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Abstract

The introduction of superconducting spintronic devices is seen as one
possible solution to the major energy loss due to Joule heating in cur-
rent computers. Superconducting spintronic devices are both energy- and
space e�cient, providing the prospect of dissipationless currents and a
small size compared to its semiconducting counterparts. A particularly
interesting system with several potential applications in superconducting
spintronics is the superconductor-ferromagnet proximity system. The key
feature of such systems is the proximity e↵ect, where superconducting cor-
relations can tunnel into the ferromagnet. The main challenge with the
superconductor-ferromagnet proximity system is the short decay lengths
of the superconducting singlet correlations. One approach to solve this
problem is to introduce spin-orbit coupling in the ferromagnet, an e↵ect
where the electron spin couples to its momentum, which may generate
long-range triplets. However, the strength and direction of the intrin-
sic spin-orbit coupling is fixed in a specific sample. For superconductor-
ferromagnet proximity systems to be useful in spintronic applications, an
on-demand tunable spin-orbit coupling is desirable.

In this thesis, we investigate the possibility of utilizing curvature in
the ferromagnet as a source of a tunable spin-orbit coupling. The addi-
tion of curvature results in a spin-orbit coupling in the normal direction
proportional to the curvature itself. We have derived the Usadel equa-
tion in curvilinear coordinates, valid for torsion-free curved nanowires
and thin-films. Furthermore, we investigate the limiting case of a 1D
nanowire arc curved in the shape of a circle-portion both analytically in
the weak proximity limit, and numerically analyzing physical observables
like the magnetization and charge and spin current density. The anal-
ysis of the magnetization confirmed the presence of long-range triplets
when introducing curvature in the ferromagnetic nanowire. The analy-
sis of the charge current resulted in two main discoveries; a curvature
induced long-ranged Josephson e↵ect and a curvature-induced 0�⇡ tran-
sition. The long-ranged Josephson e↵ect was confirmed numerically by
separating the singlet and triplet contributions to the charge current for
a junction of length L = 6⇠. The curvature-induced 0 � ⇡ transition for
the charge current was found to occur at a specific length-dependent cur-
vature. Previously, 0 � ⇡ transitions have been generated by adjusting
the length of a the ferromagnetic wire, a non-dynamical procedure re-
quiring multiple samples, not suited for applications in superconducting
spintronics. Both the curvature induced long-ranged Josephson e↵ect and
the curvature-induced 0�⇡ transition providing a fully dynamical control
of the transition, o↵ers great possibilities for superconducting spintronics.
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Notation and units

To keep track of the dimensions of matrices we employ a notation where M is a
2x2 matrix, M̂ is a 4x4 matrix and M̌ is a 8x8 matrix. A matrix sum/product
with non-matching dimensions should be interpreted as taking the Kronecker
product between the smallest matrix and the appropriate identity matrix before
performing the matrix summation/multiplication. For example, the product
M̂Ň + P should be interpreted as (I ⌦ M̂)Ň + (Î ⌦ P ), where I and Î are the
2x2 and 4x4 identity matrix respectively.

Vectors will be denoted by a bold font a and may be expressed in terms of
its components in either a parenthesis notation a = (ax, ay, az) or a notation
using unit vectors a = axêx + ayêy + azêz in a Cartesian coordinate system.
The unit vectors êi should not be confused with the notation for 4x4 matrices.
The same vector may be expressed in a curvilinear coordinate system as a =
(aT , aN , aB) or a = aT T̂ (s) + aNN̂ (s) + aBB̂(s). We will separate between
covariant, contravariant and physical vector components denoted by ai, ai and
a(i) respectively, the exception being when the vector is defined in a specific
basis like in the parenthesis vector notation or in terms of the unit vectors. In
these cases, physical vector components are implied.

Partial derivatives are denoted by a short-hand notation @x = @
@x . The gradi-

ent is a vector containing the partial derivatives in the corresponding directions,
expressed in Cartesian coordinates as r = (@x, @y, @z).

The identity Pauli matrix and the Cartesian Pauli matrices in spin space are
defined as

�0 =

✓
1 0
0 1

◆
, �x =

✓
0 1
1 0

◆
, �y =

✓
0 �i
i 0

◆
, �z =

✓
1 0
0 �1

◆
.

The Cartesian Pauli matrices may be combined into a Pauli spin-vector in spin
space � = (�x,�y,�z). The Pauli matrices in Nambu space are defined in the
exact same way and will be denoted by ⌧ i

⌧0 =

✓
1 0
0 1

◆
, ⌧x =

✓
0 1
1 0

◆
, ⌧y =

✓
0 �i
i 0

◆
, ⌧z =

✓
1 0
0 �1

◆
.

⌧̂z = diag(1, 1,�1,�1) is a 4x4 matrix extension of ⌧z.
Complex conjugation of scalars and matrices are denoted by an asterisk

*, while hermitian conjugation of matrices is denoted by a dagger †. Square
brackets [·, ·] denotes a commutator while curly brackets {·, ·} denotes an anti-
commutator. The commutator and anticommutator of two matrices Â and B̂
are defined as follows

[Â, B̂] = ÂB̂ � B̂Â, {Â, B̂} = ÂB̂ + B̂Â.

In physics we often want to minimize the number of units and express them
in terms of physical constants rather than using SI units which is heavily based
on measurements. By choosing physical constants as the fundamental scale of
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the corresponding physical quantity, we can set these constants to unity which
has the advantage of making expressions simpler, while still keeping the physics
in the equations [79]. Many such natural unit systems exists. In this thesis we
will use a natural unit system where

~ = c = ✏0 = µ0 = kB = 1,

where ~ is the reduced Planck’s constant, c is the speed of light, ✏0 is the vacuum
permittivity, µ0 is the permeability and kB is the Boltzmann constant.

iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fundamental concepts . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Tensor notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Quasiclassical theory of superconductor-ferromagnet proximity
systems 12
2.1 Keldysh quasiclassical Green’s function method . . . . . . . . . . 12
2.2 Di↵usion equation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Di↵usion equation for curved superconductor-ferromagnet prox-
imity structures 17
3.1 Curvilinear coordinates . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Spin-orbit coupling as a result of curvature . . . . . . . . . . . . 20
3.3 Usadel equation in curvilinear coordinates . . . . . . . . . . . . . 25

4 Nanowire arc 28
4.1 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Weak proximity limit . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Tangential exchange field with no intrinsic spin-orbit cou-
pling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Equivalence of a curved nanowire and a straight nanowire
with a rotating exchange field . . . . . . . . . . . . . . . . 37

5 Magnetization 40

6 Spin and charge current in curved nanostructures 47
6.1 Weak proximity current density . . . . . . . . . . . . . . . . . . . 47

6.1.1 Straight nanowire with intrinsic Rashba spin-orbit coupling 47
6.1.2 Nanowire arc with curvature-induced Rashba spin-orbit

coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.3 Curvature induced long-ranged Josephson e↵ect and dy-

namical 0� ⇡ transition . . . . . . . . . . . . . . . . . . . 53
6.2 Spin torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Summary, outlook and concluding remarks 59
7.1 Non-uniform curvature and torsion . . . . . . . . . . . . . . . . . 59
7.2 Curvature in other classes of materials . . . . . . . . . . . . . . . 60
7.3 2D curved thin films . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 63

A
Vector calculus in curvilinear coordinates 71

v



CONTENTS

B
Riccati parametrized Usadel equation 73

C
MATLAB code 77

D
Paper draft 78

vi



Introduction

1 Introduction

1.1 Motivation

About 5% of all energy consumption in the U.S. goes to running computers [1].
The majority of this energy will inevitably be converted to heat necessitating
expensive and wasteful cooling infrastructure. In a world where information
storage and high-performance computing has become essential, the computa-
tional energy is only bound to increase. A major driver to the increasing energy
cost of computers is mining of cryptocurrency. It has recently been estimated
that mining for bitcoins alone represents more than 100 TWh/y [2], close to
the total electricity consumption of Norway and amounting to nearly 0.6% of
the global electricity use. Even considering a continued shift to more “green”
electricity production, the energy cost of running “hot” computers is clearly not
sustainable, neither from an ecological nor a business perspective. A paradigm
shift in how computations can be performed in an energy e�cient manner is
clearly needed.

A possible solution to this problem would be to develop powerful “cool”
computers by the introduction of superconducting spintronics, where currents
may flow resistance free and the spin of the electron is used as the information
carrier rather than, or in combination with, the charge. Due to the net spin-
polarization of quasiparticles in the superconductor the short decay lengths due
to spin-flip scattering, a problem in non-superconducting spintronics, may be
avoided [3], [4]. Spintronic devices have the advantage of being smaller in size
compared to its charge based semiconducting counterparts, where the transport
properties are dictated by the depletion layer which thickness may vary from a
couple of nanometers to a few micrometers [5].

One system that o↵ers tantalizing possibilities for applications in supercon-
ducting spintronics is the superconductor-ferromagnet (SF) proximity system.
Singlet superconductivity and ferromagnetism is highly unlikely to coexist in
bulk materials, but when placing a conventional superconductor in close prox-
imity with a ferromagnet, some of the superconducting electron pairs may tunnel
from the superconductor into the ferromagnet, a phenomenon called the prox-

imity e↵ect [6]. Due to the pair breaking e↵ect present in the ferromagnet, the
amplitude of the singlet superconducting electron pairs, denoted as | "#i� | "#i,
will decay exponentially as a function of the length penetrated in the ferromag-
net. In order for superconductor-ferromagnet proximity systems to be useful
in spintronic applications, a much longer penetration depth is needed. This
problem can be solved by generating the equal spin triplet state | ""i or | ##i,
the long-range triplets, which is immune to the pair breaking e↵ect and hence
decay linearly in the ferromagnet as shown in Figure 1.

The transition from the singlet state to the long-range triplet state may be
understood by considering superconducting singlet correlations incident to the
interface between the superconductor and the ferromagnet. Due to the spin
polarization at the interface, a mixing between the incident singlet state and
the opposite spin triplet state | "#i+ | "#i, the short-range triplets, occurs. The
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Introduction

short-range triplet decays in an oscillatory manner as shown in Figure 1 with
penetration depth depending on the spin-polarization of the ferromagnet, but
is on the same order as the penetration depth of the singlet state. However,
the short-range triplet may be rotated into the long-range triplet close to the
interface if the ferromagnet carry an inhomogeneous exchange field. This was
demonstrated theoretically by Bergeret, Volkov and Efetov in 2001 [7] and later
experimentally by Keizer et al. [8] and Sosnin et al. [9] in 2006. The prerequisite
for an inhomogeneous magnetic field can be problematic for practical applica-
tions since such features are rare to find intrinsically in materials and artificially
generated ones are hard to control.

S F

Figure 1: The amplitude of the di↵erent spin states in the superconduc-
tor (S) tunneling into the ferromagnet (F). The amplitude of the singlet
state | "#i � | "#i is indicated by the blue line, the opposite spin triplet
| "#i+ | "#i by the red line, and the equal spin triplet | ""i by the green
line.

More recently, Bergeret and Tokatly published a paper suggesting an al-
ternative way of generating the long range triplet components by introducing
spin-orbit coupling in the ferromagnet, an e↵ect where the spin of the electrons
couples to its momentum, often as a result of the lack of inversion symmetry
in the ferromagnet [10]. In the paper, Bergeret and Tokatly demonstrated that
introducing spin-orbit coupling may generate the long-range triplets from the
short-range triplets. The long-range triplets by necessity has to be perpendicu-
lar to the ferromagnetic exchange field, while the short range triplets have to be
parallel to the field. The generation of the long-range triplets is determined by a
combination of the ferromagnetic exchange field and the direction and strength
of the spin-orbit coupling [11], [12], [13].

The intrinsic spin-orbit strength is a material-dependent constant. For spin-
orbit driven superconducting spintronics to be viable, an on-demand tunable
spin-orbit coupling is needed. Voltage-gating the sample is one way of introduc-
ing such a tunable spin-orbit coupling [14]. However, the spin-orbit coupling
will be constant throughout the sample. Recently, it has been shown that in-
troducing a strain in the form of bending the material, induces a strain-driven
electric field breaking the inversion symmetry resulting in a spin-orbit coupling
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which relates directly to the curvature [15]. The relation between the spin-orbit
strength and the curvature provides a method of tuning the spin-orbit strength
by manipulation of the curvature.

One eminent novel application could be a curved superconductor-ferromagnet-
superconductor proximity structure (Josephson junction) where a curved ferro-
magnetic wire provides a mechanism of tuning the superconducting electron
pairs between the singlet and long-range triplet state by manipulating the cur-
vature of the ferromagnet. A possible realization of such a curved Josephson
junction is illustrated at the left in Figure 2. In the singlet state no spin current
will pass through the junction, while in the long-range triplet state current may
pass due to the long penetration depth. The alternation between the singlet
and long-range triplet states functions as a current switch or a spin valve. A
curvature-induced spin-orbit-tunable triplet spin-valve o↵ers the possibility to
construct logical gates driven by spin currents, where a current passing through
encodes the binary 1 and no current the binary 0, rather than the standard
slower and less energy e�cient semiconducting electronics using electrical cur-
rents.

S S

F
S

S

F

F

Figure 2: Potential outline of a curved Josephson (left) and a circular
SQUID (right).

Another interesting application of superconductor-ferromagnet proximity
systems is a SQUID (superconducting quantum interference device), which is
a loop of Josephson junctions. SQUIDs are based on the fact that the maxi-
mum current flowing through the loop is periodic in the magnetic flux through
the loop. Hence by monitoring the current, SQUIDs can be used for extremely
precise measurements of magnetic flux. SQUIDs have a wide range of applica-
tions, from quantum computing to mapping brain activity and even measuring
single electron spins. Circular nano-SQUIDs have been produced and explored
experimentally [16], where the circular SQUID placed on the sharp tip of a
probe provides a extremely low noise in the magnetic flux. Allthough circular
SQUIDs have been tested experimentally, a full theoretical description has yet to
be carried out. As established, the introduction of curvature induces long-range
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triplet currents. Consequently, a circular SQUID may function as a spin-triplet
SQUID [17]. A simple illustration of the outline of a semicircular SQUID is
depicted at the right in Figure 2. The size of the weak link ferromagnet can be
chosen much smaller compared to the superconductor.

Quantum theory of particles constrained to curved geometries has seen an in-
creasing interest due to the experimental development of bent low-dimensional
nanostructures [18], [19]. The potential for creating 2-dimensional rolled-up
thin-film nanotubes has already been realized experimentally by utilizing selec-
tive etching methods on etching sensitive materials in contact with the desired
thin film [20]. Lithographical methods for the creation of 1-dimensional curved
nanowires have been investigated extensively where it has been shown that the
partial release and the bond back of layers may be used in creating specific
wrinklings in nanochannels [21]. More recently, it has been shown that fixing
nanochannels in multiple points on a stretched silicon substrate and allowing
the substrate to return to its original shape enables the creation of complex
curved nanostructures of desired shapes [22]. Examples of such nanostructures
are given in Figure 3.

Figure 3: Examples of curved nanostructures created by fixing
nanochannels in multiple points on a stretched silicon substrate and
allowing the substrate to return to its original shape (Xu et. al., 2015,
p.157).

The development of experimental techniques for curving low-dimensional
nanostructures has opened the possibility of creating nanowires and thin films
[23] with adjustable curvature for application in spin-orbit driven superconduct-
ing spintronics. Recently, Das and collaborators showed the independent control
of spin and charge currents in metallic nanowires using curvature as the control
parameter [24]. By placing an aluminium nanochannel over a silicon dioxide
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trench, Das et. al. demonstrated that adjusting the trench depth and hence
the curvature of the aluminium nanochannel, a↵ected the charge and spin resis-
tance. The setup provided electrical compatibility between the curved channel
and other device elements which is crucial for applications in spintronic devices.

1.2 Fundamental concepts

Superconductivity is a purely quantum phenomenon observed in some materials
characterized by a vanishing electrical resistance and an exclusion of external
magnetic fields at su�ciently low temperatures. These characteristic properties
are due to the formation of electron pairs called Cooper pairs which may form
a condensate and exhibit bosonic properties. Superconductivity was first dis-
covered in 1911 by the Dutch physicist Heike Kamerlingh Onnes [25] before the
development of quantum mechanics, but it took decades before the phenomenon
could be explained. The BCS theory, named after the creators Bardeen, Cooper
and Schrei↵er, is to date the most successful and widely used theory to describe
superconductivity [26]. The theory is based on the fact that any attractive in-
teraction between the electrons in the system, leads to the formation of Cooper
pairs. The formation of Cooper pairs is not dependent of the type of attraction,
only that the attraction is present. In most superconducting materials, the at-
traction is mediated by phonons. A simple way to understand phonon-mediated
superconductivity is to consider the toy-model of two electrons moving in oppo-
site directions in a lattice of positive ions as depicted in Figure 4. The ions on
the lattice will due to the Coulomb interaction be pulled towards the electrons,
causing a concentration of positive charge. Consequently, the accumulation of
positive charge leads to a Coulomb interaction between the concentrated pos-
itive charge and the moving electrons causing an e↵ective attraction between
the two electrons forming a Cooper pair.

Figure 4: Two electrons (red) moving in a lattice of positive ions (blue).
Through the Coulomb interaction the electrons will attract the posi-
tively charged ions and create a concentration of positive charge.
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Superconductivity is a many-body quantum e↵ect, but may be approximated
as a self-consistent e↵ective one-particle problem using a mean field theory [27].
The mean field or order parameter is defined as

�(r, t) = �h ̂"(r, t) ̂#(r, t)i, (1.1)

where  ̂�(r, t) is an operator annihilating an electron with spin � at position
r and time t, h...i is a statistical average and � > 0 is a coupling constant. In
the mean field approximation, the self energy of conventional superconductivity
is [28]

⌃̌SC = �̂, (1.2)

where the pair potential is defined as �̂ = antidiag(�,��,�⇤,��⇤) [29], [30].
The order parameter � is in general a complex number, which magnitude de-
scribes the size of the superconducting gap, the energy gain of the electrons
upon forming a Cooper pair, and the complex argument describes the super-
conducting phase. The superconducting phase may be removed by a U(1) gauge
transformation and is hence not of importance when considering only one su-
perconductor in a system. In systems with multiple superconductors, like the
Josephson junction, the phase di↵erence is of great importance and will dictate
the transport properties.

In this thesis we will focus on conventional, s-wave, singlet superconductivity.
Conventional means superconductivity which can be described by BCS theory,
s-wave means that the order parameter is spherically symmetric in momentum
space and singlet means that the Cooper pairs are in the antisymmetric singlet
state | "#i � | "#i in the bulk of the superconductor. In order to satisfy the
antisymmetry of the electronic wavefunction, s-wave, singlet superconductivity
necessarily has to be symmetric in frequency.

Ferromagnetism is the phenomenon characterized by the spontaneous mag-
netization due to the alignment of electron spins in domains of the material
caused by the exchange interaction [31]. This magnetic ordering breaks down
at a certain material dependent temperature known as the Curie-temperature.
The exchange interaction can be considered as an e↵ective field h called the ex-
change field which describes the spin-dependent part of the electron energy [32]
proportional to the magnetization of the material.

Ferromagnetic materials may form permanent magnets when exposed to an
external magnetic field. These magnetic properties will still be present in the
ferromagnet when turning the external field o↵.

The self energy from weakly spin-polarized ferromagnets is proportional to
its exchange field [28]

⌃̌FM = h · �̂, (1.3)

where �̂ = diag(�,�⇤) and � = (�x,�y,�z) is the Pauli spin-vector. For
strongly spin-polarized ferromagnets polarization e↵ects become important and
a polarization self energy term needs to be included.

In this thesis we will consider proximity e↵ects between conventional, s-wave
superconductors and weakly spin-polarized ferromagnets in both superconductor-
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ferromagnet (SF) and superconductor-ferromagnet-superconductor (SFS) prox-
imity systems where the ferromagnet may be curved into desired shapes.

1.3 Tensor notation

In physics, we often search for physical laws that are independent of the chosen
coordinate systems. Newton’s second law of motion F = ma can serve as an
example. If we consider a particle moving in three dimensions a↵ected by some
force F = Fxex + Fyey + Fzez, we can write Newton’s second law for the
particle’s motion as

Fxex + Fyey + Fzez = m(ẍex + ÿey + z̈ez). (1.4)

Supposing that the particle follows some orbital motion, the choice of a spherical
coordinates system may be practical. In spherical coordinate Newton’s second
law for the particle’s motion takes the form

Frer + F✓e✓ + F�e� = m(r̈ � r✓̇2 � r�̇2 sin2(✓))er

+m(r✓̈ + 2ṙ�̇� r�̇2 sin(✓) cos(✓))e✓

+m(r�̈ sin(✓) + 2ṙ�̇ sin(✓) + 2r✓̇�̇ cos(✓))e�.

(1.5)

By comparing the two equations, we see that a change of coordinate system has
produced additional terms, meaning that Newton’s equation F = ma as stated
above is dependent on the choice of coordinates. In order to write equations, like
Newton’s second law, that are invariant with respect to a change of coordinates
we have to introduce the language of tensors1. In this thesis, we will define a
curved coordinate system following our curved ferromagnet. In order to rewrite
relevant equations from Cartesian to curved coordinates, tensor notation will
prove to be a very useful tool.

A tensor is a mathematical object independent of a specific basis, defined by
the way it transforms under a change of coordinates. Tensors can be classified by
its rank. A rank 0 tensor can be described by N0 = 1 number in N dimensions
and can thus be represented as a scalar. Furthermore, a rank 1 tensor can be
described N1=N numbers and can thus be represented as a vector. Continuing
the reasoning, a tensor of rank 2 can be described by N2 numbers equivalent
to a matrix2. Tensors of higher rank are more complicated as they cannot be
represented by any familiar mathematical object, but can be described with
N rank numbers.

