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Abstract

Since 1975, Aker Solutions Verdal has provided steel jacket substructures for off-
shore oil and gas platforms. The yard in Verdal has a strong position in the
market. Nevertheless, the global steel-price impact and the high salaries in Nor-
way contribute to the yard being less competitive and losing contracts to foreign
yards. Automation in the production would lead to a more modern yard with
faster production, higher accuracy, and less staffing need to ensure more contracts
in the future.

SINTEF Manufacturing has, in collaboration with Aker Solutions Verdal initiated
a project, AutoKons. The project addresses challenges in the manufacturing pro-
cedure of jackets, which are often one-piece productions. Such one-piece jackets
consist of large, heavy components that face challenges within geometric accuracy
and time-consuming tasks such as cutting, lifting, marking, and welding.

A jacket is a structure built of round tubes and typically has four or more legs
connected by a series of bracings. When assembling the bracing onto the leg, a
stub is used to connect the bracing to the leg. Instead of mounting the bracing
directly onto the leg, a stub makes it easier to align the bracing in the right position
and angle. Before the stub is welded onto the leg, embers and welding seams must
be grinded away in the area where the stub hits the leg. The stub is lifted up
after its cross-section cut has been cut out in the desired configuration and marked
with chalk to know where to grind. In this operation, one is dependent on cranes
which are considered time-consuming and delay other tasks in the manufacturing
area.

This thesis investigates creating a system consisting of a 3d camera with a projec-
tor based on avoiding the above-mentioned crane operation for marking. Instead
of lifting and marking manually, the stub’s cross section cut is marked with a
projector. The projected image will highlight the area on the leg’s surface on
which the sheet metal worker/welder should grind. An integration of this in the
current procedure can lead to fewer crane operations, and thus a more efficient
installation.

Various experiments are performed with synthetic and real data where stubs in
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different configurations are transformed from the defined reference system. With
certain assumptions, such as the reference system and the projected cross-section
not being compared to a real cross-section in the same configuration, it is seen
that results are obtained close to the position tolerances for tubular nodes in the
standard NORSOK-M101, Structural steel fabrication.

The implemented method also has the possibility of being extended to other ap-
plications within the current stub assembly procedure. The intersection path
between the meshes in the implemented method can also be used in automation
of cutting and welding by the use of robotic systems with hand-eye calibration.



Sammendrag

Siden 1975 har Aker Solutions Verdal produsert stål “jacket” understell for offshore
olje- og gassplattformer. Verftet i Verdal har en sterk posisjon i markedet, men på
grunn av den globale høye stålprisen og de høye lønningene i Norge, så fører det til
at verftet er mindre konkurransedyktig og mister kontrakter til andre utenlandske
verft. Automasjon i produksjonen av jacketer kan føre til et mer moderne verft
med raskere produksjon, bedre nøyaktighet og mindre bemanning som sikrer flere
kontrakter inn i fremtiden.

SINTEF Manufacturing har initiert et prosjekt, AutoKons, sammen med Aker
Solutions Verdal som undersøker problemer i fabrikasjonsprosedyren av jacketer.
Slike konstruksjoner er ofte av kategorien “et stykk” produksjon og består av
tunge dimensjoner som fører til problemer innen geometrisk nøyaktighet med
tidskrevende operasjoner som kutting, løfting, markering og sveising.

En jacket er en struktur som er bygd av runde rør og har typisk fire “leger” som
knyttes sammen av en rekke avstivere, “bracings”. Når bracingen skal monteres
på legen kommer stub montasjen inn. Istedenfor å montere bracingen direkte på
legen, kommer stuben inn som et lite koblet rørstykke mellom leg og bracing.
Stubens oppgave er å gjøre det enklere å justere bracingen slik at den kommer i
riktig posisjon og vinkel. Før stuben sveises på legen, så må glødeskall og sveis-
esømmer fjernes med sliping i området der tverrsnittet til stuben treffer legens
overflate. For å vite hvor man skal slipe løftes stuben opp etter at dens tverrsnit-
tet er kuttet ut i ønsket konfigurasjon, for å så markere med kritt. I denne
operasjonen er man avhengig av kran, noe som blir ansett som tidskrevende og
sinker andre oppgaver i fabrikasjonsområdet.

Denne masteroppgaven har undersøkt å lage et system bestående av et 3D kamera
og en projektor med utgangspunkt i å unngå overnevnte kranoperasjon for mark-
ering. Istedenfor å løfte opp og markere manuelt, så markeres stubens tverrsnitt
med en projektor. Bildet som deretter blir projisert igjennom projektorens bilde-
plan vil fremheve området på legens overflate, der platearbeideren/sveiseren skal
slipe istedenfor å løfte opp og manuelt markere. En integrasjon av dette i dagens
prosedyre kan føre til færre kranoperasjoner, og dermed en mer effektiv montering.
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Det er gjennomført ulike tester med både syntetisk og ekte data der stuber er de-
finert i ulike konfigureringer med en transformasjon fra det definerte referansesys-
temet. Med gitte antagelser som at referansesystemet og det projiserte tverrsnit-
tet ikke er sammenlignet mot et virkelig tverrsnitt i samme konfigurasjon, så ser
man at resultatene er nær posisjonstoleransene for rørknutepunkt i standarden
NORSOK-M101, Structural steel fabrication.

Skjæringskurvaturen som blir definert av skjæring mellom meshene i den imple-
menterte metoden kan også nyttes inn i andre applikasjoner i dagens stubmontasje
som kutting og sveising ved å flytte kurvaturens koordinater over i et robotkoor-
dinatsystem ved hjelp av en hånd-øye kalibrering.
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Glossary

bracing Stay tubes that form trusses between the legs. 1

can Can’s amplifies the node, this is just one pipes with greater material thickness
that connect a set of bracings together.. 8

circular welding seam Large round tubes are produced from rolled plates welded
together into a round tube; the weld seam is a longitudinal seam. 9

jacket Bottom fixed offshore construction of round tubes in trusses, also called
steels substructures or just chassis. The name jacket may come from the
construction became built as a jacket around the bottom attachment, i.e.,
the poles, because wooden poles became too short in deep water. 1

leg Round tubes with varying thickness and diameter, which operate as load-
bearing on a jacket. A jacket has 4 to 8 legs depending on the size and the
purpose of the jacket. The leg’s connection to the seabed is via clusters and
piles. 1

longitudinal welding seam Large round tubes are produced from rolled plates
welded together into a round tube; the weld seam is a longitudinal seam. 9

stub Transition coupling between the bracing and the leg. 1





Chapter 1.

Introduction

This chapter presents a brief background to the existing assembly problem and the
studied objective. Thenceforth, the purpose of this master thesis is formulated,
followed by the given limitations. Finally, an outline of the thesis concludes the
chapter.

Some of the content in this chapter is based on the author’s specialization project
written as part of TPK4560 at NTNU [1].

1.1. Background
Since the onset of commercial-size crude oil recovery in the late 19th century, the
global oil demand has led to an increase in offshore construction and fabrication.
In connection with oil extraction, one is dependent on large offshore platforms.
Offshore platforms are large steel structures with facilities for well drilling to
explore, extract, store, and process petroleum and natural gas that lies in rock
formations beneath the seabed [2]. Such extensive steel substructures vary in size,
depending on the oil field location.

The fabrication process for manufacturing large steel substructures involves lifting,
grinding, cutting, welding, and assembling heavy steel components. Multiple of
these tasks are manually executed and lead to time-consuming operations that
can be made more efficient by the increased development of production technology
within robotic vision.

When a significant steel substructure, a jacket, is settled for fabrication, legs,
bracings, stubs, and other components are essential for constructing a strong truss
structure. The jacket usually has four legs with several stubs in each elevation
that connect the bracing to the leg. In this master thesis, an assembling procedure
developed by Aker Solutions is considered. Essentially, the assembly procedure
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consists of assembling two components, the stub and the leg. The reader is re-
ferred to chapter 2, Stub Assembly for Jacket Manufacturing, for a more detailed
description and further illustrations of this procedure.

1.2. Problem description and objectives
Since 1975, Aker Solutions Verdal has provided steel jacket substructures for off-
shore oil and gas platforms. The yard in Verdal has a strong position in the
market. Nevertheless, the global steel-price impact and the high salaries in Nor-
way contribute to the yard being less competitive and losing contracts to foreign
yards. Automation in the production would lead to a more modern yard with
faster production, higher accuracy, and less staffing need to ensure more contracts
in the future.

Sintef Manufacturing has, in collaboration with Aker Solutions Verdal initiated
a project, AutoKons. The project address challenges in the manufacturing pro-
cedure of jackets, which are often one-piece productions. Such one-piece jackets
consist of large, heavy components that face challenges within geometric accuracy
and time-consuming tasks such as cutting, lifting, marking, and welding.

Assembling the stub onto the leg is today a central part of the jacket fabrication.
However, fitting tubular joints during the prefabrication of steel substructures for
offshore structures can present difficulties for the sheet metal worker/welder, as
it does not always fit properly. The stub’s cross-section cut is circular, ideally
defined without considering any tolerances within ovality, straightness, and cir-
cularity. Such imperfections lead to the stub section not always fitting, causing
time-consuming problems for the sheet metal worker/welder as adaptation and
rework occurs.

The installation involves repeatedly lifting with a traveling overhead crane to
mark for manual operations such as grinding and welding. Lifting operations are
slow, which makes the procedure inefficient and costly.

Therefore, the AutoKons project researches applications within vision systems
that can solve today’s procedure in a more time-efficient way. Regarding time-
efficient, so does both accuracy and manual operations make an impact.

In collaboration with SINTEF Manufacturing, this master thesis investigates crat-
ing a proof of concept of a 3D-camera-projector system that can project a stub
section cut onto the leg surface to reduce the number of lifting operations. The
proof of concept contains a structured light Zivid Two camera with an external
projector in a stereo setup as in Figure 1.1.
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Figure 1.1.: System Overview

This master thesis’ primary objective is to develop a method for projecting a stub
cross-section cut using a 3D-camera-projector system. The secondary objectives
are stated as:

1. Investigate the implemented method’s further possibilities into today’s as-
sembling procedure.

2. Evaluate the developed method against requirements in NORSOK-M101
Structural steel fabrication [3].

3. Illuminate the method’s limitations and identify further work for making
the implemented method more robust.



4 Chapter 1. Introduction

1.3. Previous work

1.3.1. SINTEF Manufacturing

SINTEF has, before this master thesis was initiated, worked with a procedure for
getting the intersection path between two measured meshes. The article, Mesh-
based tool path calculations for tubular joints [4], presents a mesh intersection
procedure to get the intersection path in the following sequences:

1. Performs an optional smoothing; interpolates the smoothed path to specified
resolution.

2. Estimates the two surface normal vectors and the two surface tangents in
the plane spanned by the normal’s at each interpolation point.

3. Calculates the cutting tool and welding tool approach directions for obtain-
ing the specified welding groove geometry at each interpolation point and
stores all the data parameterized by the interpolation angle.

The result from the article present illustrations with both synthetic, representative
meshes and meshes obtained from a hand 3D-scanner of actual tubes from the
shop-floor manufacturer. The reference implementation for the developed software
tool is based on Python and uses the mesh modeller from the 3D creation suite
Blender as the platform.

1.3.2. Specialization project

In the author’s specialization project [1], a flexible 3D-camera-projector method
was implemented. This method allowed calibration of a 3D camera with a pro-
jector without printing of a conventional checkerboard. Instead, the checkerboard
was projected through the projector, and the 3D camera defines the 3D points.
This makes it easier to calibrate fast with different fields of view where you usually
need printed checkerboards in various sizes. The method presented an acceptable
result in form of a proof of concept. A further description of this method is pre-
sented in Appendix B. The same technique is used in the implemented pipeline
in this master thesis.
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1.4. Limitations
Rather than producing an implemented method that tests every sub-process
through the pipeline, this master thesis aims to establish a functional approach
creating a good starting point. For making the method more robust, it is advan-
tageous to test different methods/algorithms in each sub-process. The main focus
has been to provide a pipeline with open-source libraries and few dependencies,
thus all theories for all algorithms are not presented.

SINTEF Manufacturing already had the Zivid Two camera. Therefore, structured
light is used as the geometric measuring method, hence obligating all other details
on the proof of concept to conform to it. In other words, different measurement
methods are not investigated in this report. The KUKA robot used in the lab
setup is only used to move the 3D camera and projector around in the scene, and
therefore no theory or detail on the KUKA robot is provided.
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1.5. Outline
The report is structured around the implemented method presented in chapter 4,
of the cause so the method can be used for different hardware that are used in
this thesis.

chapter 1 - Introduction
Necessary background information, problem description, objectives, and limita-
tions of the thesis are presented.

chapter 2 - Stub Assembly for Jacket Manufacturing
The main parts and components of Aker Solutions’ current assembly procedure
are presented concurrently with a description of the procedure, followed by gen-
eral acceptance criteria.

chapter 3 - Preliminaries
The necessary initial theory within computer vision, point clouds and meshes.

chapter 4 - Pipeline
This chapter describes the common pipeline, for either a synthetic or an indus-
trial lab system with the connected dependencies. The pipeline is divided into
four sub-pipelines that describe the processes for creating an Augmented Reality
(AR) assembly instruction system, and for grinding the section-cut for tubular
joints. The evaluation method of the pipeline concludes the chapter.

chapter 5 - Pipeline
Description of the hardware used in the experiment followed by a walk-through
of the steps included in the calibration method.

chapter 6 - Experiment
An experiment is conducted to evaluate some of the processes in the implemented
method. The goal and method is presented followed by the results.

chapter 7 - Discussion
Evaluation of the implemented method followed by an interpretation of the results.

chapter 8 - Conclusion
The conclusion of the master thesis is given followed by further work.

Appendix A - Appendix
The appendix presents the tolerance requirements in [3], the 3d-camera-projector
calibration method and the hardware data sheets.



Chapter 2.

Stub assembly for jacket
Fabrication

This chapter presents the today considered assembly procedure; assembly of tubu-
lar joints during jacket fabrication. The main parts and components are given
concurrently with a description of the assembly procedure. The presented infor-
mation within the assembly procedure is from chapter 2 in [5].

Some of the content in this chapter is based on the author’s specialization project
written as part of TPK4560 at NTNU [1].

2.1. Preliminary

Figure 2.1.: The various parts of a jacket explained [6]
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The Yard at Verdal specializes in constructing steel substructures for offshore
installations, so-called jackets, and has delivered multiple jackets since 1975. Steel
jacket substructures are truss platforms used in the petroleum and wind turbine
industries that are permanently attached to the seabed for prolonged use [7]. The
platform is composed of a deck supported by the jacket attached to the seabed
with piles or suction anchors.

Figure 2.2.: Jacket with detail [8]
View A: Node of a stub mounted on leg with detail of section cut.
View B: Stub mounted on a can where to bracings intersect.

The jacket is a structure build of round tubes and have typically four or more
legs connected by a series of bracings. When assembling the bracing onto the leg,
a stub is used to connect the bracing to the leg. The stub is typically a 2 meter
long round tube either mounted on to a leg (View A in Figure 2.2) or a can(View
B in Figure 2.2) between two bracings. Instead of mounting the bracing direct
onto the leg, a stub in each node makes it easier to align and adjust the bracing
in the right position and angle.
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2.2. Fabrication and dimensions

Figure 2.3.: Leg Section

Fabrication of large round tubes are done from cold-rolled plates and are welded
together with longitudinal welding seams as in Figure 2.4a. The length of the tube
is dependent on the rolling machine. Thus, it is needed to connect the round tubes
with circular welding seams as in Figure 2.4b. The legs are split into sections up
to 60 meters and finished with longitudinal- and round welding seams, cones, and
cans before the stub assembly procedure starts. One leg section typically has only
one cone Figure 2.3.

