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Abstract

The aim of this thesis is to investigate the interest rate risk forecasting ability of a
novel approach that utilizes well established methods within the field. Interest rate
risk managers often employ Value-at-Risk (VaR) estimation techniques to manage
risk, amongst others for regulatory purposes. VaR estimation models are contin-
uously being expanded upon in order to provide even more accurate estimations,
as this is still considered a statistical challenge. Research in this area has however
not yet combined some of the most powerful methods currently being used within
interest rate forecasting. This thesis proposes a combination of Principal Compo-
nent Analysis (PCA) and Quantile Regression (QR) in an approach to predict out-
of-sample interest rate changes, one day ahead. The proposed approach, which is
named the PCA-QREG model, is applied on U.S. daily Treasury yield curve rates
from January 2000 to April 2020. By creating volatility proxies of principal com-
ponents and applying quantile regression, best-fit coefficients are estimated. These
coefficients are further used in predicting the interest rate changes one day ahead
at different quantiles. The study finds that the PCA-QREG model offers predictions
that are of high accuracy while retaining simplicity in application and interpretabil-
ity.
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Sammendrag

Denne masteroppgaven forsøker å utforske renterisiko predikeringsevnen til en ny
modell som benytter seg av kjente verktøy innad i fagområdet. For å kontrollere
renterisiko benyttes ofte Value-at-Risk (VaR) estimeringsteknikker, blant annet med
hensikt om å oppfylle regulatoriske krav. VaR modeller forbedres stadig vekk i
forsøk om å oppnå høyere nøyaktighet i prediksjonene, da dette fortsatt anses som
en statistisk utfordring i fagområdet. Tidligere forskning på dette området har der-
imot ikke enda utforsket hvordan de mest fremtredende fremgangsmåtene som blir
brukt innen renterisiko predikering i dag fungerer kombinert, og hvilken påvirkn-
ing dette har på resultatene. Denne masteroppgaven foreslår en modell som kom-
binerer Principal Component Analysis (PCA) og kvantil regresjon for å predikere
renteendringer, én dag fremover i tid. Den foreslåtte modellen, heretter kalt PCA-
QREG modellen, brukes på daglige U.S. Treasury renter fra januar 2000 til april 2020.
Ved å bruke volatilitets proxy av principal components kombinert med kvantil re-
gresjon estimeres det optimale koeffisienter. Disse koeffisientene brukes videre til å
predikere renteendringer én dag fremover i tid ved ulike kvantiler. Studien finner at
PCA-QREG modellen gir prediksjoner av høy nøyaktighet, samt er rimelig å tolke
og anvende.
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Chapter 1

Introduction

Interest rate risk constitutes one of the many financial risks individuals, companies
and governments are exposed to. An umbrella definition of interest rate risk can
be described as when fluctuations to the interest rate adversely impact an investor
or borrower’s costs or profits (CPA Australia, 2008). Financial institutions, such as
banks, rely heavily on predicting interest rate risk in order to earn profits. How-
ever, unexpected changes to the interest rate not only affect banks’ earnings, but
also threaten their stability, in turn potentially harming economies across the world.
As an example, as recent as 2007-2008, during the Financial Crisis one saw the global
economy adversely affected by interest rate risk, amongst others. As the World Bank
(2017) notes, governments are also prone to difficulties regarding interest rate risk
as this often affects loans developing nations hold, which in turn can affect, for ex-
ample, how much government expenditure that is used on a country’s inhabitants.
Almeida (2005) describes understanding interest rate risk astutely: "It informs, for
different maturities, the cost of borrowing money, being directly related to macroe-
conomic variables and central bank decisions."

Interest rate risk is commonly deconstructed into four parts by financial institutions
(Bank of International Settlements, 2001): repricing risk, option risk, basis risk, and
yield curve risk. For all the four components, gaining insight into the interest rate
risk enables financial institutions to retain favorable positions and operate with more
certainty. Historically, researching the yield curve, also known as the term structure,
has been a primary focus within this field. This has varied over the years from
attempting to model the entire yield curve, to developing short-rate models, to in-
corporating macroeconomic information into the models, to varying the restrictions
imposed on the models, and more. As Fama (1990) notes, term structure literature is
concerned with how to apply current yields to forecast future interest rates, and the
risk that the literature attempts to understand relates to understanding the changing
rate relationships across the spectrum of maturities. Inherently predicting interest
rate risk, particularly yield curve risk in this instance, describes predicting how the
future interest rates change across maturities. Forecasting how interest rates change,
and thus forecasting the future yield curve is of the utmost importance to certain
institutions. Governments depend on understanding the nature of the future yield
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curve in order to decide monetary policy objectives (Bergo, 2003), regulate the cen-
tral bank interest rate, and even in order to predict incoming periods of recession
(Stojanovic & Vaughan, 1997).

Early forays in the field included applying the PCA (Flury, 1988) to interest rates and
interest rate changes such as by Loretan (1997). PCA studies characterize some of the
promising attempts at modelling the yield curve based on historic data, and thus
modelling the term structure of interest rates. By finding the Principal Components
(PC) or risk factors, researchers were able to create models that described the existing
interest rates, and captured the variation, well. The components were interpreted by
the field as describing the first three components as the slope, level, and curvature
of the yield curve, as described by Piazzesi (2010) and Duffee (2013), in an attempt
to contextualize the PCs found.

As Hagenbjörk and Blomvall (2019) point out, interest rate risk in the modern per-
spective increasingly encompasses the idea that the risk may spawn from variations
to the term structure of interest rates as well. They further note that measuring inter-
est rate risk through risk factor simulation, such as PCA, is a relatively unexplored
area of interest rate risk literature. One of the modern motivations to understanding
interest rate risk also lies in financial regulations to banks and institutions, where
there is a increasing need to comply to worst case scenario, such as described by
Value-at-Risk (VaR) procedures (de Raaji & Raunig, 1998; Sharma, 2012). Examining
interest rate risk from this perspective indicates that risk factor models of interest
rate risk have a place in interest rate risk modelling and prediction, and that the
literature is not yet comprehensive in this area.

Other researchers, such as Gray (1990), synthesized attributes they believed interest
rate risk, and other financial data, exhibited. Importantly as the field matured re-
searchers agreed financial series were very commonly not normally distributed, and
often leptokurtic. Additionally, it was found that some of financial series typically
exhibited volatility clustering, which describes how volatile periods tend to persist
before the market returns to normality (Poon, 2005). Other attributes were also re-
vealed sparking a strong interest in the creation of different econometric models.

Further, the non-normal nature of the distribution of interest rates, combined with
the need for financial institutions to understand interest rate risk in its extremities
prompts the question of whether quantile regression can be applied to interest rate
risk. Quantile regression allows researchers to explore how data exhibits different
loadings in a regression model, dependent on the quantile being examined. Quantile
regression is particularly powerful when data is not normally distributed.

As the Principal Components are well established for capturing the majority of the
variation in the interest rates, this study proposes a novel approach to predicting
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interest rate risk which lies in creating volatility proxies of the Principal Compo-
nents. The volatility proxies can then be further analyzed using quantile regres-
sion to yield predictions, in- and out-of-sample of interest rate changes at different
quantiles. Such a model would be beneficial in gaining insight into what risk fi-
nancial institutions carry, at different quantiles, within the interest rate market. The
proposed PCA-QREG model can be implemented on historical datasets with ease,
is comprised of interpretable components, and additionally has strong predictive
power for future interest rate changes.

A flowchart for the structure of the model is presented below in Figure 1.1:

FIGURE 1.1: Flowchart for the PCA-QREG Model

This thesis is organized as follows. In Chapter 2 a literature review is presented.
This is followed by a description of the interest rates and the interest rate changes in
Chapter 3, and the methodology for applying the model and evaluating the results
in Chapter 4. In Chapter 5 the empirical results are presented and discussed. Finally,
the study is summarized and concluded in Chapter 6, and further extensions to the
study are discussed.
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Chapter 2

Literature Review

The literature examined includes fundamental interest rate models and their evo-
lution, in addition to how PCA differs from other models. Further, volatility and
risk models commonly used to model interest rate risk are described, after which
applications of quantile regression in interest rate risk forecasting are presented.

Forecasting interest rates has several important motivating factors, as mentioned in
the previous chapter. However, the methods and techniques applied have varied
over the years, and the field has gradually expanded.

Research produced in this field initially began with investigations into understand-
ing the term structure of interest rates, also known as the yield curve. The primary
motivation was to model or understand the term structure for different maturities in
order to predict how changes to the underlying assets would affect the yield curve
(Cox et. al, 1985). Tesler (1966), for example, explored how two different theories,
namely expectations theory and liquidity preference theory, explain the determi-
nants of the term structure. Further, Merton (1973) made one of the earliest attempts
at modelling the term structure in order to explain the behaviour of interest rates.

As the theoretical and empirical research of the term structure increased in volume,
the amount of models attempting to model the term structure began to increase as
well (Yan, 2001). Approaches specifying the stochastic development of the entire
term structure, while intuitively attractive, imply an increase in model complexity.
This has prevented more widespread use of such models (Gibson et. al, 2001).

Models that built on Merton´s work were also generated and attempted to model
the development of the instantaneous risk-free rate. These increased with complex-
ity over time. Simple Single Factor Models encompassed more attributes including
mean-reversion characteristics using a Gaussian model (Vasicek, 1977) and allowing
for the determination of the risk premium (Hull and White, 1993), amongst others.
Eventually, these models were expanded on due to criticisms of the Single Factor
Models´ simplicity and failure to adhere to empirically identified traits of the inter-
est rates. (Gibson et. al, 2001; Maes, 2004; Lapshin, 2012).
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Other avenues of modelling the term structure included the rise of Multi-Factor
Models which outperformed Single-Factor Models (Dai and Singleton, 2000), gener-
ally, and allowed for the term structure to be modelled with higher complexity, and
greater inclusion of stylized facts interest rates exhibited. Parametric approaches,
which presuppose a fixed parametric form of the term structure (Lapshin, 2012),
were also explored. Most notably the Nelson-Siegel (1987) model, which is paramet-
ric with respect to the spot forward rate, has been widely used and expanded upon
(Diebold and Li, 2006). One of criticisms of parametric approaches has been that
despite the obvious power in producing sensible yield curve models, the models
themselves often lacked economic intuition (Lapshin, 2012).