The rank of a tensor is manifested in the number of indices needed to describe
the object. Consider the following two rank 1 tensors (vectors) Ai, Bi. The
placement of the index determines the transformation property of the tensor. A

1The entirety of this section is based on the book Tensor calculus for physics by Dwight
Neuenschwander [33].

2An important note is that although all rank 2 tensors may be represented as a square
matrix, not all square matrices, like the Green’s function matrix to be introduced later, are
tensors.
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rank 1 tensor with a lowered index transforms covariantly, while a rank 1 tensor
with a raised index transforms contravariantly under a change of coordinates
x ! x0

A0
i =

@xj

@x0iAj , (1.6)

B0i =
@x0i

@xj
Bj , (1.7)

where we have introduced Einstein summation which implies a summation over
each repeated index in a product. A rank 1 tensor following the transformation
rule in equation (1.6) is called a covariant vector. Similarly, a rank 1 tensor
following the transformation rule in equation (1.7) is called a contravariant

vector. Tensors of higher rank follow a similar transformation rule. A tensor
of rank k + l with k lowered and l raised indices Ti1...ik

j1...jl transforms as a
product of k covariant and l contravariant vectors

T 0
i1...ik

j1...jl =
@xm1

@x0i1
· · ·

@xmk

@x0ik
@x0j1

@xn1
· · ·

@x0jl

@xnl
Tm1...mk

n1...nl . (1.8)

A particularly useful tensor is themetric tensor, often called the fundamental
tensor due to its importance in tensor calculus. The metric tensor may be
expressed in terms of the total di↵erential coordinate displacement. In Cartesian
coordinates the di↵erential coordinate displacement is given by

dR = dxêx + dyêy + dzêz. (1.9)

The same di↵erential coordinate displacement expressed in spherical coordinates
is given by

dR = d⇢ê⇢ + ⇢d✓ê✓ + ⇢ sin ✓d�ê�. (1.10)

In order to generalize the di↵erential coordinate displacement for an arbitrary
coordinate system we may introduce scale factors hi

dR =
X

i

hidx
iêi. (1.11)

The scale factors have the function of endowing each coordinate displacement
with the correct unit. The length of the di↵erential coordinate displacement is
found by taking the scalar product with itself

(dR)2 =
X

i,j

hihj êi · êjdx
idxj = ⌘ijdx

idxj , (1.12)

where we finally have introduced the covariant form of the metric tensor ⌘ij =
hihj êi · êj . For orthogonal coordinate systems the scalar product between the
unit vectors is equal to the Kronecker delta and the metric is diagonal

⌘ij = hihj�ij . (1.13)
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Taking the examples of coordinate displacements in Cartesian and spherical
coordinates given in equation (1.9) and (1.10) respectively, the covariant metric
tensor may be represented as a square matrix in the following way

⌘Cartesian
ij =

0

@
1 0 0
0 1 0
0 0 1

1

A , ⌘Sphericalij =

0

@
1 0 0
0 ⇢2 0
0 0 ⇢2 sin2 ✓

1

A . (1.14)

A fundamental property of the covariant (contravariant) metric tensor is
that, when contracted with a contravariant (covariant) vector, it produces the
corresponding covariant (contravariant) vector

Ai = ⌘ijA
j , Ai = ⌘ijAj . (1.15)

The metric tensor has the similar e↵ect when contracted with a covariant/con-
travariant index of a tensor

Ti1...in�1

k
in+1...im

j1...jl = ⌘kinTi1...im
j1...jl , (1.16)

Ti1...im
j1...jr�1

s
jr+1...jl = ⌘sjrTi1...im

j1...jl . (1.17)

From equation (1.16) and (1.17) it can be seen that the contravariant metric
tensor raises the index, while the covariant metric lowers the index.

As explained, covariant/contravariant tensors follow specific transformation
properties. But what about derivatives of such objects? One might naively as-
sume that the derivative of a tensor is automatically a tensor, but as we will see,
this is not the case. Consider a contravariant vector xi in a coordinate system
S. Using the transformation property given in equation (1.7), the contravariant
vector xi may be expressed in a primed coordinate system S

0 as

x0i =
@x0i

@xj
xj . (1.18)

The transformation rule for the derivative of a contravariant vector can be found
by di↵erentiating equation (1.18) with respect to some scalar t

dx0i

dt
=
@x0i

@xj

dxj

dt
+ xj d

dt
(
@x0i

@xj
) =

@x0i

@xj

dxj

dt
+ xj @2x0i

@xj@xk

dxk

dt
. (1.19)

From equation (1.19) one can observe a term involving second derivatives in
addition to the usual contravariant transformation term. The additional term
is in general non-zero. Hence ordinary derivatives of tensors are not necessarily
tensors. This seems to ruin the purpose of introducing tensor calculus since the
overall goal was to keep equations invariant of the choice of coordinates. The
method to resolve this problem is to redefine the derivative operator in such a
way that this additional term in the transformation cancels and thus preserving
the tensorial nature of the transformation. This redefinition of the derivative
is called the coordinate covariant derivative, first introduced by Ricci and Levi-
Civita in 1900 [34], and will here be denoted by D. The coordinate covariant
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derivative with respect to a coordinate xi of a contravariant vector Aj is defined
as

DiA
j = @iA

j + �j
ikA

k, (1.20)

where �j
ik is known as the Christo↵el symbol or the a�ne connection and is

related to the metric tensor

�k
ij =

1

2
⌘kl(@j⌘li + @i⌘lj � @l⌘ij). (1.21)

The Christo↵el symbol itself is not a tensor, but ensures that the coordinate
covariant derivative of a tensor remains a tensor. The coordinate covariant
derivative of a covariant vector follows a similar definition, albeit a relative
minus sign

DiAj = @iAj � �k
ijAk. (1.22)

We have now introduced the language of tensors, defined how they transform
and how to impose derivatives of tensors to have the right transformation prop-
erties, namely by introducing the coordinate covariant derivative. An important
and often overlooked note, is how to relate these covariant and contravariant
vectors with the physical vector defined in a certain basis. Since the scalar prod-
uct of two vectors A and B is a rank 0 tensor (scalar) it should not depend on
the choice of coordinate. Hence we may write

A ·B =
X

i

AiB
i =

X

ij

⌘ijA
iBj =

X

ij

hi�ijA
iBj =

X

i

A(i)B(i), (1.23)

where A(i) and B(i) are the physical components of the vectors A and B. Equa-
tion (1.23) yields a relationship between the contravariant vector components
and the physical vector components

Ai =
A(i)

hi
. (1.24)

By relating the contravariant vector to the covariant a similar relationship is
achieved

Ai = hiA(i). (1.25)

This may be generalized to a rank k + l with k lowered and l raised indices

Ti1...ik
j1,...,jl =

hi1 · · · hik

hj1 · · · hjl

T(i1)...(ik)(j1)...(jl)
. (1.26)

This concludes the introduction to tensor notation. For a more complete
treatise in tensor calculus, see [33].
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1.4 Structure

The goal of this thesis is to derive the Usadel equation in curved coordinates and
solve it numerically in order to investigate the influence of curvature on physical
observables. We will start with a small recap of the quasiclassical Green’s func-
tion theory of superconductor-ferromagnet heterostructures and the necessary
assumptions used to derive the quasiclassical Usadel equation and appropri-
ate boundary conditions in Section 2. In Section 3 we will introduce a gen-
eral curvilinear coordinate system used to describe the position in the curved
ferromagnet. We will demonstrate mathematically how the curvature in the
ferromagnet results in spin-orbit coupling which may be described as a back-
ground SU(2) field, before we finally derive the Usadel equation in curvilinear
coordinates for torsion-free thin films, which will include the spin-orbit field.
Section 3 is heavily based on tensor notation, and we will use the conventions
for covariant/contravariant/physical tensor components formulated in Section
1.3. The rest of the thesis focuses on the limiting case of a 1D nanowire formed
as a portion of a circle. In this case the metric tensor is Cartesian-like and the
conventions for covariant/contravariant/physical components may be dropped.
In Section 4 we will derive a Riccati parametrized Usadel equation for the 1D
nanowire and explore the weak proximity equations with focus on the equiva-
lence with a straight wire with a rotating exchange field. In Section 5 and 6,
physical observables like the magnetization and the spin-current will be inves-
tigated using a di↵erential equation solver in Matlab. Finally, in Section 7 we
will summarize the main results as well as outline a few possible continuations
of the work performed in this thesis.
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2 Quasiclassical theory of superconductor-
ferromagnet proximity systems

Most modern treatments of problems in condensed matter physics is based on
two classes of methods; functional integral methods and Green’s function meth-
ods. In the former, functional integrals are used to compute the sum (or integral)
over configurations of states the system can be in. In this thesis we will utilize
Green’s functions, describing correlations between particles. More specifically,
we will use the Keldysh Green’s functions [35], [36] which in the dirty, quasi-
classical limit, follows a 2nd order di↵erential equation known as the Usadel
equation.

2.1 Keldysh quasiclassical Green’s function method

A Green’s function G��0(r, t, r0, t0) is defined as the probability amplitude of a
particle with spin � at a position r at a time t appearing at a di↵erent position
r0 at a time t0 with spin �0. In the formulation of second quantization, this may
be expressed mathematically as a expectation value of a time-ordered product
of a creation operator  ̂ and an annihilation operator  ̂†

G��0(r, t, r0, t0) = �ihT  ̂�(r, t) ̂
†
�0(r0, t0)i, (2.1)

where h...i denotes both a thermal and quantum average and T is the time-
ordering operator which orders the product of fermionic operators in chronolog-
ical order with the largest time to the left [29], [30]. In the Keldysh formalism
we introduce a set of Green’s functions describing correlations between electrons
and holes

GR
��0(r, t, r0, t0) = �ih{ ̂�(r, t),  ̂

†
�0(r0, t0)}i✓(t� t0), (2.2)

GA
��0(r, t, r0, t0) = +ih{ ̂�(r, t),  ̂

†
�0(r0, t0)}i✓(t0 � t), (2.3)

GK
��0(r, t, r0, t0) = �ih[ ̂�(r, t),  ̂

†
�0(r0, t0)]i. (2.4)

The retarded Green’s function GR and advanced Green’s function GA describe
the propagation of electrons in the positive time direction and holes in the neg-
ative time direction respectively. The Keldysh Green’s function GK describes
the non-equilibrium properties of the system.

When considering superconductor proximity structures, it is advantageous to
introduce a second set of Green’s functions called anomalous Green’s functions
describing correlations between pairs of electrons, Cooper pairs. The anomalous
Green’s functions are in the Keldysh formalism defined as

FR
��0(r, t, r0, t0) = �ih{ ̂�(r, t),  ̂�0(r0, t0)}i✓(t� t0), (2.5)

FA
��0(r, t, r0, t0) = +ih{ ̂�(r, t),  ̂�0(r0, t0)}i✓(t0 � t), (2.6)

FK
��0(r, t, r0, t0) = �ih[ ̂�(r, t),  ̂�0(r0, t0)]i. (2.7)

12
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The Green’s functions and anomalous Green’s functions may be combined
into 4x4 matrix structures in Nambu space [37]

ĜR =

✓
GR FR

(FR)⇤ (GR)⇤

◆
, (2.8)

ĜA =

✓
GA FA

(FA)⇤ (GA)⇤

◆
, (2.9)

ĜK =

✓
GK FK

�(FK)⇤ �(GK)⇤

◆
, (2.10)

where the underlined components of the matrices are 2x2 submatrices containing
the four di↵erent spin combinations of ��0 ="", "#, #", ## of the corresponding
Green’s function.

Finally, the three 4x4 matrices may be combined into a single 8x8 matrix in
Keldysh space

Ǧ =

✓
ĜA ĜK

0 ĜR

◆
. (2.11)

The beauty of the Keldysh formalism is that almost all physical observables
may be expressed in terms of the components of the Green’s function matrix in
Keldysh space.

In thermal equilibrium, the three non-zero components of the Green’s func-
tion matrix in Keldysh space are related to each other [38]

ĜA = �⌧̂z(Ĝ
R)†⌧̂z, (2.12)

ĜK = (ĜR
� ĜA)tanh(

�✏

2
), (2.13)

meaning that only one component of the Green’s function matrix in Keldysh
space is needed to determine the complete 8x8 matrix.

The Green’s functions vary rapidly in terms of the relative coordinate r �

r0, making the current form of the Green’s function strenuous to work with
in practice. In order to simplify, we will introduce a set of approximations,
particularly useful for superconducting systems, known as the quasiclassical

approximation [29], [30], [39]. The quasiclassical approximation is based on two
main assumptions:

1. Rapid internal oscillations in the Green’s function may be averaged over.

2. All momenta may be replaced by its value on the Fermi surface pF .

The validity of the assumptions are quite easy to see when considering super-
conductor proximity systems. Firstly, The superconducting coherence length is
much larger than the typical inverse Fermi wave vector k�1

F , and the Green’s
function will act as a wavepacket varying slowly compared to k�1

F with rapid
internal oscillation [3]. Since we are interested in longer length scales like the su-
perconducting coherence length and the length of the material, an average over
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the internal oscillations in terms of the relative coordinate r � r0 is acceptable.
This approximation is in the literature known as the gradient approximation.
In order to get rid of the internal coordinates we do a Fourier transform of
the relative coordinate and time, resulting in the Fourier transformed Green’s
function Ǧ(R, T,p, ✏) in terms of the center of mass coordinate and time R, T ,
momentum p and energy ✏.

At ambient pressure, superconductivity is a low temperature phenomena.
At temperatures where the superconducting phase is reached, all low energy
states in the system will be filled, while all high energy states will be empty
and no thermal excitation will be present. Consequently, all physics has to take
place around the Fermi level justifying the replacement of all momenta with its
value at the Fermi surface.

The quasiclassical Green’s function denoted by ǧ depends only on the direc-
tion of the momentum and not its magnitude

Ǧ(R, T,p, ✏) = �i⇡�(⇠p)ǧ(R, T, p̂F , ✏), (2.14)

where ⇠p = p2

2m �µ is the kinetic energy relative to the Fermi level µ and i⇡ is a
normalization factor. The delta function in equation (2.14) confines the Green’s
function to the Fermi surface. Equation (2.14) may be rewritten as an integral
over the Fourier transformed Green’s function

ǧ(R, T, p̂F , ✏) =
i

⇡

Z ⇠c

�⇠c

d⇠pǦ(R, T,p, ✏), (2.15)

where we have introduced some cut-o↵ energy ⇠c in order to avoid the compli-
cated behaviour of the Green’s function at high energies. Similarly to equation
2.11, the quasiclassical Green’s function may be expressed in matrix form as

ǧ =

✓
ĝA ĝK

0 ĝR

◆
, (2.16)

where ĝR, ĝA and ĝK are the retarded, advanced and Keldysh quasiclassical
Green’s functions respectively in Nambu space

ĝR =

 
gR fR

�f̃
R

�g̃R

!
, (2.17)

ĝA =

 
gA fA

�f̃
A

�g̃A

!
, (2.18)

ĝK =

 
gK fK

f̃
K

g̃K

!
. (2.19)

Due to the imaginary unit in equation (2.15) we have introduced a tilde conju-
gation, having the function of normal conjugation combined with a sign shift in
the energy, g̃(✏) = g(�✏)⇤.

14



Quasiclassical theory of superconductor-ferromagnet proximity systems

The quasiclassical Green’s functions are normalized

ǧ2 = ⌧̌0, (2.20)

which may be written in terms of the retarded, advanced and Keldysh compo-
nents in Nambu space

ĝRĝR = ⌧̂0, ĝAĝA = ⌧̂0, ĝRĝK + ĝK ĝA = 0. (2.21)

2.2 Di↵usion equation

For systems of materials with a high density of non-magnetic impurities, par-
ticles will scatter to a degree where the particle momentum is ultimately left
randomized. This is in the literature known as the dirty or di↵usive limit. For
superconductor proximity systems, the di↵usive limit may be expressed math-
ematically as ⇠ >> l, where ⇠ is the superconducting coherence length and l is
the mean free path length. The randomization of the momentum direction sug-
gests an expansion of the quasiclassical Green’s function to one isotropic part
ǧs and one small anisotropic part ǧp in momentum space

ǧ = ǧs + p̂F · ǧp. (2.22)

ǧp is considered to be so small that we may neglect terms of order O(ǧ2p).
Di↵usive quasiclassical proximity systems are described by a second order

di↵erential equation in the isotropic quasiclassical Green’s function, called the
Usadel equation [10], [29], [30], [36], [40]

iDFr(ǧsrǧs) = [✏⌧̂z � ⌃̌, ǧs], (2.23)

where DF is a material-dependent constant known as the di↵usion constant
and ⌃̌ is the quasiclassical self energy, the part of the particle’s energy due
to interactions with its surroundings. Which types of self energies that are
included in the Usadel equation depends on the physical system under consid-
eration. For a proximity systems of only s-wave conventional superconductor
and weakly polarized ferromagnet components, it is su�cient to include the self
energy terms given in equations (1.2) and (1.3)3. Hence, the Usadel equation
for superconductor-ferromagnet proximity systems takes the form

iDFr(ǧsrǧs) = [✏⌧̂z � �̂� h · �̂, ǧs]. (2.24)

In order to get a unique solution from the Usadel equation we need to in-
troduce a set of boundary conditions. In the early 80s, Zaitsev worked out
a general expression for the boundary condition at the interface between two
metals for an arbitrary boundary transparency valid in both the clean and dirty
limit [42]. In this thesis we will rather use a set of boundary conditions known

3Actually, in the di↵usive limit a impurity self energy term should be included, but as it
turns out this term will commute with the quasiclassical Green’s function and will hence drop
out of the Usadel equation [36], [41].
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as the Kuprianov-Lukichev boundary conditions, whose validity only extends
to the dirty limit and for weak transmission regime, but in return are quite
simple [43]. The Kuprianov-Lukichev boundary conditions are given by

ĝRs,arĝRs,a =
1

2La⇣a
[ĝRs,1, ĝ

R
s,2], (2.25)

where the label a denotes the material a, La is the length of material a and
⇣a = RB

Ra
is the ratio between the barrier resistance, RB and the bulk resistance

in material a, Ra. The boundary condition to vacuum may be considered as a
infinite barrier resistance described by the limit 1

⇣a
! 0 in equation (2.25). In

more recent years, development of more accurate boundary conditions for spin-
active interfaces have been performed and may be included in the theory [44].
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3 Di↵usion equation for curved superconductor-
ferromagnet proximity structures

3.1 Curvilinear coordinates

For systems displaying a curved symmetry, changing from a Cartesian coordi-
nate system to a curvilinear coordinate system is beneficial. Curvilinear co-
ordinate systems are characterized by the fact that coordinate lines may be
curved. Examples of such coordinate systems includes cylindrical and spherical
coordinates.

Figure 5: The curvilinear coordinate system is described by the ar-
clength s measured from some reference point and a local set of orthog-
onal unit vectors N̂ (s), T̂ (s) and B̂(s), normal, tangential and binormal
to the curved nanostructure respectively. R = 1

(s) , where (s) is the
curvature, is the curvature radius at the arclength point s.

For our purposes it is convenient to introduce a general orthogonal curvilin-
ear coordinate system defined on the curved nanostructure as shown in Figure
5, where any point on the curved surface has a set of orthogonal basis vectors
N̂ (s), T̂ (s) and B̂(s) in the normal, tangential and binormal directions respec-
tively and a local curvature (s). The benefit of this approach rather than e.g.
cylindrical coordinates is the generality of the curved system it o↵ers, allowing
for investigation of arbitrarily curved three-dimensional structures. Consider
a 3D-nanostructure curved only in a 2D-plane i.e. no torsion4 is considered5

like in the curved structure in Figure 5. Assuming that the nanostructure in
the plane of curvature follows a di↵erentiable curve, we can parametrize the

4Torsion signifies that the binormal unit vector depends on the arclength s.
5A similar derivation including torsion has been performed by Ortix [45]
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stress-free surface in terms of the arclength and the binormal coordinate b,
r(s, b) = ⇠(s) + bB̂(s). Here we have defined the arclength parametrization of
the di↵erentiable curve in the plane of curvature, ⇠(s). The three-dimensional
space in the vicinity of the stress free surface R, can be parametrized similarly
using the normal unit vector and corresponding coordinate

R(s, n, b) = r(s, b) + nN̂ (s), (3.1)

where n is the curvilinear coordinate in the normal direction.
The normal, tangential and binormal unit vectors are connected through the

torsion free Frenet-Serret formulas [46], [47], [48]

d

ds
N̂ (s) = �(s)T̂ (s), (3.2)

d

ds
T̂ (s) = (s)N̂ (s), (3.3)

d

ds
B̂(s) = 0, (3.4)

where (s) is the local curvature at the point s. Using equation (3.4) we can
define the derivatives of the parametrized space in equation (3.1)

@sR(s, n, b) = (1� (s)n)T̂ (s), (3.5)

@nR(s, n, b) = N̂ (s), (3.6)

@bR(s, n, b) = B̂(s), (3.7)

where we have used the relation between the arclength parametrization in the
plane of curvature and the tangential unit vector, @s⇠(s) = T̂ (s). The total
di↵erential change of R can be written as

dR(s, n, b) = (1� (s)n)dsT̂ (s) + dnN̂ (s) + dbB̂(s) =
X

i

h(i)dq
iê(i)(s), (3.8)

qi are the curvilinear cordinates, ê(i)(s) are the curvilinear unit vectors and we
have introduced the scale factors in curvilinear coordinates

h(T ) = 1� (s)n, h(N) = 1, h(B) = 1. (3.9)

As discussed in Section 1.3, the square of the total di↵erential coordinate dis-
placement may be expressed in terms of the metric tensor. Taking the square
of the total di↵erential change in R given in equation (3.8) gives

(dR(s, n, b))2 =
X

i,j

h(i)h(j)ê(i) · ê(j)dq
idqj = ⌘ijdq

idqj , (3.10)

where we have adopted the Einstein convention in the last equality and intro-
duced the metric tensor which may be written in terms of the scale factors as
⌘ij = h(i)h(j)�ij for orthogonal coordinate systems. Using the expression for
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the scale factors given in equation (3.9), the metric tensor for our curvilinear
coordinate system takes the simple diagonal matrix form

⌘ij =

0

@
H(s, n)2 0 0

0 1 0
0 0 1

1

A , (3.11)

where we have defined the curvature dependent scale factor

H(s, n) = 1� (s)n, (3.12)

which depends on both the arclength coordinate s and the normal coordinate
n. Later, we will show that the curvature dependent scale factor appears in
e.g. the gradient operator. Hence, additional curvature-dependent terms will
appear in equations including derivatives like the Usadel equation.

