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Abstract

Document ranking is the task of ranking a list of documents based on a user query
such that the most relevant documents come first. This is used in many applications,
for example search engines or scientific databases. In this thesis, we investigate how
BERT can be used to solve this problem. BERT is a machine learning model published
by Google in 2018, based on the Transformer architecture. It has been pre-trained to
understand natural language and has quickly become the state of the art within language
understanding.

In order to use BERT for document ranking, we fine-tuned it using the MS MARCO
document ranking dataset. The chosen model was a binary classifier that tries to predict
whether a document is relevant to the query or not, thus creating a relevance score for
the document. To take documents as input, each document was split into overlapping
passages and the average passage score was used as the document score.

After testing the model on 200 queries from MS MARCO, our results show that BERT
significantly outperforms the BM25 baseline, improving performance by over 10%. The
performance correlates with the number of parameters and bigger models are able to
improve performance further. Our experiments also show that increasing the number of
candidate documents does not increase ranking performance.

Based on the findings in the thesis, we conclude that BERT is able to use its language
understanding to find relevance between query and document, making it appealing for
information retrieval systems. To deal with BERT’s slow speed, the use of knowledge
distillation techniques is able to improve performance, while reducing the inference
times.
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Sammendrag

Dokumentrangering handler om å rangere en liste dokumenter basert på en søketekst slik
at de mest relevante dokumentene kommer øverst på lista. Dette brukes blant annet i
søkemotorer eller vitenskapelige databaser. I denne oppgaven utforsker vi om BERT kan
brukes til å løse dette problemet. BERT er en maskinlæringsmodell som ble publisert av
Google i 2018 og er basert på transformere. BERT har blitt forhåndstrent til å forstå naturlig
språk og har raskt blitt ledende inne språkforståelse.

For å bruke BERT for dokumentrangering, finjusterte vi modellen på MS MARCO,
Microsofts eget dokumentrangeringsdatasett. Den valgte modellen var en binær
klassifiseringsmodell som prøver å forutsi hvorvidt et dokument er relevant for
søketeksten eller ikke, og dermed lager en poengsum for hvert dokument. For at modellen
skal kunne ta inn dokumenter, ble hvert dokument delt opp i overlappende passasjer og
gjennomsnittsummen av alle passasjene ble satt som dokumentets poengsum.

Etter å ha testet modellen på 200 søketekster fra MS MARCO, viste resultatene våre at BERT
utkonkurrerer BM25 og forbedrer ytelsen med over 10%. Ytelsen korrelerer med antall
parametere og større modeller kan øke ytelsen ytterliggere. Eksperimentene våre viste
også at det å øke antall kandidatdokumenter ikke øker ytelsen.

Basert på funnene i denne masteroppgaven, konkluderer vi med at BERT er i stand til
å bruke sin språkforståelse til å finne relevans mellom søketekst og dokument, noe som
gjør den attraktiv for informasjonsgjenfinningssystemer. For å ta hånd om BERTs lave fart
er kunnskapsdestillasjon i stand til å både øke farten og forbedre ytelsen.

ii



Preface

This thesis marks the completion of my master’s degree in Industrial Mathematics at the
Norwegian University of Science and Technology (NTNU). The project was done at the
Department of Mathematical Sciences and supervised by Thiago Guerrera Martins.

I would like to thank my supervisor, Thiago, for suggesting the thesis subject and providing
guidance throughout the semester. All the help with the Vespa software was really
appreciated and I am grateful for you answering all my questions. I had no experience
with IR or NLP beforehand, so I have learned a lot from working on this project and found
the subject very interesting and challenging.

I would also like to thank the HPC group at NTNU for granting access to the Idun cluster
(Själander et al. 2019). The extra computation power was really useful and made it much
easier to train models. I would recommend it to other students at NTNU who plan to do a
project that needs some extra computing resources.

Øyvind Steensland
Trondheim, June 10, 2021

iii

https://www.hpc.ntnu.no/idun




Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background Theory 5
2.1 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Document Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Retrieval Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 WordPiece Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Sequence-to-sequence Models . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The Transfomer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Multi-Head Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



TABLE OF CONTENTS TABLE OF CONTENTS

2.4.4 Layer Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.5 A Game Changer within NLP . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 BERT Pre-Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.3 Other BERT-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Related Work 35
3.1 Using BERT for Text Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Beginning of the BERT Revolution . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Multi-Stage Rankers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Ranking Documents with BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Passage Score Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Passage Representation Aggregation . . . . . . . . . . . . . . . . . . . . 39

3.3 Knowledge Distillation For Ranking . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Method 43
4.1 Fine-tuning BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Model Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Training the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.3 Knowledge Distilled Models . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Document Ranking Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Evaluation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Experiments and Results 49
5.1 Experiment 1– Does it Work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Experiment 2 – Fine-tuning Procedure . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Experiment 2a – Which Parameters to Fine-Tune? . . . . . . . . . . . . 52
5.2.2 Experiment 2b – Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.3 Experiment 2c – Effect of Random Initialization . . . . . . . . . . . . . 54

5.3 Experiment 3 – Speed vs. Performance . . . . . . . . . . . . . . . . . . . . . . 55
5.3.1 Experiment 3a – Model Size . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.2 Experiment 3b – Number of Documents to Rank . . . . . . . . . . . . 56
5.3.3 Experiment 3c – Knowledge Distillation . . . . . . . . . . . . . . . . . . 57

6 Conclusion 59
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.1 Evaluation of Research Questions . . . . . . . . . . . . . . . . . . . . . 60
6.1.2 Improvement Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 63

vi



List of Tables

2.1 BERT Size and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Performance of BERT-based models on the Robust04 test collection. . . . . 40
3.2 Simplified TinyBERT Performance . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Hyperparamter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Results from fine-tuning all vs. task-specific parameters. . . . . . . . . . . . . 52
5.3 Ranking performance of models trained for 3 and 6 epochs. . . . . . . . . . . 53
5.4 Random Initalization Ranking Perfomance . . . . . . . . . . . . . . . . . . . . 54
5.5 Model Size Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Performance of Knowledge Distilled Models . . . . . . . . . . . . . . . . . . . 57

vii



List of Figures

2.1 Forward and Inverted Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Retrieve-and-Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Evaluation Metrics Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 FFNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 RNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Neural Networks Used in word2vec . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Encoder-Decoder Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 The Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9 The BERT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.10 Tokenization and Embedding in BERT . . . . . . . . . . . . . . . . . . . . . . . 28
2.11 The Transformer Encoder Used in BERT . . . . . . . . . . . . . . . . . . . . . 29

3.1 PARADE Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Ranking distributions of BM25, BERT-Max and BERT-Mean. . . . . . . . . . . 50
5.2 Training and evalution loss when training 3 and 6 epochs . . . . . . . . . . . 53
5.3 Random Initialization Evaluation Loss . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Ranking Performance for Varying Number of Candidate Documents . . . . . 56

viii



Chapter 1
Introduction

Text search applications are something most people rely on for their day-to-day activities.
Every time we search for something on Google, try to find a restaurant on Tripadvisor, or
find a Christmas gift on eBay, we are relying on fast and accurate search engines. Within
these applications, there is a complex machinery that works to give us back results that
satisfy our information need in the best possible way. But how does the system know
which documents, web pages or articles that are relevant for us?

To find answers to that question, artificial intelligence (AI) is a prominent place to look.
Natural language processing (NLP), the subfield within AI that deals with how computers
understand natural language, has made great advancements in the last decade with the
thriving success of deep learning (Eisenstein 2018, p. 47). Advancements in computation
power combined with increased amounts of data have facilitated the transition from
classical methods to more advanced machine learning models.

In October 2018, a newcomer with the name BERT entered the stage. BERT is a
Google-developed language model that has been pre-trained to understand human
language. Based on theory and methods from transfer learning, BERT can be fine-tuned
to solve a wide range of language-related tasks. It was created out of the Transformer
architecture, which is based solely on attention mechanisms and therefore introduces a
new way computers understand language (Devlin et al. 2019).

In this thesis, we explore how BERT can be used as a part of a text search application
and more specifically, document ranking. In the document ranking problem, we want to
retrieve a ranked list of documents based on the input of a user. The goal is to sort the
documents such that the documents that come first are the ones that meet the user’s need
the most.

1



1.1 Motivation Chapter 1. Introduction

1.1 Motivation

The main motivation to use BERT is based on the impressive success it has achieved
on numerous language understanding problems, outperforming many state-of-the-art
models. BERT outperforms all other models on all the problems in the General Language
Understanding Evaluation benchmark (GLUE) (Devlin et al. 2019). GLUE is a collection
of nine problems that is used to measure how models like BERT are able to understand
language. Given BERT’s proven language understanding, the goal is that it can be used to
rank documents by actually understanding how the user’s need relates to a document.

Based on this principle, BERT-based models were quickly adopted to ranking applications.
The results were yet again remarkable and BERT-based ranking models achieved
significant improvements compared to classical methods (Lin et al. 2020, p. 67). However,
there is still a lot of uncharted territory to explore, which motivates further research on the
topic.

The document ranking problem is a challenge within the field of information retrieval
(IR), which serves as the foundation behind all text search applications. By showing that
BERT works to rank documents, it suggests the use of BERT within other IR tasks, such as
question answering (QA) and information filtering for example. As a result, research on
the topic is also beneficial for purposes outside of the document ranking scope.

The use of BERT within document ranking is not limited to academic purposes. A year
after its publication, Google announced in a blog post how they are using BERT in their
search engines to improve user experience. With BERT, the search engine becomes better
at grasping subtle nuances in the search texts, which is one of the major drawbacks of
classical methods that match keywords.

1.2 Research Questions

The main objective in the thesis is to explore how BERT can be used for document
ranking. To break down the objective, we present the following research questions that
we aim to answer in the thesis. To find answers to the questions, we create our own
text search application and fine-tune our own BERT models before conducting several
experiments. All the details about the methodology are found in chapter 4.

Research Question 1 – How well do BERT-based document ranking models perform
compared to classical, well-used ranking methods?

This question is the most basic and creates the foundation for the subsequent questions.
When answering this question, we want to compare how our results line up with the
current findings on the topic. This lets us know that our setup is working and helps to
substantiate the results from the other experiments.

2
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Chapter 1. Introduction 1.3 Structure of Thesis

Research Question 2 – What are important factors when fine-tuning BERT for document
ranking?

An important part of the BERT methodology is how the model is fine-tuned to a specific
task. We therefore want to investigate how some factors from the fine-tuning impact the
performance.

Research Question 3 – How do factors that influence the speed of BERT impact the ranking
performance?

The biggest drawback with BERT is its slow inference speed. Knowing how we best can
balance speed and performance is therefore crucial for many ranking systems with limited
computational resources, as well as improving the user experience by returning search
results quickly.

1.3 Structure of Thesis

The thesis contains the following chapters:

• Chapter 2 – Background Theory:
This chapter presents all the background theory we need to understand the research
topic, the methods and models that were used in addition to anything else that is
needed to know to understand the rest of the thesis. The main focus is the BERT
model and theory from information retrieval.

• Chapter 3 – Related Work:
Here, recent work that has been done on the topic is described. This includes
different models and ideas that have been used to rank documents with BERT, as
well as the current ranking performances. The content of this chapter motivates
many of the choices made in the subsequent chapters and lets us compare our
results to the findings of similar research.

• Chapter 4 – Method:
A thorough presentation of the research methodology is given, including the way
data was collected, how the models were evaluated and some rationale for the
choices that were made.

• Chapter 5 – Experiments and Results:
In this chapter, all experiments which aim to answer the research questions are
presented and the associated results are shown. After each experiment, the results
are discussed.

• Chapter 6 – Conclusion and Future Work:
This chapter aims to wrap up the thesis, summarizing the main findings and how
they relate to the research questions and related research. Lastly, some thoughts
and ideas for future work are presented.

3





Chapter 2
Background Theory

The two main topics in the thesis are, as the title suggests, BERT and document ranking.

To fully understand them, we provide the essential background theory which becomes

important for the subsequent chapters. To understand the background theory, it is

assumed that the reader is familiar with core concepts from statistics and linear algebra.

The first part of the chapter is concerned with theory from information retrieval. We

explain how document ranking is done in practice and some classical methods are

presented. Metrics to evaluate information retrieval systems are presented, as well as

well-used datasets.

The rest of the chapter introduces the concepts that we need to know to understand

BERT. This includes machine learning and natural language processing, where previous

methods are introduced to motivate the creation of the Transformer. BERT was created

based on the concepts that the Transformer introduced and hence it plays a key role in

the revolution that has happened within NLP. We have therefore devoted an entire section

to explain the most important concepts from the Transformer model. The background

theory chapter culminates with the presentation of the BERT model.

5
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2.1 Information Retrieval

The main problem we are trying to solve in this thesis comes from information retrieval
(IR), which is a field within computer science. Manning et al. (2009) define information
retrieval as:

Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).