Common to most approaches has been inherent sense of applying predetermined
stochastic equations that describe the dynamics of the factors driving the term struc-
ture movements (Almeida, 2005), usually with no arbitrage restrictions imposed.
However, stochastic equations themselves possess processes that investors are re-
quired to predict, which can be done erroneously. Such instances lead to incorrect
analyses (Bierwag et. al., 1983). Furthermore, while the Multi-Factor models work
well, the components still exhibit correlation between them (Su & Knowles, 2010),
resulting in factor relationship risk, another issue within interest rate risk manage-
ment.

Statistical studies of interest rates found that the yield curve exhibits shifts or changes
in its shape that are attributed to a few unobservable factors (Dai and Singleton,
2000). In contrast to other models, PCA has been applied to the term structures
of interest rates to determine these factors driving term structure movements. The
approach aims to classify and quantify the yield curve movements using historical
data, and attempts to produce uncorrelated factors that explain these movements
with as much economic intuition as possible (Hull, 2012). PCA describes the yield
curve variations by analyzing how much variance a factor contributes to the move-
ments, percentage-wise, and additionally can significantly reduce the dimensional-
ity compared to other models. This proves to be successful as the procedure accounts
for the variability existing in the entire dataset (Hull, 2012; Knowles & Su, 2010). Lit-
terman and Scheinkman (1991) found that three factors was an adequate number to
describe the movements of the U.S. Treasury term structure. It has since been used
in many financial problems, such as risk management (Singh, 1997), portfolio im-
munization (Barber and Copper, 1996), a benchmark to define the number of factors
in dynamic models (Collin-Dufresne and Goldstein, 2002), and in modelling global
term structure as Malava (1999), and Novosyolov and Satchkov (2008) do. More re-
cently, Joslin et. al. (2011) applied the PCA procedure in their Gaussian dynamic
term structure model when testing the out-of-sample forecasting result. Addition-
ally, Bauer & Rudebusch (2016) utilized the PCA procedure in evaluating the risk
factors for their zero-bound dynamic term structure model finding good forecasting
performance.
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With the intention of providing investors a means to better hedge investments in
fixed-income securities, Litterman & Scheinkman (1991) introduced three factors re-
sulting from PCA; level, steepness or slope, and curvature. These factors, in Litter-
man and Scheinkman´s (1991) paper captured the movements of various Treasury
bond yields by more than 99%. Additionally, Phoa (2000) found when looking at U.S.
Treasury bond yields that the first factor accounted for 90% of the observed varia-
tion in yields, and that the second and third factors were decreasingly important.
As described by Heidari & Wu (2003) the level depicts parallel shifts to the yield
curve, the slope represents flatter or steeper yield curves when short-term interest
rates increase or decrease, and long-term interest rates remain more static, and the
curvature explains changes to medium-term interest rates making the yield curve
more "humped" or flatter. Naturally, researchers also advocate that macroeconomic
variables may affect the dynamics of the yield curve, as Phoa (2000) related the level
to be affected by inflation expectations, and the slope to monetary policy changes.
However, the understanding of macroeconomic variables in relation to the principal
components is not fully comprehensive, and the literature has been conflicted in its
nature (Heidari & Wu, 2003).

From a practical perspective, interest rate risk is of importance to investors and port-
folio managers as changes to the yield curve often signals the market volatility in the
bond market. For this reason, while absolute changes to the yield curve still are of
interest, understanding the volatility of interest rates aids in determining the envi-
ronment surrounding investments in the bond market, as highlighted by Baygun et
al. (2000). Furthermore, empirical work by Bliss (1997) and Nath (2012) indicates
that while there has been little variation in the yield curves since 1970, the interest
rate volatility has not remained as stable. However, as Poon and Granger (2003)
point out, volatility is not the same as risk, however it is often used as a proxy or
building block towards it. The most common tools applied by financial institutions
to predict, analyse and mitigate interest rate risk include: sensitive gap analysis,
duration and convexity models, option adjusted spreads and Value-at-Risk (VaR)
models (Wang et. al., 2014). VaR models, in particular, are statistical techniques
that measure the amount of potential loss within an investment portfolio. They are
often used by investment and commercial banks to determine the magnitude and
occurrence probability of potential losses. With regards to interest rate risk the VaR
models more specifically "assesses financial risk by evaluating the probability of loss
that results from stochastic variation of the rate of return" (Trenca & Mutu, 2009).
Additionally, as shortly mentioned in Chapter 1, since 1996 the Basel Committee on
Banking Supervision have imposed regulatory capital requirements corresponding
to VaR estimates that banks need to adhere to.

VaR interest rate risk models tend to be characterized by one of three approaches:
Nonparametric, parametric and semi-parametric models. (Engle & Manganelli, 2001).
The differences between the models relates to how changes to the portfolio value
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are estimated. Nonparametric models include using historical simulation or stress
scenarios, such as Monte Carlo models, that calculate risk factors and the daily
return distribution before calculating the VaR Metric. Parametric approaches are
typified by RiskMetrics, Generalized Autoregressive Conditional Heteroscedacity
(GARCH)(Engle, 1982; Bollerslev, 1986), and Exponentially Weighted Moving Av-
erage (EWMA). These models propose specific parameterisations for the behavior
of the interest rates (Trenca & Mutu, 2009), and allow for complete determination
of the distribution of changes. Semiparametric models include Danielsson and de
Vries´ (1998) Extreme Value Theory which assumes little about the daily interest
rates and works well in tail estimation. Another such model is Engle and Man-
ganelli´s (1999) Conditional Auto-Regressive Value at Risk (CAViaR) model which
estimates the evolution of the quantile rather than the whole distribution of the port-
folio (Trenca & Mutu, 2009).

The historical simulation approach to estimating VaR emerged as one of the most
popular methods within the field. Perignon and Smith (2006) conducted a survey
showing that 73% of financial institutions employed historical simulation for cal-
culating VaR estimates. Sharma (2012) informs that this method does well for un-
conditional tests of the VaR estimates, but not the conditional tests. Dowd (2005)
mentions that the assumption of independent normally distributed errors in histori-
cal simulation approaches are one of the disadvantages of this method. Historically,
assuming the interest rate changes followed a normal distribution was widespread
practice. This despite empirical results by Mandelbrot (1963) and Fama (1965) in-
dicating otherwise. As mentioned in Chapter 1 in relation to Gray´s (1990) work,
it is well-known that financial returns are established to be leptokurtic, and are
thus non-normally distributed. Additionally, it has been concluded that they ex-
hibit volatility clustering where days of high volatility tend to be followed by days
of high volatility. Models such as the EWMA and the GARCH are more apt in ac-
counting for these stylized facts. The EWMA model proposed by J.P. Morgan´s Risk-
Metrics department models variance as an exponentially moving average and Engle
(1982) and Bollerslev´s (1986) GARCH models a time varying conditional variance.
The EWMA model performs well in following rapid changes to volatility, and the
GARCH model, which reduces to an EWMA model in special cases, is known as
being a powerful model for predictions and being highly customizable.

As Engle (2001) points out, the use of these models with VaR estimations is extremely
widespread where volatility of returns are in question. Vlaar (2000) applied a histori-
cal simulation model, a Monte Carlo simulation, and a model with GARCH variance
specification to estimating VaR values for Dutch bond portfolios. He found that the
historical simulation model and Monte Carlo simulation needed very high amounts
of data samples in order to forecast well, and that the GARCH variance specifica-
tion in his variance-covariance method led to some underestimation of the variance.
de Raaji & Raunig (1998) found that when comparing VaR estimates from historical
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simulations and the variance-covariance method with a EWMA variance specified,
that the EWMA method captured the volatility clustering present in the foreign ex-
change rate portfolio being examined. Lopez & Walter (2000) also evaluated foreign
exchange portfolios using two covariance-matrix forecast methods with an EWMA
specification and a GARCH specification. They found that VaR frameworks with
simple specifications, such as the EWMA specification, performed well indicating
the additional structure or information other specifications supplied were superflu-
ous in producing accurate VaR estimates.

The aforementioned PCA approach has also been applied within interest rate risk
management in certain scenarios. As previously mentioned PCA has the ability to
capture large amounts of the variation of a dataset as components that can be lin-
early combined. Jamshidian and Zhu (1996), as well as Frye (1996), detail how firms
can employ PCA within their risk management operations. Loretan (1997) describes
how PCA can be best applied by recreating stress scenarios and analyzing them fur-
ther. By capturing the interest rate changes in a few variables, it is also possible to
induce shocks to the historical data. By examining these different scenarios and cap-
turing different quantiles in the different distributions it may be possible to investi-
gate if any existing risk can have adverse effects for strategies hedged against such
exposure. Other applications include Hagenbjörk and Blomvall´s (2018) application
of Principal Component Analysis on the term structure innovations, thus identi-
fying risk factors, and thereafter modelling the distribution using GARCH models
with non-normal innovation distributions. Their approach yields lower Value-at-
Risk measurements opposed to other variants that may overestimate the interest
rate risk.