(a) Longitudinal welding seam (b) Circular Welding seam

Figure 2.4.: Welding Seams

The legs diameter varies in size from 2-6 meters depending on the steel structure.
Generally, the stub diameter is half of the leg; however, many stubs have the same
diameter as the tube it is should be on. This applies mainly to stubs between
bracings, legs without clusters, and the leg approach at the top of the jacket.
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2.2.1. Tolerances

As mentioned, the geometric and measurement fabrications tolerances for tubular
section A.1) and tubular nodes section A.2 impact today a lot how efficient the
stub installation turn out. High deviations like this can lead to time-consuming
work and, in the worst case, rework for the sheet metal worker and welder. The
tolerances that are essential for the stub assembly manufacturing is according to
NORSOK-M-101 [3] standard. The three most important are:

1. Circumference 1

2. Out of roundnesss(ovality) 2

3. Straightness 4

The reader is refereed to Appendix A in the appendix for a more detailed expla-
nation.

(a) Front View (b) Side View

Figure 2.5.: Tolerances

The assembly must be accurate, so the tubular fits in the desired position later in
the installation. All preparation work is so the welder could make a good weld. A
sharp, even welding groove improves the conditions for a good weld. Factors such
as visibility, access, and working position are also crucial. If a welding defect is
detected through the inspection, the weld around the area with the defect must
be grouted away and welded again.
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2.3. Stub assembly procedure

Figure 2.6.: Fabrication area for stub assembly [5]

The stub assembly procedure can be summarized into the following steps:

1. Cut the cross-section cut of the stub.

2. The legs are leveled and rotated, so the stub is mounted on the leg’s highest
point.

3. Lifting the stub onto the leg with overhead travelling crane.Marking where
to grind away embers and welding seams.

4. Lifting the stub down and start grinding.

5. Installation of the stub on wedges and welding.
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2.3.1. Stub cross-section cut

A CNC plasma cutter, Figure 2.7, defines the cutting path for the stub section-
cut. The stub and the leg’s nominal diameter define the path, and all geometry
deviations would impact the section cut accuracy. The cut accuracy depends on
the tube’s geometry within circularity, ovality, and straightness. Also, by applying
the cut, much heat is added that can change the tube geometry. After the cut,
embers, longitudinal seams, and circular seams need to be removed in the area
where the stub should be welded to the leg.

Figure 2.7.: SPC 1500-3000 PT, CNC Pipe Cutting machine for vessels and
offshore [9]

Even if the manufactured parts do not entirely match the drawing, the result must
be accurate to stay within the tolerances, especially for opposing construction
components. Mainly so that the forces are distributed as in the done calculations.
If the installation is inaccurate, it can give many extra hours filling with welding
and a greater probability of welding errors. Welding of the stub is the most time-
consuming part and takes almost twice the stub assembly time. Typical values
are a maximum of 15 hours for the assembly and welding at least 35 hours. The
angle, length, and thickness of the stub vary depending on the jacket’s placement.
The welding method depends on the angle, type of welding groove, and where the
operator is welding on the section cut.
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The larger the difference between the diameter, the easier it is to assemble the
stub, as the section-cut becomes a more flatted cut, showed in Figure 2.8. All
the round tubes are thick-walled and robust, and difficult to modify if they are
out of roundness. Components with out of roundness greater than the required
tolerance in Appendix A are often replaced because of vital dimensions.

(a) Unflat cut (b) Flat cut

Figure 2.8.: Section Cuts

2.3.2. Lifting up and marking

Before the stub assembly begins, the legs are leveled and rotated, so the stub is
mounted on the leg’s highest point. The legs’ rotation is often done with two
overhead traveling cranes simultaneously and is a time-consuming job.

The stub is lifted with a traveling overhead crane and lowered onto the leg. In
the Figure 2.9, the stub hangs a little crooked due to the center of gravity. The
cut of the stub makes it land approximately at the correct angle.
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Figure 2.9.: Overhead traveling crane lift the stub onto the leg

When the stub is in approximate position, the stub’s section is marked on the leg
to see the area where one needs to grind away surface rust and embers.

Figure 2.10.: Marked Grinding zone for stub section-cut
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2.3.3. Lifting down and grinding

The stub is lifted down again to be able to grind. Then the stub is lifted one
more time for assembly. This time the stub is landed on wedges to adjust the
joint opening and fine-tune the angle. A sledgehammer is used to adjust, and the
stub is offloaded on only two wedges and hanging in the crane. The stub would
then be difficult to handle and unstable.

Figure 2.11.: Lifted down for grinding

2.3.4. Installation and welding

The stub is in position, and the toe can be spot welded when the position and
opening in the toe are correct. This helps a lot with the stability of the rest
of the installation. Small pieces are used under welding for extra control of the
welding. These need to be removed afterward. The pieces may not be preheated
before welded because it is unwieldy and slowly, and the material around can be
damaged somewhat by this. This could lead to problems.

The time spent assembling is associated with a good deal of coincidence when one
gets the stub in an accurate position but is relatively easy for the most experienced
sheet metal workers. One does not know entirely if the cuts fit ( for example, if
it has been burned correctly) before the installation is almost finished, so that all
work may prove in vain.

During the entire installation, the overhead traveling crane will secure the stub
and limit other manufacturing areas’ activity. Other overhead traveling cranes
can not pass the one in use. If something is to be lifted past, one must wait or use
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other transport methods. The number of stubs installed simultaneously for a day
depends on the number of cranes and the number of stubs pointing in the same
direction( number of stubs on the top of the leg when rotated). Typical is three
stubs of 6 sheet metal workers. The stubs are welded before a new installation
because you do not have to rotate the leg many times.



Chapter 3.

Preliminaries

This chapter provides the reader with necessary theoretical knowledge regarding
computer vision system in 3D space. The presented theory concepts is gath-
ered from several textbooks as well as papers published in widely accepted jour-
nals [10]–[12].

Some of the content in this chapter is based on the author’s specialization project
written as part of TPK4560 at NTNU [1].

3.1. Computer vision

3.1.1. Rotation matrices

Rotation matrices are used to represent the orientation difference of a coordinate
system {c} to a rotated coordinate system {o}. The coordinate frames are a
representation in World coordinates(3D) and represented as a 3 X 3 matrices
with each column being equal to a unit vector. The reference system axes can be
e.q be represented as the identity columns vectors in R3×3.

{c} =
[
xc yc zc

]
=

 1 0 0
0 1 0
0 0 1

 (3.1)

To obtain the frame {o}, a linear transformation Rco is applied to represent the
rotation from frame {c} to frame {o}, denoted as Rco

Rc =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (3.2)
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Each matrix column representing coordinate the frame {o} are the directional unit
vectors of the the axes of frame {o} given in the coordinates of frame {c}.SO(3)
has the following definition [10]:

R ∈ SO(3) =
{
R ∈ R3×3, RTR = I3×3,det(R) = 1

}
(3.3)

Thus we can denote,
RT = R−1 (3.4)

3.1.2. Homogeneous transformation matrices

Transformation matrices are representations for combining orientation and posi-
tion of a rigid body. Normally, a natural choice will be to use a rotation matrix
as in (3.2) to represent a rotation of a body frame {b} in the fixed frame {s} and
a vector t R3 to represent the origin of {b} in {s}. Rather than identifying R and
t separately, we add them both into a single matrix as follows [10].

T =
[
R t
0 1

]
=


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 (3.5)

where R ∈ SO(3) and t ∈ R3 is a column vector.

3.1.3. Pinhole camera model

The pinhole camera model is commonly used in modeling a real camera for com-
puter vision applications. The model is designed so the light is supposed to go
through the optical center, which is the origin of the camera frame c, and then be
projected on to the retinal plane where the image sensors are located [12]. The
retinal plane is parallel to the focal plane and located the negative focal length f
distance in the zc direction. A simplification done in agreement with the thin-lens
theory of optics introduces the virtual image plane as the plane in the front of the
camera frame, parallel to the focal plane, and located the focal length f in the
positive zc direction.
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Figure 3.1.: Pinhole camera model

Let the homogeneous coordinates in the camera frame c be represented as:

r̃ccp =


xc
yc
zc
1

 (3.6)

The same point in the world coordinate frame w be defines as:

r̃wwp =


xw
yw
zw
1

 (3.7)

To be denoted in the figure below:

The transformation between frames for this point is given by

r̃ccp = Tcwr̃
w
wp (3.8)

where Tcw is homogeneous transformation matrix from {c} to {w}.

The normalized coordinates of the point is represented by rccp projected onto the
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Figure 3.2.: Camera and world coordinate systems

image plane is given by:

s̃ =

 sx
sy
1

 = 1
zc
rccp = 1

zc

 xc
yc
zc

 =


xc
zc
yc

zc

1

 (3.9)

The conversion between homogeneous and euclidean vector coordinates can be
done by

r = Πr̃ =

 1 0 0 0
0 1 0 0
0 0 1 0



rx
ry
rz
1

 =

 rx
ry
rz

 (3.10)

The normalized image coordinates can now be calculated by

s̃ = 1
zc

Πcc
cp = 1

zc
ΠTcwr̂wup (3.11)

The corresponding pixel coordinates values can be calculated by doing the fol-
lowing

u = f

ρw
sx + u0 (3.12)
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v = f

ρh
sx + v0 (3.13)

Were f is the focal length, ρw is the horizontal width off a pixel, ρh, is the vertical
height of a pixel, u0 and v0 are the pixel coordinates of the zc axis, which is the
center of the image plane [12]. The pixel coordinates is defines so the point of
origin is in the upper left corner of the image plane. The pixel coordinates vector
form are given the form as

p =
[
u
v

]
, p̃ =

 u
v
1

 (3.14)

Now it is possible to describe the transformation from the normalized image co-
ordinates to the pixel coordinates as a linear transformation by using the homo-
geneous vectors p̃ and s̃. The transformation is expressed as:

p̃ = Ks̃ (3.15)

where p̃ = (u, v, 1)T is the pixel coordinate vector s̃, s̃ = (sx, sy, 1)T is the nor-
malized image vector and

K =


f
ρw

0 u0

0 f
ρh

v0
0 0 1

 =

 fx 0 cx
0 fy cy
0 0 1

 (3.16)

is the camera parameter matrix. The elements of K are the intrinsic f , ρh. ρw,
u0 and v0 that are specific to the camera. The equations (3.1.3)) and (3.16) can
be combined into represent the projective camera transformation as

zcp̃ = KΠTcwr̃wwp (3.17)

This representation can be used to calculate the pixel coordinates for a corre-
sponding to a point r̃wwp, given the relative transformation between {c} and {w}.
This formulation is the is the basis for solving the inverse of a problem where the
pixel values of a point is known, and the position in the coordinates of the fixed
world frame {w} is desired.
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3.1.4. Corner detection

In computer vision systems detection of corners in variety of angles, light and ori-
entation is important within applications such as object detection, pose estimation
and camera calibration.

Corner detection is a approach used to find the regions in an image where is a
sharp change in intensity or a sharp change color as e.q. a corner. A corner can
be defined as the intersection between two edges. The sobel operator convolved in
use with the original image is used to calculate the approximations of derivatas,
representing the gradients of the image in x- and y-direction as in (3.18) and
(3.19) [13]. This operator is used in a variety of corner detection algorithm such
Harris [14], curvature scale-space (CSS) [15], or Susan [16].

Gx =

 +1 0 −1
+2 0 −2
+1 0 −1

 (3.18)

Gy =

 +1 +2 +1
0 0 0
−1 −2 −1

 (3.19)

3.1.5. Camera calibration

The camera calibration aims to establish the geometric parameters such as in-
trinsic and extrinsic parameters. This is a crucial step in many computer vision
applications where metric information in the scene is required. The intrinsic pa-
rameters obtained from a calibration are the parameters in (3.16) The pin hole
model in subsection 3.1.3 is simplified due to the sense that the light is going
straight through the optical center and hits the image sensor. In a real camera,
lenses focus the light in a way that it doesn’t behave as in the pin hole model and
need to be corrected by a set of distortion coefficients. Two major distortion are
radial distortion and tangential distortion. Due to radial distortion, straight lines
will appear curved. This effects is more visible as we move from the center of the
image. Tangential distortion occurs because the image taking lens is not aligned
perfectly parallel to the imaging plane. So some areas in image may look nearer
than excepted. In short to correct the image five distortion coefficients is given
by:

Distortion coefficients =
(
k1 k2 p1 p2 k3

)
(3.20)
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Where the k1, k2 and k3 correct for the radial distortion, and p1 and p2 for the
tangential distortion [17].

The extrinsic parameters corresponds to rotation and translation vectors which
translates a coordinates of a world point to a coordinate system.

3.1.6. OpenCV

In OpenCV the integrated method for Calibratecamera is from the Zhang’s and
Bouget’s Method.The Zhang’s [18] method is the most used calibration technique.
The techniqiue only requires the camera to observe a planar pattern from a few
(at least two) different orientations without knowing the distance. OpenCV uses
a printed checkerboard with a set size of the squares and number of squares in
the row- column direction(as in the figure). To calibrate the camera, a set of 3D
points and the corresponding camera 2D image coordinates is needed. The inner
corners points in the checkerboard is defined as the 3D points(objectpoints) and
the correspondent camera image coordinates are found by corner detection using
the function foundchessboardcorners(imagepoints). Since the checkerboard is
required to be attaced to a plane(wall) , the Z-coordinate of the objectpoints
is set equal to zero. When comparing the set of objectpoints and imagepoints
the camera matrix, the distortion coeffisents, rodriguez vectors, and translation
vectors can be obtained.

3.1.7. Zhang’s method

This section presents Zhang’s method for calibration [18] where the camera param-
eter matrix, K is computed from Pnp in three planes where the unit orthogonal
vectors of at least three checkerboard plane poses are found, and the absolute
conic B = K−TK−1 is found from the 2 constraints for each plane related to
theswe orthogonal unit vectors [12].

Consider 3 object planes α1, α2 and α3. Define an object frame 1 so that the z
coordinate is zero in the object plane α1, α2 and α3. As in the Figure 3.3 below:
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Figure 3.3.: Three planes, α1, α2 and α3, with four points in each plane.

In each object plane αj there are 4 points with coordinates in the object frame
{j} given by r̄jji = [xji, yji, 0]T. The corresponding homogeneous vector of the
position in the xy plane of frame

xji =

 xji
yji
1

 (3.21)

The normalized image coordinates of the point rjji are given by

s̄ji = Πr̄jji =
[

Rj tj
]

rjji = M jxji (3.22)

where,
M j =

[
r1 r2 t

]
(3.23)

The pixel coordinates are then

p̄ji = Ksji = KMjxji (3.24)

This defines a homography Hj = KM j for the plane αj so that

pji = Hjxji (3.25)

The homography Hj = KM j for the plane αj can be found from the four point
mappings (p̄ji, x̄ji) where xji is a point on the plane αj . Suppose that the homog-
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raphy Hj =
[
h1 h2 h3

]
is found for 3 different planes αj , j = 1, 2, 3. Then

for each plane[
h1 h2 h3

]
= K

[
r1 r2 t

]
=
[

Kr1 Kr2 Kt
]

(3.26)

and follows that
r1 = K−1h1 and r2 = K−1h2 (3.27)

The orthogonality of the rotation matrix implies that

rT
1 r2 = 0

rT
1 r1 = rT

2 r2
(3.28)

This gives the conditions
hT

1 Bh2 = 0
hT

1 Bh1 = hT
2 Bh2

(3.29)

on the image of the absolute conic B = K−TK−1 =
(
KKT

)−1
, which is a

symmetric matrix. Ensuring the symmetry of B the elements of the matrix is
written in terms of 6 independent variables b1,....,b6 as

B =

 b1 b2 b4
b2 b3 b5
b4 b5 b6

 (3.30)

The elements are stacked in the vector as

b =
[
b1 b2 b3 b4 b5 b6

]T
(3.31)

The two conditions for each plane can then be reformulated as a1b = 0 and
a2b = 0. The first condition can be formulates as

uTBv =u1v1b1 + (u1v2 + u2v1) b2 + u2v2b3

+ (u1v3 + u3v1) b4 + (u2v3 + u3v2) b5 + u3v3b6
(3.32)

and the second is

uTBu− vTBv =
(
u2

1 − v2
1

)
b1 + 2 (u1u2 − v1v2) b2 +

(
u2

2 − u2
2

)
b3

+ 2 (u1u3 − v1v3) b4 + 2 (u2u3 − v2v3) b5 +
(
u2

3 − v2
3

)
b6

(3.33)

where h1 = u = [u1, u2, u3]T and h2 = v = [v1, v2, v3]T is used to simplify
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notation. This gives

a1 =
[
u1v1 u1v2 + u2v1 u2v2 u1v3 + u3v1 u2v3 + u3v2 u3v3

]
a2 =

[
u2

1 − v2
1 2 (u1u2 − v1v2) u2

2 − v2
2 2 (u1u3 − v1v3) 2 (u2u3 − v2v3) u2

3 − v2
3

]
There will be 2 conditions, and 3 planes gives 6 conditions. This leads to the
expression

Ab = 0 (3.34)

where

A =



a11
a12
a21
a22
a31
a32


(3.35)

A solution for b is then found with a singular value decomposition of A as

A =
6∑
i=1

σiuiv
T
i , ui ∈ R2n, vi ∈ R6 (3.36)

which gives b = kv6. Then the matrix B is found from the elements of b. Now, the
camera matrix Kl can be found from B using Cholesky decomposition. There are
different variants of the Cholesky decomposition. The Cholesky decomposition of
a symmetric positive definite matrix B as B = LLT where L is a lower triangu-
lar matrix, that is, a matrix where all the elements above the diagonal are zero.
However, in the standard MATLAB and OpenCV function the Cholesky decom-
position as B = GTG where G is upper triangular, which is a matrix where all
elements below the diagonal are zeros. This is appriotae for this problem because
K and K−1 are upper triangular as in (3.16). Cholesky decomposition based on
B = GTG where G is upper triangular then gives K−1, and K is finally found
by matrix inversion.

