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Purpose: Earlier work showed that IVIM- NETorig, an unsupervised physics- informed 
deep neural network, was faster and more accurate than other state- of- the- art 
intravoxel- incoherent motion (IVIM) fitting approaches to diffusion- weighted imag-
ing (DWI). This study presents a substantially improved version, IVIM- NEToptim, and 
characterizes its superior performance in pancreatic cancer patients.
Method: In simulations (signal- to- noise ratio [SNR] = 20), the accuracy, independ-
ence, and consistency of IVIM- NET were evaluated for combinations of hyperpa-
rameters (fit S0, constraints, network architecture, number of hidden layers, dropout, 
batch normalization, learning rate), by calculating the normalized root- mean- square 
error (NRMSE), Spearman’s ρ, and the coefficient of variation (CVNET), respectively. 
The best performing network, IVIM- NEToptim was compared to least squares (LS) 
and a Bayesian approach at different SNRs. IVIM- NEToptim’s performance was eval-
uated in an independent dataset of 23 patients with pancreatic ductal adenocarcinoma. 
Fourteen of the patients received no treatment between two repeated scan sessions and 
nine received chemoradiotherapy between the repeated sessions. Intersession within- 
subject standard deviations (wSD) and treatment- induced changes were assessed.
Results: In simulations (SNR = 20), IVIM- NEToptim outperformed IVIM- NETorig in 
accuracy (NRMSE(D) = 0.177 vs 0.196; NMRSE(f) = 0.220 vs 0.267; NMRSE(D*) = 
0.386 vs 0.393), independence (ρ(D*, f) = 0.22 vs 0.74), and consistency (CVNET(D) =  
0.013 vs 0.104; CVNET(f) = 0.020 vs 0.054; CVNET(D*) = 0.036 vs 0.110). 
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1 |  INTRODUCTION

The intravoxel incoherent motion (IVIM) model1 for 
diffusion- weighted imaging (DWI) shows great potential 
for estimating predictive and prognostic cancer imaging bio-
markers.2- 5 In the IVIM model, DWI signal is described by 
a bi- exponential decay, of which one component is attributed 
to conventional molecular diffusion and the other to the inco-
herent bulk motion of water molecules, typically credited to 
capillary blood flow. Hence, IVIM simultaneously provides 
information on diffusion (D; diffusion coefficient), capillary 
microcirculation (D*; pseudo- diffusion coefficient), and the 
perfusion fraction (f) without the use of a contrast agent.6- 8 
However, despite IVIM’s great potential,2- 5 it is rarely used 
clinically. Two major hurdles preventing routine clinical 
use of IVIM are its poor image quality and the long fitting 
time.9- 11 Tackling these shortcomings will help toward wider 
use of IVIM.12

Currently, IVIM is often fitted using the conventional 
least squares (LS) algorithm. However, more accurate al-
ternative approaches have been suggested.9 Until recently, 
Bayesian algorithms for IVIM fitting13 were most prom-
ising regarding inter- subject variability,9 precision, accu-
racy,14 and smooth parameter maps, suggesting less noise.15 
Conversely, Bayesian approaches are substantially slower 
(9 × 10−2 s/ vox11) than the already slow LS approach (8 × 
10−3 s/ vox11). Furthermore, Bayesian approaches may lead to 
biased perfusion estimates of the IVIM model.16

Recently, a promising alternative for IVIM fitting was 
introduced: estimating IVIM parameters with deep neural 
networks (DNNs). Initially, Bertleff et al17 introduced a su-
pervised DNN for IVIM parameter estimation, in which the 
network was trained on simulated data for which the underly-
ing parameters were known. However, the strong assumption 
of simulated training and test data being identically distrib-
uted could limit the network’s performance in vivo, where 
noise behaves less ordered. We solved this shortcoming in 
earlier work,11 where we used unsupervised physics- informed 

deep neural networks (PI- DNNs).18,19 PI- DNNs formulate a 
physics- informed- loss- function that finds learned parame-
ters through an iterative process. In this case, the PI- DNN 
used consistency between the predicted signal from the 
IVIM model and the measured signal as a loss term in the 
DNN. This resulted in an unsupervised PI- DNN capable of 
training directly on patient data with no ground truth: IVIM- 
NETorig. We demonstrated in both simulations and volunteer 
analysis that IVIM- NETorig is superior to the conventional 
LS approach and even performs (marginally) better than the 
Bayesian approach. Furthermore, IVIM- NETorig’s fitting 
times were substantially lower (4 × 10−6 s/vox11) than the LS 
and Bayesian approaches. However, that proof of principle 
IVIM- NET study did not explore many hyperparameters and 
focused on volunteer data.

In this work, we hypothesize that IVIM- NETorig can be 
improved by exploring the architecture of the network, its 
training features and other hyperparameters. Hence, we char-
acterized the performance of IVIM- NET for different hyper-
parameter settings by assessing the accuracy, independence, 
and consistency of the estimated IVIM parameters in simu-
lated IVIM data. Finally, we compared the performance of 
our optimized IVIM- NET to the LS approach and a Bayesian 
approach in patients with pancreatic ductal adenocarcinoma 
(PDAC) receiving neoadjuvant chemoradiotherapy (CRT) in 
terms of image quality, parameter to noise ratio, test- retest 
reproducibility, and sensitivity to treatment effects.