Another procedure often applied within interest rate risk management is quantile
regression introduced by Koenker and Bassett (1978). The procedure allows for the
modelling of chosen quantiles of a response variable against the observed explana-
tory variables. And so, a quantile of the response variable is expressed as a linear
combination of the covariates, and the estimation of the model involves finding the
coefficients for that linear combination (Uribe & Guillen, 2020). Generally, it is un-
derstood that quantile regression is more proficient in capturing what influences the
occurrence of extreme response values. Another important aspect that favours quan-
tile regression when working with financial returns includes that Ordinary Least
Squares assumes a normal distribution in the return series, which is not always ap-
propriate (Allen et. al, 2013), and a linear relationship between the variables. As
mentioned earlier, stylized facts financial data exhibits include non-normality, and
as such quantile regression, which makes no normality assumptions, can be more
powerful in evaluating the relationship between interest rate changes and explana-
tory variables (for instance, interest rate volatility). Quantile regression has often
been used in measuring the sensitivity of financial assets to various factors or risks.
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A common object of enquiry has been national stock markets´sensitivity to differ-
ent existing rates, such as exchange rates and interest rates. For instance, Ferrando
et. al (2017), and Jiranyakul (2016) investigate the Spanish and Thai stock markets´
sensitivity to interest rates, respectively, yielding more astute understandings of the
relevant risk factors. Additionally, Jareño et. al (2018) investigate European insur-
ers´ sensitivity to interest rate movements. Unsurprisingly however, quantile re-
gression has been in large part employed within Value-at-Risk modelling and some
degree evaluation, given its previously mentioned strengths. Quantile regression
is heavily embedded in the semi-parametric CAViaR (Engle & Manganelli, 1999),
one of the currently most popular Value-at-Risk models. Numerous examples ex-
ist of the CAViaR model being applied in a similar fashion to the previous exam-
ples mentioned. There is ample literature where VaR estimates are constructed for
stock assets, exchange assets, commodity markets, and more (Allen & Singh, 2010
; Yongjian & Peng, 2015; Aloui & Mabrouk, 2011). Another application of quantile
regression within risk management has been explorations of utilizing it as an alter-
native to backtesting (Gaglianone et. al., 2008), however literature in this realm is
somewhat scarce. Generally quantile regression has been in large part applied to-
wards analyzing the sensitivity of financial assets with regards to interest rates as a
risk management technique.

Throughout the literature however, it is evident that despite PCA being applied
in existing term structure models, and being used for stress testing financial posi-
tions, the application of PCA within traditional risk management approaches, such
as VaR, is as of yet not very well explored. PCA represents a powerful procedure that
captures vast amounts of variation embedded in a dataset, and VaR models repre-
sent a regulatory and practical necessity for financial institutions to operate within.
With this in mind a novel approach for predicting quantiles of interest rate changes
is proposed using PCA on U.S. Treasury Yields and transforming the components
into volatility proxies that capture volatility clustering well by using EWMA. From
this the model estimates out-of-sample VaR predictions at different quantiles using
quantile regression.
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Chapter 3

Data

3.1 General Description

The U.S daily Treasury yield curve rates 1 with data ranging from January 3rd 2000 to
April 14th 2020 are used in this paper. This accounts for 5291 days of observations for
each maturity. After discounting the missing values, the remaining number of days
included are 5052. This study considers rates from 3-month, 6-month, 1-year, 2-year,
3-year, 5-year, 7-year, and 10-year maturities. The 30-year maturity U.S Treasury rate
was omitted due to a significant proportion of missing values.

The different interest rates in the data span are visualized below:
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FIGURE 3.1: U.S. Daily Treasury Yield Curve Rates from 2000-2020

Some of the summary statistics of the interest rates are also presented below.

1Accessed from https://www.treasury.gov/resource-center/data-chart-center/interest-rates.
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TABLE 3.1: Descriptive Statistics of U.S. Treasury Yield Curve Rates
from January 2000 to April 2020

Maturity Min. 1st.Qu. Median Mean 3rd.Qu. Max.
3M 0.01 0.11 1.08 1.67 2.42 6.42
6M 0.02 0.18 1.19 1.78 2.51 6.55
1Y 0.08 0.30 1.33 1.87 2.64 6.44
2Y 0.16 0.68 1.63 2.11 3.09 6.93
3Y 0.28 1.00 1.85 2.33 3.42 6.88
5Y 0.37 1.60 2.48 2.76 3.90 6.83
7Y 0.51 2.02 2.90 3.11 4.13 6.87

10Y 0.54 2.32 3.34 3.41 4.40 6.79

One of the motivations for later applying PCA on the available data is the method´s
ability to obtain linearly independent vectors. This is particularly useful in instances
where datasets to be analyzed exhibit high levels of correlation. The correlation
matrix is shown below.

TABLE 3.2: Correlation Matrix of U.S. Treasury Yield Curve Rates
from January 2000 - April 2020

3M 6M 1Y 2Y 3Y 5Y 7Y 10Y
3M 1.00 1.00 0.99 0.97 0.95 0.89 0.83 0.76
6M 1.00 1.00 1.00 0.98 0.96 0.90 0.84 0.77
1Y 0.99 1.00 1.00 0.99 0.97 0.92 0.86 0.80
2Y 0.97 0.98 0.99 1.00 0.99 0.96 0.91 0.85
3Y 0.95 0.96 0.97 0.99 1.00 0.98 0.95 0.89
5Y 0.89 0.90 0.92 0.96 0.98 1.00 0.99 0.96
7Y 0.83 0.84 0.86 0.91 0.95 0.99 1.00 0.99

10Y 0.76 0.77 0.80 0.85 0.89 0.96 0.99 1.00

This correlation matrix displays high levels of correlation between the different yield
curve rate maturities, supporting the use of PCA in order to tackle the high multi-
collinearity in the dataset.

3.2 Stationarity Tests of Yield Curve Rates

One of the key components of a successful Principal Components Analysis is that the
procedure is run on data that is stationary in order to ensure a meaningful resulting
covariance matrix. With this in mind some stationarity tests have been applied to
the interest rates in order to investigate this attribute.

First, we apply the Augmented Dickey-Fuller (ADF) test (Cheung & Lai, 1995 )which
has a null hypothesis of non-stationarity in the dataset. The ADF test introduces a
certain amount of lags of the dependent variables as regressors in the test equation.
We allow the test to automatically include the number of lags based on a default
equation. However, to avoid the issue of lag selection we can also test for station-
arity using a similar test, the Phillips-Perron (PP) test (Phillips & Perron, 1988) .
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The Phillips-Perron test makes a non-parametric correction to the t-test statistic, and
therefore works well for unspecified autocorrelation. The null hypothesis for the PP
test is also non-stationarity in the dataset. Alternatively, we apply the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et. al., 1992), which also tests for
the level of stationarity. Contrary to the other tests, in this case the null hypothesis
is stationarity in the dataset. The tests are conducted on all the interest rates with
varying maturities. The results are presented below:

TABLE 3.3: Stationarity Tests of Yield Curve Rates

ADF p-values PP p-values KPSS p-values
P-values 3M 0.729359280277555 0.914556474563918 <0.01

Results 3M Non-Stationary Non-Stationary Non-Stationary
P-values 6M 0.729359280277555 0.914556474563918 <0.01

Results 6M Non-Stationary Non-Stationary Non-Stationary
P-values 1Y 0.624376565384456 0.912529240552071 <0.01

Results 1Y Non-Stationary Non-Stationary Non-Stationary
P-values 2Y 0.539813237076849 0.827158600743331 <0.01

Results 2Y Non-Stationary Non-Stationary Non-Stationary
P-values 3Y 0.453316247712882 0.739360811973506 <0.01

Results 3Y Non-Stationary Non-Stationary Non-Stationary
P-values 5Y 0.279905276141332 0.520618784984383 <0.01

Results 5Y Non-Stationary Non-Stationary Non-Stationary
P-values 7Y 0.11346639148798 0.271099176264885 <0.01

Results 7Y Non-Stationary Non-Stationary Non-Stationary
P-values 10Y 0.0236959699615407 0.0505722516716883 <0.01

Results 10Y Stationary Non-Stationary Non-Stationary

As the table displays, there is no statistical evidence that the series are stationary for
the different yield curve rate maturities. This makes applying the PCA procedure on
the yield curve rates unviable. The next section explores whether transforming the
interest rates yields data on which PCA is applicable and the results interpretable.
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3.3 Yield Curve Rates Changes & Tests

The results from Table 3.3 concluded that the raw interest rates data is not station-
ary. A common tactic when working with financial series is to difference the data.
This tends to induce stationarity in the data, and the simple transformation of data
retains the dataset´s interpretability. For this thesis two specific variants of differ-
ences are used: relative changes and logarithmic changes. These are both calculated
in similar fashion to financial returns. Calculating the relative changes and logarith-
mic changes should yield two datasets that are stationary. Further details about the
relative and logarithmic changes are presented in Chapter 4. The relative changes
and logarithmic changes for the different maturities are displayed in Figures 3.2 and
3.3.
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FIGURE 3.2: U.S. Daily Treasury Yield Rate Relative Changes from
2000-2020



Chapter 3. Data 14

0.0

2.5

5.0

2000 2005 2010 2015 2020

Dates

C
h
a
n
g
e
s
 i
n
 %

3−Month

−1
0
1
2
3
4
5

2000 2005 2010 2015 2020

Dates

C
h
a
n
g
e
s
 i
n
 %

6−Month

−0.6
−0.3

0.0
0.3

2000 2005 2010 2015 2020

Dates

C
h
a
n
g
e
s
 i
n
 %

1−Year

−0.2
0.0
0.2
0.4

2000 2005 2010 2015 2020

Dates

C
h
a
n
g
e
s
 i
n
 %

2−Year

−0.2
0.0
0.2
0.4

2000 2005 2010 2015 2020

Dates

C
h
a
n
g
e
s
 i
n
 %

3−Year

−0.2
0.0
0.2
0.4

2000 2005 2010 2015 2020

Dates
C

h
a
n
g
e
s
 i
n
 %

5−Year

−0.2

0.0

0.2

2000 2005 2010 2015 2020

Dates

C
h
a
n
g
e
s
 i
n
 %

7−Year

−0.2
0.0
0.2
0.4

2000 2005 2010 2015 2020

Dates

C
h
a
n
g
e
s
 i
n
 %

10−Year

FIGURE 3.3: U.S. Daily Treasury Yield Rate Logarithmic Changes
from 2000-2020

Additionally some descriptive statistics about both the relative changes and loga-
rithmic changes are provided:

