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Abstract

In this paper, we contribute to the existing real options valuation literature by adding Bayesian updating

to the Least Squares Monte Carlo (LSM) solution approach. In addition to the learning that occurs

over time from the stochastic processes used in the LSM approach, the decision maker will periodically

receive signals providing information about the hyperparameters of the stochastic processes. Bayesian

inference is used to update the decision maker’s prior beliefs about the hyperparameters, which are

used to set the distributions in the stochastic processes. The need for parameter updates arises from

regime shifts as indicated by the signals available to the decision maker. We provide further insights

into the decision context by examining how di�erent beliefs and parameter choices a�ect the optimal

decision policy for an illustrative example using sensitivity analysis.

We �nd that receiving signals and updating the beliefs can notably impact the investment value and

decision policy for the investment problem. If the signals di�er su�ciently from the prior beliefs, a

di�erent decision policy and investment value are often reached. The signals will have a more prominent

e�ect when the decision maker’s uncertainty is high. The methodology is �exible and versatile and is

applicable to a broad set of problems.
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Sammendrag

I denne masteroppgaven bidrar vi til realopsjonslitteraturen ved å kombinere Bayesiansk læring og Least

Squares Monte Carlo (LSM)-metoden. I tillegg til den læringen som oppstår over tid med stokastiske

prosesser brukt i den tradisjonelle LSM-metoden, så vil beslutningstakeren periodisk motta signaler

med informasjon om prosessenes hyperparametere. Bayesiansk inferens er brukt til å oppdatere beslut-

ningstakerens tro på hyperparameterne, som videre er brukt til å angi distribusjonene i de stokastiske

prosessene. Behovet for å oppdatere parameterne kommer fra regimeskifter, indikert av signalene

beslutningstakeren mottar. Vi gir videre innsikt i beslutningskonteksten ved å undersøke hvordan ulik

tro og parametervalg påvirker den optimale beslutningsstrategien i et illustrativt eksempel ved bruk av

sensitivitetsanalyse.

Vi observerer at å motta signaler og oppdatere troen kan betydelig påvirke investeringsmulighetens

verdi og beslutningsstrategi. Hvis signalene avviker betydelig fra den opprinnelige troen, så oppnår

beslutningstakeren ofte en annen investeringsverdi og beslutningsstrategi. Signalene vil ha en større

e�ekt når beslutningstakerens usikkerhet er høy. Metodologien er allsidig og �eksibel, og den er relevant

for et stort utvalg applikasjoner.
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1 Introduction

In times of fast-paced technological advancements, decision makers are constantly facing the decision of

whether to invest in new technology now or wait and learn about its future development. Let’s consider

a �rm that is evaluating adoption of a new technology necessary to launch an innovative product. The

�rm must consider whether and when to invest in the new technology. These types of decision problems

include sources of signi�cant uncertainty. The decision maker has beliefs about these uncertainties

based on past data and experience. As decisions are about the future, uncertainty in decision making is

inevitable and will be present until after the decision is made (Bratvold and Begg, 2010). However, there

may be value in reducing this uncertainty. This can be done by collecting additional information about

the potential success of the new technology. For example, the �rm considering launching the innovative

product could delay the adoption decision and perform market surveys to map the market’s interest.

It is also possible that Governments impose new regulations or a competitor introduce a disruptive

innovation to the market, a�ecting the pro�tability of the new technology. These events cause regime

shifts, resulting in new information the decision maker can observe. With new information, probabilities

used to quantify the decision maker’s uncertainty should be updated. This updating can be accomplished

through Bayesian Inference. Hence, it may be valuable for the decision maker to wait and gain further

knowledge that can impact the decision.

The decision maker uses the arrival of information over time to learn about her uncertainties. We

introduce two levels of learning. The �rst level arises from the Markov property embedded in the

traditional real option theory. This type of learning happens through observing revelations of the state

of, e.g., the market price as new price information becomes available. Note that the Markov property is

implicit in uncertainties modelled by stochastic processes. At this level, the parameters of the stochastic

process are unchanged over the investment horizon. The �rst level of learning will also be referred to

as Markov learning. We de�ne the second level of learning to be the processing of new information

and explicit updating of the decision maker’s subjective beliefs in the same way as Martzoukos (2003)

and Dalby et al. (2018). They de�ned this form of learning as “active learning”, whereas the �rst level
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1. Introduction

was considered “passive” learning. In the second level, the parameters of the stochastic processes are

updated using signals with new information. This means that the decision maker can use signals with

new information to update their subjective beliefs over the considered investment horizon. We will refer

to this second level of learning as Bayesian learning or updating throughout this paper. A combination

of both levels of learning will be referred to as a multi-layered learning approach.

In this paper, we present a new methodology to study sequential technology adoption problems that

accounts for multiple uncertainties as well as Bayesian updating of hyperparameters. Our solution

method extends the classical Least-Squares Monte Carlo (LSM) approach to update the model parameters

of the stochastic processes underlying the decision problem using Bayesian inference. The methodology

allows us to derive the value of the investment opportunity and inform the decision maker whether the

optimal decision at a given point in time is to adopt or reject a new technology or to delay the decision.

We apply the methodology to an illustrative example and perform sensitivity analysis to understand

how and when the results di�er from those obtained when not applying a multi-layered approach.

Furthermore, we investigate in what contexts accounting for signals is of signi�cance.

We �nd that the investment value and optimal decision often di�er when accounting for signals and

Bayesian updating. If the decision maker does not account for signals from regime changes, there is a risk

that she will underestimate or overestimate the investment value of the new technology. Consequently,

the decision maker may invest or reject at a suboptimal time. Whether our methodology yields di�erent

results compared to when we exclude Bayesian learning depends on how much the received information

di�ers from the decision maker’s initial beliefs and how uncertain she is about them. If the decision

maker has strong beliefs, she is less susceptible to signals and is less likely to change her beliefs. On

the other hand, signals will have a big impact if she is very unsure of her beliefs. However, if her prior

beliefs of the uncertainty equal the mean of the signal distribution, accounting for both levels of learning

leads to similar results compared to when only Markov learning is considered.

The main contribution of this paper to the literature is the new methodology extending the classical

sequential decision problem where the beliefs are updated in a Bayesian manner. The solution approach

is based on the LSM methodology and includes an additional layer of Bayesian updating. By applying

Bayesian updating of the hyperparameters of the stochastic processes in LSM, we allow for an extra

level of uncertainty and learning. We thereby recognise that estimated parameters are likely to change

over time. To the best of our knowledge, this has not been done before. The solution approach easily

allows for multiple sources of uncertainty, which is a limitation of many papers on technology adoption.

It can also incorporate learning for multiple uncertainties.
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1. Introduction

The remainder of this paper is organised as follows. A literature review is provided in Section 2. In

Section 3, the model setting and the new solution approach are presented. Then, in Section 4, we present

an illustrative application of the model and discuss results from sensitivity analysis. Lastly, Section 5

summarises and concludes.
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2 Literature review

With this work, we aim to contribute to several strands of literature. First, our sequential decision

problem is relevant in both the traditional �elds of real options theory as well as decision analysis. These

two research communities, as well as the problems they study, are overlapping. However, both tend to

have di�erent preferences related to modelling choices and terminology. As a result, participants from

the distinct �elds might not be aware of the similarities as highlighted by Smith and Nau (1995). Problems

in both �elds could be categorised as a real option when applying Dixit and Pindyck’s (1994) de�nition of

a real option. Dixit and Pindyck (1994) describe how real options can be valued using either contingent

claims analysis or dynamic programming. They point out that both techniques are "closely related to

each other, and lead to identical results in many applications(...)[, but] make di�erent assumptions about

�nancial markets, and the discount rates that �rms use to value future cash �ows." (Dixit and Pindyck,

1994, p. 93). In Smith and Nau (1995) and Smith and McCardle (1998), contingent claims analysis is

described as the solution method used in �nancial markets, and dynamic programming the solution

method in decision analysis. These methods yield consistent results under certain conditions (Insley and

Wirjanto, 2010). We can therefore describe many real options problems as decision analysis problems

and vice versa. Common problems studied in both �elds are adoption decisions of new technologies

with uncertain key factors in�uencing future pro�tability. Such decisions are often modelled as optimal

stopping problems where a �rm must decide whether the investment should be made now or delayed.