In other words, IR is the foundation upon which many text search applications and search
engines are built upon, and it is going to play a central role in this thesis.

2.1.1 Basic Terminology

We start by introducing some basic terminology (Manning et al. 2009):

• Term: A unique word or concept (for example ’New York’) that appears in a piece of
text. All the terms in a language make up a dictionary.

• Document: A piece of information we are retrieving. Examples are books, web pages
or research papers. We denote a document as D .

• Corpus: The set of all documents we are searching through to retrieve information.

• Query: Representation of the user’s information need.

• Relevance: A measure of how well a document satisfies the user’s need.

• Index: A data structure containing information about the corpus that allows for
increased search speed. The simplest index is the forward index, which is a list of all
the documents in the corpus, where each document contains a list of all the terms
it is made up of. Correspondingly, we have the inverted index, which is a list of all
the terms in the dictionary, and for each term there is a list of all documents that
contain the term, called a postings list. A visual representation of these indexes is
shown in figure 2.1.

Figure 2.1: A visualization of how a corpus can be stored in a forward and inverted index.

6



Chapter 2. Background Theory 2.1 Information Retrieval

2.1.2 Document Ranking

IR tries to solve many different problems, and in this thesis, we study the document
ranking problem, also called ad hoc retrieval. The challenge within document ranking is
to retrieve a list of documents based on the information need of the user, and then rank the
list such that the most relevant documents come first. This is a key concept within search
engines, and with the large increase of digital information available, a well-performing
and fast document ranking system is important.

Many applications used for document ranking, especially those who have implemented
BERT, use a retrieve-and-rank approach (Lin et al. 2020, p. 45). In this approach, we first
do a search to find candidate documents, using a fast and simple method, which is called
the retrieval phase. We then apply one or more expensive ranking models to the candidate
documents, giving us a ranked list as output. We refer to this as the ranking phase. This is
the phase we focus on in this thesis.

The main reason for splitting the search in two is simple – drastically reduce search
time. Ranking documents is time consuming, so we want to restrict this phase to as few
documents as possible. However, it is also important that the relevant documents are
among the candidate documents, so the retrieval method cannot be too restrictive either.
The number of retrieved documents and the quality of the retrieval method are therefore
key to balancing ranking performance and search time.

Figure 2.2: The retrieve-and-rank approach used for document ranking

7



2.1 Information Retrieval Chapter 2. Background Theory

2.1.3 Retrieval Methods

In this thesis, we focus on the ranking phase, but having some insight into how the
retrieval is done is still relevant. We therefore present some classical retrieval methods.

Boolean Retrieval

The earliest and simplest method is probably the boolean retrieval model. This method
makes use of boolean logic and the associated operators AND, OR and NOT. Using
these, users can create boolean queries, which puts restrictions on which documents
we want to retrieve. Examples of such queries are "England AND Football", retrieving
all documents containing both the terms England and football or "Football OR Soccer",
where documents containing either term are retrieved (Manning et al. 2009, p. 4-13).

The biggest advantage of the model is that the implementation and runtime are very fast.
The method makes use of the inverted index and retrieves the postings lists of all the terms
in the query. If there is an OR operator between two terms, we take the union of the two
lists and the intersection in the case of an AND operator. If we see a NOT operator, we
simply remove all documents containing the term.

On the other hand, the method requires a good boolean query to work well, and it does
not retrieve any partial matches. We usually want the model to work on free-text queries,
which are the type of queries we will have to consider for a general-purpose text search
application. We therefore define the following boolean retrieval models which can be used
on free-text queries:

• OR model: retrieve every document that contains at least one query term (i.e. an
OR operator between every term)

• AND model: retrieve every document that contains all the query terms (i.e. an AND
operator between every term)

If the query is long or if it contains common words, we would risk matching too many
documents by using OR. This could be mitigated by the inclusion of stop words (words
like "a" and "the"), but the number of matches will still be quite big. On the other hand,
AND would, more often than not, be too restrictive and we risk not matching enough
documents. For both methods, an increasing query length would further contribute to
these disadvantages.

Vector Space Model

The vector space model was created to deal with the shortcomings of the boolean model.
Firstly, it calculates a relevance score for each document, which means that we can choose
how many documents we want to retrieve (we could also use this score to rank the
documents, but we often want to use a more complex model for this). Secondly, it works
well with free-text queries (Datta 2010).

8



Chapter 2. Background Theory 2.1 Information Retrieval

The key idea in the model is to look at documents as vectors, where a document D j is
represented as

D j =
[
w1 j , w2 j , . . . , wt j

]
,

where t is the number of terms in the dictionary. Unlike the boolean model, the vector
elements are not binary but given a weight. This extracts more information about the
document, giving a more nuanced picture. The vector space model is a bag-of-words
method, meaning that the order of the terms does not matter. Note that this means two
different documents could end up having the same vector representation, which could be
problematic.

The most common way to calculate the term weights is to use a td-idf measure. It is given
as the product between the term frequence (tf) and the inverse document frequency (idf).
Term frequency is simply the number of times a term appears in a document. We denote
this as T F (i ,D) for a term i and document D . Therefore, if a document contains many
instances of a term, it is likely that the document has something to do with that term.

On the other hand, we do not want to weigh common words high. Words that appear in
almost all documents, like "the" or "a", carry very little meaning and we want to reduce
the impact they have. This is done by considering the inverse document frequency, which
in its simplest form is written as:

I DF (i ) = log
N

ni
,

where N is the total number of documents and ni is the number of documents containing
the term i . As we will see later, there exist other ways to formulate the expression, but they
all achieve the same objective.

Put together, the tf-idf measure values terms that appear often in a document, but that
is not contained in many other documents. In other words, it is a simple way to extract
information about what a document is really about.

In the same way as the documents, the query is also converted into a vector, denoted
q. The vector space model uses the query and document vectors to find how relevant a
document is to a query by calculating their similarity. The standard similarity metric is
the cosine similarity, which we write as

sim(q,D) = q ·D

‖q‖2‖D‖2
∈ [0,1]. (2.1)

In other words, it is the cosine of the angle between the two vectors, where closer to 1
means more similar. After having calculated the similarity between the query and all the
documents, we can retrieve the top K documents.
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BM25

Similar to the vector space model is the BM25 ranking function, BM meaning "best
matching". It is also a bag-of-words model and can be used both to retrieve documents
and it also works well as an initial ranking model. It was created as a part of the
probabilistic relevance framework by Stephen Robertson et. al in the 1970-1980s, which
deals with trying to estimate the probability of a document being relevant (Robertson &
Zaragoza 2009).

The formula for calculating the BM25 relevance score is normally written as

B M25(q,D) = ∑
qi∈D

I DF (qi )
T F (qi ,D) · (k1 +1)

T F (qi ,D)+k1(1−b +b · |D|
avdl )

, (2.2)

where q is the query containing the terms q1, . . . , qn . The different components of the
function are:

• The IDF is written in a little bit different form as previously, now formulated as

I DF (qi ) = ln
(
1+ N −n(qi )+0.5

n(qi )+0.5

)
.

The reason for the change of the formula is to ensure that we do not divide by 0 or
take the logarithm of 0.

• B = 1 − b + b · |D|
avdl is called soft length normalization, and it ensures that long

documents do not get unreasonably high scores. Here, |D| is the length of D in
number of terms, while avdl is the average length of all the documents. b ∈ [0,1]
is a parameter that adjusts how much the length of the document is compensated
for, where b = 0 switches compensation off, and b = 1 performs full length
normalization. Typical values are b ∈ (0.5,0.8).

• k1 is a tuning parameter that adjusts the importance of the term frequency. The
higher this value is, the more influential the term frequency is. Typical values are
k1 ∈ (1.2,2).

As we see, the formula is an extension of the tf-idf weighting measure. However, that
formula would favor long documents, so we therefore try to mitigate this effect by using
soft length normalization. Secondly, BM25 also allows us to control how much we
want the term frequency to influence the score. These two features result in BM25
outperforming the vector space model (Datta 2010, p.22).
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2.1.4 Evaluation Metrics

When making an information retrieval system, it is essential to have metrics to evaluate
the models. The metrics also have to allow us to separately evaluate each part of the
system. Having good metrics allows us to compare different setups, architectures and
methods, which is important for the group developing a system.

For each test query, we consider a ranked list containing R elements, and average over
many queries to get a complete evaluation of a model (thus adding an M in front of the
metric). Additionally, we often want to evaluate the metric at a specific cutoff, k ≤ R, and
the metric obtained at that cutoff is denoted by Metric@k (Lin et al. 2020, Manning et al.
2009).

Precision and Recall

We start off with the two simplest metrics, precision and recall, which are defined by

Precision = #
(
retrieved relevant documents

)
#
(
retrieved documents

) = P
(
relevant | retrieved

)
(2.3)

Recall = #
(
retrieved relevant documents

)
#
(
relevant documents

) = P
(
retrieved | relevant

)
(2.4)

Together, precision and recall are simple metrics to use and easy to interpret. A good
model should be able to achieve both good recall and precision, but these metrics often
trade off against each other. If you want to achieve high recall, you can increase the
number of retrieved documents, but this also means reducing precision. Often, whether
to prioritize one over the other depends on the application of the model.

Precision and recall do not take the order of the documents into account. To evaluate how
good a model is at doing ranking, we need metrics that take the order into consideration.

Average Precision

We can still make use of the precision and recall values and combine them, which is what
we do when we calcuate average precision (AP). Average precision is calculated as

AP =
∑R

i=1 Precision@i · rel(i )

#
(
relevant documents

) , (2.5)

where rel(i ) is an indicator function with value 1 if the document at position i is relevant,
and 0 else. Note that the denominator is the total number of relevant documents,
including those that are not among the top R documents.

The name average precision comes from the fact that we average the precision values at all
recall levels. Hence, it captures the aspects of both precision and recall in a single metric.
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Reciprocal Rank

Another ranking metric is the reciprocal rank (RR). We calculate it as

RR = 1

ranki
, (2.6)

where ranki is the rank of the best ranked, relevant document. If no relevant documents
are retrieved, RR is 0.

As opposed to AP, RR only takes the best ranked, relevant document into account. This
makes it suitable for cases when we only have one relevant document, or when we
primarily care about the best document. In the case of only one relevant document, the
two coincide.

Normalized Discounted Cumulative Gain

Both AP and RR consider the case of binary relevance, where documents are considered
relevant or not relevant to a query. However, in many cases, we have graded relevance,
and this is where we can make use of normalized discounted cumulative gain (nDCG). In
order to define it, we first introduce the discounted cumulative gain (DCG)

DCG =
R∑

i=1

reli

log2(i +1)
, (2.7)

where reli is the relevance level of the document at position i . Alternatively, in many
implementations the numerator is changed to 2reli − 1, which puts a stronger emphasis
on retrieving the most relevant documents. The two formulas coincide in the binary case.

Using DCG, we calculate the normalized DCG as

nDCG = DCG

IDCG
, (2.8)

where IDCG is the DCG we get when the list is sorted in the best possible way.

• AP@10 = 1
5 (0.5 + 0.5 +

0.6+0.57+0.5) = 0.534

• RR@10 = 1
2

• nDCG@10 = 0.702

Figure 2.3: Example of how the different metrics are calculated
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2.1.5 Datasets

Datasets are also an essential part of creating text search applications and models to solve
the document ranking problem. They are important in the development of a model,
especially to train a supervised machine learning model, but also to test the performance
of a model against other models.

MS MARCO

The MicroSoft MAchine Reading COmprehension (MS MARCO) dataset collection was
released in 2016, and quickly became popular. The collection contains several datasets,
which can be used for related tasks such as passage ranking or question answering, but in
our case, we only care about the document ranking dataset (Bajaj et al. 2018).

MS MARCO was specifically designed for deep learning purposes and is therefore of
special interest to us. The huge size of the dataset makes it suitable to use to train large
language models like BERT. The training dataset contains 3.2 million documents and
367013 queries, where each query has one relevant document, with a binary relevance
judgment. It also contains 5793 test queries, where the relevant document is not given,
which is used to create a leaderboard of the best models. At the moment of writing, many
BERT-based models are to be seen among the top positions of the leaderboard.

The queries have been sampled from Bing search queries, and the relevant documents
have been chosen by a human editor. Using this approach, the queries are as "natural" as
possible, reflecting the type of queries we expect the model to be used on. It also reflects
the distribution of the information need of users.

TREC Datasets

The Text Retrieval Conference (TREC) is a conference within IR that focuses on specific
research areas, called tracks. In this regard, they also offer valuable datasets that
researchers can use. The MS MARCO dataset collection was a part of the 2019 Deep
Learning track for example.

A well-studied track is the Robust track, which focuses on creating retrieval systems that
work across many different query topics. The track presents the Robust04 test collection,
which is used as a benchmark to compare a lot of different document ranking models.
The collection contains 249 test queries and a corpus with 528000 documents, containing
high-quality relevance judgments which makes it as natural as possible (Lin et al. 2020, p.
34).

