
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Zawadi Berg Svela

Usability Study of GraphBLAS
Through Multicore Max-Flow

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
July 2021

M
as

te
r’s

 th
es

is

Zawadi Berg Svela

Usability Study of GraphBLAS Through
Multicore Max-Flow

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Usability Study of GraphBLAS Through Multicore
Max-Flow

Zawadi Berg Svela

CC-BY 2019/07/18

Project Description

In this project, the student will evaluate graph libraries. Primarily the focus will
be on testing the usability of the GraphBLAS standard, and evaluate the trade-
offs it provides between productivity and performance. To do this, the goal is
to implement the reasonably complex Edmund-Karp max-flow algorithm in the
Suitesparse:GraphBLAS implementation. Benchmarking the implemention will be
on one of NTNUs powerful multi-core systems in order to test the scalability of
the code.

iii

Acknowledgements

The author would like to thank the HPC-Lab and the Department of Computer
Science at NTNU for access and support of equipment throughout the past couple
of years, including the Selbu system which was utilized for this work.

They would also like to thank their advisor Professor Anne C. Elster, for con-
tinued support throughout this work.

v

Abstract

Graphs are one of the most general and flexible abstractions for computer sci-
ence problem. However, as data sets grow, the need for more computing power
grows with it. This implies there is a need to adopt graph algorithms to paral-
lel multi-core machines. Since these algorithm generally exhibit a high degree of
irregularity, the parallel algorithms needed can be extremely hard to write from
scratch. There is therefore a growing effort to develop high-level abstractions in
the form of frameworks and libraries to address this challenge.

Optimizing linear algebra operations has been a research topic for decades.
The compact language of mathematics also produce lean, maintainable code. Us-
ing linear algebra as a high-level abstraction for graph operations is therefore very
attractive.

In this work, we will explore the usability of the GraphBLAS framework, cur-
rently the leading standard for graph operations that uses linear algebra as an
abstraction. We analyze the usability of GraphBLAS by using it to implement the
Edmonds-Karp algorithm for s-t maximum-flow/minimum-cut. To our knowledge,
this work represents the first published results of Max-Flow in GraphBLAS. The
result of our novel implementation was an algorithm that achieved a speedup of
up to ~11 over its own baseline, and is surprisingly compact and easy to reason
about.

We also provide thorough discussions and examples of various ease-of-use
aspects of GraphBLAS, through the lens of our max-flow implementation. We
found that GraphBLAS delivers an interesting and useful perspective on graph al-
gorithms. We show how the use of linear algebra allowed us to re-use knowledge
and observations both from that field and graphs. Our work shows that many
operations are easier to express in linear algebra than otherwise, some harder,
and some impossible, illustrating the abstraction and framework have some clear
limitations. Directions for future work are also included.

vii

Sammendrag

Grafer er blant de mest generelle og fleksible abstraksjonene i datavitenskap. Men,
etter hvert som størrelsen på datasett vokser trenger vi stadig mer datakraft for å
behandle dem, som betyr at vi må ta ibruk grafalgoritmer som kan dra nytte av
paralle flerkjernemaskiner. Dette kan være en stor utfordring, da grafalgoritmer
ofte har stor grad av irregularitet, som gjør det vanskelig å konstruere slike algor-
itmer fra bunnen av. Det har derfor blitt utvilket mange bibliotek og rammeverk
for å gjøre denne prossessen enklere.

I flere tiår har forskere optimalisert operasjoner for lineær algebra. På grunn
av det ekspressive og komptakte språket fra matematikk, kan programmer skrevet
som en serie av linear algebra-operasjoner gi kode som er lettere å lese og ved-
likeholde. Lineær algebra er derfor en veldig attraktiv abstraksjon å ta ibruk for
utrykke grafoperasjoner.

I dette arbeidet skal vi utforske brukbarheten til rammeverket GraphBLAS, den
ledende standarden for grafopereasjoner utrykt som lineær algebra. Vi analyserer
brukbarheten til GraphBLAS ved å implementere Edmonds-Karps algoritme for
s-t maksimal flyt/minimalt kutt. Så vidt oss bekjent er dette arbeidet det første
publiserte resultatet av maks-flyt implementert i GraphBLAS. Vår implementasjon
ga et program som oppnådde opptil ~11 økt hastighet over egen grunnlinje.

Vi inkluderer også en grundig diskusjon med eksempler for å presentere ulike
brukervennlighetsaspekter ved GraphBLAS, med utgangspunkt i vår egen maks-
flyt-implementasjon. Våre funn indikerer at GraphBLAS gir en interessant og nyt-
tig måte å se på grafalgoritmer, og vi observerte at å bruke lineær algebra som
astraksjon gjorde at vi kunne ta ibruk kunnskap og verktøy både fra dette feltet
og grafteori. Vi viser at mange operasjoner på grafer faktisk er enklere å utrykke
i lineær algebra, men også at noen er vanskelige og andre igjen umulige. Dette
illustrerer at abstraksjonen og rammeverket har noen klare begrensninger. Vi be-
skriver også mulige retninger for fremtidig arbeid.

ix

Contents

Project Description . iii
Acknowledgements . v
Abstract . vii
Sammendrag . ix
Contents . xi
Figures . xiii
Tables . xv
Code Listings . xvii
List of abbreviations . xix
1 Introduction . 1

1.1 Goals and Contributions . 2
1.2 Thesis Outline . 2

2 Graphs and GraphBLAS . 3
2.1 Graphs . 3

2.1.1 Graph representations . 4
2.1.2 Characteristics of graphs . 5
2.1.3 Irregularity in graph algorithms 7
2.1.4 Breadth-First Search . 7

2.2 Graphs as linear algebra / GraphBLAS 8
2.2.1 GraphBLAS BFS . 9
2.2.2 GraphBLAS objects and operations 11
2.2.3 Parallelism in GraphBLAS . 13
2.2.4 Suitesparse:GraphBLAS . 14
2.2.5 Other GraphBLAS implementations and project 14
2.2.6 LAGraph . 16