By delaying the investment decision, the decision maker can observe the evolution of the key factors

and gain new knowledge. Therefore, one can say that the decision maker learns with time.

There are multiple papers addressing the problem of technology adoption under uncertainty. Farzin

et al. (1998) study the optimal timing of technology adoption for a �rm that faces a stochastic innovation

process. They consider uncertainty about both the speed of arrival and the degree of improvement of the

new technologies. They �nd that a slower speed of arrival for the new technologies will lead to quicker

adoption. Hagspiel et al. (2015) investigate a �rm considering investing in a new technology from an old

one while facing uncertain timing of future technology improvements. They relax the assumption of
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2. Literature review

constant arrival from Farzin et al. (1998). They �nd that a �rm’s investment strategy changes signi�cantly

when the arrival rate of new technology is changing instead of constant. Doraszelski (2004) investigates

technology adoption under the distinction between innovations and improvements. Improvements are

de�ned as engineering re�nements that follow new technologies and enhance the basic innovation’s

e�ciency. Multiple such improvements could add up to signi�cant e�ciency gains and make it optimal

to delay the adoption of the new technology. He �nds that the possibility of further improvements

gives an incentive for the �rm to delay the adoption of the new technology until the new technology is

su�ciently advanced.

All of the papers from the previous paragraph apply what we de�ned as the �rst level of learning in the

introduction. That is, they account for technological uncertainty but do not update subjective beliefs

over the investment horizon. Uncertainty is constant over time in this stream of literature (Dalby et al.,

2018). An interesting extension of the traditional real options literature on technology adoption is

the introduction of Bayesian learning. In this literature stream, the decision maker receives signals

by which she updates her beliefs and reduces her uncertainty. One of the pioneers to apply Bayesian

inference when analysing optimal technology adoption decisions is Jensen (1982). He considers the

pro�tability of a new technology to be uncertain. The decision maker can gather information in the

form of signals regarding the true pro�tability to update her beliefs. At each time step, the decision

maker can either adopt the new technology or delay the decision to learn more. This model was further

developed by McCardle (1985), who accounts for a cost to delay the decision and receive more signals.

Since the decision to delay is costly, the option to reject is introduced as the waiting cost can be larger

than the potential gain. A limitation to both of these models is that they are restricted to conjugate

pairs. Conjugate pairs provide ease of computation but can make the model less applicable to certain

situations. Processes in the real world cannot always be su�ciently described by conjugate pairs but can

be better approximated by other distributions. Ulu and Smith (2009) address this further, generalising

and extending McCardle (1985) by allowing general probability distributions and signal processes. All of

these papers only apply for a single uncertainty. In contrast, our methodology allows us to account for

multiple uncertainties without su�ering from the curse of dimensionality. However, McCardle partly

inspires our problem setting through the implementation of costly signals and Bayesian inference.

Ryan and Lippman (2003) and Kwon and Lippman (2011) both analyse decision making under Bayesian

updating by studying investment in a project with uncertain pro�t streams. Ryan and Lippman (2003)

seek to �nd the optimal exiting strategy. The cumulative pro�t stream follows a Brownian motion with

unknown drift, interpreted as the pro�t rate. The �rm can receive signals over time to update its beliefs

of the project’s pro�t rate. Kwon and Lippman (2011) study optimal investment time in a project where
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2. Literature review

the �rm can learn about the project’s true pro�tability through investment in small scale pilot projects.

Both papers assume the signals are subject to noise and arrive at a cost. Harrison and Sunar (2015)

formulate an investment problem where the project’s value is uncertain. They use a continuous-time

Bayesian framework to model the project’s uncertainty. The uncertainty can be reduced through the

use of one or several learning modes. Signals about the project’s value arrive continuously following

a Brownian motion. Thijssen et al. (2004) consider a similar investment opportunity with uncertain

pro�tability, but signals can be gathered costlessly and arrive according to a Poisson process. Common

to all these papers is that the pro�tability of the project can be in either of two states; high (pro�table)

or low (unpro�table). In this case, it is not optimal to wait unless it is possible for additional signals to

change the adoption decision. There is no reason to pay for information if it cannot alter the decision

outcome (McCardle, 1985). These approaches di�er from ours as we assume that the uncertain parameter

the decision maker updates her beliefs of can take any value from a given distribution and is not limited

to two states. Similarly, we calculate the investment value instead of quantifying it as either of two

known values. Further, we model the signals to arrive at regular intervals, and they are neither assumed

continuous nor to follow a Poisson process. However, this is a modelling choice and not a limitation of

our model.

Most papers in the �eld of technology adoption with Bayesian learning account for at most one uncer-

tainty. An exception is Diendorfer (2019) who accounts for multiple uncertainties while implementing

Bayesian inference. He presents a decision analysis model that allows for four uncertainties, where

a �rm’s beliefs of the outcome of one uncertainty can be updated. The model is applied to analyse

blockchain adoption in the energy sector. The decision problem he studies is the most similar to this

paper as far as we know. However, the uncertainties are not modelled as stochastic processes, and his

solution approach is based on a decision tree with continuous and discrete chance nodes. Furthermore,

he only applies the second level of learning and can at most learn about one of the uncertainties.

We also add to the strand of literature concerning simulation based approaches to value American

options. Our solution approach of the classical sequential decision problem with Bayesian updating

contributes as a numerical approach for valuing American options that allow for multiple uncertainties.

Tilley (1993) is the �rst to use Monte Carlo simulations to value American options. A drawback of his

methodology is that it is not apparent how the method can be applied to multiple variables. Barraquand

and Martineau (1995) aim to overcome Tilley’s drawbacks. Their presented algorithm is able to value

American options depending on multiple underlying assets. However, since the algorithm does not

follow an optimal exercise policy, it underestimates the option value. Broadie and Glasserman (1997)

develop a simulation algorithm for estimating the prices of American-style securities by estimating two
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2. Literature review

values of the option price; one that is biased high and one that is biased low. Their methodology is also

suitable for dealing with multiple underlying assets.

Longsta� and Schwartz (2001) introduce a new method based on Tilley’s idea for valuing American

options called Least-Squares Monte Carlo (LSM). This method can easily be applied to multiple variables

without su�ering from the curse of dimensionality and therefore overcomes one of the issues with

Tilley’s approach. To price the American option and �nd the optimal exercise timing, they estimate the

conditional expected payo� to the option holder from continuation using least squares. More speci�cally,

a conditional expectation function is regressed using the Monte Carlo simulations. The optimal decision

is then made by comparing the value of the conditional expected payo� and immediate exercise. When

the optimal decision is found for each Monte Carlo simulation, the cash �ows are discounted back to

time zero, and the option value equals the average cash �ow.

The LSM approach of Longsta� and Schwartz (2001) has been applied to a large variety of real options

problems (e.g., Rodrigues and Armada (2006) value portfolios of real options, Willigers and Bratvold

(2009) value oil and gas options, and Blanco et al. (2011) values FACTS investments). Abdel Sabour and

Poulin (2006) and Cortazar et al. (2008) contribute to the literature by presenting an application of the

LSM method to value real capital investments and illustrate its e�ciency for higher dimensions. The

approaches of Abdel Sabour and Poulin (2006) and Cortazar et al. (2008) di�er in what state variables they

use to regress the continuation function. Both papers conclude that the LSMmethod is suitable for valuing

real options when comparing the results with those obtained using traditional methods. We contribute

to this strand of literature by extending the LSM to allow for Bayesian updating of the hyperparameters

of the stochastic processes. To the best of our knowledge, we are the �rst ones to develop an appropriate

methodology for this. Furthermore, we contribute by solving a sequential technology adoption problem

using a methodology based on LSM, allowing for more than one uncertainty. To our knowledge, LSM

has not been applied to technology adoption problems before.
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3 Model

In this section, we �rst introduce the considered decision problem and the general model setup. We

then suggest and explain a solution approach for the model.