3.2. Point clouds
Point clouds are a set of data points in space which either can represent a 3D
shape or a object. Each point can be represented as pj = [xj , yj , zj ]T . To gen-
erate a point cloud the accuracy of the depth value along the optical axis zc, is
crucial to calculate pj by using (3.17) [12]. The depth value can be calculated
using structured light, time of flight finders or stereo vision. A point cloud is
often organized in combination with RGB values for each point. The point cloud
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can be used in applications such as geometric measurement, visualization, object
recognition and classification.

3.2.1. Iterate closest point

The iterates closest point(ICP) is an algorithm designed to minimize the difference
between two point clouds by finding the best fit transformation in terms of rotation
and translation. The algorithm is compromised by every iteration of ICP as a least

(a) Top view (b) Detail view

Figure 3.4.: Uses ICP to align the green point cloud to the blue. The red point
cloud is after ICP.

squares minimization problem. The function that wants to be minimized is the
squared sum of distances between a point cloud P = {pi}, to another point cloud
,Q = {qi}:

E =
∑
i

[Rpi + t− qi]2 → min (3.37)

To minimize this function the pose in form rotation R and translation t need to
align the P to Q. It is a non-linear function because of the rotation.

3.2.2. Rotate point clouds using normals

The computation of surface normals from a point in a point cloud, pj = [xj , yj ],
is essential in many 3D vision applications. This can be done in different ways
such as:

1. Pick three non-collinear points lying in a plane, pj , to calculate the plane
normal Z-axis, Y-axis and X-axis.
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2. Use all the points in pj to fit a plane by minimizing the least squares error,
this will give us plane normal(Z-direction). Then choose two points in pj
to calculate the X or Y axis direction. Either by the cross product of the
normal and X or y, i.e. y = x× z

3. Use the eigenvectors of pj covariance matrix as the plane’s xyz axes.

From these three methods there are some pros and cons. In method 1, which
three points should we use to estimate the plane? The same question is relevant
for method 2, which two points should we use to estimate the X and Y axis?
The prefered method is 3 since there we use all the variances of all the points to
calculate the xyz axis for the plane [19].

3.2.3. Covariance matrix

By looking into the covariance matrix, a quick look at the difference between
the variance and the covariance will make thing more clear. Variance measure
the variation of a single variable(the values along the x-axis example), whereas
covariance for a point cloud is a measure of how much three random variables vary
together(like the values along the X, Y and Z axis) [20]. The covariance matrix
for a 3-Dimensional case can be expressed as

C = 1
n− 1

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)T
(3.38)

where C ∈ R3×3, Xi = [xi, yi, zi] and X̄ is the sample mean for all axis and can
expressed as the centroid of the coordinates. X ∈ Rn×3 where n is the number of
points in the point cloud. An interesting approach is that the expression

Xi − X̄ = Cn ·Xi (3.39)

where Cn is the centering matrix [21], see in section D.1 for a closer look. This
expression (3.39) define the set of coordinates relative to the origin set as the
centroid. Then we can express the covariance matrix (3.38) as

C = 1
n− 1

n∑
i=1

(Cn ·Xi) (Cn ·Xi)T (3.40)

To find the set of the points XYZ axis we need to find the eigenvectors of the
covariance matrix. This can be applied either by eigen decomposition of the co-
variance matrix or singular value decomposition(SVD) of the expression in (3.39)
as

(Cn ·X) = UΣV T (3.41)
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Where each column of U represent the XYZ axis of the X matrix. To orientate
X the XY plane of the checkerboard coordinates we need to left multiply the
eigenvector U−1 = UT to the expression in (3.39) as

Xr = UT · (Cn ·X) (3.42)

Where Xr is the vector where a set of points are aligned with XY plane given
that X coordinates are collinear along the relative Z-axis for X.

3.3. Mesh

3.3.1. Delauney triangulation

Delauney triangulation is used to construct topology from unstructured point
data. In two dimensions we create generate triangles from an unstructured grid
or polygonal dataset, while in three dimensions we generate a tethradal. In the
Figure 3.5 we see how to create triangles in 3D from a field of points.

(a) Point cloud (b) Triangles (c) Surface

Figure 3.5.: Delauney Triangulation

These points are captured by a 3D-camera and are down sampled since it isn’t
necessary to create triangles from all the points. Since all the points in Figure 3.5a
can be projected onto a plane. The triangle indices are created in 2D, and then the
same indices in 3D are found afterwards to generate the triangles. The Delauney
triangulation meet the following properties [22]:

1. In Delauney there will be no other points(vertex) within the circumcircle of
any triangle.

2. A triangle is formed by the nearest points, and each line segment do not
intersect.

3. No matter where the area starts from, the final result will be consistent.

4. If the diagonals of the convex quadrilateral formed by any two adjacent
triangles are interchangeable, then the smallest angle among the six internal
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angles of the two triangles will not become larger.

5. If the smallest angle of each triangle in the triangulation is arranged in
ascending order, the arrangement of the Delaunay triangulation will get the
largest value.

6. Adding, deleting, or moving a vertex will only affect the adjacent triangle.

7. The outermost boundary of the triangular mesh forms a convex polygon
shell.

One important concern regarding the Delauney triangulation is that the process
is numerically sensitive. Creating triangles with too few points can cause the
algorithm to break down. And if you have a large number of points to triangulate,
you may consider to randomize the order of the points.

3.3.2. Mesh intersection

Mesh intersections within VTK [22] are within boolean operations and the algo-
rithm in VTK is from [23]. The possible Boolean operations between two objects
are their union (A ∪ B), intersection (A ∩ B), and difference (A − B or B − A).
A boolean procedure takes in two objects and outputs a combination of these
objects. These objects are assumed to be triangulated surface meshes. To explain
the boolean procedure, a couple definitions are required to be explained,
Intersection loops: Define where one surface crosses the other and Sub-surfaces:
are the portions of each surface that are separated by the intersection loops. The
computational steps in the Boolean process for discrete polygonal surfaces can be
summarized into:

1. Intersection: Determine where the input surfaces intersect in space. This
step creates the intersection loops that are used for re-triangulation and sub
surface determination.

2. Re-triangulation: Re-triangulate each surface near the intersection loops.
The intersection loops are comprised of intersection points and lines on each
surface, and each surface is re-triangulated seperatly.

3. Boolean: Determine the correct combination of sub surfaces for output.
The Sub-surfaces are extracted based on their orientation relative to the
intersection loops incident on the surfaces.
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(a) Meshes (b) Intersection curve

Figure 3.6.: Mesh intersection between two coarse meshes

3.3.3. Signed distance

A signed distance field is point-associated field that gives the distance from each
point in a data set to some location or object. In the case in Figure 3.7, the signed
distance are computed as the nearest point on the yellow polygonal mesh. The
sign of distance is determined by which side of the yellow mesh the points are
located. Points inside the yellow mesh or in the opposite of the surface normal
direction will have a negative distance while points outside will have positive
distance. Points on the surface will be equal to a distance of zero.

(a) Overview
(b) Detail view

Figure 3.7.: Signed distance





Chapter 4.

Method

This chapter describes the common pipeline for either a synthetic or an industrial
lab system with the connected dependencies. The pipeline is divided into four sub-
pipelines that describe creating an AR assembly instruction system for grinding
the section cut for tubular joints. The evaluation of the pipeline concludes the
chapter. Each sub-pipeline is explained with figures and diagrams. The evaluation
method in the last section concludes the chapter.

Figure 4.1.: Pipeline Diagram
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4.1. Dependencies
This section presents the dependencies and assumptions for the hardware and
software connected to the implemented pipeline.

4.1.1. Hardware

Figure 4.2.: Hardware Pipeline

The pipeline requires that the following hardware is available:

1. Computer - a standard computer with an external graphics card supports
OpenGL and runs either Windows or a Linux platform. The computer must
have connectivity options for Ethernet and HDMI or use a USB hub with
these options.

2. Capture Point Clouds- An industrial or a synthetic 3D camera that captures
high resolution point clouds with good precision. An advantage is to have
a 3D camera that can capture a large field of view(FOV) within a short
working distance.

3. Projector - a projector that can produce a large image that overlaps with the
FOV of the 3D camera. An advantage is to have a short-throw projector
with a short focal length, so the projector translation relative to the 3D
camera is small. The projector can either be synthetically or a real-desk
projector.

4. A setup that makes the 3D camera and projector rigid so a transformation
can be found from a stereo calibration. This setup can either be a rig, a
robot, or another kind of setup.
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Impact factors

Hardware has properties that will affect whether it fits the application or not. For
example, if you look at a computer’s connection to the pipeline, its task is to get
the application running as quickly as possible. In any case, it has not been taken
into account that the system will work in real-time for this pipeline, so how fast
the code goes has been irrelevant when implementing the system.

(a) Field of View (b) Working distance

Figure 4.3.: Camera and projector parameters

Many factors impact a 3D-camera point of view on how the capturing result of a
point cloud would be. There are many different technologies in the field of machine
vision. The main factors that apply when choosing the feasible technology are
factors as:

1. Working Distance - The distance from the 3D camera to the object scene.

2. Field of view - The view the 3D camera sees and is dependent on the working
distance.

3. Resolution - The number of pixels in a image plane, dependent on the image
size in height and width.

4. Accuracy: The accuracy compared to real measurement.

The same factors apply when choosing a projector as a 3D camera. The Figure 4.3
shows the system is configured so the projector and the 3D Camera overlap in
the FOV. Traditional projectors, typical desk projectors, have a much longer focal
length than 3D-camera. As stated earlier, it is expedient to have a projector with
a focal length in the same area as the focal length of the 3D Camera. Therefore,
it is feasible for this application to have a short-throw projector with a short focal
length that can throw a large image on a short distance.
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The projector and the 3D camera need to be on a rigid setup that makes it
easy to calibrate transformation from the camera frame to the projector frame.
In addition, the setup needs to see the leg’s surface from a top view as in the
Figure 4.4a.

(a) Rig setup example top view (b) Rig setup example side view

Figure 4.4.: Rig setup example

Figure 4.5.: Rigid 3D-camera-projector with transformation Tcp
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4.1.2. Software

The software for this system is developed usiing python 3, and use these pip
packages:

1. Numpy- Numpy [24] is the fundemental package for scientific computing in
Python. It is a Python libary that provides multidimensional array object,
various derived objects(such as masked arrays and matrices), and an as-
sortment of routines for fast operations on arrays, including mathematical,
logical, shape manipulation, sorting, selection, I/O, discrete Fourier trans-
form,basic linear algebra, basic statistical operations, random simulation
and much more.

2. Visualization ToolKit(VTK) - VTK [22] is open source software for
manipulationg and displaying scientific data. It comes with the state-of-
the art tools for 3D rendering, a suite of widgets for 3D interaction, and
extensive 2D Plotting capability.

3. Vedo - Vedo [25] is a lightweight and powerful python module for scientific
analysis and visualization of 3D objects. Vedo is based on VTK and numpy
with no other dependencies.

4. OpenCV - OpenCV [26] (Open Source Computer Vision Library) is an open
source computer vision and machine learning software library. OpenCV was
built to provide a common infrastructure for computer vision applications
and to accelerate the use of machine perception in the commercial products.

5. Open3D - Open3D [27] is an open-source library that supports rapid devel-
opment of software that deals with 3D data. The Open3D frontend exposes
a set of carefully selected data structures and algorithms in both C++ and
Python. The backend is highly optimized and is set up for parallelization.

6. Matplotlib - Matplotlib [28] is a cross-platform, data visualization and
graphical plotting library for Python and its numerical extension NumPy.

7. Scipy - SciPy [29] a scientific computation library that uses NumPy under-
neath. SciPy stands for Scientific Python. It provides more utility functions
for optimization, stats and signal processing.

8. OpenEXR - OpenEXR provides the specification and reference implemen-
tation of the EXR file format. The purpose of format is to accurately and
efficiently represent high-dynamic-range scene-linear image data and associ-
ated metadata, with strong support for multi-part, multi-channel use cases.
The library is widely used in host application software where accuracy is
critical, such as photorealistic rendering, , image compositing, and deep
compositing.
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4.2. Capture point clouds
You get an array of ordered points after capturing a point cloud, either synthetic or
from real data. How the array is organized is dependent on which 3D camera you
are using. The most common formats for 3D graphics are ASCII points(*.xyz),
PLY file (*.ply), and Point Cloud Data file (*.pcd). An advantage when working
with point clouds is to have the points organized with correspondence between the
pixels and the 3D points. This makes it easier to extract pixels and the coordinate
for that coordinate instead of computing the 3D point each time it is needed by
using the camera intrinsic and z-data obtained through triangulation.

4.2.1. Blender point cloud

The blender point cloud is created from rendering through a scene in Blender with
the format OpenEXR. The OpenEXR format allows extracting the Z-data for each
pixel value in the rendered image with the RGB values. Thus, you can construct
an industrial environment in Blender as your intended application. This is very
practical in earlier phases when you want to test your principle. For example,
you can create a 3D camera with all the properties you wish to have. It is often
much easier to start with a "perfect" environment first before adding all the noise
coming from a real environment.

Figure 4.6.: Capture point cloud in Blender API

When you have rendered a multichannel image with a (.exr) format, you can im-
port the file into a python environment with the package OpenEXR. Now, you can
decompose the multichannel format to extract out the RGB-Values and Z-data.
To create a point cloud now, you need the intrinsic parameters and the distortion
coefficients. However, the designed camera in Blender for this application has no
distortion. So the only thing required is the intrinsic parameters. By running a
python script in Blender, you can extract the intrinsic parameters of all your cam-
eras in the scene and save them to your wanted location. Below, in Figure 4.8,you
can see a general point cloud rendered in Blender.

https://github.com/eivindtn/Master-Thesis/blob/main/blender/scenes/get_K_from_cameras.py


4.2. Capture point clouds 39

(a) 2D Image (b) Depth Map

Figure 4.7.: Blender Capture

By combining the 2D image, camera intrinsic and the depth image you can create
a point cloud:

(a) Point cloud not downsampled (b) Point cloud downsampled with voxel

Figure 4.8.: Point cloud captured in Blender

4.2.2. Zivid point cloud

The Zivid Point Cloud is organized as the format Zivid Data File(.zdf), a format
that has ordered the points with a 1:1 correlation between pixels in the 2D im-
age(color and depth) and the X, Y, Z points in the point cloud. This means that
the neighbor pixels in the 2D image are the neighbor points in the point cloud.
The orderliness of this array speeds up the computation and lowering the cost of
dealing with noisy data.
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Figure 4.9.: Pixel correspondence of the Zivid data file

The Zivid two camera uses a sensor with 2.3 MP(1944x1200) to capture point
clouds of a scene. Because of the 1:1 correlation between pixels and points, the
generated point cloud consists of approximately 2.3 million points. XYZ (mm),
RGB(8-bit), and SNR are provided for every pixel, where the SNR signal is the
Signal-to-noise-ratio. The data is stored as an array of shapes [1944, 1200, 7].