2 |  METHODS

2.1 | IVIM- NET

We initially implemented the original PI- DNN (IVIM- 
NETorig)

11 in Python 3.8 using PyTorch 0.4.1.20 The input 
layer consisted of neurons that took the normalized DWI sig-
nal S(b)/S(b = 0) as input, where S(b) is the measured sig-
nal at diffusion weighting b (b value). The input layer was 

IVIM- NEToptim showed superior performance to the LS and Bayesian approaches 
at SNRs < 50. In vivo, IVIM- NEToptim showed significantly less noisy parameter 
maps with lower wSD for D and f than the alternatives. In the treated cohort, IVIM- 
NEToptim detected the most individual patients with significant parameter changes 
compared to day- to- day variations.
Conclusion: IVIM- NEToptim is recommended for accurate, informative, and consist-
ent IVIM fitting to DWI data.
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deep neural network, diffusion- weighted magnetic resonance imaging, intravoxel incoherent 
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followed by three fully connected hidden layers. Each hidden 
layer had several neurons equal to the number of measure-
ments (b values and the number of repeated measures) and 
each neuron, in turn, contained an exponential linear unit ac-
tivation function.21 The output layer of the network consisted 
of the three IVIM parameters (D, f, D*). To enforce the out-
put layer to predict these IVIM parameters, two steps were 
taken. First, the absolute activation function was taken of the 
neuron’s output (X) to constrain the predicted parameters, for 
example, to compute D:

Second, a physics- based loss function was introduced that 
computed the mean squared error between the measured input 
signal, S(b), and the predicted IVIM signal Snet(b), which was 
obtained by inserting the predicted output parameters into the 
normalized IVIM model. Hence:

with

where B is the total number of image acquisitions.
Next, we evaluated whether seven novel hyperparameters 

(Table 1; Figure 1) of IVIM- NET improved fitting results. 
First, instead of fixing S0, we added S0 as an additional output 
parameter, to allow the system to correct for noise in S(b = 0). 
Second, to restrict parameter values to physiologically plau-
sible ranges, scaled sigmoid activation functions instead of 
absolute activation functions were used to constrain the pre-
dicted parameters (Table 1), for example, to compute D:

where Dmin and Dmax are the fit boundaries. Bound inter-
vals of the sigmoid activation functions were chosen 60% 

wider (30% at each side) than the fit boundaries of the LS 
and Bayesian approaches (specified in section 2.2 below) to 
compensate for decreasing gradients at the asymptotes of the 
sigmoid function. Third, we varied the number of hidden lay-
ers between one and nine. Fourth, we used dropout regular-
ization22 in all hidden layers except for the last one. Dropout 
randomly removes a set percentage of network- weights each 
iteration during training. Fifth, we used batch normalization,23 
which normalizes the input by re- centering and re- scaling, 
and, consequently, preserves the representation ability of the 
network. Sixth, to reduce unwanted correlation between esti-
mated parameter values, we implemented an alternative net-
work architecture in which parameter values were predicted, 
in parallel, by independent sub- networks (Table 1; Figure 1). 
Furthermore, we evaluated different learning rates (LR) of 
the Adam optimizer,24 ranging from 1 × 10−5 to 3 × 10−2, and 
with constant β = (0.9, 0.999).

In traditional deep learning, training and evaluation are 
done on separate datasets, but as this is an unsupervised 
DNN approach, training was done on the same data as evalu-
ation.11,25 So, for simulations, these were simulated data, and 
in vivo, these were in vivo data. 90% of the data were used for 
training, and 10% of the data were used for validation. Early 
stopping occurred when the validation loss did not improve 
over 10 consecutive training epochs. Given the large amount 
of training data and the limited number of network parame-
ters, each epoch consisted of only 500 random batches. So, 
effectively the network saw 500 × 128 IVIM curves in be-
tween validations.

2.2 | Simulations: characterization and 
optimization

100,000 IVIM curves were simulated to investigate the ef-
fects of different hyperparameters on the accuracy, independ-
ence, and consistency of the estimated IVIM parameters. 
DWI signals were simulated based on Equation 3 with S0 = 
1, 11 b values (b = 0, 5, 10, 20, 30, 40, 60, 150, 300, 500, and 
700 s/mm2), and pseudorandom uniformly sampled values 

(1)D = |X [1]| .

(2)L =
1

|B|
∑

b∈B

(
S (b)

S (b = 0)
− Snet (b)

)2

,

(3)Snet (b) = fe−bD ∗

+ (1 − f ) e−bD
,

(4)D = Dmin + sigmoid (X [1]) ∗
(
Dmax − Dmin

)
,

T A B L E  1  Hyperparameter settings for training IVIM- NET, including the settings for IVIM- NETorig and IVIM- NEToptim

Hyperparameter Values IVIM- NETorig IVIM- NEToptim

Fit S0 True, False False True

Constraints Sigmoid, Absolute Absolute Sigmoid

Parallel networks True, False False True

Number of hidden layers 1,2 3, 4, 5, 6, 7, 8, 9 3 2

Dropout regularization 0%, 10%, 20%, 30% 0% 10%

Batch normalization True, False False True

Learning rate 1 × 10−5, 3 × 10−5, 1 × 10−4, 3 × 10−4, 1 × 10−3, 3 × 10−3,  
1 × 10−2, 3 × 10−2

1 × 10−3 3 × 10−5
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of D: 0.5 × 10−3 to 3 × 10−3 mm2/s, f: 5 to 55%, and D*: 
10 × 10−3 to 100 × 10−3 mm2/s. These ranges were slightly 
broader than the typical values found in abdominal IVIM.26 
Random Rician noise in the form of complex Gaussian noise 
was added to the curves with predefined signal- to- noise 
ratio (SNR) levels (constant noise amplitude over b values; 
SNR defined at b = 0 as S(b = 0)/σ, with σ the SD of the 
Gaussians).27

Accuracy was assessed as the normalized root- mean- 
square error (NRMSE) between the ground truth parameter 
values and the estimated IVIM parameters.

Independence of the parameter estimates was assessed 
by the Spearman rank correlation coefficients (ρ) between 
all parameter pairs. As the simulated data were independent 

and random, a ρ should be 0. The absolute value of ρ was 
taken, as both positive and negative deviations from zero 
are equally undesirable. Some networks always returned the 
same value for D*, independent of the input data (Supporting 
Information Figure S1, which is available online). For such 
cases, ρ is technically undefined. As these cases are undesir-
able ρ was set to 1.