3.1 Model setup

We consider a decision maker, hereafter referred to as DM, who has the option to invest, at a cost  ,

in a new and innovative technology. The DM is uncertain about the future pro�tability of the new

technology. It is assumed that the investment decision can be made at the latest at time) . At any earlier

time C , the DM can either adopt or reject the new technology or postpone the decision at a waiting cost,

denoted by, . If the DM decides to wait, she can receive signals yielding information regarding the

pro�tability of the new technology. The information is caused by a regime shift in the environment the

DM is operating in, making her previous beliefs inappropriate. She can use the information to update

her beliefs about the pro�tability and make a more informed decision. The decision to adopt or reject

the new technology is assumed to be at least partially irreversible. When the new technology is either

adopted or rejected, the investment opportunity no longer exists. This sequential decision problem is

illustrated in Figure 3.1.

Figure 3.1: Illustration of the sequential decision tree when receiving signals.
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3.1. Model setup

The trade-o� for the DM in terms of timing is the following. If the DM decides to wait, the technology

level might rise, which could result in a higher payo� of investment later. Another possibility is that the

new technology remains relevant for a longer period of time, with little change to its value. In this case,

the DM should invest as early as possible to reap most of the technology’s bene�ts. A third option is

that the technology soon becomes outdated. Then the pro�tability is overestimated, and the DM should

not invest. Therefore, the DM risks both investing at a suboptimal time and making the wrong decision.

The general model setting serves numerous practical applications and is of high relevance. The tech-

nology of interest could be a new production process, a new Covid-19 vaccine or the purchase of an

electric vehicle. Common to these is that the value of investing in the technology depends on uncertain

variables given exogenously to the �rm. The DM evaluates the investment decision until she either

adopts or rejects it. At time) , there is no longer an option to delay the decision, and the DM must either

adopt or reject the technology. Adoption or rejection are mutually exclusive. The decision problem

considered here represents a typical real options problem (Dixit and Pindyck, 1994).

The value resulting from immediate adoption of the technology is given by a payo� function, %C (., ..., .),

dependent on" stochastic variables. The values of the" variables, denoted by ((1,C ...., (",C ), are known

at time zero, C = 0, but their future values are uncertain and are modelled by stochastic processes.

Therefore, the payo� from immediate adoption is known at time zero, but its future value is uncertain.

For simplicity, we assume that the payo� is a one-time payment received at the time of adoption.

However, the model can easily be extended to a setting where the payo� is received over time.

Our model is applicable for a broad range of investment problems subject to uncertainty. The payo�

function is problem speci�c and must be modi�ed to �t the problem at hand. It can easily be extended

for many uncertainties and di�erent functional dependencies. For illustrative purposes, we formulate

a simple, general payo� function in order to introduce the methodology. To cover a broad class of

problems, we introduce a payo� function that includes uncertainty related to both revenue and cost.

Speci�cally, we assume that the payo� function is given by

%C ((1,C , (2,C ) = & ⇥ ((1,C � (2,C ) �  

for a production problem, where& is the number of units produced, (1,C denotes the uncertain unit price

and (2,C the uncertain unit cost. Note that the payo� can be both positive and negative. Similarly, one

could de�ne a function for the rejection value. Rejection could also result in the payment of a sunk cost

or a salvage value that is received. In our model, the value of rejection is set to zero to keep the model

as simple as possible to make the methodology clearer. Lastly, one must de�ne the value of waiting,

which is the expected value of the investment if the decision is delayed.
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3.1. Model setup

Considering the presented example-payo� function, we have two variables. The �rst variable, (1,C

represents the unit sales price at time C , and the second variable, (2,C represents the unit cost at time C .

The unit sales price is assumed to follow a standard geometric Brownian motion (GBM), and the unit

cost follows a geometric Ornstein-Uhlenbeck (OU) process. We have chosen these stochastic one-factor

processes as they are relatively simple yet rich enough to illustrate the important aspects of our model.

The unit price process then follows the SDE given by

3(1,C = `(1(1,C3C + f(13/C (3.1)

where `(1 is the drift and f(1 is the standard deviation. For the GBM, the drift represents the expected

growth the price will have over time. The unit cost process then follows the SDE given by

3(2,C = [ (;>6(`(2) � ;>6((2,C ))3C + f(23/C (3.2)

where `(2 and f(2 are the drift and standard deviation, respectively, and [ is the mean-reverting constant.

For the OU, the drift represents what cost the variable will revert to over time. The methodology is not

limited to these stochastic processes. It could easily be extended for multiple uncertainties modelled by

any stochastic processes, including multi-factor processes.

Standard real options models commonly assume constant drift and variance parameters throughout the

investment horizon. Instead of assuming these variables are constant over the entire investment period,

we model the arrival of signals with information. The signals are denoted by X and can be collected

over time if the decision is delayed. These signals can be viewed as results of regime shifts. When a

regime shift occurs, the DM observes new information that she uses to update her beliefs and reduce

her uncertainty about the pro�tability. For example, the signals could result from a regime shift such as

the Norwegian government’s introducing subsidies for electric vehicles due to their focus on facilitating

greener lifestyles, thereby making electric vehicles more attractive. For the new production process,

the signals could be tests of its produced units or signs of other competing systems likely to enter the

market. If a competitor launched a similar product, the market environment for the original �rm’s

product would change. It is likely that the �rm would have to change its sales price and marketing

strategy, and it can therefore be seen as a regime shift. We assume these regime shifts happen at regular

intervals. However, the model can be extended to account for shifts at unknown times. These regime

shifts split the entire investment horizon into smaller intervals of di�erent regimes. Di�erent regimes

may have di�erent process parameters from each other, but each regime is stationary.

We implement learning through signals with Bayesian inference due to the richness and �exibility of the

Bayesian framework. By applying Bayes’ rule to update a prior belief into a posterior belief, the DM’s
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updated beliefs are a combination of her old beliefs and her new knowledge. In order to keep the model

as simple as possible, we exploit conjugate pairs to enhance the understanding of the methodology.

However, the model could easily be extended to account for more complex distributions. For example, it

is possible to apply Markov Chain Monte Carlo (MCMC) to this problem setting. MCMC is a powerful

algorithm for complex models and can approximate any distributions where the target distribution is

unknown (Kruschke, 2014).

To exemplify the Bayesian learning layer in the methodology, the underlying drift of the price process is

unknown. This adds an uncertain parameter in addition to the uncertain future variable values, making

the model more complex. The underlying drift is also called the true1 drift, denoted by `CAD4 . The DM

has beliefs or knowledge of this parameter, denoted `(1,C in Equation 3.1. The beliefs are represented by

a normal distribution, # (`, g2). ` is what the DM believes the drift to be, and g is the beliefs’ variance

describing how uncertain she is that ` is a good estimate of `CAD4 . The DM has initial beliefs denoted by

# (`0, g20 ) before any signals are received. The signals, X, provide information on the unknown drift

parameter. X are assumed to be normally distributed with the true drift and are subjected to noise, which

is known and represented by fB86=0; . That is, X ⇠ # (`CAD4 ,f2B86=0; ). As the prior and the signals are

normally distributed, they form a conjugate pair, and the resulting posterior is then normally distributed.

After observing the signals, X, we have # (`?>BC , g2?>BC ), where `?>BC is the posterior beliefs after updating

and the DM’s new beliefs of `CAD4 . g?>BC tells how strongly the DM believes that `?>BC is equal to `CAD4 .

The more signals received, the smaller g?>BC is. If the DM receives another signal, then the previous

posterior becomes the new prior for this signal, and `?>BC and g?>BC then represent the new prior. This is

illustrated in Figure 3.2.

Figure 3.2: Sequentially updating the DM’s beliefs with received signals and explanation of how the posterior becomes the

next prior.