In order to take covariant derivatives, we need to find the Christo↵el symbols.
The Christo↵el symbols are related to the metric tensor through the equation

�k
ij =

1

2
⌘kk(@j⌘ki + @i⌘kj � @k⌘ij), (3.13)

where we have set l = k compared to equation (1.21) since the curvilinear metric
is diagonal. Since there is only one non-constant component of the curvilinear
metric tensor, the Christo↵el symbols are few and rather simple to compute.
The only four non-zero components of the Christo↵el symbols for a curvilinear
coordinate system are

�s
ss =

1

H(s, n)
@sH(s, n),

�n
ss = �H(s, n)@nH(s, n),

�s
ns = �s

sn =
1

H(s, n)
@nH(s, n).

(3.14)
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3.2 Spin-orbit coupling as a result of curvature

When an electron travels with a velocity v in an electric field E, the electron in
its rest frame will experience a magnetic field B = �v⇥E. The electrons mag-
netic moment µe couples to the magnetic field through the Zeeman interaction
with the Hamiltonian

HSO = �µe ·B =
eg

2m
S · (v ⇥E), (3.15)

where S is the spin-vector and g is the g-factor, approximately equal to 2 for an
electron. The Hamiltonian can be rewritten in terms of the electron momentum
p and the Pauli spin matrix vector � = 2S

HSO =
eg

4m2
� · (p⇥E). (3.16)

The Hamiltonian in equation (3.16) manifests a coupling between the electron
momentum and the spin mediated by the electric field. This coupling is known
as spin-orbit coupling. Assuming the electric field is in the z-direction the
Hamiltonian takes the following form

HRSO =
↵

m
(�xpy � �ypx), (3.17)

where ↵ = egE
4m . This is known as Rashba spin-orbit coupling and arises due

to the lack of surface inversion symmetry due to the electric field [49]. ↵ is
the Rashba coe�cient and describes the strength of the spin-orbit interaction.
Structures with bulk inversion symmetry exhibit a di↵erent type of spin-orbit
coupling known as Dresselhaus spin-orbit coupling [50].

Now, consider a piece of a cross section of a curved nanostructure as shown
in Figure 6. The deformation due to the curvature of the structure results in a
variable strain, which is tensile for n > 0 and compressive for n < 0. The strain
along the bent direction is defined as

✏ss =
L(n)� L0

L0
, (3.18)

where L(n) is the length of the bent material at a length n from the center
and L0 = L(0) is the length of the material before bending. The strain can be
expressed with the curvature (s) = 1

R as

✏ss =
(R+ n)✓ �R✓

R✓
= (s)n. (3.19)
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n

s

θ

L(n)

R=1/κ(s)

Figure 6: A piece of the cross section of a curved nanostructure where
n is the normal coordinate and s is the arc length parameter. The red
region (n > 0) is under tensile strain due to the curvature, while the
blue region (n < 0) is under compressive strain. R = 1/(s) is the
curvature radius and ✓ is the curvature angle of the section. L(n) is the
length of the section at n indicated by the dotted line.

The inhomogeneous strain along the curve results in a shift in the band
energies [51], [52]. In the framework of deformation potential theory, the shift
in the band energies may be treated as a varying potential which for small values
of the strain are linear in strain [53]

V (s, n) = �✏ss(s, n) = �(s)n, (3.20)

where � is a characteristic energy scale which for semiconductors is of the order
of 1eV. The potential is attractive in the tensile region (n > 0) and repulsive
in the compressive region (n < 0). From classical electrostatics we know that
a varying potential yields an electric field E = �

1
erV . Using the gradient in

curvilinear coordinates given in equation (A.6) the electric field induced by the
deformation potential in equation (3.20) is

E(s, n) = �
�n

eH(s, n)
@s((s))T̂ (s)�

�(s)

e
N̂ (s). (3.21)

Averaging over the normal coordinate yields the average electric field at the
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arclength point s

hEiN (s) = �
�(s)

e
N̂ (s), (3.22)

where h...iN denotes an average over the normal coordinate n and we have
used the curvilinear Jacobian given in equation (A.13) in the integration over
n. Consequently, the curvature induces an electric field in the normal direction
proportional to the curvature. As previously discussed, an electric field can
generate Rashba type spin-orbit coupling. Hence, using equation (3.16) the
spin-orbit Hamiltonian for the curved nanostructure is

HSO = �
↵N

m
� · (p⇥ N̂ (s)), (3.23)

where ↵N = g�(s)
4m is the Rashba coe�cient determining the strength of the

curvature-induced spin-orbit coupling. The Rashba coe�cient ↵ being propor-
tional to the curvature (s), provides a direct control over the spin-orbit strength
by bending the structure. Since the spin-orbit coupling dictates the spin trans-
port properties of the system, a controllable spin-orbit strength o↵ers tantalizing
possibilities for superconducting spintronic devices like the curvature-induced
spin-orbit-tunable triplet spin-valve discussed in Section 1.1.

Consider a general 3-dimensional curved nanostructure. As explained earlier,
the curvature in a curved nanostructure gives rise to spin-orbit coupling in
the direction normal to the wire. In addition, curved nanowires may have a
second, intrinsic, spin-orbit term independent of the curvature [15], [54] due to
asymmetric confinement in the binormal direction. In general, we may introduce
a spin-orbit vector whose components represents the spin-orbit strength due to
the asymmetric confinement in the di↵erent curvilinear directions↵ = ↵T T̂ (s)+
↵NN̂ (s) + ↵BB̂(s) [45]. The magnitude of the spin-orbit vector determines
the strength of the spin-orbit interaction, while the direction of the spin-orbit
vector defines the spin-orbit axis. The Hamiltonian, neglecting potentials, of
the system may be written as

Ĥ =
p2

2m
�

↵

2m
· � ⇥ p, (3.24)

In order to rewrite equation (3.24) to a general covariant equation we replace
p = �ir with coordinate covariant derivatives and rewrite the cross product in
covariant form

Ĥ = �
1

2m
⌘ijDiDj +

i

2m
↵iE

ijk�j@k. (3.25)

The ordinary Levi-Cevita symbol ✏ijk is not a tensor, hence to keep equa-
tions in tensorial form, we have introduced the contravariant Levi-Cevita tensor
E
ijk = 1p

⌘ ✏
ijk, where

p
⌘ is defined as the square root of the determinant of the

metric tensor ⌘ij . The form of the last term in equation (3.25), suggests the
introduction of a spin-orbit field A, with a vector structure in coordinate space
and a matrix structure in spin space. As a means to keep equations in covariant
form, we define the contravariant spin-orbit field Ak = ↵iE

ijk�j which relates
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to the components of the physical spin-orbit field through equation (1.24). The
Hamiltonian may be written in terms of the contravariant spin-orbit field

Ĥ = �
1

2m
⌘ijDiDj +

i

2m
Ak@k. (3.26)

Relabeling the k-index and lowering the index of the spin-orbit field by con-
tracting with the metric tensor yields

Ĥ = �
1

2m
⌘ij(DiDj � iAiDj). (3.27)

In equation (3.27) we have replaced the regular derivative contracted with the
spin-orbit field with a covariant derivative. Since the Hamiltonian acts on a
scalar wavefunction the regular and covariant derivatives are equivalent. As-
suming that the spin-orbit strength is weak, i.e. the physical components com-
ponents |A(i)| ⌧ 1, equation (3.27) may be expressed in the form of a charged
particle moving in a magnetic field

Ĥ = �
1

2m
⌘ij(Di � iAi)

2, (3.28)

where Ai acts as a background SU(2) gauge field [55], [56]. To ensure the cor-
rect transformation properties under local SU(2) rotations, coordinate covari-
ant derivatives should be replaced with coordinate-gauge covariant derivatives
Di· ! D̃i· = Di � i[Ai, ·] in all relevant equations [57]. The coordinate-gauge
covariant derivative of a covariant vector vj is defined as

D̃ivj = @ivj � �k
ijvk � i[Ai, vj ]. (3.29)

Just as the Cristo↵el symbols ensures the coordinate covariance, the commutator
with the spin-orbit field ensures gauge covariance. Hence, the name coordinate-
gauge covariant derivative is chosen.

Recall our definition of the contravariant spin-orbit field

Ak = ↵iE
ijk�j =

1
p
⌘
↵i✏

ijk�j . (3.30)

The specific form of the contravariant spin-orbit field in curvilinear coordinates
may be found by inserting the determinant of the metric tensor which may
easily be calculated from equation (3.11). By explicitly performing the Einstein
summation using curvilinear coordinates in (3.30) the covariant components of
the spin-orbit field may be expressed as

AT = H(s, n)(↵(N)�(B) � ↵(B)�(N)),

AN = (↵(B)�(T ) � ↵(T )�(B)),

AB = (↵(T )�(N) � ↵(N)�(T )),

(3.31)

where we have defined a local set of physical curvilinear Pauli matrices
�(T ),(N),(B)(s) = � · {T̂ (s), N̂ (s), B̂(s)} following the curved nanostructure and
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↵(T ),(N),(B) are the physical components of the curvilinear spin-orbit vector. By
using the relation between the covariant and physical components of a vector in
equation (1.25), the physical spin-orbit field in the curvilinear basis is

A = (↵(N)�(B) � ↵(B)�(N))T̂ (s) + (↵(B)�(T ) � ↵(T )�(B))N̂ (s)

+ (↵(T )�(N) � ↵(N)�(T ))B̂(s).
(3.32)

A limiting case, which will be discussed in great detail later, is the one-
dimensional nanowire curved as a portion of a circle. The example of a 1D
circular arc is particularly simple since the curvature is a constant and the
infinitesimally thin wire allows for the assumption that the degrees of freedom in
both the normal and binormal direction may be neglected. If so, the curvature
function H(s, n) = 1 and the metric tensor reduces to the Cartesian metric
tensor. In the 1D case the curvature gives rise to spin-orbit coupling in the
direction normal to the wire and the asymmetric confinement in the binormal
direction gives rise to a second, intrinsic, spin-orbit term independent of the
curvature. If we consider no spin-orbit coupling along the wire, the spin-orbit
field reduces to

A = (↵N�B � ↵B�N )T̂ (s), (3.33)

where the notation for physical components may be dropped since for a Cartesian-
like metric tensor there is no distinction between the covariant, contravariant
and physical vector components. Due to the metric being a diagonal matrix
of constants, coordinate covariant derivatives are equivalent to regular partial
derivatives. Hence for a 1D nanowire arc we should replace all derivatives with
gauge covariant derivatives6, rather than the coordinate-gauge covariant deriva-
tive

@i· ! @̃i· = @i ·�i[Ai, ·], (3.34)

similarly to the case for non-curved nanostructures [10]. The major di↵erence
in the case of a curved compared to a straight nanowire is the fact that the
spin-orbit field for a curved nanowire in equation (3.33) depends on the position
along the wire7. Hence second-order derivatives, like in the Usadel-equation,
will produce additional terms proportional to the derivative of the spin-orbit
field.

6Gauge covariant derivatives of a vector may be found by setting �k
ij = 0 in equation (3.29)

7More precisely, the position dependence of the spin-orbit field lies in the curvilinear Pauli
matrices which follows a Frenet-Serret type equation.
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3.3 Usadel equation in curvilinear coordinates

The Usadel equation given in equation (2.24) may be written in covariant form
by replacing derivatives with coordinate covariant derivatives and writing the
scalar product using tensor notation

iDF ⌘
ijDi(ǧDj ǧ) = [✏⌧̂z � �̂� ⌘ijhi�̂j , ǧ]. (3.35)

The scalar quantities, like the energy ✏ and the order parameter �̂, are invariant
and hence remain the same compared to equation (2.24). In order to include
spin-orbit coupling we should replace the coordinate covariant derivatives with
coordinate-gauge covariant derivatives given in equation (3.29)

iDF ⌘
ijD̃i(ǧD̃j ǧ) = [✏⌧̂z � �̂� ⌘ijhi�̂j , ǧ], (3.36)

where D̃ivj = @ivj � �k
ijvk � i[Âi, vj ] and Âi = (Ai,�A⇤

i ) is the covariant
spin-orbit field in Nambu space. Using the definition of the coordinate-gauge
covariant derivative, the left-hand side of the Usadel equation may be written
explicitly in terms of the covariant spin-orbit field and Cristo↵el symbols

iDF ⌘
ijD̃i(ǧD̃j ǧ) = iDF ⌘

ij
{@i(ǧ@j ǧ)� �k

ij(ǧ@kǧ)� i[Âi, ǧ@j ǧ]

� i@i(ǧ[Âj , ǧ]) + i�k
ij ǧ[Âk, ǧ]� [Âi, ǧ[Âj , ǧ]]}.

(3.37)

In section 3.1 we derived the metric tensor (3.11) and Cristo↵el symbols (3.14)
for a curvilinear coordinate system. Since the Cristo↵el symbols in equation
(3.37) are contracted with a diagonal metric tensor, the only non-zero Cristo↵el
symbols will be the ones with equal lower indices

�s
ss =

1

H(s, n)
@sH(s, n), �n

ss = �H(s, n)@nH(s, n). (3.38)

Inserting the Christo↵el symbols into equation (3.37) the spin-orbit independent
part of the equation may be expanded in curvilinear coordinates as

⌘ij{@i(ĝ@j ĝ)� �k
ij(ĝ@kĝ)} =

1

H(s, n)
@s

✓
1

H(s, n)
ǧ@sǧ

◆

+
1

H(s, n)
@n(H(s, n)ǧ@nǧ) + @b(ǧ@bǧ).

(3.39)

The term in equation (3.37) involving the coordinate covariant derivative of
the spin-orbit field may be expanded in curvilinear coordinates in terms of the
physical components of the spin-orbit field in the curvilinear basis

⌘ij{�i@i(ĝ[Âj , ĝ]) + i�k
ij ĝ[Âk, ĝ]}

=
1

H(s, n)
@s(iÂ(T ) � ĝiÂ(T )ĝ) +

1

H(s, n)
@n[H(s, n)(iÂ(N) � ĝiÂ(N)ĝ)]

+ @b(iÂ(B) � ĝiÂ(B)ĝ),

(3.40)
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where we have used the normalization condition for the quasiclassical Green’s
function given in (2.21). The final terms involving the spin-orbit field in equation
(3.37) may be combined and expanded in curvilinear coordinates

⌘ij{�i[Âi, ĝ@j ĝ]� [Âi, ĝ[Âj , ĝ]]}

= �[iÂ(T ), ĝ(
1

H(s, n)
@s � iÂ(T ))ĝ + iÂ(T )]

� [iÂ(N), ĝ(@n � iÂ(N))ĝ + iÂ(N)]

� [iÂ(B), ĝ(@b � iÂ(B))ĝ + iÂ(B)].

(3.41)

Combining the curvilinear expansions of the di↵erent terms in the left hand
side of the Usadel equation given in equations (3.39)-(3.41) the full curvilinear
Usadel equation including spin-orbit coupling may be expressed as

iDF [r̃s(ĝr̃sĝ) +
1

H(s, n)
r̃n(H(s, n)ĝr̃nĝ) + r̃b(ĝr̃bĝ)]

= [✏⌧̂z � �̂� h(T )�̂(T ) � h(N)�̂(N) � h(B)�̂(B), ǧ],

(3.42)

where we have defined the gauge covariant derivative in terms of the physi-
cal components of the spin-orbit field r̃i· = ri · �i[Â(i), ·] where ri is the
component of the curvilinear gradient r = ( 1

H(s,n)@s, @n, @b) in the i-direction,

Â(i) = (Ai,�A⇤
i ) and Ai is the i-th physical component of the spin-orbit field

A = (↵(N)�(B) � ↵(B)�(N),↵(B)�(T ) � ↵(T )�(B),↵(T )�(N) � ↵(N)�(T )). (3.43)

On the right hand side of equation (3.42) we have defined the physical curvilin-
ear components of the exchange field vector, which is related to the Cartesian
components h(T ),(N),(B) = h(x, y, z) · {T̂ (s), N̂ (s), B̂(s)}. �(T ),(N),(B) are the
local physical curvilinear Pauli matrices defined in a similar manner.

In addition to the spin-orbit field, the introduction of curvature induces
additional terms to the Usadel equation through the curvature dependent scale
factor H(s, n). Take for example the normal derivative term in equation (3.42).
By inserting the curvature dependent scale factor given in equation (3.12) we
may write the normal derivative term as

1

H(s, n)
r̃n(H(s, n)ĝr̃nĝ) =

 
r̃n +

1

1� n
(s)

!
(ĝr̃nĝ). (3.44)

From the above equation we see that the introduction of the curvature dependent
scale factor functions similarly as a spin-orbit field as it introduces an additional
term in the derivative. However, this additional term in the derivative only
appears in the left-most derivative in contrast to a spin-orbit field. This is a
manifestation of the fact that the Cristo↵el symbols, and hence the curvature
dependent scale factor, only appears when taking derivatives of tensors of rank
� 1.
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Due to the assumption of no torsion, scale factors do not appear in the
binormal derivative term in equation (3.42).

A similar derivation can be performed in order to find the curvilinear expres-
sion for the Kuprianov-Lukichev boundary conditions given in equation (2.25).
The covariant form of the Kuprianov-Lukichev boundary conditions may be
written as

ĝRa Diĝ
R
a =

1

2La⇣a
[ĝR1 , ĝ

R
2 ], (3.45)

where the label a signifies the boundary condition for material a and should not
be confused with a covariant index. If we want to include spin-orbit coupling,
we should change the coordinate covariant derivative with a coordinate-gauge
covariant derivative

ĝRa D̃iĝ
R
a =

1

2La⇣a
[ĝR1 , ĝ

R
2 ], (3.46)

Expanding the covariant Kuprianov Lukichev boundary condition in curvilinear
coordinates we achieve

ĝRa r̃iĝ
R
a =

1

2La⇣a
[ĝR1 , ĝ

R
2 ], (3.47)

where r̃i is the gauge covariant derivative in terms of the physical spin-orbit
field discussed earlier.
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4 Nanowire arc

The simplest curved nanostructure is a nanowire arc curved in the form of a
circle-portion as illustrated in Figure 7. For a circle-portion the curvature is
constant (s) =  = 1

R , where R is the radius of the full circle. Assuming that
the nanowire arc residing in the xy-plane is infinitesimally thin, we may neglect
the degrees of freedom in the normal and binormal direction. Consequently,
the curvature dependent scale function H(s, n) = 1 and the metric tensor re-
duces to the form of a Cartesian metric tensor. For coordinate systems with a
Cartesian-like metric, there is no destinction between covariant/contravariant
and physical tensor components and we may drop the paranthesis notation on
physical components.

Figure 7: An illustration of a circle-portion nanowire, here chosen to
be a semicircle, with a constant curvature radius R = 1

(s) residing in
the xy-plane. At any arclength point s, measured from the right end of
the semicircular nanowire, we have a local set of basis vectors T̂ (s) and
N̂ (s). For a right handed curvilinear coordinate system the binormal
unit vector B̂(s) is constant and points out of the plane.

For a 1D nanowire arc the derivatives in the binormal and normal direction
disappears from the Usadel equation which takes the simple form

iDF @̃s(ǧ@̃sǧ) = [✏⌧̂z � �̂� hT �̂T � hN �̂N � hB�̂B , ǧ], (4.1)

where we have defined the gauge covariant derivative @̃s· = @s · �i[ÂT , ·] cor-
responding to H(s, n) = 1 for the coordinate gauge covariant derivative in
curvilinear coordinates used in the curvilinear Usadel equation (3.42). ÂT =
diag(AT ,�A⇤

T ), where AT = ↵N�B �↵B�N is the tangential component of the
spin-orbit field derived in Section 3.2. The curvilinear Pauli matrices are defined
as

�T = � · T̂ (s), �N = � · N̂ (s), �B = � · B̂(s), (4.2)

where � is the Cartesian Pauli spin vector. In order to find the explicit form
of the Pauli matrices in curvilinear coordinates the three basis vectors are
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needed. The basis vectors are related through the torsion free Frenet-Serret
formulas given in equation (3.4) and can be expressed in terms of the arc length
parametrization ⇠(s) in the following way

T̂ (s) =
d

ds
⇠(s),

N̂ (s) =
1

(s)

d2

ds2
⇠(s),

B̂(s) = êz.