As training a DNN is a stochastic process, training on 
the same dataset results in different final network- weights, 
and consequently, different predictions on the same data. To 
assess the consistency of estimated parameter values, each 
network variant was trained 50 times on identical data, where 
each repeat had a new random initialization, dropout, and 
batch selection. The normalized coefficient of variation per 

F I G U R E  1  Representation of the PI- DNN with different hyperparameter options (Table 1). In this example, the input signal, consisting of the 
measured DWI signal, is fedforward either through a parallel network design where each parameter is predicted by a separate fully connected set of 
hidden layers (A) or the original single fully connected network design (B). The blue circles indicate an example of randomly selected neurons for 
dropout. In this example, the output layer consists of four neurons with either absolute (Equation 1) or sigmoid activation functions (Equation 4) 
whose values correspond to the IVIM parameters. Subsequently, the network predicts the IVIM signal (Equation 3), which is used to compute the 
loss function (Equation 2). With the loss function, the network trains the PI- DNN to give good estimates of the IVIM parameters
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parameter over the repeated trainings (CVNET) was taken as a 
measure of the consistency:

where x̄true is the mean simulated IVIM parameter value, n the 
number of simulated curves, m the number of repeated train-
ings, xi,j is the jth repeated prediction of the ith simulated decay 
curve, x̄i is the mean over the repeated m predictions of the ith 
simulated signal curve. As the LS and Bayesian approaches are 
deterministic, their CVNET was zero.

As a result of the repeated training, we obtained 50 values 
for the NRMSEs and ρ’s. Therefore, the median and inter-
quartile ranges were reported.

As a baseline for comparison, we evaluated the IVIM pa-
rameters (D, f, D*) in IVIM- NETorig, the LS and Bayesian 
approaches. We used the Levenberg- Marquardt non- linear 
algorithm for the LS fit.28,29 For the Bayesian approach, we 
used the algorithm from previous work.11 For both the LS 
and Bayesian approaches, S0 was included as a fit parameter. 
The Bayesian approach used a data- driven lognormal prior 
for D and D*, and a beta distribution for f and S0. The prior 
distributions were determined empirically by fitting these 
distributions to the results from the LS approach on the same 
dataset. The maximum a posteriori probability was used as 
an estimate of the IVIM parameters. The LS and Bayesian 
 approaches were performed with fit boundaries of D: 0 × 
10−3 to 5 × 10−3 mm2/s, f: 0 to 70%, D*: 5 × 10−3 to 300 × 
10−3 mm2/s, and S0: 0.7 to 1.3.

After baseline characterization, IVIM- NET was opti-
mized by testing various combinations of the hyperparam-
eters (Table 1; Figure 1). Previous studies reported reliable 
SNR values of IVIM in the abdomen between 10 and 40.30- 33 
So, to simulate reliable abdominal IVIM signals, an SNR of 
20 was chosen for hyperparameter evaluation. We trained the 
network on the simulated signals using every combination of 
the following options: fit S0 parameters, absolute or sigmoid 
constraints, parallel network, dropout, and batch normal-
ization -  while fixing the number of hidden layers to three 
(used in IVIM- NETorig, Table 1) and the LR to 1 × 10−4. In 
an exploratory phase, we found that reducing the LR from 
1 × 10−3 (IVIM- NETorig) to 1 × 10−4 was essential for obtain-
ing networks with improvements in accuracy, independence, 
and consistency. Each network (ie, combination of hyperpa-
rameters) received a ranking in each of the nine performance 
measures (three metrics for three parameters), and these 
nine ranks were summed. Hence, the best possible summed 
rank is 9. The best performing network was then chosen by 
 selecting the network with the lowest summed rank.

With the best options for the fit S0 parameters, con-
straints, parallel network, dropout, and batch normalization, 

we tested the performance of the network as a function of 
the LR and the number of hidden layers (Table 1). From 
those results, we finally selected the best performing opti-
mized network by again selecting the lowest summed rank: 
IVIM- NEToptim. IVIM- NEToptim’s performance was then 
characterized and compared to the LS approach, Bayesian 
approach and IVIM- NETorig for SNR values between 8 
(low) and 100 (high).

2.3 | Verification in patients with PDAC

We used two IVIM datasets of patients with PDAC to vali-
date IVIM- NEToptim's performance in vivo: one dataset to as-
sess test- retest reproducibility, and one to test whether we 
can detect treatment effects. Both studies were approved by 
our local medical ethics committee, and all patients gave 
written informed consent.

Both datasets (NCT01995240; NCT01989000) were pub-
lished earlier.9,34,35 The first dataset consists of 14 patients 
with locally advanced or metastatic PDAC who underwent 
IVIM in two separate imaging sessions (average 4.5 days 
apart, range: 1- 8 days) with no treatment in- between. The 
second dataset consisted of nine PDAC patients with (bor-
derline) resectable PDAC who received CRT as part of the 
PREOPANC study36 where patients were scanned before and 
after CRT.

MRI data were acquired using a 3T MRI scanner (Ingenia, 
Philips, Best, The Netherlands). A respiratory triggered (nav-
igator on liver dome) 2D multi- slice diffusion- weighted 
echo- planar imaging was used with parameters: repetition 
time (TR) > 2200 ms (depending on respiration speed), echo 
time (TE) = 45 ms, flip angle (FA) = 90 deg, field of view 
(FOV) = 432 × 108 mm2, acquisition matrix = 144 × 34, 
18 slices, slice thickness = 3.7 mm and 12 b values (direc-
tions): 0 (15), 10 (9), 20 (9), 30 (9), 40 (9), 50 (9), 75 (4), 100 
(12), 150 (4), 250 (4), 400 (4), and 600 (16) mm2/s. Fat sup-
pression was carried out with a gradient reversal during slice 
selection and spectral presaturation with inversion recovery. 
Diffusion gradient times were 10.1 ms with a delay between 
diffusion gradients onset of 22.6 ms.

