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Abstract

Rapid eye movements (REM) during sleep is a descriptor of the REM sleep stage, it is well known
that REM sleep plays an essential role in sleep. Therefore, precisely locate the source activity
before the REM can help elucidate the brain areas involved to produce this important event.
This study aims to find the source activation in the pre-REM negativity. To do so, the onsets
of the eye movement were required. An algorithm to detect the eye movement onsets was firstly
developed and evaluated in sleep and awake data, then, the source reconstruction of the pre-REM
activity was found. Afterward, a T-test was implemented to find significant activation during
pre-REM negativity. The dataset used in the study was registered by the Human Sleep Lab of
the International Institute of Integrative Sleep Medicine and was analyzed using the MNE open-
source python package. The algorithm is an improved method based on a previously made eye
movement algorithm by Takahashi in 1997. The results showed that the algorithm had a recall of
0.97, a precision of 0.69, and an F1 score of 0.80. Additionally, the new algorithm was tested for
categorizing the REM sleep stage, where this approach was found to identify REM sleep in whole
night recordings. To localize the pre-REM negativity, two methods of source reconstruction were
implemented and the areas with significant activation in the pre-REM negativity were identified.
The results suggest that the pre-REM negativity has the most significant activation in the striatum
and the orbitofrontal regions.

These results show that the algorithm can find eye movements in REM sleep and find the REM
sleeping stage. However, improvement of the algorithm is needed before the algorithm’s output
can be trusted without a visual inspection of the results. Source activation in the striatum and
orbitofrontal regions indicates the brain’s use of a reward or punishment, and a decision-making
process of the brain is active. For further research, looking at the algorithm criteria and increasing
the algorithm’s precision is recommended. The Pre-REM negativity’s effect in REM sleep should
also be researched further to find more connections to brain disorders.
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Sammendrag

Raske øyebevegelser (REM) under søvn er en beskrivelse av REM-søvnstadiet, det er velkjent at
REM-søvn spiller en viktig rolle i søvn. Derfor å finne nøyaktig hjerne aktivering før REM kan
bidra til å belyse hjerneomr̊adene som er involvert for å produsere denne viktige hendelsen. Denne
studien tar sikte p̊a å finne hjerne aktivering i før REM aktiviteten. For å gjøre det er det nødvendig
å finne start tiden for øyebevegelsene. En algoritme for å oppdage øyets bevegelsesutbrudd ble først
utviklet og evaluert i søvn- og v̊akne data, deretter ble hjerne aktivering av før REM aktiviteten
funnet. Etterp̊a ble en T-test implementert for å finne betydelig aktivering under før REM ak-
tiviteten. Datasettet som ble brukt i studien ble registrert av Human Sleep Lab fra International
Institute of Integrative Sleep Medicine og ble analysert ved hjelp av MNE åpen kildekode-python-
pakke. Algoritmen er en forbedret metode basert p̊a en tidligere laget øyebevegelsesalgoritme av
Takahashi i 1997. Resultatene viste at algoritmen hadde en tilbakekalling p̊a 0,97, en presisjon
p̊a 0,69 og en F1-score p̊a 0,80. I tillegg ble den nye algoritmen testet for å kategorisere REM-
søvnstadiet, hvor denne tilnærmingen ble funnet å identifisere REM-søvn i hele nattesøvnen. For
å lokalisere før REM aktiviteten ble to metoder for hjerne aktivering implementert, og omr̊adene
med betydelig aktivering i før REM aktiviteten ble identifisert. Resultatene antyder at før REM
aktiviteten har den viktigste aktiviseringen i striatum og de orbitofrontale regionene.

Disse resultatene viser at algoritmen kan finne øyebevegelser i REM søvn og finne REM søvn
stadiet. Imidlertid er forbedring av algoritmen nødvendig før algoritmens resultat kan stole p̊a
uten visuell inspeksjon av resultatene. Hjerne aktivering i striatum og orbitofrontal regioner in-
dikerer hjernens bruk av belønning eller straff, og en beslutningsprosess i hjernen er aktiv. For
videre forskning anbefales det å se p̊a algoritmekriteriene og øke algoritmens presisjon. Før REM
aktiveringen i REM søvn bør ogs̊a undersøkes nærmere for å finne flere forbindelser til hjernesyk-
dommer.
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1 Introduction

1.1 Background and motivation

Electroencephalogram (EEG) is a method to record brain signals. The signals are picked up by
electrodes (sensors) placed on the head’s scalp that record electrical voltages. These signals are
then used to reconstruct brain activity. And by analyzing brain activity, it is possible to identify
if a patient has a brain disease. The most common brain disease to detect and investigate with
EEG is epilepsy [6]. Other uses for EEG are identifying memory problems such as dementia, head
injuries, and brain tumors. EEG is a cheap method to acquire and a good indication of brain
activity [7]. It has a high temporal resolution, reaching a sub-millisecond time scale witch is why
it’s the standard technique in sleep research. Over the last years have computer programs and
techniques to reconstruct brain activity improved a lot but research on Eye movement (EM)s in
Rapid eye movement (REM) sleep has fallen behind. This is why an algorithm to find EMs in
REM sleep, making it easier and less time-consuming to do research on is in focus in this paper.

EEG was first used on humans in 1924,[8] while the first description of eye movements associ-
ated with EEG and dreaming was made in 1953 by Aserinsky and Kleitman 29 years later. Eye
movements are a characteristic that defines the REM sleep stage [9], and parameters associated to
REM sleep, such as REM density [10], and pre-REM negativity [11, 12] has been associated with
the functional role of REM sleep. REM sleep helps with memory [13], and emotional processing
[14]. Other studies have also suggested a link between depression, post-traumatic stress disorder,
and chronic sleep deprivation with alterations in the REM sleep pattern [15, 16, 17, 18]. In this
report, the focus is on brain activation in REM sleep before and after the onset of EMs, which have
been linked to specific neural activation in the brain [12, 19, 11]. These works clearly point out
the relevance of identifying the exact timing of the rapid eye movement onset and how the neural
paths around the time immediately before and after onset can illuminate the potential functional
role of REM sleep.

1.2 Previous work

Precise timings of EM onsets is really important in REM stage EM studies. The most common
method to find EM onsets is to manually inspect the raw data, and that is a tedious process that
makes EM research unpopular. Takahashi has made an algorithm to find EM onsets shown in
[3], and this study is the starting point of this paper. Other studies on EMs in REM sleep are
[19, 20]. Both of these studies are done in Low density EEG (LdEEG). In this paper a similar
approach to finding the significant activation of pre-REM negativity is tried out with High density
EEG (HdEEG). Studies using high-density EEG in sleep research has been done before. The
study [21] found that high-density EEG can be used to study brain functioning in neurological and
neurodevelopmental disorders and to evaluate therapeutic approaches, while [19] found activity in
emotion, memory, and motor-related brain locations in REM sleep.

1.3 Scope of this paper

This report was focused on making and implementing an algorithm to find EMs in the REM
sleeping stage. Then use the EMs for source localization, and find statistically significant brain
activation points in pre-REM potentials compared to baseline. The algorithm was tested on eight
subjects and given a score in precision, recall, and F1. The algorithm was also tested on a subject
in the awake state for finding EM onsets in a visual task done by the subject, and REM stage
finding for a full night of sleep was also be tested by the algorithm. Two different methods for
finding statistically significant brain activation is shown, and the differences in the method and
results were shown.