2.3 Other graph frameworks . 16
2.3.1 Galois . 16
2.3.2 Gunrock . 16
2.3.3 Ligra . 16

3 Max-Flow in GraphBLAS . 19
3.1 The maximum flow problem . 19

3.1.1 Maximum flow algorithms . 20
3.1.2 The Edmonds-Karp algorithm 21
3.1.3 Minimum cut . 21

xi

xii Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

3.2 Algorithm outline . 21
3.2.1 Assign . 23
3.2.2 Min-Cut . 24
3.2.3 GBTL maximum flow algorithm 25

3.3 Parallelism . 25
4 Benchmarking . 27

4.1 Data sets . 27
4.2 Source-sink selection . 28
4.3 Experimental set-up . 30
4.4 Measurements . 30

5 Results and Discussion . 33
5.1 Benchmark results . 33

5.1.1 Speedup and Scalability . 33
5.1.2 Weak scaling . 38
5.1.3 Iteration count variance . 38
5.1.4 GAP-road . 38
5.1.5 Profiling . 40

5.2 Source-sink search . 40
5.3 Usability evaluation . 41

5.3.1 Unintuitive behaviors . 41
5.3.2 Translation examples . 42
5.3.3 Portability . 43
5.3.4 GraphBLAS resources . 44
5.3.5 Comparison to other methods of implementation 44

6 Conclusions and Future Work . 47
6.1 Future work . 48

Bibliography . 51
A NIKT2020 Paper By Author . 55
B Additional Code Listings . 69

Figures

2.1 Illustrations of graph representations. 4
2.2 A single step of a linear algebra BFS 10

5.1 Average run-times. 34
5.2 BFS vs. Augment profiling. 35
5.3 Frontier sizes. 39
5.4 Frontier traversal. Pseudo-code and C/GraphBLAS code. 43
5.5 Edge deletion. Pseudo-code and C/GraphBLAS code. 43
5.6 Extract min-cut . 44
5.7 Min-cut extraction. Pseudo-code and C/GraphBLAS code. 44

xiii

Tables

2.1 Key attributes of different graph representations. 6
2.2 Semirings and resulting primitive . 11
2.3 Overview of some GraphBLAS objects. 11
2.4 Overview of some GraphBLAS operations. 12

4.1 Attributes of data sets used in our experiments. 27
4.2 Software versions . 30

5.1 Attributes of the problem instances. 33
5.2 GAP-kron non-deterministic vs. deterministic. 36
5.3 Average speedup. 36

xv

Code Listings

2.1 Outline of a breadth-first search in GraphBLAS 9
3.1 GraphBLAS maximum flow algorithm outline. 22
3.2 get_augmenting_path() . 22
3.3 get_mincut() . 22
3.4 Outline of the algorithm, assign-version. 24
4.1 Source-sink search. 29
5.1 Example of unintuitive use of GrB_apply() 41
B.1 The implementation of the Edmonds-Karp algorithm.

Mathematical notation corresponds to the outline in Listing 3.1. . . 70
B.2 The get_augmenting_path() function.

Mathematical notation corresponds to the outline in Listing 3.2. . . 71
B.3 The get_mincut() function.

*C is the the matrix that containing the min-cut.
Mathematical notation corresponds to the outline in Listing 3.3. . . 72

xvii

List of abbreviations

• BFS: Breadth-First Search.
• CSR: Compressed Sparse Row.
• CSC: Compressed Sparse Column.
• DAG: Directed Acyclic Graph.
• GBTL: GraphBLAS Template Library.
• Max-flow: s-t maximum flow.
• Min-cut: s-t minimum cut.

xix

Chapter 1

Introduction

Graphs are one of the most flexible and most used tools to model data, being
flexible enough to model any set of relations between objects. They can repres-
ent objects as diverse as building structures, social networks, electrical circuits
or road networks. As the sizes of the data processed keeps going up, so does the
need for more processing power keep increasing. The solution to this has been to
increasingly utilize parallel multi-core systems.

Utilizing large systems can be very complex though, as parallel computing
comes with unique challenges not present in sequential computing. This is partic-
ularly difficult in the case of graph algorithms, as they tend to be data-driven and
highly irregular [1], that is, the amount and pattern of work cannot be determ-
ined before the algorithm starts. This means sophisticated techniques are needed
to divide the work between the computational resources, and to safe-guard against
unwanted states caused by race conditions.

In order to alleviate the need for users to implement advanced techniques
themselves, developers and researchers have made high-level frameworks and
libraries. These let the user more generally express the flow of their algorithms.
They then don’t need to handle threads or implement objects that support parallel
access directly.

Recent years have seen a growing interest and development in expressing
graphs and graph problems in the language of linear algebra, particularly in the
form of the GraphBLAS standard [2]. Utilizing linear algebra has a few prom-
ising advantages. One is the consistent mathematical concepts that help reason-
ing about algorithms, for example identifying multiple mathematically equivalent
ways of expressing the same procedure, and reason about which would yield the
better performance. Processing linear algebra is also a field that has seen extens-
ive research throughout the years, and expressing graphs in this way unlocks a
direct way of utilizing decades of research worth of optimizations. All this while
keeping a strong separation of concern between the user, who interacts only with
high-level linear algebra objects and operations, and the low-level implementa-
tions where these, sometimes hard-ware specific, optimizations are employed.

1

2 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

1.1 Goals and Contributions

The goal of this work is to test the usability of the GraphBLAS standard as a
framework for massively parallel graph algorithms, both in terms of productivity
and performance. The central questions are whether building implementations
on GraphBLAS can achieve sufficient performance for the overhead of learning,
how quickly new algorithms can be made once learned, and how maintainable
the resulting code is.

This to be achieved by implementing the Edmonds-Karp algorithm for max-
imum flow. This algorithm is complex enough that it allowed us to explore large
parts of the GraphBLAS tool-set, while being composed of parts that were known
to be expressible in terms of linear algebra operations. We will also generate max-
imum flow problem instances and extracted a minimum cut from the network
using GraphBLAS operations. To the author´s knowledge, this thesis contains the
first published results in using GraphBLAS for this problem and algorithm.

1.2 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2: Background information related to graphs and GraphBLAS.
• Chapter 3: The maximum flow problem, the Edmonds-Karp algorithm, and

our implementation.
• Chapter 4: The set-up for our experiments. This includes a description of

how our maximum flow instances were generated.
• Chapter 5: We present and discuss the results of our experiments. We also

discuss the usability of GraphBLAS in the context of this work through vari-
oius examples.