DWI images were co- registered to a reference volume 
consisting of a mean DWI image over all b values using de-
formable image registration in Elastix.37 A radiologist (10 y 
of experience in abdominal radiology) and researcher (4 y of 
experience in contouring pancreatic cancer) drew a region 
of interest (ROI) in the tumor in consensus. IVIM parameter 
maps of D, f and D* were derived using the LS approach, 
Bayesian approach, and IVIM- NEToptim. Background vox-
els were removed automatically before fitting by removing 
voxels with S(b = 0) < 0.5 × median(S(b = 0)). Fitting was 
done without averaging over the diffusion directions. IVIM- 
NEToptim was trained on all combined patient data. Values 

(5)CVNET =
1

xtrue

√√√√ 1

n × m − 1

n∑

i= 1

m∑

j= 1

xi,j − xi
2 ,
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under 0 for D, f, and D* were considered not physiologic and 
set to 0, and for further statistics, values of D* were masked 
where f < 5% as D* only “exists” in perfused voxels. All 
computations were carried out on a single core of a conven-
tional desktop computer (CPU: Intel Core i7- 8700 CPU at 
3.20 GHz). The average fitting time of each algorithm was 
recorded.

First, the parameter maps were compared qualitatively 
in terms of feature clarity, and by visually assessing con-
sistency of fit to the IVIM signal in pairs of neighboring 
voxels. For a quantitative comparison, the parameter to 
noise ratio (PNR) of the parameter maps was estimated in 
a homogeneous 2D ROI (>20 voxels) in the liver. PNR was 
defined as mean/STD of the homogenous ROIs and was 
calculated for each scan separately. We tested whether the 
difference in PNR between fit approaches was significant 
using paired t- tests.

To determine clinical usefulness of IVIM- NET, we 
investigated whether we could detect changes in param-
eter values throughout CRT by comparing patients re-
ceiving treatment to the baseline test- retest repeatability. 
This analysis was performed with the median parameter 
values from within the ROIs. To evaluate test- retest re-
peatability, intersession within- subject standard devi-
ation (wSD)38 was calculated for each IVIM parameter 
using the data from the patients with repeated baseline 
scans. Bland- Altman plots were plotted for patients from 
both cohorts. We calculated the 95% confidence intervals 
(CIs) from the patients with repeated scans at baseline 
(assuming zero offsets). In the treated cohort, we used a 
paired t- test to test whether parameters had significantly 
changed due to treatment within the cohort (significance 
level α = 0.05). Furthermore, patients from the treat-
ment cohort were added to the Bland- Altman plots and 
individual patients who had changes exceeding the 95% 
CIs were considered to have significant changes in tumor 
microstructure.39

3 |  RESULTS

3.1 | Simulations: characterization and 
optimization

The original network, IVIM- NETorig, showed substantially 
lower NRMSE for all estimated parameters than the LS and 
Bayesian approaches. However, IVIM- NETorig had strong 
correlations between D* and f (high ρ(D*, f); Table 2 and 
Figure 2D), and had considerable CVNET.

The NRMSE, ρ, and CVNET for all hyperparameter 
combinations are shown in the Supporting Information 
Figures S2- S9. The summarizing sum of ranks (Supporting 
Information Figures S5 and S9) allowed us to determine 
IVIM- NEToptim (Table 1). IVIM- NEToptim resolved the high 
ρ(D*, f) found in IVIM- NETorig (Table 2; Figure 2D,E) 
and substantially reduced the NRMSE and CVNET. Single 
changes away from IVIM- NEToptim can lead to marginally 
better NRMSE, lower ρ or lower CVNET (Figure 3), but only 
at a cost to the other two attributes. It is clear that the re-
duced ρ(D*, f) cannot be attributed to a single parameter, but 
was a result of the combination of sigmoid constraints and 
batch normalization (Supporting Information Figure  S3). 
Adding dropout (10%), fitting S0 and using our parallel net-
work design decreased the NRMSE, while still having a low 
ρ(D*, f) (Table 2). Increasing dropout in IVIM- NEToptim 
or using a single network architecture resulted in similar 
NRMSE, however, increased ρ(D*, f) (Figure 3; Supporting 
Information Figures S2- S4). Generally, increasing the num-
ber of hidden layers resulted in a marginally higher ρ, and 
lower NRMSE and CVNET. A too high/low LR (Supporting 
Information Figures S5- S7) caused higher NRMSEs and 
less consistency.

IVIM- NEToptim was superior to the LS and Bayesian ap-
proaches for SNRs 8- 33. Compared to IVIM- NETorig, IVIM- 
NEToptim was associated with improved NRMSE for f and 
D at all SNRs (Figure 4). For D*, the networks performed 

Least 
squares Bayesian IVIM- NETorig IVIM- NEToptim

NRMSE D [fraction] 0.279 0.233 0.196 (0.190- 0.214) 0.177 (0.176- 0.178)

NRMSE f [fraction] 0.387 0.281 0.267 (0.259- 0.273) 0.220 (0.218- 0.222)

NRMSE D* 
[fraction]

0.805 0.575 0.393 (0.382- 0.414) 0.386 (0.381- 0.390)

ρ(D, D*) 0.24 0.08 0.23 (0.17- 0.28) 0.20 (0.19- 0.21)

ρ(D, f) 0.18 0.03 0.04 (0.02- 0.09) 0.01 (0.00- 0.01)

ρ(D*, f) 0.20 0.13 0.74 (0.64- 0.80) 0.22 (0.23- 0.2)

CVNET D [fraction] 0 0 0.104 0.013

CVNET f [fraction] 0 0 0.054 0.020

CVNET D* [fraction] 0 0 0.110 0.036
aValues of IVIM- NET: median (interquartile range).

T A B L E  2  NRMSE, ρ, and CVNET 
of the LS approach, Bayesian approach, 
IVIM- NETorig, and IVIM- NEToptim for 
the estimated parameters IVIM (D, f, D*) 
in simulations at SNR 20 for 50 repeated 
trainingsa
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similarly regarding NRMSE, with IVIM- NEToptim perform-
ing slightly better at SNRs > 20 and IVIM- NETorig for SNRs 
< 20. IVIM- NEToptim had lower ρ(D*, f) than IVIM- NETorig 
and improved CVNET for all SNR levels.