(4.3)

The arc length parametrization of a circle-portion is straightforward to compute
and can be expressed in the simple form ⇠(s) = 1

 cos(s)êx + 1
 sin(s)êy

using a Cartesian coordinate system as shown in Figure 7. Using the arclength
parametrization we can express the curvilinear basis vectors in equation (4.3)
for the case of a circle-portion

T̂ (s) = � sin(s)êx + cos(s)êy,

N̂ (s) = � cos(s)êx � sin(s)êy,

B̂(s) = êz,

(4.4)

following a right handed coordinate system.
The curvilinear Pauli matrices in equation (4.2) are now a simple task to

compute

�T =

✓
0 �ie�is

ieis 0

◆
, �N =

✓
0 �e�is

�eis 0

◆
, �B =

✓
1 0
0 �1

◆
. (4.5)

As discussed in the end of Section 3.2, the position dependence of the curvilinear
Pauli matrices in the spin-orbit field ÂT induces additional terms in the second
order derivatives in the Usadel equation. In the next Section these terms will be
calculated explicitly, when performing a parametrization of the Usadel equation.

Tuning the curvature in the case for nanowire arcs is done by fixing one end
of the wire and forming the wire into a smaller or larger portion of the full circle
as shown in Figure 8. Since the curvature is inversely proportional to the radius,
forming the wire into a larger portion of the full circle yields a larger curvature.
Oppositely, forming it into a smaller portion yields a smaller curvature. By
normalizing in terms of the length of the nanowire L, the curvature may be
expressed as  = ⇡

L for a semicircle,  = ⇡/2
L for a quarter circle and so on.
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S

Figure 8: Fixing the end with the superconductor (S) allows for manip-
ulating the curvature  = 1/R, where R is the circle radius, by bending
the other end to form a portion of a circle. The larger the portion, the
smaller the radius and hence the larger the curvature.

4.1 Parametrization

As discussed in Section 2.1, the retarded, advanced and Keldysh Green’s func-
tions in Nambu space are related to each other in thermal equilibrium. Hence,
we can focus solely on one of the three, e.g. the retarded component. Recall
the definition of the retarded quasiclassical Green’s function

ĝR =

 
gR fR

�f̃
R

�g̃R

!
. (4.6)

The symmetry of the retarded quasiclassical Green’s function suggests that a
parametrization can be made in order to reduce the problem to an equation of
2x2 matrices. In quasiclassical Green’s function theory, two main parametriza-
tions are applied; ✓-parametrization, where the quasiclassical Green’s function
is expressed in terms of hyperbolic functions [30], and Riccati parametrization,
where the quasiclassical Green’s function is expressed in terms of a 2x2 matrix
� [59]. ✓-parametrization is widely used in analytical analyses, but is poten-
tially problematic in numerical calculations due to the divergence of hyperbolic
functions. The Riccati parametrization however, is tailored for numerical work
as the �-matrix spans all values of the quasiclassical Green’s function in a finite
range from 0� 1.

The retarded quasiclassical Green’s function may be expressed in terms of
the Riccati matrix � in the following way

ĝR =

✓
N 0
0 �Ñ

◆✓
1 + ��̃ 2�
2�̃ 1 + �̃�

◆
, (4.7)
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where N is a 2x2 matrix defined as N = (1� ��̃)�1. The form of the N-matrix
implies some useful identities

N� = �Ñ , Ñ �̃ = �̃N. (4.8)

The derivative of N may be expressed in terms of derivatives of �

@sN = N [(@s�)�̃ + �(@s�̃)]N. (4.9)

In order to find the Riccati parametrized Usadel equation, the specific form
of the left-hand side of the Usadel equation in (4.1) is needed

@̃s(ĝ
R@̃sĝ

R) = @s(ĝ
R@̃sĝ

R)� i[ÂT , ĝ
R@̃sĝ

R]

= @s(ĝ
R@sĝ

R)� i@s(ĝ
RÂT ĝ

R
� ÂT )� i[ÂT , ĝ

R@sĝ
R]� [ÂT , ĝ

RÂT ĝ
R].

(4.10)

For a nanowire arc with assymetric confinement in the binormal direction, the
tangential spin-orbit field is given by ÂT = diag(AT ,�A⇤

T ) where AT = ↵N�B�

↵B�N . The curvilinear Pauli matrices follow the Frenet-Serret formulas given
in equation (3.4). Consequently, the derivative of the tangential spin-orbit field
is

@sAT = �↵B�T . (4.11)

The spatial variation of the spin-orbit field induces additional terms in the left-
hand side of the Usadel equation proportional to the product of the curvature
and the spin-orbit strength in the binormal direction.

The Riccati parametrized Usadel equation for a nanowire arc is given by

D[(@2s�) + 2(@s�)Ñ �̃(@s�)]

= i(��⇤� ��)� ih · (�� � ��⇤)� 2i✏�

+ 2iDF (@s�)Ñ(A⇤
T + �̃AT �) + 2iDF (AT + �A⇤

T �̃)N(@s�)

+ 2DF (AT � + �A⇤
T )Ñ(A⇤

T + �̃AT �) +DF (A
2
T � � �(A⇤

T )
2)

+ iDF↵B(�T � + ��T ),

(4.12)

where h and � are the exchange field and Pauli vector in the curvilinear basis8.
The Riccati parametrized Kuprianov-Lukichev boundary conditions in ma-

terial 1 and 2 are

@s�1 = i(�1A
⇤
T +AT �1) +

1

L1⇣1
(1� �1�̃2)N2(�2 � �1), (4.13)

@s�2 = i(�2A
⇤
T +AT �2) +

1

L2⇣2
(1� �2�̃1)N1(�2 � �1). (4.14)

In some limiting cases, the Riccati parametrized Usadel equation is simple to
solve analytically. One relevant example is the bulk of a superconductor which is

8A full derivation of the Riccati parametrized Usadel equation for a spatially inhomoge-
neous spin-orbit field can be found in Appendix B

31



Nanowire arc

a good approximation for superconductor-ferromagnet proximity systems with
a weak exchange field. In the bulk of the superconductor there exists no varia-
tions in the quasiclassical Green’s function and we may neglect the derivatives
in equation (4.12). Assuming no spin-orbit e↵ects in the superconductor, the
Riccati parametrized Usadel equation takes the simple form

�BCS�
⇤�BCS �� = 2✏�BCS, (4.15)

with the solution

�BCS =
sinh ✓

cosh ✓ + 1
i�2e

i�, �̃BCS = �
sinh ✓

cosh ✓ + 1
i�2e

�i�, (4.16)

where the superconducting phase � is written explicitly, and we have defined a
parameter ✓

✓ =

8
><

>:

1
2 ln

✏+|�|
|�|�✏ � i⇡2 ✏ > |�|

1
2 ln

✏+|�|
✏�|�| ✏ < |�|

. (4.17)

Since we are interested in how the superconducting correlations behave inside
the curved ferromagnet, we can assume a bulk solution of the gamma matrix in
the superconductor and focus on the Usadel equation inside the ferromagnet.
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4.2 Weak proximity limit

When the interface transparency between the superconductor and the ferromag-
net is low, only a small number of Cooper pairs manages to tunnel from one
side to the other, known as the weak proximity limit. In such a scenario the
components of the � matrix are expected to be small, i.e. |�ij | ⌧ 1 and terms of
the order O(�2) may be neglected [11]. Since N ⇡ 1 in this limit, the anomalous
quasiclassical Green’s function may be related directly to the gamma matrix,
fR

⇡ 2�.
The anomalous quasiclassical Green’s function can be decomposed in terms

of the so called d-vector d, which transforms as a vector under a rotation of
spin, and the scalar singlet component fs [60], [61]. The decomposition can be
written in covariant form as

fR = (fs + ⌘ijdi�j)i�y. (4.18)

For a nanowire arc, we can write equation (4.18) in curvilinear coordinates as

fR = (fs + dT�T + dN�N + dB�B)i�y, (4.19)

Equation (4.19) can be expressed in matrix form

fR = 2� =

✓
(idT + dN )e�is dB + fs

dB � fs (idT � dN )eis

◆
, (4.20)

using the expression for the curvilinear Pauli matrices for a nanowire arc curved
as a portion of a circle given in equation (4.5). In the weak proximity limit, the
Riccati parametrized Usadel equation for the nanowire arc given in equation
(4.12) reduces to a linear di↵erential equation in gamma

DF@
2
s� =� ih · (�� � ��⇤)� 2i✏� + 2iDF [(@s�)A

⇤
T +AT (@s�)]

+ 2DF [AT �A
⇤
T + �(A⇤

T )
2] +DF [(AT )

2� � �(A⇤
T )

2]

� iDF [(@sAT )� + �(@sA
⇤
T )].

(4.21)

Using the weak proximity representation of the gamma matrix given in equation
(4.20), each term in the linearized Riccati parametrized Usadel equation may be
expressed in matrix form. Performing matrix multiplication between the weak
proximity gamma matrix and the Pauli matrices given in equation (4.5), the
exchange field part of equation (4.21) is given by

�ih · (�� � ��⇤) =

✓
(hT fs � ihNfs)e�is

�ih · d� ihBfs
ih · d� ihBfs (hT fs + ihNfs)eis

◆
. (4.22)

The next issue is to tackle the spin-orbit dependent part of equation (4.21).
For a 1D planar nanowire arc with asymmetric confinement in the binormal
direction, the spin-orbit field is given by AT = ↵N�B � ↵B�N . By insertion,
we find that the second last term in equation (4.21) is equal to zero for this
choice of spin-orbit field. Using the Frenet-Serret formulas, the derivative of the
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spin-orbit field is given by @sAT = �↵B�T . Inserting this into the last term
in equation (4.21), the following matrix expression is achieved

�DF i[(@sAT )� + �(@sA
⇤
T )] = DF↵B

✓
dBe�is

�dN
�dN �dBeis

◆
. (4.23)

The final two spin-orbit terms may be expressed in matrix form as

[(@s�)A
⇤
T +AT (@s�)]

(1,1) = e�is[↵N (@s � i)(idT + dN ) + ↵B@sdB ],

[(@s�)A
⇤
T +AT (@s�)]

(1,2) = ↵B [@s(idT )� idN ],

[(@s�)A
⇤
T +AT (@s�)]

(2,1) = ↵B [@s(idT )� idN ],

[(@s�)A
⇤
T +AT (@s�)]

(2,2) = eis[�↵N (@s + i)(idT � dN ) + ↵B@sdB ],

(4.24)

[AT �A
⇤
T + �(A⇤

T )
2](1,1) = e�is[↵2

N (idT + dN ) + ↵N↵BdB + ↵2
B(idT )],

[AT �A
⇤
T + �(A⇤

T )
2](1,2) = ↵2

BdB + ↵N↵BdN ,

[AT �A
⇤
T + �(A⇤

T )
2](2,1) = ↵2

BdB + ↵N↵BdN ,

[AT �A
⇤
T + �(A⇤

T )
2](2,2) = eis[↵2

B(idT )� ↵N↵BdB + ↵2
N (idT � dN )],

(4.25)

where (i, j) are the components of the matrix. The last term needed is the left-
hand side of equation (4.21). Taking the second derivative of the weak proximity
gamma matrix given in (4.20) gives

@2s� =
1

2

✓
e�is(@s � i)2(idT + dN ) @2s (dB + fs)

@2s (dB � fs) eis(@s + i)2(idT � dN )

◆
. (4.26)

Comparing componentwise the matrix representation of the right and left-
hand side of the linearized Riccati parametrized Usadel equation in (4.21), we
attain four coupled di↵erential equations

DF

2
(@s � i)2(idT + dN ) = (hT � ihN )fs � i✏(idT + dN ) +DF↵BdB

+ 2DF [↵
2
N (idT + dN ) + ↵N↵BdB + ↵2

B(idT )]

+ 2iDF [↵N (@s � i)(idT + dN ) + ↵B@sdB ],

(4.27)

DF

2
(@s + i)2(idT � dN ) = (hT + ihN )fs � i✏(idT � dN )�DF↵BdB

+ 2DF [↵
2
N (idT � dN )� ↵N↵BdB + ↵2

B(idT )]

+ 2iDF [�↵N (@s + i)(idT � dN ) + ↵B@sdB ],

(4.28)

DF

2
@2s (dB + fs) = �i(h · d+ hBfs)� i✏(dB + fs)�DF↵BdN

+ 2DF (↵
2
BdB + ↵N↵BdN )� 2DF [↵B(@s(dT )� dN )],

(4.29)

DF

2
@2s (dB � fs) = i[h · d� hBfs]� i✏(dB � fs)�DF↵BdN

+ 2DF [↵
2
BdB + ↵N↵BdN ]� 2DF [↵B(@s(dT )� dN )].

(4.30)

34



Nanowire arc

The form of the equations suggests a simplification by adding and subtracting
equation (4.28) from (4.27) and equation (4.30) from (4.29) respectively. Per-
forming this simplification results in the final form of the four coupled di↵erential
equations for the curvilinear components of the d-vector and the singlet

iDF

2
@2sdT = ✏dT + hT fs + iDF [2(↵

2
N + ↵2

B) + (


2
+ 2↵N )]dT

+ iDF (2↵N + )@sdN + 2iDF↵B@sdB ,
(4.31)

iDF

2
@2sdN = ✏dN + hNfs + iDF [2↵

2
N + (



2
+ 2↵N )]dN

� iDF (2↵N + )@sdT + iDF↵B(2↵N + )dB ,
(4.32)

iDF

2
@2sdB = ✏dB + hBfs + 2iDF↵

2
BdB + iDF↵B(2↵N + )dN

� 2iDF↵B@sdT ,
(4.33)

iDF

2
@2sfs = ✏fs + h · d. (4.34)

From the equations we see that the exchange field of the ferromagnet induces
the triplets parallel to the field. In order to generate the triplets perpendicular
to the field, either spin-orbit coupling or curvature is needed, but comes at the
cost of a higher e↵ective energy of the triplets. Equations (4.32) and (4.33)
manifests a coupling between the normal and binormal triplets due to the spin-
orbit coupling in the normal and binormal directions. Both curvature and the
spin-orbit coupling in the binormal direction need to be nonzero for this coupling
to be present.

In all equations (4.31)-(4.34), the curvature  and the spin-orbit strength due
to the curvature ↵N always appear together in an additive fashion. Since ↵N is
proportional to , the form of the equations suggests that the curvature acts as
an enhancement of the spin-orbit coupling in the normal direction. Interestingly,
from inspection of equations (4.31)-(4.34) it is simple to see that choosing the
spin-orbit strength due to the curvature to be ↵N = �


2 , all spin-orbit e↵ects

due to curvature vanish. By this choice of ↵N , we now have a theoretical way
of singling out the intrinsic binormal part of the spin-orbit coupling.

35



Nanowire arc

4.2.1 Tangential exchange field with no intrinsic spin-orbit coupling

The simplest limiting case of the nanowire arc is the example of a tangential
exchange field h = hT T̂ (s) and no spin-orbit coupling due to the asymmetric
confinement in the binormal direction ↵B = 0. We will keep  and set ↵N = 0
in the coupled di↵erential equation for the d-vector and the singlet in equa-
tion (4.31)-(4.34). Since ↵N is proportional to  and both  and ↵N appear
in an additive fashion in equations (4.31)-(4.34), the curvature works as a en-
hancement of the normal direction spin-orbit coupling or vice versa. Keeping
 non-zero and ↵N zero thus functions as a rescaling of the curvature. Setting
↵N = ↵B = 0 in equations (4.31)-(4.34) results in a simplified set of equations

iDF

2
@2sdT = hT fs + ✏T dT + �@sdN , (4.35)

iDF

2
@2sdN = ✏NdN � �@sdT , (4.36)

iDF

2
@2sdB = ✏BdB , (4.37)

iDF

2
@2sfs = hT dT + ✏fs, (4.38)

where we have defined the e↵ective energies for each component of the d-vector,
✏i, and a mixing factor �

✏T = ✏+
iDF

2
2, (4.39)

✏N = ✏+
iDF

2
2, (4.40)

✏B = ✏, (4.41)

� = iDF. (4.42)

As seen in equation (4.40) and (4.41), the curvature of the wire yields an imag-
inary shift in the e↵ective energy due to inelastic scattering e↵ects, leading to
the destruction of Cooper pairs.

The physical implications of equation (4.35)-(4.38) can easily be understood
by considering a superconductor in close proximity to a curved ferromagnet. The
Cooper pairs in the superconductor are in the singlet state fs. Approaching the
interface, the exchange field leads to a mixing between the incident singlet state,
and the short-range triplet state dT parallel to the exchange field manifested by
equation (4.38). The curvature of the ferromagnet induces the transition from
the short-range triplet to the long-range triplet dN normal to the exchange field
as reflected by the mixing term in equation (4.35) and (4.36). The generation of
long-range triplets depends on the mixing factor which in turn is proportional
to the curvature . The binormal component dB is entirely decoupled from
both the singlet component and the two other triplet components. Hence, the
binormal component can not be generated from the singlet component and will
thus not be present in the case of a nanowire arc nanowire with ↵B = 0.
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The e↵ective energy shift of both the short and long-range triplets are pro-
portional to the curvature squared. A high curvature will thus provide a large
triplet mixing factor at the cost of a higher e↵ective energy, making the triplets
less energetically favourable in comparison to the singlet.

4.2.2 Equivalence of a curved nanowire and a straight nanowire with
a rotating exchange field

As discussed in Section 1.1, a possible way of generating long-range triplets
is to introduce an inhomogeneous, rotating exchange field in the ferromagnet.
In fact, there is an equivalence between a curved nanowire with a tangential
exchange field and a straight wire of the same length with an exchange field
which rotates in accordance with the curved wire.

For simplicity, we consider a semicircular curved nanowire and a straight
nanowire along the y-axis with exchange field corresponding to the one of the
curved wire as displayed in Figure 9.

L=πR

x

y

R

Figure 9: The semicircular nanowire with tangential exchange field
h(s) = hT̂ (s) and the straight wire with corresponding exchange field.
The nanowire length is L = ⇡R.

The rotating exchange field in the straight wire is given in a Cartesian basis
by

h(s) = �h sin(s)x̂+ h cos(s)ŷ, (4.43)

where s = y is the arclength coordinate along the straight wire. In the limit
of weak proximity the singlet and triplet components in the straight wire are
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described by the linearized parametrization of the Usadel equation

iDF

2
@2sfs = h · d+ ✏fs, (4.44)

iDF

2
@2sd = fsh+ ✏d. (4.45)

Using the expression for the rotating exchange field in equation (4.43) and sep-
arating equation (4.45) component wise yields

iDF

2
@2sfs = �h sin(s)dx + cos(s)dy + ✏fs, (4.46)

iDF

2
@2sdx = �h sin(s)fs + ✏dx, (4.47)

iDF

2
@2sdy = h cos(s)fs + ✏dy, (4.48)

iDF

2
@2sdz = ✏dz. (4.49)

If there is an equivalence between the semicircular curved nanowire and the
straight wire with rotating exchange field, the linearized parametrization of the
Usadel equation for the semicircular wire given in equation (4.35)-(4.38) should
reduce to the corresponding equations for the straight wire given in equation
(4.46)-(4.49) when performing a coordinate transformation from curvilinear to
Cartesian coordinates.

In Cartesian coordinates the components of the d-vectors for the semicircular
wire are

dT = � sin(s)dx + cos(s)dy,

dN = � cos(s)dx � sin(s)dy,

dB = dz.

(4.50)

The equations for the d-vector for the semicircular wire contains both a first
and second derivative with respect to the arclength coordinate s. Due to the
s-dependence of the d-vector transformed to Cartesian coordinates in equation
(4.50), extra terms will appear

@sdT = � sin(s)@sdx + cos(s)@sdy �  cos(s)dx �  sin(s)dy,

@2sdT = � sin(s)@2sdx + cos(s)@2sdy � 2 cos(s)@sdx

� 2 sin(s)@sdy + 2 sin(s)dx � 2 cos(s)dy,

(4.51)

@sdN = � cos(s)@sdx � sin(s)@sdy +  sin(s)dx �  cos(s)dy,

@2sdT = � cos(s)@2sdx � sin(s)@2sdy + 2 sin(s)@sdx

� 2 cos(s)@sdy + 2 cos(s)dx + 2 sin(s)dy.

(4.52)

Inserting the derivatives of the d-vector expressed in Cartesian coordinates into
equation (4.35)-(4.36) gives

iDF

2

⇥
� sin(s)@2sdx + cos(s)@2sdy

⇤
= E(� sin(s)dx + cos(s)dy) + hfs,

(4.53)
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iDF

2

⇥
� cos(s)@2sdx � sin(s)@2sdy

⇤
= E(� cos(s)dx � sin(s)dy). (4.54)

The expressions can be simplified into two separate di↵erential equations for
dx and dy separately. Combining the two new equations with the equation for
dB = dz and fs gives

iDF

2
@2sdx = �h sin(s)fs + ✏dx, (4.55)

iDF

2
@2sdy = h cos(s)fs + ✏dy, (4.56)

iDF

2
@2sdz = ✏dz, (4.57)

iDF

2
@2sfs = h cos(s)dy � h sin(s)dx + ✏fs, (4.58)

which is exactly the same equation as for the straight nanowire with a rotating
exchange field given in equation (4.46)-(4.49).