1



1.4 Organization of this paper

This report starts by presenting the materials and method behind sleep, eye movements and
source reconstruction. Afterwards, EM detection is presented. This is a section about how the
EM detection algorithm is made, the results and discussion of the algorithm. Then Scoring of
REM sleeping stage is presented. This section presents how the algorithm can be used to find the
REM sleeping stage, and what results it got. Lastly in this section is the results of REM sleep
stage is discussed. Then source localization of the pre-REM activation is presented. This section
contains all the steps needed to find the source localization, the results of two methods for finding
the significant source localization of pre-REM activation, and then discussion about the results
found are presented. Lastly, conclusions and future work is presented.
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2 Materials and Methods

This section contains the theoretical background needed to produce the results in this paper. This
section was reproduced and elaborated from the specialization project [22].

2.1 Electroencephalogram

An is a method of recording brain activity. It uses electrodes on the scalp of the head to record
electrical voltages. The voltages comes from the neurons in the brain that uses electrodes to
communicate with each other. The moving electrodes changes the voltages in the brain that can
be picked up with electrodes on the scalp of the head. The voltage for a resting neurons is in the
range of 70 millivolts, and when they pass through different brain tissues and layers between the
brain and the scalp, they are reduced even more. It is so small voltages that it is hard to differ from
noise. It is needed to filter out the noise before the brain activity can be localized. Localization
together with the intensity and time-course of the sources is called source reconstruction.

2.2 Sleep

Sleep has four stages. N1, N2, N3, and R. Stages N1 and N2 are often combined under light sleep.
Stage N3, commonly known as deep sleep, and R is commonly known as REM sleep, or rapid eye
movement sleep [23]. When we sleep, we go through a cycle of all these stages. Normally we start
in stage N1, which is the lightest sleep, and easy to wake up from. Then we move to stage N2
after 10-20 minutes, which is a middle stage we need to be in before our body goes to N3 or deep
sleep. Deep sleep is where our body is ”repairing” the body the most. It is recommended to get
about 20% of our sleep in a deep sleep. When our body goes to deep sleep, our brain frequency is
the lowest of the four stages, and the amplitude of the brain signals is the highest. The length of
N3 is reduced for each cycle we have gone through. From N3, we move back to N2 and then into
R. This is a full cycle of sleep and normally takes 1.5 hours. It is in REM sleep we dream, and the
R stage gets longer and longer the more cycles we have been through. From R, we go back to N2,
and then we move between N2 to N3 to N2 to R. So N2 is a middle stage we need to go into to
go from R to N3 or N3 to R. These stages is not distinct entities, and we do not jump for one to
another one. We gradually move between them and are they are just a way of differentiating the
sleep process.

2.3 Sleep waves and scoring

There are four main waves in sleep, Alpha, Beta, Delta, and Theta. The frequency of the waves
classifies them. Beta waves have the fastest frequency between 14 and 30 Hz and are present during
wakefulness and drowsiness. It also reemerges during REM sleep. Alpha waves have frequencies
between 8 and 13 Hz and are seen during quiet alertness with eyes closed. Theta wave frequencies
are between 4 and 8 Hz and are the most common sleep frequency in EEG waves. Delta waves
have frequencies between 0.5 and 2 Hz and are most common in deep sleep. In addition to these
waves, sleep spindles and k complexes are used to score the sleep. Sleep spindles originate in the
central vertex region and are in the frequency range of 11-16Hz. K complexes are slow and sharp
waves that start with a spike in the negative direction before spiking positive. Both sleep spindles
and k complexes are an indication of N2 sleep but can be seen in other stages too [1]. Vertex sharp
waves are also used to classify sleep. These waves are sharply negative-going bursts that stand
out from the background. And lastly, slow waves are high amplitude and low-frequency variants
of delta waves. These are the defining characteristics of N3 sleep. An example of the sleep waves
can be seen in Figure 1.

3



Figure 1: Example of how brain waves look in EEG sensors [1]

Sleep, as mentioned in the sleep subsection, is a cyclic state. This means we can use this knowledge
in the scoring. Firstly, the first several minutes of EEG recording will be in an awake state. After
the awake state, we know that the subject moves on to state N1. As seen from table 1 N1 are
normally 1-5 min long. From N1, the subject can move back to awake, but normally the next stage
is N2. The subject will now move between N2 and N3 before going moving from N2 and REM.
This cycle can be seen in Figure 2

To classify sleep with a visual inspection, the brain activity and the time of the sleep cycle are
used. The start of the sleep recordings in the awake state. The awake state consists mostly of
alpha activity, but when the subject moves, beta activity is also seen. Movement can also cause
artifacts shown as spikes in all channels as EEG sensors are susceptible. Stage N1 is characterized
by low voltage and fast EEG activity. Theta activity is the dominant wave in this stage but is seen
together with low amplitude beta waves. At the end of the N1 sleep stage, Vertex sharp waves
may occur, but if sleep spindles or k complexes are observed, the sleep will not be classified N1.
Stage N2 is also dominated by theta waves and can have occasional bursts of faster activity. In
this stage, K complexes and sleep spindles are typical and normally occur in an episodic fashion.
In stage N3 sleep, slow waves with high amplitude are seen. It is also normal for eye movements
to cease altogether. In Stage REM, the amplitude of the signals is reduced. It contains a mix of
frequencies with theta, alpha, and delta waves. But the Rapid eye movements are the simplest
to spot and are seen in the EOG. Physiological activity is also significantly higher, and pulse and
blood pressure may increase. The complete protocol and procedure for scoring sleep can be found
in [24] where the information of equipment, protocol and scoring is given.

4



Figure 2: Normal sleep cycle [2]

Sleep Stages Normal Length
N1 1-5 minutes
N2 10-60 minutes
N3 20-40 minutes

REM 10-60 minutes

Table 1: Table for normal sleep length in sleep stages [5]

2.4 Eye movement in REM sleep

There are four basic types of eye movements. The different types are saccades, smooth pursuit
movements, vergence movements, and vestibulo-ocular movements [25]. The eye movement in the
REM sleeping stage is saccades. Saccades is a rapid eye movement that abruptly changes the point
of fixation. Finding EM in REM sleep is a long and time consuming task. This leads to few peoples
wanting to do research on task that needs precise EM location. Many research fields in EEG and
sleep have gone along way the last years but few of them have focused on EMs. This is believed
to be because of the long and boring task of finding the EMs. So to increase the research speed
on EMs and REM sleep an automatic EM detection algorithm is believed to help. An EM is seen
in figure 3. In the figure, the EM is marked with a dotted line and the channels EOG-left and
EOG-right are plotted in black. The figure shows that the two channels move or spikes in opposite
direction. To be categorized as an EM both channels needs to spike in opposite directions with a
slope of 250 µV per second. This spike has to last for less then 0.5 seconds and need to have an
amplitude of more then 30 µV.

Figure 3: Image shows how EMs look on channel EOG-Left and EOG-Right

When researchers need to find EM with out the algorithm. They need to look at small time ranges
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and mark them precisely. This process takes about 1 day to mark the EMs of a single persons one
night of sleep.