• Chapter 6: Our conclusions, as well as outline future work.
• Appendix A: Paper presented at NIK 2020, based on earlier work.
• Appendix B: Additional code listings for our program.

Chapter 2

Graphs and GraphBLAS

In this chapter we will present necessary background information related to graphs
and GraphBLAS. We will also briefly introduce a few other graph algorithm frame-
works. Several parts of this chapter are based on sections from the the author’s
pre-master fall project, which was an overview of performance and usability of
different graph algorithm frameworks. This work was written up as a conference
paper that was presented at NIKT 2020, from which we have also borrowed ma-
terial from.

2.1 Graphs

Note: This section is largely taken from the authors own fall project report.

Graphs, in the context of this thesis, are made up of vertices (nodes or points)
which are connected by edges (links or lines), which are used to model a number
of different networks and relationships/interactions. These include:

• Road networks
• Social networks
• Computational dependencies
• Artificial neural networks
• Protein interactions

Formally, a graph G = (V, E) contains a set of vertices V = {v1, v2, ..., vn} and
edges E = {e1, e2, ..., em}. Each edge ek = (i, j) is a connection from vertex vi to
v j . If a graph is undirected, then (i, j) ∈ E ⇒ (j, i) ∈ E, otherwise it is a directed
graph. Edges can be weighted, represented as a weight function w : e → R, in
which case G = (V, E, w), or they can be uniformly weighted/unweighted. The
degree deg(v) of a vertex is the number of edges incident to v if G is undirec-
ted, otherwise we will differentiate between in-degree degin(v) and out-degree
degout(v).

3

4 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

(a) The graph

(b) Adjacency list
(c) Coordinate list/edge list.

(d) (Dense) adjacency matrix (e) CSR

Figure 2.1: Illustrations of graph representations.

2.1.1 Graph representations

In order to be processed by a computer program, a graph needs to be stored in
some fashion. The method of storage can have big impacts on both the run-time of
the algorithm and/or its spacial requirements, which again will affect what prob-
lems can feasibly be solved on what systems. The optimum we want to approach
is a storage requirement of θ (|E|) and an time θ (1) for inspecting the existence
or property of any edge. As with many problems in computer science, there is a
space/time conflict, and one usually has to sacrifice one for the other. In addi-
tion, different storage methods imply different access patterns that will affect the
behaviour of hardware like cache and GPUs. The different storage methods are
described in the following sections. We have provided illustrations of them in Fig-
ure 2.1 and their storage requirements and access times are summarized in Table
2.1b and 2.1b.

Coordinate list:

Possibly the simplest approach is the edge list/coordinate list (COO), which is
just an list of all tuples (i, j) ∈ E, or triples (i, j, w) for weighted graphs. With a
spatial requirement of θ (|E|) this is spatially optimal, and therefore well suited
as a storage format. It is very inefficient in terms of access, at O(|E|), so it is not
suited as a run-time representation unless |E|<< |V |, which is rarely the case.

Chapter 2: Graphs and GraphBLAS 5

Adjacency list:

Another simple approach is to have a list of edges per vertex, an adjacency list
(AL), which could be a linked list or a contiguous array. Weights can be stored
with the value of the out-vertex of an edge or in their own list. This is spatially
efficient, and in the case of a linked list has the added property of easy insertion
and removal of edges while still using minimal space. The access time for a single
edge is O(degout(v)), or O(log(degout(v))) for a sorted array, so this method is
best suited for algorithms where each edge of any vertex is explored, or for low-
degree graphs.

(Dense) adjacency matrix:

Variations of the adjacency matrix (AM) are the among most common represent-
ation of graphs, best illustrated by the dense case, see 2.1d. The matrix A is a
|V |x |V | square matrix, where a value ai j implies an edge (i, j) with weight ai j .
Among all the representations, this has the best random access time at θ (1). The
cost is explicitly storing all non-edges, and so its spatial requirement is θ (|V |2).
If vertices are constant, this representation has the benefit of allowing constant
time additions or deletions of edges.

Sparse adjacency matrix:

As real-world graphs are often sparse, usually |E| << |V |2, it is common to use
sparse matrix formats like compact sparse row format (CSR) instead of dense
matrix formats, see 2.1e. In CSR, the non-zero values of the matrix are stored
in an array W sorted in a row-major order, with two arrays used determine the
coordinates of each value in the original matrix. The array V indicates the row-
indices, the values of row i is stored in W [vi : vi+1] and E[vi : vi+1] contains the
column indices for those values. In a way, CSR can be thought of as in-between
an adjacency matrix and a adjacency list.

Both in terms of space and performance CSR is similar to an adjacency list,
though it is implicitly sorted, so access time is always O(log(degout(v))) for a
specific edge using binary search. There is also the related compact sparse column
(CSC) format, which is identical to CSR except storing in a column major order,
which is better for accessing in-edges rather than out-edges.

2.1.2 Characteristics of graphs

As alluded to earlier, a very important characteristic of graphs is whether it is
dense or sparse. While a graph with |E| << |V |2 is clearly sparse, there is not a
precise definition of sparseness other than "a graph is sparse if it is beneficial to
exploit the sparsity". Luckily, most real world graphs exhibit a degree of sparsity
where it is clearly profitable to utilize sparse graph techniques.

6 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Table 2.1: Key attributes of different graph representations.

(a) Comparison of space requirement

Space
COO θ (|E|)
Adjacency list θ (|E|+ |V |)
Adjacency matrix θ (|V |2)
CSR θ (|E|+ |V |)
CSC θ (|E|+ |V |)

(b) Graph representation comparison
Opt: Optimal
COO: Coordinate list
AL: Adjacency List
AM: Adjacency Matrix
CSR: Compressed Sparse Row
CSC: Compressed Sparse Column

Single edge (i, j) All out-edges of vi All in-edges of vi Memory
Opt θ (1) θ (degout(vi)) θ (degin(vi)) θ (|E|)
COO O(|E|) O(|E|) O(|E|) θ (|E|)
AL O(degout(vi)) θ (degout(vi)) O(|E|) θ (|E|+ |V |)
AM θ (1) θ (degout(vi)) θ (degin(vi)) θ (|V |2)
CSR O(log(degout(vi))) θ (degout(vi)) O(|E|) θ (|E|+ |V |)
CSC O(log(degin(v j))) O(|E|) θ (degin(vi)) θ (|E|+ |V |)

Chapter 2: Graphs and GraphBLAS 7

Many real-world graphs are also characterized as scale-free, where the vertex
degrees follow a power-law distribution. This means the fraction of vertices with
degree k is P(k)≈ k−γ, γ > 1. In practice, this means that for large graphs, there
will be a few vertices with much larger degrees than the rest. These graphs also
tend to have a low diameter.