3.2 | Verification in patients with PDAC

Examples of parameter maps computed with the LS ap-
proach, Bayesian approach, and IVIM- NEToptim together 
with two individual voxel fits of PDAC patients from 
both cohorts are presented in Figures 5 and 6. Additional 
parameter maps of 10 other PDAC patients are shown in 
the Supporting Information Figures S11- S20. Qualitatively 
comparing the parameter maps shows that IVIM- NEToptim 
has very similar voxel values as the LS and Bayesian ap-
proaches for most voxels. However, where the LS and 
Bayesian approaches sometimes show “noisy” voxels (ie, 
different from their neighbors) with substantially higher f 
(order of 1) and lower D (some voxels as low as D = 0 
mm2/s; Supporting Information Figures S11, S12) and 
D* (oftentimes to the lower bound of D*; Supporting 
Information Figures S12, S14- S16, S19), IVIM- NEToptim 
often sticks to sensible D, f, and D* that are similar to the 
neighboring voxels resulting in more homogenous param-
eter maps. Note that IVIM- NET is fitted at a per- voxel 
level and is unaware of the voxel location. Quantitatively 

evaluating the parameter maps shows that IVIM- NEToptim 
had significantly better PNR than both the LS and Bayesian 
approaches for D and D* (Table 3) and significantly better 
PNR than the LS approach for f.

In the test- retest cohort, IVIM- NEToptim showed the low-
est wSD for D and f (Table 3), while the Bayesian approach 
had the lowest wSD for D*. When averaging IVIM parame-
ters for the repeated patient scans, IVIM- NEToptim computed 
a higher D, lower f, and higher D* than the LS and Bayesian 
approaches in the tumor (Table 3). The repeated scans are 
visualized as black x’s in the Bland- Altman plots, together 
with their 95% CIs in Figure 7.

When considering the CRT patients as a whole, IVIM- 
NEToptim found a significant increase in mean D and f after 
treatment, whereas the LS approach found only a signif-
icant increase in D after treatment in the tumor (Table 3). 
The Bayesian approach found no significant change in IVIM 
parameters.

Figure 7 shows the individual change in IVIM parame-
ter values of patients receiving CRT compared to the 95% 
CIs of the test- retest cohort. With 10 significant changes, 
IVIM- NEToptim detected the most patients with significant 
parameter changes after CRT, with 4 individual patients 
with increased D, 3 patients with increased f, and 3 patients 
with changes in D*. In comparison, the LS and Bayesian ap-
proaches detected only two and three significant parameter 
changes, respectively.

F I G U R E  2  D* plotted against f for simulations (A), LS (B), Bayesian (C), IVIM- NETorig (D), and IVIM- NEToptim (E). In all plots, the values 
of the simulations are presented in gray. The apparent patterns in the LS approach (many predictions at D* = 0.2 mm2/s) and IVIM- NETorig (the 
line flips at D* = 0 mm2/s) are a result of the fit constraints
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The average interference fitting time of IVIM- NEToptim 
after training was 3.0 × 10−5 s/vox, whereas the average fit-
ting times of the LS and Bayesian approaches were 4.2 × 
10−3 s and 1.0 × 10−1 s/vox, respectively. The median train-
ing time for IVIM- NEToptim (20 repeats) was 572 s with a 
range of 401 to 685 s, which for our dataset resulted in 2.9 × 
10−4 s/vox training.

4 |  DISCUSSION

This study is the first to show the potential clinical benefit 
of DNNs for IVIM fitting to DWI data in a patient cohort. 
We successfully developed and trained IVIM- NEToptim, an 
unsupervised PI- DNN IVIM fitting approach to DWI data 
that predicts accurate, independent, and consistent IVIM 

F I G U R E  3  A, NRMSE (left), ρ (center), and CVNET (right) plots of the estimated IVIM parameters (D, f, and D*) with a single parameter 
change for IVIM- NEToptim (green) at SNR 20 for 50 repeated trainings. B, The ranked plot of IVIM- NEToptim
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parameters in simulations and in vivo in patients with PDAC. 
IVIM- NEToptim consisted of a parallel network architecture 
with two hidden layers, batch normalization, dropout of 10%, 
sigmoid constraints, and fitted S0. Optimized training was 
performed using an Adam optimizer with an LR of 3 × 10−5. 
In simulations, IVIM- NEToptim outperformed the original 
version, IVIM- NETorig, by offering more accurate estimates 
of D, f and D*, with substantially less correlation between the 
estimated parameters D* and f, and more consistent param-
eter prediction. Furthermore, simulations demonstrated that 
IVIM- NEToptim had substantially better accuracy than the 
conventional LS and state- of- the- art Bayesian approaches. 
Finally, in patients with PDAC, IVIM- NEToptim also out-
performed the alternatives. IVIM- NEToptim showed the most 
detailed and significantly less noisy parameter maps, and a 
significant change in D and f for the whole cohort receiv-
ing CRT. Furthermore, IVIM- NEToptim was associated with 
the best test- retest repeatability (smallest wSD) for D and 
f, which allowed it to detect the most patients with significant 
changes in all IVIM parameters after CRT.

IVIM- NEToptim detected a significant positive trend 
in D and f for the whole cohort of patients receiving CRT, 
whereas the LS approach only found a significant positive 

trend in D. Also, IVIM- NEToptim detected four patients with 
a significant parameter increase for D, whereas the LS ap-
proach detected only one patient. These findings strongly 
suggest IVIM- NEToptim as a good alternative for IVIM fit-
ting in PDAC patients. Findings from other studies support 
this increase in D40 and f41 during CRT in PDAC patients. In 
general, PDACs tend to have lower diffusion due to the im-
peded water movement of compressing cells.42 Furthermore, 
PDACs are typically hypoperfused due to solid stress gener-
ated by the dense stroma and significant tumor sclerosis cre-
ating elevated interstitial pressure, which compresses tumor 
feeding vessels.41,43,44 An increase in diffusion is likely a 
consequence of a reduction in cell density due to necrosis 
as a result of treatment.45,46 An increase in perfusion can be 
explained two- fold: an effective treatment could reduce the 
amount of stroma and associated solid stress47,48; further-
more, cell necrosis inside the tumor can reduce interstitial 
pressure.47 Not all patients demonstrated a significant change 
induced by treatment. Therefore, using IVIM to discriminate 
between individual treatment effects may be feasible in the 
future. As treatment of these patients was part of induction 
therapy and patients received surgery directly after, overall 
survival cannot be attributed purely to CRT effects. Hence, 