1Note that we are referring to this value as the true drift. This is a common phrase in engineering and economics for the

uncertain parameter when applying Bayes’ rule. However, the statistics and decision analysis �eld generally do not approve of

this reference. Their argumentation is that the uncertainty is with regards to the future, and signals are not able to predict the

future. Signals either re�ect the past or the current situation, and the DM uses these to make inference about the future. We

choose to use the reference conventional for the engineering and economics discipline and will refer to it as “the true drift”
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A low variance of the beliefs, g , indicates that the DM is very con�dent that ` is a good estimate of `CAD4 ,

and a high variance indicates the opposite. If the DM has little or poor prior knowledge to estimate

the true value, g is large. A prior and signal, and the resulting posterior are illustrated in Figure 3.3.

Implementing learning on one of the drift parameters is not a limitation of the model, as it can be

extended to account for learning on multiple uncertainties. Additionally, the DM can receive signals

with information on other parameters than the drift, e.g. the volatility. It is also possible to obtain the

bene�ts of conjugate pairs with other distributions, such as Gamma-Poisson or Beta-Bernoulli.

Figure 3.3: Updating the DM’s beliefs using one received signal. Notice that the posterior is narrower than the prior, because

the DM is more con�dent in her beliefs after receiving a signal.

We denote the value of the investment opportunity at a given time C by+C . To �nd the optimal action for

the DM, we derive the value of rejection, adoption and waiting at time C . The value +C can be described

by the maximum value of these three actions. This can be expressed in the following objective function

at time C

+C =<0G [0, %C ,�, + X+C+1]

where X is a discount factor to compare values at di�erent time steps. We de�ne X = 4�A3C , where A is

the annual risk-free rate, and 3C is the time since last evaluation. To summarise, we want to obtain the

value of the investment opportunity and the optimal decision at the current time.

3.2 Solution approach

In this section, we present a novel solution method for the model described above in Section 3.1. Our

solution approach is based on the classic LSM method. We apply this method because this simulation-

based approach is a well-known and recognised solution approach for investment valuation problems

where the investment decision depends onmultiple sources of uncertainty and must be made in each time
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step. Notably, LSM does not su�er from the curse of dimensionality. By not having to limit the number

of uncertainties due to computational complexity, we can obtain a more general and practice-relevant

model. However, di�erent from classical applications to real options problems, we need to alter the

method to account for both rejection and learning.

3.2.1 Monte Carlo simulations

The �rst step in the solution approach is to use Monte Carlo simulations to generate the future uncertain

values of the " variables that are modelled by stochastic processes. To this end, we must discretise

the stochastic processes. The investment horizon from C = 0 to C = ) is split into ⌦ time periods. The

decision of whether to invest, wait or reject is revisited at the beginning of each time period. We simulate

# paths of each of the" variables over the investment horizon. This yields multiple realisations for

the uncertain variables, now denoted by (=<,C for = 2 [1,# ]. For our illustrative example introduced in

Section 3.1, we have a price and a cost, (=1,C and (
=
2,C , for each time step C and path =.

It is possible for several regime shifts to occur over the considered investment horizon, but they do

not necessarily happen at every time step. When a regime shift arises, the DM receives a signal she

can update her beliefs with. Depending on the investment environment, the DM can receive signals

regarding multiple uncertain parameters for which she has beliefs about. For our illustrative example,

the signals contain information about, and are used to update the DM’s beliefs of, the drift parameter

in the price process, `(1 , as introduced in Section 3.1. Until an update is triggered by the arrival of a

signal, the simulations are based on the DM’s previous beliefs about the drift. Upon the aforementioned

update, the evolution of the uncertain price value is simulated with the updated belief of the drift. The

simulated variable value for the next time step is based on the simulated value of the preceding step

and the updated drift parameter. We simulate the values this way because we �nd it likely that the DM

will change her perception of the parameters over the investment horizon when accounting for regime

shifts. The regime shifts and corresponding evolution for four example simulation paths are illustrated

in Figure 3.4.
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Figure 3.4: Illustration of the e�ects of signals on simulation paths of the price process.

Given that we update the prior belief using Bayesian inference for a normal-normal conjugate pair, the

mean and variance of the posterior will be given by Equations 3.3 and 3.4 when B signals are received at

once in a time step. For simplicity, the DM receive one signal every 9C⌘ time step, i.e. ⌫ = 1.

`?>BC =
✓
⌫

f2B
+ 1
g20

◆�1 "
⌫

f2B

 
1
⌫

⌫’
8=1

G8 +
1
g20
`0

!#
(3.3)

g2?>BC =
✓
⌫

f2B

◆�1
(3.4)

For illustration purposes of the methodology, the signals are implemented through random samples

from a known distribution. This is done to infer how the possibility of receiving signals a�ects the

decision problem. Alternatively, one could use observed signals with an estimated variance. We use

the �rst approach since this paper is an analysis of the new methodology in a hypothetical setting,

where we do not have any observed data. By knowing the true signal distribution, we can also analyse

whether the results derived with the solution approach behave as expected. With regards to the model

implementation, there is no di�erence between these two signals. Implementing a signal distribution

with known parameters only facilitates sensitivity analysis we will perform later in Section 4.

Since the signals are random draws from a normal distribution, there are many possible signal outcomes.

� random signal samples are drawn and perceived as a single signal to decrease the variability. The

more signals are drawn from the distribution, the closer to the true drift the received signal will be.

There are two possible ways to update the prior with this perceived single signal. The �rst alternative is

to calculate the average signal, Ḡ = 1
�

Õ�
8=1 G8 , and use this one signal to update the prior and receive one
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posterior. The second solution method is to update the prior once for each signal sample draw, resulting

in � di�erent posteriors from the same prior. The posterior to use for further Monte Carlo simulations

would be the average of these � posteriors. The two methods yield identical posteriors, and as such we

state

Lemma 3.1. When you have � random signal draws, updating the prior into � posteriors and taking their

average is the same as having one average signal and updating the prior into one posterior.

See Appendix A for derivations.

Next, we use the simulated variable values for the entire investment horizon to calculate the investment

value and derive the optimal decision strategy.

3.2.2 Investment value and optimal decision strategy

We solve the optimal decision strategy for the investment problem using dynamic programming in a

backwards fashion. First, we �nd the optimal decision strategy at the end of the investment horizon,

when C = ) . Postponing the investment is not an option, and the optimal exercise strategy is either to

adopt or reject the investment opportunity. The value of adoption is equal to the payo�, %=) , calculated

with the simulated variable values, and the value of rejection is zero. The value of the investment

opportunity in the last time step is equal to

+=
) =<0G [0, %=) ] .

Then the intermediate decision points are evaluated by iterating backwards over the investment horizon,

from C = ) � 1 to C = 0. At each decision point, we �nd the optimal decision between adoption, rejection

and waiting. To �nd the value of waiting, we approximate the value of the investment opportunity in

the next time step based on the current variable values. To approximate this continuation value, denoted

⇠+ =
C , we use a conditional expectation function, denoted �C . We regress the conditional expectation

function of a speci�ed order, 3 , for some given basis functions. We use polynomials2 which have

the advantage of being able to approximate a broad range of functions. The general equation for a

multivariate polynomial function of order 3 and" variables, denoted by �C , is given by3

�C =
3’
8=0

(8+"�1
8 )’

9=1
U8 9 ·

"÷
<=1

(
8!<9
<,C , where

"’
<=1

8!<9 = 8

2Examples of other possible basis functions are the Hermite, Legendre, Chebyshev, Gegenbauer, and Jacobi polynomials
3Thanks to Dr. Rouholah Ahmed for providing this formula
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where (<,C is the value of the uncertain variable< at time C , and the 08 9 ’s are coe�cients. 8! 9 is the set

of all possible<-tuple combinations of non-negative integers from 0 to 8 , which is constrained by their

summations needed to be equal to 8 . 8! can be de�ned iteratively through the following equations

8!<9 =

8>>>>>>><
>>>>>>>:

<1 = 0 : 8

<2, ...,<; , ...,<"�1 = 0 :
⇣
8 � Õ;�1

@=1<@

⌘

<" = 8 � Õ"�1
@=1 <@

We start with explaining the procedure for ) � 1. First, we regress the discounted investment value in

time step ) , X+=
) , on the simulated variable values in ) � 1, ((1,)�1, ..., (",)�1). ((1,)�1, ..., (",)�1) are

used as the independent variables. The discounted investment value, X+ =
) , is the dependent variable.