TABLE 3.4: Descriptive statistics of U.S. Treasury Yield Curve Rate
Relative Changes from January 2000 - April 2020

Maturities Min. 1st.Qu. Median Mean 3rd.Qu. Max.
3M -0.96 -0.01 0.00 0.02 0.01 6.67
6M -0.78 -0.01 0.00 0.00 0.01 5.00
1Y -0.56 -0.01 0.00 0.00 0.01 0.47
2Y -0.34 -0.02 0.00 0.00 0.01 0.38
3Y -0.32 -0.02 0.00 0.00 0.01 0.45
5Y -0.30 -0.01 0.00 0.00 0.01 0.37
7Y -0.25 -0.01 0.00 0.00 0.01 0.36

10Y -0.27 -0.01 0.00 0.00 0.01 0.41
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TABLE 3.5: Descriptive statistics of U.S. Treasury Yield Curve Rate
Logarithmic Changes from January 2000 - April 2020

Maturities Min. 1st.Qu. Median Mean 3rd.Qu. Max.
3M -3.33 -0.01 0.00 0.00 0.01 2.04
6M -1.50 -0.01 0.00 0.00 0.01 1.79
1Y -0.82 -0.01 0.00 0.00 0.01 0.39
2Y -0.42 -0.02 0.00 0.00 0.01 0.32
3Y -0.38 -0.02 0.00 0.00 0.01 0.37
5Y -0.36 -0.01 0.00 0.00 0.01 0.31
7Y -0.28 -0.01 0.00 0.00 0.01 0.31

10Y -0.32 -0.01 0.00 0.00 0.01 0.34

The descriptive statistics, while not yielding necessary information, do show that
values for the differencing have their means around zero, and exhibit some more
variation outside of the 1st and 3rd quantiles. None of the statistics are alarming nor
indicate any cause for further examination.

3.3.1 Stationarity of Yield Curve Rate Changes

Having looked at the relative and logarithmic changes visually and checked some
simple statistics, the next step is to conduct the same stationarity tests as in the previ-
ous section to the relative and logarithmic changes. The tests will inform on whether
the initial transformation of the data was an adequate, or if other manipulations of
the data are required.

TABLE 3.6: Stationarity Test Results of U.S. Treasury Yield Curve Rate
Relative Changes from January 2000 - April 2020

ADF p-values PP p-values KPSS p-values
P-values 3M <0.01 <0.01 <0.01

Results 3M Stationary Stationary Non-Stationary
P-values 6M <0.01 <0.01 0.01357

Results 6M Stationary Stationary Stationary
P-values 1Y <0.01 <0.01 >0.1

Results 1Y Stationary Stationary Stationary
P-values 2Y <0.01 <0.01 >0.1

Results 2Y Stationary Stationary Stationary
P-values 3Y <0.01 <0.01 >0.1

Results 3Y Stationary Stationary Stationary
P-values 5Y <0.01 <0.01 >0.1

Results 5Y Stationary Stationary Stationary
P-values 7Y <0.01 <0.01 >0.1

Results 7Y Stationary Stationary Stationary
P-values 10Y <0.01 <0.01 >0.1

Results 10Y Stationary Stationary Stationary
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TABLE 3.7: Stationarity Test Results of U.S. Treasury Yield Curve Rate
Logarithmic Changes from January 2000 - April 2020

ADF p-values PP p-values KPSS p-values
P-values 3M <0.01 <0.01 >0.1

Results 3M Stationary Stationary Stationary
P-values 6M <0.01 <0.01 >0.1

Results 6M Stationary Stationary Stationary
P-values 1Y <0.01 <0.01 >0.1

Results 1Y Stationary Stationary Stationary
P-values 2Y <0.01 <0.01 >0.1

Results 2Y Stationary Stationary Stationary
P-values 3Y <0.01 <0.01 >0.1

Results 3Y Stationary Stationary Stationary
P-values 5Y <0.01 <0.01 >0.1

Results 5Y Stationary Stationary Stationary
P-values 7Y <0.01 <0.01 >0.1

Results 7Y Stationary Stationary Stationary
P-values 10Y <0.01 <0.01 >0.1

Results 10Y Stationary Stationary Stationary

The stationarity tests indicate that the transformations of the data seems to induce
stationarity in the different maturities of the dataset. Explicitly the tests show that
there is enough statistical evidence to consider that the changes in Treasury Yield
Curve Rates, for all maturities, are stationary, and thus PCA can be run on them
yielding interpretable results.

3.3.2 Correlation in Changes

As mentioned earlier, the correlation between the maturities incentivizes the use of
PCA. Large multicollinearity in the dataset makes the linearly non correlated prin-
cipal components very valuable. Next it is verified whether calculating the relative
and logarithmic changes of the dataset has impacted the correlation between the ma-
turities. The correlation matrix for the relative changes and logarithmic changes are
displayed below in Tables 3.8 and 3.9.

TABLE 3.8: Correlation Matrix of U.S. Treasury Yield Curve Rate Rel-
ative Changes from January 2000 - April 2020

3-Month 6-Month 1-Year 2-Year 3-Year 5-Year 7-Year 10-Year
3-Month 1.00 0.32 0.17 0.07 0.06 0.05 0.04 0.04
6-Month 0.32 1.00 0.33 0.17 0.17 0.14 0.12 0.13

1-Year 0.17 0.33 1.00 0.54 0.53 0.48 0.44 0.41
2-Year 0.07 0.17 0.54 1.00 0.87 0.82 0.76 0.69
3-Year 0.06 0.17 0.53 0.87 1.00 0.93 0.88 0.81
5-Year 0.05 0.14 0.48 0.82 0.93 1.00 0.97 0.91
7-Year 0.04 0.12 0.44 0.76 0.88 0.97 1.00 0.96

10-Year 0.04 0.13 0.41 0.69 0.81 0.91 0.96 1.00
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TABLE 3.9: Correlation Matrix of U.S. Treasury Yield Curve Rate Log-
arithmic Changes from January 2000 - April 2020

3-Month 6-Month 1-Year 2-Year 3-Year 5-Year 7-Year 10-Year
3-Month 1.00 0.36 0.21 0.10 0.08 0.07 0.06 0.06
6-Month 0.36 1.00 0.42 0.25 0.24 0.20 0.18 0.18

1-Year 0.21 0.42 1.00 0.54 0.53 0.48 0.44 0.42
2-Year 0.10 0.25 0.54 1.00 0.87 0.83 0.77 0.70
3-Year 0.08 0.24 0.53 0.87 1.00 0.93 0.88 0.81
5-Year 0.07 0.20 0.48 0.83 0.93 1.00 0.97 0.92
7-Year 0.06 0.18 0.44 0.77 0.88 0.97 1.00 0.96

10-Year 0.06 0.18 0.42 0.70 0.81 0.92 0.96 1.00

Clearly the correlations between the different vectors of the different maturities have
changed after calculating the changes of the yield curve rates.

In order to evaluate the power of PCA on this dataset it is possible to employ two
tests that validate the use of it: the KMO (Kaiser-Meyer-Olkin) Measure of Sampling
Adequacy (1970) statistic and Bartlett´s Test of Sphericity (1951). The KMO statistic
examines to what degree the proportion of variance among variables may be com-
mon variance. Initially, it calculates the partial correlation matrix of the changes for
each maturity. This matrix is the correlation between maturities without other matu-
rities that may be numerically related. Using this and the original correlation matrix
the statistic calculates a number from 0 to 1, where the closer the number is to 1, the
more suited PCA is to the dataset.

KMO =

 ∑
i

∑
j 6=i

r2
ij

∑
i

∑
j 6=i

r2
ij + ∑

i
∑
j 6=i

a2
ij

 (3.1)

In equation 3.1 rij and aij are the entrance (i,j) of the correlation and partial correla-
tion matrices, respectively. Ideally, the partial correlation is low, indicating strong
relationships between all maturities and thus the use of PCA. The KMO Statistic for
the relative changes and the logarithmic changes are both 0.85. This value is suffi-
ciently high that PCA is still considered a viable procedure to apply on the dataset.

On the other hand the Bartlett Test of Sphericity checks the observed correlation ma-
trix against the identity matrix. More specifically it ascertains whether there is a
redundancy between the maturities that can then be summarized with a few com-
ponents. The null hypothesis of the test is that the maturities are orthogonal, that is,
not correlated. The corresponding alternative hypothesis is that the maturities are
correlated to the extent that the correlation matrix is significantly different from the
identity matrix. For both sets of changes the test yields p-values rounded to zero,
thus rejecting the null hypothesis.
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After transforming the Yield Curve Rates the KMO Statistic and Bartlett Test of
Sphericity confirm that PCA is still a worthwhile procedure to apply.

3.3.3 Squared Changes - Variance of the Residuals

An important assumption of linear regression is homoscedacity; constant variance in
the residuals for any given time. One of the ways to examine if this assumption holds
for the relative and logarithmic changes created is to visually inspect the squared
changes of the maturities. Consider the following equation:

S2 =

n
∑

t=1
(ut − x̄)2

n− 1
,

(3.2)

where S2 is the variance, ut is the yield curve change for a given maturity at time
i, x̄ is the mean of the yield curve change for a given maturity, and n the number
of observations. Knowing that the mean of the yield curve changes are close to
zero, then the numerator of the equation reduces to the squared changes. Thus, by
inspecting the squared changes homoscedacity can either be verified or discarded.
The squared relative and logarithmic changes for each maturity are presented in
Figures 3.4 and 3.5.
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FIGURE 3.4: Squared Relative Changes of U.S. Daily Treasury Yield
Rates from 2000-2020

From the plots supplied it can be seen that the squared relative and logarithmic
changes vary over the dataset. This implies that the variance of the changes are
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FIGURE 3.5: Squared Logarithmic Changes of U.S. Daily Treasury
Yield Rates Square from 2000-2020

not constant and thus one of the assumptions required for linear regression is also
violated. With existing multicollinearity and heteroscedacity in the dataset quantile
regression is well-suited as none of the attributes mentioned affect its performance.