Another big category of graphs are road networks. They tend to have very low
variance in vertex degrees, sometimes no vertices have degrees larger than 5-6
regardless of the graph size. They also tend to have very large diameters compared
to scale-free graphs. Because of this, they present very different challenges when
optimizing parallel algorithms.

2.1.3 Irregularity in graph algorithms

Different algorithms exhibit different degrees of irregularity in their computations.
That is, the pattern of which data is used when in computations might be strict,
loose or non-existent. On the one end, dense linear algebra operations can be cat-
egorized as highly regular, every calculation can be clearly identified immediately.
Sparse linear algebra operations one the other hand, are somewhat irregular, the
necessary computations aren’t so readily available. Among the definitely irregu-
lar algorithms are the general graph algorithms, the necessary computation not
knowable at all before running the algorithm, though, some operations can be
translated to sparse linear algebra, which we explore in Section 2.2.

As one would imagine, irregularity poses a serious challenge when paralleliz-
ing algorithms. One needs to designate ownership of each workload to a executing
thread, but when one does not know where work will appear, that can be diffi-
cult. A static partitioning, like assigning a set of vertices or edges of a graph to
each thread, could function. But as many real-world graphs can have very skewed
distribution of vertex degrees, as mentioned in Section 2.1.2, this approach could
lead to terrible load-balancing, in the worst case approaching serial performance
if a single thread does the majority of the work while the others stay idle.

2.1.4 Breadth-First Search

The Breadth-First Search (BFS) is an important primitive in its own right, but also
a cornerstone of the Edmonds-Karp max-flow algorithm. In short, the BFS is a
search in a graph G starting from a source vertex s. The simplest definition is that
given a graph G = (V, E) and a source vertex s, the BFS should label each vertex
reachable from s with the number of edges one needs to traverse to reach it, also
known as the level of a vertex.

In the context of the Edmonds-Karp algorithm, two other definitions of BFS
are also useful. One is that it should simply output for each vertex whether or
not it is reachable from the vertex, and the other is a labelling where each vertex
points to its parent in the search given the ordering outlined above. The former of
these two definitions does not infer an ordering and could technically be solved
by multiple different searches.

8 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

The basic outline of a breadth-first search is as follows:

q = {s}
visited = {}
label(s, s)
while(q not empty):

level = q
for each u in level:

remove(u, q)
insert(u, visited)
for each v in neighbors(u)

if v not in visited:
insert(v, q)
label(u, v)

The label function in the above code is then adjusted to label vertex v either
with the current level, a boolean "true" value or a pointer to u, depending on the
version of the search needed in the algorithm.

BFS DAG

A directed acyclic graph (DAG) is a directed graph that contain no cycles, that is,
there is no path from a vertex back to itself. If we run the "parent-variant" of the
BFS outlined above, we produce a BFS tree, as each child will only have a single
parent. However, if a child had instead kept all the parents from the previous level
we would have produced a BFS DAG.

Frontier

Throughout this thesis, we will use the concept of the frontier as short-hand for
vertices that are part of a bulk parallel operation. This concept is used under dif-
ferent names in a number of different graph frameworks, like Gunrock and Ligra,
see Section 2.3. They are tightly connected to the BFS, and in simpler algorithms
the frontiers will correspond exactly to the levels in a BFS. The BFS DAG, see
above, map out the dependencies between computations many different graph
algorithms. This means that if one constructs an algorithm that works one level at
a time, there is often no inter-dependency in it, which means we can freely paral-
lelize within the frontier, which again is why it is a useful abstraction utilized by
graph algorithm frameworks.

2.2 Graphs as linear algebra / GraphBLAS

GraphBLAS is a standard developed by the GraphBLAS Forum and it seeks to
standardize how graphs and graph algorithms can be expressed in terms of lin-
ear algebra constructs and operations. The key observation for this goal is that if
graphs are represented as (sparse) adjacency matrices, which is already beneficial
(see Section 2.1.1), then we can express operations on them using linear algebra.
This technique is particularly good at expressing large bulk-operations, which is

Chapter 2: Graphs and GraphBLAS 9

useful when one wishes to parallelize the algorithms in multi-core computers or
even GPUs.

2.2.1 GraphBLAS BFS

As an example to illustrate this, we will re-visit the breadth-first search (BFS), and
we will focus on the parent search. That is, for each vertex, we want to note one
of its parents in the BFS DAG 2.1.4. This version of the BFS is both in a sense the
most general and illustrates the expressiveness of GraphBLAS.

Our search will be one level at a time, and given a adjacency matrix A and a
vector x representing the current level which we will call the frontier, we want
to both determine the vertices in the next level outward and note which vertex
"discovered" them.

f ′i =
∑

f j∈ f ,Ai j∈A

f j ∗ Ai j (2.1)

Equation 2.1 shows the calculation for a given value f ′i ∈ f ′ for the vector
matrix multiplication f ′ = f A. In our context, f represents the current frontier of
vertices, f ′ the next frontier of vertices and A the edges of the graph. As it is, the
individual multiplications correspond to the edges we wish to traverse, and the
summation for each vertex corresponds to the reduction we employ if multiple
vertices in one frontier are adjacent to the same vertex in the next one.

In order to not just get the pattern we want, but also the result, we introduce is
the semiring, an algebraic structure that re-defines the additive and multiplicative
operator. In order to extract the index of the parent-vertex in each level of the
search, we use FIRSTJ as our multiplicative operator. FIRSTJ is defined as the
column/j-index of the first operand. The additive operator simply needs to return
a single value out of the candidate parents, so we can set it to the ANY operator
to achieve the desired result.