If we want to develop applications to be used on the internet, there are several web test
collections available. For example, the ClueWeb09 dataset contains over a billion web
pages and is used for large-scale search engines. The GOV2 test collection is also used to
evaluate models, containing 25 million documents.
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2.2 Machine Learning

Machine learning (ML) is a branch of artificial intelligence that uses statistical methods
to find complex patterns in large amounts of data. This way, an ML model is able to
generalize and make predictions about data it has not seen before. Machine learning
is very applicable and is today used to solve many problems, such as object detection,
speech recognition and fraud detection (Goodfellow et al. 2016, p. 96).

We can divide ML into two main branches – supervised and unsupervised learning.
Supervised learning deals with models and algorithms where the data we have available
is labeled, i.e. we know what the correct output for a given input is. In unsupervised
learning, on the other hand, we are only given the input, and these tasks are therefore
harder. Furthermore, we can divide models based on the type of data we are outputting.
If we are dealing with continuous data, we call it regression, and in the case of categorical
data (data which is separated into groups), we refer to it as classification. In this thesis, we
will be working with classification using supervised learning.

Common for almost all ML algorithms is training, which refers to the process where we fit
the model to our data by adjusting the model parameters. A central part of the training
is data, which is typically divided into three sets. The majority of the data (typically
60-80%) is used to optimize the model and is called the training set. Some of the data
(10-20%) is used as a validation set, which we can use to see how well the model is able to
generalize and work on unseen data. This set can also be used to adjust hyperparameters,
which are the parameters that the programmer manually sets (i.e. not learned by the
model/algorithm). Lastly, the final part of the data is used to create a test set (10-20%),
which is used to compare the performances of different models against each other.

2.2.1 Transfer Learning

Huge language models, such as BERT, are based on theory from transfer learning. Transfer
learning means that we develop a model to solve a problem, and then use the knowledge
gained to solve a different, related problem (Goodfellow et al. 2016, p. 534). This mimics
the way humans learn, as we are able to generalize knowledge well. For example, knowing
how to drive a car makes it much easier to learn how to ride a motorcycle. Analogously, it
is much easier to train a machine learning model to detect cats in an image, if it is already
good at detecting dogs.

For language models, this means dividing the training phase into two parts – pre-training
and fine-tuning. In the pre-training phase, the model is trained on large amounts of data,
with the goal of it being good at understanding natural language, such as grammar or the
semantic meaning of words and sentences. Using the pre-trained model, we can fine-tune
it with domain-specific data to solve a wide range of language-related problems. Using
this approach, the training times are drastically reduced, as fine-tuning is usually quick.
For BERT, pre-training took Google 4 days, while fine-tuning the model usually takes just
a few hours (Devlin et al. 2019).
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2.2.2 Feedforward Neural Networks

The machine learning models we are working with in this thesis are artificial neural
networks. They come in many variants and together they make up the branch of machine
learning called deep learning. They are used to mimic the way the human brain learns,
with neurons that are connected. We begin by going into feedforward neural networks
(FFNN), which are the vanilla neural networks. Often, FFNNs are used together with other
types of neural networks to create a larger model (Goodfellow et al. 2016, p. 164).

Model Architecture

The basic building blocks of a neural network are the neurons, which contain a numerical
value called an activation. They are ordered in a layered structure, where every neuron in
each layer is connected to every neuron on the next layer (except for the last layer). This
way, the information flows from the first to the last layer, hence the name feedforward
neural network. There are no connections between neurons within a layer.

There are three types of layers – input, hidden and output layer. We can have many
hidden layers, and the number of layers in the network is called the network’s depth. The
connections between the neurons are called weights, which is a numerical value that tells
how strongly connected those neurons are. Also associated with a neuron is a bias, which
is a value that tells us how impactful that neuron is in the entire network. Below is a
graphical visualization of the network.

Figure 2.4: The architecture of a feedforward neural network
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Mathematically, the FFNN is nothing more than a function F that takes in a vector x and
returns a vector y = F (x). To understand how the output is calculated, we introduce the
following notation:

• l = 1,2, . . . ,L denotes the different layers in the model, each containing nl neurons

• w l
j k : weight for the connection from the k-th neuron in layer l−1 to the j -th neuron

in layer l

W l ∈Rnl×nl−1 is a matrix for all weights in layer l = 2, . . . ,L

• bl
j : bias of the j -th neuron in layer l

bl ∈Rnl is vector for all biases in layer l = 2, . . . ,L

• al are the activations for all the nodes in layer l . Here we let a1 = x and aL = y

The activation of a neuron is based on all the neurons in the previous layer in the following
way

al
j =σl

(
nl−1∑
k=1

w l
j k al−1

k +bl
j

)
⇒ al =σl

(
W l al−1 +bl

)
. (2.9)

The functionσl (·) is known as an activation function, which acts elementwise. Its purpose
is to introduce nonlinearity to the model, which makes the model more flexible towards
nonlinear data. Without it, the network is just a series of affine transformations. For the
hidden layers the ReLU (Rectified Linear Unit) is popular, given as

σ(xi ) = max(0,xi ). (2.10)

Another very important activation function is the softmax function

σ(xi ) = exi∑n
j=1 ex j

∈ [0,1]. (2.11)

It is very useful, because
∑n

j=1σ(x j ) = 1, which means that the output can be viewed as a
probability distribution. It is therefore normal to use it as the activation function for the
output layer when doing classification.

Putting everything together, the entire neural network can be summed up in one equation

F (x) =σL
(
W LσL−1

(
W L−1σL−2

(
...σ2

(
W 2x+b2) ...

)+bL−1)+bL)= y. (2.12)

16



Chapter 2. Background Theory 2.2 Machine Learning

Training a Neural Network

The training of a neural network is done by solving a minimization problem, where the
weights and biases are the parameters we are optimizing. The function we are minimizing
is called a loss function (also called objective or cost function), which we denote L. A
simple loss function used in regression is the mean squared error (MSE), which for training
samples xi , i = 1,2, . . . ,n and correct values yi , i = 1,2, . . . ,n is given as

LMSE = 1

n

n∑
i=1

‖F (xi )−yi‖2
2. (2.13)

If we are doing classification, the cross-entropy loss is often used. It requires that the output
of the network forms a probability distribution, hence it is often used in conjunction
with the softmax function. If the number of classes is C , let p j denote the predicted
probability that a sample belongs to class j and y j ∈ {0,1} be the ground truth label. Then
the cross-entropy loss for a single sample takes the following form

LCE =−
C∑

j=1
y j log(p j ), (2.14)

in which we average the loss over all training samples.

To solve the optimization problem, we use gradient descent, an iterative minimization
technique (Goodfellow et al. 2016, p. 80-84). The idea behind the method is simple
– calculate the gradient of the loss function at the point we are currently at, which
is the direction of steepest ascent, and move a small step in the opposite direction.
Mathematically, we write this as

θk = θk−1 −µk∇θL, (2.15)

where θk represents all the weights and biases at time step k. The calculation of the
gradient is done by a technique called backpropagation. We do not go into the details, but
put simply it involves calculating the gradient at the end of the network and propagating
the derivatives of the parameters backward using the chain rule.

Above, µ is the learning rate, a positive scalar determining the step length. A too large
learning rate will often result in us overshooting the minimum and the loss increasing. In
contrast, choosing it too low will result in slow convergence. The learning rate is therefore
often shortened as the training progresses, to find a balance.

Trying to take every training sample into account when doing gradient descent can be very
time consuming. Instead, we use stochastic gradient descent (SGD), in which we randomly
divide the training set into smaller batches, and approximate the gradient as an average of
the samples in each batch. The number of samples in each batch is called the batch size
and an iteration over all the batches is called an epoch, both of which are hyperparameters.
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2.2.3 Recurrent Neural Networks

Most of the data we are working with is textual data, like sentences or documents.
Recurrent neural networks (RNN) are a family of neural networks that are used for
handling sequential data as input. They were the forerunners for the models we use in
this thesis, and by understanding the basics of RNNs, we are better able to understand the
motivation behind the Transformer framework, which is presented later.

The difference between a normal FFNN and an RNN is the use of recurrence. In an RNN,
the hidden state depends on the hidden state calculated before. The hidden state is just
the activations of all the hidden layers, denoted ht for time step t . In other words, the
activation of a neuron is fed back to itself in each iteration. If we denote the input as
a sequence of vectors

{
xt

}T
t=1 = (

x1,x2, . . . ,xT
)

, we can express the recurrence with the
following relation:

ht =σ
(
ht−1,xt ;θ

)
. (2.16)

After having processed the entire sequence, the final hidden state can be viewed as a
summary of the entire sequence (Goodfellow et al. 2016, p. 367-374). Figure 2.5 shows
how a simple RNN with one hidden layer looks like.

A considerable downside with RNNs is that they suffer from short-term memory. As we
process a sequence, the hidden state is predominantly affected by the recently processed
elements, while the earliest elements become "forgotten". This is a result of vanishing
or exploding gradients, a common problem within deep learning. Trying to combat this
issue, long short-term memory (LSTM) and gated recurrent units (GRU) were created,
which we will not go further into.

Figure 2.5: A simple RNN with one hidden layer. The circles represent layers, and the W s are
weight matrices. On the left is the compact recurrent form, and on the right is the unfolded
representation.
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2.3 Natural Language Processing

Natural language processing (NLP) is a subfield within computer science that revolves
around computers being able to understand human language. It is the intersection
between linguistics and artificial intelligence and has made huge progress with the
introduction of neural networks. The subject also includes language models (LM), which
are models that predict the probability distribution to a sequence of words. This can
be used to solve many challenges within NLP, like machine translation and speech
recognition (Eisenstein 2018, p. 1, 125). BERT is an example of such a language model,
which means that these topics are central in this thesis.

2.3.1 WordPiece Tokenization

BERT uses a technique called WordPiece tokenization to create a vocabulary of possible
inputs (Wu et al. 2016). Tokenization is the process of chopping up sentences into a
sequence of smaller units called tokens. Tokens are usually words, but can also be smaller
pieces of text that are meaningful for processing (Manning et al. 2009, p. 22).

In the WordPiece model, a vocabulary is created by breaking some words into sub-words,
which can be syllables or individual characters. This is primarily done on more
uncommon words, and the vocabulary therefore contains both entire words and
sub-words. Below is an example that illustrates how this may look.

• Input Sentence: Example of WordPiece tokenization

• List of Tokens: [ example, of , word , ##piece , token , ##ization ]

The ## symbol tells us that the token is not at the start of a word, which means we can
recover the original sentence without ambiguity.

The construction of the vocabulary is entirely data-driven using a greedy algorithm.
Initially, the vocabulary only contains individual characters. After looking at a corpus of
text, the model finds which merging of two tokens is most likely to appear in the corpus.
We continue this process until the vocabulary has reached its desired, pre-specified size.

Two major benefits of using WordPiece tokenization are that you can restrict the
vocabulary to a reasonable size and we don’t run into the problem of processing words
we haven’t seen before, because we can decompose them into known sub-words.
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2.3.2 Word Embedding

A key challenge within NLP is to extract meaning from text. It is difficult for a computer to
know what a word means and how it relates to its context, just by looking at the sequence
of characters it is made up from. This is where we can make use of word embedding.

Word embedding means that we take a word and embed it into a high-dimensional vector
space of pre-defined size. The embedding space usually has a few hundred dimensions,
but this may vary. The goal is that words with similar meanings also have vectors that are
similar. Having the words represented as vectors allow the computer to use mathematical
operations to show relationships between words, like addition or dot product. However,
more importantly, we can use the vectors as a part of a neural network, which is what
we are going to need them for later. The size of the embedding space is also much
smaller than the number of words in the dictionary, meaning that we drastically reduce
the number of dimensions, and therefore also reducing the computation times (Eisenstein
2018, p. 327-341).

There exist many different ways to create word embeddings, but nowadays neural
networks have become increasingly more popular. To explain how these models work,
we can use word2vec as an example (Mikolov et al. 2013). In the word2vec model, the
creators propose two shallow neural networks, called Continuous-Bag-of-Words (CBOW)
and Skip-gram, to learn these embeddings. In CBOW, we are given a sentence where the
middle word is removed, and the goal is to predict what this word is. Skip-gram works
the other way, where we are given one word, trying to predict what the surrounding words
are. The input words are represented as one-hot encoded vectors, and the networks only
have one hidden layer. The structures of these networks are shown in figure 2.6. After
training the networks on huge amounts of text, the weights in the hidden layer represent
the word embeddings, where each row in the weight matrix corresponds to one word
in the dictionary. In both CBOW and Skip-gram we make use of the context the words
are in, and the model is therefore able to understand meaningful relationships between
words. A famous example that showcases this, is that when you calculate vec("ki ng ")−
vec("man")+ vec("woman"), the resulting vector is very close to vec("queen").