3.3.4 Normality of Yield Curve Rate Changes

In order to further validate the use of quantile regression it is pertinent to investi-
gate the changes for attributes that quantile regression is known to apply well for.
In particular, it is useful to attempt to identify non-normality within the changes
as quantile regression yields meaningful results when the distribution is not nor-
mal. First, we visually inspect the changes to identify non-normality in the shape
of skewness, or kurtosis. Histograms of each variant of the changes, and for each
maturity are displayed below with 100 bins in each plot:
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FIGURE 3.6: Histograms of U.S. Daily Treasury Yield Rate Relative
Changes from 2000-2020
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FIGURE 3.7: Histograms of U.S. Daily Treasury Yield Rate Logarith-
mic Changes from 2000-2020
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Visual examination of the histograms indicates that a normal distribution cannot
be assumed for the changes in most cases, as the peaks cluster greatly around the
mean indicating excess kurtosis. To investigate this further we conduct skewness
and kurtosis tests, along with the Jarque-Bera (1980) test to each type of changes and
each maturity. The Jarque-Bera test creates a statistic based on sample skewness and
kurtosis given as:

JB = n
(
(
√

b1)
2

6
+

(b2 − 3)2

24

)
, (3.3)

where b1 and b2 represent skewness and kurtosis respectively. The null hypothesis
of the test is that the data is normal distributed, that is, skewness equal to zero and
kurtosis equal to 3. Large values of the statistic reject the null hypothesis of normal-
ity. Kurtosis less than 3 (Kallner, 2018) and skewness between -2 and 2 (Kim, 2013)
are considered acceptable in order to accept normal univariate distribution.

TABLE 3.10: Normality Test Results of U.S. Treasury Yield Curve Rate
Relative Changes from January 2000 - April 2020

Skewness Kurtosis JB χ2 Statistic
3M Values 11.00 210.47 9431847.84
6M Values 20.93 903.17 172180432.40
1Y Values 0.59 14.95 47404.72
2Y Values 0.39 8.51 15368.25
3Y Values 0.54 12.91 35374.49
5Y Values 0.54 17.53 64967.05
7Y Values 0.52 18.37 71311.41

10Y Values 1.50 51.50 560626.05

TABLE 3.11: Normality Test Results of U.S. Treasury Yield Curve Rate
Logarithmic Changes from January 2000 - April 2020

Skewness Kurtosis JB Statistic
3M Values -0.90 43.80 404817.74
6M Values 0.81 83.85 1481302.37
1Y Values -0.91 27.50 160051.57
2Y Values -0.28 8.67 15891.16
3Y Values -0.25 11.66 28690.27
5Y Values -0.32 16.32 56190.13
7Y Values -0.22 16.62 58227.53

10Y Values 0.03 38.38 310243.74

When looking at the relative changes in Table 3.10 it seems that skewness can be con-
sidered within normal range for most of the maturities, however values for kurtosis
seems to be very high for all maturities. This corresponds well with the conclusion
reached based on the previous visual inspection. The Jarque-Bera statistic is very
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high for all maturities, supporting the observation that the relative changes cannot
be assumed to be normally distributed.

Similarly for the logarithmic changes in Table 3.11, skewness values range between
values acceptable to conclude a normal distribution, however the kurtosis values
indicates high kurtosis. Additionally, the Jarque-Bera statistics are very high also
supporting the conclusion that logarithmic changes cannot be assumed to be nor-
mally distributed.

After concluding that the relative and logarithmic changes for all maturities are not
normally distributed, the study proceeds with applying quantile regression as its
characteristics are more optimally suited for non-normally distributed data.
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Chapter 4

Methodology

The proposed PCA-QREG model follows the procedure detailed ahead. The in-
terest rate changes are calculated using standard approaches to create daily rela-
tive changes and daily logarithmic changes. Using the interest rate changes the
PCA procedure is applied to both types of changes separately. The PCA procedure
yields three independent components that capture large parts of the variation in the
changes. The selection of three components is based on common practice in litera-
ture that attempts to optimize the balance between reduction in dimensionality and
therefore noise, and accuracy in capturing variations. The choice is validated in
Chapter 5. Using the Principal Component vectors volatility proxies of each Princi-
pal Component are created using an Exponentially Weighted Moving Average pro-
cedure. Finally, the volatility proxies are run through quantile regression against
the interest rate changes, yielding best fit coefficients for each quantile investigated.
Using these coefficients predictions of the interest rate changes are made for cor-
responding quantiles, both in-and-out of sample. Ultimately, the accuracy of the
predictions are evaluated using well established VaR backtesting tests which test if
the predictions compare to their expected success. More in-depth explanations for
each step are provided in the sections that follow.

4.1 Yield Curve Rates Changes

In order to make inferences about the volatility of the changes it is useful to clarify
how the changes are defined. This study employs daily relative changes:

yt =

(
Pt − Pt−1

Pt−1

)
(4.1)

and daily logarithmic changes:

yt = ln
(

Pt

Pt−1

)
(4.2)
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Where Pt is the interest rate at time t for a certain maturity. The calculation of
changes in Equations 4.1 and 4.2 are synonymous with the procedures taken to cal-
culate financial returns.

4.2 Principal Component Analysis

PCA is a statistical procedure of feature extraction that transforms a set of correlated
observations into a set of linearly uncorrelated variables denoted as the principal
components. As mentioned in Chapter 2, literature indicates that a high proportion
of the variation in the interest rates is captured with three principal components,
where additional components contribute with more accuracy, but also more noise.
This paper also retains only the first three principal components. This is empirically
validated to be a sufficient trade-off between accuracy and noise for the relative and
logarithmic changes. This is shown in Chapter 5. This procedure yields three vectors
X1, X2, and X3, commonly referred to as the level, slope, and curvature respectively
(see Chapter 2). The length of the vectors corresponds to the number of time points
of changes in the dataset.

4.3 Exponentially Weighted Moving Average

The EWMA is a simple and frequently used volatility model. Where historical stan-
dard deviation places an equal weight on all observations in the period and is often
ill-suited to volatility estimations within interest rate forecasting, EWMA provides
a slightly more complex and accurate, yet still simple approach. The EWMA model
calculates the moving average of data series and places more weight on the most
recent data points. This aspect of the model is useful in attempting to accommodate
for the commonly seen feature of financial series, namely volatility clustering.

The model is described as such:

EWMAt,i =

√
Xt,i(1− λ)2 + EWMAt−1,i(λ)

2, (4.3)

where λ is a constant decided beforehand that determines the weight of the previous
observations in the model. As mentioned, financial series are known to have volatil-
ity clustering and so high values of λ accommodate for this. In this study the λ is
predefined as being 0.97 in order to closely follow volatility developments. First the
model requires an arbitrary predefined value for the first data point. The approach
in the study is to calibrate the first value based on what order of magnitude the EW-
MAs calculated for an arbitrary first value possesses. The model is repeated for each
principal component vector resulting in three vectors of volatility proxies.
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4.4 Quantile Regression

Quantile regression is an extension of standard linear regression that allows for the
examination of relationships between variables at tail-ends of distributions. Unlike
standard linear regression it makes no assumptions about the distribution of the
residuals. This is advantageous when working with data that may be non-normally
distributed or that possess non-linear relationships with predictor variables. Finan-
cial data is well-known to have these stylistic features, thus validating the use of
quantile regression in this field. Employing QR to the volatility proxies of the princi-
pal components of the yield curve rate changes is beneficial in order to inspect how
changes may be dependent on the level, slope and curvature at different quantiles.
Assuming that the changes react uniformly to certain volatility changes in the level,
slope and curvature irrespective of the values of the changes may be erroneous. In-
stead of estimating the conditional mean, and minimizing the Mean Squared Error
(MSE), as is done in standard linear regression, Quantile Regression estimates the
conditional median, and minimizes the Median Absolute Deviation (MAD). Quan-
tile regression models take the following form:

Qτ(yt) = B0(τ) + B1(τ)xt,1 + ... + Bp(τ)xt,p, t = 1, ..., n, (4.4)

where beta coefficients depend on the quantile τ

In this thesis the model is written as:

Qτ(yt) = B0(τ) + B1(τ)EWMAt,1 + B2(τ)EWMAt,2 + B3(τ)EWMAt,3, t = 1, ..., n,

(4.5)

where coefficients Bn(τ) are estimated.

The quantiles investigated include the lower and higher extremes of 1% and 2%, and
98% and 99%. In addition, increments of 5% are explored from 5% to 95%. In total
23 different quantiles are considered in the quantile regression. The study calculates
the coefficients produced by the quantile regression model for two different types
of changes, eight different maturities and 23 different quantiles, thus yielding 368
different equations to estimate the coefficients for.

4.5 In-sample Prediction

The quantile regression yields four different coefficients that are the best fit for Equa-
tion 4.5 for each quantile, maturity and both variants of calculated changes. Using
the estimated coefficients it is possible to calculate estimates of the changes.

ŷt,τ = B̂0(τ) + B̂1(τ)EWMAt,1 + B̂2(τ)EWMAt,2 + B̂3(τ)EWMAt,3, (4.6)



Chapter 4. Methodology 27

where ŷt,τ is the estimated change at time t for the τ quantile, for a specified variant
of the changes, and maturity type.

4.6 Out-of-sample Prediction

By using a subset of the available changes data, running the model and estimating
coefficients for the quantile regression equation, it is possible to make a one day
ahead prediction, out-of-sample. By defining the length of the subset as the window
length, and incrementally varying the training data with one day at a time, creating
a rolling window, numerous one day ahead predictions can be made. The equation
for the estimator is as follows:

ŷWL+1,τ = B̂0(τ) + B̂1(τ)EWMAWL,1 + B̂2(τ)EWMAWL,2 + B̂3(τ)EWMAWL,3 (4.7)

Where WL is the time at the end of the current window, and B̂n are the estimated
coefficients for the current window.