2.5 Data set

This project uses a data set with HdEEG from the Human Sleep Lab of the International Insti-
tute of Integrative Sleep Medicine (https://wpi-iiis.tsukuba.ac.jp/japanese/news/1340/).
The data set is obtained with Polynomnography recordings in 8 subjects and is recorded with a
sampling rate of 1024Hz. The data set contains a total of 136 channels, 128 channels, 2 mastoid
channels, 3 Electromyography (EMG) channels, and 3 Electrooculography (EOG) channels. The
EOG channels are electrodes placed under, left, and right of the eyes. The electrode left and right
of the eyes are used in the algorithm to find eye movements. EMG channels are channels that pick
up muscle movements that can be used to reduce muscular noise in the signal. The position of
EOG-left, EOG-right, and EMG-chin electrodes are shown in figure 4.

The data set also contains one of the subject’s awake period. In this period the subject was tasked
with eye movements, and the same sensor setup as the sleep recordings was used. This was used
to test the algorithm for finding EM during awake state.

Figure 4: Shows where the EOG-Left, EOG-Right, and the EMG-chin is pleased while recording
the sleep data

2.6 Power spectral density

Power spectral density (PSD) is the energy of a signal at different frequencies. In other words,
how much power all specifics frequencies in a signal have. This can be found by using the Fast
Fourier transform (FFT). FFT is a method that converts a signal from the time-domain to the
frequency domain. FFT is calculated using a version of the Discrete Fourier transform. This can be

mathematically formulated as Xk =
N−1∑
n=0

xne
−i2πkn/N , k = 0, ..., N−1. Discrete Fourier transform

requires O(N2) operations, and this is why FFT is used. This method takes advantage of repeated
calculations in discrete Fourier transform and cuts the operations down to O(Nlog(N)).

PSD can be used to analyze the signal and find out what frequencies has the most energy. This
is useful in sleep research as the waves’ frequency categories the sleep and can be used to find
abnormal activity in the brain.

6
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2.7 EEG Forward problem

In EEG, a forward model is a way of modeling how signals from the brain are detected in the
sensors outside the head. The model considers sources in the brain and establishes the portion of
the source signal that is registered by the electrodes. This model can be used to simulate what
electrodes will detect with different brain activity. To make this forward model, information about
the subject’s head is needed.

Two main components are needed to make a forward model, the head model from the Magnetic
Resonance Imaging (MRI) and the sensor positions. Firstly the head model is described. A head
model holds information about how an electric current spreads throughout the head. To find the
electric current movements, the electric resistance in the head needs to be found. The electric
resistance is different in different elements in the head, so firstly, the head elements’ composition is
needed. Because humans have different shapes and forms of heads, the head elements’ composition
is different in every individual. This means that everyone has a unique head model. Usually, to
find this model, MRI is used. MRI is an instrument that scans your head and outputs images
of how the head is composed. If it’s not possible to get an MRI of the patient’s head, you can
use a template MRI. Template MRI is a standard MRI that is made by averaging multiple heads,
making a model that best fits an average head. In this study, the ’fsaverage’ Template MRI was
used. ”Fsaverage” is a model provided by FreeSurferWiki [26], that is made by a combination of
40 MRI scans of real brains.

After the head model is found or a template is used, information about the sensors and the source
signal is needed. For the sensors, the position on the surface of the head is needed. And for the
source signal, position and amplitude are needed. The sensors are typically placed in the five
percent system or the 10-20 system [27]. These systems were made to make it easier to reproduce
and analyze EEG data. The electrode position system is typically saved with the data set. In this
study, the forward model was used to calculate the inverse model. The forward model can be used
as a tool to test out different brain activities. Using the forward model to simulate brain activity
can be compared to a wanted source reconstruction to check if correct.

The forward model is stated as M = GD + n. Where M is the matrix of data measurements
at different times, D is the matrix of dipole magnitudes at different time instants. G is the lead
field that describes the current flow of the electrode through each dipole position know as the gain
matrix, and n is the noise. [28]

2.8 EEG inverse problem: Source reconstruction

Source reconstruction is a method using electrode input to estimate brain activity. This is done by
using the inverse model. The inverse model is, as the name says, the inverse of the forward model.
The input to the inverse model is electrode signals, and the output is brain activity.

The inverse model is stated as D̂ = MG−1 + n. Here is D̂ the estimation of the dipole magnitude
matrix, M the electrode matrix, G−1 the inverse of the gain matrix, and n the noise. This has
equation has infinite solutions.

When we have found the inverse model, we use it to calculate the source. The problem with the
inverse solution is that the problem doesn’t have a unique solution. This means we need to make
assumptions to get the best solution. [29] These assumptions can be incorporating different con-
straints based on a priori information about the desired source or physiological assumptions. It
exists many different methods of making source reconstruction. Some examples of these methods
are found here [30], but in this project, we will use the standardized low resolution brain electro-
magnetic tomography (sLORETA) method. This method solves the infinite solution problem by
focusing on the localization error and not the source strenght. sLORETA gives zero localization
error and is therefore often used [31]. More details about this method can be found in the paper
[31]
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2.9 Statistics

To find statistically significant results a statistical test is needed. Comparing two sets of values
often uses the T-test, also known as the student’s t-test. T-test is a statistical test that checks if
a pre defined null hypothesis holds, and is the most used statistical test for checking if two sets of
data are significantly different from each other [32]. When the two data sets comes from the same
selection or if the sets have high correlations between them a paired t-test is used. The procedure
for doing a paired t-test is [33]:

Step 1: Calculate di = yi − xi, di is the difference between the two observations in each pair, yi is
the value in the first set and xi is the value in the second set.

Step 2: Calculate the mean difference d̄

Step 3: Calculate the standard deviation of the differences SE(d̄ = Sd√
n

Step 4: Calculate the t-statistic T = d̄
SE(d)

Step 5: Use tables of the t-distribution to compare your value for T to the tn−1

The p-value found by taking the t-test shows how likely the two sets have the same value distribu-
tion. If the p-value is less than 0.05, giving less than 5% chance of the sets having the same value
distribution, the two sets are seen as a significant differences from each other.

2.10 Software

The programming language used is Python and the main packages used is the MNE package [34]
for exploring, visualizing, and analyzing human neurophysiological data, Numpy [35] and Pandas
[36] for scientific computing and data analysis, Matplotlib [37] for visualization, and SciPy [38] for
scientific calculations.
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3 EM Detection

In this section will the method, results, and discussion of EM detection be presented. The section
starts by explaining the method/ algorithm used to get the onsets of eye movements in sleep stage
REM. Then improvements made to the algorithm are presented before showing the results. Lastly,
the results and method are discussed.

3.1 Eye movement detection base algorithm

EM detection is normally done manually, which is a long and tedious process. Because of this
problem with manual EM detection, an algorithm was made to avoid this problem. A method
describing how an algorithm can do it is found in the paper [3]. As this is an old paper (more than
20 years ago), making an improved algorithm based on the method described in the paper is started.
The detection of eye movement in the paper starts with the definition of 3 basic REM-related EOG
parameters: amplitude, duration, and slope of the EOG trace. Following the procedure [3], the
raw REM data is re-sampled at 80hz, and a 7 point linear weighted moving average is applied to
the data. Then the double derivative is calculated using NumPy in python from [35]. Afterward,
using the double derivative, spikes such as seen in the figure 5, are identified by the algorithm (
points A and B). Point A is the starting point of the slope and is found by the double derivative’s
first spike. Point B is the ending point of the slope and is the first spike after point A in point A’s
opposite direction. With all points A and B identified, the following three criteria are observed for
the definition of EM onset:

Figure 5: Shows how point A and B are correlated to the double derivative of the signal

• All point pairs (A and B) with an absolute value of point B minus point A higher than 30
microvolts are accepted.