We regress on all paths, resulting in # vectors, S=)�1, and # corresponding dependent variables. Here

we deviate from the procedure introduced by Longsta� and Schwartz (2001) who only consider the

in-the-money paths (i.e. the payo� function is positive) for the regression. We regress on all paths

because we introduce rejection as a third alternative. The DMwill only reject the investment opportunity

and receive nothing when both the payo� and the expected value of waiting are less than or equal to

zero. The waiting cost must be paid each period the DM postpones the decision, so the option to wait is

no longer for free as in Longsta� and Schwartz’ model. The coe�cients of the regression function are

estimated using least squares. This gives the regressed conditional expectation function �̂)�1(S=)�1).

Using �̂)�1 and the corresponding asset values, S=)�1, we calculate the continuation value, ⇠+ =
)�1. If

the DM decides to wait, she must pay the waiting cost. This results in the following expected value of

waiting,

⇠+ =
)�1 �, .

The optimal decision at time ) � 1 is the decision that corresponds to

<0G [0, %=)�1,⇠+ =
)�1 �, ] .

Depending on the action taken in step) � 1, the optimal value+=
)�1 equals either 0, %

=
)�1, or X+

=
) . These

correspond to the optimal decision being to reject, adopt or wait respectively. Note that when the

optimal decision is to wait, the corresponding optimal value, +=
)�1, will be the investment value from

the next period and not the regressed continuation value. The regressed continuation values are used

to �nd the optimal decision only. Since +=
)�1 will be used to regress the continuation value in ) � 2,
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+=
)�1 needs to equal the obtained payo� and not the regressed estimate. The presented procedure for

C = ) � 1 is repeated for the remaining intermediate decision points until C = 1.

In order to derive the value of the investment opportunity at time zero, we discount the identi�ed values

from the optimal decisions at time C = 1. This results in a discounted potential future cash �ow (PFCF)

for each path, denoted⇠�= . We then �nd the potential future cash �ow by taking the average for all the

paths,

PFCF =
1
#

#’
==1

⇠�= .

The value of the investment opportunity, +0, is then equal to

+0 =<0G [0, %0, %�⇠� ] . (3.5)
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4 Results and discussion

In this section, we contextualise the model with an illustrative example and perform sensitivity analysis.

First, we present the decision problem and the interpretation of the parameters in a speci�c decision

context. The parameters are then assigned values for which the context is solved and analysed, and the

results presented. We then perform sensitivity analysis where we compare the results to a single-layered

learning approach where we only account for Markov learning and do not update the DM’s beliefs. The

aim of this section is to gain further insight into our model and its possible applications.

4.1 Illustrative example

We present an illustrative example to demonstrate a possible application of the model. The example

also serves as a foundation for further considerations of the methodology. A �rm has the option to

buy an innovative production technology for an investment cost,  . The �rm intends to use the new

technology to introduce new innovative products to the market. However, they are unsure of the market

potential for the new products. With the new technology, the �rm will have the capacity to produce &

units. Here, adoption results in the �rm investing in and using the production technology to sell the new

product. It is assumed that all units will be sold, and the potential revenue from selling these units can

be seen as a one-o� payment if the �rm carries out the investment. Alternatively, the �rm can reject the

new technology and will then not be able to produce the product. The �rm must decide whether they

want to invest in the production technology by time ) . They consider the investment decision at every

time step C . If the �rm decides to delay the decision, it costs them, to compensate for the �exibility of

the investment option. It is assumed that if the �rm decides to invest in the new product, the production

and sales will be executed instantaneously, and the �rm will receive an immediate payo�.

The �rm knows the price they would sell the product for today, but they are unsure about what price

they can expect to receive in the future. The price is an uncertain variable, denoted (1. Based on their

beliefs, they use a GBM to represent the price the market is willing to pay. The GBM is modelled with a
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4.1. Illustrative example

drift `(1 and standard deviation f(1 , and its SDE is given by Equation 3.1. The drift `(1 is uncertain, of

which the �rm has an initial belief, denoted `0. With time, the �rm can update their initial beliefs of the

price drift with signals they receive. This could be product statements from competitors. The signals

are random draws from a normal distribution with a mean, `CAD4 , and a standard deviation, fB86=0; . To

implement this problem, we need to know the true price drift, `CAD4 . The signals are set to arrive every

9C⌘ time step.

The production process has a variable cost per product, which is another uncertain variable and denoted

by (2. For simplicity, the product consists primarily of a single raw material (e.g. copper), and the

variable cost depends on the price of this material. The variable cost is known today but will change over

time as the price of the raw material changes. We model the cost uncertainty using a mean-reverting

process, which follows the SDE given by Equation 3.2. It is expected that the cost will revert to the price

`(2 over time with a standard deviation f(2 . The payo� function is then given by

%C = & ⇥
�
(1,C � (2,C

�
�  .

4.1.1 Numerical results

In the following, we present numerical results of the described decision problem for parameters with

assigned expository values, as shown in Table 4.1.

Figure 4.1: The decision frequency diagram resulting from solving the model using the parameters in Table 4.1.

Figure 4.1 illustrates the resulting decision frequency diagram. The optimal decision is to wait at an

investment value of NOK 263,402, obtained by Equation 3.5. Although nearly 80% of the paths end in

rejection at time zero, it is optimal to wait. This is due to the fact that the average value only needs

to be higher than the waiting cost to make it more attractive to wait than to reject. In this illustrative

example, the waiting cost is relatively low compared to potential future payo�s if the price increases.

19 of 42



4.1. Illustrative example

Parameter Interpretation Value

& Number of units 10,000 units

) Time horizon 5 years

, Waiting cost NOK 10,000

 Investment cost NOK 450,000

�C How often the investment decision is evaluated 0.25 years (quarterly)

9 Time steps between each signal received 4 (Receive signal

annually)

A Risk-free rate 1.05%

(1,0 Initial value for the unit price variable NOK 200

`0 Initial belief of price drift 0

g0 Initial variance of the belief, describing how uncertain

the DM is in her initial prior

10

f(1 Standard deviation of the price process 0,2

(2,0 Initial value for the unit cost variable NOK 200

`(2 Expected mean-reverting unit cost NOK 150

f(2 Standard deviation of the cost process 0.32

[ Mean-reverting constant 0.22

`CAD4 The signal drift, also the true price drift -0.1

fB86=0; Standard deviation of the signal distribution 0.6

# The number of Monte Carlo simulations 100,000

⌫ The number of signals received at a time 1

� Signal sample size, the number of random draws that

make up each signal

5

⌦ Number of intervals the entire investment horizon is

divided into

20

Table 4.1: Summary of the model’s parameters and their expository values.
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Furthermore, the expected cost is lower than the current price. Therefore, the DM expects the cost to

decrease in the future, which will contribute to obtaining a positive payo�. However, if the DM receives

information signalling that the price will decrease in the future, the pro�t margin is reduced and will

not cover the costs. Consequently, it is optimal to reject the new technology in most cases, even if the

cost is decreasing. The signals will change the DM’s beliefs in a negative direction over time. This can

be seen in the decision frequency diagram as the rejection region increases in later time steps.

4.2 Sensitivity analysis

According to Howard and Abbas (2015), sensitivity analysis is an important feature of professional

decision analysis. It enables us to investigate how the decision will change if we change certain numbers

in the decision basis. This can help determine whether additional e�ort should be expended in increasing

the parameter precision. As such, we perform a sensitivity analysis to obtain a broader understanding of

the model’s applicability and the e�ects of di�erent parameter values on the investment decision. The

sensitivity analysis is based on the presented illustrative example and its results. First, we analyse the

impact of the parameters of the signal distribution. Second, we examine the impact of the parameters

of the stochastic processes. Lastly, we present a situation where receiving signals results in a di�erent

decision compared to the single-layered learning approach without Bayesian updating. The parameter

values are as given in Table 4.1 if nothing else is speci�ed.