The equivalence between the two systems is not only an interesting theoret-
ical result. It has the clear practical benefit of allowing for a direct comparison
between the result for a curved nanowire to the extensively researched nanowire
with rotating field. This equivalence provides a way of troubleshooting calcu-
lations and furthermore may give pointers in the direction of investigation and
research.
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5 Magnetization

In the framework of superconductor-ferromagnet proximity systems, the mag-
netization is a measure of the spin-accumulation of Cooper pairs in the ferro-
magnet. In the quasiclassical limit the magnetization is defined as [13], [62], [63]

M = M0

Z
d✏Tr{�̂ĝK}, (5.1)

where M0 is the constant reference magnetization given by M0 = gµBN0�/16,
µB is the Bohr magneton, g is the g-factor and N0 is the density of states at the
Fermi level. In thermal equilibrium the Keldysh component of the quasiclassical
Green’s function can be directly related to the retarded component

ĝK = (ĝR + ⌧̂z(ĝ
R)†⌧̂z) tanh(

�✏

2
). (5.2)

In order to get a better physical understanding of the influence of sin-
glet/triplet pairing on the magnetization, investigation of the weak proximity
limit of equation (5.1) is useful. Due to the smallness of the induced magnetism
a first order approximation will vanish. A second order weak proximity limit
is thus needed. Keeping terms of order O(�2) the retarded component of the
quasiclassical Green’s function will reduce to

ĝR ⇡

✓
2��̃ + 1 2�
�2�̃ �2�̃� � 1

◆
, (5.3)

and the adjoint is given by

(ĝR)† ⇡

✓
2�̃†�† + 1 �2�̃†

2�† �2�†�̃† � 1

◆
. (5.4)

Using the second order approximation of the retarded component of the
quasiclassical Green’s function in equation (5.2), the Keldysh component in the
second order weak proximity limit can be written in terms of the components
of the gamma matrix. For the case of a nanowire arc curved in the form of a
portion of a circle, the spin vector may be constructed from the curvilinear
Pauli matrices given in equation (4.5). The magnetization in the tangential
direction can be expressed to second order in the component �ij as

MT = 2M0

Z
d✏{[ieis(�11�̃12 + �12�̃22) + c.c.]

�[ieis(�11�̃21 + �21�̃22) + c.c.]

+[ie�is(�12�̃11 + �22�̃12) + c.c.]

�[ie�is(�21�̃11 + �22�̃21) + c.c.]} tanh(
�✏

2
),

(5.5)

where c.c. denotes the complex conjugate. Note that the complex conjugate and
the tilde conjugation are not equivalent and has to be treated separately, but
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due to the integration over all energies a simplification can be made. Consider
the following integral

Z
d✏(�ij(✏)�̃kl(✏))

⇤ tanh(
�✏

2
) =

Z
d✏�⇤ij(✏)�kl(�✏) tanh(

�✏

2
). (5.6)

Since the integral runs over all energies ✏, we can without loss of generality let
✏! �✏ in the integrand. Hence, the integral can be written as

Z
d✏�⇤ij(✏)�kl(�✏) tanh(

�✏

2
) =

Z
d✏�⇤ij(�✏)�kl(✏) tanh(�

�✏

2
)

= �

Z
d✏�⇤ij(�✏)�kl(✏) tanh(

�✏

2
) = �

Z
d✏�̃ij(✏)�kl(✏) tanh(

�✏

2
).

(5.7)

Using this, equation (5.5) can be simplified to

MT = 4M0

Z
d✏[ieis(�11�̃12 + �12�̃22) + ie�is(�12�̃11 + �22�̃12)

� ie�is(�21�̃11 + �22�̃21)� ieis(�11�̃21 + �21�̃22)] tanh(
�✏

2
).

(5.8)

This can be further simplified to

MT = 4M0

Z
d✏[ie�is(�̃11(�12 � �21) + �22(�̃12 � �̃21))

+ ieis(�11(�̃12 � �̃21) + �̃22(�12 � �21)) tanh(
�✏

2
).

(5.9)

Inserting the d-vector formulation of the gamma matrix in curvilinear coor-
dinates given in equation (4.20) in equation (5.9), the final expression for the
magnetization in the second order weak proximity limit is obtained

MT = 4M0

Z
d✏(d̃T fs � dT f̃s) tanh(

�✏

2
). (5.10)

Performing a similar derivation yields the following expression for the second
order weak proximity magnetization in the normal and binormal directions

MN = 4M0

Z
d✏(d̃Nfs � dN f̃s) tanh(

�✏

2
). (5.11)

MB = 4M0

Z
d✏(d̃Bfs � dB f̃s) tanh(

�✏

2
). (5.12)

The magnetization vector for a nanowire arc can hence conveniently be expressed
in terms of the d-vector as

M = 4M0

Z
d✏(d̃fs � df̃s) tanh(

�✏

2
). (5.13)
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Using a similar argumentation as in equation (5.7), equation (5.14) may be
expressed in terms of the real part of the product between the d-vector and the
singlet

M = 8M0

Z
d✏Re{d̃fs} tanh(

�✏

2
). (5.14)

In the second order weak proximity limit the magnetization is expressed
as an energy integral of the product of the triplet d-vector and the singlet.
Equation (5.14) is a general result valid for any curvilinear coordinate system
by generalizing the curvilinear d-vector as d = dT T̂ (s)+dNN̂ (s)+dBB̂(s). The
magnetization in curvilinear coordinates can be related to Cartesian coordinates
using the component transformation established in equation (A.3).

In the following we will analyse the magnetization in SF nanowires, where the
ferromagnetic wire is curved into portions of a circle, by numerically solving the
Riccati parametrized Usadel equation given in (4.12). The interface resistance
ratio is chosen to be ⇣ = 3 and the temperature is chosen to be T = 0.05TC ,
where TC is the critical temperature of the superconductor. Both the spin-orbit
strengths and the curvature is given in units of the ferromagnet length, e.g.
↵ = 1 corresponds to ↵L = 1. When solving the Riccati parametrized Usadel
equation we assume a bulk solution in the superconductor given in equation
(4.16). The expression for the magnetization in the quasiclassical limit given
in (5.1) involves an integral over an infinite energy range. In order to solve the
integral numerically, the introduction of a cut-o↵ energy is needed. Here, we
have found that a cut-o↵ energy of ✏c = 15� is a suitable choice considering
accuracy, run time and weak exchange fields9.

1D curved magnetic wires are expected to exhibit a tangential exchange field
for curvatures below some material-dependent, critical curvature [64]. Hence,
we have chosen a tangential exchange field h = �(1, 0, 0) when calculating the
magnetization.

Figure 10 shows the magnetization in the tangential (left), normal (middle)
and binormal (right) directions as a function of the arclength s for di↵erent
curvatures. For a 1D curved nanowire with asymmetric confinement in the
binormal direction, ↵T = 0. Hence the only contribution to the magnetization
in the tangential direction is the exchange field and MT displays no curvature-
dependence. The curvature in the nanowire induces magnetization pointing in
the normal direction MN as seen in the middle column in Figure 10. In the weak
proximity equation for the normal component of the magnetization in equation
(5.11), the integrand is a product of the normal component of the d-vector and
the singlet. Consequently, a non-zero normal component of the magnetization
implies the presence of the normal component of the d-vector. Hence, from the
plot of MN in Figure 10, the curvature induces the normal component of the d-
vector. The normal component of the d-vector is perpendicular to the exchange
field and is thus a long-range triplet.

9The gamma matrix varies around the value of the exchange field. Hence for a strong
exchange field e.g. 20�, the cut-o↵ energy needs to be at a higher value.
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Figure 10: The normalized magnetization in the tangential (left), nor-
mal (middle) and binormal (right) directions as a function of the nor-
malized arclength s for di↵erent curvatures and spin-orbit strengths.
The di↵erent curvatures are represented by di↵erent line styles and col-
ors and the spin-orbit strength increases looking from the top panel and
down according to the figure title. The exchange field is chosen to be in
the tangential direction h = �(1, 0, 0). The length of the ferromagnetic
wire is L = 4⇠, where ⇠ is the superconducting coherence length. All
curvatures are normalized to the wire length L.
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Figure 11: The normalized magnetization in the tangential (left), nor-
mal (middle) and binormal (right) directions as a function of the nor-
malized arclength s for di↵erent curvatures and spin-orbit strengths.
The di↵erent curvatures are represented by di↵erent line styles and col-
ors and the spin-orbit strength increases looking from the top panel and
down according to the figure title. The exchange field is chosen to be in
the tangential direction h = �(1, 0, 0). The length of the ferromagnetic
wire is L = 0.8⇠, where ⇠ is the superconducting coherence length. All
curvatures are normalized to the wire length L.
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At the interface between the superconductor and the curved ferromagnetic
wire (s = 0), MN increases upon increasing curvature. As expected, the mag-
netization in the normal direction vanishes for zero curvature. Rescaling the
curvature by adding the curvature-dependent spin-orbit strength, ↵N works as
a strengthening of MN at the interface as seen in the middle of the last row in
Figure 10.

When ↵B = 0 there is no magnetization in the binormal direction as seen in
the right column in Figure 10. However, if ↵B is nonzero, magnetization in the
binormal direction is induced. The magnitude of the magnetization at the in-
terface between the superconductor and the ferromagnet (s = 0), increases with
increasing spin-orbit strength. The curvature will also a↵ect the magnetization
in the binormal direction, where larger curvature yields a larger magnetization
at the interface. The non-zero binormal magnetization for a tangential exchange
field implies the existence of the binormal component of the d-vector, which is
a long-range triplet. Hence, adding curvature to a wire with intrinsic spin-orbit
coupling due to asymmetric confinement in the binormal direction, induces both
the dB long range triplet, due to the intrinsic spin-orbit coupling, and the dN
long-range triplet, due to the curvature.

Both MN and MB are non-monotonic as a function of the arclength of the
wire, but due to the short coherence length compared to the length of the wire,
the magnetization in all directions tends to zero.

Figure 11 shows the magnetization for a much shorter wire length L = 0.8⇠.
Decreasing the wire length results in a, in general, non-zero magnetization in
the opposite end of the ferromagnet (s = 1). As for the wire length L = 4⇠, the
magnetization in the normal direction in the wire of length L = 0.8⇠ is induced
by adding curvature, where increasing the curvature increases the magnetiza-
tion. As seen in the middle column of Figure 11, the normal component of the
magnetization changes sign around the midpoint of the wire (s = 0.5). For
non-zero ↵B a binormal magnetization is induced. As for the case L = 4⇠, the
magnetization increases as ↵B is increased. The magnetization in the normal
direction in the top row and the plots of the magnetization in the binormal
direction in the right column in Figure 11 displays a similar behaviour. Com-
paring the plots, one can observe that the curvature of  = ⇡ yields a larger
magnetization at the interface than a straight wire with ↵B = 1. Consequently,
a curvature of  = ⇡ is expected to give spin-orbit e↵ects greater than a straight
wire with ↵ = 1.

Figure 12 shows evolution of the magnetization vector along the ferromag-
netic semicircular nanowire of length L = 0.8⇠, with a tangential exchange field.
The left figure shows the magnetization vector for ↵N = ↵B = 0, while the right
figure shows the magnetization vector for ↵N = 0, ↵B = 3. The superconduc-
tor is placed at s = 0, the right end of the wire in Figure 12. As seen in the
left figure, the magnitude of the magnetization is largest at the interface of the
superconductor and the wire, and decreases along the wire. At the interface the
curvature contribution to the magnetization dominates and the magnetization
points in the normal direction with a slight tilt in the tangential direction due
to the contribution from the tangential exchange field. In the middle of the wire
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Figure 12: The magnetization vector depicted as red arrows along a
semicircular wire. The superconductor is placed in the right end of the
curved wire. The exchange field is chosen to be h = �(1, 0, 0) and
the curved wire is of length L = 0.8⇠. In the left figure the spin-orbit
strengths are ↵N = ↵B = 0, while in the right figure ↵N = 0, ↵B = 3.

the exchange field dominates and the magnetization is almost tangential. In the
left end of the wire the magnetization points in the negative normal direction
and is hence dominated by the curvature contribution.

Adding a nonzero spin-orbit strength in the binormal direction induces mag-
netization in the binormal direction as seen at the right in Figure 12. For
a relatively large spin-orbit strength ↵B = 3, the magnetization behaves in
an oscillatory manner. The same oscillatory behaviour is present in straight
nanowires with spin-orbit coupling [13].
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6 Spin and charge current in curved nanostruc-
tures

6.1 Weak proximity current density

Placing a superconductor in both ends of a ferromagnetic wire allows for currents
of both charge and spin to flow through the junction. The introduction of
curvature in the ferromagnetic wire results in the generation of long-range triplet
which in terms can give long-ranged currents through the junction. In order to
investigate the influence of curvature on the current through the junction we
will analyse the weak proximity current density equations, but first, we will take
a step back and consider a straight wire with intrinsic spin-orbit coupling.

6.1.1 Straight nanowire with intrinsic Rashba spin-orbit coupling

In the quasiclassical approximation, the spin current density in a superconductor-
ferromagnet heterostructure with intrinsic spin-orbit coupling is given by [63],
[65]

jS,i = jS,0

Z
d✏Tr{⌧̂z�̂i(ĝr̃ĝ)K}, (6.1)

where jS,0 = N0DF
8 and r̃· = r ·�i[Â, ·] is the Gauge covariant derivative with

Â = diag(A,�A⇤), where A = (Ax, Ay, Az) is the spin-orbit field introduced
due to the intrinsic spin-orbit coupling in the ferromagnet. In the case of Rashba
spin-orbit coupling the only nonzero component of the spin-orbit field is Az =
↵(�x � �y).

In thermal equilibrium, the spin current density may be written solely in
terms of the retarded quasiclassical Green’s function

jS,i = jS,0

Z
d✏Tr{⌧̂z�̂i[ĝ

R
r̃ĝR + ⌧̂z(ĝ

R
r̃ĝR)†⌧̂z]} tanh

�✏

2
. (6.2)

In the second order weak proximity limit, the retarded quasiclassical Green’s
function may be written in terms of the gamma matrix as

ĝR ⇡

✓
2��̃ + 1 2�
�2�̃ �2�̃� � 1

◆
. (6.3)

In equation (6.2), the reoccurring term is the derivative term ĝRr̃ĝR. Con-
sidering a ferromagnetic wire situated along the z-direction with Rashba spin-
orbit coupling in the corresponding direction, which is the case for nanowires
with radially broken inversion symmetry in the x + y direction, the derivative
term takes the form

ĝRr̃ĝR = ĝR@z ĝ
R
� i[Âz, ĝ

R] = ĝR@z ĝ
R
� iĝRÂz ĝ

R + iÂz, (6.4)

where the normalization condition for the quasiclassical Green’s function was
utilized in the last step. Using the second order weak proximity representation
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of the quasiclassical Green’s function in equation (6.3), the term involving the
derivative in equation (6.4) can be expressed to second order in matrix form as

ĝR@z ĝ
R = 2

✓
(@z�)�̃ � �(@z �̃) @z�

@z �̃ (@z �̃)� � �̃(@z�)

◆
. (6.5)

Similarly, the spin-orbit dependent part in equation (6.4) can be expressed in
matrix form as

� iĝRÂz ĝ
R + iÂz

=

✓
�2iAz��̃ � 2i��̃Az � 4i�A⇤

z �̃ �2iAz� � 2i�A⇤
z

2i�̃Az + 2iA⇤
z �̃ 2iA⇤

z �̃� + 2i�̃�A⇤
z + 4i�̃Az�

◆
.

(6.6)

The adjoint of equation (6.5) and (6.6) is

(ĝR@z ĝ
R)† = 2

✓
�̃†(@z�†)� (@z �̃†)�† @z �̃†

@z�† �†(@z �̃†)� (@z�†)�̃†

◆
, (6.7)

[�iĝRÂz ĝ
R + iÂz)

†](1,1) = 2i�̃†�†A†
z + 2iA†

z �̃
†�† + 4i�̃†(A⇤

z)
†�†,

[�iĝRÂz ĝ
R + iÂz)

†](1,2) = �2iA†
z �̃

†
� 2i�̃†(A⇤

z)
†,

[�iĝRÂz ĝ
R + iÂz)

†](2,1) = 2i�†A†
z + 2i(A⇤

z)
†�†,

[�iĝRÂz ĝ
R + iÂz)

†](2,2) = �2i�†�̃†(A⇤
z)

†
� 2i(A⇤

z)
†�†�̃† � 4i�†A†

z �̃
†.

(6.8)

Inserting the matrices in equation (6.5), (6.6) and the adjoints in equation
(6.7), (6.8) into equation (6.2), the trace of the product of 4x4 matrices may be
considered as two separate trace-terms of products of 2x2 matrices

Tr{⌧̂z�̂i[ĝ
R
r̃ĝR + (⌧̂z ĝ

R
r̃ĝR⌧̂z)

†]}

= 2Tr{�i[(@z�)�̃ � �(@z �̃) + �̃†(@z�
†)� (@z �̃

†)�† � iAz��̃

� i��̃Az � 2i�A⇤
z �̃ + i�̃†�†A†

z + iA†
z �̃

†�† + 2i�̃†(A⇤
z)

†�†]}� t.c.,

(6.9)

where t.c. denotes the tilde conjugation of the previous trace. Since the
nanowire is directed in the z-direction, the most interesting component of the
current is the z-component. Carrying out the matrix multiplications in the trace
with �i = �z and performing the trace, yields the following expression in terms
of the components of the gamma matrix

Tr{⌧̂z�̂z[ĝ
R
r̃ĝR + (⌧̂z ĝ

R
r̃ĝR⌧̂z)

†]}

= 4[�̃11@z�11 � �⇤11@z �̃
⇤
11 � �̃22@z�22 + �⇤22@z �̃

⇤
22]

� 2↵[(i+ 1)�11�̃21 + (i� 1)�12�̃11] + 2↵[(i+ 1)�21�̃22 + (i� 1)�22�̃12]

+ 2↵[(i+ 1)�⇤12�̃
⇤
11 + (i� 1)�⇤11�̃

⇤
21]� 2↵[(i+ 1)�⇤22�̃

⇤
12 + (i� 1)�⇤21�̃

⇤
22]

� t.c.

(6.10)

Since the trace in equation (6.10) is in the integrand of equation (6.2), the rela-
tion derived in equation (5.7) can be utilized. Consequently, we get a simplified
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expression for the trace

Tr{⌧̂z�̂z[ĝ
R
r̃ĝR + (⌧̂z ĝ

R
r̃ĝR⌧̂z)

†]}

= �2↵(i+ 1)�11(�̃21 + �̃12)� 2↵(i� 1)�̃11(�21 + �12)

+ 2↵(i+ 1)�̃22(�21 + �12) + 2↵(i� 1)�22(�̃21 + �̃12)

+ 8[�̃11@z�11 � �̃22@z�22]� t.c.

(6.11)

In Cartesian coordinates the gamma matrix can be written in terms of the
components of the d-vector and the singlet

� =
1

2

✓
idy � dx dz + fs
dz � fs idy + dx

◆
. (6.12)

Inserting the components of the gamma matrix into the trace in equation (6.11)
yields, after simplifications,

Tr{⌧̂z�̂z[ĝ
R
r̃ĝR + (⌧̂z ĝ

R
r̃ĝR⌧̂z)

†]} = 4i↵[dxd̃z � dyd̃z � d̃ydz + d̃xdz]

+ 4i[d̃y@zdx � d̃x@zdy]� t.c.
(6.13)

Inserting the trace in equation (6.13), the weak proximity spin current density
may be written in terms of the d-vector as

jS,z = 4ijS,0

Z
d✏[d̃y@zdx � d̃x@zdy + dy@z d̃x � dx@z d̃z

+ 2↵(dxd̃z � dyd̃z � d̃ydz + d̃xdz) tanh
�✏

2
.

(6.14)

Using equation (5.7), the expression for the spin current density can be given
in terms of the imaginary components of the product of singlets and triplets

jS,z = 8jS,0

Z
d✏[Im{d̃x@zdy � d̃y@zdx}+ 2↵Im{dyd̃z � dxd̃z}] tanh

�✏

2
. (6.15)

As expected the weak proximity spin current is independent of the singlet
fs, who carry no net spin.
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6.1.2 Nanowire arc with curvature-induced Rashba spin-orbit cou-
pling

In the quasiclassical approximation, the spin current density is given by equation
(6.1). For the case of a 1D nanowire arc the gradient is replaced by the derivative
with respect to the arclength, r ! @s. Here we will focus on the curvature-
induced spin-obit coupling, and for that purpose we assume that the spin-orbit
coupling due to the asymmetric confinement in the binormal direction ↵B =
0. Furthermore, we will set ↵N = 0 and investigate the -dependence of the
current. As discussed in Section 4.2, this choice is valid due to the fact that
↵N works as a rescaling of . Assuming thermal equilibrium, the spin current
density along the bent direction may be written solely in terms of the retarded
quasiclassical Green’s function

jS,s = jS,0

Z
d✏Tr{⌧̂z�̂T [ĝ

R
rĝR + (⌧3ĝ

R
rĝR⌧3)

†]} tanh
�✏

2
, (6.16)

where �̂T = diag(�T ,�
⇤
T ) is the Pauli matrix in the tangential direction in

Nambu space. Since ↵B = ↵N = 0 the spin-orbit field is zero and introducing
gauge covariant derivatives is not necessary.