F I G U R E  4  NRMSE (left), ρ (center), and CVNET (right) plots of the estimated IVIM parameters (D, f, and D*) vs SNR for the LS approach 
(blue), Bayesian approach (brown), IVIM- NETorig (orange), and IVIM- NEToptim (green) approaches to IVIM fitting. The 5 to 95 percentiles of 
IVIM- NET for 50 repeated trainings are plotted as error bars and show that IVIM- NETorig is highly inconsistent in producing IVIM parameters 
for multiple repeated trainings at all SNRs. IVIM- NEToptim outperforms IVIM- NETorig for all SNRs. As the LS and Bayesian approaches are 
deterministic, their CVNET was zero and not plotted. The LS and Bayesian approaches are superior at high SNRs
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given the limited number of patients and the diluted treatment 
effect, we did not compare overall survival between patients 
that showed potential treatment effects and others.

Our previous work35 showed that the LS approach for 
IVIM fitting was sensitive to individual treatment effects. 
However, the high wSD limited the study to detect individ-
ual treatment effects. Furthermore, that work35 used denoised 
DWI b- images that substantially degraded image sharpness 
and tumor boundaries were harder to detect (eg, compare fig-
ures from this work to example figures from earlier work9). 
Conversely, our present study demonstrates that DNNs can 
estimate parameter maps directly from the noisy data result-
ing in sharp high- quality IVIM parameter maps.

For most voxels, IVIM- NEToptim produces very simi-
lar estimates to the LS and Bayesian approaches. However, 
within the tumor ROI, IVIM- NEToptim shows consistently 
different mean baseline parameters than the LS and Bayesian 
approaches (Table 3). We believe that there are two major 
contributors to this discrepancy in mean values. (1) The LS 
and Bayesian approaches have more noisy parameter maps 

with some individual voxels showing extreme estimates. 
(2) IVIM- NEToptim is seemingly better at estimating param-
eters in regions of poor perfusion. The first observation is 
demonstrated by the individual voxel fits (Figures 5 and 6; 
Supporting Information Figures S11- S20), where the LS and 
Bayesian approaches occasionally compute noisy IVIM pa-
rameters with a substantially higher f, and lower D and D* 
than IVIM- NEToptim. As the LS approach minimizes the 
sum of the residuals, this parameter combination could de-
scribe better the noisy data. However, inspecting neighbor-
ing voxels with, respectively, similar noisy data shows that 
the LS and Bayesian approaches are inconsistent in produc-
ing the same IVIM parameters, whereas IVIM- NEToptim is 
more consistent. The second note is especially interesting for 
PDACs, which are generally hypoperfused.41,43 Other stud-
ies reported an overestimation of perfusion parameters in 
poorly perfused tissue,49- 51 and indeed, the LS and Bayesian 
approaches show high and noisy perfusion fractions maps 
in the PDACs. Conversely, IVIM- NEToptim shows consis-
tently low and less noisy perfusion in these regions. Another 

F I G U R E  5  IVIM parameter maps (D, f, D*) of the LS approach, Bayesian approach, and IVIM- NEToptim of a PDAC patient of the test- retest 
cohort. The red ROI represents the PDAC, the two highlighted blue regions correlate to the voxels from the log- plots below. The yellow square 
zooms in on the two highlighted voxels in the tumor. In the plots, the small light gray dots are the repeated measures, and the big black dots are the 
root- mean- squares of these repeated measures. The plot parameters are shown below. The light blue voxel (left plot) shows consistency in IVIM 
parameters for all three fitting approaches. Although the data are similar in the neighboring dark blue voxel (right plot) with a lower IVIM effect, 
the LS and Bayesian approaches compute a higher f, lower D, and very low D* compared to their parameters in the light blue voxel. IVIM- NEToptim 
shows more consistency in IVIM parameters between the two neighboring voxels with a lower f for the dark blue voxel. In the parametric maps 
computed by IVIM- NEToptim, the tissues appear more homogeneous, whereas the LS approach shows noisier parameter maps, particularly around 
the tumor region
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F I G U R E  6  IVIM parameter maps (D, f, D*) of the LS approach, Bayesian approach, and IVIM- NEToptim of a PDAC patient of the treated cohort 
before CRT. The red ROI represents the PDAC and the green ROI represents the 2D homogenous liver tissue ROI. The two highlighted blue regions 
correlate to the voxels from the log- plots below. The yellow square zooms in on the two highlighted voxels in the tumor. In the plots, the small light gray 
dots are the repeated measures, and the big black dots are the root- mean- squares of these repeated measures. Both plots show a low IVIM effect. The plot 
parameters are shown below. The light blue voxel (left plot) shows consistency in IVIM parameters between the LS approach and IVIM- NEToptim with 
low f, and moderate D and D*, while the Bayesian approach shows higher f, lower D, and very low D*. Although the data are similar in the neighboring 
dark blue voxel (right plot), the LS and Bayesian approaches compute a higher f, lower D, and very low D* compared to their parameters in the light blue 
voxel. IVIM- NEToptim shows more consistency in IVIM parameters between the two neighboring voxels with a consistent low f. In the parametric maps 
computed by IVIM- NEToptim, the tissues appear more homogeneous, particularly in the liver, the kidneys and around the tumor ROI

T A B L E  3  PNR of homogenous liver tissue (top panel), wSD (middle panel), and mean IVIM parameters for the patients with treatment 
(bottom panel)

PNR D f D*

LS 5.6 3.1 1.8

Bayesian 6.3 4.0 2.3

IVIM- NEToptim 8.1* 3.9 4.0*

wSD D [× 10−3 mm2/s] f [%] D* [× 10−3 mm2/s]