Figure 4.10.: Capture Point Cloud Zivid Two
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When running the pipeline, the capturing setting for the Zivid camera is set
through Zivid studio, where you can adjust settings for capturing a better point
cloud. However, the Zivid studio has an assisted mode that adjusts the settings
to the best for the captured scene. A .yml file is exported from Zivid studio and
saved to a location where the Zivid python API can load the same settings. Then
this file is used to capture with running a Python script. After capturing a point
cloud image, it returns an xyz array, 2d image, and a ply-file loaded into Vedo.
Also, every time a scene is captured, a .zdf is saved to easily import the data later
if you want to adjust and recreate the scene and print other results/plots.

(a) 2D image (b) Depth map

Figure 4.11.: Zivid captured point cloud

4.3. Pointcloud processing
Now, a point cloud is either captured synthetically or from a 3D industrial camera.
The common format for both Open3d and Vedo is a ".ply" format. So when we
have an xyz array of .ply and image array, it is easy to work with both Open3d and
Vedo. However, point clouds, either captured in Blender or by a 3D camera, con-
tain millions of points. Working with arrays with millions of points requires high
computation time, and often it isn’t necessary to have so many points. Therefore,
downsampling is done to shorten computation time. Usually, downsampling and
outlier removal/noise is made parallel to get a more workable point cloud.

In Vedo, all objects imported into the library are converted into a poly data object.
This object can be a surface mesh structure that can hold data arrays in points,
cells, or in the dataset itself. Open3d converts all objects into a point cloud data
file (.pcd) invented by the pointcloud.org library. The data file format can store
xyz data, xyz data + colors, xyz- surface normals, and moment invariants.
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Figure 4.12.: Point cloud processing

4.3.1. Downsampling and outlier removal

Downsampling and outlier removal of a point cloud can be done in many dif-
ferent ways depending on which approach you want to have. However, mainly
computation time, density, and distance between points define the compression
of a high-resolution point cloud. In this pipeline, the main functions for down-
sampling have been downsampling through voxels, radius outlier removal, and
removing points that are close or too far from the scene/camera to an object.

(a) Delete points within a Z-
value

(b) Downsample and delete
the Aruco marker

(c) Downsampled for cylin-
der fitting

Figure 4.13.: Downsampling the Zivid point cloud

In vedo an option is to clean a pointcloud with a function that create a bounding
box around a point with a tolerance value that defines how far the points should
be from each other in terms of fraction of the bounding box length. The tolerance
value is set in terms of the unit used in the pointcloud So the value is tuned
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for desired result. In the Figure 4.13 you see a Zivid captured point cloud that
is downsampled for both creating a mesh and for fitting. In Open3d you can
downsample within a voxel filter that defines 3D voxel grid(think about a voxel
grid as set of tiny 3D boxes in space). Then, all points in each voxel(3D box) will
be downsampled to the approximated centroid in each voxel. After the pointcloud
is downsampled to a less concentrated point cloud it is easier to remove outliers
with a nearest neighbour search since the outlier clusters arent so concentrated as
it was. Vedo can remove outliers from a cloud of points within a specified radius
search, and can define how many neighbour points that should be deleted from the
point cloud. However, sometimes it isn’t so easy to delete all outliers/noise from
a industrial 3D camera. So for this scene some points are deleted by the range of
the z-component using Numpy to find all indices that have a z-component that is
larger or smaller than a threshold value.

The Aruco marker in the figure is defined as noise for the point cloud for either
mesh or cylinder fitting. To delete the marker from the scene, the four corners in
the image below are found in pixel values with the OpenCV function for finding an
Aruco marker. Then the correspondent points in the point cloud can be found to
define a bounding box to delete all the Aruco marker points as in the Figure 4.14.

(a) Aruco marker in 2D image
(b) Correspondent Aruco point in
pointcloud

Figure 4.14.: Zivid Aruco marker
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4.3.2. Cylinder fitting

A point cloud is now downsampled, so the number of points shows a fair distribu-
tion of points that show how the leg lay in the scene. To define a reference system
along the leg, defined axes are needed to set a configuration between the leg and
the stub. A cylinder fitting is set to define a common direction axis for the points
in the Figure 4.15a.

The algorithm for this is from David Eberly’s paper [30], Fitting 3D Data with
a Cylinder. Xingjie Pan implements the algorithm in Python from the following
repo. The algorithm returns a direction axis for the points, a radius, and a point
along the direction axis. A reference system can be created from the direction axis
and the Aruco marker to move points with a set translation along the direction
axis. When running the algorithm, we get a direction vector(axis) as in the
Figure 4.15a.

(a) Fitted cylinder axis to cylinder points (b) Fitted cylinder

Figure 4.15.: Cylinder fitting

Since the axis to the cylinder and the Aruco reference point is now known, a
reference system can be defined from the axis and the Aruco point as described
in the next section.
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4.3.3. Reference system

A point cloud has been created, the data has been cleaned of noise, a reference
point from the Arcuo marker has been found, and a common axis for the leg’s
surface points is defined. The next step is to define a reference system to determine
a stub configuration that intersects with the leg’s surface. With the reference
system, the idea is to rotate the stub around reference system axes and add a
desired translation along the leg’s axis.

A lot of geometry is defined in the pipeline, and in order not to confuse the different
coordinate systems, axes, points, and surfaces with each other, all defined names
are introduced before it is explained up against the pipeline in Figure 4.17.

Before the reference frame {r} can be defined, the leg mesh, Lm, surface need
to be created. A more detailed description of this is in section 4.4. The {r} is
defined as following in Figure 4.16:

1. The origin point, Or of {r} is defined by intersecting a line, the perpendicular
vector of the La going through the Aruco point in the point cloud with the
Lm.

2. {r}x, is the leg axis,La , vector return from the cylinder fitting in subsec-
tion 4.3.2.

3. {r}y, the cross product between {r}x and {r}z.

4. {r}z, is the perpendicular vector to La and is coincident with black axis in
Figure 4.16.

(a) Side view (b) Detail view

Figure 4.16.: Reference system frame
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(a) Top view (b) Side view

Figure 4.17.: System variables

a) Lm - Leg mesh

b) La - Leg axis

c) Sm - Stub mesh

d) Scm - Stub concentric mesh

e) Sa - Sm and Scm has same
axis

f) Ism - Intersection curve be-
tween Sm and Lm

g) Iscm - Intersection curve be-
tween Scm and Lm

h) {r} - Reference system
frame

i) Or - Origin point of {r}

j) {c} - Camera frame

k) {p} - Projector frame

l) Ag - Area grinding

m) Ip - Intersection point be-
tween Sa and Lm.
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A positional reference system, {r}, is established for creating different configura-
tions for a stub orientation and translation relative to {r}. When a configuration
of a stub, Sm and Scm are made. The two cylinders are defined, so the Sa is
coincident with {r}z-axis. Then the orientation configuration can be applied by
rotating around one or multiple of the axes of {r}. The difference between the Sm
and Scm define the thickness of the stub. Figure 4.18-Figure 4.22 show examples
of different configuration with orientation and translation.

(a) Side view
(b) Top view

Figure 4.18.: Initial stub configuration

(a) Front view (b) Top view

Figure 4.19.: Stub configuration with 30◦ rotation around {r}x
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(a) Side view (b) Top view

Figure 4.20.: Stub configuration with 30◦ rotation around {r}y

(a) Rotate 30◦ around {r}y (b) Rotate 45◦ around {r}x (c) Rotate 30◦ around {r}z

Figure 4.21.: Stub configuration with rotation {r}y-{r}x-{r}z.

(a) 150 mm translation {r}x(b) 300 mm translation {r}x(c) 450 mm translation {r}x

Figure 4.22.: Stub translation configuraion
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4.4. Mesh processing

Figure 4.23.: Mesh processing

A mesh is normally computed of a collection of vertices, edges, and faces that
defines the shape of a polyhedral object. The faces typically consist of triangle
elements. The polygon mesh is created using Delaunay triangulation by projected
the x-y points from Figure 4.24a onto a plane and find the best indices of triangle
elements. It is then matching the triangle polygons between the same indices
between xy-Plane and the real point cloud, Figure 4.24b. An advantage here is
that the Zivid captured point cloud is a 1:1 correspondent pixel point cloud makes
it much faster to find the triangle vertices. Since intersection between two meshes
is planned to do, a subdivision filter is added to all the elements in Figure 4.24c
to produce more elements. This means subdividing all triangle polygons by 3,
which means making three new triangles inside one triangle.

(a) Downsampled pointcloud (b) Mesh triangulation (c) Triangle elements subdi-
vided by 3

Figure 4.24.: Mesh generation of Lm
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The leg mesh, Lm is now created, and to make a configuration of stub meshes,
two synthetic cylinders need to be defined. In Vedo [25] there are functions for
creating different shapes, such as cylinders. Therefore, two synthetic cylinders can
be created with a defined radius, axis, and resolution to define Sm and Scm. As
stated earlier in subsection 4.3.3, the stub configuration is created in {r} where
the Sa is coincident with the {r}z-axis as in Figure 4.18. From here, the Sm and
Scm can be defined with orientation and translation within {r} limits.

4.4.1. Mesh intersection

A stub configuration is set with a defined orientation and translation relative to
{r}. Then the next is to intersect the Sm and Scm with Lm to define Ism and
Iscm . The difference in radius between Sm and Scm will define the thickness of
the tubular stub and the Ag.

Through Vedo [25] all mesh objects are defined as a VtkPolydata object. This
object can represent geometric structures such as vertices, lines, polygons, and/or
triangle strips. Point and cell attribute values(e.g., scalars, vectors, etc.) also are
represented. However, to intersect two meshes, the meshes need to be defined as
such an object. Intersecting is done through the function intersectionWith in Vedo,
that uses the vtkIntersectionPolyDataFilter in VTK [22]. This filter computes the
intersection between two vtkPolyData objects and returns a line/curve. In this
case this function return Ism and Iscm .

(a) Configuration in {c} with {p} (b) Intersection lines in {c} with {p}

Figure 4.25.: Mesh Intersection in {r}
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Figure 4.26.: Intersection lines,Ism and Iscm , and grinding area Ag.

4.5. Image projection

Figure 4.27.: Image projection

4.5.1. Calibration

Before the Ag can be highlighted onto the leg’s surface, an projector intrinsic and
a stereo calibration need to be done in order to transform the Ism and Iscm in
to the {p}- frame. The reader is referred to Appendix B, Zivid and Projector
Pair Calibration, for a more detailed description and further illustrations of this
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calibration method. The checkerboard used for calibration is a 11x17, row by
columns checkerboard in Figure C.1, the returned projector intrinsic, distortion
and the transformation between {c} and {p} is denoted as Pi, Pd and Tcp. Pi and
Tcp is as (3.16) and (3.5). In Figure 4.17, you can see a transformation Tcp from
{c} to {p} frame.

4.5.2. Create projected image

From mesh intersection, the Icsm and Icscm
is defined to be in the {c}- frame.

Before a image can be created with Pi, the coordinates of Icsm and Icscm
must be

transformed into {p}- frame as Ipsm and Ipscm
. This transformation is done as in

described in subsection 3.1.2. When the coordinates are relative to the {p} frame,
the coordinates of Ipsm and Ipscm

correspondent pixels coordinates in the projector
image plane can be found with (3.16). Then each pixel coordinate is assigned
with a RGB-value in the projector image plane as shown in Figure 4.28 below.

(a) Ip
sm and Ip

scm
with {c}

(b) Ip
sm filled with red and Ip

scm
filled with

yellow RGB-values in the projector image
plane

Figure 4.28.: Ipsm and Ipscm
mapped to the projector image plane.

The contours of the intersection lines Ipsm and Ipscm
are now defined in the image

plane. Instead of iterating of all pixels values between the two contours in Fig-
ure 4.29a, the function cv2.fillPoly() can fill all the pixels with a RGB-value inside
that contour. Therefore, all pixels inside the yellow contour are first filled with
green RGB-values as in Figure 4.29b. Then all the pixels inside the red contour
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are filled with black RGB-values and subtracted from the Figure 4.29b, and the
result is the distorted projector image in Figure 4.29c. The only thing left now
is to undistort the image with the projector distortion coefficients, Pd, and send
the image to the projector. When the image is sent to the projector, it gives us
an image as in Figure 4.30.

(a) Ip
sm and Ip

scm
in projector image (b) Pixels inside Ip

scm
filled with green RGB

(c) Subtracted all black pixels inside from
Ip

sm in Figure 4.29b. Resulting in the projec-
tor distorted image.

(d) Undistorted image with the projector
distortion coefficients.

Figure 4.29.: Creation of the projection image

(a) Captured by the Zivid Two camera. (b) Captured by iphone camera.

Figure 4.30.: Image Figure 4.29d projected onto the leg surface
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4.6. Evaluation
After the Ag is projected onto the leg surface, it is important to somehow validate
if Ag its the same before and after projection from the projector. As seen in
Figure 4.30a it difficult to spot the green Ag in the Zivid image plane. Therefore,
in order to highlight and somehow extract the pixels that corresponds to Ag in
Figure 4.30a, a new point cloud, Figure 4.31b, with 2D-image are captured to
compare it with the initial point cloud in Figure 4.31a that defined the Lm.

(a) Init Zivid Two 2D image (b) Projected image Zivid 2D image

(c) Subtract Figure 4.31b from Figure 4.31a
to highlight the pixels to find Ag after pro-
jection

(d) Convert and subtract the grayscale im-
age of Figure 4.31b and Figure 4.31a. Then
do cv2.morphologyEx with a kernel on [5,5]
pixels.

Figure 4.31.: Pixels of Ag after projection

When the new 2D image in Figure 4.31b is subtracted from the init image in
Figure 4.31a, you can see that the green pixels in the image are visible. However, it
is a lot of noise in the image that needs to be cleaned and deleted. In Figure 4.31d
the grayscale image of Figure 4.31b is subtracted from Figure 4.31a and after the
function cv2.morphologyEx is executed for that image with a defined kernel. The
size of the kernel decides whether which cluster of points is either noise or the
pixels that you want to keep. Now, the pixels from Figure 4.31d can be found in
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the Zivid point cloud array as shown as the red highlighted point in Figure 4.32b.
These pixels are denoted as grinding area after projection Agap. Although after
the morphology was applied, it is still some noise in the point cloud. The noise is
deleted by downsampling the cloud and set a radius outlier removal as described
in subsection 4.3.1.

(a) Agap pixels from Figure 4.31d in Zivid
point cloud. (b) Agap points in {c}- frame.

Figure 4.32.: Grinding area points after projection

Whether the actual cut cross-section from the current procedure will be equal
to the defined initial grinding area in the system depends on the Aruco marker
location on the leg’s surface and the cylinder fitting that defines the defined axis
system for rotation and translation. It is difficult to evaluate whether the cross-
section calculated in the pipeline would look like this in real life, as you do not
have a stub lying around with which you could have compared it. A more detailed
assessment of this is discussed in section 7.2.

To evaluate the system deviation for the calculated Ag with the projected cross-
section of the doctor Agap, one looks at two factors to define a deviation within:

1. Transformation: the transformation between the Ag and Agap. Iterate clos-
est point(ICP) are applied to the Agap to find the transformation matrix
needed to be applied to align Ag with Agap. So the transformation to move
the red belt in Figure 4.33b to align with the black belt in Figure 4.33b.
This return the aligning transformation matrix, Ta.