As mentioned in Chapter 3, the time the dataset spans is from January 2000 to April
2020. The full dataset is used for the out-of-sample predictions, with the window
length set to 10 years. An example of the method is given here, and repeated in the
next chapter to ensure clarity.

For instance, with the window length set to 10 years, the first window is from 3rd
January 2000 to 3rd January 2010, and an out-of-sample prediction is made for the
4th of January 2010. The following window is 4th January 2000 to 4th January 2010,
and the subsequent prediction is for the 5th of January 2010. This is repeated for the
whole dataset until the final date, 14th April 2020.

4.7 Testing the Results

In order to test the accuracy of the predictions, Value-at-Risk (VaR) backtesting pro-
cedures may be employed. The tests measure the accuracy for the estimated changes
against the real changes, at a given quantile, thus assessing the accuracy of the risk
model. Two popular tests are the Kupiec (1995) and Christoffersen (1998), which
examine the unconditional and conditional accuracy of the results, respectively.

4.7.1 Kupiec´s Unconditional Coverage Test

Kupiec´s Proportion-of-Failure (PoF) test is one of the first VaR backtesting proce-
dures and only examines unconditional coverage. That is, the test checks whether
the given VaR level is violated more or less than the significance level allows.
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For a given quantile, the test calculates the expected number of times the predicted
change should be below the real change. If testing the 1% quantile predictions, the
test checks whether roughly only 1% of the real changes are below the predicted
changes. Of a total n observations, the number of hits can be denoted as n1, and for
a given quantile, with a corresponding 1− τ confidence interval, the number of hits
is expected to be τ ∗ n. Hits being whether the value of the real change is below the
predicted change.

This leads to the two hypotheses that are investigated:

H0 : πex = πobs =
n1

n
(4.8)

H1 : πex 6= πobs =
n1

n
(4.9)

Where πobs is the frequency of the hits, and πex is the expected probability of hits.
It should be noted that in this test, contrary to the setup of many other hypothesis
tests, the null hypothesis is the hypothesis we wish for the test to reject. In order to
test the significance of the observed number of hits a log-likelihood statistic is used:

LRKupiec = −2ln
(

πex
n1(1− πex)n0

πn1
obs(1− πobs)n0

)
, (4.10)

where n0 is the number of misses; n − n1. The test statistic is compared to a Chi-
Squared test statistic based on the chosen confidence interval: 1 − τ, where ulti-
mately the test rejects the null hypothesis or fails to reject it.

While powerful, one of the shortcomings of the Kupiec Test with regards to testing
risk models, is the unconditional nature of it, where it only tests the failure rates,
and not the successive occurrence of failures. We know that financial data is often
stylized by volatility clustering, and the changes depicted in Chapter 3 were clearly
dependent on previous values, thus motivating testing the predictions using a con-
ditional VaR backtesting procedure.

4.7.2 Christoffersen´s Markov Conditional Test

The Christoffersen test, similarly to the previous test, examines to what degree the
proportion of hits for the predicted changes against the real changes, are valid. How-
ever, the test aims to reveal whether the hits that occurred depend on a hit that oc-
cured on the previous day. Ideally the prediction model successfully estimates the
changes to the extent that hits for a given quantile do not depend on whether the
day before resulted in a hit or not. The null hypothesis is that hits are independent
across the time series, and the reverse for the alternate hypothesis. Similarly to the
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Kupiec Test, a log-likelihood statistic is calculated using the proportion of consecu-
tive hits, and is compared to a Chi-Squared statistic. One of the weaknesses of the
Christoffersen test is the day by day Markov nature of the test. In time series with
clustering where the hit of a certain day may be dependent on a hit a week ago, the
test will not identify this effect, as it only looks at day to day dependence.
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Chapter 5

Empirical Results & Discussion

5.1 Principal Components

Literature indicates that the use of three principal components is sufficient to cap-
turing large amounts of the variation in the dataset, whilst not including too much
noise. For the study it is pertinent to validate this hypothesis for the entire dataset.
The percentage of variances each principal component captures is shown below:

TABLE 5.1: Percentage of Variance for each Principal Component:
U.S. Treasury Yield Curve Rate Relative Changes from January 2000 -

April 2020

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Percentage of Variance 60% 17% 9% 7% 4% 1% 1% 0%

Cumulative Sum 60% 77% 86% 93% 97% 98% 99% 100%

This is also visualized below:
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FIGURE 5.1: Percentage of Variation Captured by Principal Compo-
nents for U.S. Daily Treasury Yield Rate Relative Changes from 2000-

2020

The improvement in capturing variation naturally increases with the more Principal
Components included, however at three components the captured variation is as
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high as 86% where further inclusions do not contribute too much to increase the
explained variance. The process can be repeated for logarithmic changes:

TABLE 5.2: Percentage of Variance for each Principal Component:
U.S. Treasury Yield Curve Rate Logarithmic Changes from January

2000 - April 2020

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Percentage of Variance 61% 18% 9% 6% 4% 1% 1% 0%

Cumulative Sum 61% 79% 88% 94% 98% 99% 100% 100%
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FIGURE 5.2: Percentage of Variation Captured by Principal Compo-
nents for U.S. Daily Treasury Yield Rate Logarithmic Changes from

2000-2020

Similarly to the relative changes, the logarithmic changes has a high amount of
variance captured by the first three principal components. The high variance cap-
tured and the only minor improvements by including more dimensions validates
the choice of three principal components for the relative and logarithmic changes
datasets.

5.2 In-sample Predictions January 2000 - April 2020

The in-sample prediction investigates how well the proposed procedure predicts the
yield curve rate changes from January 2000 to April 2020. Following the methodol-
ogy highlighted in Chapter 4, the in-sample prediction is tested using the Kupiec
and Christoffersen tests. In Tables 5.3 to 5.4 the success of the in-sample prediction
is visualized. Table 5.3 and 5.4 display the prediction accuracy when examining rel-
ative changes and logarithmic changes, respectively. For each in-sample prediction
of a given quantile and maturity a color is provided. Red cells indicate predictions
that failed both tests, yellow cells indicate predictions which passed only one test,
and green cells indicate predictions that passed both tests.
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TABLE 5.3: Successful In-Sample Prediction Maturities and Quantiles for Relative Changes from January
2000 to April 2020

Quantiles 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y
1%
2%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
98%
99%

TABLE 5.4: Successful In-Sample Prediction Maturities and Quantiles for Logarithmic Changes from
January 2000 to April 2020

Quantiles 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y
1%
2%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
98%
99%
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Some visible trends can be drawn from the tables presented. It is clear that for both
standard and logarithmic changes in-sample predictions often performed poorly for
shorter maturities and better for longer maturities. Generally, for the shorter ma-
turities the predictions fail entirely when close to the median. This is also a trend
for the longer maturities. For the lowest maturities, three month and six month,
predictions are sub-optimal until the 65th quantile. For those same maturities the
predictions perform well before reaching the longer quantiles. While generally the
predictions seem sub-optimal at the highest quantiles as well, it can be observed that
the predictions perform well at the highest quantiles for the longer maturities five
year, seven year, and ten year.

From the VaR estimation perspective the estimations of most interest lie at the 1-
5% and 95-99% predictions. As described in Chapter 2, these values, particularly
the 1% estimation, will hold the most relevance to interest rate risk managers. Both
Tables 5.3 and 5.4 indicate that in-sample predictions of the lowest quantiles are most
accurate from middle maturities to longer maturities. For relative changes the tables
indicate that predictions at the 1-5% quantiles for the two year to ten year maturities
are good. Additionally, the most accurate 1% quantile predictions occur between the
three year to seven year maturities.

The worse performance of the predictions at shorter maturities could be related to
the high variation in the changes at those maturities. When revisiting Figure 3.4 it
can be seen that the squared changes are of a higher magnitude for the three month
and six month maturities. The higher level of variation and rapid changes may be
too high for the model to capture appropriately.

Comparing Tables 5.3 and 5.4, it seems that the logarithmic changes yielded a greater
proportion of predictions that passed both the condition and unconditional coverage
tests. Of the predictions based on the relative changes 118 of the 184 tests were
completely successful. This is in contrast to the 127 prediction sets that passed both
tests successfully for predictions based on the logarithmic changes. There seems to
be a slight indication that the methodology based on logarithmic changes yielded
better results, however the difference between 127 and 118 being relatively small
suggests nothing definitive can be concluded. The proportion of prediction sets that
failed both tests amounted to 18 and 16 of 184 for Tables 5.3 and 5.4, respectively.

In addition to the tables, plots of in-sample predictions that performs sub-optimally,
and others that performs well, are presented below. From the perspective of an in-
terest rate risk manager, in order to predict the VaR estimate predictions the 1% and
99% quantile interest rate change are the most interesting. Which of the 1% or 99%
quantile is of interest depends on the whether the manager´s position is long or
short. As pointed out earlier, the shorter maturities seem to perform worse com-
pared to the longer maturities. Therefore in Figure 5.3 the three month maturity
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logarithmic changes predictions are presented at the 1st and 99th quantile, as an ex-
ample of sub-optimal predictions. Correspondingly, as examples of successful pre-
dictions the five year maturity logarithmic changes predicted values are presented
for the same quantiles in Figure 5.4.
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FIGURE 5.3: In-sample Predictions of 3-Month Logarithmic Changes
of U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020

In Figure 5.3 the prediction sets do well in retaining an appropriate magnitude of
size compared to the original three month logarithmic changes from January 2000
to roughly August 2008. Around August 2008 the original dataset rapidly explodes
in magnitude, and while the 1% quantile prediction does not capture the change
appropriately, both prediction lines are very reactive to the sudden change. The
same characteristic is seen around April 2020. Interestingly, the same adaptability is
not seen when the original dataset falls towards its zero mean. This is seen from 2009
to 2010, and June 2011 to roughly March 2012, for instance. This may be due to the
fact that the estimated quantile regression coefficients implicitly contain information
that neither the 1% nor the 99% quantile tends to lie around zero, and therefore the
prediction equation is not tuned to capturing the reversion to the mean, compared
to the sudden falls and rises, respectively.