Using the weak proximity expression for the retarded quasiclassical Green’s
function in equation (6.3), the derivative term in equation (6.16) takes the
matrix form

ĝR@sĝ
R = 2

✓
(@s�)�̃ � �(@s�̃) @s�

@s�̃ (@s�̃)� � �̃(@s�)

◆
, (6.17)

while the adjoint term is given by

(ĝR@sĝ
R)† = 2

✓
�̃†(@s�†)� @s(�̃†)�† @s�̃†

@s�† �†(@s�̃†)� @s(�†)�̃†

◆
. (6.18)

Using equations (6.17) and (6.18), the trace of a product of 4x4 matrices in
equation (6.16) may be written as two traces of products of 2x2 matrices

Tr{⌧̂z�̂T [ĝ
R@sĝ

R + (⌧3ĝ
R@sĝ

R⌧3)
†]}

=2Tr{�T [(@s�)�̃ � �(@s�̃) + �̃†(@s�
†)� @s(�̃

†)�†]}� t.c.
(6.19)

Inserting the expression for the Pauli matrix for a nanowire arc curved in the
shape of a circle portion given in equation (4.5) and carrying out the traces
yields

Tr{⌧̂z�̂T [ĝ
R@sĝ

R + (⌧3ĝ
R@sĝ

R⌧3)
†]}

= 2[ieis(�̃12@s�11 + �̃22@s�12)� ie�is(�̃11@s�21 + �̃21@s�22)]

+ 2[ieis(�̃⇤11@s�
⇤
21 + �̃⇤21@s�

⇤
22)� ie�is(�̃⇤12@s�

⇤
11 + �̃⇤22@s�

⇤
12)]

� 2[ieis(�11@s�̃12 + �12@s�̃22)� ie�is(�21@s�̃11 + �22@s�̃21)]

� 2[ieis(�⇤21@s�̃
⇤
11 + �⇤22@s�̃

⇤
21)� ie�is(�⇤11@s�̃

⇤
12 + �⇤12@s�̃

⇤
22)]� t.c.,

(6.20)
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which, when inserted in the integrand in equation (6.16), yields a simplified
weak proximity expression of the spin current density by utilizing the property
in equation (5.7)

jS,s = 4jS,0

Z
d✏ieis[(�̃21 + �̃12)@s�11 � �11@s(�̃21 + �̃12)

+ �̃22@s(�21 + �12)� (�21 + �12)@s�̃22] tanh
�✏

2
� t.c.

(6.21)

Using the components of the gamma matrices for a nanowire arc given in equa-
tion (4.20), the terms in equation (6.21) may be expressed in terms of the
curvilinear component of the d-vector

@s�11 =
1

2
e�is(@s � i)(idT + dN ),

@s�̃22 =
1

2
e�is(@s � i)(�id̃T � dN ),

�21 + �12 = dB .

(6.22)

Inserting the components of the gamma matrix and using the expressions in
equation (6.22) in equation (6.21), the final form of the tangential component
of the spin current in a nanowire arc is achieved

jS,s = 8jS,0

Z
d✏[Im{d̃N@sdB � d̃B@sdN}� Im{d̃BdT }] tanh

�✏

2
. (6.23)

To check the validity of the result we look at the limit ! 0 corresponding to
a straight nanowire directed along the y-axis. In this limit, dT ! dy, dN ! �dx
and dB ! dz and equation (6.23) reduces to

jS,y = 8jS,0

Z
d✏[Im{d̃z@sdx � d̃x@sdz}] tanh

�✏

2
. (6.24)

To compare this with the result for the straight nanowire given in equation
(6.15), we perform a cyclic permutation of the Cartesian coordinates resulting
in

jS,z = 8jS,0

Z
d✏[Im{d̃x@sdy � d̃y@sdx}] tanh

�✏

2
, (6.25)

which is equivalent to equation (6.15) for zero spin-orbit coupling (↵ = 0).
A similar derivation can be made for the charge current. In quasiclassical

Green’s function theory the charge current may be expressed in thermal equi-
librium in terms of the retarded quasiclassical Green’s function

jQ = jQ,0

Z
d✏Tr{⌧̂z[ĝ

R
rĝR + (⌧3ĝ

R
rĝR⌧3)

†]} tanh
�✏

2
, (6.26)

where jQ,0 = eN0DF
4 . Using equations (6.17) and (6.18), the trace in the equa-

tion for the charge current (6.26) is

Tr{⌧̂z[ĝ
R@sĝ

R + (⌧3ĝ
R@sĝ

R⌧3)
†]}

= 2Tr{(@s�)�̃ � �(@s�̃) + �̃†(@s�
†)� (@s�̃

†)�†}� t.c.
(6.27)
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Performing the trace results in an expression containing the components of the
gamma matrix

Tr{⌧̂z[ĝ
R@sĝ

R + (⌧3ĝ
R@sĝ

R⌧3)
†]}

= 8[�̃11@s�11 + �̃21@s�12 + �̃12@s�21 + �̃22@s�22].
(6.28)

The derivatives of the diagonal components produces additional terms due to
the curvature dependence as seen in (6.22). Inserting the components of the
gamma matrix in terms of the d-vector and the singlet into equation (6.26) we
may express the charge current in terms of the components of the d-vector and
the singlet

jQ = 4jQ,0

Z
d✏[d̃T@sdT + d̃N@sdN + d̃B@sdB � f̃s@sfs

+ (d̃NdT � d̃T dN )� t.c.] tanh
�✏

2
,

(6.29)

which we may rewrite in terms of the real part of the integrand

jQ = 4jQ,0

Z
d✏[Re{d̃T@sdT + d̃N@sdN + d̃B@sdB � f̃s@sfs

� dT@sd̃T � dN@sd̃N � dB@sd̃B + fs@sf̃s

+ (d̃NdT � d̃T dN )}] tanh
�✏

2
,

(6.30)

The form of the weak proximity expression of the charge current in (6.30)
suggests that we can split the charge current into five contributions jQ =
jQ,T + jQ,N + jQ,B � jQ,s + jQ,, where the triplet (T,N,B) contribution is
defined as

jQ,i = 4jQ,0

Z
d✏Re{d̃i@sdi � di@sd̃i} tanh

�✏

2
, (6.31)

for i 2 {T,N,B} and the singlet contribution

jQ,s = 4jQ,0

Z
d✏Re{f̃s@sfs � fs@sf̃s} tanh

�✏

2
. (6.32)

Finally the curvature contribution is defined as

jQ, = 8jQ,0

Z
d✏Re{d̃NdT � dN d̃T } tanh

�✏

2
. (6.33)

The form of the curvature contribution to the charge current in equation (6.33)
suggests that the curvature of the ferromagnetic wire results in a finite charge
current produced by the existence of a triplet spin expectation value. This may
be interpreted as a kind of inverse Edelstein e↵ect, which converts a spin accu-
mulation into a charge current perpendicular to the spin current, thus e↵ectively
working as a spin-charge conversion [66], [67]. The inverse Edelstein e↵ect has
been investigated for straight Josephson junctions with spin-obit coupling as
the generator [68], but as shown here, the same e↵ect may be generated using
curvature. The curvature contribution jQ, has a similar form to the equivalent
expression for a spin-orbit contribution in a straight Josephson junction.
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6.1.3 Curvature induced long-ranged Josephson e↵ect and dynami-
cal 0� ⇡ transition

By solving equation (6.16) and (6.26) numerically, we can investigate the influ-
ence of curvature on the spin and charge current in Josephson junctions. We
have chosen the temperature to be T = 0.05TC where TC is the critical temper-
ature of the superconductors. In order to solve the integral in equation (6.16)
and (6.26) numerically we have chosen a suitable cut-o↵ energy ✏C = 15�.
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Figure 13: The charge current density normalized by the constant charge
current jQ,0 = eN0DF

4 as a function of the phase di↵erence � of the two
superconductors for di↵erent curvatures . The exchange field is chosen
to be tangential and of strength equal to the superconducting gap �.
The spin-orbit strength in both the normal and binormal direction is
set to zero and the interface resistance ratio is ⇣ = 5. The ferromagnetic
wire is of length L = 2⇠.

The charge current through a Josephson junction is independent of the posi-
tion in the ferromagnetic wire. The value of this constant depends on the phase
di↵erence � between the two superconductors. Figure 13 shows the charge cur-
rent as a function of the phase-di↵erence for di↵erent values of the curvature.
When the phase di↵erence is � = 0 or � = ⇡ no charge current will flow through
the junction. The maximum value of the charge current occurs at a phase dif-
ference of � = ⇡/2. The value of the charge current at � = ⇡/2 is known as the
critical charge current. As seen from Figure 13, the value of the critical charge
current varies with the curvature, where the maximum absolute value occurs
at  = 0 and  = ⇡. However, the charge current at  = 0 and  = ⇡ have
di↵erent signs, which may be interpreted as the current flowing in the opposite
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direction. The curvature appears to switch sign at a critical curvature between
 = ⇡/2 and  = 3⇡/4. The transition between positive and negative current is
known as a 0� ⇡ transition in the literature [32].

The 0� ⇡ transitions are not a novel phenomena, and has been extensively
researched and may have application in spintronic devices and quantum com-
puters. In most cases, the 0� ⇡ transition is realised by changing the length of
the ferromagnet in the Josephson junction [69], [70], [71]. Such a procedure is
di�cult to realise in practice since it would require a replacement of the ferro-
magnet. However, applying curvature in order to generate the 0� ⇡ transition
provides a fully dynamical control highly practical for application purposes.
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Figure 14: The absolute value of the critical charge current for di↵erent
lengths of the curved ferromagnetic wire as a function of the curvature
. The critical charge current for a given length is normalized to its
maximal value. The exchange field is chosen to be tangential and of
strength equal to the superconducting gap �. The spin-orbit strength
in both the normal and binormal direction is set to zero and the interface
resistance ratio is ⇣ = 5.

Figure 14 shows the absolute value of the critical charge current for di↵erent
lengths of the ferromagnetic wire as a function of the curvature. The critical
charge current is shown normalized to its maximum value in order to provide a
comparable plot with di↵erent ferromagnetic wire lengths. Here we see that the
0� ⇡ transition happens at roughly C ⇡ 3⇡/5 for a Josephson junction with a
ferromagnetic wire of length L = 2⇠. By finely tuning the curvature around this
critical value of  we can toggle between the 0 and ⇡ state. For a ferromagnetic
wire length of L = 4⇠ the value of the critical curvature is shifted to a lower
value C ⇡ ⇡/3. For short wire lengths L = ⇠ and long wire lengths L = 6⇠
the 0 � ⇡ transition is not present with curvatures in the range  2 {0,⇡}.
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Adding torsion permits higher curvatures without the two superconductors in
both ends to coincide in space and could possibly allow for a 0�⇡ transition for
L = ⇠. Figure 14 suggests that the critical value of the curvature occurs at lower
values for longer wire lengths and vice versa. The case of L = 2⇠ is particularly
interesting since the magnitude of the critical charge current at  = 0 and  = ⇡
is roughly equal. This is not the case for the wire of length L = 4⇠.
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Figure 15: The absolute value of the singlet- (blue) and triplet- (red)
contribution to the charge current density as a function of the phase
di↵erence � for di↵erent curvatures . The exchange field is in the
tangential direction with strength � and the length of the ferromagnet
is L = 6⇠. The spin-orbit strength in both the normal and binormal
direction is set to zero and the interface resistance ratio is ⇣ = 5.

The 0�⇡ transition may be explained by singling out the singlet and triplet
contribution to the charge current. The transition from a singlet-dominated to a
triplet-dominated system is manifested in the sign change of the charge current.
The contribution to the charge current from the singlets and triplets are shown
in Figure 15 where the contributions are plotted as a function of the phase
di↵erence � for di↵erent curvatures and a ferromagnetic wire of length L = 6⇠.
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Since the curvature is the generator of triplets, only singlet currents are present
in the Josephson junction for zero curvature. Introducing curvature induces
triplet correlations in the ferromagnet as seen in Figure 15. For a curvature of
 = ⇡/4 the system is still dominated by the singlets. Increasing the curvature
to  = ⇡/2 results in the transition to a triplet dominated charge current. For a
semicircular Josephson junction ( = ⇡) the system is completely dominated by
triplets and the singlet contribution to the charge current is negligible. Hence,
such a semicircular Josephson junction exhibits a pure triplet current. The
triplet current is present trough a long junction compared to the coherence
length (L = 6⇠), known as the long-ranged Josephson e↵ect [72].

56



Spin and charge current in curved nanostructures

6.2 Spin torque

In order to get a better physical understanding of spin currents in curved nanos-
tructures it is beneficial to investigate the expectation value of the spin vector
of the triplet Cooper pair. The expectation value can be expressed in terms of
the d-vector [73]

hSi = id⇥ d̃. (6.34)

The d-vector may be decomposed in terms of the short-range triplet parallel to
the exchange field and the long-range triplet normal to the exchange field, d =
dSR + dLR. As a specific example, consider an exchange field in the tangential
and normal direction h = hT T̂ (s) + hNN̂ (s). Without loss of generality, the
short- and long-range triplet components may be expressed as

dSR = dSR
hT

h
T̂ (s) + dSR

hN

h
N̂ (s), (6.35)

dLR = g2
hN

h
T̂ (s)� g2

hT

h
N̂ (s) + g1B̂(s), (6.36)

where dSR, g1 and g2 are scalar functions and h is the exchange field strength.
These definitions of the short- and long-range triplets preserve the corresponding
parallel and normal conditions to the exchange field. Using equation (6.36) and
the formula for curvilinear cross products given in equation (A.5), the long-
range and short-range contribution to the expectation value of the spin vector
is

hSiLR = idLR ⇥ d̃LR = i(g1g̃2 � g2g̃1)


hT

h
T̂ (s) +

hN

h
N̂ (s)

�
, (6.37)

hSiSR = 0. (6.38)

As expected, the long-range contribution to the spin-vector expectation value is
non-zero and points along the direction of the exchange field. The short-range
contribution to the spin-vector expectation value is zero due to the up/down
spin-structure of the short range triplets. The total expectation value of the
spin vector is

hSitot = i(dSR + dLR)⇥ (d̃SR + d̃LR) = hSiLR + hSimix + hSiex, (6.39)

where we have identified a mixing and exchange term given by

hSimix = S1(
hT

h
N̂ (s)�

hN

h
T̂ (s)), hSiex = S2B̂(s), (6.40)

and Sj = i(d̃SRgj � g̃jdSR). Hence, there exists an interference term between
the long-range and short-range triplets consisting of a mixing term where the
spin polarization depends on the direction of the exchange field and an exchange
term independent of the exchange field. The strength of the interference term
depends implicitly on the curvature of the system through the scalar functions
dSR, g1 and g2 in the prefactor Sj .
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Figure 16: The normalized exchange spin current as a function of the
phase di↵erence � for a straight wire  = 0 and a semicircular wire
 = ⇡, both of length L = 2⇠. The exchange field is chosen to be
tangential and of strength equal to the superconducting gap �. The
spin-orbit strength in both the normal and binormal direction is set to
zero and the interface resistance ratio is ⇣ = 3.

Figure 16 shows the exchange spin current density jS,ex as a function of
the phase di↵erence for  = 0 and  = ⇡ and a tangential exchange field.
For a straight wire ( = 0) with no spin-orbit coupling, no long-range triplets
are generated and the superconducting correlations will be in either the singlet
state, or polarized along the tangential exchange field. Consequently, there is
no contribution to the exchange spin current for  = 0 as seen in Figure 16.
Introducing curvature induces an exchange spin current. The exchange spin-
current is finite for both � = 0 and � = ⇡ in contrast to the charge current [74].
For a phase di↵erence of 0 and ⇡ we thus have a pure spin-current flowing in
the junction with total absence of charge currents.

The exchange spin current density jS,ex, given in equation (6.25), may be
interpreted as a field-like spin-torque acting on the magnetization, an e↵ect
present even in the absence of charge currents. Due to the misalignment of the
exchange spin-expectation value given in equation (6.40) and the the tangential
exchange field h, the exchange spin current will act as a spin-torque in order to
rotate h perpendicular to the spin, eliminating the misalignment. Such a spin-
torque has been studied for straight superconductor-ferromagnet nanostructures
with intrinsic spin-orbit coupling [73].
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7 Summary, outlook and concluding remarks

Superconducting spintronics is a major emerging field in condensed matter
physics, allowing for dissipationless currents and protection from spin-flip scat-
tering. A key aspect of superconducting spintronics is the proximity e↵ect,
where properties of adjacent materials can leak into each other. A particu-
larly interesting system is the superconductor-ferromagnet proximity system,
where the magnetization in the ferromagnet tends to align electron spins allow-
ing for spin-polarized currents. A problem with conventional superconductor-
ferromagnet proximity systems is the short decay lengths of the superconducting
singlet correlations. One way to resolve this is to introduce spin-orbit coupling
to the ferromagnet, resulting in the generation of long-range triplets. However,
for superconductor-ferromagnet proximity systems to have greater applicability
in the creation of superconducting spintronic devices, a controllable, or tunable,
spin-orbit coupling would be beneficial.

In this thesis we have investigated the possibility of using curvature as a
tunable spin-orbit coupling in di↵usive superconductor-ferromagnet proximity
structures. The presence of curvature produces a strain-induced electric field
breaking the inversion symmetry, resulting in a Rashba-type spin-orbit coupling
with strength proportional to the curvature. Using the framework of quasiclas-
sical Green’s functions, the Usadel equation in curvilinear coordinates valid for
torsion-free nanowires and thin films was derived. The weak proximity equations
for the limiting case of a 1D nanowire arc curved in the shape of a circle-portion
and the equivalence with a straight wire with a rotating exchange field was
shown. Furthermore, the curvilinear Usadel equation was solved numerically
in order to plot physical observables like the magnetization and current for 1D
nanowire arcs. The magnetization and the charge current confirmed the pres-
ence of curvature-induced long-range triplets in nanowires curved as a portion
of a circle.

The generality of the theory of curved proximity structures presented in
Section 3 in this thesis, allows for many options of further development. Below
we outline three di↵erent possible extensions of the theory of curved proximity
systems.

7.1 Non-uniform curvature and torsion

A natural continuation in the development of the theory of di↵usive curved
superconductor-ferromagnet proximity structures is to consider non-constant
curvature structures like an ellipse. As we derived in this thesis, the spin-orbit
strength due to the curvature is proportional to the curvature itself. Hence, for
ellipses the spin-orbit strength and thus also the spin-orbit field will be inho-
mogeneous throughout the ellipse. Elliptical quantum rings have been studied
in the clean limit [75], [76] where it was found that the triplet d-vector exhibits
winding along the curved profile, but has yet to be investigated for di↵usive
systems.
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In this thesis we have only considered torsion-free structures, since the ad-
dition of torsion is expected to work as an additional curvature-like term. How-
ever, adding torsion does give a higher geometrical degree of freedom. A concrete
example is the curved Josephson junction considered in Section 6. In order to
avoid the two superconductors at the ends of the curved ferromagnet to coincide
in space, the curvature cannot exceed  = ⇡ (a semicircle). The addition of tor-
sion can solve this problem, allowing for a spiral wire with arbitrary curvature.

7.2 Curvature in other classes of materials

Due to the generality of the approach when considering curved di↵usive prox-
imity systems, the theory may be used in the study of other types of materials
such as e.g. antiferromagnets. Antiferromagnets show great promise for spin-
tronics due to their robustness towards external magnetic fields and ultrafast
dynamics [77].

In this thesis we have considered curved ferromagnets in close proximity
with straight superconductors. However, adding curvature to the superconduc-
tor rather than (or in combination with) the ferromagnet is possible. Adding
curvature to the superconductor a↵ects the superconducting order parameter
which will depend on the curvature [78]. Consequently, the Usadel equation
should be modified in order to encapsulate the curvature dependence of the
order parameter. In addition, the assumption of a bulk solution in the su-
perconductor is not expected to be a good approximation when introducing
curvature in the superconductor. Hence, the Usadel equation should be solved
both in the ferromagnet and the superconductor.

Curvature may be added to a combination of two superconductors and two
ferromagnets in order to create an SFSF ring. As discussed in Section 1.1, such a
system may be used as a SQUID (superconducting quantum interference device).
Adding curvature to a superconductor induces spin-orbit coupling which a↵ects
the superconducting pairing symmetry, and allows for the generation of spin-
triplets in the superconductor manifested by an amplification of the Josephson
current [78]. Hence, a SFSF ring may work as a curvature-induced long-range
spin-triplet SQUID.

7.3 2D curved thin films

One possible continuation, is to consider 2D and 3D curved structures like the
thin film discussed Section 3. The Usadel equation in 1D is non-trivial to solve
analytically, but can be done numerically using a partial di↵erential equation
solver like the bvp6c used in this thesis. However, in higher dimension (2D,3D)
this is no longer an option and a more complicated numerical solution scheme
is needed. To solve the 2D Usadel equation valid for curved thin films given in
equation (3.42) one can utilize a numerical method known as the finite element
method. The finite element method is based on discretization of the derivatives
in the partial di↵erential equation using a Taylor expansion. In 2D, such a
discretization results in a grid where derivatives at a certain coordinate point
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are calculated using the values at neighbouring points as pictured in Figure 17.
This solution scheme sounds rather simple, but things get exponentially more
di�cult when considering more complicated geometries like arbitrarily curved
thin films. The following introduction for the finite element method for arbitrary
geometries is heavily based on the PhD thesis by Amundsen [63].

S

F

Figure 17: Discretization of a SF bilayer, showing the neighbouring
points at site (i, j) on the grid.