4.2.1 Impact of the signal distribution

The primary contribution of our model in terms of versatility is the opportunity to update the DM’s

beliefs about the parameters of the underlying stochastic processes. The updating is accomplished

through Bayesian learning from signals given by a signal distribution. Therefore, it is of interest to

examine the e�ects of changes to the signal sample size and to the initial mean of the signal distribution,

and to infer how they a�ect the DM’s beliefs.

First, we see how the signal sample size, � , impacts the results. The signal sample size is set to �ve

to reduce extreme impacts of outliers, which are more likely when there is a single draw from the

distribution. Since the signals are randomly sampled from the distribution, they may result in very

di�erent decision frequency diagrams. It is therefore of interest to map how changes to the signal sample

size a�ect the investment decision. This is illustrated in Figure 4.2, where the normalised decision

frequencies are shown for di�erent signal sample sizes.

21 of 42



4.2. Sensitivity analysis

Figure 4.2: Decision frequency for all simulations over the investment horizon for di�erent signal sample sizes depicted on

the x-axis. The total percentage is of the di�erent decisions for di�erent signal sample sizes.

When the average signal is based on a smaller signal sample size, the variability in decision frequencies

is higher, as illustrated by the upper left plot in Figure 4.2. When the signal sample size is increased, the

decision frequencies stabilise. However, there is still apparent variability in the decision frequency for a

signal sample size in the range of 100 to 1, 000. For signal sample sizes larger than 1, 000, the decision

frequencies for the three alternatives are relatively stable. In later analyses, we will use � = 1, 000 when

we want to reduce the di�erence between the plots that arise due to variability in signal draws.

Next, we examine the impact of the beliefs’ initial variance and signal variance on convergence. The

beliefs’ initial variance is the parameter that describes the DM’s uncertainty in her prior beliefs, g0. g0

a�ects how fast the DM’s beliefs converge. By converging, we mean when the variance of the DM’s

beliefs approaches zero, g ! 0. The DM can become more or less con�dent in her beliefs by observing

signals, and the uncertainty is the lowest when the beliefs’ variance is 0. The lower g?>BC gets, the less

impact another signal has on the beliefs as the DM becomes increasingly con�dent in her estimate.

Figure 4.3 illustrates how di�erent start values of g0 converges when updated with the same signal

volatility, fB86=0; .
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Figure 4.3: The evolution of g?>BC with time for di�erent values of g0 when signals with the same volatility, fB86=0; , are

observed over the investment horizon. Both g0 = 10, 000 and g0 = 10 have the same development after the �rst signal is

received. Note the large change from the initial uncertainty to g?>BC after the �rst signal, G1, is received, especially for large

values of initial uncertainty, g0. All paths have values lower than 0.4 after updating on the �rst signal.

From Figure 4.3, we can see that a g0 larger than 10 converges to the same value after only one signal.

Therefore, setting the initial g0 to an uninformative prior of 10 denotes that the DM has no knowledge

to help her assess the true drift. When the DM has received the third signal, she will become con�dent

enough in her beliefs that another signal makes little di�erence. Additional signals would then yield

insigni�cant changes in the DM’s uncertainty of her beliefs. Further, we investigate if and how the

investment value, optimal decision and decision frequency diagrams change for di�erent values of g0.

However, we increased the signal sample size from � = 5 to � = 1, 000 to reduce the di�erence between

decision frequency distributions arising due to the variability of signal draws. We solved the problem

for g0 2 [0.2, 0.6, 1, 1.5, 5, 10]. The results are shown in Figure 4.4 below. We observe that the shape of

the decision frequency diagram changes little when g0 � 1, though the values change. The investment

value changes for a g0 less than 5, while there are less drastic di�erences for g0 higher than 5.
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(a) g0 = 0.2

Decision: Wait

Invetment value: NOK 201,655

(b) g0 = 0.6

Decision: Wait

Invetment value: NOK 110,684

(c) g0 = 1

Decision: Wait

Invetment value: NOK 79,845

(d) g0 = 1.5

Decision: Wait

Invetment value: NOK 68,701

(e) g0 = 5

Decision: Wait

Invetment value: NOK 59,778

(f) g0 = 10

Decision: Wait

Invetment value: NOK 59,034

Figure 4.4: Decision frequency diagrams with the corresponding optimal decision and investment value for di�erent values

of the DM’s initial uncertainty, g0.
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Continuing with this line of investigation, it is of interest to examine how the signal volatility a�ects

the convergence speed. The signal volatility, fB86=0; , is a measure of how far each sampled signal can

be from the distribution’s centre, `CAD4 . Since the signals vary more for a higher fB86=0; , the DM must

receive more signals for the variance of her beliefs’ to converge. Figure 4.5 illustrates convergence speed

for g given di�erent values of fB86=0; .

(a)

(b)

Figure 4.5: Change in the beliefs’ variance, g , with time for di�erent values of signal volatility, fB86=0; , and the same initial

variance, g0 = 10, as stated in Table 4.1 over the investment horizon. The top plot shows the beliefs’ variance for

fB86=0; 2 [0.1, 1]. The bottom plot shows the beliefs’ variance for fB86=0; 2 [0.5, 2].

As shown in Figure 4.5, the volatility of the DM’s beliefs has converged by the fourth signal for all

fB86=0; 2 [0.1, 1]. However, when fB86=0; is above 1, convergence is slower and requires the observation

of more signals. The top plot, where fB86=0; 2 [0.1, 1], shows that all paths converge after receiving

four signals. The bottom plot, where fB86=0; 2 [0.5, 2], shows that seven signals are needed to obtain

approximately the same value of g for all fB86=0; < 2. A combination of fB86=0; � 2 and g0 � 2 will
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never converge towards zero, as shown in Figure 4.6. In this case, the DM will never approach complete

con�dence in her beliefs of the drift, regardless of how many signals she collects. We can conclude that

the combinations of fB86=0; , g0 and � a�ects the decision frequencies. A combination of higher values

of fB86=0; and g0 will give more variable decision frequency distributions with lower � values, while a

higher � reduces this behaviour.

Figure 4.6: The change in the beliefs’ variance for di�erent combinations of signal volatility, fB86=0; , and initial variance of

her beliefs, g0.

Third, we examine the impact on the investment decision of changing the combination of the signal

distribution’s mean and variance, `CAD4 and fB86=0; . We vary `CAD4 from �0.5 to 0.5 and fB86=0; from 0.1

to 1.7 to assess these e�ects. As inferred previously in this section, the signal sample size is of great

signi�cance for the results. It often impacts the decisions in later time periods, although it may not

change the DM’s immediate decision at time step zero. Figure 4.7 shows how the decision frequency

diagram changes for di�erent values of `CAD4 and fB86=0; for multiple values of � .

A lower-valued fB86=0; have a greater impact on situations where `CAD4 is closer to zero. This can be

explained by the fact that the signals will more easily change the believed direction of price evolution.

When the absolute value of `CAD4 is large, the fB86=0; must also be large to receive signals that will change

the DM’s beliefs of the direction of the evolution in unit price. Regarding the impact on the decision

frequency, fB86=0; has less impact for higher values of � . For higher values of � , the true drift of the

price process is the signal parameter with the most considerable impact. However, fB86=0; still in�uences

the convergence speed for the DM’s beliefs, as discussed above.
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4.2. Sensitivity analysis

Figure 4.7: Decision frequency diagrams for di�erent combinations of signal sample size, � , true drift, `CAD4 , and signal

variance, fB86=0; .

Lastly, we examine the impact of the signals given the initial variance of the DM’s beliefs regarding

the drift of the stochastic price process, g0. We start by examining when the DM is very con�dent in

her beliefs, setting g0 to 0.3. Figure 4.8 shows how the beliefs change for �ve di�erent consecutive

signals received. The di�erent lines represent di�erent values of the initial prior, `0. The numbers on

the horizontal axis are the signal’s value and are shown in the order they are received. We can observe

that when the DM is relatively con�dent in her prior, the impact of the �rst signal is minimal, even if

the di�erence in values between the prior and the signal is relatively big. The resulting posteriors after
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4.2. Sensitivity analysis

�ve signals are close to their original priors and do not converge to a uni�ed posterior. In other words,

the prior has a signi�cant impact when the DM is con�dent in her beliefs. Previously we found that the

g parameter converges rapidly for a fB86=0; of 0.6 and that the DM will be very con�dent after only two

signals. This is con�rmed in Figure 4.8, where it can be seen that the posteriors of the di�erent lines

change insigni�cantly after the �rst signal of �0.20. In addition, later signals have little impact when

the DM is con�dent. To summarise, we can say that when the DM is very con�dent in her initial beliefs,

the signals have little e�ect on the resulting posterior.