• The slope between the point pairs has to be higher than 248.3 microvolts per second.

• The slope duration has to be lower than half of a second.

Points that fulfill all these three criteria are then saved as EM and used accordingly. The problem
with this method was that the data contain much noise. Taking the double derivative of a signal
with noise leads to many unwanted spikes in the double derivative. These spikes are mistakenly
accepted as EM points by the algorithm and lead to many unwanted confirmed EM onsets. A
Low-pass filter was used instead of a linear weighted moving average to avoid the noise spikes, but
this lead to unprecise marking of the EMs. Low-pass and moving average was also implemented
together, but the results obtained with this approach were still ineffective in capturing the EM
onsets correctly. This problem with precision is due to the smoothing of the signal. After the
signal is filtered with a low-pass filter, some of the spikes in the double derivative were misplaced
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Figure 6: Overview of Base Algorithm procedures according to [3]

Figure 7: Example of unprecise point marked by the base algorithm. The blue line is the point
marked by the algorithm and the black line is the where the EM onset is

compared to the raw signal. This misplacement leads to point A being marked close but not exactly
on the actual EM starting point. As the EMs needs to be marked at the precise starting point of
the onset, these results were not precise enough. An example of this imprecise placement can be
seen in figure 7. The figure shows the algorithm pleased the onset on the light blue line while the
actual onset is on the black vertical line about 30ms later. The lack of accuracy with this method
has led to a new version of the algorithm to detect the EMs onset more accurately.

3.2 Eye movement detection improved algorithm

To improve the base algorithm efficacy in accurately identifying the EM onsets, more information
from the shape and morphology of eye movements is incorporated into the algorithm. In this
version of the algorithm, the use of the double derivative to find the start and stop points of the
EMs is avoided. Instead, the algorithm starts with subtracting channel EOG-R from EOG-L and
then resampling the data to 300 Hz. Afterwards, it uses a linear weighted moving average with
a 26 step length to smoothen the data. The linear weighted moving average limits the noise and
gives better results than a low pass filter. After smoothing the signal, the derivative and double
derivative are calculated.
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Instead of using the double derivative spikes to find points A and B, this new method checks all
points in the channel arrays. This means that all 300 points per second are checked for 3 criteria.

The first criterion for the approved EM point is that the amplitude change must be greater than
80 microvolts in less than 400 milliseconds. The second criterion is that the slope has to be higher
than 500 microvolts in the slope’s starting point. The third criterion is that the average slope after
the starting point has to be over 500 microvolts for the following 37 points. Then points that are
approved by all three criteria are added to a list. These criteria are re-derived for this case from
the individual EOG parameters and threshold values that constitute a well-defined REM-related
EOG deflection according to [3]. As this algorithm checks every point, a series of points per EM
is often accepted. This comes from the high amount of sample points that makes the points very
close in time to each other and therefore has little change between them. As it is bad to get more
than one accepted point per EM, the algorithm checks the gap between the approved EM points.
All EM points approved except the first must have a 200 milliseconds gap from the last EM where
the criteria are not met. The reason for the gap to have unmet criteria is to avoid multiple EM
points in a long EM while also capturing all the small close EMs.

After the algorithm has only one point per actual EM, the position of the points is optimized. To
optimize the points, the double derivative is used. The algorithm now moves the points to a local
maximum of the double derivative. The maximum movement of an EM point is 62 milliseconds
forward or backward in time. Lastly, the algorithm checks for sudden deflections in the recordings
of EOG-L and EOG-R channels in opposite directions. EMs that do not have two individual jumps
in opposite directions in the EOG-L and EOG-R channels are removed. EMs needs to have an
individual spike of 40 microvolts to be accepted.

Because of the high noise and the lack of a low pass filter, the algorithm is set up so that every
step where the algorithm checks for a value over a criterion, a mean of 5 points is used instead of
just that specific point. This eliminates some of the noise spikes that randomly get accepted by
all the criteria.

3.3 New, improved individual eye movement criteria

A visual inspection of EMs marked by the algorithm leads to further development of the algorithm.
Specifically, the method looking at individual EOG-left and EOG-right channel spikes. The visual
inspection showed that some of the EMs it marked were not EMs and should not be marked. With
this problem in mind different test was done on the opposite spike function to see if it could be
improved. Before this improvement, the algorithm looked at EMs and checked if both the EOG-left
and EOG-right channels had an amplitude change in the opposite directions from each other, in
the time span from EM onset to 300ms forwards. First, an approach of dividing the 300ms times
span into smaller 50ms time spans and check how many of these time spans the channels move in
opposite directions. An image of this can be seen in figure 8. This image shows how the method
did not capture this EM because of the big negative spike at the onset of the EM. The image
also shows that the last 3 segments do not necessarily have any spike movement in them and are
therefore not useful for finding EMs.
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Figure 8: An segmented method to find EMs. The first Black line is the EM and the next 5 black
lines indicates a point 50ms away from last line. This is done to find the red lines that shows the
slope in that segment. The hope what that an EM had at least 2 of these 5 slopes in opposite
directions indicating an EM. But as shown in the image this is not the case.

A new method to avoid the problem with the negative spike at the onset was needed. The slope
check was moved to 21ms before the onset and lasted to 50ms after the onset to combat this
problem. Now it is only one slope that is checked, and it is only accepted if one channel goes down
by more than 8 microvolts while the other goes opp by more than 8 microvolts. This method did
satisfactory on the EM shown in figure 8 but it did not work on some other EMs. The problem
now was that sometimes the spike of the EMs starts 50ms after the onset. An example of this
delayed or asynchronous start can be seen in figure 9. In this figure, the EM is marked by a green
vertical line. The black vertical line is marked 50ms after the EM onset, and the red line indicates
that the EOG-r channel (the top channel) has roughly the same value at the EM onset as it has
50ms after the EM onset. To avoid this problem, the endpoint of 50ms after onset was moved to
80ms after onset. All EMs inspected had the spike before 80ms after the onset, so this method was
much better. With this increase in time for the spike, the amplitude criteria needed to be more.
By visual inspection, 14 microvolts were chosen as all EMs moved at least 14 microvolts in 101ms.
This means that the slope between 21ms before onset to 80ms after onset needs to be greater than
14/0.101 = 138.6 microvolts per second for both EOG channels.
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Figure 9: Unsyncronized starting point of EOG-l and EOG-r. The green line shows the onset of
the EM. The gray vertical lines shows 50ms forward in time. There is no jump between onset and
50ms forward in the EOG-r channel (the channel on top)

3.4 Power spectral density criteria

After running the algorithm on a full night of sleep, it showed that it marked many EMs outside
the REM sleeping stage. Investigating these EMs lead to the implementation of a Power spectral
density (PSD) criteria. An image of one subject’s night of sleep with the sleep stage REM and
the EMs is shown in figure 11. Because of the high amount of EMs classified outside the REM
sleep stage, a method using power spectral density was tested. Because visual inspection of the
EM points outside the REM sleeping stage showed that muscle movements triggered them. These
muscle movements are recorded with EMG channels to use for noise filtering later. When the
muscle movements are active, the EMG-c channel contains a higher amount of high-frequency
waves. Finding the amount of the high-frequency waves is done by finding the power spectra
density (PSD). The EMG noise has a frequency of around 50 to 100 Hz, while the channel in the
normal REM sleep stage has low power in the same frequencies. This is why looking at the PSD
of the EMG-c channel for 55 to 95Hz should give different results in correct EM points and false
EM points. An example of this can be seen in figure 13. The bottom two images show a correct
EM with the EOG raw data and the PSD of the EMG channel, and the top two images show the
EOG channel at an incorrect EM and its EMG channels PSD. The red line indicates the mean
value of the PSD from 55 to 95Hz. The mean value of the wrong marked EM is about 4, while the
actual EM has a mean value of about -15.