2. Signed distance: Looking at the signed distance between the mesh of Ag
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and Agap. And looking on the average signed distance.

(a) The black area, Ag, and the red area
Agap.

(b) Detail Ag and Agap

Figure 4.33.: Grinding area before and after projection

(a) Aligned in {c}-frame (b) Aligned Agap to Ag (c) Detail Ag and Agap

Figure 4.34.: Agap aligned to Ag with ICP
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(a) Point cloud (b) Detail

Figure 4.35.: Signed Distance between Agap and Ag

From Figure 4.34c the Agap has been aligned with Ag, and a transformation, Ta
is estimated which gives us the rotation and translation needed to align the two
point clouds with each other. Also in figure Figure 4.35b the signed distance are
plotted for the surface of Agap and Ag.





Chapter 5.

System

This chapter describes the synthetic blender and the laboratory setup to cap-
ture and project a grinding area onto the leg’s surface. The setups are explained
within how the setup is modeled and which hardware is used with the imple-
mented method in the chapter 4. Finally, calibration results used in chapter 6 are
described and presented for each system. All source code for the two systems are
in this repository, Github repository.

5.1. Blender

Figure 5.1.: Blender System

https://github.com/eivindtn/Master-Thesis
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The synthetic setup in Blender is modeled with a stereo setup of a camera and
projector with a defined transformation between the {c}- frame and the {p}-frame,
Tcp. The advantage of the usage of Blender is that data can be captured/rendered
fast. As described in the subsection 4.2.1, capture point clouds blender, a point
cloud can be created with the extraction of the depth(Z-buffer) from the .exr for-
mat with the intrinsic parameters and the 2D-image through functions in Open3D.
This is a great tool when you don’t have set up your lab environment, within this
case, a projector and a 3D camera. Therefore, at the start of the project the
method was initiated in Blender to capture data fast instead of waiting for a lab
environment.

5.1.1. Camera projector setup

A camera in Blender can be set in any transformation relative to the world co-
ordinate system of the Blender scene. The camera is modelled from the pinhole
model, and has in this case no distortion. The camera’s focal length, sensor height
and width, and resolution can easily be tuned into desired parameters. Adjusting
these parameters would give you the possibility to change the camera’s FOV and
the working distance to a object in a scene. The modelled blender 3D-camera
intrinsic parameters is denoted as the Kbc. In Blender, projectors are not inte-
grated into the API. However, there is a workaround for projecting an image in a
scene with defined intrinsic parameters of the projector. For example, a projector
in Blender can be modeled as a spotlight with specified light power, with normal
coordinates divided by the Z-component, the image can be projected in the scene.
The projector intrinsic can be extracted by modeling a camera at the same point
as the projector and assuming the projector as an inverse camera with the pinhole
camera model. Then, constraining the projector image plane to match the camera
image plane, the scaling can be applied by scaling the projector x-y ratio of the
projector image plane by the (5.1).

Sx = Fk
Sw

Sy = Fk
Sw
· rx
ry

(5.1)

Where Sx and Sy are a mapping scaling in Blender relative to the Blender world
coordinate system. Fk is the focal length of the constrained camera, Sw is the
sensor width, and rx and ry are the resolution of the camera. Since the camera and
projector image planes now match, the camera’s intrinsic parameters are equal to
the projector in the Blender. From here, the intrinsic parameters can be extracted
by running the following script in the created scene. The script gives the Kbc, Kbp

https://github.com/eivindtn/Master-Thesis/blob/main/blender/scenes/get_K_from_cameras.py
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with the transformation between the camera and projector Tcp as :

Kbc =

 fx 0 cx
0 fy cy
0 0 1

Kbp =

 fx 0 cx
0 fy cy
0 0 1

Tcp =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 (5.2)

(a) Field of view overlap. (b) Transformation between coordinate sys-
tems

Figure 5.2.: Blender 3D-camera-projector setup

These properties is denoted as the Blender setup properties. As mentioned with
Blender is that the camera and the projector’s properties can easily be tuned or
changed, and you only need to re-run the script, and you get the new blender
properties. Now the setup can look like in figure Figure 5.2.

https://github.com/eivindtn/Master-Thesis/blob/main/blender/scenes/get_K_from_cameras.py
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5.1.2. Scene

Since the 3d-camera-projector setup is set, the system can be moved around in
the created scene. As stated, the setup is used to capture the leg’s surface for
visualizing the grinding area with a projector. Therefore, a synthetic leg can easily
be defined in the Blender scene as a cylinder with a set diameter and placed at
any location related to the 3d-camera-projector system.

(a) Rig setup example top view (b) Rig setup example side view

Figure 5.3.: Rig setup example

Here the leg diameter Ld can be modified into different diameters with a wanted
working distance.

5.1.3. Calibration

This section present the properties for the system in the conducted experiment in
chapter 6. The set properties for the camera-projector is these properties:

Kbc =

 1333.3 0 960
0 1250.0 600
0 0 1

Kbp =

 1386.6 0 960
0 1300.0 600
0 0 1

 (5.3)
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Tcp =


1 0 0 0
0 0.99 0.12 −0.1995
0 −0.12 0.99 0.0139
0 0 0 1

 (5.4)

The Ld = 4m for the conducted experiment in section 6.1

5.2. Lab
The lab setup is set up at the Manulab at NTNU-Gløshaugen in a robot-cell
designed for SINTEF Manufacturing’s projects upon the AutoKons project, as
stated in section 1.2. The robot-cell has two KUKA KR 100 Titan robots, which
are setup for a cutting-welding task related to the AutoKons project. However, in
this system, only one of these robots is used to transform the 3D-Camera-Projector
around in the robot cell.

In the robot cell scene, it is a round tube, represented as a down-scaled leg. The
leg’s diameter dimension is approximate Ld ≈ 600mm laying on the floor.

(a) Leg

(b) Detail

Figure 5.4.: Leg lab specimen
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(a) Kuka Robot with point cloud (b) Zivid Two-Projector

(c) KUKA robot with leg in robot-cell

(d) Zivid Two-Projector mounted on KUKA
robot

Figure 5.5.: Lab setup
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5.2.1. Zivid Two-Acer Predator system

Figure 5.6.: Lab system

The Zivid two camera is a timed structure light 3D scanner that is used for
capturing high-resolution point cloud in the presented pipeline in subsection 4.2.2.
The camera produces fast and accurate 3D point clouds, fast acquisitions, and
capture a point cloud down to 60 ms.

Table 5.1.: Zivid Two Technical Specifications
Properties Specifications
Resolution (px) 1944 x 1200 (2.332Mp)
Point cloud Output 3D (XYZ) + Color (RGB) + SNR
Apeture f/1.8 to f/32
Shutter (S) 1/600 s to 1/10 s
Gain (G) 1x to 16x

Projector Brightness (B) 1/4x to 1.8x
1x = 360 lumens

Recommed Working Distance 400 to 1200
Focus Distance 700
Field of view (mm) 754 x 449 at 700
Spatial resolution (mm) 0.39 at 700
Point Precision 60 µm
Size (mm) 169 mm x 56 mm x 122 mm
Weight (mm) 880 g
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The accuracy within the focus distance to the Zivid Two camera is set to 60 µm.
The HDR feature is one of the Zivid’s unique capability, and make it possible
to capture "difficult and shiny" objects. The HDR mode in Zivid works with
multiple settings in Zivid studio, including multiple apertures in various frames.
The camera creates acquisitions with a specified f-number and then combines
these acquisitions into one high-quality frame.

The projector used in the system is an Acer Predator Z650 short-throw projector
with a resolution of 1920x1080. This makes it possible to make a large image
within a short working distance and is advantageous in this application since the
Zivid two camera’s working distance ranges between 400-1200 mm. Therefore, it
is essential that the projector FOV overlap within the Zivid Two Camera.

Table 5.2.: Acer Predator Z650 Technincal Specifications
Properties Specifications
Resolution(px) 1920x1080
Aperture F/2.6 to F/2.78
Focal length(mm) 10.20-11.22
Projection distance(mm) 900-4600
Brightness(lumens) 2200
Projection system DLP
Size(mm) 98x357x241
Weight 3.4 kg
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(a) Green FOV for Zivid Two and black FOV
for Acer Predator (b) Zivid-Projector reference system

Figure 5.7.: Zivid-Projector system

The Zivid Two and the Acer predator are mounted onto the KUKA robot. The
Zivid Two camera was already mounted onto the robot since SINTEF Manufac-
turing uses it in an application with a hand-eye calibration. Therefore, a bracket
is made for mounting the projector onto the robot. The advantage here with
the Acer predator projector is that the FOV of the projector is larger than the
Zivid Two with the same working distance. Therefore, the bracket was made so
the projector was orientated to overlap in the best possible way due to mounting
limitations on the robot.

5.2.2. Calibration

When the Zivid two and the camera are mounted onto the robot. A calibration
must be conducted to move coordinates from the Zivid Two camera system to the
Acer predator coordinate system. Since the Zivid have already calibrated the Zivid
Two camera intrinsics parameters, their calibration is used. Their calibration
gives an intrinsic matrix as with distortion coefficients, Kz, and dz. As stated in
subsection 4.5.1, the calibration procedure is detailed explained in Appendix B.
The final calibration result for the Acer Predator intrinsics, Pi , dp,and the Tcp:
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Kz =

 1782.09 0 977.63
0 1782.05 587.77
0 0 1

Pi =

 1500.72 0 972.82
0 1498.87 1101.91
0 0 1

 (5.5)

dz = [−0.090788, 0.134410,−0.065208, 0.000578, 0.000058] (5.6)

dp = [−0.004565, 0.010215, 0.001734, 0.000440,−0.0362493] (5.7)

Tcp =


−0.997 0.001 0.007 111.94
0.003 −0.845 −0.531 97.824
−0.006 −0.532 0.843 100.82

0 0 0 1

 (5.8)

The Tcp is shown in Figure 5.5b.
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Experiment

This chapter presents an experiment that runs the implemented pipeline from
chapter 4 with the two system from chapter 5.

The common goal for both synthetic and lab system is to project a section area
onto the leg’s surface. Then evaluate the projected result by the evaluation metric
presented in the pipeline in section 4.6. When it comes to evaluation is it focused
on the result of the deviation between Agap and Ag. A decomposition of the
presented results, decomposition and arguments are discussed in chapter 7.

6.1. Synthetic
The result from the synthetic system presents the possibility for creating an as-
sembly AR-system in Blender and look at the accuracy presented in section 4.6.
Thus, it isn’t done a high number of results within this system has been to create a
lab system. In the Table 6.1, the result for the synthetic experiment are presented
for the configurations in Figure 6.1. The leg diameter is set to ,Ld = 4000mm.
The default unit in blender is meters, and thereby is all figures plotted in meters.

Table 6.1.: Synthetic Experiment
Pose 1

Exp. Stub OD Stub ID t Config Trans {r}x Rot {r}x Rot {r}y

1 800 mm 700 mm 100 a, Figure 6.1a 700 mm 0 0
b, Figure 6.1b 700 mm 0 30◦

c, Figure 6.1c 700 mm 30 ◦ 0
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(a) (b) (c)

Figure 6.1.: Stub Configuration Synthetic

(a) (b) (c)

Figure 6.2.: Projected projector image

(a) (b) (c)

Figure 6.3.: Threshold image of coordinates.

(a) (b) (c)

Figure 6.4.: Difference in predicted Ag and projected Agap
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(a) (b) (c)

Figure 6.5.: Detail view predicted Ag and projected Agap

(a)
(b)

(c)

Figure 6.6.: Signed distance between Ag and projected Agap

(a) (b)
(c)

Figure 6.7.: Agap aligned with ICP to Ag
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Table 6.2.: Transformation for aligning Agap to Ag in form of euler angles and
translation.
C {r}◦

x {r}◦
y {r}◦

z x (mm) y (mm) z (mm) Norm(x,y,z) (mm)
a -0.16 0.003 0.008 1.33 -7.40 0.487 7.53
b -0.09 -0.002 0.027 -0.32 -4.31 0.47 4.35
c -0.11 -0.02 0.04 -0.10 -5.35 0.41 5.37

(a)
(b)

(c)

Figure 6.8.: Projected image in Blender

(a) (b)

(c)

Figure 6.9.: Distribution of signed distance between Agap and Ag
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6.2. Lab
The result from the lab setup presents the possibility for projecting AR stub
section cut with a Zivid-Two Acer Predator projector system. The plotted results
are as presented in section 4.6. The laying leg in the robot cell is approximately
Ld = 600mm. The Zivid two camera operate with millimeters, and therefore all
plots are in millimeters. The Figure 6.10 show the two different poses for the
conducted experiment. The main focus for these experiments has been to project
a section cut on the leg specimen in the robot-cell with different orientation of
the stub as presented in Table 6.3.

Figure 6.10.: Capturing Poses relative to the leg.

6.2.1. Pose 1

Table 6.3.: Pose 1 lab setup experiment
Pose 1

Exp. Stub OD Stub ID t Config Trans {r}x Rot {r}y Rot {r}x

1 250 mm 210 mm 20 mm a, Figure 6.11a 200 mm 0 0
b, Figure 6.11b 300 mm 0 0
c, Figure 6.11c 400 mm 0 0

2 240 mm 210 mm 15 mm a, Figure 6.19a 300 mm 30 ◦ 0
b, Figure 6.19b 300 mm 45 ◦ 0
c, Figure 6.19c 300 mm 60 ◦ 0

3 240 mm 210 mm 15 mm a, Figure 6.27a 300 mm 0 15 ◦

b, Figure 6.27b 300 mm 0 30 ◦

c, Figure 6.27c 300 mm 0 45 ◦
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Experiment 1

(a) (b) (c)

Figure 6.11.: Stub Configuration Pose Experiment 1

(a) (b) (c)

Figure 6.12.: Projected projector image

(a) (b) (c)

Figure 6.13.: Threshold image of coordinates in {c}
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(a) (b) (c)

Figure 6.14.: Difference in predicted Ag and projected Agap Pose 1

(a) (b) (c)

Figure 6.15.: Detail view predicted Ag and projected Agap

(a) (b) (c)

Figure 6.16.: Signed distance between Ag and projected Agap
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(a) (b) (c)

Figure 6.17.: Agap aligned with ICP to Ag

Table 6.4.: Transformation for aligning Agap to Ag in form of euler angles and
translation.
C {r}◦x {r}◦y) {r}◦z x (mm) y (mm) z (mm) Norm(x,y,z) (mm)
a 0.41 0.01 0.04 3.79 6.70 1.18 7.79
b 0.60 0.02 0.11 4.03 9.69 1.45 10.60
c 0.702 0.03 0.14 4.13 11.12 1.64 11.98

(a) (b)

(c)

Figure 6.18.: Distribution of signed distance betweenAgap and Ag
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Experiment 2

(a) (b) (c)

Figure 6.19.: Stub Configuration Pose Experiment 1

(a) (b) (c)

Figure 6.20.: Projected projector image

(a) (b) (c)

Figure 6.21.: Threshold image of coordinates in {c}
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(a) (b) (c)

Figure 6.22.: Difference in predicted Ag and projected Agap Pose 1

(a) (b) (c)

Figure 6.23.: Detail view predicted Ag and projected Agap

(a) (b) (c)

Figure 6.24.: Signed distance between Ag and projected Agap

(a) (b) (c)

Figure 6.25.: Agap aligned with ICP to Ag
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Table 6.5.: Transformation for aligning Agap to Ag in form of euler angles and
translation.
C {r}◦x {r}◦y {r}◦z x (mm) y (mm) z (mm) Norm(x,y,z) (mm)
a 0.53 0.03 0.05 4.03 8.70 1.45 9.70
b 0.48 0.00 0.15 4.51 7.76 1.39 9.01
c 0.53 0.01 0.12 4.36 8.51 1.46 9.67

(a) Agap to Ag (b) Agap to Ag

(c) Agap to Ag

Figure 6.26.: Distribution of signed distance betweenAgap and Ag
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Experiment 3