LS 0.10 6.2 24.9

Bayesian 0.09 4.9 5.1

IVIM- NEToptim 0.06 2.4 15.8

Mean treatment D [× 10−3 mm2/s] f [%] D* [× 10−3 mm2/s]

Pre Post Pre Post Pre Post

LS 1.35** 1.51** 13.1 16.3 52 48

Bayesian 1.18 1.30 20.4 23.4 8.6 17.7

IVIM- NEToptim 1.57** 1.68** 5.3** 9.1** 92 88

*Significantly (P < .05) better PNR compared to both of the other fitting approaches, determined by a two paired t- test, are printed bold.; **Significant (P < .05) changes 

between pre and post- treatment, determined by a paired t- test, are printed bold.
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interesting observation is that in Figure 6, IVIM- NEToptim 
shows a very similar f map to the LS approach for almost all 
tissue, suggesting again that there is no bias. Yet, contrary to 
the LS approach, IVIM- NEToptim has a homogeneously low 
perfusion map in the PDAC (ie, Figures 5 and 6; Supporting 
information Figures S11- S20). In the absence of ground truth 
in patients, we must rely on visual assessment of parameter 
map quality, the ability to detect treatment response, and the 
simulation results, in order to infer the best performing esti-
mator. Given the evidence provided in this study, we argue 
that combined these factors rule in favor of IVIM- NEToptim.

Although IVIM- NET showed consistently better results 
both in simulations and in vivo, IVIM- NET predicts dif-
ferent IVIM parameters in repeated training. This causes a 
new sort of variability that, until now, was not an issue in 
fitting parameter maps. There may be methods to mitigate 

this variability. First, when probing treatment response, we 
would advise using one network such that this additional 
effect is not different pre-  and post- treatment. Second, to 
reduce the variation, one could consider taking the median 
prediction from 10 repeated trainings instead. We did so 
in an exploratory study where we formed 5 groups of 10 
networks and showed that the median of 10 networks was 
substantially more consistent, with CVNET values of 3.2 × 
10−3, 4.9 × 10−3, and 9.3 × 10−3 for D, f, and D*, respec-
tively. Having a set of networks will also allow the user to 
estimate the variation on the predicted parameter. Finally, 
although we see this additional uncertainty, we would 
like to stress that it is secondary to the overall error of the 
LS approach, which is apparent from the fact that in the 
simulations, all 50 instances of IVIM- NEToptim had lower 
NRMSE than the LS approach.

F I G U R E  7  Bland- Altman plots of the LS, Bayesian, and IVIM- NEToptim approaches to IVIM fitting showing the mean and difference (∆) 
between the intersession repeatability patients (black crosses) and the mean and ∆ between pre-  and post- treatment patients (colored symbols), 
which represents the treatment effects. The dotted lines indicate the 95% CI of the test- retest data. Colored measurements that exceed the 95% CI 
were considered significant to treatment response
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IVIM- NEToptim outperformed IVIM- NETorig at SNRs 
8-  100 and was superior to the LS and Bayesian approaches 
for SNRs 8- 33 (Figure 4). However, at extremely high SNR 
(SNR = 100; Figure 4), the LS approach outperformed 
IVIM- NET. The Levenberg- Marquardt algorithm for the 
LS function is an iterative function that finds a minimum 
of the squared difference. For a relatively smooth loss land-
scape and high SNR signal, the LS algorithm is designed 
to find the correct parameter estimates. However, at low 
SNR, the LS approach has trouble finding the correct pa-
rameters. This occurs either because the loss landscape is 
no longer smooth and, hence, it gets stuck in a local mini-
mum, or, what we believe is more common, the noise has 
changed the signal such that the global optimum no longer 
is nearby the ground truth parameters. Moreover, a DNN 
consists of a complex system that needs to encompass esti-
mating the IVIM parameters for all voxels. It turns out that 
having been trained on all voxels enables better estimates 
for individual voxels at low SNR. We expect that DNNs 
focus on more consistent minima with parameter values 
that are more frequently observed. This might be similar 
to data- driven Bayesian fitting approaches.15,52 Conversely, 
IVIM- NET seems to reach a maximum accuracy at high 
SNR. Potentially more complex DNNs that are optimized 
with simulations done at high SNR could handle the sub-
tle signal changes of the IVIM parameters at these SNRs. 
However, typical SNR values for IVIM data are <50. 
Therefore, our findings suggest that using IVIM- NET in-
stead of the LS and Bayesian approaches for IVIM fitting 
would be beneficial in a clinical setting.

The choice of the hyperparameters for IVIM- NEToptim 
was based on an optimal combination of accuracy, indepen-
dence, and consistency across all IVIM parameters. However, 
other hyperparameter options may be more appropriate when 
characterizing an individual IVIM parameter (eg, when an 
observer is only interested in D and IVIM is only used to 
correct for perfusion). Supporting Information Figures S2- S9 
can help interested readers select the best network for their 
purposes.

The high dependency between D* and f that appears 
in IVIM- NETorig could not be attributed to a single cause. 
Initially, we expected that this dependency originated in the 
fully connected shared hidden layers of the original network. 
However, ρ remains substantial when adding the “parallel net-
work architecture” to IVIM- NETorig (Supporting Information 
Figure S10). Using IVIM- NEToptim and a single network ar-
chitecture showed slightly worse performance in simulations 
regarding ρ(D*, f), but still had sufficient accuracy and con-
sistency. The dependencies between the estimated IVIM pa-
rameters are not per se specific to unsupervised DNNs. For 
instance, similar dependencies between D* and D or f were 
found in a different data- driven Bayesian fitting approach.9 

For IVIM- NEToptim, these dependencies were small at clini-
cal SNR values and similar to those of the LS approach.

Although simulation studies in parameter estimation are ex-
tremely valuable as the underlying parameter values are known, 
they also come with limitations. One limitation is that the noise 
characterization of real data can be diverse and hard to model. 
For instance, DWI artifacts caused by motion are not consid-
ered in simulations and may affect the results of fitting the 
IVIM model.53 Another limitation is the underlying assump-
tion that data are perfectly bi- exponential. In reality, the IVIM 
model is a simplification and real data will be more complex.