The Riccati parametrized Usadel equation may be generalized in the form

r
2�(n) = F (n)(�, �̃,r�,r�̃), (7.1)

where � = (�11, �12, �21, �22, �̃11, �̃12, �̃21, �̃22). Similarly the Riccati parametrized
Kuprianov-Lukichev boundary conditions may be expressed as

n̂ ·r�(n) = G(n)(�, �̃). (7.2)

Multiplying equation (7.1) with a test function a(r) and performing an integra-
tion over the volume to be studied ⌦, results in an integral equation

�

Z

⌦
drr�(n)

·ra(r) +

Z

@⌦
dSn̂ ·r�(n)a(r)�

Z

⌦
F (n)a(r) = 0, (7.3)

where @⌦ is the boundary of ⌦ and the divergence theorem has been used.
By discretising the space defined by ⌦, where each discrete point is called

an element, we may expand the solution to equation (7.1) in terms of a finite
set of basis functions �i

�(n)(r) =
X

i

�(n)
i �i(r), (7.4)

where �(n)
i are some expansion coe�cients to be determined. The test function

a(r) may be chosen to be the sum of the basis functions

a(r) =
X

i

�i. (7.5)
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The contribution to the integral equation (7.3) from a single element may now
be written in terms of the basis functions

�

X

ij

Z

⌦e

drr�i ·r�j�
(n)
i +

X

ij

Z

@⌦e

dSG(n)
i �j �

X

ij

Z

⌦e

F (n)
i �j = 0, (7.6)

where ⌦e is the element volume.
When considering curved geometries the elements of the discretization of

the space ⌦ will be deformed. The deformation may be described by the basis
functions

x =
X

i

�i(⇠), y =
X

i

�i(⌘),
X

i

�i(⇣), (7.7)

where {⇠, ⌘, ⇣} are the coordinates in a corresponding straight coordinate system
as pictured in Figure 18.

Figure 18: Transformation from a deformed element in a coordinate
system {x, y, z} to a coordinate system {⇠, ⌘, ⇣} where the element is
undistorted. The transformation is described by the Jacobian matrix J .

The transformation from r = (x, y, z) to ⇢ = (⇠, ⌘, ⇣) may be described
by the Jacobian matrix, J . The coordinate di↵erential in the integration in
equation (7.6) transforms accordingly dr ! |J |d⇢. Similarly the gradients in
equation (7.6) transforms as r ! J�1

r⇢. Using these transformation the
integrals in equation (7.6) may be evaluated using a numerical quadrature in

order to determine the unknown coe�cients �(n)
i .

The benefit of using the finite element method over other methods is the
generality in geometry it o↵ers. This is especially useful in the framework of
curved superconductor-ferromagnet proximity systems discussed in this thesis.
Herein we have only considered Kuprianov-Lukichev boundary conditions. The
addition of spin active interface boundary conditions is possible, but may require
a modification of the form of the boundary condition in equation (7.2).

Finally, the numerical scheme outlined here is greatly simplified and an in
depth study is needed before an eventual implementation. For a more complete
introduction see [63].
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7.4 Concluding remarks

In addition to the development of a general theory for curved di↵usive supercon-
ductor-ferromagnet proximity systems, two major discoveries resulted from the
work in this thesis. Firstly, the long-range Josephson e↵ect, present in curved
Josephson junctions. Secondly, a curvature-induced dynamical 0� ⇡ transition
in curved Josephson junctions of certain lengths. We showed numerically that
tuning the curvature around specific length-dependent curvatures works as a
0� ⇡ transition in the charge current. Both the dynamical 0� ⇡ transition and
the long-range Josephson e↵ect has potential applications in superconducting
spintronic devices and quantum computers, and the curvature as the generator
provides a possible physical implementation. The theory presented in this thesis
in combination with the experimental development of low dimensional curved
nanostructures, may enable a practical method for preparing superconducting
spintronic devices, the building blocks for ”cool” computers.
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Vector calculus in curvilinear coordinates

A
Vector calculus in curvilinear coordinates

In this appendix physical vectors are denoted with a bold font and physical
vector components are denoted with parenthesis around the index i.e. A is a
physical vector with physical components A(i). The covariant and contravariant
vector components are denoted without parenthesis and with a sub- and super-
script respectively. Einstein summation is implied for covariant/contravariant
contractions if not stated otherwise. This appendix contains all the needed
vector identities in this thesis when considering curvilinear coordinates.

The metric tensor in curvilinear coordinates is given by

⌘ij =

0

@
H(s, n)2 0 0

0 1 0
0 0 1

1

A , (A.1)

where H(s, n) = 1 � (s)n is the curvature dependent curvilinear scale factor.
Using the metric tensor the non-zero Cristo↵el symbols in curvilinear coordi-
nates are

�s
ss =

1

H(s, n)
@sH(s, n),

�n
ss = �H(s, n)@nH(s, n),

�s
ns = �s

sn =
1

H(s, n)
@nH(s, n).

(A.2)

Consider an arbitrary vector in Cartesian coordinates A(x, y, z). The same
vector in curvilinear coordinates has the physical components

A(i)(s, n, b) = A(x, y, z) · ê(i), (A.3)

where ê(i) are the orthonormal basis vectors in curvilinear coordinates.
The scalar product and ordinary components of a cross product of two vec-

tors in curvilinear coordinates can be expressed as

u · v = uiv
i = ⌘ijuivj = u(i)v(j), (A.4)

(u⇥ v)(i) = ✏ijku(i)v(j), (A.5)

where ✏ijk is the Levi-Cevita symbol.
The gradient of a scalar field � in curvilinear coordinates is given by

r� =
1

h(i)
(@i�)ê(i) =

1

H(s, n)
(@s�)T̂ (s) + (@n�)N̂ (s) + (@b�)B̂(s), (A.6)

where the repeated index should not be interpreted as a summation and h(i)

are the scale factors. The divergence of a vector F in curvilinear coordinates
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can be derived using the coordinate covariant derivative

r · F = DiF
i = ⌘ijDiFj = ⌘ij(@iFj � �k

ijFk)

=
1

H(s, n)
@sF(T ) +

1

H(s, n)
@n(H(s, n)F(N)) + @bF(B).

(A.7)

The coordinate covariant Laplacian of a scalar � can be found by taking the
divergence of the coordinate covariant derivative of �

r
2� = r · (r�) = DiD

i� = ⌘ij(@i@j�� �k
ij@k�)

=


1

H(s, n)
@s(

1

H(s, n)
@s) +

1

H(s, n)
@n(H(s, n)@n) + @2B

�
�.

(A.8)

The contravariant components of the coordinate covariant curl of a vector F is
given by

(r⇥ F )i = ci = EijkDjFk =
1
p
⌘
✏ijkDjFk, (A.9)

where Eijk = 1p
⌘ ✏

ijk is the contravariant Levi-Cevita tensor and ⌘ = |det(⌘ij)|.

In curvilinear coordinates the physical components of the vector c are

c(T ) = [@nF(B) � @bF(N)], (A.10)

c(N) =
1

H(s, n)
[H(s, n)@bF(T ) � @sF(B)], (A.11)

c(B) =
1

H(s, n)
[@sF(N) � @n(H(s, n)F(T ))]. (A.12)

The Jacobian in the transformation from Cartesian coordinates (x) to curvi-
linear coordinates (s) can be computed directly from the metric

|J | = |@xs| =

s
⌘(s)

⌘(x)
=
p
⌘(s) = H(s, n), (A.13)

where ⌘(x) = 1 is the determinant of the Cartesian metric.
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B
Riccati parametrized Usadel equation

The Usadel equation for a nanowire arc reads

iDF @̃s(ĝ
R@̃sĝ

R) = [✏⌧̂z � �̂� h · �̂, ĝR], (B.1)

where the retarded component of the quasiclassical Green’s function in Nambu
space is defined as

ĝR =

 
gR fR

�f̃
R

�g̃R

!
. (B.2)

In the Riccati parametrization, the retarded component of the quasiclassical
Green’s function may be written in terms of the gamma matrix and the N-
matrix

ĝR =

✓
N 0
0 �Ñ

◆✓
1 + ��̃ 2�
2�̃ 1 + �̃�

◆
. (B.3)

The right hand side of the Usadel equation may be written explicitly as

@̃s(ĝ
R@̃sĝ

R) = @s(ĝ
R@sĝ

R)� i@s(ĝ
RÂT ĝ

R) + i@sÂT

� i[ÂT , ĝ
R@sĝ

R]� [ÂT , ĝ
RÂT ĝ

R].
(B.4)

The reoccurring terms are ĝR@̃sĝR and ĝRÂT ĝR. These terms may be writ-
ten in matrix form using equation (B.2)

ĝR@sĝ
R =

 
gR@sgR � fR@sf̃

R
gR@sf

R
� fR@sg̃

R

g̃R@sf̃
R
� f̃

R
@sgR g̃R@sg̃

R
� f̃

R
@sf

R

!
, (B.5)

ĝRÂT ĝ
R =

 
gRAT g

R + fRA⇤
T f̃

R
gRAT f

R + fRA⇤
T g̃

R

�g̃RAT f̃
R
� f̃

R
A⇤

T g
R

�g̃RAT g̃
R
� f̃

R
A⇤

T f
R

!
. (B.6)

Due to the symmetry of equation (B.2), only the terms on the top row is
needed. The top row terms in equation (B.4) can be expressed in the Riccati
parametrization as

[@s(ĝ
R@sĝ

R)](1,1) = 2N [(@2s�) + 2(@s�)Ñ �̃(@s�)]�̃N

� 2N�[(@2s �̃) + 2(@s�̃)N�(@s�̃)]N,
(B.7)

[@s(ĝ
R@sĝ

R)](1,2) = 2N [(@2s�) + 2(@s�)Ñ �̃(@s�)]Ñ

� 2N�[(@2s �̃) + 2(@s�̃)N�(@s�̃)]�Ñ ,
(B.8)
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[@s(ĝ
RÂĝR)](1,1) = 4N�A⇤

T Ñ [(@s�̃) + �̃(@s�)�̃]N

+ 4N [(@s�) + �(@s�̃)�]ÑA⇤
T �̃N

+ 2N(1 + ��̃)ATN [�(@s�̃) + (@s�)�̃]N

+ 2N [�(@s�̃) + (@s�)�̃]NAT (1 + ��̃)N

+ (2N � 1)(@sAT )(2N � 1)

+ 4N�(@sA
⇤
T )Ñ �̃,

(B.9)

[@s(ĝ
RÂĝR)](1,2) = 4N�A⇤

T Ñ [�̃(@s�) + (@s�̃)�]Ñ

+ 4N [�(@s�̃) + (@s�)�̃]NAT �̃Ñ

+ 2N(1 + ��̃)ATN [(@s�) + �(@s�̃)�]Ñ

+ 2N [(@s�) + �(@s�̃)�]ÑA⇤
T (1 + �̃�)Ñ

+ (2N � 1)(@sAT )2N�

+ 2N�(@sA
⇤
T )(2Ñ � 1),

(B.10)

[[ÂT , ĝ
R@sĝ

R]](1,1) = 2ATN [(@s�)�̃ � �(@s�̃)]N

� 2N [(@s�)�̃ � �(@s�̃)]NAT ,
(B.11)

[[ÂT , ĝ
R@sĝ

R]](1,2) = 2ATN [(@s�)� �(@s�̃)�]Ñ

+ 2N [(@s�)� �(@s�̃)�]ÑA⇤
T ,

(B.12)

[[ÂT , ĝ
RÂT ĝ

R]](1,1) = 4ATN(AT + �A⇤
T �̃)N � 4N(AT + �A⇤

T �̃)NAT

� 2[A2
T , N ],

(B.13)

[[ÂT , ĝ
RÂT ĝ

R]](1,2) = 4ATN(AT � + �A⇤
T )Ñ + 4N(AT � + �A⇤

T )ÑA⇤
T

� 4ATN�A
⇤
T � 2(A2

TN� +N�(A⇤
T )

2).
(B.14)

The top row of the right-hand side of the Usadel equation may be expressed
in the Riccati parametrization as

[✏⌧̂z � �̂� h · �̂, ĝR](1,1) = 2�Ñ �̃ + 2N��⇤

� h · �(2N � 1) + (2N � 1)h · �,
(B.15)

[✏⌧̂z � �̂� h · �̂, ĝR](1,2) = 4✏N� +�(2Ñ � 1) + (2N � 1)��⇤

� 2h · �N� + 2N�h · �⇤.
(B.16)
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To simplify the left-hand side of the Riccati parametrized Usadel equa-
tion, we operate [@̃s(ĝR@̃sĝR)](1,1) with � from the right, subtract this from
[@̃s(ĝR@̃sĝR)](1,2) and operate with 1

2N
�1 from the left

1

2
N�1([@̃s(ĝ

R@̃sĝ
R)](1,2) � [@̃s(ĝ

R@̃sĝ
R)](1,1)�)

= (@2s�) + 2(@s�)Ñ �̃(@s�)� 2i(@s�)Ñ(A⇤
T + �̃AT �)

� 2i(AT + �A⇤
T �̃)N(@s�)� 2(AT � + �A⇤

T )Ñ(A⇤
T + �̃AT �)

� (A2
T � � �(A⇤

T )
2) + i(@sAT )� + i�(@sA

⇤
T ).

(B.17)

Similarly for the right hand side

1

2
N�1([✏⌧̂z � �̂� h · �̂ � ⌃̌sf , ǧ]

(1,2)

� [✏⌧̂z � �̂� h · �̂ � ⌃̌sf , ǧ]
(1,1)�)

= 2✏� � (��⇤� ��) + h · (�� � ��⇤).

(B.18)

Finally, the Riccati parametrized Usadel equation is achieved

D[(@2s�) + 2(@s�)Ñ �̃(@s�)]

= i(��⇤� ��)� ih · (�� � ��⇤)� 2i✏� + 2Di(@s�)Ñ(A⇤
T + �̃AT �)

+ 2Di(AT + �A⇤
T �̃)N(@s�) + 2D(AT � + �A⇤

T )Ñ(A⇤
T + �̃AT �)

+D(A2
T � � �(A⇤

T )
2)� iD[(@sAT )� + �(@sA

⇤
T )].

(B.19)

The Kuprianov Lukichev boundary conditions for a nanowire arc is given by

2Lj⇣j ĝ
R
j @̃sĝ

R
j = [ĝR1 , ĝ

R
2 ]. (B.20)

The derivative term on the left-hand side of equation (B.20) may be written
explicitly as

ĝRj @̃sĝ
R
j = ĝRj @sĝ

R
j � iĝRj [Â, ĝRj ]. (B.21)

The upper row of the two terms on the right-hand side of equation (B.21)
may be expressed in the Riccati parametrization as

[ĝRj @sĝ
R
j ]

(1,1) = 2Nj [(@s�j)�̃j � �j(@s�̃j)]Nj , (B.22)

[ĝRj @sĝ
R
j ]

(1,2) = 2Nj [(@s�j)� �j(@s�̃j)�j ]Ñj , (B.23)

[gRj [Â, gRj ]]
(1,1) = 4Nj(AT + �jA

⇤
T �̃j)� 2NjAT (1� �j �̃j)Nj

� 2Nj(1� �j �̃j)ATNj ,
(B.24)

[gRj [Â, gRj ]]
(1,2) = 2Nj(1 + �j �̃j)AT �jÑj + 2Nj�jA

⇤
T (1 + �̃j�j)Ñj . (B.25)
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By combining the terms, the final form of the Riccati parametrized Kupri-
anov Lukichev boundary conditions are achieved

@s�1 = i(�1A
⇤
T +AT �1) +

1

L1⇣1
(1� �1�̃2)N2(�2 � �1), (B.26)

@s�2 = i(�2A
⇤
T +AT �2) +

1

L2⇣2
(1� �2�̃1)N1(�2 � �1). (B.27)
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C
MATLAB code

The MATLAB code utilizes the nonlinear di↵erential equation solver bvp6c, a
6th order method implementing the Cash-Singhal 6 formula. The bvp6c-method
returns a solution which is both continuous and has a continuous first derivative,
useful when computing physical observables dependent on the derivative of the
quasiclassical Green’s function like the current density.

The code is split in two scripts; One solver-script using the bvp6c-function to
solve the Riccati parametrized Usadel equation with the Kuprianov-Lukichev
boundary conditions, and one script where user specific variables are defined
and the physical observables are calculated. The superconductor is assumed to
have the bulk solution which is used in the boundary conditions. In order to
work with two separate scripts global variables are used.
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Curvature-induced long ranged supercurrents in di↵usive SFS Josephson Junctions,
with dynamic 0� ⇡ transition
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We report that spin supercurrents can be induced in di↵usive SFS Josephson junctions without
any magnetic misalignment or intrinsic spin orbit coupling. Instead, the pathway to spin triplet
generation is provided via geometric curvature, and results in a long ranged Josephson e↵ect. In
addition, the curvature is shown to induce a dynamically tunable 0 � ⇡ transition in the junction.
We provide the analytic framework and discuss potential experimental and innovation implications.

Introduction.— In the last two decades there have been
substantial advances in the experimental realization of
curved nanostructures. Since the realization of nan-
otubes by rolling up thin solid films [1], many new tech-
niques of bending, wrinkling and buckling nanostructures
in up to three dimensions have been developed [2, 3], as
well as direct growth on curved templates [4], electron-
beam lithography [5–7] and many more (see e.g. [8] and
references therein). These techniques open a broad new
range of spintronic device design, and have already been
shown to enable independent control of spin and charge
resistances [4].

Geometric curvature introduces two main e↵ects: a
quantum geometric potential, producing many interest-
ing phenomena at the nanoscale [9–12], and a strain field
leading to a curvature-induced Rashba spin-orbit cou-
pling (SOC), with strength proportional to the curva-
ture [13]. Several studies have investigated new prop-
erties triggered by curvature, e.g. in semiconductors
[14–18], magnets [4, 7, 8] and superconductors [19–21].
Curved nanostructures with induced superconductivity
can display geometric control of spin-triplet correlations
in the clean limit [22], and proximizing a superconductor
with a curved semiconductor can result in topological
edge states [15]. The curved topological superconduc-
tor/straight semiconductor Josephson junction counter-
part has been predicted to display a 0�⇡ transition and
�-junction behaviour [20].

Hybrid structures of superconductors and ferromag-
nets are of great interest for the field of supercon-
ducting spintronics [23, 24] since at the superconduc-
tor/ferromagnet (SF) interface the proximity e↵ect al-
lows the property of one material to “leak” into the other
[25–27]. A coexistence of superconductivity and mag-
netism may therefore enable data processing, encoded
in spin and charge degrees of freedom, to be performed
without the heat loss associated with traditional electron-
ics. In di↵usive heterostructures, which cover a range of
commonly available materials that may have impurities
or sub-optimal interface transparencies, conventional s-
wave superconducting correlations typically penetrate a

ferromagnet for extremely short distances, proportional
to

p
DF /h, with DF the di↵usion constant and h the

exchange field strength. Significant theoretical and ex-
perimental e↵ort has focused on the conversion of singlet
correlations into so-called long range triplet correlations
(LRTC), which penetrate for longer distances, on the or-
der of

p
DF /T , where T is the temperature. This conver-

sion can take place in the presence of magnetic inhomo-
geneities [28–30] or due to intrinsic spin-orbit coupling ei-
ther in the superconductor or in the ferromagnet [31, 32].
The role of geometric curvature as a source of designable
and dynamically alterable SOC in di↵usive structures has
not been investigated in this context, and we address this
here. By considering a model SFS junction with con-
stant curvature shown in Fig. 1, we show that the curva-
ture alone can induce long ranged supercurrents due to
the generation of triplet correlations. Moreover, we show
that these systems display a tunable 0� ⇡ transition.

The possibility of 0 � ⇡ state switching has been of
much interest, in part due to its potential role in solid
state quantum computing [25, 33–37]. Investigations
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FIG. 1. Model system. SFS junction having a ferromagnet
with constant curvature as weak link. The three orthonormal
unit vectors T̂ (✓), N̂(✓) and B̂(✓) identifying the curvilinear
coordinates are also shown.
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have confirmed the transition can be governed by alter-
ing the length of the ferromagnetic weak link. However,
this is not practicable to do in-situ and must be done by
preparing multiple samples of di↵erent lengths. In this
Letter, we show that dynamically changing the curvature
of the magnet via in-situ strain manipulation, for exam-
ple via photostriction, piezoelectrics or thermoelectric ef-
fects [38, 39], allows for a single-sample 0 � ⇡ transition
in the di↵usive regime. Moreover, we show that curva-
ture can yield long-ranged Josephson currents without
any magnetic inhomogeneities or intrinsic SOC.

Theoretical framework.— A fundamental tool for the
study of curved structures is the thin-wall quantization
procedure, where the quantum motion of a particle in a
2D curved surface is treated as equivalent to the motion
in a 3D space with the addition of lateral quantum con-
finement [40, 41]. This procedure allows one to derive
the Hamiltonian for the motion of electrons constrained
to a curved planar one-dimensional structure [42, 43].

When dealing with a ferromagnet, further e↵ects of
the curvature must be taken into account, namely in
how it a↵ects its exchange field. Recent studies have
developed a fully 3D approach for thin magnetic shells
of arbitrary shape and extended it to 2D shells and
1D wires [44, 45]. This showed that curvature induces
two e↵ective magnetic interactions: an e↵ective magnetic
anisotropy and an e↵ective Dzyaloshinskii-Moriya inter-
action (DMI). When dealing with a 1D curved wire be-
low a certain critical curvature, the magnetic anisotropy
and the DMI, which results in an e↵ective Rashba SOC,
both combine to give an e↵ective field tangential to the
wire. The geometrically defined SOC is therefore both
designable and tunable, and gives greater freedom in the
manipulation of superconducting proximity e↵ects.