In order to express convergence we need to ignore any vertices we have already
found. For this purpose GraphBLAS defines a mask, a structure with the same di-
mensions as the output that indicates which values we actually want. In this case,
we will note visited vertices in a parent-vector and use its structural complement
as the mask. That is, only values not present in the parent-vector are eligible to
be written.

Listing 2.1 outlines this BFS algorithm. A example of a single step of the search
can be seen in figure 2.2.

Code listing 2.1: Outline of a breadth-first search in GraphBLAS

1 parent<s> = s
2 frontier<s> = s
3 while (frontier not empty):
4 frontier<parent’> = x * A
5 parent<x> = x

10 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Figure 2.2: A single step of a breadth-first search as a vector-matrix multiplica-
tion.

(a) Graph. Figure provided by Professor Tim Davis, author of Suitesparse:GraphBLAS

(b) Linear Algebra operation

Chapter 2: Graphs and GraphBLAS 11

Table 2.2: Semirings and resulting primitive
FIRSTJ: J-index of the first argument
ANY: Any one of the two values

⊗ ⊕

Domain Primitive

∗ + R Traditional linear algebra
AND OR 0,1 BFS reachable

FIRSTJ ANY R BFS with parents
+ MIN R Single-source shortest path

Table 2.3: Overview of some GraphBLAS objects. Based on a table in [3]

Object Description
GrB_Matrix A sparse matrix.
GrB_Vector A sparse column vector.
GrB_UnaryOp A unary scalar operator.
GrB_BinaryOp A binary scalar operator.
GrB_Monoid An associative and commutative binary

operator and its identity value.
GrB_Semiring A collection of a monoid and a binary

operator, defining "plus" and "multiply"
as needed.

GrB_Descriptor A collection of parameters denoting how
inputs and outputs are read in a GraphBLAS
operation.

By simply changing the semiring used, we can express other algorithms using
the same basic structure. Examples of some semirings and the calculation they
infer can be seen in table 2.2.

An important feature of this formulation is that the three lines in the loop in
the figure both:

1. Express all the calculations performed at that stage. First all the edges needed,
then all the recordings of the levels, etc.

2. Does not infer any ordering of these calculations.

In sum, these two features means that the back-end of a framework that imple-
ments this standard is free to order and/or parallelize the operations in the way
it finds optimal. This means formulating algorithms in this standard makes the
algorithms inherently portable across multiple different systems.

2.2.2 GraphBLAS objects and operations

GraphBLAS defines a set of objects and operations, some of which can be seen in
table 2.3 and 2.4, some of which have been implied in previous sections. They all
have rigorous mathematical definitions outlined in the GraphBLAS API [4].

12 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Table 2.4: Overview of some GraphBLAS operations. Based on a table in [3].
⊙

indicates an (optional) accumulator, a binary operator.

Operation name Description GraphBLAS math notation
GrB_mxm Matrix-matrix mult. C〈M〉= C

⊙

AB
GrB_vxm Vector-matrix mult. x T 〈mT 〉= x T⊙ y T B
GrB_mxv Matrix-vector mult. x 〈m〉= x

⊙

Ay
GrB_eWiseMult Element-wise multiplication. C〈M〉= C

⊙

(A
⊗

B)
x 〈m〉= x
⊙

(y
⊗

z)
GrB_eWiseAdd Element-wise addition. C〈M〉= C

⊙

A
⊗

B
x 〈m〉= x
⊙

(y
⊕

z)
GrB_extract Extract sub-matrix/vector. C〈M〉= C

⊙

A(x , y)
x 〈m〉= x
⊙

y(z)
GrB_assign Assign sub-matrix/vector. C〈M〉(x , y) = C(x , y)

⊙

A
x 〈m〉(z) = x (z)

⊙

y
GrB_assign_<type> Assign scalar to all elements C〈M〉(x , y) = C(x , y)

⊙

s
in sub-matrix/vector. x 〈m〉(z) = x (z)

⊙

s
GrB_apply Apply unary operator. C〈M〉= C

⊙

f (A)
x 〈m〉= x
⊙

f (y)
GrB_reduce Reduce to vector or scalar. x 〈m〉= x

⊙

[
⊕

j A(:, j)]
s = s
⊙

[
⊕

i jA(i, j)]
s = s
⊙

[
⊕

i x (i)]
GrB_transpose Transpose matrix. C〈M〉= C

⊙

AT

Chapter 2: Graphs and GraphBLAS 13

Of note is that all objects are opaque. That is, the user cannot interact with
them outside of the defined operations. This allows for a number of optimizations
as long as the object obeys the mathematical definitions when the user interacts
with them. Among these is that GraphBLAS defines a non-blocking mode, where
any modification can be postponed until needed, which allows multiple individual
changes to be chained together or performed in bulk.

As GraphBLAS is intended to be used for graph processing, it is important
that it supports sparse matrices, see Section 2.1.2. Importantly, the value of a
non-element in a matrix or vector is user defined. In the case of ordinary linear
algebra, non-elements are always zero-valued, but if we were running a single-
source shortest path and used a PLUS-MIN semiring, we would want these ele-
ments to be treated as "infinity". This is defined by the semiring in addition to
the operators, and means that we can run a number of different algorithms on
the same graph without explicitly changing any values. This allows GraphBLAS
implementations to utilize sparse matrix representations, like the ones outlined
in Section 2.1.1.

In addition to the outlined input and output, most GraphBLAS operations ac-
cept a set modifier objects. One of these is the mask, which was described in the
previous section. Another important one is the descriptor, which defines how the
operations reads and writes the inputs, mask and output. Particularly useful is
the ability to note that the mask should be evaluated only by structure instead of
value, which means explicit zeros (like a parent-pointer to the zero-indexed vertex
or a zero-weighted edge) still imply a write in the output object. Another is the
ability to consider the masks complement, that is, only the elements not implied
by the mask.

2.2.3 Parallelism in GraphBLAS

Bulk-operations in GraphBLAS are all defined in such a way to imply a degree
of parallelism. Assign and apply operations define fully independent calculations,
similarly to filter and compute-functions in the frontier-based framework Gunrock
[5]. While the specifics of these calculations can vary between implementations,
the Gunrock authors note that these are generally trivially parallelizable. The Gun-
rock authors note, however that their advance operator, which has near-identical
behaviour to the VxM operation in GraphBLAS, is significantly harder to parallel-
ize. This operation has a high degree of irregularity, as vertices can have highly
varying in and out-degrees.