Figure 2.6: The neural networks used to learn word embeddings in the word2vec model.
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2.3.3 Sequence-to-sequence Models

Many neural language models belong to the class of sequence-to-sequence models
(seq2seq). Seq2seq models are machine learning models that use an input sequence{

xt
}Tx

t=1 and generates a sequence
{

yt
}Ty

t=1 as output (Sutskever et al. 2014). In this context,
we only consider sequences of words.

Common for many of these models is the encoder-decoder framework, as proposed by Cho
et al. (2014), illustrated in figure 2.7. By splitting the model into two parts, we allow the
input and output sequences to have different lengths. Both the encoder and decoder are
RNNs (or LSTMs), and are trained jointly.

The first half of the framework is the encoder. It uses the input sequence to create a single,
fixed-length vector c, called the context. It is given by c = he

Tx
, which is a summary of the

input sequence. Here, he
t is the hidden state at time step t in the encoder (and likewise hd

t

for the decoder).

The context vector is then used by the decoder to generate the output sequence. We
predict each output sequence element based on a conditional probability given the
previously generated elements and the context. We write this as

P
(
yt |y1,y2, . . . ,yt−1,c

)= g
(
hd

t ,yt−1,c
)

(2.17)

hd
t = f

(
hd

t−1,yt−1,c
)
. (2.18)

Here, f is an activation function and g is a function that produces a probability
distribution over all possible sequence elements, typically the softmax function. We
choose the element with the highest probability and stop generating new elements when
the end-of-sequence symbol is generated (Cho et al. 2014).

Figure 2.7: Encoder-Decoder Architecture
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2.3.4 Attention

A large drawback with the seq2seq model as described above is its ability to deal with long
sequences. By using RNNs, we run into the problem of short-term memory, even though
this could be mitigated by using LSTMs or GRUs. The elements that were processed last
affect the context the most, which is is problematic if the last elements are not relevant.
The context is also not able to pick up relations between the first and the last elements. In
addition, trying to squeeze all the information about a long sequence into a single vector
is often not sufficient to be able to predict a good output sequence.

To fix this issue, the attention mechanism was added to the model, first proposed by
Bahdanau et al. (2015). Instead of feeding only the last hidden state to the decoder, we give
it all the hidden states that were produced by the encoder. The idea is that he

t corresponds
to xt , which means that all input elements are equally important. Using this idea, the
short-term memory issue is removed.

With the new approach, a new context vector ct is created for each time step t in the
decoder. The context vector is now calculated as a weighted sum of all the received hidden
states

ct =
Tx∑

s=1
αt s he

s (2.19)

The weights are calculated as follows

αt s =
exp

(
et s

)∑Tx

k=1 exp
(
etk

) , et s = a
(
hd

t−1,he
s

)
. (2.20)

a is an alignment model, i.e. a model that estimates how much output elements around
position t match input elements around position s. The creators, Bahdanau et al. (2015),
use a feed-forward neural network as their alignment model, which is trained together
with the rest of the model. After having calculated ct , hd

t and ct is concatenated and fed
into a final FFNN to predict output element yt .

The alignment model is a key concept behind the attention mechanism. By learning to
align output elements with input elements, the decoder can decide which elements it
wants to "pay attention to", for each output element it predicts. Additionally, by using all
the encoder’s hidden states, more of the information from the input sequence is available
to the decoder, compared to compressing all the information into a single context vector.
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2.4 The Transfomer

Based on the concept of attention, the Transformer was created by Vaswani et al. (2017),
first presented in their famous research paper "Attention Is All You Need". A lot of the
recent language models, like BERT for instance, are based on ideas and innovations
presented in that paper. Transformer-based models have rapidly become dominant
within NLP (Wolf et al. 2020), and we have therefore devoted an entire section to the
Transformer. We do not go into all the details about the transformer model here, but
present some of the innovations from the paper that are useful.

2.4.1 Self-Attention

The Transformer, like many other seq2seq models, consists of encoders and decoders, but
instead of using RNNs to extract information, they rely on self-attention. Self-attention is
similar to the attention mechanism already discussed, but instead of aligning elements of
two different sequences, we align a sequence with itself, hence the name. Using this idea,
we can, for example, connect words in a sentence to each other, without caring about
where in the sentence the words appear. Vaswani et al. (2017) showed that this concept
on its own was powerful enough to be useful, thus explaining the name of the research
paper.

Instead of using attention between the encoder and decoder, self-attention is a built-in
layer of the encoder and decoder. The Transformer consists of several encoders and
decoders stacked on top of each other, thus extracting more information about the
sequences. Each decoder receives data from the last encoder, and the first decoder
also receives the parts of the output sequence already generated. An overview of the
Transformer architecture is shown below.

Figure 2.8: The Transformer Architecture
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To fully understand how self-attention works, we need to dive into the underlying
mathematics. As input to the self-attention layer, we use a sequence

{
xt

}T
t=1 =(

x1,x2, . . . ,xT
)
, xt ∈ Rdm (not the same as the input sequence to the model). For each

element xt , we calculate a query vector (not to be confused with a query in an IR setting)
qt ∈ Rdk , a key vector kt ∈ Rdk and a value vector vt ∈ Rdv . These vectors are found by
linearly transforming the input as follows

qt =W Q xt , W Q ∈Rdk×dm (2.21)

kt =W K xt , W K ∈Rdk×dm (2.22)

vt =W V xt , W V ∈Rdv ,×dm (2.23)

where the weight matrices W Q ,W K and W V are learned.

Using these vectors, we are able to calculate the output of the self-attention layer. The
output is given as

zt =
T∑

s=1
αt s vt , t = 1,2, . . . ,T (2.24)

where

αt s =
exp

(
et s

)∑T
i=1 exp

(
et i

) , et s =
q>

t ks√
dk

(2.25)

We see that this is analogous to 2.20, where we now use a scaled dot product as alignment
model. The scaling factor 1p

dk
is there to prevent the dot product from growing too large

in magnitude, i.e. pushing the softmax function into regions where its gradient is small
and the learning is slower.

In practice, all the outputs are computed simultaneously by making use of matrices. By
letting the query, key and value vectors be the rows of matrices Q,K and V , respectively,
we can compute the output of a self-attention layer in the following compact form

Self-Attention(Q,K ,V ) = softmax
(QK >√

dk

)
V. (2.26)
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2.4.2 Multi-Head Attention

Using self-attention, the model is able to understand relevance between different
elements of a sequence. However, there may be many types of relevance relations between
elements, and to address these relations, the Transformer makes use of multi-head
attention.

Instead of only projecting the input to a single instance of query, key and value vectors,
multi-head attention does this h times. Each instance of self-attention is called an
attention head, and have their own learned weight matrices, W Q

i ,W K
i ,W V

i , i = 1,2, . . . ,h,
all initialized randomly. After calculating self-attention h times in parallel, the outputs are
concatenated and projected using a learned matrix W O ∈Rhdv×dm . We write this as

MultiHead
({

x
}T

t=1

)= Concat
(
head1, . . . ,headh

)
W O , (2.27)

where headi = Self-Attention
(
W Q

i X >,W K
i X >,W O

I X >)
. (2.28)

Above X = [
x1, . . . ,xT

]>, i.e. a matrix where the rows are the input sequence vectors. By
using several attention heads, the model now has multiple representation subspaces to
embed meaning into. It also increases the number of parameters in the model, making it
bigger and more flexible.

2.4.3 Positional Encoding

In the multihead-attention mechanism described above, the order of the sequence
elements is irrelevant and hence the model does not have any sense of position. However,
the order may be of importance and therefore more information could be extracted. To fix
this, the Transformer makes use of positional encodings.

Positional encodings are added to the input or the already generated output sequence,
before they enter the first encoder or decoder. To positional encoding is given by

PE(t , i ) =
 si n

(
t/100002i /dm

)
if i even

cos
(
t/100002i /dm

)
if i odd.

(2.29)

t is the position of the element in the input sequence, and i refers to the i -th element in
the vector. By using this combination of sines and cosines, we can calculate PE(t +k, i )
as a linear function of PE(t , i ) for a fixed k. As a result, the creators hypothesize that the
model easily learns relative positions, which is exactly what we want.
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2.4.4 Layer Normalization

To speed up training, the model makes use of layer normalization, introduced by Ba et al.
(2016). This means that for each hidden layer in the model, we normalize each activation
by subtracting the mean and divide by the standard deviation of the activations in the
layer. This is done on both the self-attention layers and the hidden layers of the FFNNs.

Layer normalization helps speed up training in two ways. First, since the distributions of
activations now are very similar for each training sample, it becomes easier to optimize
the weights in the model. Secondly, it helps to deal with the vanishing/exploding gradient
problem, because it becomes easier to tune the hyperparameters, especially the learning
rate, to avoid running into areas where the gradients vanish or explode.

2.4.5 A Game Changer within NLP

The Transformer has become a game changer within the world of NLP, outperforming
its predecessors on a wide range of language-related tasks (Wolf et al. 2020). Since the
Transformer does not rely on any form of recurrence, a much larger amount of the
computations to be carried out in parallel, vastly reducing the time it takes to train the
model. Combining this with its ability to handle long sequences due to the self-attention
mechanism, means that it deals with the two major problems of RNN-based models,
namely slow training times and short-term memory.

Reducing the time it takes to train the model means that one can increase the number of
parameters in the model, further increasing its performance. This has laid the foundation
for bigger and better models, like Google’s BERT and OpenAI’s GPT model. Since these
models are open-source, they have rapidly become the most popular language models to
use (Wolf et al. 2020).
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2.5 BERT

One year after the Transformer was published, a new language model called BERT
was presented by Google and their team lead by Devlin et al. (2019). BERT stands
for Bidirectional Encoder Representations from Transformers, and uses many of the
innovations the Transformer brought to the table. Later, several other models have been
built based on BERT, which we briefly look at in the end.

In this section, we present the pre-trained BERT model, showing its architecture and how
it was pre-trained. The theory presented so far should equip us with all the knowledge and
tools to fully understand the model. This model can be modified to solve a wide range of
language-related tasks, by adding customized output layers on top. The pre-trained model
is the foundation of a lot of the subsequent work in this thesis and it is the culmination of
the entire background theory chapter.

2.5.1 Model Architecture

Figure 2.9 shows the architecture of the pre-trained BERT model. BERT is available in
different sizes, where the two described in the paper are BERT-Base and BERT-Large.
The architecture of these are identical, and the only difference is the size and number of
parameters. All the sizes, dimensions and number of parameters for the two main BERT
models are presented later.

Figure 2.9: The BERT Architecture
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Input, Tokenization and Embedding

BERT can use both one or two sentences as input, where a sentence refers to a contiguous
span of text, and not necessarily a linguistic sentence only. We refer to the first sentence
as A and the second as B. Having the option of using one or two sentences, BERT can be
used to solve a wider range of language tasks. This is especially useful for us, trying to use
BERT for document ranking.

The input sentences are divided into a sequence of tokens using WordPiece tokenization
with a vocabulary containing 30000 tokens. Some of the tokens have a special purpose
and need to be further explained:

• [CLS] - used to do sequence classification tasks

• [SEP] - used to separate the two input sequences (if there are two)

• [PAD] - if the input sentences are shorter than the maximum length, we use this
token to fill out the remaining sequence elements

• [UNK] - used if we find text that is not in the vocabulary, for example, a special
character

All the tokens in the vocabulary have a learned embedding, each with dm dimensions.
Added to the token embedding vectors are learned positional encodings and segment
embeddings, which correspond to the tokens belonging to the first or second sentence.

The final result from the tokenization and embedding process, is a sequence of fixed
length X = (

x0, . . . ,xT−1
)
, usually of size 128, 256 or 512 (max).

Figure 2.10: Tokenization and Embedding in BERT
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Figure 2.11: The Transformer Encoder Used in BERT

The Transformer Encoders

The transformer encoders are the most important part of the BERT model, which are
entirely based on the work of Vaswani et al. (2017). BERT uses several of these stacked
on top of each other, allowing the model to extract a lot of information about the input
sequence. Every encoder is identical in size. Figure 2.11 shows the components of one
such encoder.

First, the input sequence of the encoder is fed through a multi-head attention layer, as
described earlier. The dimensions in the query, key and value matrices are equal, denoted
dk , and the number of attention heads is chosen such that the output of the attention
layer has the same size as the input.

Residual connections are used in the encoder, which means that the input and output
of the layer are added. This allows the model to retain the original information longer,
including the positional encodings. After the addition, layer normalization is applied.
These actions are illustrated by the "Add & Norm" block in the figure.