We parametrize the curve by its arc length s, and
define a set of three orthonormal unit vectors T̂ (s),
N̂(s), B̂(s) representing the tangential, normal and bi-
normal curvilinear coordinates respectively, as indicated
in Fig. 1. These obey the following Frenet-Serret-type
equation of motion:

0

@
@sT̂ (s)
@sN̂(s)
@sB̂(s)

1

A =

0

@
0 (s) 0

�(s) 0 0
0 0 0

1

A

0

@
T̂ (s)
N̂(s)
B̂(s)

1

A , (1)

where (s) is the curvature of the wire, whose role and
e↵ect will be discussed in detail below. Deriving the
Hamiltonian for a wire, which may include intrinsic SOC
in general, we find [43]:

H =� ~2
2m

@
2
s � ~2

8m
(s)2 � i~↵N�B@s

+ i~↵B

✓
�N@s �

(s)

2
�T

◆
.

(2)

The SOC constants ↵N,B represent the spin-orbit field
with axis along the normal and binormal direction re-
spectively, and �T,N,B(s) = � · {T̂ , N̂ , B̂}(s) are the set
of three Pauli matrices in curvilinear coordinates. By us-
ing Eqs. (1) we can incorporate the last three terms in
Eq. (2) in a SU(2) spin-orbit field term:

A = (↵N�B � ↵B�N , 0, 0), (3)

which has a vector structure in the geometric space and
a 2⇥ 2 matrix structure in spin space. It is worth distin-
guishing between the two terms entering the SU(2) field,
namely ↵B and ↵N . The former represents the intrinsic,
not induced by the curvature, SOC term which may or
may not exist according to the material taken into con-
sideration. The latter is curvature-induced, and is pro-
portional to the curvature strength. In natural units we
have ↵N = g�(s)/(4m), where g is the g-factor and the
parameter � > 0 is a characteristic energy scale for the
material. Inspection of the relevant di↵usion equations
for the system shows that ↵N and (s) appear together in
such a way that the former always acts as a strengthen-
ing factor for the latter. Therefore, considering a material
with no intrinsic term we can ignore spin-orbit coupling
as a whole, and consider the (s) term only.
Having set up the Hamiltonian, we employ Green func-

tions in the di↵usive limit at equilibrium. Here the dy-
namics are describable by the second-order partial di↵er-
ential Usadel equation [46], which, with suitable bound-
ary conditions, describes the di↵usion of superconducting
correlations inside the ferromagnet. Treating the case of
di↵usive equilibrium, it is su�cient to consider just the
retarded component ĝR of the quasiclassical Green func-
tion to describe the system [47]. Using Eq. (2) the Usadel
equation in a curved ferromagnet with constant curvature
reads (from now on we set ~ = 1):

DF@s (ĝR@sĝR) + i

h
"⌧̂3 + M̂, ĝR

i
= 0, (4)

with ⌧̂3 = diag(1, 1,�1,�1), " the quasiparticle energy
and magnetization M̂ = h·diag(�,�⇤). The components
of both vectors h = (hT , hN , hB) and � = (�T ,�N ,�B)
are expressed in curvilinear coordinates. To solve the Us-
adel equation we employ the Kuprianov-Lukichev bound-
ary conditions [48]:

Lj⇣j ĝRjrI ĝRj = [ĝR1, ĝR2] . (5)

Here rI is the derivative at the interface, j refers to the
various components of the hybrid system, with j = 1, 2
denoting the materials on the left and right side of the
relevant interface, Lj represents the length of the mate-
rial and ⇣j = RB/Rj is the interface parameter given by
the ratio between the barrier resistance RB and its bulk
resistance Rj .
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If desirable, the intrinsic SOC can be retained, in which
case one also introduces the gauge covariant derivative
[32]:

@s( · ) ! e@s( · ) ⌘ @s( · )� i

h
ÂT , ·

i
, (6)

with ÂT = diag(AT ,�A
⇤
T ) and AT is the tangential com-

ponent of the SO field of Eq. (3).
To treat the system we will use the Riccati

parametrization [49, 50] for the quasiclassical Green func-
tion:

ĝR =

✓
N(1 + ��̃) 2N�

�2Ñ �̃ �Ñ(1 + �̃�)

◆
, (7)

where the normalization matrices are N = (1 � ��̃)�1

and Ñ = (1 � �̃�)�1 and the tilde operation denotes
�̃(") = �

⇤(�"). The Usadel equation (4) thus becomes:

DF

�
@
2
s�+ 2(@s�)Ñ �̃(@s�)

o
=

� 2i"� � ih · (�(s)� � ��⇤(s)).
(8)

Here the dependence on the curvature is implicitly con-
tained in the Pauli matrices �T,N,B(s).

We will consider our one-dimensional curved wire to
be lying in the xy plane as represented in Fig.1, so that
the set of three unit vectors is:

T̂ (s) = � sin ✓(s)x̂+ cos ✓(s)ŷ, (9a)

N̂(s) = � cos ✓(s)x̂� sin ✓(s)ŷ, (9b)

B̂(s) ⌘ ẑ, (9c)

with ✓(s) = s. It is useful to note that, when consid-
ering Eq. (8), the curved ferromagnet can be regarded
as equivalent to a straight wire with a rotating exchange
field, i.e. a tangential exchange field in a curved wire
is equivalent to a position dependent exchange field in a
straight wire, varying as ~h(s) = h0(sin ✓(s),� cos ✓(s), 0),
with ✓(s) = ⇡s/LF and LF being the length of the fer-
romagnet.

Results.— Solving the Usadel equation, and therefore
finding the quasiclassical Green function of the system,
allows us to calculate many interesting quantities. In this
work we will focus mainly on the charge current given by:

IQ

IQ0
=

Z +1

�1
d"Tr {⌧̂3 (ĝR@sĝR � ĝA@sĝA)} tanh(�"/2).

(10)
Here ĝA = �⌧̂3ĝ

†
R⌧̂3 is the advanced quasiclassical Green

function and � = (kBT )�1 is the inverse temperature,

FIG. 2. Magnitude of the critical current as a function of the
curvature for di↵erent lengths LF of the ferromagnet, with
T = 0.005Tc, ~h = �0T̂ , ⇣ = 3. A 0 � ⇡ transition occurs
when changing the curvature of the wire.

with kB being the Boltzmann constant. Moreover, IQ0 =
N0eDFA�0/4LF , whereN0 is the density of states at the
Fermi energy, A the interfacial contact area and �0 the
bulk gap of the two superconductors. Lengths and ener-
gies have been normalized to LF (which in turn is scaled
with the superconducting coherence length ⇠S) and su-
perconducting bulk gap �0 respectively, so that the in-
tegral on the right side of Eq.(10) is dimensionless.
We investigate the system portrayed in Fig. 1 by solv-

ing numerically Eq. (8) for various lengths LF of the
ferromagnet and multiple curvatures  for each length.
We set the interface parameter with both superconduc-
tors to be ⇣ = 3 and the temperature to T = 0.005Tc.
We consider the exchange field inside the curved ferro-
magnet to be tangential to its curvature profile at each
point, h(s) k T̂ (s), which we expect to be the case in 1D
curved structures below a certain critical curvature [45].
Two interesting e↵ects of the curvature appear imme-

diately from our results. First, we show in Fig. 2 that it
is possible to induce a 0�⇡ transition in the junction by
changing the curvature of the ferromagnetic wire while
keeping its length fixed. Secondly, we will show in Fig. 3
that even for a long junction, where the singlet contribu-
tion to the supercurrent is negligible, a Josephson e↵ect
still appears for a non-zero  due to the presence of long
ranged triplets.
In Fig. 2 we plot the absolute value of the critical cur-

rent as given by Eq. (10) as a function of the curva-
ture  of the ferromagnet across the junction for di↵erent
lengths LF . From the figure we see that starting in the 0
state with a straight wire, increasing the curvature results
in a decreasing magnitude of the critical current, until it
completely disappears for a certain , indicating a 0� ⇡

transition. A further increase in the curvature produces
a revival of the critical current, which now flows in the
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FIG. 3. Charge current as a function of the phase di↵erence �,
showing separately the singlet (solid lines) and triplet (dashed

lines) contributions with T = 0.005Tc, ~h = �0T̂ , ⇣ = 3, for a
straight ( = 0) and semi-circular (LF = ⇡) ferromagnetic
wire. (a) LF = 2⇠S Increasing the curvature causes the triplet
contribution to change sign. (b) LF = 6⇠S Increasing the
curvature causes the singlet contribution to be neglegible with
respect to the triplet one, signaling that the charge current is
transported almost exclusively by the triplet correlations.

opposite direction with respect to the straight case. We
also note that increasing the length of the ferromagnet
reduces not only the overall magnitude of the critical cur-
rent but also the curvature at which the 0� ⇡ transition
takes place.

In order to better understand how this 0�⇡ transition
appears, and to show that the role of the triplets is crucial
in tuning it, we split the charge current into singlet and
triplet contributions, Is and It respectively. It can be
shown that the charge current given by Eq. (10) only
depends on the anomalous Green function f which is the
o↵-diagonal block matrix in the retarded Green function.
We define f = (f0 + d · �)i�y, with f0 representing the
singlet contribution and d = (dT , dN , dz) the d-vector
representing the triplet contribution, and obtain that the
charge current can be written as IQ/IQ0 = Is+ It, where
It = IT + IN + Iz + I and:

Is = �8

Z 1

0
d"Re

n
f̃0@sf0 � f0@sf̃0

o
tanh(�"/2), (11a)

Ij = 8

Z 1

0
d"Re

n
d̃j@sdj � dj@sd̃j

o
tanh(�"/2), (11b)

I = 16

Z 1

0
d"Re

n
d̃NdT � d̃T dN

o
tanh(�"/2), (11c)

with j = (T,N, z). The terms Is and Ij represent the
contribution coming from the singlet and triplets with
spin aligned in the j direction respectively. The last term
I instead defines an inverse Edelstein term due to the
curvature.

In Fig. 3(a) we plot these two di↵erent contributions
to the charge current for two di↵erent values of  and
LF = 2⇠S . It can be seen that for  = 0 triplets and sin-
glet charge currents have opposite sign, with the triplets

contribution being generally bigger than the singlet one.
Interestingly however, when increasing the curvature the
triplet current changes sign, i.e. starts flowing in the op-
posite direction, while the singlet contribution does not.
Hence, the 0 � ⇡ transition is tuned by the curvature
through its e↵ect on the triplets. Furthermore, we note
from Fig. 3(a) that in the ⇡-phase for  = ⇡/LF the sin-
glet and triplet currents have the same sign and thus flow
in the same direction. Consequently, the two contribu-
tions add up, resulting in a larger critical current in the
⇡-phase at  = ⇡/LF compared to the 0-phase at  = 0.

We point out that curvature also introduces a spin cur-
rent to the system, which is absent in a straight nanowire.
This exchange spin current, as it is known in the liter-
ature, is caused by the misalignment of the magnetiza-
tion in the system and is non-zero even at phase di↵er-
ences of � = 0 and � = ⇡, where there are no charge
currents [51, 52]. The magnitude of the spin current is
a↵ected by the curvature, thereby providing means by
which it can be externally manipulated.

To highlight that the triplets generate a long range
Josephson e↵ect, we consider a long junction, LF = 6⇠S ,
and plot in Fig.3(b) separately singlet and triplet contri-
butions for a straight ( = 0) and semi-circular (LF =
⇡) wire. We see that, while for  = 0 the triplet term is
essentially zero and the singlet term is finite, for LF = ⇡

the singlet contribution is negligible compared to the
triplet one. Going from a straight to a semi-circular fer-
romagnet produces a significant singlet to triplet conver-
sion, and given the significant length of the wire we can
state that the SFS junction with a semi-circular nanowire
exhibits long-ranged triplets.

Concluding remarks.— We have shown that curva-
ture is a designable and tunable parameter that can
generate and control long-ranged supercurrents in di↵u-
sive SFS Josephson junctions without any magnetic in-
homogeneities or intrinsic SOC. The system displays a
curvature-controlled 0 � ⇡ transition, which can be ma-
nipulated dynamically in-situ with a single sample. This
can facilitate experimental investigation of the transition,
and improve our understanding of the coexistence of su-
perconductivity and magnetism in di↵erent phases. In
the longer term this opens a diverse new toolkit for de-
sign and control of di↵usive superconducting spintronic
systems, and may be a useful implementation in solid
state quantum computing. Since this field is still in its
infancy, with several exciting directions still to be ex-
plored, we anticipate that curvature in such systems will
be integral to the new generation of spintronic designs.
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[7] O. M. Volkov, A. Kákay, F. Kronast, I. Mönch, M.-A.
Mawass, J. Fassbender, and D. Makarov, Phys. Rev. Lett.
123, 077201 (2019).

[8] R. Streubel, P. Fischer, F. Kronast, V. P. Kravchuk,
D. D. Sheka, Y. Gaididei, O. G. Schmidt, and
D. Makarov, Journal of Physics D: Applied Physics 49,
363001 (2016).

[9] G. Cantele, D. Ninno, and G. Iadonisi, Phys. Rev. B 61,
13730 (2000).

[10] H. Aoki, M. Koshino, D. Takeda, H. Morise, and
K. Kuroki, Phys. Rev. B 65, 035102 (2001).

[11] M. Encinosa and L. Mott, Phys. Rev. A 68, 014102
(2003).

[12] C. Ortix and J. van den Brink, Phys. Rev. B 81, 165419
(2010).

[13] P. Gentile, M. Cuoco, and C. Ortix, SPIN 03, 1340002
(2013).

[14] F. Nagasawa, D. Frustaglia, H. Saarikoski, K. Richter,
and J. Nitta, Nature communications 4, 1 (2013).

[15] P. Gentile, M. Cuoco, and C. Ortix, Phys. Rev. Lett.
115, 256801 (2015).

[16] Z.-J. Ying, P. Gentile, C. Ortix, and M. Cuoco, Phys.
Rev. B 94, 081406 (2016).

[17] C.-H. Chang and C. Ortix, Nano letters 17, 3076 (2017).
[18] G. Francica, P. Gentile, and M. Cuoco, EPL (Europhysics

Letters) 127, 30001 (2019).
[19] A. M. Turner, V. Vitelli, and D. R. Nelson, Rev. Mod.

Phys. 82, 1301 (2010).
[20] G. Francica, M. Cuoco, and P. Gentile, Phys. Rev. B

101, 094504 (2020).
[21] P.-H. Chou, C.-H. Chen, S.-W. Liu, C.-H. Chung, and

C.-Y. Mou, Phys. Rev. B 103, 014508 (2021).

[22] Z.-J. Ying, M. Cuoco, C. Ortix, and P. Gentile, Phys.
Rev. B 96, 100506(R) (2017).

[23] J. Linder and J. W. Robinson, Nature Physics 11, 307
(2015).

[24] M. Eschrig, Phys. Today 64, 43 (2011).
[25] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[26] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod.

Phys. 77, 1321 (2005).
[27] I. F. Lyuksyutov and V. L. Pokrovsky, Advances in

Physics 54, 67 (2005).
[28] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys.

Rev. Lett. 86, 4096 (2001).
[29] T. S. Khaire, M. A. Khasawneh, W. P. Pratt, and N. O.

Birge, Phys. Rev. Lett. 104, 137002 (2010).
[30] J. W. A. Robinson, J. D. S. Witt, and

M. G. Blamire, Science 329, 59 (2010),
https://science.sciencemag.org/content/329/5987/59.full.pdf.

[31] F. S. Bergeret and I. V. Tokatly, Phys. Rev. Lett. 110,
117003 (2013).

[32] F. S. Bergeret and I. V. Tokatly, Phys. Rev. B 89, 134517
(2014).

[33] A. I. Buzdin, L. Bulaevskii, and S. Panyukov, JETP lett
35, 147 (1982).

[34] A. Buzdin and A. E. Koshelev, Phys. Rev. B 67, 220504
(2003).

[35] V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V.
Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev.
Lett. 86, 2427 (2001).

[36] T. Kontos, M. Aprili, J. Lesueur, F. Genêt, B. Stephani-
dis, and R. Boursier, Phys. Rev. Lett. 89, 137007 (2002).

[37] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H.
van der Wal, and S. Lloyd, Science 285, 1036 (1999).

[38] B. Kundys, Applied Physics Reviews 2, 011301 (2015).
[39] S. Matzen, L. Guillemot, T. Maroutian, S. K. K. Patel,

H. Wen, A. D. DiChiara, G. Agnus, O. G. Shpyrko, E. E.
Fullerton, D. Ravelosona, P. Lecoeur, and R. Kukreja,
Advanced Electronic Materials 5, 1800709 (2019).

[40] H. Jensen and H. Koppe, Annals of Physics 63, 586
(1971).

[41] R. C. T. da Costa, Phys. Rev. A 23, 1982 (1981).
[42] C. Ortix, S. Kiravittaya, O. G. Schmidt, and J. van den

Brink, Phys. Rev. B 84, 045438 (2011).
[43] C. Ortix, Phys. Rev. B 91, 245412 (2015).
[44] Y. Gaididei, V. P. Kravchuk, and D. D. Sheka, Phys. Rev.

Lett. 112, 257203 (2014).
[45] D. D. Sheka, V. P. Kravchuk, and Y. Gaididei, Journal

of Physics A: Mathematical and Theoretical 48, 125202
(2015).

[46] K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
[47] W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and

A. D. Zaikin, Superlattices and Microstructures 25, 1251
(1999).

[48] M. Y. Kuprianov and V. Lukichev, Zh. Eksp. Teor. Fiz
94, 149 (1988).

[49] N. Schopohl and K. Maki, Phys. Rev. B 52, 490 (1995).
[50] S. H. Jacobsen, J. A. Ouassou, and J. Linder, Phys. Rev.

B 92, 024510 (2015).
[51] S. H. Jacobsen, I. Kulagina, and J. Linder, Scientific re-

ports 6, 1 (2016).
[52] W. Chen, P. Horsch, and D. Manske, Phys. Rev. B 89,

064427 (2014).

mailto:tancredi.salamone@ntnu.no
https://doi.org/10.1038/35065525
https://doi.org/10.1103/PhysRevB.79.085429
https://doi.org/10.1126/science.1260960
https://doi.org/10.1126/science.1260960
https://doi.org/10.1021/acs.nanolett.9b01994
https://doi.org/10.1021/acs.nanolett.9b01994
https://doi.org/10.1063/1.3246154
https://doi.org/10.1063/1.3246154
https://doi.org/10.1103/PhysRevB.90.144414
https://doi.org/10.1103/PhysRevLett.123.077201
https://doi.org/10.1103/PhysRevLett.123.077201
https://doi.org/10.1088/0022-3727/49/36/363001
https://doi.org/10.1088/0022-3727/49/36/363001
https://doi.org/10.1103/PhysRevB.61.13730
https://doi.org/10.1103/PhysRevB.61.13730
https://doi.org/10.1103/PhysRevB.65.035102
https://doi.org/10.1103/PhysRevA.68.014102
https://doi.org/10.1103/PhysRevA.68.014102
https://doi.org/10.1103/PhysRevB.81.165419
https://doi.org/10.1103/PhysRevB.81.165419
https://doi.org/10.1142/S201032471340002X
https://doi.org/10.1142/S201032471340002X
https://doi.org/10.1038/ncomms3526
https://doi.org/10.1103/PhysRevLett.115.256801
https://doi.org/10.1103/PhysRevLett.115.256801
https://doi.org/10.1103/PhysRevB.94.081406
https://doi.org/10.1103/PhysRevB.94.081406
https://doi.org/10.1021/acs.nanolett.7b00426
https://doi.org/10.1209/0295-5075/127/30001
https://doi.org/10.1209/0295-5075/127/30001
https://doi.org/10.1103/RevModPhys.82.1301
https://doi.org/10.1103/RevModPhys.82.1301
https://doi.org/10.1103/PhysRevB.101.094504
https://doi.org/10.1103/PhysRevB.101.094504
https://doi.org/10.1103/PhysRevB.103.014508
https://doi.org/10.1103/PhysRevB.96.100506
https://doi.org/10.1103/PhysRevB.96.100506
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1080/00018730500057536
https://doi.org/10.1080/00018730500057536
https://doi.org/10.1103/PhysRevLett.86.4096
https://doi.org/10.1103/PhysRevLett.86.4096
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1126/science.1189246
https://arxiv.org/abs/https://science.sciencemag.org/content/329/5987/59.full.pdf
https://doi.org/10.1103/PhysRevLett.110.117003
https://doi.org/10.1103/PhysRevLett.110.117003
https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1103/PhysRevB.67.220504
https://doi.org/10.1103/PhysRevB.67.220504
https://doi.org/10.1103/PhysRevLett.86.2427
https://doi.org/10.1103/PhysRevLett.86.2427
https://doi.org/10.1103/PhysRevLett.89.137007
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1063/1.4905505
https://doi.org/https://doi.org/10.1002/aelm.201800709
https://doi.org/https://doi.org/10.1016/0003-4916(71)90031-5
https://doi.org/https://doi.org/10.1016/0003-4916(71)90031-5
https://doi.org/10.1103/PhysRevA.23.1982
https://doi.org/10.1103/PhysRevB.84.045438
https://doi.org/10.1103/PhysRevB.91.245412
https://doi.org/10.1103/PhysRevLett.112.257203
https://doi.org/10.1103/PhysRevLett.112.257203
https://doi.org/10.1088/1751-8113/48/12/125202
https://doi.org/10.1088/1751-8113/48/12/125202
https://doi.org/10.1088/1751-8113/48/12/125202
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/https://doi.org/10.1006/spmi.1999.0710
https://doi.org/https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.92.024510
https://doi.org/10.1103/PhysRevB.92.024510
https://doi.org/10.1038/srep23926
https://doi.org/10.1038/srep23926
https://doi.org/10.1103/PhysRevB.89.064427
https://doi.org/10.1103/PhysRevB.89.064427