Figure 4.8: The resulting posterior for di�erent priors, `0, given an initial uncertainty g0 = 0.3 and the signals received in the

stated order over the investment horizon.

Now we examine the situation where the DM is very uncertain and has little con�dence in her beliefs,

setting g0 to 10. The resulting graph is given in Figure 4.9 for the same signals received and the same

initial priors as in Figure 4.8. Independent of the initial prior, we see that all �ve paths end in the same

posterior value. In the light of this, we can similarly conclude that when the DM has little con�dence in

her initial beliefs, the prior has little impact on the resulting posterior. In addition, we can make the

same observation as from Figure 4.8 that the posterior does not change much after the second signal.
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4.2. Sensitivity analysis

Figure 4.9: The resulting posterior given an initial uncertainty g0 = 10 and the signals received in the stated order over the

investment horizon for di�erent priors, `0.

Further, in Figure 4.10, we can see how the posterior changes and evolves for di�erent values of the

initial uncertainty of the DM’s beliefs, g0, and a prior belief, `0, of zero. It can be seen that the less

con�dent the DM is about her initial prior, the more the posterior changes when signals are received.

Meaning that, for the larger values of g0, later signals have more impact than for lower values of g0.

However, later signals have less impact in general because of convergence, as discussed previously.

Figure 4.10: The resulting posterior given an initial prior of zero and fB86=0; of 0.6 for di�erent initial uncertainties and the

signals received in the stated order over the investment horizon.
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4.2.2 Impact of the stochastic process parameters

In this section, we examine the e�ects of changing some of the parameter values in the stochastic

processes of the uncertain variables. The signal sample size is increased from � = 5 to � = 1, 000 to

decrease the variability between the plots. We compare the e�ects to the same changes applied in a

traditional option valuation model where the parameter updating feature is removed. That is, Bayesian

learning is not performed, and the DM does not update her beliefs over time.

We start by looking at sensitivity to the initial unit price, (1,0. When increasing the current price from

NOK 0 to 1,000, the results in Figure 4.11a indicate that the investment value shown by the dotted

pink line increases linearly once the price is su�ciently higher than the unit cost to cover the �xed

investment cost. Similarly, in Figure 4.11b, we see that the optimal decision is to reject for prices up to

approximately NOK 200. This is reasonable as the immediate payo� is negative. In addition, the DM will

receive signals that the price will decrease further in the future. Then there is a small interval where the

optimal decision is to wait before it changes to adoption for even higher prices.

If we omit the signals and do not account for future learning, then the corresponding plots are given as

the brown dotted lines in Figures 4.11a and 4.11b. We can see that the investment value increases in a

similar fashion as before and that the optimal decision changes from rejection to waiting at approximately

the same spot. However, the optimal decision is to wait for higher prices compared to the models with

signals where the decision changes to adopt. This is expected as the DM now believes that the price will

stay unchanged while the cost will fall in the future. Even if the potential gain is positive today, it is

expected to be higher in the future, and the DM will therefore prefer to wait.

(a) (b)

Figure 4.11: Changes to the investment value and optimal decision when the current unit price varies from NOK 0 to 1,000.

The pink dotted line is the situation where the DM receives signals. The brown dotted line is for the situation where signals

are ignored.
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Further, we examine the e�ect of changing the initial beliefs of the true drift. If we vary `0 from �1 to

1, we see from the pink dotted lines in Figures 4.12a and 4.12b that neither the investment value nor

decision changes much. Changing this variable is equal to changing the prior beliefs, and the signals

can therefore explain the una�ected investment value and decision. If the DM is uncertain in her prior

beliefs, this has less impact as the signals will change her beliefs. When the signals indicate a drift of

�0.1, the investment value will not increase even for high values of `0 because the DM is very uncertain

in her beliefs. The impact of the prior beliefs with a high uncertainty was discussed in Section 4.2.1.

On the other hand, if we omit the signals, the graphs change to those given as the brown dotted lines in

the same �gures, and the results di�er signi�cantly. The investment value is increasing exponentially,

and the optimal decision changes from reject to wait right before `0 reaches zero. This is reasonable

because when the DM’s initial beliefs are that the true drift is negative, she believes the price will

continue to decrease further in the future. There is a small region where the drift is negative, and

the DM believes the unit cost may decrease faster than the unit price. As such, she will wait to learn

what the realisations will be. Consequently, it will never be optimal to produce the new product as the

current payo� is negative. When the prior beliefs are higher than 0.5, the DM believes the price will

increase substantially in the future. This results in a large potential gain in the future, therefore the

high investment value and that the optimal decision is to wait.

(a) (b)

Figure 4.12: Changes to the investment value and optimal decision when the prior beliefs vary from �1 to 1. The pink dotted

line is the situation where the DM receives signals. The brown dotted line is for the situation where signals are ignored.

Next, we examine the e�ects of changing the parameters of the mean-reverting stochastic process used

to represent the cost. Figures 4.13a and 4.13b show the impact of varying the current unit cost, (2,0, from

NOK 0 to 500 presented as dotted pink lines. We see that the investment value decreases as the cost

increases, which is reasonable as a higher cost reduces the payo� and makes the investment opportunity

less attractive. Furthermore, we see in Figure 4.13b that the optimal decision is to adopt for low costs.

This can be explained that a low cost yields a positive immediate payo� and that the DM expects the
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cost to increase in the future. Because the DM will receive signals over time indicating that the price

will decrease, it is optimal to produce the product now rather than delaying the decision. Thereafter,

it is optimal to wait for a small interval around the current sales price, which can be explained by the

uncertainty of an expected decrease in both unit cost and unit price. Depending on which decreases

fastest, the DM could change her decision whether to invest or reject. Therefore, it is optimal to wait. If

the current unit cost is su�ciently higher than the current unit price, it is optimal to reject.

When we omit the signals, the results are given as dotted brown lines in Figures 4.13a and 4.13b. The

investment value decreases in a similar fashion, but the waiting interval is longer in the single-layered

model. This is due to the fact that, without the signals, the DM believes the price will stay relatively

unchanged over the investment horizon while the cost will decrease, as explained before. This increases

the interval of unit cost where the DM is willing to wait.

(a) (b)

Figure 4.13: Changes to the investment value and optimal decision when the current unit cost varies from NOK 0 to 500. The

pink dotted line is the situation where the DM receives signals. The brown dotted line is for the situation where signals are

ignored.

Lastly, we vary the expected mean-reverting cost, `(2 , from NOK 50 to 500. From Figure 4.14a, we see

that the investment value decreases when `(2 increases, similar to Figure 4.13a above. From Figure 4.14b,

we see that the optimal decision changes from wait to reject as the expected cost increases, occurring

right before NOK 200. This is because when the expected cost is lower than the current cost, the DM

expects the cost to decrease in the future. Even if she receives signals that the price will decrease too,

the DM should wait as she expects the new technology to be pro�table soon if the cost is expected to

decrease more. The immediate payo� is negative, and it will therefore never be optimal to adopt at the

current time with the current price, independent of the expected cost. When the expected cost is high,

the DM expects the cost to increase, and she receives signals indicating that the price will decrease. This

makes the investment less attractive with time, and it should therefore be rejected immediately.
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When the signals are omitted, the values and decisions change to the dotted brown lines in Figures 4.14a

and 4.14b for the speci�ed values of `(2 . The investment value is of a similar form, but not value, and the

optimal decision policy changes. In this situation, the DM will be willing to wait for a higher expected

cost. Intuitively, we would expect the DM to reject the investment opportunity for these higher costs

since the cost is expected to increase over time and the price to stay unchanged. However, the DM needs

only a few realisations of a higher unit price to receive a bigger payo� than either of the immediate

exercise actions. Since the uncertain variables are modelled as stochastic processes, and the expected

values are calculated using Monte Carlo simulations, the payo� may be positive in some of the paths.