(a) (b) (c)

Figure 6.27.: Stub Configuration Pose 1 Experiment 3

(a) (b) (c)

Figure 6.28.: Projected projector image

(a) (b) (c)

Figure 6.29.: Threshold image of coordinates in {c}
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(a) (b) (c)

Figure 6.30.: Difference in predicted Ag and projected Agap Pose 1

(a) (b) (c)

Figure 6.31.: Detail view predicted Ag and projected Agap

(a) (b) (c)

Figure 6.32.: Signed distance between Ag and projected Agap
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(a) (b) (c)

Figure 6.33.: Agap aligned with ICP to Ag

Table 6.6.: Transformation for aligning Agap to Ag in form of euler angles and
translation.
C {r}◦x {r}◦y {r}◦z x (mm) y (mm) z (mm) Norm(x,y,z) (mm)
1 0.53 0.03 0.04 3.87 8.61 1.36 9.54
2 0.56 0.04 0.07 3.81 8.87 1.35 9.75
3 0.61 0.02 0.14 4.12 9.82 1.49 10.76

(a) Agap to Ag (b) Agap to Ag (c) Agap to Ag

Figure 6.34.: Distribution of signed distance betweenAgap and Ag



6.2. Lab 83

6.2.2. Pose 2

Table 6.7.: Pose 2 Experiment
Pose 2

Exp. Stub OD Stub ID t Config Trans {r}x Rot {r}y Rot {r}x

1 240 mm 210 mm 15 mm a, Figure 6.35a 200 mm 0 0
b, Figure 6.35b 300 mm 0 0
c, Figure 6.35c 400 mm 0 0

2 430 mm 400 mm 15 mm a, Figure 6.43a 325 mm 0 0
b, Figure 6.43a 325 mm 0 0
c, Figure 6.43a 325 mm 0 0

Experiment 1

(a) (b) (c)

Figure 6.35.: Stub Configuration Pose 2 Experiment 1

(a) (b) (c)

Figure 6.36.: Projected projector image
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(a) (b) (c)

Figure 6.37.: Threshold image of coordinates in {c}

(a) (b) (c)

Figure 6.38.: Difference in predicted Ag and projected Agap Pose 1

(a) (b) (c)

Figure 6.39.: Detail view predicted Ag and projected Agap
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(a) (b) (c)

Figure 6.40.: Signed distance between Ag and projected Agap

(a) (b) (c)

Figure 6.41.: Agap aligned with ICP to Ag

Table 6.8.: Transformation for aligning Agap to Ag in form of euler angles and
translation.
C {r}◦x {r}◦y {r}◦z x (mm) y (mm) z (mm) Norm(x,y,z) (mm)
1 0.23 -1.07 -0.64 21.02 6.74 2.52 22.22
2 0.26 -1.13 -0.77 22.48 6.96 2.5 23.67
3 0.25 -1.09 -0.75 21.74 6.95 2.57 22.97
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(a) (b) (c)

Figure 6.42.: Distribution of signed distance betweenAgap and Ag

Experiment 2

(a) (b) (c)

Figure 6.43.: Stub Configuration Pose 2 Experiment 1

(a) (b) (c)

Figure 6.44.: Projected projector image
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(a) (b) (c)

Figure 6.45.: Threshold image of coordinates in {c}

(a) (b) (c)

Figure 6.46.: Difference in predicted Ag and projected Agap Pose 1

(a) (b) (c)

Figure 6.47.: Detail view predicted Ag and projected Agap
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(a) (b) (c)

Figure 6.48.: Signed distance between Ag and projected Agap

(a) (b) (c)

Figure 6.49.: Agap aligned with ICP to Ag

Table 6.9.: Transformation for aligning Agap to Ag in form of euler angles and
translation.
C {r}◦x {r}◦y {r}◦z x (mm) y (mm) z (mm) Norm(x,y,z) (mm)
1 0.31 -1.44 -0.96 28.97 8.06 2.97 30.22
2 0.30 -1.37 -0.90 27.80 6.97 2.30 28.76
3 0.32 -1.38 -1.00 28.05 7.79 2.64 29.23

(a) (b) (c)

Figure 6.50.: Distribution of signed distance betweenAgap and Ag



Chapter 7.

Discussion

This chapter investigates the implemented pipeline within possibilities, limita-
tions, and development compared to today’s stub assembly procedure. The ex-
periment results are discussed and compared to NORSOK M-101 [3].

7.1. Pipeline
When the pipeline were implemented it was a lot of trial, error and research for
creating a such system. This section discuss the choice of software, features and
algorithms for the implemented pipeline. To have a clear overview of the pipeline
it is gone through as in chapter 4.

1. Capture point clouds

2. Point cloud processing

3. Mesh processing

4. Image projection

7.1.1. Capture point clouds

Blender

The point clouds are either captured through the Zivid two camera or a synthetic
3D camera in Blender. In the synthetic system, you can say that the hardware in
the system is through the Blender API. At the start of the master thesis, it was
used some time to find out how to create realistic point clouds without being in
the lab. Because the lab environment wasn’t ready yet, and some of the hardware
to the system was missing. Therefore, Blender was looked into as a platform for
establishing this.
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Blender is an open-source platform that many integrated functions for working
with point clouds, CAD, mesh, and computer vision applications. Also, it has a
high focus within rendering, cameras, and an integrated python API that makes
it possible to extract and automate the process through scripting. In addition
to Blender, other open-source platforms as Unity was researched. Unity also has
the possibility to render through a camera and creating a projector as a light
source. However, Unity is more a game engine than Blender that is designed for
modeling..

Since the capturing object in the scene for this application is a cylindrical shape,
it was investigated into creating a cylindrical point cloud manually in python.
This can be a great tool for testing different cylinder fitting algorithms. However,
modeling this point cloud "as" it was captured with a 3D camera. Therefore,
further work was done with capturing point clouds through Blender. Before it
was discovered that the Z-data of an image could be extracted with an RGB
image, a stereo system was created in Blender to make a synthetic point cloud
through triangulation. Creating a point cloud as a stereo system wasn’t so trivial
since it required much tuning for getting a usable point cloud. Here it was seen
that the result wasn’t good enough compared to a captured point cloud from a
Zivid Two camera.

The whole time the goal was to create a synthetic system, within mind that the
system should work as it was for a real system. Blender is an independent platform
with an integrated Python API. Working with Blender through another Python
environment can be difficult. To run functions in Blender through scripting, the
script needs to be run through Blender’s GUI. This is inappropriate when working
with your own python environment with other package dependencies. You either
need to change your environment to be in Blender or extract the required data
through Blender by running it in the background. Here there a workaround. You
can run a Blender python script through a terminal in the background. However,
in this project, the focus has been to use Blender to capture data and not for data
processing. So one isn’t dependent on having Blender in the lab system.

After an image in Blender is rendered, then the file is exported as a .exr file
and imported into the Python environment with the OpenEXR package. This
package seems not to be maintained anymore since the package is from Python
2.5+ and upwards. After much trying, the package was installed. OpenCV also
can read .exr files, but a problem was figuring out how to split the channels in
the .exr format and using the OpenEXR package. In other words, a weakness in
the synthetic system. When the .exr file is imported, and 5-Channel format is
split, and the RGB and Z-data are extracted. Then a colorized point cloud can
be created with the Blender camera intrinsic. This is done with functions from
Open3D and was faster than running the same functions through Numpy. The
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disadvantage of using the Open3D function is that the point cloud doesn’t have
1:1 correspondence with the points in 3D with pixel coordinates as in Zivid Two
point cloud. Despite this, capturing point clouds in Blender allows fast capture
of a realistic point cloud of a defined object in a scene. Parameters such as in
section 4.1.1 can easily be tuned to capture different point clouds, and this has
been an advantage in this project.

Zivid

The Zivid Two is the core of the lab system, and without an accurate point cloud, it
wouldn’t produce any good results. Capturing high precision point clouds within
a range of a working distance of 1400mm is the Zivid two camera’s strength. And
within this range, other 3D-cameras as RealSense cameras, Zed are of much worse
accuracy. In the datasheet, section E.1, the Zivid Two are compared to another
stereo vision camera, and you can see that their accuracy is much higher than the
comparable camera.

The Zivid Two properties within focus distance and FOV were highly dependent
when picking the Asus Predator Z650 projector. Finding a projector that matches
the FOV of the Zivid two camera was a challenge since a normal desk projector’s
purpose is designed to light up a canvas from a long distance. Therefore, using
a short-throw projector produces a large image within a short throwing distance.
The projector overlapped well with the Zivid and the projector after adjusting it
with a 3D-printed bracket. The Kuka robot also made it much easier to capture
with different poses, and the possibility for testing with a rigid setup is an ad-
vantage. Since the laying leg tube weighs approximately 150 kg, then moving the
setup with the Kuka robot was very practical.

When capturing point clouds in the system for a lab, the settings were adjusted in
Zivid studio with the assisted mode in Zivid studio, and a .yml file was exported
to be imported into python when the image should be captured through the Zivid
API. This made it easy to capture fast through python.

7.1.2. Point cloud processing

After a point cloud is captured, the data need to be processed for further use in
the system. This can either be that point cloud need to be downsampled or be
cleaned from noise. In this system, downsampling and cleaning have been done
through the libraries Open3d and Vedo, with majority of use of Vedo, because of
the Vedo mesh intersecting function as argumented for in subsection 7.1.3.

Downsampling through voxels is fast and easy to compress a point cloud to a
wanted size of points. However, it isn’t always so easy to know how many points
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are necessary to create a mesh or find the best cylinder of fit. A higher number
of points can give a better accuracy but of the cost more computation time.
This hasn’t been evaluated since this thesis aims to create a method and doesn’t
focus on details as computation time. The system isn’t created for working in
real-time, but fast computation time is always an advantage and can be listed in
further work.

Outliers and noise are deleted from the point cloud with radius outlier removal
and by a set Z-component relative to {c}. Deleting the noise by a threshold value
of the Z-component could be argued not to be the best way since changing the
pose to leg in the scene, the camera’s Z-distance to the leg change relative to
the pose. A better way here could be to have a pure radius removal, but radius
removal depends on the resolution of points, so it can be hard to set a suitable
threshold value. Another way could be to clean noise within a distance from the
centroid of the point cloud. However, this depends on the dimension of the leg
in the scene. If the leg’s dimension is greater than the camera’s FOV, then all
points would mostly be on the leg’s surface, and there wouldn’t be any outliers.

The reference system in subsection 4.3.3 is based on a cylinder fitting for finding
a cylinder axis. The fitting is done with a least-square fitting through the paper
[30]. As stated in the paper, this fitting isn’t the most robust cylinder fitting
algorithm. Other algorithms as the cylinder RANSAC [31] algorithm were re-
searched and tried, but the cylinder RANSAC algorithm seems to more unstable
for this case. As explained in the subsection 7.2.1, this requirement isn’t so trivial
to evaluate today’s stub assembly procedure and therefore hasn’t been the main
focus for testing different cylinder fitting algorithms. For further development
and integration into today’s procedure, research can be done in this field.

The reference system is created in combination with the cylinder fitting and an
Aruco marker. The cylinder fitting defines the axis along the leg, and the Aruco
marker point defines the origin of the {r}-frame. The two other axes in the
coordinate system are defined from the cylinder fitting by taking the perpendicular
vector and the cross product. Therefore, evaluating that the {r} match today’s
assembly procedure world coordinate system is challenging. This can be crucial
since if the axes don’t match, both the rotation and translation could be wrong,
and the projection isn’t there it should be.

7.1.3. Mesh processing

The cleaned and downsampled point cloud can now be created as a mesh from
Delaney triangulation. When working with meshes, the essential thing around
the whole method is that one is dependent on an algorithm that intersects two
meshes and returns a path as a line. It was looked into several libraries for mesh
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intersections. However, there aren’t so many Open-source libraries that support
that. As in the paper Mesh-based tool path calculations for tubular joints [4], the
mesh algorithm was used through Blender. This method used a lot of energy to
find a library that intersects two mesh without too many dependencies. When
working through python, this system goal is to create an industrial system that
can be further used in Aker Solutions procedures. And it isn’t beneficial to have
dependencies on third part software like Blender. It is looked into libraries such as
Vedo [25], Pyvista [32] and Trimesh [33]. Pyvista and Vedo depend on VTK [22],
and most of their functions are written through VTK. And VTK is developed
from Kitware, which is a big reliable firm. The advantage of Vedo it is only two
dependencies, and this is VTK and Numpy. Also, the Vedo is very well maintained
by Marco Musy, and if you have any issues, the response time is within hours to
a day. Also, Vedo, through VTK, has a great Plotter for visualization of point
clouds, mesh, points, and lines. An advantage is that you can have a plotter with
more than one window, making it easier to capture figures with the same view.
Another thing is that if you don’t want to be dependent on the VTK functions
through Vedo, you can import the functions and write them by yourself. Also,
if Vedo misses any functions Pyvista or Trimesh has, you can use functions from
there since Pyvista are Numpy and VTK, and Trimesh are pure Numpy with no
other dependencies.

7.1.4. Image projection

As described in subsection 4.5.1, calibration needs to be done to move the in-
tersection coordinates from the {c}-frame to {p}-frame with a stereo calibration,
Tcp, and an intrinsic calibration Pi to create an image of these coordinates. In the
specialization project, a lot of time was spent researching calibration methods for
calibrating a projector for both stereo and intrinsic. This established method is
described in Appendix B. This calibration is flexible since it is not required to have
a printed checkerboard since the checkerboard is projected through the projector.
Thus, the 3D points of the checkerboard corners are defined by the Zivid two
point cloud. Defining the Zivid two’s point cloud points can take calibration error
from Zivid’s camera into this calibration. However, a calibration can be done fast
if you need to change the focus of the projector. When the calibration was done,
also, another method was tried, Simple, Accurate, and Robust Projector-Camera
Calibration [34] was tried in pair with the other calibration. However, the light
conditions in the robot cell was a challenge for both calibration since it wasn’t
possible to turn off the light in this cell. The Mesh brown calibration gave an
extraordinary result that was long from the other calibration method. Therefore,
the calibration method from Appendix B was used.

After the calibration, the result is obtained, and coordinates of the intersection
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lines are created and a contour image. The pixels area for the Agap is defined by
the cv2.fillPoly function that fills all pixels within a contour. This is fast and was
easy to use since OpenCV is already used in the project. Other ways to do this
could be to only intersecting one cylinder instead of two with the leg-mesh and
thicken the line by all tangents of each line that defines the curve. However, this
could take more computation time to do, and you need to determine the thickness
of Agap in pixels in the projector image.

7.1.5. Evaluation

As stated in the next section 7.2, the evaluation of the conducted experiment in
chapter 6 are only evaluated to the transforming requirement in subsection 7.2.3
since an actual stub section cut aren’t available to compare against a projected
cut.

When settling for an evaluation method for finding the deviation between Ag
and Agap, it was researched into several methods. In addition to ICP it was
investigated into compare the boundaries of Agap against Ism and Iscm as in the
Figure 7.1.

(a) In blue the Ism and Iscm and in red the
boundaries from Agap

(b) Ag in black and Agapinred

Figure 7.1.: Boundaries compared to intersection lines

In some cases, it was difficult to extract the boundaries of the Agap because of
the noise in the point cloud. Therefore, ICP was used as a more general solution
for finding the transformation between Ag and Agap. However, if there is a lot
of noise in the image in Figure 4.31d, and if some points don’t get removed from
outlier removal than it can disturb the result.
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7.2. Requirements
In order to compare the system against the today’s procedure, one can discuss
three system requirements that need to be met to satisfy the defined tolerances
in NORSOK-M101 [3]:

Figure 7.2.: System requirements against NORSOK-M101 [3]

1. Position and reference system: The system depends of a reference sys-
tem, {r}, defined in a reference point, so coordinates can be specified in the
right transformation compared to the real world coordinate system, {w}.