So to implement this method, calculation of the PSD of the EMG-c channel from 5 seconds before
the EM to 5 seconds after the EM is done. Then the mean of this period is calculated and
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converted to a logarithmic scale. The conversion to a logarithmic scale makes it easier to find the
value differences between real and false EMs. An image of the logarithmic values over all EMs
in subject s248 is shown in figure 10. This image shows that the first and last EMs have a value
between -10 and 7, and from figure 11 it can be seen that the first and last EMs are outside the
REM sleeping stage. This is why the criteria are set to -11 and therefore removes all the EMs at
the start and absolute end of the night. Plotting the EMs after rejecting all the EMs with too
high PSD value gives the results shown in figure 12. Comparing the two images of EMs found in
the subject’s night of sleep, it is no doubt that the PSD method worked for removing many of the
wrongly placed EMs. The biggest difference in this subject is the start of the night, where the
subject possibly moves his eyes before getting into a deep sleep, and at the end of the night, he
wakes up and starts moving his eyes.

An overview of the step the complete algorithm takes is shown in figure 14. The figure shows all
the steps the algorithm does to find the onsets.

Figure 10: Logarithmic values of the PSD of all EMs in subject s248

Figure 11: EM algorithm run on a full
night of sleep showing how many EMs
it found in every window of 30 seconds

Figure 12: PSD check on EMs run af-
ter the EM algorithm had run on a full
night of sleep showing how many EMs
it found in every window of 30 seconds
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Figure 13: Power spectral density (PSD) of actual EM in REM stage (botton) vs PSD of a
wrongly marked EM outside the REM stage (top). Image on the left shows the raw data of the
EOG channels while the image on the right shows the PSD of the EMG channel in the same time
period. The red line in the PSD shows where the mean was taken(55-95hz) and that the mean of
the wrongly marked EM is around 5 micro volts squared per hertz while the actual EM has an
mean of about -15 micro volts squared per hertz.
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Figure 14: Overview of the complete algorithm

3.5 Algorithm performance

To evaluate the performance of the improved algorithm, the following performance measures are
used: Precision, Recall, and the F1-score. Precision is the ratio of correctly predicted positive
observations to the total predicted positive observations. In this case, how many of the positively
rated EMs are correct. Recall or Sensitivity is the ratio of correctly predicted positive observations
to the actual correct observations. In this case, how many of the actual positive EMs are rated
positively. Combining these two parameters gives us an F1 score, which is the weighted average
of Precision and Recall. Therefore, this score takes both false positives and false negatives into
account. F1 shows how precise the algorithm is overall. The formulas for these parameters are:

Precision =
TruePositive

TruePositive+ FalsePositive
. (1)

Recall =
TruePositive

TruePositive+ FalseNegative
. (2)

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

. (3)

All three parameters are between 0 and 1, where 0 is the lowest performance, and 1 indicates
perfect precision and recall. The reason for choosing these parameters is because they avoid the
significant bias in EM marking. The bias comes from the number of possible points compared to
the number of actual points, as these parameters do not use the number of true negatives.

In this study, an EM point is marked as a true positive if it is less than 0.05 seconds away from
the professionally marked points. A statistic of how close the average true positive is from the
professional marked points is presented in the results part.

3.6 Result of NREM

The algorithm was tested on one subject in the awake state to see if it could be used in awake state
eye movements tasks as well as in sleep. This shows that the method used can be improved and
used in other tasks than REM EM finder. On this awake subject, the algorithm got a Recall score
of 0.86, a precision of 0.76, and an F1 score of 0.8. The average distance between algorithm-marked
onsets and expert marked onsets was 13.5ms.
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3.7 Result of REM

The performance of the EM onset algorithm is found by comparing the algorithm found onsets
with sleep experts manually placed onsets. This manual process takes a long time, and therefore
are not all subjects tested yet. The results of the eight subjects can be seen in table 2. For a point
to be considered true positive, it needs to be closer than 50ms away from the corrected point. The
D column in the table shows how long away the average point was from the corrected points in
true positive.

Subject TP FP FN Recall Precision F1 D
s129 44 10 6 0.88 0.81 0.85 7.5
s240 389 97 4 0.99 0.8 0.89 5
s241 361 151 3 0.99 0.71 0.82 6.4
s242 481 154 1 1.0 0.76 0.86 7.37
s243 107 168 4 0.96 0.39 0.55 8.49
s247 595 162 12 0.98 0.79 0.87 5.34
s248 168 115 4 0.98 0.59 0.74 5.45
s300 518 367 40 0.93 0.59 0.72 8.49
Sum 2663 1224 74 0.97 0.69 0.80

Table 2: Algorithm performance on 4 subjects over a full night of sleep. TP is true positive, FP is
false positive and FN is false negative. The D is the average distance between corrected point and
algorithm point in true positive.

3.8 Discussion

3.8.1 Comparison between the two algorithms

There are two significant differences between the base algorithm and the new method. The first
difference is the method the algorithm uses to find points to check for the criteria. The base
algorithm uses the double derivative to find these points, while the second checks all points first.
This difference makes the first algorithm much faster but much more sensitive to noise. The base
algorithm also tends to misplace some of the EM points because of the picking method. For
example, if it is a noise spike before an EM, the first algorithm will set the noise spike and the
actual EM spike as points, and if close points are removed afterwards, the real EM will be removed.
In contrast, the improved algorithm will accept the same 2 points and remove the correct EM, but
afterwards move the noise point to the EM start later on in the algorithm.

The second big difference is that the improved algorithm checks the EOG-L and EOG-R channels
individual spikes. This check makes sure that an EM is not triggered by only one of the channels
spiking. A spike in one of the channels can be due to muscle movements which are considered noise.
The algorithm also checks that the spikes are in opposite directions. An opposite direction spike
is essential as the EM triggers the channels to move in opposite directions, while other movements
such as heartbeat cause spikes in the same direction. Both these differences make the second
algorithm slower but much more reliable and precise.

3.8.2 Algorithm performance

Looking at the table 2 the false negative almost zero, and therefore are all the recalls close to
perfect. This is excellent results because it is much easier to improve the algorithm when it is
not a mix of missing points and false detecting points. Because of this satisfactory recall, the
algorithm can be improved by setting the criteria higher to filter out more false positive points
while still maintaining a low amount of false negative. Reducing the number of false positives by
setting the criteria higher will lead to better precision and a better F1 score. It is also better to
have high recall and bad precision than the other way around if the algorithm is used before a
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manual detection is started. Having almost all true EMs marked before starting the detection, a
sleep expert can look at the marked points and remove the points that are not EMs. This process
is much shorter than looking for EMs without any marking beforehand.

The worst subject is the s243 that has more false positive than true positive. That subject had
a bad EMG-c channel that was used in the PSD test, so instead of using the EMG-c channel,
EMG-r was used. This may be the reason subject s243 is much worse than the rest of the subjects.
Subject s248 and s300 also have a bad precision compared to the rest. It can be due to the subject’s
behavior and movement in the REM sleeping stage and should be investigated further. Setting the
criteria for individual eye movement even higher might give excellent results in some subjects while
making the algorithm worse for other subjects. This is why any change of the algorithm should be
tested on as many subjects as possible. Looking at the sum score of the subjects combined, an F1
score of 0.8 is satisfactory. Because of the low amount of false negative points expecting the F1
score to go up a substantial amount after setting the criteria higher is a reasonable expectation.
And when taking into account that false positive points are easy to check and remove manually
gives this algorithm a very promising potential to increase the amount of research done on EMs in
REM sleep.