The information gained in the attention layer is pushed through a small FFNN, which
is there to process the attention vector into a form that is easier to handle by the next
encoder. The attention vectors are processed one at a time using the same weights, which
means that these computations can be parallelized. The FFNN consists of two linear
transformations with a ReLU activation function in between:

F F N N (x) = max(W1x+b1,0)W2 +b2, (2.30)

where W1, W2, b1 and b2 are learned weights and biases.
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Specification BERT-Base BERT-Large
#Transformer Encoders (L) 12 24

#Attention Heads (A) 12 16
Length of Sequence Vectors (H) 768 1024

Max Sequence Length 512 512
Total Parameters 110M 340M

Table 2.1: BERT Size and Specifications

The output of the last encoder is the output of the pre-trained BERT model. That means
that the output is a sequence of vectors with dm elements, one for each token in the input
sequence X . This output can be used as it is or used in a modified, fine-tuned model.

Table 2.1 shows the size of the two main BERT models, BERT-Base and BERT-Large. The
letters in parentheses denote the commonly used abbreviation. As we see, the numbers of
parameters are huge, and the creators found that bigger models yield better results (Devlin
et al. 2019).

2.5.2 BERT Pre-Training

During pre-training, BERT is taught to solve two simple but powerful tasks. These tasks
have been chosen to make the model understand language at both token level and
sentence level, and they are done at the same time.

Masked Language Modeling

To learn relationships between words, the creators introduce Masked Language Modeling
(MLM). In the input sequence, some of the tokens have been masked, and the goal is
to predict what these were, which is also known as the Cloze task. To predict words, an
extra linear layer followed by a softmax function has been added to the output of the
last encoder. This creates a probability distribution over all the tokens in the vocabulary,
which we can use to predict. Only the masked tokens are used to calculate the loss of the
prediction.

For every training sample, 15% of the tokens are being masked at random. The tokens are
changed according to the following distribution:

• 80% are changed to [MASK] - a special token that represents a masked token

• 10 % are changed to a random token, where more common tokens are chosen more
often

• 10 % stays unchanged
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The idea behind not using the [MASK] token every time, is because this token never
appears during fine-tuning, so we do not want to bias the model towards this token.

By using MLM, we train the model bidirectionally, which means that we give it information
both to the left and right of the masked tokens. Training the model this way is slower than
pure left-to-right or right-to-left models, but the increased performance outweighs this.

Next Sentence Prediction

We also want the model to be good at understanding relationships between sentences,
which is why BERT is taught Next Sentence Prediction (NSP). NSP is a binary classification
task where we are given two sentences, where the goal is to tell if the second one actually
comes after the first one or not. This is true in 50% of the training samples, and we use the
[CLS] token to base our prediction on.

Combining NSP and MLM, we can train a model to be good at understanding natural
language. The tasks themselves are not useful for real-life applications, but they require
sophisticated language understanding to solve. They are also hard to do, which means
that the model is always able to improve during training.

The tasks’ simplicity also allows the learning to be self-supervised. This means that we
teach the model to do a supervised task, without labeling the data ourselves. Instead, the
data is labeled by the computer during the training process. Consequently, we can use
huge amounts of unlabeled data, and BERT uses all of the English Wikipedia combined,
adding up to 2500M words, in addition to using BooksCorpus containing 800M words.
Having this amount of training data is vital in the creation of a powerful, big language
model. It took Google four days on clusters of TPUs to train each of the two BERT models.
However, having the pre-trained model as a starting point, we drastically reduce the time
it takes to fine-tune the model.

2.5.3 Other BERT-Based Models

In the wake of the release of BERT, several other models were created that aimed to
improve the BERT architecture and pre-training. Together, they highlight some of the
improvement points that BERT has and help to progress the field of NLP and language
models. Here, we shortly present some of these models, listed in chronological order of
their creation.
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RoBERTa

RoBERTa, which stands for Robustly Optimized BERT Approach, was Facebook AI’s,
together with the University of Washington, attempt at improving the way BERT was
being pre-trained. By analyzing the different components of the pre-training procedure,
they created their own optimized approach. The model was compared to BERT on three
language tasks – question answering, sentence classification and reading comprehension
(Liu et al. 2019).

A significant improvement was found using more data. BERT was trained on 16 GB of text,
while RoBERTa was trained on 160 GB. Additionally, training the model for more steps,
increasing the number from 100K to 500K, also resulted in increased performance.

The pre-training tasks used in BERT were also modified. In the Masked Language
Modeling task, the masking was originally done once as a part of data preprocessing.
RoBERTa, on the other hand, adopts a dynamic masking model, which means masking
sequences right before they are fed into the model. This way, the data is augmented to
create more training samples. Secondly, they found that removing the Next Sentence
Prediction task, slightly improved performance.

ALBERT

Huge language models like BERT have shown that increasing the number of parameters
leads to improved performance. However, with several hundreds of millions or even
billions of parameters, the threshold for how big models can be is close to being reached,
both in terms of computation time and memory limitations. ALBERT, meaning A Lite
BERT, tries to attack this issue by proposing two parameter reduction techniques (Lan
et al. 2019).

The first method is to divide the embedding step into two parts. In BERT, the embedding
of the sequence tokens is done in one step, which means using a matrix with dimensions
V × H , where V is the vocabulary size, usually around 30000, and H is the length of
the sequence vectors, usually 768. This accounts for a lot of the total parameters in the
model. ALBERT on the other hand, first embeds the tokens into intermediate vectors of
size E , before transforming them into vectors of size H . This results in two matrices with
dimensions V ×E and E ×H , which in the case of E << H , greatly reduces the number of
parameters in the model. Additionally, if we want to increase H , the number of parameters
is not significantly increased.

The other thing they did, was to use cross-layer parameter sharing. This refers to using the
same parameter weights in all of the transformer encoders, both in the attention layers
and the FFNN layers.

The reduction of parameters leads to a slight decrease in performance, naturally. However,
an ALBERT configuration of BERT-Large has 18 times fewer parameters and training is 1.7
times faster, thus greatly improving parameter efficiency.
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DistilBERT

Another model that tries to reduce the number of parameters and increase training and
inference speed is DistilBERT (Sanh et al. 2019). It is based on the concept of knowledge
distillation, which is a technique within machine learning based on a larger model, called
the teacher model, transferring its knowledge to a smaller one, known as the student. This
way, the smaller model can achieve better results compared to being trained on its own.

In practice, this is done by altering the loss function the student is trained to optimize.
In the case of classification, a model is normally trained to minimize cross-entropy loss,
as given by 2.14. In knowledge distillation, the ground truth labels are replaced by the
probabilities estimated by the teacher, and is therefore called soft loss. Keeping the same
notation as in 2.14, we write the loss function as

Lso f t =−
C∑

j=1

t j

T
log

( p j

T

)
, (2.31)

where t j is the teacher model predictions. T is a parameter called temperature, which
adjusts how soft the output distribution is. T → 0 corresponds to the one-hot encoded
case, while T →∞ corresponds to a uniform distribution. Often, setting T = 1 works well.

As a result of using the soft loss, the model becomes better at generalizations, instead of
focusing on getting the one true class correct. If we consider the MLM task, for example,
it is OK if we train the student to predict the word rock, even though the correct word was
stone.

With DistilBERT, the creators managed to train a student model with BERT-Base as a
teacher, which was 40% smaller and 60% faster, but still achieving 97% of the performance
of its teacher.
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Related Work

This chapter presents some of the research that has currently been done on the area. Even

though the exploration of the topic is in its early days, the great success BERT has achieved

has captured the attention of many research groups. This has lead to great advancements

in the performance of BERT-based ranking systems, but also motivates further research

on unexplored topics.

In the chapter, we present some methods that demonstrate how BERT can rank

documents, highlighting the differences in performance. We also introduce how BERT

can be made both faster and better using task-specific knowledge distillation.
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3.1 Using BERT for Text Ranking

Following the great results BERT had on many language-related tasks, it did not take long
until people wanted to try it for ranking tasks within information retrieval. In this section,
we present some of the models that show how BERT can be used for this purpose.

3.1.1 Beginning of the BERT Revolution

The first attempt to use BERT for text ranking was made by Nogueira & Cho (2019), only
three months after BERT first was released. They used it for passage ranking, where the
goal is to rank passages, which are paragraph-length extracts from longer texts such as
books or web pages.

The idea behind their model was simple – estimate the probability of a passage being
relevant, and use that directly to rank the passages. The model uses the query and the
passage as the two input sentences in BERT. The estimate is done by calculating a score
s, by attaching a simple fully connected layer on top of the output corresponding to the
[CLS] token. This output is called the passage representation and denoted by T[C LS]. s can
then be calculated as follows

s = sigmoid
(
W >T[C LS] +b

)
, W ∈Rdm ,b ∈R. (3.1)

In other words, it is just a simple logistic regression model added to BERT. During training,
we want to minimize the binary cross-entropy loss, which is given by

L =− ∑
i∈Jpos

ln(si )− ∑
i∈Jneg

ln(1− si ), (3.2)

where Jpos and Jneg are the sets of indexes of the relevant and non-relevant passages
respectively.

The model was evaluated on the MS MARCO dataset, making it comparable to many other
existing models. The results from their experiments were impressive compared to their
pre-BERT counterparts, which paved the way for a small revolution within text ranking

Nogueira and Cho [2019] kicked off the “BERT revolution” for text ranking,
and the research community quickly set forth to build on their results —
addressing limitations and expanding the work in various ways. (. . . ) The rest,
as they say, is history (Lin et al. 2020, p.18).

36



Chapter 3. Related Work 3.1 Using BERT for Text Ranking

3.1.2 Multi-Stage Rankers

Following the success of the simple model, people started trying out bigger and more
advanced models. One such advancement was to use a multi-stage approach, which
already existed for pre-BERT models. The basic idea behind is that several different BERT
models are used in succession, allowing for increased inference. By shrinking the number
of documents at each stage, bigger models with more expensive features can be used to
rank the top-scoring documents (Lin et al. 2020, p. 68-70).

The first application of this approach using BERT was proposed by Nogueira et al. (2019).
In their setup, they first use a pointwise model equal to the one described above, called
monoBERT, followed by a pairwise model called duoBERT that re-ranks the list.

duoBERT considers two documents, Di and D j , at the same time and tries to estimate the
probability pi , j that Di is more relevant than D j . The model is trained to minimize the
loss given as

Lduo =− ∑
i∈Jpos , j∈Jneg

ln(pi , j )− ∑
i∈Jneg , j∈Jpos

ln(1−pi , j ), (3.3)

where each pair of training documents is never both relevant or both not relevant.

To rank the documents, a relevance score for each document is calculated based on the
pairwise probabilities. Five different aggregations are proposed:

• SUM: si =∑
i 6= j pi , j

• BINARY: si =∑
i 6= j 1pi , j>0.5

• MIN: si = mini 6= j pi , j

• MAX: si = maxi 6= j pi , j

• SAMPLE: sample m documents without replacement, and sum the pairwise
probabilities. This aims to decrease the number of inferences.

Results showed that using BINARY or SUM to do inference, increased the performance
compared to just using monoBERT. On the other hand, it also means doing many more
inferences, in which the tradeoff between speed and performance becomes relevant. If
we consider a list containing k0 and k1 documents for the first and second ranking phase,
respectively, we end up doing k0 +k1(k1 −1) inferences. However, if k0 and k1 are chosen
optimally, we could end up with a model that is both faster and better than compared to
just using a single-stage ranker, due to the increased knowledge duoBERT brings (Lin et al.
2020, p. 72).
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3.2 Ranking Documents with BERT

Based on the results from passage ranking, BERT was quickly adopted to be used for
document ranking as well. However, using an entire document as input to BERT turned
out to be a major challenge to overcome during this transition. BERT has a maximum
input size of 512 tokens, and trying to keep the query, document and additional special
tokens below this limit is not straightforward.

However, a lot of the knowledge gained from doing passage ranking can also be applied
to document ranking. Most of the models that have been tried out so far are all based
on the principle of splitting a document into shorter passages and combine results from
each passage to infer the relevance of an entire document. Here, we present a couple of
methods that use this technique in different ways. Results showing the performance of
each model are displayed in table 3.1.

3.2.1 Passage Score Aggregation

Passage score aggregation was the first method to be tested for document ranking. The
idea is to combine the relevance score for each query-passage pair, by using the same
model as Nogueira & Cho (2019), in order to create a relevance score for the entire
document. A simple approach was suggested by Dai & Callan (2019), which included the
following key points:

• During training: Split the training documents into overlapping passages of 150
words with 75 words overlapping, and treat every passage from relevant documents
as relevant, and vice versa. If the document has a title, add that to the beginning of
every passage for additional information.

• During inference: Split the document in the same way and do inference on every
passage. Aggregate the score for every passage to get the total document score. The
aggregation can be done by either only considering the first passage score (denoted
as BERT-FirstP), only the best passage score (BERT-MaxP) or the sum of all the scores
(BERT-SumP).