The predictions in Figure 5.3 follow the shape of the original dataset reasonably well,
however they follow it the best in periods with low variation. This can be seen from
2000 to June 2007, and 2017 to 2020. In periods with variation the magnitude of the
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FIGURE 5.4: In-sample Predictions of 5-Year Logarithmic Changes of
U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020

original dataset changes so dramatically, and somewhat often. Like from 2009 to
2016, the prediction sets seem to capture the trend of the direction of the original
dataset very well, but struggles more with accurate quantile predictions. With large
fluctuations in the three month logarithmic changes´ values the quantile regression
coefficients seem less optimized for the rapid and large changes. Indicative of this
seems to be how the original dataset deviates far more from prediction lines in this
turbulent period, seen before 2009, at 2013, and before 2016.

For similar periods the same characteristics identified above are seen for both quan-
tiles in Figures A.1, A.2, A.9 & A.10 in Appendix A, these being plots with statisti-
cally the same predictive power.

Comparatively, the prediction sets in Figure 5.4 perform similarly, if not slightly bet-
ter, at following sudden changes of large magnitude. This is seen just after 2009,
around June 2011, June 2016, and around March 2020. The original dataset is rela-
tively stable with values lying between -0.125 and 0.125, for the most part. Due to
this it is difficult to evaluate to what extent the prediction lines respond to sudden
and dramatic changes, with exception of the sudden fluctuation in March 2020. The
predictions in Figure 5.3 and 5.4 are similar however in the somewhat sluggish re-
sponse to mean reversion after sudden changes. This is seen between 2009 and June
2010, and between June 2016 and roughly April 2017, for the 1% quantile in Figure
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5.4. Generally however, the predictions do quite well with large changes presented,
where only the 1% quantile line has a major deviation just after 2009.

The prediction lines in Figure 5.4 do however follow the shape of the original dataset
very well, doing particularly well from 2005 to 2008, where the observable variation
is also quite low. The same is seen from June 2017 onwards. Otherwise, between
2012 and 2017, a period with more variation, the prediction lines still perform rela-
tively well in retaining the overall shape of the dataset. This may be attributed to the
fact that the values in the original dataset remain of the same order of magnitude,
and thus the prediction lines are better optimized given fewer shocks to the dataset.
The seven and ten year maturities perform equally well and display the same traits.
These are shown in Figures A.13 and A.14. This is perhaps unsurprising given how
similar the original datasets are. The similarity is not only visually identified, as
these maturities also exhibit high correlation between each other as seen in Table
3.9.

5.3 Out-of-sample Predictions January 2010 - April 2020

In order to examine the effect varying amounts of training data may have on the
proposed model, different sets of dates can be utilized. However, both quantile re-
gression and statistical tests of the predictions require considerable amounts of data
in order to have statistically significant results. The trade-off between enough data
for training and testing led to the decision of using 10 years of training data at a time
to produce one day ahead predictions for 10 years. The set decided upon is from Jan-
uary 2010 to April 2020, as mentioned in Chapter 4, with the length of each rolling
window training period specified as 10 years. The out-of-sample prediction is ap-
plied using a rolling training window that is 10 years long. This is also described in
Chapter 4, however a short example is reiterated here. For instance, the first 10 year
window is from 3rd January 2000 to 3rd January 2010, and an out-of-sample predic-
tion is made for the 4th of January 2010. The following window is 4th January 2000
to 4th January 2010, and the subsequent prediction is for the 5th of January 2010.
This is repeated for the whole dataset until the final date, 14th April 2020.

In similar fashion to the previous section, tables with the test results are presented
below. Tables 5.5 & 5.6 describe the prediction accuracy of out-of-sample predictions
based on relative changes and logarithmic changes, respectively. The color of the
cells corresponds to the number of accuracy tests passed, identical to the details
described in the previous section.
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TABLE 5.5: Successful Out-of-Sample Prediction Maturities and Quantiles for Relative Changes

Quantiles 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y
1 %
2%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
98%
99%

TABLE 5.6: Successful Out-of-Sample Prediction Maturities and Quantiles for Logarithmic Changes

Quantiles 3M 6M 1Y 2Y 3Y 5Y 7Y 10Y
1%
2%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
98%
99%
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Similarly to the trend observed for in-sampling prediction accuracy, it is clear when
examining Tables 5.5 & 5.6 that the accuracy of predictions is poor at shorter maturi-
ties from three month to one year. As seen in the previous section, at the maturities
mentioned, the prediction accuracy when close to the median is poor. Generally,
the prediction accuracy reverses to passing both tests around the 75th quantile. As
mentioned previously, the poor prediction accuracy at shorter maturities that is al-
most irrespective of quantile may be attributed to the high variation in the datasets
at these maturities.

Further, it seems the predictions at different quantiles for longer maturities includ-
ing three year to ten year, and partially including two year, are significantly better
and perform well. With regards to the 1% quantile estimation the out-of-sample
predictions are most accurate for the maturities between two year to seven year, for
both Tables 5.5 & 5.5.

With regards to the difference in accuracy dependent on the type of changes, in
contrast to the earlier section, the number of prediction sets that passed both the
Kupiec and Christoffersen set are very similar. Table 5.5 contains 116 cases that
passed both tests opposed to 114 cases in Table 5.6. The two tables look very similar,
however naturally differ for some cases. It is difficult to ascertain whether relative
or logarithmic changes are preferable for out-of-sample prediction from this. The
proportion of prediction sets that failed both tests amounted to 39 and 36 of 184 for
Tables 5.5 and 5.6, respectively.

As a supplement to the tables, plots of accurate and sub-optimal out-of-sample pre-
dictions are presented. All the displayed prediction sets are based on the logarithmic
changes. To exemplify an sub-optimal prediction set, the out-of-sample predictions
at the 1st and 99th quantile for the three month maturity are presented in Figure 5.5.
The 1st quantile prediction at the three month maturity passed one of the backtests,
opposed to the 99th quantile prediction which failed both. To display accurate pre-
dictions the 1st and 99th quantile predictions for the five year maturity are presented
in Figure 5.6, both of which passed both statistical tests.
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The prediction sets in Figure 5.5 perform relatively poorly in following the shape of
the original logarithmic changes. In particular, both the 1% and 99% quantile predic-
tions between 2010 and 2014 do not adjust to reasonable values. Extreme examples
of this can be seen from approximately June 2011 to August 2012, around August
2013, and around August 2015. Where some deviation for quantile predictions can
be expected, in all these instances the quantile predictions have a very large distance
from the three month logarithmic changes. For the 99th quantile prediction at Au-
gust 2013 the predicted value is as much as 2.5 times larger than the maximum value
in this period. Visually it is to some extent possible to see that the 99th quantile pre-
dictions failed both tests compared to the 1st quantile predictions. Between 2014
and approximately August 2015 the 1% quantile follows the original dataset well,
and lies in an acceptable area. On the other hand, the 99% quantile predictions for
the same period lie much higher than considered reasonable.

In the previous section the rapid response to sudden changes was mentioned. This
is clearly evident in Figure 5.5 as well. Shortly before June 2011 both prediction
sets follow the change in magnitude of the original dataset quite well. Similarly to
Figure 5.3 at 2013 and April 2020 evidence of the fast reactivity is present again. In
the same vein however, the time from fast response to a dramatic change to reverting
to lower values closer to the mean is very slow. Understanding these characteristics
of the predictions helps explain why the 99% quantile predictions perform worse
than the 1% quantile set between 2014 and August 2015. As an example, when
looking at June 2014 in Figure 5.5 the 99% quantile prediction has increased as the
original logarithmic changes has a spike there. The 99% quantile prediction quickly
adjusts, whereas the 1% quantile prediction does not change much as the direction
of the change is "unnatural" to it. From this point onwards it is clear that the 1%
quantile prediction, which more or less ignores the upwards spike within the historic
data, is better able to predict the future values that lie in a similar area. The 99%
quantile estimation however, reacting quickly to the new spike fails to predict the
future values well, jumping up in magnitude for each new spike, and not coming
very close to the area most of the logarithmic changes lie in, for that period.

A possible explanation to this skewed sensitivity may lie within the use of the EWMA
to calculate the volatility proxies. The aim of using the procedure was to ensure the
proxies captured volatility clustering appropriately. In a sense the EWMA worked
well as the prediction lines´ shape follows quite well to the original dataset. How-
ever, the sensitivity may be so high that the predictions overreact to the sudden
changes. However, on the other hand it is difficult to logically explain why the re-
version to values closer to the mean takes a significant amount of time. This is likely
not due to the use of EWMA, as logic would dictate equally fast response time when
the dataset suddenly reverts to the mean value.

Some of the predictions in Figure 5.5 are also difficult to explain. The jump, and
corresponding fall, for both the 99% and 1% quantile prediction around August 2011,
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August 2013 and September 2015. In each of these cases the prediction values change
dramatically without any clear reason. Figures that best exhibit the same tendencies
as Figure 5.5 include B.1, B.3, B.9, B.10 and B.11, in Appendix B.

The less turbulent nature of the original five year logarithmic changes in Figure 5.6
explain the higher prediction accuracy for both the quantiles depicted. The low
amount of variation allows for the prediction lines to lie close to the original dataset
and for the most part lie within a reasonable range. The same rapid response time to
sudden changes, and slow reversion as mentioned before, can be seen in Figure 5.6,
however the lower magnitude of the changes, and lack of dramatic falls or jumps al-
low for stable and more accurate predictions. The prediction set seems to follow the
direction of the five year logarithmic changes reasonably well. The period with low
magnitude in values and few spikes between 2017 and shortly after 2019 displays
where the predictions perform the best. The performance accuracy for this maturity
can be seen in Figures B.6, B.7, B.8, B.13, and B.14, for the five, seven and ten year
maturities. As mentioned in the previous section, the correlation between these ma-
turities´ relative and logarithmic changes was very high in the in-sample analysis,
and so it is reasonable to assume this explains their similar predictive power.