The table 2 also shows the average distance the algorithm points were away from the expert marked
onsets. The maximum distance being 8.49 milliseconds of the onset is a small distance. As high
time precision is important when averaging the onsets to get sufficient results, this result is also
promising and can be improved by learning more details of the eye movement.

The algorithm was also used in [39] and in [40]. In [39], the algorithm was used to help speed up
the process of finding EMs in REM sleep. The algorithm was run on all the REM marked data
to find EMs, and afterwards, the EMs was visually checked by a sleep expert. The sleep expert
moved and removed points that were not EMs and mentioned that the algorithm helped with the
process. It is from this project the corrected EMs were obtained and then used for calculating the
algorithm performance. [40] is a paper that was made as a result of this thesis work. This paper
is now under revision, and is to be published at 11th IFAC Symposium on Biological and Medical
Systems.

Because of the time consuming method of find the EM onsets manually, as is done today, the
algorithm can have an important impact in sleep research. It is reasonable to believe that more
studies on the EM onset topic will be done in the future because of the new available method of
using an algorithm do precisely find the EM onsets instead of manually doing it.
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4 Scoring of REM

In this section will the method, results, and discussion of scoring REM sleep stage be presented.
The section starts by explaining automatic and manual REM sleep stage scoring. Then problems
with EM markings outside the REM sleeping stage are discussed before showing the results. Lastly,
the results are discussed.

4.1 Automatic REM classification

When the EM detection algorithm was under development, it was tried on a full night of sleep.
The results were very promising and therefore further investigated. Finding the REM sleeping
stage with an algorithm would make the process of sleep analysis faster. The method used now
for sleep stage classification is to visually look at a time period of 30 seconds and rate the period
based on the criteria of the AASM [41]. This method uses sleep waves explained in section 2.3
together with the EMG-chin to find the sleeping stage. As the sleep period of one night is about
eight hours long, 960 periods of 30 seconds epochs needs to be rated. This takes about a day to
do, depending on how fast the sleep expert can rate sleep data. Using the algorithm made for EM
detection on a full night of sleep takes about 10 minutes. In addition to taking many hours less
time, the researcher can do other activities while the algorithm runs. This speed increase, together
with the possibility to find sleep stages without needing a sleep expert, is the main advantage of
using the algorithm to rate sleep data. The main disadvantage is that the algorithm is less precise
than a sleep expert is, and the algorithm will not find REM sleep stages that do not have EMs in
them. The algorithm also does not find the exact start and stop timing of the REM sleeping stage.

4.2 EMs outside the REM sleeping stage

Using the algorithm on a full night of sleep, shown in figure 15 shows that it finds EMs outside
the REM sleeping stage. Because the algorithm finds EMs outside the REM sleeping stage, it is
hard to know exactly when the REM sleeping stage is from looking at the algorithm results. All
epochs that have more than 3 EMs in them are in the REM sleeping stage for this subject. This
can vary from subject to subject but is a baseline to find where the REM sleep stage is. Epochs
with one or two EMs marked should not be considered REM sleep stage unless it is between epochs
that have a high number of EMs marked. The algorithm uses PSD to remove the EMs made by
muscular movements. However, this method did not remove all EMs outside the REM sleep stage.
In section 3.4 an explanation of how the power spectral density was used to remove some wrongly
pleased EMs. Because this technique did not remove all EMs outside the REM sleeping
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Figure 15: Shows the full night of sleep of subject s248, the blue dots shows how many EMs the
algorithm found in the epoch, and the blue boxes shows where the REM sleep stage is.

4.3 REM sleep stage finding results

Using the algorithm on a full night of sleep and plotting the comparison of EMs detected to the
REM sleep stage categorized by sleep experts is done. In this subsection, only two subjects are
presented. The rest of the subjects except s243 can be found in the appendix A. Subject s243 had a
bad EMG channel that prevented the PSD method from working. The two subjects selected to be
presented are subjects s129 and s241. These are chosen because s129 shows some of the problems
with the method while s241 shows the best result.

Figure 26 shows how many EM points the algorithm found for subject s129 in each window com-
pared to the expert rated sleep stage REM. The method of rating the sleep stage is by looking at
30-second windows and categorize them. This is why the x-axis of the figure is in 30-second win-
dows. The figure shows that the algorithm found many points in between window 0 and window
20. This comes from eye movement the subject does before he fully submerges into sleep. The
figure also shows that the algorithm finds many single EMs in the windows between 150 and 400.
After window 400 are most of the EMs found are in the REM sleep stage. Except for the night’s
start are all windows that the algorithm found more than 5 EMs in them, in the REM sleep stage.
Ideally, should the algorithm only mark EMs in the REM sleep stage and all the other marked
EMs indicate potential improvements.
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Figure 16: EMs found by algorithm in window comapired to sleep expert rated REM sleep stage
for subject s129

Figure 28 shows subject s241 full night of sleep. This subject shows much more promising results
than s129. The algorithm has managed to avoid marking a substantial amount of wrong EMs at
the start of the night. It is only two short periods outside the REM sleep stage that are marked,
and in these two periods, no window has more than two markings in it. While in the REM sleep
stage, the windows have up to 23 EMs showing a clear difference in marking between in REM sleep
stage and outside it. This subject also has EMs in all the REM sleep stages.

Figure 17: EMs found by algorithm in window comapired to sleep expert rated REM sleep stage
for subject s241
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4.4 Discussion

The figures shown in section 4.3 and in the appendix A shows that finding the REM sleeping stage
with the algorithm is possible but needs more work. Firstly do the results vary a lot from subject
to subject. And therefore, it is hard to trust the results without any other test or control checks.
Secondly, there are REM sleep stage periods with no EMs in them. This makes it impossible to
find with this algorithm. And lastly, it is hard to know the exact starting point and ending point
of the REM sleep stage with this algorithm. For most subjects, it is easy to see where the REM
sleep stage is but not the exact starting point or endpoint. For example, looking at 28, if the blue
indication of the REM sleep stage is taken away, it will be tough to know if it is one long period
at about window 800 or if it is two shorter ones.

With the algorithm as it is now, it can be used as a heads up to the sleep experts before they
categorize the sleep. This will make the job easier because they know where there should be some
REM periods and where they should not be. Or the algorithm can be used together with other
sleep categorizing algorithms to get better results. The sleep categorizes algorithms that exist now
is bad at finding REM sleep as it contains most of the frequencies the other sleep stages contains
and therefore can be similar to the other sleep stages.