The results from their experiments showed that taking the maximum passage score as the
document score worked well, which is consistent with other similar techniques (Lin et al.
2020, p. 54-61). This shows that BERT is able to extract the most important meaning in a
document based on only a small section of the document.

Extensions to this method have been tried, where the passages of a document are assigned
different levels of relevance. This way, the model can learn better which passages that
are the most important and value those more. However, the creators had to manually
grade the relevance of each passage, which meant that they did not have enough training
samples to make significant performance gains (Lin et al. 2020, p. 61). Nevertheless, the
intuition behind this idea may have inspired the model in the subsequent section.
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3.2.2 Passage Representation Aggregation

Passage Representation Aggregation (PARADE) was proposed by Li et al. (2020), with the
goal of better relating passages to each other. Instead of aggregating the relevance score
from each passage, they make use of the passage representations. They use these to create
a document representation Dcl s ∈Rdm , where the relevance score for the query-document
pair is calculated as a weighted sum over these elements, s = W >

d Dcl s , where Wd ∈ Rdm is
learned.

Four different aggregation models are proposed to create the document representation:

• PARADEAvg: Element-wise average pooling across passage representations:

Dcl s[i ] = 1

n

n∑
k=1

T k
[C LS][i ]

• PARADEMax: Element-wise max pooling across passage representations:

Dcl s[i ] = max
k∈{1,...,n}

{
T k

[C LS][i ]
}

• PARADEAttn: Weighted average across passage representations, which means that
each passage contribute differently. This is done by applying a simple FFNN on top
of the different passage representations:

w1, . . . , wn = softmax
(
W >T 1

[C LS], . . . ,W >T n
[C LS]

)
Dcl s =

n∑
k=1

wk T k
[C LS],

where W ∈Rdm is a learned weight.

• PARADETransformer (also just called PARADE): Make use of two transformer encoders
to extract information about the passages. The encoders are identical to those used
in BERTBASE (section 2.5), and the input sequence vectors are the concatenation
of the passage representations and a prepended [CLS] embedding. The output
corresponding to the [CLS] embedding is used as the document representation. A
graphical visualization is given in figure 3.1.
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Figure 3.1: Architecture of PARADE. T[C LS] denotes a passage representation, Dcl s is the document
representation and s is the document relevance score.

Their results show that PARADEAvg performs worst, followed by PARADEMax and
PARADEAttn. However, PARADE clearly outperforms all of these, showing the usefulness
of the transformer yet again. All the models except PARADEAvg significantly outperform
models using passage score aggregation (Li et al. 2020).

There are a couple of advantages to making use of the passage representations that can
help explain why this approach works better. Firstly, a lot more information is contained
in the representations, whereas by only using the passage score, a lot of the information is
lost. For instance, PARADE accounts for the order of the passages and how they all relate to
make up the document. Secondly, the method allows the evaluation of a query-document
pair during the training phase and inference to be identical, which also helps remove
additional noise and sources of error.

Method nDCG@20
BM25 0.424

BERT-FirstP 0.444
BERT-MaxP 0.469
BERT-SumP 0.467
PARADEAvg 0.492
PARADEMax 0.512
PARADEAttn 0.513

PARADE 0.525

Table 3.1: Performance of BERT-based models on the Robust04 test collection.
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3.3 Knowledge Distillation For Ranking

At the end of the last chapter, we briefly introduced the concept of knowledge distillation
(KD) and how it could be used to create DistilBERT. In DistilBERT, the knowledge
distillation was done in the pre-training phase, but KD can also be applied specifically
to document ranking models. Several models have tried to use KD, and one such model is
Simplified TinyBERT (STB), published by Chen et al. (2021) in March 2021.

The method is based on TinyBERT, which introduces a new way of doing KD that can be
applied to many different tasks, not just document ranking (Jiao et al. 2019). Instead of
the student model trying to mimic only the output predictions of the teacher, the student
in TinyBERT is trained to mimic the output of all the layers. In practice, this is done
by adding three extra losses to the soft loss function (eq. 2.31), corresponding to the
embedding layer, the multi-head attention layers and the FFNN layers. We refer to the
paper by Jiao et al. (2019) for details.

As the name indicates, Simplified TinyBERT applies a few simplifications to the way
the student is taught. Firstly, whereas TinyBERT applies a general distillation to the
pre-training as well, STD just initializes the weights of the student using the weights in
the first layers of the teacher. Secondly, all the layers are distilled jointly in STB, whereas
TinyBERT distills the intermediate layers and output layer separately. Lastly, in STB, the
hard cross-entropy loss (eq. 2.14) is added to the total loss to help the model better
distinguish relevant documents from the non-relevant ones. All these simplifications
significantly reduce training times, but also improve ranking performance.

STB was trained and tested on MS MARCO. As the teacher model, BERT-Base was used,
while two smaller models, L6-H768 and L3-H384, were used as students. Their document
ranker is based on the work of Dai & Callan (2019), making use of their BERT-MaxP model.
Below shows the performance of their models on the MS MARCO test queries.

Model MRR@10 Size Speedup
BERT-Base 0.3523 109M 1.0×

L6-H768 0.3848 67M 2×
L3-H384 0.3614 17M 15×

Table 3.2: Performance of Simplified TinyBERT on MS MARCO test queries.

Looking at the results, it is obvious that their method works, as both student models
outperform the bigger teacher model. These results are analogous to the findings of Li
et al. (2020), which applied KD to their PARADE model. Given these findings, knowledge
distillation is most definitely useful for BERT-based document ranking models.
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Chapter 4
Method

This chapter presents the research methodology that was used to answer the research

questions. It aims to explain how all our experiments were conducted, demonstrating the

reliability and validity of the results. This includes how BERT was fine-tuned, the setup

we used to rank documents and how we evaluated the models. The rationale behind the

choices that were made is also explained.
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4.1 Fine-tuning BERT

The first thing that needed to be done, was to fine-tune the pre-trained BERT model. In
order to do this, we had to choose a model architecture, create training data and find
suitable hyperparameters.

4.1.1 Model Choice

The chosen model to use was a pointwise model, which was referred to as monoBERT in
the previous chapter. It equips the pre-trained BERT model with a single output layer on
top of the [CLS] token output, which after running the output through a softmax activation
function, gives an output score between 0 and 1, which can directly be used as a relevance
score.

To implement and train the model, the Huggingface transformers library was used. This
library is easy to use and is well documented. A big benefit of using the pointwise
model was that we could make use of the BertForSequenceClassification model, which
is included in the library, including functionality for hyperparameter tuning and model
training.

As input sequences, the query text was set as sentence A and a passage from a document
as sentence B. The maximum input sequence length was set to 256, as this was faster than
the allowed maximum of 512, but still let us use fairly long passages. The recommended
128 tokens would be too small for our purpose. 47 tokens were set aside for the query, and
after adding the special tokens, [CLS] and [SEP], the remaining 207 tokens were left for the
passage. Any space that was not used was filled by [PAD] tokens. We used the fast uncased
tokenizer (known in the library as BertTokenizerFast), which contained 30522 tokens.

BERT comes in many sizes and configurations, and we chose to use BERT-Small. It is
identical to BERT-Base, but it uses 4 transformer encodes, instead of 8 and the hidden
size is reduced from 768 to 512. This reduced the number of parameters and therefore
also training and inference times. Results from Li et al. (2020), when used in the PARADE
model on the Robust04 dataset, showed that it was able to give satisfying results, which
were only slightly worse than BERT-Base. This justified the choice of the smaller model.

Due to limited time and resources, we opted to use a relatively simple approach. This
means that there exist other models that were not used in our experiments that would
lead to better results than those reported in this thesis.
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4.1.2 Training the Model

Training Data

To create training data, the MS MARCO document ranking dataset was used. Firstly,
400 labeled queries were randomly sampled from the 367013 available training queries.
Afterward, the corresponding relevant documents were collected, together with 99600
randomly sampled documents, giving a total of 100000 documents. These documents
were uploaded to a document ranking application, identical to the two first phases of the
one that will be described in section 4.2.

Since BERT will be used to rank documents retrieved by BM25, the application was
queried using the sampled training queries. The top 40 documents, as ranked by BM25,
were used for each query. This number was chosen to mimic the number of candidate
documents used in the BERT ranking application. Each document was divided into
passages, inspired by the work of Dai & Callan (2019). If the document had a title that
was shorter than 50 words (this constraint was added to ensure documents with very long
titles were not divided into too many passages), it was placed in front of the passage. The
total length of each passage was 150 words, with 50 words overlapping between passages.
As a result of this process, 262787 query-passage pairs were collected. If the passage came
from a relevant document, it would be labeled 1, and 0 otherwise.

Optimization and Hyperparameter Tuning

The model was trained to minimize cross-entropy loss, given by 3.2, and the default Adam
optimizer with weight decay was used to do so. All the parameters of the model were
adjusted. During training, 20 % of the samples were used to evaluate the model and the
rest used by the optimizer. We used a GPU provided by the Idun cluster to perform the
training, and fine-tuning BERT-Small took around 2.5 hours there.

To optimize the training process, hyperparameter tuning was performed. We used a grid
search over the possible values, which were chosen based on the research conducted by
Devlin et al. (2019) and Li et al. (2020). The chosen values were based on the model with
the lowest evaluation loss. The results from the tuning are shown in table 4.1.

Parameter Possible Values Chosen Value
Learning Rate 1e-6, 5e-6, 1e-5, 5e-5 5e-6

Epochs 3, 4 3
Batch Size 16, 32, 64 16
Dropout 0.1 0.1

Weight Decay 0.01 0.01

Table 4.1: Results from doing hyperpameter tuning
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4.1.3 Knowledge Distilled Models

To test the performance of knowledge distilled models, the Simplified TinyBERT models,
as described in Chen et al. (2021), were used. The two distilled models and the teacher
model (BERT-Base) were downloaded from the Simplified TinyBERT Github page, and
used without any modifications.

The teacher model was trained on the MS MARCO passage ranking dataset, following the
same setup as used in Nogueira & Cho (2019). The training data for the distilled models
was created by splitting documents of the MS MARCO document ranking dataset into
overlapping passages. For every relevant document, the five top-scoring query-passage
pairs were labeled relevant. For every positive sample, a negative sample was created by
randomly sampling passages from non-relevant documents. In total, 3.3M query-passage
pairs were created.

The distilled models were fine-tuned for two epochs, using 64 as batch size and 5e-5 as
learning rate. The rest of the hyperparameters and the optimization were identical to the
one described in section 4.1.2. The maximum input sequence length was set to 256. We
refer to the paper by Chen et al. (2021) for more details about how the models were trained.
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4.2 Document Ranking Setup

The main goal of this thesis was to see if BERT could be used in a document ranking
system. Therefore, the fine-tuned BERT model was used as the last phase of a bigger
document ranking application that was used to generate the results in the experiments.

Our document ranking setup consisted of three stages. First, all candidate documents
were retrieved using the OR method. Usually, this would retrieve too many documents,
typically around 80 % of all documents. In our case, however, we wanted as high recall as
possible, and this method minimized the risk of throwing away relevant documents.

The second phase was a BM25 ranking phase, based on equation 2.2 with k = 1.2 and
b = 0.75. The number of documents returned from this phase is referred to as R, which
was set to 20 in all experiments, except experiment 3b. The ranking from this phase served
as a baseline for our BERT re-ranker to beat.

The last phase was the BERT model. The documents in the list returned by BM25 were
first divided into passages, the same way as in the training data, and then fed into the
model, one after the other. All the relevance scores for the passages of a document were
aggregated, by using the mean or maximum passage score, to create a document relevance
score. This score was then used to create the final ranked list.

The application was implemented in Vespa. Vespa is a customizable big data serving
engine which we can use to build our own applications in. It is scalable, provides fast
response times in addition to being easy to use when it comes to specifying our own
application and the data used. We made use of pyvespa, Vespa’s Python API, letting us use
Python as programming language, which is preferred when performing ML experiments.

The implementation in Vespa was not as straightforward as first thought. Dividing up
the documents and evaluating each one was not possible to do within the application,
which complicated things. The solution to this problem was to create the passages locally
and upload them as separate documents, using the same ID as the origin document. The
passages were tokenized before they were uploaded, which meant time was saved when
feeding them into BERT.

To query the app, document IDs were retrieved using BM25 on the full-size documents.
The passages from the retrieved documents were then found by using these IDs. Finally,
BERT was applied to each passage and the inference results were aggregated using Vespa’s
grouping functionality.

47

https://pyvespa.readthedocs.io/en/latest/


4.3 Experimental Procedure Chapter 4. Method

4.3 Experimental Procedure

4.3.1 Evaluation Data

The data we used to evaluate the models was collected the same way as the training
data. 200 test queries were randomly sampled from MS MARCO, together with 200000
documents, including all the relevant documents. None of the queries or documents
overlapped with the training data, such that all evaluation data was unseen to BERT.

All documents were uploaded to the document ranking application described above, and
each document was divided into passages in the same manner as the training data.