As outlined by Pingali et. al [1], problems themselves also express very varying
degrees of parallelism. They outline a different pattern of computation, but the
principles are the same. In for example a BFS, the beginning of the algorithm
will naturally have a low degree of parallelism, as each vertex’s computation is
dependent on its parent’s computation. In the case of GraphBLAS, this simply
translates to parallelism being dependent on the size of the frontier vector in the
VxM operation. Or generally, the available parallelism varies with the volume of

14 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

individual computations, which is dependent on the underlying graph and for
example the kind of frontiers it implies.

2.2.4 Suitesparse:GraphBLAS

Note: This section is taken from a paper written by the author for DT8117.
Suitesparse:GraphBLAS, by Dr Timothy Davis [3], is the reference implement-

ation of the GraphBLAS standard. It is written in C and also provides a MATLAB
interface. It provides both a full implementation of the standard and a test suite
to ensure correctness of the underlying algorithms and procedures.

The default underlying structure for the graph and edges is a CSR or CSC mat-
rix, which is the same as most other graph frameworks, which has a near-optimal
memory footprint at O(|V |+ |E|). Vector-matrix and matrix-matrix multiplication
in Suitesparse:GraphBLAS is implemented using Gustavsson’s Algorithm , which
has a theoretical bound of O(f) in the vector-matrix case, where f is the number of
non-trivial computations, that is, the actual traversed edges. This bound assumes
a previously allocated buffer with a size linear to the number of vertices, but this
would only have to be allocated once for a given algorithm, and is therefore easily
amortized.

The main matrix storage formats are CSR and CSC 2.1 with corresponding
hypersparse versions for cases where |E| << |V |. The implementation supports
non-blocking execution, which means any operation can be delayed as long as
the objects remain mathematically consistent.

In version 3, they introduced parallel execution of linear algebra operations
by utilizing OpenMP [6]. OpenMP is an open-source standard for simple parallel
execution of code regions.

A GPU-accelerated version is also in progress, and an MPI version is planned
in the more distant future [7].

2.2.5 Other GraphBLAS implementations and project

In addition to Suitesparse:GraphBLAS, several other implementations of the stand-
ard exist, and in this section we will introduce a couple of notable ones. We will
also introduce the LAGraph project.

GraphBLAST

Note: This section is based on a section from the authors fall project report.
GraphBLAST, Yang et. al [8], is an implementation of GraphBLAS targeting

Nvidia- GPUs, and is the GPU implementation with a focus on high performance
[9]. It was developed with the goal of making the high performance of frameworks
such as Gunrock [5] and D-IrGL (Galois) [10] more accessible by utilizing the
GraphBLAS standard.

Among the optimizations it employs to achieve this performance is what the
authors refer to as generalized direction-optimization. This novel technique is an

Chapter 2: Graphs and GraphBLAS 15

extension of a technique employed in a BFS-implementation by Beamer et al.
[11], where it was observed that when the frontier of a breadth-first search is
large enough, it is beneficial to pull information from the vertices outside the
frontier rather than the frontier vertices pushing the search forward. This tech-
nique is referred to as push-pull optimization and translates naturally to linear
algebra formulations. The computational pattern from push and pull corresponds
to the difference between a sparse frontier vector representation and a dense rep-
resentation. This sparse/dense view translates beyond BFS search, which is why
it is referred to as generalized. Because of this technique, GraphBLAST will some-
times store graphs in both CSR and CSC formats, as CSR has better performance
for pull-style computations while CSC is more suited for push operations.

They also identified the potential of exploiting input sparsity in their opera-
tions. According to the standard, when a mask is provided in a operation, it is
applied last, that is, the right-hand result is fully determined, and then the mask
simply determines which parts of this result is written to the output. If a mask in
a GraphBLAS operation is particularly sparse, however, then there can be signific-
ant performance gained by using the mask first to determine which calculations
actually need to be performed.

At the time of writing, GraphBLAST does not fully implement the GraphBLAS
standard. Crucially, it does not implement element-wise addition, which is neces-
sary to implement a max-flow algorithms, as one needs to be able to update flow
along any edge in the graph. Alternatives would be to store the per-edge values
in a |E| long vector or re-build the adjacency matrix for each iteration, neither of
which would utilize the linear algebra formulation to the fullest extent.

GBTL

The GraphBLAS Template Library (GBTL) [12], is an older implementation of
GraphBLAS. Written in C++, its goal is primarily to provide an easy to use frame-
work along with example algorithms written in the standard. As such, it is not
necessarily designed with high performance as the primary goal. Its contribution
through the many algorithms they provide is however, of note.

An older version of GBTL, and what is presented in the cited paper, also
provided support for running programs on GPUs using CUDA. While GPU support
is no longer available in GBTL, that is an important milestone, as GPUs have much
higher peak operations per second. The CUDA-implementation is built on top of
Thrust and CUSP (which again is built on top of Thrust), which provide the ne-
cessary vector and matrix operations to implement parts of the GraphBLAS stand-
ard, including multiplication and element-wise addition/multiplication across two
vectors/matrices.

GBTL only supports sequential execution. V2 had a proof of concept GPU sup-
port, which was removed in v3.

16 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

2.2.6 LAGraph

LAGraph [9] is a growing effort to collect algorithms written in the GraphBLAS
standard. It contains a variety of different programs written for GraphBLAS provided
by users. At the time of writing, it supports only Suitesparse:GraphBLAS. However,
as outlined in the beginning of this section, algorithms in GraphBLAS easily can be
ported to most implementations, as they define the same set of operations, even
if programming language and signature might differ.

2.3 Other graph frameworks

There are a plethora of different frameworks for parellell graph processing, both
for multicore CPU systems and GPUs. What follows is a short summary of some
relevant ones, with descriptions taken from the authors own conference paper
[13], which is also attached in Appendix A.