As it is the same algorithm that is tested in section 3.8.2 it is known that it counts too many
EMs. As suggested in that section, making the criteria higher might improve the algorithm for
finding the REM sleep stage also. It is reasonable to expect some or all of the wrongly marked
EMs outside the REM sleep stage to be removed with higher criteria. The PSD criteria are also
something that should be considered improved. As the criteria is now at -11 microvolts squared
per hertz, it should be further investigated what the best value for this criteria is. As seen in figure
13 this value works fine with the extreme cases, but in this study, the PSD effect is only looked
at and regulated for two subjects. As the figure 26 shows many wrong EMs at the start of the
night, it should be investigated why they are not removed with this PSD criteria. A baseline of
the EMG-c channel can be found at the start of the night ( the first 10 windows) and used to find
the best criteria value for the PSD filter. Also, visual inspection of the PSD of the EMG channel
in more subjects can lead to a better understanding of the criteria value.
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5 Source Localization of Pre-REM brain activity

This section presents the steps taken to obtain source localization of pre-REM negativity. The
section starts by presenting the filtering and prepossessing needed. Then the models are calculated,
and two methods of source localization are presented. Afterwards a t-test is done to find significant
activation, and the results are presented. Lastly, the results are discussed

5.1 Method sLORETA

sLORETA is a method used in the inverse problem of source localization. Different methods are
used for different purposes and are focused on different things. Among these focuses are minimum
localization error, less complexity, and more validation. As the inverse problem has many solutions,
there is no consensus among the EEG researchers which method is the best to use. The sLORETA
method is made to be better at finding deeper sources, [42] and the reason for choosing this method
is to be able to compare with the study [19].

5.2 Filtering and preprocessing the data

Before computing the models, the data needs to be pre-processed to get the best results. Reading
the dataset is done by using the method mne.io.read raw bdf(). This method takes in the
filename and location of the dataset and makes it accessible by a variable in python. Storing the
full dataset in a variable can overload the computer’s memory, so preload is set to false to avoid
this problem. To make the data set easier to work with, the channel names are changed to the
standard names going from A1-A32, B1-B32, C1-C32, D1-D32. An image of the sensor names
and positions can be seen in figure 18. Then the channels that are not the EEG channels, the
EMG and EOG, are set to be channel types EMG, EOG, and misc, respectively. This is done with
raw.set channel types and prevents the channels from interfering with the source localization.
Afterward, the electrode positions together with the head model are set up. In this paper, a
template head model is used. The template head model can lead to errors in further calculations,
but an MRI of the patient was not available. The template head model used is the ”fsaverage”.
”Fsaverage” is a model provided by FreeSurferWiki [26]. The model is constructed by using many
MRIs to find the average position of components in the head. The head model ”fsaverage” with
electrodes is plotted in Figure 19. The red points on the scalp of the head are the electrodeposition
loaded from the biosemi128 standard positions setup. And the yellow points inside the head are
the possible brain activity points. Biosemi128 is the electrodeposition used when recording the
data set in this study. Biosemi128 is a standard electrode setup and can be seen in the Figure
18. The figure shows the head with the sensor placement seen from above. Furthermore, the EEG
channels reference is set to average. This makes the values of the sensors closer to zero and makes
all the sensors have the same reference. This average reference is needed for computing the inverse
model later on.
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Figure 18: Sensor positons of biosemi128 setup, and names of the sensors

Before filtering the data, it is cut 10 seconds before and after each EM to avoid long and unnecessary
filtering time. Filtering the data between 0 and 300Hz with a high pass and low pass filter. This
is done to avoid unnecessary noise in the channels. A notch filter is also implemented at 50Hz
because that is the frequency of the power grid where the data was recorded and therefore affects
the data.
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Figure 19: Head model seen from above, where red dots are electrode position and yellow dots are
possible brain activation points

5.3 Computing the models

The forward model, covariance, and inverse operator need to be calculated before source localization
can be done. To compute the forward model, the function mne.make forward solution() is used.
This function needs to know the head model and the dataset. It is important to set the correct
sensor position in the data set before using this method. This is because the method uses the
sensor positions to calculate the forward model, and the results will not be correct without it.
This setup is explained in 5.2. After calculating the forward model, covariance is calculated.
To calculate the covariance, a time period of 4000 seconds in the N1-N3 sleep stage is used.
The calculation is done with the function mne.compute raw covariance() and only needs the
data for the 4000 second time period. The inverse operator is calculated by using the function
mne.minimum norm.make inverse operator(). This function needs to know the noise covariance
matrix between the electrodes and the forward model. When the inverse operator is calculated, it
is used to find source activation in the brain.

5.4 Source localization of EM onsets

Finding the activity in the brain starts by making the epochs. Epochs are made by taking raw
data and cut it 200ms before the EM onsets to 50ms after the EM onset for all EMs. Then a
baseline is used on the epochs from 200ms to 150ms before the onset. This is done to move the
different channels around 0 volts. This is important to do as it makes the channels have an equal
effect on the source localization. Afterwards, are the epochs averaged, making an evoked object.
The evoked object looks like figure 20 and a spike at 0 seconds (the onset) can be seen. From here,
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two different methods of finding significant brain activity are done. The differences in the methods
come from when to average the time span of pre-REM and baseline. The first method averages
the evoked objects, while the second method averages the source activation points.

The first method of averaging the source activation is explained. In this method, after finding the
evoked object, the inverse operator found in 5.3 is applied to the evoked data. This calculates the
brain source estimates. Source estimates hold the activation value for every point in the brain.
This means that it contains a 2D array with the shape 20484x256. It is 20 484 brain activation
points seen as yellow dots in figure 19. The 256 comes from the time points available (-200ms to
50ms) multiplied by the sampling points per millisecond (1024/1000). Then the brain activation
for each point is averaged over two time spans. The first time span is the baseline time span, and
this time span is between 150ms before onset to 140ms before onset. Then finding the mean value
in this time span for every brain activation point (20 484) and save it as a baseline source. After
the baseline is calculated, the pre-REM time span is next. This time span is between 150ms before
onset to 20ms before onset. The same procedure with finding the mean value for each activation
point in this time span and save it as a pre-REM source. After finding the baseline source and the
pre-REM source for all eight subjects, the data are ready for the T-test.

The second method finds the mean value of the time spans in the evoked object instead of the
source estimation. This means that after finding the evoked object for a subject, the evoked object
is averaged between 150ms before onset to 140ms before onset, giving an evoked baseline object
out. The same process is done for the pre-REM object between 150ms before onset to 20ms before
onset. Then the inverse operator is used on the baseline evoked and the pre-REM evoked, giving
two source estimates with an array shape of 20 484 x 1. After this is done on all eight subjects,
two arrays of 20 484x8 are ready for the T-test.

Figure 20: Evoked plot of subject s240. Showing the spike at the EM onset for the different 127
channels. Nave=393 means its 393 epochs that is averaged to get this plot

5.5 T-test to find significant brain activity

After finding the source estimates for the baseline and the pre-REM, t-tests are calculated. Calcu-
lating the p-value between the two conditions is done to find the brain activation points that are
significantly different between the pre-REM period and the baseline. This t-test is done on all the
20 484 brain activation points, and all the points with a p-value of less than 0.05 are considered
significant. The significant brain activation points are saved as value 1, while the others are saved
as value 0. Then the source activation is plotted, showing the points on the head model. The brain
atlas is also plotted on the head model. A brain atlas is a grouping of the different regions in the
brain. An image of the brain plotted with the brain regions is shown in figure 21. In this figure,
the brain regions are shown with their unique color.
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Figure 21: Brain atlas, shows the separated brain regions. [4]

5.6 Results from Source localization on EMs

Figure 22, 23, 24, and 25 shows the significant sources found by using t-test between pre-REM
source activation and baseline source activation. The red spots marked on the brain plots are the
activation places, while the white is where it was no significant difference between pre-REM and
baseline. The labels are also printed on the surface of the brain as colored lines around the label
places.