5 |  CONCLUSIONS

We substantially improved the accuracy, independence, and 
consistency of both diffusion and perfusion parameters from 
IVIM- NET by changing the network architecture and tuning 
hyperparameters. Our new IVIM- NEToptim is considerably 
faster, and computes less noisy and more detailed param-
eter maps with substantially better test- retest repeatability 
for D and f than alternative state- of- the- art fitting methods. 
Furthermore, IVIM- NEToptim was able to detect the most in-
dividual patients with significant changes in the IVIM pa-
rameters throughout CRT. These results strongly suggest 
using IVIM- NEToptim for detection of treatment response in 
individual patients.
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the Supporting Information section.

FIGURE S1 Plots of the estimated IVIM parameters (D, f, 
D*) where no Spearman rank correlation coefficient (ρ) can 
be determined and is set to a ρ of 1. In all plots, the values of 
the simulations are presented in grey
FIGURE S2 Normalized root- mean- square error (NRMSE) 
boxplots of the estimated IVIM parameters (D, f, D*) that 
contain all hyperparameter combinations with a fixed learn-
ing rate set to 1 × 10−4 and a fixed number of hidden lay-
ers set to 3 at SNR 20 for 50 repeated trainings. Highlighted 
in green is the intermediate step of IVIM- NEToptim. Left of 
each plot shows the LS approach (blue), Bayesian approach 
(brown) and IVIM- NETorig (orange; LR = 1 × 10−3)
FIGURE S3 Spearman rank correlation coefficient (ρ) box-
plots of the estimated IVIM parameters (D, f, D*) that con-
tain all hyperparameter combinations with a fixed learning 
rate set to 1 × 10−4 and a fixed number of hidden layers set to 
3 at SNR 20 for 50 repeated trainings. Highlighted in green 
is the intermediate step of IVIM- NEToptim. Left of each plot 
shows the LS approach (blue), Bayesian approach (brown) 
and IVIM- NETorig (orange; LR = 1 × 10−3)
FIGURE S4 Normalized Coefficient of variation (CVNET) 
plots of the estimated IVIM parameters (D, f, D*) that con-
tain all hyperparameter combinations with a fixed learning 
rate set to 1 × 10−4 and a fixed number of hidden layers set to 
3 at SNR 20 for 50 repeated trainings. Highlighted in green 
is the intermediate step of IVIM- NEToptim. Left of each plot 
shows the LS approach (blue), Bayesian approach (brown) 
and IVIM- NETorig (orange; LR = 1 × 10−3)
FIGURE S5 Ranked plots of the metrics (NRMSE, ρ and 
CVNET) of evaluation 1 that contain all hyperparameter com-
binations with a fixed learning rate set to 1 × 10−4 and a fixed 
number of hidden layers set to 3 at SNR 20 for 50 repeated 
trainings. Highlighted in green is the intermediate step of 
IVIM- NEToptim. Left of each plot shows the LS approach 
(blue), Bayesian approach (brown) and IVIM- NETorig (or-
ange; LR = 1 × 10−3)
FIGURE S6 Normalized root- mean- square error (NRMSE) 
boxplots of the estimated IVIM parameters (D, f, D*) of the 
second evaluation for different LR and number of hidden 
layers, with fixed hyperparameters of extra fitting parameter 
S0, sigmoid activation functions, a parallel network architec-
ture, 10% dropout and batch normalization at SNR 20 for 50 
repeated trainings. Highlighted in green is IVIM- NEToptim. 
Left of each plot shows the LS approach (blue) and Bayesian 
approach (brown) and IVIM- NETorig (orange)
FIGURE S7 Spearman rank correlation coefficient (ρ) box-
plots of the estimated IVIM parameters (D, f, D*) of the 
second evaluation for different LR and number of hidden 
layers, with fixed hyperparameters of extra fitting parameter 
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S0, sigmoid activation functions, a parallel network architec-
ture, 10% dropout and batch normalization at SNR 20 for 50 
repeated trainings. Highlighted in green is IVIM- NEToptim. 
Left of each plot shows the LS approach (blue) and Bayesian 
approach (brown) and IVIM- NETorig (orange)
FIGURE S8 Normalized coefficient of variation (CVNET) 
plots of the estimated IVIM parameters (D, f, D*) of the sec-
ond evaluation for different LR and number of hidden lay-
ers, with fixed hyperparameters of extra fitting parameter S0, 
sigmoid activation functions, a parallel network architecture, 
10% dropout and batch normalization at SNR 20 for 50 re-
peated trainings. Highlighted in green is IVIM- NEToptim. Left 
of each plot shows the LS approach (blue) and Bayesian ap-
proach (brown) and IVIM- NETorig (orange)
FIGURE S9 Ranked plots of the metrics (NRMSE, ρ and 
CVNET) of evaluation 2 for different LR and number of hid-
den layers, with fixed hyperparameters of extra fitting pa-
rameter S0, sigmoid activation functions, a parallel network 
architecture, 10% dropout and batch normalization at SNR 
20 for 50 repeated trainings. Highlighted in green is IVIM- 
NEToptim. Left of each plot shows the LS approach (blue) and 
Bayesian approach (brown) and IVIM- NETorig (orange)
FIGURE S10 Normalised root- mean- square error (NRMSE; 
left), Spearman rank correlation coefficient (ρ; center) and 
normalized coefficient of variation (CVNET; right) plots of 

the estimated IVIM parameters (D, f and D*) with a single 
parameter change for IVIM- NETorig (orange) at SNR 20 for 
50 repeated trainings. The ρ(D*, f) remains substantial for 
single deviations from IVIM- NETorig
FIGURE S11 See Table S1
FIGURE S12 See Table S1
FIGURE S13 See Table S1
FIGURE S14 See Table S1
FIGURE S15 See Table S1
FIGURE S16 See Table S1
FIGURE S17 See Table S1
FIGURE S18 See Table S1
FIGURE S19 See Table S1
FIGURE S20 See Table S1
TABLE S1 Overview of the parameter maps of Supporting 
Information Figures S11- S20
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