Given a relatively low waiting cost, the DM is willing to wait because the potential future payo� is

higher than the current one.

(a) (b)

Figure 4.14: Changes to the investment value and optimal decision when the expected mean-reverting cost varies from NOK

0 to 500. The pink dotted line is the situation where the DM receives signals. The brown dotted line is for the situation where

signals are ignored.

How the decision changes for di�erent combinations of initial unit cost and initial unit price when

signals are received are illustrated in Figure 4.15a. In accordance with expectations, the optimal decision

is to adopt the technology for higher values of unit prices in combination with low unit costs. Similarly,

for lower unit prices in combination with higher unit costs, it is optimal to reject the technology. Both

are reasonable as the combinations respectively increase and decrease the pro�t margin, and thereby the

pro�tability. Figure 4.11b and 4.13b are excerpts of these �gures. Similarly, Figure 4.15b illustrates the

decision changes when signals are not received. The area where it is optimal to reject is quite similar in

both �gures. The waiting and adoption area, on the other hand, are distinctly di�erent. It is much more

often optimal to wait at time zero when signals are not received compared to Figure 4.15a. Again, this

can be explained by the DM believing the investment will be more valuable in the future. She would

therefore prefer to delay the investment than investing now. However, we can see that she will make

several suboptimal decisions when she does not receive signals.
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(a) (b)

Figure 4.15: Illustrates how the optimal decision changes a) when accounting for signals and b) without signals for di�erent

combinations of initial unit cost and initial unit price.

4.2.3 Di�erent decision compared to a single-layered learning model

This section examines a situation that yields di�erent optimal decisions when accounting for signals

and not. For this purpose, the initial sales price, (1,0, is set to NOK 400, where the immediate payo� is

positive. The decision frequency diagram is presented in Figure 4.16a and has a signal sample size of �ve.

Here the optimal decision was to adopt the process technology and produce the new product today with

an investment value of NOK 1,550,000. The DM receives information that the price will decrease with

time. Since the immediate payo� is positive, it is expected that adoption is the most frequent decision

in the earlier time steps and rejection in the later time steps. Note that this diagram is a�ected by the

signal sample size. If the signal sample size instead is set to 1,000, the average signals are closer to the

true drift, and the decision frequency diagram would look like the one in Figure 4.16b. The optimal

decision is to adopt, and therefore the investment value equals the immediate payo� and is the same for

both signal sample sizes. However, there are some apparent di�erences between the two graphs. The

relative frequency of waiting is larger at time zero for the diagram with the largest signal sample size.

Furthermore, the rejection region is signi�cantly smaller in this diagram. The �ndings in Section 4.2.1

and 4.2.2 can explain these di�erences.
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(a) (b)

Figure 4.16: Decision frequency diagrams where signals are received for two di�erent signal sample sizes, respectively � = 5

and � = 1000.

When not receiving signals, the optimal decision is to wait at an investment value of NOK 1,772,366.

The decision frequency diagram is given in Figure 4.17. Now the DM believes that the unit sales price

will stay relatively unchanged over time. However, she believes that the unit cost will fall in the future

because the current cost of NOK 200 is above the expected cost of NOK 150. In this speci�c case, where

the waiting cost is low relative to the potential future payo�, the optimal decision is to wait. The DM

will no longer receive information that the drift is negative, which yields a di�erent result than when

applying the multi-layered learning approach. The investment value when signals are not received is

higher than when signals are received. Intuitively, one might think that this is odd as the value of real

options usually increases compared to the net present value as one introduces more �exibility. The

values resulting from solving our model with and without signals cannot be compared as such. Instead,

the positive di�erence tells us that the DM overestimates the investment value when signals are not

accounted for. The DM’s initial beliefs of the price drift are higher than its true value, and she �nds

it optimal to delay the decision instead of adopting now. However, if she delays the decision, she will

observe that the price drift falls, and she will receive less than if she adopted at time zero.

Figure 4.17: Decision frequency diagram where signals are not received. The signal sample size is therefore irrelevant.
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In the situation where the DM’s prior beliefs are equal to the true drift, she would reach the same

decision using both the single-layered and the multi-layered learning model. This is shown in Figure

4.18, where the decision makers’ prior beliefs are equal to the true drift, i.e. `0 = `CAD4 = �0.1. In this

case, both models result in the optimal decision to adopt immediately at an investment value of NOK

1,550,000. The signals will indicate to the DM that the uncertain drift is the same as her beliefs and as

a result she will not change her mind. Given that the signals’ variance is small enough such that the

DM’s beliefs will converge (as inferred and discussed in Section 4.2.1), the optimal decision and the

corresponding investment value will be the same for both models.

(a) Single-layered model result (b) Multi-layered model result

Figure 4.18: Decision frequency diagram when the DM’s initial prior equals the true drift of the price process.
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5 Conclusion

This paper presents a newmethodology for solving a sequential decision making problem under multiple

uncertainties where a second level of learning is enabled through receiving signals. The �rst level

of learning occurs over time from the Markov property of the stochastic processes used in the Least

Squares Monte Carlo approach. With the second level, the decision maker will periodically receive

signals providing information about the hyperparameters of the stochastic processes. Using the signals,

the decision maker can update her prior beliefs for multiple hyperparameters in a Bayesian manner.

Our methodology provides insight for a decision maker into the value of information by identifying the

optimal decision policy for a new technology investment and its corresponding value. The methodology

is �exible and can be applied to a broad range of decision problems with di�erent payo� structures. It

allows for multiple uncertain variables without increasing the complexity, in contrast to other models

that often su�er from the curse of dimensionality. The added �exibility of allowing the decision maker to

update her beliefs about one or more of the underlying uncertain variables is providing additional value

and insight into the decision context. For simplicity we illustrate our methodology based on an example

where the uncertainties are modelled as one-factor stochastic processes. However, our approach can

easily be extended to account for uncertainties modelled as multi-factor processes.

We �nd that receiving signals and updating the beliefs can signi�cantly impact the investment value

and optimal decision policy of the investment problem. If the signals di�er su�ciently from the prior

beliefs, a di�erent decision policy and investment value are often reached compared to the single-layered

learning approach commonly used in traditional real options valuation. This happens because the

decision maker can overestimate or underestimate the investment value when Bayesian learning is not

applied. It is not easy to draw general conclusions of the model because it depends greatly on the context

and chosen parameter values, its payo� function, and the modelling choice of the signals. The main

aim of this paper is to present the methodology. However, some general insights have been established.

First, when the prior beliefs equal the true signal distribution, the model yields the same results as the

model without the signal feature. Furthermore, if the decision maker’s prior beliefs imply a signi�cant
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lack of knowledge, the prior has limited impact on the decision policy. Likewise, if the decision maker is

very con�dent in her prior beliefs, the signals are of less signi�cance and have limited impact.

The paper lays the groundwork for various extensions and future research. First, the model framework

allows for other ways of Bayesian updating than through conjugate pairs. If the signal distribution is

better represented by a non-conjugate prior, Markov Chain Monte Carlo methods can be used. This

would extend the versatility and applicability of the methodology. Furthermore, it is of interest to

analyse how updating the beliefs of multiple, possibly dependent, uncertain parameters impacts the

decision policy. Another possible extension is to apply our novel solution approach to technology

adoption problems where the uncertainties are modelled by multi-factor processes to obtain further

methodology validation. Lastly, it could be of interest to extend the model to accommodate for random

arrival of signals, e.g., by using a Poisson process. It would then be possible to have a varying number

of signals arriving over the investment horizon. This would also allow varying lengths of the regimes.
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A Derivation of the posterior

Derivation of the mean and variance of the posterior distribution when an average signal is received.
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Derivation of the mean and variance of the posterior distribution when an average posterior is calculated

from multiple posteriors.
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