4.3.2 Metrics

The primary metric we focused on was MRR@10, as each query only had one relevant
document with a binary relevance judgment. In this case, MRR is equal to MAP. The
number 10 was chosen since we only cared about the top-scoring documents. This metric
indicated how good a model was at separating documents that got a high BM25 score, but
were not relevant, from those that were actually relevant.

We also looked at the Recall@10 metric, which describes the proportion of queries in
which the relevant document was placed among the top 10 ranked documents. This
metric gave us an indication of how good the models were at separating the relevant
documents from the not-so-relevant ones.

To test the statistical significance of our models, compared to the BM25 baseline, a
two-tailed paired t-test was performed (Urbano et al. 2019). The number of test queries
and the central limit theorem ensure that the assumption of normality is valid. The
test was performed using scipy.stats.ttest_rel. All results that were statistically
significant with p < 0.05 were marked with †.

To define the t-test, we let B1, . . . ,Bn be the baseline RR@10 values for each of our n = 200
queries with mean B , and E1, . . . ,En be the RR@10 values for our experimental model with
mean E . We define Di = Ei −Bi and D = E −B .

We assumed that both models perform equal and therefore set up the following null and
alternative hypotheses:

H0 : µD = 0, H1 : µD 6= 0

As test statistic, we used the T-statistic, which under H0 is written as

T = D
SDp

n

∼ tn−1, SD =
√

1

n −1

n∑
i=1

(
Di −D

)2.
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Chapter 5
Experiments and Results

In this chapter, we explain all the experiments that were conducted and their

corresponding results. For each experiment, we also discuss the results by trying to

explain the findings and how they relate to the theory. The results are also compared

to results from similar experiments. In chapter 6, we summarize the findings of all the

experiments and how they help answer the research questions.

Each of the three main experiments aims to answer the three research questions.

Experiments 2 and 3 are divided into several smaller experiments that highlight different

aspects of the research questions.
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5.1 Experiment 1– Does it Work?

The first and most important question we tried to explore was – did our setup work? Were
we able to fine-tune a BERT model that could replicate the findings of similar models? If
our results are similar to related findings, we are able to be more confident in the results
in the subsequent experiments.

In this first experiment, we compared the BM25 baseline setup against the two basic BERT
models, BERT-Mean and BERT-Max, which refer to the way the score aggregation is done.
The choice to use the mean instead of the sum of the passage scores was made to remove
the unwanted effect that longer documents would get an unfair advantage.

Results from running the models using BERT-Small with R = 20 candidate documents are
shown in table 5.1.

Model MRR@10 Recall@10
BM25 0.517 0.710

BERT-Max 0.560 0.760
BERT-Mean 0.571† 0.765

Table 5.1: Results of models on 200 test queries in MS MARCO dataset. † denotes statistically
significant results compared to BM25 (p < 0.05, two-tailed paired t-test)

To further showcase the differences between the models, the distributions of the ranks of
the relevant documents were plotted as shown below.

Figure 5.1: Ranking distributions of BM25, BERT-Max and BERT-Mean.
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Firstly, we observe the increase in MRR the BERT models achieve, where the results of
BERT-Mean are significant. This is also reflected in the recall metric, which explains
some of the increase in MRR. The fact that the recall is higher, indicates that BERT is
able to use its language understanding to find relevant documents that are not found by
a term-matching method like BM25. For reference, the recall@20 score for BM25, which
serves as the upper limit for how high recall BERT can achieve, was 0.79.

To try to further explain where the differences in MRR come from, except from looking
at the recall, we can make use of the bar plot. As the RR metric is mostly affected by
documents ranked close to 1, the rank 1, 2 and 3 sets of bars give us a great indicator of
the MRR differences. BERT-Mean managed to get 94 queries perfect, compared to BM25’s
85, and if we pretend that these 9 extra documents were not placed among the top 10
by BM25, it explains over 80% of the MRR gain. This is similar for BERT-Max, however,
in this case, the rank 2 and 3 columns also contribute. The fact that BERT is better at
placing relevant documents in the top ranks, tells us that it is able to filter out the relevant
document from a set of documents with high BM25 scores, which was exactly what the
model was trained to do.

We also see a difference between the two score aggregation techniques, albeit small and
possibly random. However, comparing it to the findings of Dai & Callan (2019), which
found that BERT-SumP worked slightly worse than BERT-MaxP, our results suggest that
reducing the systematic bias towards longer documents by taking the mean is favorable.

As BERT-Mean was the best performing model in this experiment, all subsequent
experiments are conducted using this aggregation technique.
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5.2 Experiment 2 – Fine-tuning Procedure

The original BERT paper by Devlin et al. (2019) gave some information about how the
model should be fine-tuned, but there were still a lot of things that were uncertain in the
fine-tuning procedure for the document ranking task. The related models used for this
purpose do not include details about how the fine-tuning was performed. We therefore
found it suitable to run some experiments that aim to show how different factors in the
fine-tuning procedure can affect the final ranking performance of a model.

A drawback of using a pointwise approach was that the metric we want to optimize during
training, the cross-entropy loss, was not the same as the metric we use to evaluate the
ranking performance. This meant that improvements in the CE-loss would not necessarily
lead to improved MRR. As a consequence, we had to test all models on the evaluation
application.

5.2.1 Experiment 2a – Which Parameters to Fine-Tune?

When we were fine-tuning BERT, we had the option of adjusting all the parameters in
the model, or just the task-specific ones, i.e. the parameters in the added output layer.
None of the models using BERT for document ranking give any information about this.
Therefore, we tried out both alternatives, such that we know what works best when we are
fine-tuning other models.

Fine-tuned Parameters MRR@10
All BERT Parameters 0.571

Task-specific Parameters Only 0.520

Table 5.2: Results from fine-tuning all vs. task-specific parameters.

The results speak for themselves, which made it easy to choose to optimize all the
parameters in all of our models. The number of task-specific parameters was likely too
small to fit the training data well, and using the output of the [CLS] token without any
modification was not sufficient to give good results. However, we see that it performs
slightly better than BM25, which confirms the fact that BERT is able to understand natural
language in its pre-trained state.

5.2.2 Experiment 2b – Overfitting

A typical issue when doing machine learning is overfitting. The problem arises when
the model fits the training data very well, including the intrinsic noise in the data.
Consequently, it is not able to capture the patterns in the data, and therefore performs
poorly on unseen data. This can often happen with models with many parameters, as
these are very flexible and can fit the data very well.
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Given BERT’s vast number of parameters, we therefore wanted to check if BERT for
document ranking would suffer from overfitting. To test this, we trained a model for 6
epochs and compared it to the one trained for 3. To further inspect the fine-tuning, the
training and evaluation losses were plotted for the two models.

Epochs MRR@10 Final Eval Loss Final Training Loss
3 0.571 0.0193 0.0186
6 0.542 0.0187 0.0067

Table 5.3: Ranking performance of models trained for 3 and 6 epochs.

Figure 5.2: Training and evalution loss when training 3 and 6 epochs

The ranking results show that training the model for longer does not increase
performance. Looking at the loss plots, the results are likely to be a consequence of
overfitting. The loss functions in the model trained for 3 epochs behave like we want
them to. The evaluation loss closely follows the training loss, showing us that the model
performs equally well on the unseen data as on the training data. The evaluation loss
is also very flat during the last epoch, indicating that the model has extracted as much
knowledge from the training data as possible and that further training would not increase
the model’s performance.

However, after 3 epochs, the evaluation loss stagnates, while the training loss continues to
decrease. This is a typical indicator of overfitting and helps explain the poor performance
of this model. Consequently, we have to be careful with training our models for too long.
These results justified the choice of 3 epochs in the hyperparameter tuning. They also
suggest the use of early stopping, which means that we stop the training if we observe
indications of overfitting.
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5.2.3 Experiment 2c – Effect of Random Initialization

Even though the main BERT model has been pre-trained, the parameters in the output
layer are being randomly initialized every time we train a model. This may lead to
differences in performance, so we therefore tried training 4 identical models with different
initial parameters, to see if there were any notable differences. We also plotted the
evaluation losses for comparison.

Run MRR@10 Final Eval Loss
1 0.571 0.0193
2 0.560 0.0186
3 0.564 0.0193
4 0.565 0.0182

Table 5.4: Ranking performance of 4
identical models with different initial
weights.

Figure 5.3: Evalutation loss of 4 identical models with
different initial weights.

We see that there are differences in the ranking performance, which between the best and
the worst are not insignificant. It is difficult to tell if this is a result of some models have
a better semantic understand than others, or if they just happen to perform better on
the test queries. Nevertheless, the results tell us that in order to train a good model, one
should try to train several identical models and test which one works best. How many
runs depends on the resources available. More test queries should also be considered to
minimize variance in the MRR metric.

The evaluation losses are also interesting to look at. Firstly, we observe that the final
loss value does not reflect how good the actual ranking performance is. This is especially
evident between runs 1 and 2. Secondly, the plot also shows that the losses end up more
or less equal. This is a good thing, telling us that the training is working as we want it,
i.e. eliminating most of the effects the random initialization may bring. The fact that the
values are not equal in the end is due to the randomness of the stochastic gradient descent
optimization and is to be expected. Because the losses are so similar, the cross-entropy
loss is not the best indicator of the ranking performance, and therefore the models should
be compared using the actual document ranking system.
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5.3 Experiment 3 – Speed vs. Performance

Although BERT improves overall ranking performance, it is slow to run, which is one of the
major drawbacks of the model. Sometimes we want to trade off some of that additional
performance to get faster inference times. In this section, we consider some factors that
influence the speed, in order to see how it affects the performance.

5.3.1 Experiment 3a – Model Size

A reasonable first step would be to see how influential the size of the model is. For systems
where limited memory might become an issue, smaller models are also preferred. BERT
is available in a wide range of sizes and configurations, all sharing the same structure.
The differences in the model sizes are affected by the number of transformer encoders (L)
and the number of elements in the sequence vectors (H), which is also referred to as the
hidden size. The number of attention heads (A) is chosen such that H = 64A.

In this experiment, we looked at the named models from the official BERT github page and
one additional model. All the models had been identically pre-trained by Google and in
this experiment, all models were fine-tuned equally as well, using the same training data
and hyperparameters. We also measured how many queries per minute each model was
able to evaluate, which included the retrieval phase and the BM25 ranking. However, the
speed is predominantly affected by the BERT speed, as ranking with only BM25 is able to
process around 100 queries per minute.

Model L/H MRR@10 Recall@10 #Parameters Queries/min
BERT-Base 12/768 0.613† 0.770 109M 0.41

L4-H768 4/768 0.573† 0.760 53M 1.02
BERT-Medium 8/512 0.582† 0.760 42M 0.98

BERT-Small 4/512 0.571† 0.765 29M 2.01
BERT-Mini 4/256 0.551 0.775 12M 5.71
BERT-Tiny 2/128 0.538 0.770 4.4M 24.3

Table 5.5: Ranking results using various sizes of BERT. Statistically significant results compared to
BM25 are marked with † (p < 0.05, two-tailed paired t-test).

The MRR results show a clear trend – a bigger model gives better performance. This is
not surprising and the results are similar to the results when using PARADE with different
BERT sizes (Li et al. 2020). The results are encouraging in the sense that even the tiny
model, which is by far the fastest, is able to outperform BM25. It is also interesting to see
that all the models perform equally when it comes to recall. This shows that the additional
parameters are used to gain deeper knowledge that can make the model better separate
the top-scoring documents.
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The reason for adding the unnamed model (L4-H768), was to see how increasing the
model size by adding more transformer encoders compared against increasing the hidden
size. This comparison is based on the results from L4-H768 and BERT-Medium. We see
that L4-H768 contains more parameters, but in terms of inference time, which is what we
are most interested in, they compare very similarly. From the results, we see clearly that
adding more transformer encoders makes a bigger impact than increasing the hidden size.
This indicates that the additional encoders are able to extract more meaning, rather than
just increasing the total parameter count by increasing the hidden size. This result is in
contrast to the findings of Li et al. (2020), which found that the hidden size was more
influential than the number of encoders. This discrepancy is likely due to the differences
in the two model architectures, but it is difficult to tell without further exploration.

The performance results have to be observed in conjunction with the inference times.
The computation times are probably not comparable to a high-quality retrieval system,
but the relative differences should still be representative. Nevertheless, the last column
clearly shows how much faster the smaller models are, which means that there is a lot of
time to be saved, for a small drop in ranking performance.

5.3.2 Experiment 3b – Number of Documents to Rank

The time it takes to evaluate a query is also affected by how many documents BERT has to
re-rank. The inference times increase linearly with the number of candidate documents,
but how the performance is affected is not obvious. In this experiment, we tried to look at
what happens with MRR@10 when the number of candidate documents ranges between
10 and 100. The results are shown below.