5.6.1 Brain activation averaged

Figure 22 shows the brain plots from the lateral side, which is the brain seen from the side, and
from the medial side, which is a cross section of where the left and right hemispheres meet. As the
figure shows, it is more activity on the medial side of the brain than the lateral side. The densest
red markings are in the middle of the brain, in the regions near the thalamus and striatum. Due to
the structure of the thalamus and striatum, it is consider that they do not produce EEG potentials
or their influence in the EEG signal itself is null. The lateral part has the most activity in the
lateral orbitofrontal and the upper superior parietal. The left hemisphere has more activity in the
lateral part compared to the right hemisphere. Still, the right hemisphere has more activity in the
medial part compared to the left hemisphere.
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Figure 22: Significant source activation shown from the lateral and medial view

Figure 23 shows the brain from the dorsal and ventral views. Dorsal is viewed from above the head,
and ventral is from underneath the head. Both models have the front of the head facing down as
they are looking at the figure text of the image. The image shows that the densest activation area
is in the front of the head in the ventral view. There is also some activation in the postcentral and
precentral brain regions.
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Figure 23: Significant source activation shown from the dorsal and ventral view

5.6.2 Evoked averaged

Figure 22 shows the lateral and medial view of the brain activation using the method of averaging
the evoked object instead of the source activations. It is a lot less statically significant activation
points than the method of averaging the source activation. Almost no clear regions on the lateral
part of the brain are marked in red. Some activation can be seen in the lateral orbitofrontal regions
and the postcentral regions. The left hemisphere also has some activation in the precentral region
and the inferior temporal region, but these are less dense. The medial part of the brain still has
the most activation near the striatum regions. The left hemisphere also has a small amount of
activation in the paracentral and posterior cingulate regions.
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Figure 24: Significant source activation shown from the lateral and medial view

Figure 23 shows the dorsal and ventral views of the brain with most activation in the front of the
head in the ventral view. These is the medial orbitofrontal and the temporal pole regions.
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Figure 25: Significant source activation shown from the dorsal and ventral view

5.7 Discussion

Both methods used in this paper were based on eight subjects, however, to obtain cleaner results,
it is recommended to involve more subjects However, the t-test is still valid with a small sample
size as explained in [43]. Brain activity related to onset of EMs is researched before in studies
[19, 20], however both these studies are done with LdEEG while in this study is used.

The two methods shown in this paper had a considerable difference in the result. The method
averaging the brain activation had a higher number of significant sources than the method averaging
the evoked object. This comes from the inverse operator differentiating major differences less than
small differences. The source activation averaged has then many small differences in the source
activation, and summing these up gives a bigger difference than using the inverse operator on a big
difference that is already summed up. The source activation places in the evoked object averaged
method still have activation in the same regions as the brain activation averaged, but smaller area.
The method used in the study [19] is the averaging the evoked object method, but the method
averaging the brain activation gives results that resemble the study’s result more. This can be due
to differences in the subject used or because of the use of HdEEG instead of LdEEG.

5.7.1 Brain activation averaged

The brain activation averaged method results showed that the regions near the striatum had the
most significant activation of the brain in pre-REM negativity. From studies [44, 45], the striatum
is connected to the reward system in the human brain. This means that the brain gets some sort
of reward or punishment in the pre-REM negativity. This might be the effect that makes humans
move the eyes. The study [19] also shows activation in the striatum in both hemispheres. While
that study did not find as much activation as this study found in the striatum, both studies indicate
that the striatum is an essential part of the pre-REM negativity.

Another region that was significantly activated was the lateral orbitofrontal region. The study
[46] explains that the lateral orbitofrontal region is observed to be activated when insufficient
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information is available to determine the appropriate course of action. This region is also shown
to be connected to actions that require the suppression of previously rewarded responses. This
indicates a connection between lateral orbitofrontal suppression of rewarded response and the
striatum that controls the reward system. The lateral orbitofrontal region is also shown activated
in the study [19], where it is the densest area shown.

The postcentral gyrus did also have some activation. This region of the brain is associated with the
touch sensor of the body [47]. This region did not have any significant activity in the study [19].
As it is hard to reasonably link touch sensory to EMs in REM sleep, this might be a coincidence
but should be further investigated.

5.7.2 Evoked averaged

The results from the evoked averaged method did also have the densest activation in the striatum
regions. Because this region had the densest activation in both methods used, and it was activated
in the study [19], it is reasonable to assume that this region is one of the important regions in
pre-REM activation. This region is active while the brain gets a reward or punishment, which
leads to the possibility that EMs in REM comes from the brain trying to reward or punish an
activity in REM sleep.

The orbitofrontal and the postcentral regions did also have significant activation in this method.
The orbitofrontal region is in the front of the head close to the eyes and was also activated in the
other method and in the study [19] as this region is linked to decision making [48], it is natural
to assume that some specific decision has to be approved before the EMs accrue. The postcentral
gyrus placed on the top of the head has some activation points in this and the other method.
The activation is small parts of the postcentral gyrus and indicates a specific sensory touch to be
activated. Because this region did not have activation in the study [19], it might indicate a specific
sensory touch related to the setup of the eight subjects used in this study.
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6 Conclusion and Future work

This section presents the conclusion for the three main focuses in this paper and explains what to
focus on in future work.

6.1 Conclusion

This paper had three main focuses, EM detection, REM stage scoring, and source localization of
pre-REM activation. The EM detection worked very well for almost all EMs but did mark some
extra points that were not EMs. Because of the extra points the algorithm marks, the results of the
EM detection algorithm should be checked visually and not just blindly accepted. The algorithm
did also show that it could be used as a REM stage finder. It marked almost all of the REM
epochs with more than three EMs, while the NREM sleeping stages were marked with less than
three EMs. However, the algorithm as it is now can not mark the precise onset and cutoff of the
REM sleeping stage. Because of this problem, the best use for the algorithm as a REM finder
is to give an indication to a sleep expert before the expert starts to rating the sleep, making it
easier to find the REM sleeping stage. The source localization of pre REM activation showed that
the most significant areas in the brain were the striatum and the orbitofrontal regions. These are
the regions that control if the brain gets a reward or punishment and the brain’s decision-making
process.

6.2 Future work

Future work for EM detection should focus on improving the algorithm by setting higher criteria for
EMs. If possible keeping the high score in recall while improving the precision, making the F1 score
much better. For using the algorithm in REM sleep stage finding, the focus should be on setting
specific criteria for when an epoch is categorized as REM and when it is NREM. Implementing
criteria on the EEG and EMG channels in addition to the EMs found. Future work for source
localization of pre-REM activity should try to study brain activation with a higher number of
subjects, making the results more general and linking the results to brain diseases.
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Appendix

A REM sleep stage finder

Figure 26: EMs found by algorithm in window comapired to sleep expert rated REM sleep stage
for subject s129

Figure 27: EMs found by algorithm in window comapired to sleep expert rated REM sleep stage
for subject s240
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Figure 28: EMs found by algorithm in window comapired to sleep expert rated REM sleep stage
for subject s241

Figure 29: EMs found by algorithm in window comapired to sleep expert rated REM sleep stage
for subject s242
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Figure 30: EMs found by algorithm in window comapired to sleep expert rated REM sleep stage
for subject s247

Figure 31: EMs found by algorithm in window comapired to sleep expert rated REM sleep stage
for subject s248
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Figure 32: EMs found by algorithm in window comapired to sleep expert rated REM sleep stage
for subject s300
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