When looking at both in-and-out-of-sample predictions the model predicted better
values at higher quantiles opposed to lower quantiles. An explanation could be that
the changes exhibited negative skewness, thus resulting in a larger distribution of
data lying between the mean (zero) and the maximum value. This would in turn al-
low the PCA-QREG model to better predict one day ahead VaR estimates at higher
quantiles. The normality tests displayed in Tables 3.10 and 3.11 indicate however
that this logic would only apply for the logarithmic changes, and even the logarith-
mic changes exhibit very low levels of negative skewness. In reality with the yield
curve rates being transformed multiple times through producing relative and loga-
rithmic changes, the PCA and the EWMA, it is difficult to pinpoint the cause of this
trend.

Additionally, it is clear that the proposed model does well in capturing sudden
changes into the predicted quantile values. However, the model exhibits some trou-
ble in predicting values closer to the mean, particularly after a prior sudden change.
This explains the higher accuracy for longer maturities, as the datasets vary less and
have fewer jumps/falls as the maturities get longer. This characteristic amongst the
predictions may however be reasonable given the model uses time-varying quan-
tile regression coefficients, and that other studies using this approach exhibit similar
tendencies such as in the work by Gerlach et. al. (2011) when investigating Bayesian
time-varying quantile forecasting for VaR in financial markets.

The variation in the datasets mentioned touches upon the volatility of the differ-
ent datasets. As mentioned in Chapter 3, the squared changes in Figures 3.4 and
3.5 provide insight into the volatility of the different maturities. The short rates,
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three month up to one year maturity, have larger magnitudes, and visually can be
seen to possess higher volatility and be more time-varying. This indicates more
heteroscedacity amongst these maturities, which explains why the proposed model
struggles in producing very accurate predictions, both in- and out-of-sample. The
reverse case applies to the longer rates, which provides an explanation for the im-
proved accuracy of predictions amongst these maturities.

The EWMA specification may be inappropriate in capturing the heteroscedacity
within the shorter maturities, however it seems to function relatively well for the
longer maturities. Other volatility proxies for the principal components may be bet-
ter suited for the short rates, and could improve the accuracy of the predictions. This
is mentioned in the next chapter.
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Chapter 6

Conclusion & Further Research

This master thesis aims to propose a novel interest rate risk prediction model using
well established approaches in the field. The prediction model is evaluated both on
in-sample interest rate risk accuracy and out-of-sample one day ahead interest rate
risk accuracy. The study aims to examine the prediction model´s strength on U.S.
Daily Treasury yield curve rates´ relative changes, using maturities ranging from
3-month to 10-year. The in-sample predictions are calculated for the period from
January 2000 to April 2020. The out-of-sample model is trained on data from Jan-
uary 2000 to January 2010, and tested for predictions one day ahead from January
2010 to April 2020. The model applies PCA, EWMA, and Quantile Regression to
predict the quantile estimates, and evaluates the accuracy using two popular back-
testing procedures; the Kupiec & Christoffersen tests. The study evaluates whether
the PCA-QREG model can be applied as a useful procedure for interest rate risk
management.

For in-sample predictions the PCA-QREG model produced accurate estimations for
higher maturities from 3-year to 10-year, irrespective of Yield Curve Rates differ-
ences being standard or logarithmic. The out-of-sample accuracy tests indicated
similar results. The predictions for the shorter maturities, such as 3-month to 2-year,
were generally inaccurate particularly around the median. This applied for both
in-sample and out-of-sample predictions. Managers and regulators often wish to
assess the 1% VaR estimates, of which the PCA-QREG model produced consistently
accurate predictions in- and out-of-sample for the higher maturities.

When the estimated predictions using the proposed model were overwhelmingly
accurate. Roughly 64-70% of the in- and out-of-sample prediction sets for different
quantiles and maturities passed both accuracy tests, and only 8-21% failed both.

The overall accuracy of the predictions across the quantiles and maturities indicates
that the PCA-QREG model performed very well. The PCA procedure captured suf-
ficient amounts of the variation in the yield curve rates. Additionally, the EWMA
method of creating volatility proxies appears to have been successful in capturing
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the volatility clustering in the dataset. Finally, the quantile regression produces co-
herent results as the dataset exhibited non-normal distribution patterns. The PCA-
QREG model shows strong predictive power for in-sample and one day ahead out-
of-sample estimates at the 1% quantile, and it is fundamentally easy to apply using
readily available, and well understood procedures.

Further, several avenues of extensions to the study can be considered. The study
uses U.S. Treasury yield curve rates, however it might be of interest to investigate for
the same results produced here for other assets. The LIBOR rate is a good example.
Additionally, the model showed good results for predictions at high maturities. A
possible extension to the study would be to see if the predictions of assets at higher
maturities perform equally well, for instance by looking at the 30-year maturity.

As mentioned in Chapter 5, the PCA-QREG model and the accuracy testing meth-
ods both require large amounts of data to perform reasonably well. For this reason
varying the training and testing split in the dataset from 50-50 was not feasible. Per-
forming the methodology described in this study to larger datasets would allow for
a closer investigation into how the results are influenced by different splits.

The PCA procedure described in Chapter 4 was applied to all eight maturities, yield-
ing three principal component vectors. An alternative approach to the methodology
might entail applying the PCA procedure to fewer or varying amounts of maturities,
in order to assess the accuracy changes in the predictions.

In Chapter 5 response time to sudden changes in the changes by the prediction sets
was extensively described. A proposed reason for the traits identified was the possi-
bility that the EWMA was aggressively capturing volatility clustering in the dataset,
inhibiting the prediction sets to revert to reasonable values in certain cases. The spec-
ification may be inappropriate for the shorter maturities, in particular. From this a
change to the volatility proxy selection could be considered. Explorations into this
aspect can be explored where more sophisticated models can be employed instead,
in order to evaluate for any change in prediction accuracy. Models such as GARCH
or asymmetric variants of GARCH, such as Glosten-Jagannathan-Runkle GARCH
(GJR-GARCH) (Glosten et. al., 1993), or the Asymmetric Power GARCH (APARCH)
(Ding et. al., 1991) can be considered. As a next step from this, further research can
explore how varying the volatility proxy methodology dependent on the maturity
length affects the prediction accuracy as well.
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Appendix A

Additional Plots - In-sample
Predictions
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FIGURE A.1: In-sample Predictions of 3-Month Relative Changes of
U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE A.2: In-sample Predictions of 6-Month Relative Changes of
U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020

−0.4

0.0

0.4

0.8

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Date

C
h

a
n

g
e

s
 i
n

 P
e

rc
e

n
ta

g
e

Legend 1−Year Relative Changes 1st Quantile Predictions 99th Quantile Predictions

Selected In−Sample Predictions for Relative Changes of 
1−Year U.S. Treasury Yield Curve Rates

FIGURE A.3: In-sample Predictions of 1-Year Relative Changes of U.S.
Daily Treasury Yield Curve Rates at 1st and 99th Quantile from 2000-
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FIGURE A.4: In-sample Predictions of 2-Year Relative Changes of U.S.
Daily Treasury Yield Curve Rates at 1st and 99th Quantile from 2000-

2020
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FIGURE A.5: In-sample Predictions of 3-Year Relative Changes of U.S.
Daily Treasury Yield Curve Rates at 1st and 99th Quantile from 2000-
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FIGURE A.6: In-sample Predictions of 5-Year Relative Changes of U.S.
Daily Treasury Yield Curve Rates at 1st and 99th Quantile from 2000-

2020
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FIGURE A.7: In-sample Predictions of 7-Year Relative Changes of U.S.
Daily Treasury Yield Curve Rates at 1st and 99th Quantile from 2000-

2020
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FIGURE A.8: In-sample Predictions of 10-Year Relative Changes of
U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE A.9: In-sample Predictions of 6-Month Logarithmic Changes
of U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE A.10: In-sample Predictions of 1-Year Logarithmic Changes
of U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from
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FIGURE A.11: In-sample Predictions of 2-Year Logarithmic Changes
of U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from
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FIGURE A.12: In-sample Predictions of 3-Year Logarithmic Changes
of U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE A.13: In-sample Predictions of 7-Year Logarithmic Changes
of U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE A.14: In-sample Predictions of 10-Year Logarithmic Changes
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Appendix B

Additional Plots - Out-of-sample
Predictions
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FIGURE B.1: Out-of-Sample Predictions of 3-Month Relative Changes
of U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE B.2: Out-of-Sample Predictions of 6-Month Relative Changes
of U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE B.3: Out-of-Sample Predictions of 1-Year Relative Changes of
U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE B.4: Out-of-Sample Predictions of 2-Year Relative Changes of
U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE B.5: Out-of-Sample Predictions of 3-Year Relative Changes of
U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE B.6: Out-of-Sample Predictions of 5-Year Relative Changes of
U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE B.7: Out-of-Sample Predictions of 7-Year Relative Changes of
U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE B.8: Out-of-Sample Predictions of 10-Year Relative Changes
of U.S. Daily Treasury Yield Curve Rates at 1st and 99th Quantile from

2000-2020
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FIGURE B.9: Out-of-Sample Predictions of 6-Month Logarithmic
Changes of U.S. Daily Treasury Yield Curve Rates at 1st and 99th

Quantile from 2000-2020
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FIGURE B.10: Out-of-Sample Predictions of 1-Year Logarithmic
Changes of U.S. Daily Treasury Yield Curve Rates at 1st and 99th

Quantile from 2000-2020
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FIGURE B.11: Out-of-Sample Predictions of 2-Year Logarithmic
Changes of U.S. Daily Treasury Yield Curve Rates at 1st and 99th

Quantile from 2000-2020
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FIGURE B.12: Out-of-Sample Predictions of 3-Year Logarithmic
Changes of U.S. Daily Treasury Yield Curve Rates at 1st and 99th

Quantile from 2000-2020
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FIGURE B.13: Out-of-Sample Predictions of 7-Year Logarithmic
Changes of U.S. Daily Treasury Yield Curve Rates at 1st and 99th

Quantile from 2000-2020
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