Figure 5.4: Ranking performance for varying number of candidate documents. The blue line
shows MRR@10 (left y-axis) and the red is Recall@10 (right y-axis).
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The figure shows the recall monotonically increasing with the number of candidate
documents, which is a good sign. It tells us that our model is able to filter out the relevant
document from a bigger pool of candidate documents and find more of the documents in
the cases where BM25 falls short. With R equal to 80 and 100, the model is able to find all
the relevant documents.

Interestingly, the improvement in recall does not lead to an increase in MRR, which slightly
decreases and flattens out after 20 candidate documents. Even though the differences
are very small, it could indicate that BERT becomes "confused" by these additional
documents. A bigger BERT model, with a deeper understanding, could possibly overcome
this unwanted effect, as it would better be able to separate these relevant documents
from the confusing ones. Increasing the number of candidate documents per query when
making the training data could also help.

In relation to speed, the results tell us that good performance is possible with a small
number of candidate documents, which is good news. If we want to achieve better recall,
we have to sacrifice some speed, but this tradeoff seems to give diminishing returns after
40 candidates.

5.3.3 Experiment 3c – Knowledge Distillation

Knowledge distillation techniques have been shown to enhance performance for
BERT-based models within document ranking. We therefore wanted to test how well
KD models perform in our ranking setup and check if our results are similar to other
findings. We used Simplified TinyBERT’s distilled models, L3-H384 and L6-H768, without
any modifications. We also compared them against the teacher model, BERT-Base.

The results of Chen et al. (2021) did not include a direct comparison between how models
fine-tuned with KD compare against the same models fine-tuned the regular way. We
therefore fine-tuned the two student models as described in section 4.1.2. These models
are denoted "Train" in the results. It is important to note that the distilled models have
been fine-tuned longer on a bigger dataset, which could lead to increased performance.
The differences in the way the training data was created, may also influence the results.
Nevertheless, as the models are very similar and based on the same principles, we believe
that fair conclusions can be drawn based on the results, which are shown in table 5.6.

Model MRR@10(Train) MRR@10(Distilled) Size Queries/min
Teacher 0.619† - 109M 0.41
L6-H768 0.585† 0.634† 67M 0.81
L3-H384 0.564 0.608† 17M 5.73

Table 5.6: Performance of knowledge distilled models, including the teacher model (BERT-Base).
The results from the models trained without knowledge distillation are marked "Train".
Statistically significant results compared to BM25 are marked with † (p < 0.05, two-tailed paired
t-test).
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The results clearly show the usefulness of knowledge distillation, where both students
achieve about 8% higher MRR scores than their regularly trained counterparts. It tells us
that smaller BERT models are able to achieve impressive results, which makes them much
more preferred to use in many retrieval systems. For future work, it would be interesting
to see how much a small model like BERT-Tiny would benefit from KD.

The results also mirror the findings of Chen et al. (2021) in the sense that the L6-H768
clearly outperforming its teacher and the smaller model performing similarly as the
teacher. Adding this to the fact that the students are 2 and 14 times faster, it is remarkable.
Chen et al. (2021) do not give any explanation of why this happens, but we hypothesize
that during the distillation, only the most important knowledge is passed down to the
students, whereas the teacher contains unnecessary parameters that could be a source of
error. The differences in the way the models were trained may also play a role.

Lastly, we observe that the teacher model performs very similarly to the BERT-Base we
evaluated earlier (0.619 vs. 0.613). This shows that training the model using the MS
MARCO passage dataset is very similar to training the model on the document dataset
and then splitting the documents into passages the way we did.
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Chapter 6
Conclusion

In this thesis, we have investigated how an attention-based model like BERT can use

its language understanding to rank documents, which is a typical problem within

information retrieval. Based on theory from transfer learning and innovations from

the Transformer, BERT is able to improve on the two major drawbacks with traditional

RNN-based sequence-to-sequence models, namely reducing training time by being

parallelizable and removing short-term memory by using self-attention. By fine-tuning

the model on data from the MS MARCO dataset, BERT is able to outperform classical

document ranking methods.

In this final chapter, we discuss the most important findings from the experiments and

relate them to the research questions and how they contribute to the knowledge in the

field. We also discuss some improvement points in the research methodology. Finally,

some thoughts and ideas for future work on the subject are presented.
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6.1 Discussion

6.1.1 Evaluation of Research Questions

Research Question 1 – How well do BERT-based document ranking models perform
compared to classical, well-used ranking methods?

The short answer to the question is: very well! BERT, with the help of attention
mechanisms from the Transformer, is able to use its language understanding to separate
relevant documents from the non-relevant ones, which was the main objective of this
thesis.

In experiment 1, we showed that a pointwise ranking model using BERT-Small was able
to significantly outperform BM25, improving MRR@10 by over 10% (0.517 vs. 0.571) and
recall@10 with almost 8% (0.71 vs. 0.765). BM25 is a well-used baseline method within
document ranking and the relative performance gains we achieved against this baseline
are comparable with the results of Dai & Callan (2019), despite the fact that we used a
smaller model.

We used passage score aggregation to create a relevance score for each document, and our
results indicate that taking the average passage score works slightly better than using the
maximum passage score. Other findings suggest that the maximum score outperforms
the sum of the scores, which indicates that reducing the bias towards longer documents is
favorable.

Research Question 2 – What are important factors when fine-tuning BERT for document
ranking?

As a consequence of using the pointwise approach, adjusting all the parameters in BERT
is necessary to achieve good performance. The number of task-specific parameters is too
small to fit the data well.

We have to be careful not to overfit our models. BERT has a huge number of parameters
and by training the model for too many epochs, we run into the risk of overfitting the
model to the data. Comparing the results from training a model for 3 and 6 epochs,
the models achieved MRR scores equal to 0.571 and 0.542, respectively, showing a clear
difference in performance.

Lastly, we tried to explore the effects of randomly initializing the model weights. After
training 4 identical models, there was a slight difference between the models. However,
we suspect that this could also be a consequence of noise in the test data. Nevertheless,
the final evaluation cross-entropy losses differ from the MRR performance, which means
that we need to test all the models on the actual document ranking system to accurately
measure a model’s performance.

60



Chapter 6. Conclusion 6.1 Discussion

Research Question 3 – How do factors that influence the speed of BERT impact the ranking
performance?

In experiment 3, we explored three different factors that influence the speed of BERT. The
model size plays a major role in the performance, where the performance correlates well
with the number of parameters. Not surprisingly, the speed decreases with the number of
parameters. We also found that having more transformer encoder is more beneficial than
increasing the hidden size, which contrasts the findings of Li et al. (2020). Differences in
model architecture may explain this dissimilarity.

We also found that increasing the number of candidate documents does not give
immediate improvements in ranking performance. The recall, however, did increase. The
additional documents might have confused BERT, which means that a bigger model is
needed to separate the relevant documents from the confusing ones. The differences were
small, so further research on this is needed to make any hard conclusions.

The final experiment we conducted revolved around how knowledge distillation could
be used in BERT-based ranking system, making use of the models trained by Simplified
TinyBERT. With two smaller student models that were 2 and 14 times faster, the MRR
scores were boosted to 0.634 and 0.608. Training the models the regular way, the models
achieved MRR equal to 0.585 and 0.564, which was expected for models of their size. When
comparing the biggest student model, L6-H768, to its teacher, BERT-base, the student
performed better (0.634 vs. 0.619). This is in line with the findings of Chen et al. (2021).
We hypothesize that using knowledge distillation only the most important is passed down
to the student, whereas the teacher contains excess parameters that could be a source of
error.

6.1.2 Improvement Points

Based on the findings from the experiments, we conclude that the chosen methodology,
including the model choice, the creation of training data and the evaluation setup, was
able to provide meaningful results that we could base our conclusions on. However, there
were some improvement points that could contribute to more consistent and comparable
results, as well as improving the model performances. The limitations discussed below
were primarily due to time and computation constraints, but also as a result of knowledge
gained throughout the implementation of the experiments.

We used a relatively small document corpus. The MS MARCO document ranking dataset
contains 3.3M documents, and using just 200000 of them makes it much easier for the
ranking model to perform well. This explains why our models achieve a much higher MRR
than the models on the MS MARCO leaderboard. With more documents in the corpus, the
number of candidate documents should also be higher than 20, as BM25 would struggle
more to filter out the relevant ones. We hypothesize that BERT-based models would be
better off when using more documents, as compared to BM25, but this is uncertain.
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More test queries would give more significant results that were easier to base conclusions
on. By using 200 queries, we were able to get statistically significant results, but some
results were ambiguous. For example, in experiment 2c, it was difficult to conclude that
the differences in performance were actually a result of different model initializations, or
if they were just a consequence of variance in the test queries. However, the Robust04 test
collection only contains 249 queries, which helps justify our choice.

Using more training data by increasing the number of training samples would probably
increase performance. This is based on the great performance of the Simplified TinyBERT
models, where the creators suggest that a lot of data is needed to train a model. More data
would also reduce the risk of overfitting. Improving the way training data was created
could also enhance performance. We based the creation of training data on the approach
suggested by Dai & Callan (2019). In this method, all passages from a relevant document
were considered relevant. However, not all passages from a relevant are in fact relevant,
which means that we teach our models to find nonexistent relevance. This is in some
cases mitigated by prepending the title, but not always. The approach used by Chen et al.
(2021), tries to combat this issue by using a larger model to filter out the top five relevant
passages, which are then used to train the other models. Using this technique, taking the
maximum passage score would likely be a better aggregation technique than using the
mean passage score.

6.1.3 Contributions

Despite the improvement points mentioned and the fact that we used a relatively simple
ranking setup, the results in this thesis contribute to knowledge on the topic. Unlike
other papers that use passage score aggregation, we considered taking the average passage
score. We did this to remove the systematic bias towards longer documents we get by only
taking the sum of the scores. Whereas previous research concluded that the maximum
passage score works the best, our results landed at the opposite conclusion.

Research question 2 aimed to fill in gaps in the research, as previous research provides very
little information about the fine-tuning procedure itself. We believe that all the findings
from experiment 2 are relevant for future research on the topic. The knowledge is also
applicable to research that aims to fine-tune BERT for other tasks outside of document
ranking and information retrieval.

Lastly, in our experiments, we used BERT-Small, which we found to perform worse than
the bigger models. All other research on the topic so far has used either BERT-Large or
BERT-Base, which are able to achieve better and more significant results. However, in this
thesis, we showed that a smaller model is capable of providing useful knowledge in this
field. As a consequence, we show that you do not need the biggest BERT model to be
able to conduct research or improve a document ranking system. Ultimately, this makes
it more applicable for systems where fast inference times are important or systems with
limited computational resources.
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6.2 Future Work

Considering the short time BERT has existed, the progress that has been made on the
model is quite astounding. Encouraged by the impressive results BERT achieved within
document ranking, a lot of researchers devoted their interest in the model, which has
pushed the boundaries for the state of the art in the field. However, there are still a lot
of areas to explore and questions to answer and it will be very interesting to see where the
research will lead. We therefore present some thoughts for future work on the topic.

Explore different retrieval methods that work better with BERT. Most models use BM25
to retrieve a list of candidate documents, but this might not be the best method to use
together with BERT. One alternative is to use approximate nearest neighbor search, which
is a topic we did not explore in this thesis. In that approach, we use BERT to create
a dense vector embedding of the document and the query and use a similarity metric,
for example, the cosine similarity (2.1), to find candidate documents. By creating the
document embeddings beforehand, and with the help of approximate search algorithms,
the retrieval is very fast. Research has been done on this method, but more progress needs
to be done.

There could be more sophisticated ways to use documents as input. All the models
we looked at split documents into passages and use these to infer knowledge about the
document. However, by using a fixed passage length, we risk splitting a sentence in half
and thus lose meaning, although this is mitigated by using overlapping passages. A more
natural way to split documents is by making use of sections or paragraphs, which most
documents are made up from. Nevertheless, it is not unlikely that there exists a completely
different way of solving this problem that has not been explored yet.

In order to use BERT in a general-purpose text search application, it has to be available
for more than English, which the current research is predominantly based on. Pre-trained
BERT models are available in a few other languages, for example, German and Chinese,
which makes it possible to train language-specific models. However, the resources for
document ranking, both test collections and training data, are very limited in most
languages except English, and creating new data is time consuming. Consequently, this
suggests the creation of cross-lingual ranking models, which are able to work on most
languages. This could for example be done by using robust machine translation models.

BERT clearly shows how attention mechanisms can be used to understand relevance
between query and document. This begs the question of whether creating an
attention-based model specifically for this purpose is better than fine-tuning BERT. By
sticking to BERT, researchers are able to take advantage of the advancements in the
knowledge of BERT and allow for the use of transfer learning, i.e. only needing to
fine-tune the model. The other approach allows for smaller and faster models because
all unnecessary components are removed. Other attention-based models may also arise
in the future that work better than BERT.
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