink Block Diagram

Point	cloud

Distance

Location

Orientation

frontBumper_lidar

[1x3]

[32x1125x3]

[32x1125]

[1x3]

[1x3]

3

3

[32x1125]

[1x3]

3

[1x3]

[1x3]

STOP

[32x1125x3]

3

[1x3]

3

R2D

R2D

[32x1125]

[1x3]

poses

velocities

currentPose

nextGoal

nextVelocity

stop

Pick	Reference

9

[1x3]

[9x3]

3

[1x3]

Accelerometer
Gyroscope

Magnetometer
NED

Linear
Acceleration

Angular
Velocity

Orientation

Accel

Gyro

Mag

[1x3]

[3x3]

[1x3]

[1x3]
[1x3]

Point	cloud

Distance

Location

Orientation

rearBumper_lidar

[32x1125x3]

[1x3]

[1x3]

[32x1125]

Mass
of	car

RefPose

RefVelocity

CurrPose

Linear	acceleration	body

Angular	velocities	body

Linear	velocities	body

Position	world

Velocities	world

Orientation	world

Angular	acceleration	body

Dynamics

[1x3]

3

3

3

3

3

3 3

3

[32x1125x3]

3

3

3

[1x3]

3

[1x3]

3

Z-1

[1x3]

[1x3]

[1x3]

3

9

[9x3]

[1x3]

Z-1

[1x3]

[1x3]

[1x3]

X

Y

Yaw

Location

Orientation

Ego	Vehicle

[1x3]

[1x3]

[3x3]

Figure C.1: The Simulink used to perform the communication between Unreal
Engine. Data is then exported to the MATLAB workspace.

83

Appendix D

Simulation Environment

D.1 Screenshots of Simulation Environment

Figure D.1: Birds-eye-view of simulation environment.

85

86 D.1: Screenshots of Simulation Environment

Figure D.2: The tunnel seen from the start. The red trailer is the moving actor.

Figure D.3: Props are placed inside the tunnel.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Sjur Grønnevik Wroldsen

LiDAR-Inertial SLAM System for
Tunnel Navigation of an Autonomous
Road Roller

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Sondre Midtskogen

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Motivation
	Aim of Study
	Contributions
	Outline

	Related Work
	Review of modern *slam systems
	State-of-the-art *lidar *slam systems
	IMU Preintegration On Manifold
	IMU Model
	Preintegration on Manifold

	Preliminaries
	Autonomous Vehicles
	Sensors
	Inertial Measurement Unit
	Global Navigation Satellite System
	Light Detection and Ranging

	Inertial Navigation Systems
	Statistics
	Gaussian Distribution
	2 Distribution
	Maximum A Posteriori Estimation

	Nonlinear Solvers
	Gradient descent
	Gauss-Newton Method
	Levenberg-Marquardt Method

	Lie Theory
	Lie Groups
	Lie Algebra

	Odometry
	Point Cloud Alignment
	Feature Extraction
	Intrinsic-Shape Signatures
	Fast Point Feature Histogram

	Factor Graphs
	Simultaneous Localization and Mapping
	Graph-Based SLAM
	Loop Closure

	Metrics
	Root Mean Square Error
	Normalized Estimation Error Squared

	Proposed Approach
	Software
	MATLAB and Unreal Engine
	Robotics Operating System
	Georgia Tech Smoothing and Mapping
	Point Cloud Library

	Data Generation
	IMU
	GNSS
	Sensor Parameters

	*lidar-Inertial slam System
	Front-end
	Optimization Back-end

	Results
	Sensor Comparison
	Experiment
	Results

	Loop Closure
	Experiment
	Results

	Discussion
	Sensor Comparison
	Loop Closure

	Conclusion and Further Work
	Future Work
	Testing
	Line Features
	Uncertainty Estimation
	Improved Loop Closures
	Exploit Situational Awareness

	Bibliography
	Hyperparameter Tuning
	Feature Association Hyperparameters
	Keyframe Selection Hyperparameters
	Loop Closure Hyperparameters

	ROS Graph
	Simulink Block Diagram
	Simulation Environment
	Screenshots of Simulation Environment