2. Size: The defined Ag must match the size of a real stub section cut.

3. Transformation: The transformation of Ag to Agap must be accurate
enough to meet the tolerances in NORSOK-M101 [3].

7.2.1. Position and reference system

In terms of position and reference system, their are some dependencies in the
system that defines whether the {r} match the {w}. The {r} is defined by the
cylinder fitting algorithm to create a 3-axes coordinate system. The difficult
thing here to know is if the coordinate axes match the measurement axes used
in today’s stub assembly procedure. Whether the {r}z would match the {w}z is
hard to measure since the {c}z orientation deviates from the {w}z. The position
of the {r} is defined by Aruco marker recognition in the Zivid image plane. The
Aruco point needs to match today’s stub assembly procedure reference point.
Let’s say the {r} were defined perfectly in today’s assembly procedure reference
point. The accuracy would be so accurate as of the defined accuracy that the
Zivid Two camera has. However, today’s measurement is also so precise as the
measurement method that is used.
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7.2.2. Size

The Ag is defined by mesh intersection of the leg mesh, Lm , and the defined
synthetic cylinders, Sm and Scm. These synthetic cylinders can deviate from the
real stub since the real stub would mostly have deviation within in the listed
Appendix A. So if the real stub differs highly from a nominal synthetic cylinder,
the Ag doesn’t match the actual stub section cut. A solution for this could be to
scale the projector image to overlap with the actual cross-section cut area.

7.2.3. Transforming

The position and reference system and size are set and implemented to project
a Ag onto the leg’s surface. One thing is researching other methods to create a
reference system and a reference point; however, evaluating this is not easy when
you don’t have a cut stub cross-section to compare against the projected cut.
On the other hand, researching multiple cylinder fitting algorithms with different
methods to detect a reference point would strengthen the position. These aren’t
evaluated in the experiment since it hasn’t been prioritized when creating proof
of concept. However, this evaluation is categorized into further work of the thesis.

When the defined intersection lines, Ism and Iscm are defined in terms of the
system {r}, the coordinates need to be transformed from {c} to {p} with a Tcp
obtained from a stereo calibration. After the coordinates of Ism and Iscm are
transformed to {p}, the correspondence 3D to pixels coordinates can be created
with the Pi and be corrected for distortion dp. When transforming and creating
an image from the calibration result, it can be errors that make the coordinates
not correlate with the coordinates before projection in {c}.

7.3. Experiment
This section discusses the experiment results for synthetic and lab results within
the plotted results against the evaluation method in section 4.6. The results are
evaluated against the transformation requirements, which are explained in the
last section.

Synthetic

Looking at the synthetic experiment, you see in the Figure 6.4 that it seems that
the Agap match with Ag, that all points lay within the same area. As explained in
the system, the default unit that Blender operates within is in meters. However,
looking at the transformation for matching Agap to Ag gives a considerable error
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within the translation to be a synthetic system. What the error comes from can
be multiple things such as the extracted intrinsic parameters of the camera, or
how the projector is modeled to find the projector intrinsic parameters, an error
in the transformation between the {c} and {p}. When looking at the different
properties in the scene, as the modeled transformation between {c} and {p}, the
extracted Tcp gives an error of −1 in terms of rotation, and a 0.5mm in terms of
translation.

Lab

In the lab experiment, it is tested with two different poses relative to the laying
scene. Looking at Table 6.4 in pose 1, the pose gives a result comparable to
the tolerances in the appendix. Positional tolerances with a round tube that are
dn < 35000mm are 6mm and dn > 3500 is set to 10mm. However, these are
positional tolerances and not for grinding, which is the goal here. So for pose 1,
the result for experiment 1-3, a deviation within a norm of a vector of a range
from 7.79mm− 11.98mm with an average of 9.86mm. This result is pretty good
that shows that the system can be developed for industrial use. The different
configurations in experiments 1-3 show different orientations of intersection that
give different projection coordinates in the projector image plane.

In pose 2, the result for experiment 1-2, deviation within the norm of the vector
is in the range from 22.22mm− 29.23mm, with the highest deviation within the
translation along the {c}x. This isn’t the best result, and the reason for that could
be that these results did have more noise than the images in pose 1. It looks like
somehow the camera settings used to capture the point cloud weren’t tuned in.

The deviation in both pose 1 and 2 experiments can indicate an error in the forms
of different things. Important to mention is that the Agap aren’t the same in
pose 1 and pose 2, since the defined diameters Sm and Scm aren’t the same, and
therefore is difficult to compare the result from the two different poses. However,
some factors can indicate the difference of error between the two poses. When the
projector intrinsic parameters were calibrated with the stereo calibration between
{c} and {p}, the calibration was done with a focus distance of approximately
500− 700mm, depending on the orientation of the calibration plane. And in pose
1, the working distance to the leg was around 500−600mmm. In pose 2, however,
the working distance was around 800 − 1000, indicating that the error is higher
and resulting in more deviation in pose 2 than pose 1.

Although the result indicates that the system can be used in today’s procedure,
since accuracy pose 1 accuracy is near the requirement for NORSOK-M-101 [3],
and can be said that are within the requirements for grinding.
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7.4. Scaling and today’s procedure
This section compares the implemented method in chapter 4 against today’s stub
assembly procedure in section 2.3 to investigate which possibilities of the imple-
mented method can be used to improve today’s method.

7.4.1. Stub section cut

Instead of defining the stub section as in subsection 2.3.1, where a CNC plasma
cutter defines the cut from the leg and stub’s nominal diameter. The section cut
can be defined by the intersection of the Lm with Sm and Scm captured by the
Zivid two camera. This path can either be used as G-code into the already CNC
plasma cutter or the path can be moved into a robot coordinate system with a
hand eye calibration. In the method, the Sm and Scm are defined as synthetic
meshes, and these meshes can be also be defined by capturing the meshes with
a robot. This can lead to getting a better accuracy of the cut since the meshes
would have better accuracy within the tube tolerances as in Appendix A.

(a) (b) (c)

Figure 7.3.: Intersection path with the cut

As stated in the previous work, subsection 1.3.1, the intersection paths are inter-
polated to a specified resolution. Through Vedo, the intersection path is obtained
as in Figure 7.3c. Suppose the path is of insufficient resolution. In that case, the
path could either be interpolated by creating a spline of the path or create more
triangle elements on the mesh by subdividing each triangle. By having more ele-
ments would give a higher resolution when intersecting two meshes. The number
of points used in the first place to create mesh would also impact the resolution.
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(a) Resolution

(b) Blue: intersect between two coarse mesh,
Red: Spline interpolation of the blue curve
by 10 times, Yellow: Subdvide mesh before
intersection by a factor 5 of both meshes.

Figure 7.4.: Interpolation of intersection path, the shift of the curvature for see
the different.

7.4.2. Lifting up and down

The advantage with the implemented method is that the operation in subsec-
tion 2.3.2 and subsection 2.3.3 can be avoided and lead to less overhead traveling
crane operations through the assembly. The projection cut can be projected onto
the leg as in the Figure 2.11 instead of lifting, mark, and then lift down again
before starting to grind the area where the stub hits the leg as in the. This could
make the procedure more efficient than today and contribute to the fact that the
yard at Verdal is more competitive.
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(a) (b)

(c) (d)

Figure 7.5.: Projection in the lab area
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In the Figure 2.10 the toe and heel points are shown. The figures on the previous
page show the toe and heel point with the center point. Whether these points
would be as the actual world toe, heel, and the center point isn’t evaluated because
of the difficulty to evaluate the requirement in subsection 7.2.1, and are further
work for integration of this method into today’s procedure.

Since the intersection path is obtained, a robot can both cut out the section cut
and weld the stub onto the leg after a defined welding groove is set.

7.4.3. Scaling

Since the tested dimension in the lab experiment is a leg width diameter of Ld =
600mm, the system is pretty scaled-down compared to many of the dimensions at
the yard at Verdal. The diameters can vary from 2 meters to 6 meters. The Zivid
Two’s FOV would not be large enough for the largest dimensions. The largest
stated FOV is 1426X894 mm with a working distance of 1400 mm. Since the
focus distance is 700 mm, also the accuracy would decrease by more considerable
distances. At the focus distance, the spatial resolution is 0.39 mm. Zivid also
has another camera that is designed for the larger dimensions, the Zivid One +
camera. This camera can have a working distance of up to 3000mm with a spatial
resolution of 1.11 mm. This camera could have been interesting to test further at
the factory out at Aker Solutions Verdal.

Another thing that could be researched is maximizing the use of a short-throw
projector in pair with a 3D camera. Suppose the projector has a larger FOV than
the 3D camera. Then this can be used as an advantage with some challenges.
As in the Figure 7.6a, the stub configuration is larger than the captured point
cloud. If then, the projector has a larger FOV than the 3D camera. The cylinder
fitting in the implemented method can be used to create a synthetic mesh instead
of creating a mesh from the captured point cloud. However, this would make
an impact on the deviation within tolerances on the captured surface. But for
grinding application, where the tolerances aren’t crucial, this can be used to get
a bigger FOV for projection the grinding surface.
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(a) Stub configuration larger than the yellow
mesh.

(b) Intersection curve larger than captured
Zivid two point cloud.

Figure 7.6.: Stub configuration larger than the captured point cloud.

(a) (b)

Figure 7.7.: Interpolation of intersection path, the shift of the curvature for see
the different.

A problem that can occur when projecting outside the 3D camera FOV is that
the calibration between the 3D camera and the projector can be more inaccurate
for the area outside the 3D camera FOV. This is something to take in mind when
investigating this.
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Conclusion

This project has developed an automated method for marking the stub cross-
section cut for grinding using a 3D-camera-projector setup. The method is im-
plemented both synthetically, through the Blender platform, and on an industrial
system consisting of a Zivid Two 3D camera with an Acer projector. Based on the
information presented by the results in chapter 6 as discussed in chapter 7 and
illustrations explaining the implemented method in chapter 4, it can be concluded
that the primary objective of this thesis has been fulfilled.

Various experiments were performed with both synthetic and real-world data
where stubs in different configurations were transformed from the defined ref-
erence system to a set configuration. With the assumptions mentioned in sec-
tion 7.2, such as the reference system and the projected cross-section not being
compared to a real cross-section in the same configuration, it is seen that results
were obtained close to the position tolerances for tubular nodes in the standard
NORSOK-M101, Structural steel fabrication.

The synthetic experiment shows that Blender is suitable as a synthetic 3D camera
projector system. Deviations in the results could indicate that either the extracted
projector intrinsic parameters are not accurate enough or the transformation be-
tween the modeled camera and the projector is incorrect. The default units in
Blender are set to meters, so the extracted format could also be a factor that
impacts the results.

The lab experiments in two different poses present projection areas in different
sizes onto the leg’s surface. The observed deviations could indicate a calibration
error between the Zivid Two camera and the Acer projector.

The implemented method can also be extended to other applications within the
current stub assembly procedure. For example, the intersection path between
the meshes in the implemented method can also automate cutting and welding
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procedure by using robotic systems with a hand-eye calibration.

8.1. Further Work
Further work could consist of looking into the reference system in the method
and finding a way to evaluate that the coordinates are transformed as the manual
measurement in today’s stub assembly procedure. The reference system axes are
based on a cylinder fitting algorithm for defining the common cylinder axis to the
captured point cloud of the leg’s surface. The least square fitting algorithm [30]
used here is not compared to other algorithms, thus an investigation into alter-
native algorithms should be performed. Some suggestions for comparing methods
could be to:

1. Add or compute the normal components of the point cloud data.

2. Use a RANSAC [31] results as an initial guess, optimize the cylinder coeffi-
cients with the inlier points and compute normals using nonlinear optimiza-
tion algorithms, such as a Levenberg–Marquardt algorithm.

The detection of the Aruco marker defines the reference system’s position. In
today’s procedure, the reference point is a marker that is punched into the leg’s
surface. Instead of recognizing the Aruco Marker, the punched marker can be
identified with CNNs or create another reference system.

The projected area should be matched to a real cross-section cut stub specimen
from the CNC plasma cutter to see the deviation in combination with the reference
system.

A static test rig should be built with the proper hardware and be tested in the
environment at Aker Solutions Verdal to evaluate the method’s robustness and
find further improvement possibilities.
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Appendix A.

Fabrication Tolerances

A.1. Tubulars
This section include the required tolerances according to NORSOK STANDARD
M-101 Structural Steel Fabrication [3], and taken straight out of the standard. The
allowable tolerance given for individual tubular segments shall not be cumulative
for the finished tubular.

1. Circumference: The external circumference shall not depart from the
nominal external circumference by more than the following in the figure:

a) measured at joints or within ±610 mm from the joint (Zone A in Figure
E.5) 30 % of the nominal wall thickness or ±10 mm, whichever is the
smallest;

b) the tolerances in (i) may be increased by 50 % for the remaining length
of the tubular (Zone B in Figure E.5).

Figure A.1.: Tubulars - Circumfential tolerance
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2. Out of roundness(Ovality): Ovality is defined as the difference between
the measured maximum and minimum internal (or external) diameters and
shall not be more than 1 % of the nominal OD (ODn) or 8 mm, whichever
is the least, see figure.

(a) Tubulars - Ovality tolerance
(b) Tubulars - Local out-of roundness refer-
ences

Figure A.2.: Ovality

3. Out of ciruclarity: Circularity is defined as the difference between the
actual and the average radius, both being determined from the optimum
centre of the tubular. Maximum difference is not to be more than 0,25 %
of ODn.

4. Straightness: The maximum allowable deviation from straightness in any
3 m increment of length shall be 3 mm. The straightness deviation over tube
length (L), shall not exceed 0,001 x L, with maximum 10 mm deviation for
lengths up to 12 m. Above 12 m length maximum allowable deviation is
12 mm. Out of straightness shall be checked on two longitudinal planes
separated by 90.

5. Length: Unless otherwise noted, the tubular shall be delivered within fol-
lowing tolerances:

a) unbevelled ends: La ≥ Ln + 25 mm.

b) bevelled ends: La = Ln ± 5 mm.

6. Tube ends: The tube ends shall be perpendicular to the longitudinal axis
within the following tolerances:

a) unbevelled ends: 5 mm.

b) bevelled ends: 3 mm.
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7. Local out-of roundness: The local out-of roundness shall not deviate
from the theoretical curvature by more than e = 0,002 x ODn (see Figure
E.7). The local out-of roundness shall be measured inside or outside over
20◦ of the circumference.

8. Local straightness: is defined as the deviation of the shell plate from a
straight generator of length (L) parallel to the true centre line of the tubular.
This tolerance shall not exceed 20 % of the wall thickness. Local straightness
shall be checked on the inside or outside of tubulars with a nominal external
diameter greater than 2 000 mm or with a nominal external diameter to
nominal wall thickness ratio greater than 65. These checks shall be carried
out at 45◦ intervals of arc with L = 3 m.

A.2. Tubular nodes

Figure A.3.: Node stub location





Appendix B.

Zivid and Projector Pair
Calibration

This chapter introduces the Zivid and projector pair calibration method. A cal-
ibrate method using Zhang’s method [18] without a printed checkerboard. In-
stead, the checkerboard pattern can be projected onto a plane and capture at
least three different poses. This calibration derive the intrinsic parameters of
the projector and the extrinsic parameter between the Zivid and the projector
using OpenCV[35] functions as CalibrateCamera() and StereoCalibrate().This
method is inspired from Bingyao Huang [19]. All sourced code is linked to this
repository.

B.1. Projector calibration
A projector can be considered the inverse of a camera, and the pinhole model also
applies to a projector. The difference is that the camera captures the screen’s im-
age while the projector projects it onto the screen. When calibrating a camera, the
object’s points are known as the known parameter, mentioned in subsection 3.1.5,
and the image points are the unknown parameter. Projector calibration is the
opposite of this, the image points in the projector image coordinates are known,
and the object points are unknown. The main problem here is that the object’s
points are unknown.

https://github.com/eivindtn/TPK4560-Specalization-Project
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B.1.1. Generate checkerboard image

In this method, for projector calibration, a checkerboard pattern is needed. Checker-
board pattern can be generated from websites or at your own using OpenCV’s
integrated script for generating a pattern. Since the projected checkerboard pat-
tern is the projector projected image, the pattern needs to be the same as the
projector’s resolution. Since the OpenCV findchessboardcorners requires white
boarders around the checkerboard pattern, an added spacing in both x and y
directions is needed.