2.3.1 Galois

Galois is a framework built around Tao-analysis, [1], and uses the operator formu-
lation of algorithms to reveal amorphous data-parallelism As such, the key features
Galois provides are concurrent data structures and parallel loops that allow gener-
ation of new work items/loop iterations as the loop is running. They also provide
support for priority and ordering between work items. These parallel loops can
also be thought of as unordered set iterators.

D-IrGL is one of the more recent additions to the continually growing family
of systems associated with Galois. It is the combination of the communication sub-
strate Gluon [10] with the GPU-targeted intermediate representation IrGL [14],
and it facilitates distributed heterogeneous graph applications. These ideas were
developed further into the Abelian compiler [15], which produces Gluon+IrGL
code from ordinary Galois code written for CPU. The complete system effectively
turns Galois into a portable framework for multi-core, distributed and potentially
heterogeneous graph algorithms.

2.3.2 Gunrock

Gunrock is a frontier-based framework, see Section 2.1.4, for single-node GPU
accelerated systems. In its original implementation, it provided three functions for
processing frontiers: Advance for traversal, compute for label updates and filter. A
few more specialized operators where added later.

2.3.3 Ligra

Ligra is a light-weight frontier-based framework for CPUs. It provides only two
functions, edgeMap and vertexMap and a vertexSubset type for the frontier. EdgeMap
is the advancing operator, and applies a given function to all edges out of the

Chapter 2: Graphs and GraphBLAS 17

frontier given a condition is met. VertexMap is similar to Gunrock’s filter function.
Both functions have precise mathematical definitions provided in the paper, and
as a consequence Ligra is a very compact framework, which is explored further in
Section

Chapter 3

Max-Flow in GraphBLAS

In order to test both the usability and performance of the SuiteSparse:GraphBLAS
implementation, we chose to implement and benchmark an s-t maximum flow
algorithm.

This problem was primarily chosen because maximum flow and its algorithms
are simple enough to reason about, while still more complex and flexible than a
simple primitive like BFS. In practice this meant that implementing an algorithm
would force us to utilize large parts of the GraphBLAS tool set, which was a im-
portant goal during this thesis.

At the time of writing, there are also no published results of using GraphBLAS
to implement a max-flow algorithm, making this experiment somewhat novel.
There is, however, an implementation available by the authors of GBTL. This
implementation served as a foundation and also allowed us to try different ap-
proaches with the confidence that there was a working fall-back.

In the following sections, we will first give an introduction to the s-t maximum
flow problem. We will then present our choice of algorithm, as well as discuss why
we chose this particular one.

3.1 The maximum flow problem

In the maximum flow problem, the goal is to find the largest potential flow of
some kind between two points in a network. This flow could be of electricity,
water or some other abstract property we are interested in, and has applications
in computer vision [16]. In the abstraction of graphs, what we have is a weighted
graph G = (V, E), where the weights represent the flow capacity for each edge.
For a set of vertices V , a flow function f : V xV → R and capacity function c :
V xV → R, we can express it as a linear program:

19

20 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

maximize
∑

v∈V,v 6=s

f (s, v)

subject to

f (u, v)≤ c(u, v) ,∀u, v ∈ V
∑

u∈V

f (u, v) =
∑

w∈V

f (v, w) ,∀v ∈ V − {s, t}

(3.1)

That is, our goal is to maximize flow out of the source (or equivalently, the
flow into the sink). The flow across an edge can be no greater than it’s capacity
and the flow into a vertex must equal the flow out of a vertex.

3.1.1 Maximum flow algorithms

There are a number of different algorithms sovling the maximum flow problem,
and our choice fell upon the Ford-Fulkerson method/Edmonds-Karp algorithm
[17]. This algorithm is based upon the breadth-first search primitive, which is
known to be easily expressible as in terms of linear algebra operations. There is
also an open source implementation available on the GitHub repository of GBTL
2.2.5, which served as the basis for our own implementation and will be discussed
further in Section 3.2.3.

Other algorithms were considered. In a survey paper outlining the relative
performance of maximum-flow algorithms, [18], Ahuja et. al presents a selection
of different solutions and discuss their relative merits. A recurring problem, how-
ever, was that none of these could be represented practically as a series of linear
algebra operations.

Variants of Push-Relabel [19] were considered, as they are not particularly
complex algorithms to express sequentially. However, common for all these al-
gorithms is that they label each with a distance/height and filter viable edges
(u, v) based the difference l(u)− l(v). This turned out to be quite complex to ex-
press in the GraphBLAS standard. Our suspicions that this would not be a viable
approach were validated by the implementation available in the GBTL repository,
as it hardly utilized any linear algebra bulk operations, instead implementing a
essentially sequential algorithm using random accesses.

Dinic’s algorithm [20] and its improvement, the MPM algorithm [21], have
better theoretical run-time bounds than Edmonds-Karp and Push-Relabel. They
both however, utilize depth-first searches to construct their augmenting path.
While it is possible to express depth-first searches as linear algebra operations
[22], this was deemed too complex for our program, as it requires us to construct
larger more complex matrices and vectors other than the basic adjacency matrix
and frontier vector. As depth-first search is a P-complete problem [23], it also is
not suited for work primarily focused on multi-core processing.

Chapter 3: Max-Flow in GraphBLAS 21

3.1.2 The Edmonds-Karp algorithm

The Edmonds-Karp algorithm follows the simple outline given by the Ford-Fulkerson
method:

1. Find an augmenting path.
2. Increase flow along the augmenting path, updating capacities.
3. Repeat the previous steps until no augmenting path can be found.

The specification that makes it the Edmonds-Karp algorithm is that the aug-
menting path is found through a breadth-first search, and the shortest path in
terms of number of edges is chosen during each iteration. The increase in flow
is the minimum residual capacity along this path. This gives the algorithm an
O(V E2) upper bound in run-time [17].

This algorithm does not work on the graph directly, but rather on a residual
graph. This residual graph represents the available capacity between all pairs of
vertices, and starts of as a copy of the original flow network. Whenever flow is
increased by a factor d along a path P, all capacities c(u, v) in the residual graph
along the path is lowered by d. Also, crucially, capacities along the parallel op-
posite edges c(v, u) are increased by a factor d to represent flow that could be
re-directed later. This generally means edges are both added and deleted in the
residual graph at every iteration of the algorithm, as their capacities go from zero
to non-zero or from non-zero to zero.