Figure B.1.: Checkerboard Pattern(9 columns x 6 rows), Resolution (1024 X
768). Black border are for visualization the x and y-spacing.

The inner corner coordinates in the projector image space is saved in the right
order to be compared to the object points. The checkerboard criteria define how
many inner corners there are in the checkerboard pattern. In Figure B.1 there
are 54 inner corners because of a pattern with (9 columns x 6 rows). The image
points is denoted as

P2d
p = [q0,q1, . . .qi, . . .qJ−1] (B.1)

where qi = [ui, vi] are the correspondent pixel coordinates of the ith in the pro-
jector image space and J are number of inner corners in Figure B.1. An impor-
tant moment is that (B.1) match the color order in the image Figure B.1. The
red row represent the first 9 element and the dark blue represent the last one
in (B.1). The saved checkerboard coordinates are obtained from the function

https://docs.opencv.org/master/da/d0d/tutorial_camera_calibration_pattern.html
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Save_Projector_Image_Coordinates() in ProjectorCalibrate.py.

B.1.2. Capture zivid image frames

Now the checkerboard image Figure B.1 can be projected by the projector onto
a plane Figure B.2 to capture at least three different poses according to Zhang’s
method.

Figure B.2.: 4 projected checkerboard poses onto a plane

Given a Zivid color checkerboard image, the extracted 2D checkerboard corners
are found by using OpenCV’s findChessboardCorners. The Zivid camera image
coordinates are given as

P2d
c = [l0, l1, . . . li, . . . lJ−1] (B.2)

where qi = [ui, vi] are the correspondent pixel coordinates of the ith in the Zivid
camera image space. It is important that the P2d

c iterate over the same order as
in (B.1). Since the Zivid point cloud is organized 1:1 that each pixel coordinate
in P2d

c has correspondence XYZ-coordinates. Then the extracted 3D-coordinates
would be denoted as

P3d = [x0,x1, . . .xi, . . .xJ−1] (B.3)

where xi = [xi, yi, zi] as the corresponding 3D coordinates of P2d
c [i]. Also P3d can
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be obtained by using the depth(Z-coordinate) for the checkerboard pattern and the
Zivid intrinsic parameters. The visualized P3d checkerboard board coordinates

Figure B.3.: Checkerboard Coordinates in depth space relative to the Zivid
camera in Open3d. {c}, represent the Zivid camera frame.

From the figure, the Z-coordinate of P3d are nonzero because the coordinates
are defined in the Zivid depth camera’s view space rather than the projected
checkerboard’s objects space. As explained in subsection 3.1.5 that object points
Z-coordinate is required to be set equal to zero to be sent in as an input to
CalibarateCamera since Zhang’s method assumes all object points reside on the
XY plane of the checkerboard object-space. The solution for this was to set the
Z-Coordinate equal to zero within a conventional printed checkerboard since all
checkerboard coordinates were on the same plane. In this case, the projected
checkerboard is distorted and skewed due to the projector perspective projection.
The distortion varies each time the plane pose is changed relative to the Zivid-
projector system. Because the distance to each point isn’t the same, the projected
checkerboard image will have a different unknown scale and shape.

B.1.3. Rotate 3D points using eigenvectors

Since P3d has a planar shape, the checkerboard coordinates can be transformed
to the canonical view, so the centroid of the checkerboard coordinates is set as
the origin. This is obtained using either left or right side in (3.39), and then
checkerboard coordinates would like the Figure B.4 below
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Figure B.4.: Origin set as checkerboard coordinates as centroid, {o} represent
the checkerboard object frame.

We denote the coordinates in the figure as

Po
c = [x0,x1, . . .xi, . . .xJ−1] (B.4)

Aligning the checkerboard coordinates with the XY-plane, the coordinates need
to be rotated using the plane normal(Z-axis) and X, Y axes directions in the
checkerboard object space. This can be done in the three ways explained in sub-
section 3.2.2. Since the projected checkerboard points are projected onto a plane
with tolerance deviation within planarity, the points have some irregularity within
laying in the same plane. The best-fitting solution is to obtain a checkerboard
coordinate axis relative to the plane using eigenvectors of the covariance matrix
determined by the (3.41), using the SVD. In the figure Figure B.4, the eigenvector
is visualized.

In order to rotate the coordinates aligned with XY-plane the eigenvector UT need
to be left multiplied to Po

c as in the (3.42). Then the checkerboard coordinates
are aligned with the XY-planeFigure B.6. As mentioned, the plane has devia-
tion within planarity, and the Z-values need to be equal to zero to be sent into
CalibrateCamera and StereoCalibrate functions. These coordinates are denoted
as

Pobject
checker = [x0,x1, . . .xi, . . .xJ−1] (B.5)

Where Pobject
checker is the relative coordinate in the checkerboard object space.
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(a) Eigensvectors compared to Figure B.4 (b) Eigenvector relative to the zivid camera

Figure B.5.: Eigenvectors

Figure B.6.: Checkerboard coordinates alligned with the XY-Plane
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B.1.4. Projector intrinsics and Zivid depth camera extrinsics

Finally we have the pairs of objectpoints(Pobject
checker) and imagepoints(P2d

p ) and the
resoultion size of the projector, which can be send in to the function CalibrateCamera()
and the function return the intrinsic as in subsection 3.1.5,Pintrinsics the distor-
tion coefficients Equation 3.20), Pdist, the vector rotation for each checkerboard
view rvecs with the same translation vector tvecs

In OpenCv the stereocalibrate estimates the transformation between two cameras(camera-
projector) making a stereo pair. The input is the objectpoints seen by the stereo-
pair, the intrinsic and distortion coefficients of the stereo-pair. The transformation
in the form of rotation and translation is expressed relative to left camera in the
system. The input send in is:

1. objectsPoints - (Pobject
checker)

2. imagePoints1 - (P2d
c )

3. imagePoints2 - (P2d
p )

4. cameraMatrix1 - Zivid camera intrinsic matrix

5. distCoeffs1 - Distortion coefficients zivid camera

6. cameraMatrix2 - Pintrinsics

7. distCoeffs2 - Pdist

The output are the R, the rotation between the Zivid camera space and the pro-
jector space. T are the translation vector in between the two coordinate systems.
Below we see the transformation between the two coordinate systems:
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Figure B.7.: The projector frame{p} relative to the zivid camera frame {c}.
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Additional Figures

Figure C.1.: Chessboard 11x17, square size 60 pixels
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Mathematics

D.1. Centering matrix
Cn · P3d = P3d −X (D.1)

Where:

1. Cn = In − 1
n · II

T
n =

1 0 0
0 1 1
0 0 1

− 1
n ·

1
1
1


n×1

·
[
1 1 1

]
1×n

2. P3d =


x1 y1 z1
x2 y2 z2
. . . . . . . . .
xn yn zn


n×3

3. X = [xn, yn, zn]

If we look at left side in equation 4.1:

1− 1
n

1
n

1
n

1
n 1− 1

n
1
n

1
n

1
n 1− 1

n


n×n

·


x1 y1 z1
x2 y2 z2
. . . . . . . . .
xn yn zn


n×3

(D.2)

=
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

(1− 1
n) · x1 − 1

n · x2 · · · − 1
n · xn (1− 1

n) · y1 − 1
n · y2 · · · − 1

n · yn (1− 1
n) · z1 − 1

n · z2 · · · − 1
n · zn

− 1
n · x1 + (1− 1

n) · x2 · · · − 1
n · xn − 1

n · y1 + (1− 1
n) · y2 · · · − 1

n · yn − 1
n · z1 + (1− 1

n) · z2 · · · − 1
n · zn

. . . . . . . . .
− 1
n · x1 − 1

n · x2 + · · · (1− 1
n) · xn − 1

n · y1 − 1
n · y2 + · · · (1− 1

n) · yn − 1
n · z1 − 1

n · z2 + · · · (1− 1
n) · zn


n×3

=



x1 − 1
n(x1 + x2 + · · ·xn) y1 − 1

n(y1 + y2 + · · · yn) z1 − 1
n(z1 + z2 + · · · zn)

x2 − 1
n(x1 + x2 + · · ·xn) y2 − 1

n(y1 + y2 + · · · yn) z2 − 1
n(z1 + z2 + · · · zn)

. . . . . . . . .

xn − 1
n(x1 + x2 + · · ·xn) yn − 1

n(y1 + y2 + · · · yn) zn − 1
n(z1 + z2 + · · · zn)


n×3

(D.3)



x1 − 1
n(x1 + x2 + · · ·xn) y1 − 1

n(y1 + y2 + · · · yn) z1 − 1
n(z1 + z2 + · · · zn)

x2 − 1
n(x1 + x2 + · · ·xn) y2 − 1

n(y1 + y2 + · · · yn) z2 − 1
n(z1 + z2 + · · · zn)

. . . . . . . . .

xn − 1
n(x1 + x2 + · · ·xn) yn − 1

n(y1 + y2 + · · · yn) zn − 1
n(z1 + z2 + · · · zn)


n×3

(D.4)
=

x1 − xn y1 − yn z1 − zn

x2 − xn y2 − yn z2 − zn

. . . . . . . . .

xn − xn yn − yn zn − zn


n×3

(D.5)

If we look at the right side in equation 4.1 we see that it is the same as the left
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side:

x1 − xn y1 − yn z1 − zn

x2 − xn y2 − yn z2 − zn

. . . . . . . . .

xn − xn yn − yn zn − zn


n×3

=



x1 − xn y1 − yn z1 − zn

x2 − xn y2 − yn z2 − zn

. . . . . . . . .

xn − xn yn − yn zn − zn


n×3

(D.6)
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General specifications 
 

3D technology Structured light 

Imaging 1944 x 1200 (2.3 MP) 

Native 3D Color 

Point cloud output 3D (XYZ) + Color (RGB) + SNR 

Aperture (A) f/1.8 to f/32 

Shutter (S) 1/600 s to 1/10 s 

Gain (G) 1x to 16x 

Projector Brightness (B) 1/4x to 1.8x 

1x = 360 lumens 

Exposures per 3D frame 13 

Min acquisition time 60 ms 

Calibration Factory calibrated 

Zivid Camera Model 2 (ZCM2) 

Data interface Ethernet (10 GigE) 

Power 24 V DC 

Operating temperature 0° to 45° C 

Storage temperature -20° to 60° C 

Safety and EMC CE 

CB 

EN60950 

FCC Class A 
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Operating distance and field of view 
 

Recommended working distance (mm) 400 to 1200 

Max working distance (mm) 300 to 1500 

Field of view (mm) 754 x 449 at 700 

Spatial resolution (mm) 0.39 at 700 

 

FIGURE 1 – FIELD OF VIEW 

All values in degrees or mm. 
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FIGURE 2 – FIELD OF VIEW 

All values in degrees or mm. 
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Accuracy specifications 
 

Common conditions 
 

Applies to all specifications unless otherwise stated. 

 

Parameter Description Typical 

Working distance (D)  700 mm 

Ambient temperature (Ta)  25°C  

Ambient light (La)  250 lux 

Aperture (A)   f/4.0 

Gain (G)  1.0x 

Projector Brightness (B)  1.8x 

Framerate Capture rate used during measurement. 0.2 FPS 

Other  

81% center crop 

HDR = off 

10 min warm-up 
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Typical specifications 
 

Typical numbers are given at common conditions unless otherwise specified. 

Property Description Typical 

Point precision 
1σ Euclidian distance variation for a point 
between consecutive measurements. 

60 µm	

Local Planarity Precision 
1σ Euclidian distance variation from a plane for 
a set of points within a smaller local region. 

90 µm 

Global Planarity Trueness 
Average deviation from a plane in field of view 
with noise filtering. 

< 180 µm 

Global Planarity Accuracy 
Average deviation from a plane in field of view 
without noise filtering. 

< 240 µm 

Dimension Trueness 

Average dimension error in field of view over 
10 consecutive measurements.	 < 0.20 % 

Standard deviation of dimension error in field 
of view over 10 consecutive measurements. 

0.10% 
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FIGURE 3 - POINT PRECISION VS. WORKING DISTANCE 

 

 

FIGURE 4 - POINT PRECISION VS. WORKING DISTANCE VS. AMBIENT LIGHT 
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Physical specifications 
 

Size and weight Magnesium body 

169 mm x 56 mm x 122 mm 

880 g 

Environmental IP65 

5 G Random 

15 G Shock 

Power connector M12-5 

Data connector 10 GigE 

M12-8 

Power adapter 24 V 5A 

EU, US, and UK power plug options 
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Mechanical drawings 
 

FIGURE 5 – DIMENSIONS 

All values in degrees or mm. 
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FIGURE 6 – MOUNTING OPTIONS 

All values in degrees or mm. 
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Connectors 
 

FIGURE 7 – CONNECTORS 

All values in degrees or mm. 
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Revision history 
 

Ver. Date Notes 

0.1 11/20 Initial version. 

Preliminary. 
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Specifications
The specifications below are subject to change without notice. For final specs, 
please refer to Acer's marketing documentation.

Projection system DLP™

Resolution Native: 1080p (1920 x 1080)
Maximum: WUXGA (1920 x 1200) (supports reduce 
blanking only)

Computer compatibility Refer to the "Compatibility Modes" section for more 
information.

Video compatibility NTSC (3.58/4.43), PAL (M/N), PAL 60, SECAM, HDTV 
(720p, 1080i, 1080p), EDTV (480p, 576p), SDTV (480i, 
576i)

Aspect ratio Auto, 4:3, 16:9, Full, Letter Box (L.BOX), 16:6

Displayable colors 1.07 billion colors

Projection lens • H7550ST/E155S/HE-815ST/H1P1403/H7550STz/
Z650/EG40S/HG-80ST/Q1P1504: 
F = 2.6 - 2.78, f = 10.20 mm - 11.22 mm, 1:1.1 
Manual Zoom and Manual Focus

• H7550BD/E155D/HE-815J/H1P1406/H7550BDz: 
F = 2.59 - 2.87, f = 16.88 mm - 21.88 mm, 1:1.3 
Manual Zoom and Manual Focus

Projection screen size (diagonal) 
with clear focus

• H7550ST/E155S/HE-815ST/H1P1403/H7550STz/
Z650/EG40S/HG-80ST/Q1P1504: 
54" (137 cm) - 300" (762 cm)

• H7550BD/E155D/HE-815J/H1P1406/H7550BDz: 
30" (76 cm) - 300" (762 cm)

Projection distance with clear 
focus

• H7550ST/E155S/HE-815ST/H1P1403/H7550STz/
Z650/EG40S/HG-80ST/Q1P1504: 
3.0' (0.9 m) - 15.0' (4.6 m)

• H7550BD/E155D/HE-815J/H1P1406/H7550BDz: 
3.3' (1.0 m) - 25.1' (7.6 m)

Throw ratio • H7550ST/E155S/HE-815ST/H1P1403/H7550STz/
Z650/EG40S/HG-80ST/Q1P1504: 
131"±3% @ 2 m (0.69 - 0.76:1)

• H7550BD/E155D/HE-815J/H1P1406/H7550BDz: 
79"±3% @ 2 m (1.15 - 1.50:1)

Horizontal scan rate 15 - 100 KHz

Vertical refresh scan rate 24 - 120 Hz

Keystone correction +/-40 Degrees (Vertical and horizontal), Manual & 
Auto

Digital zoom 2 X

Audio 10W x 2

Weight Approximate 3.5 kg (7.71 lbs.)

Dimensions (W x D x H) 357 x 241 x 98 mm (1.17’ x 0.79’ x 0.32’)

Power supply Universal AC input 100 - 240 V, input frequency 50/60 
Hz

Power consumption (typical) 325 W

Operating temperature 0ºC to 40ºC / 32ºF to 104ºF
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