3.1.3 Minimum cut

An s-t cut on a graph G = (V, E) is a partitioning of the vertices into to disjoint sub-
sets S and T where s ∈ S, t ∈ T . The cost of a cut is defined as

∑

u∈S

∑

v∈T w(u, v),
i.e. the sum of the edge weights for any edges going form S to T . A minimum cut,
the cut that minimizes this sum, is shown to be equal to the value of the max-
imum flow [17]. This cut can be found by defining S as the vertices reachable
in the residual network after finding the maximum flow, and T as the remaining
vertices.

The minimum cut defines a set of bottleneck edges for the maximum flow.
As such, it can be useful to find explicitly in many maximum flow use-cases. In
particular, it has applications in image segmentation [16].

3.2 Algorithm outline

This section will give an outline of the algorithm benchmarked. We will emphasise
the different GraphBLAS-specific techniques used to construct it.

The program is outlined in Listings 3.1 and 3.2. These listings do not include
variable initialization, subsequent calculation of the maximum flow, or other code
lines that are not necessary to understand the structure of the algorithm. But
otherwise it represents a complete program, that given a matrix A calculates the
maximum flow.

22 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Code listing 3.1: GraphBLAS maximum flow algorithm outline.

1 while(M = get_augmenting_path(R, s))
2 P = M

⊗

R
3 delta = min(P)
4 P<M> = -delta
5 P = P

⊕

(-PT)
6 R = R

⊕

P
7 R<R> = R
8
9 max_flow = 0

10 for i: 1 to n:
11 max_flow += A[s,i] - R[s,i]

Code listing 3.2: get_augmenting_path()

1 frontier[source] = true
2 parent[source] = source
3 while(frontier not empty AND parent[sink] == NULL):
4 frontier<parent’> = frontier * R //ANY_FIRSTJ semiring
5 parent<frontier> = frontier
6
7 current_vertex = sink
8 while(current_vertex != source):
9 M[current_vertex] = parent[current_vertex]

10 current_vertex = parent[current_vertex]

Code listing 3.3: get_mincut()

1 reachable[source] = true
2 frontier[source] = true
3 while(frontier not empty):
4 frontier<reachable’> = frontier * R //OR_AND semiring
5 parent<frontier> = frontier
6
7 t_cut<reachable’> = reachable * A //OR_AND semiring
8 s_cut<reachable> = t_cut * A //OR_AND semiring
9

10 min_cut = A<s_cut.indices, t_cut.indices> //All edges from s to t

Chapter 3: Max-Flow in GraphBLAS 23

The corresponding C-code to Listings 3.1 and 3.2, as well as the minimum-
cut procedure in Listing 3.3, see Section 3.2.2, can be found in the appendix as
Listings B.1, B.2 and B.3 respectively.

Listing 3.1 outlines the overall procedure of the algorithm, which we will give
an thorough explanation of here.

1. We obtain the augmenting path, if there is one, as a boolean matrix M out-
lining the path.

2. Extract the corresponding capacities from the residual graph R. This is done
by performing an element-wise multiplication between M and R. We used
SECOND as our binary function, which returns the second operand (the
capacity), but since M is boolean, TIMES could also have been used.

3. Perform a reduction on the extracted value to obtain the minimum capacity
along the path.

4. We assign this minimum value on every edge in the path negated to repres-
ent the negative change in capacity, using the boolean path M as the mask.

5. To insert the positive changes to the capacities along the parallel opposite
edges, we use a additive inverse unary function on all elements of P, trans-
pose them, and add them back into P.

6. The changes stored in P is then applied to the residual graph by performing
an element-wise addition between the two matrices.

7. We need to remove explicit zeros from R, which is done by applying a unary
identity function to all elements in R and writing them back to R but using
R as a mask. That is, for each value, we write that value back, but only if
it does not equal zero, as those values are ignored because of the (same)
zeros in the mask.

8. After the core loop terminates, we calculate the maximum flow by accumu-
lating the difference between the capacities and residual on all edges going
out of the source.

Listing 3.2 represents the first step. Given a residual graph R, it produces a
boolean matrix M representing a shortest augmenting path. Lines 1-5 is essentially
the GraphBLAS BFS outlined in Section 2.2.1. We produce a vector where for
each vertex reached in the search we note its parent. The only difference from
the algorithm outlined in the Background chapter is that we terminate as soon as
we find the sink. Lines 7-10 is a sequential backtrack through the parent-pointers,
constructing the boolean mask M which outlines the path.

3.2.1 Assign

There are two instances were we could have used masked assign instead of element-
wise multiplication and a unary function apply, respectively, which we believe
would have made for a more readable algorithm. Some informal experiments in-
dicated that this was no slower than the version outlined above. Correspondence
with the developer of the Suitesparse:GraphBLAS code also confirmed this, and
they indicated that using assign in these instances could actually be faster, at least

24 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Code listing 3.4: Outline of the algorithm, replacing element-wise multiplication
and apply with assign.

1 while(M = get_augmenting_path(R, s))
2 P<M> = R
3 delta = min(P)
4 P<M> = -delta
5 P<MT> = delta
6 R = R

⊕

P
7 R<R> = R
8
9 max_flow = 0

10 for i: 1 to n:
11 max_flow += A[s,i] - R[s,i]

in an upcoming version of the framework.
The first one is for extracting capacities from R given the boolean path M , step

2 above. We could have simply assigned the capacities of R directly to P and used
M as the mask.

The second one corresponds to step 5 above. Instead of applying a unary onto
a transposed P and adding the result back to P itself, we could have transposed M
and then assigned the delta as a scalar assign. This would make significantly more
sense mathematically and also reduce the time of the operation to O(1) according
to the developer.

Applying these changes would lead to a new algorithm outline seen in Listing
3.4. In the appendix, these alternatives are also presented within the C-code list-
ing outlining the program B.1, indicating where and how it would change. This
improvement was discovered too late to be part of the benchmarks.

3.2.2 Min-Cut

In addition to calculating the maximum flow, we also explicitly produce the min-
imum cut. This procedure highlighted further interesting GraphBLAS use-cases
and limitations. The process is outlined in Listing 3.3. The minimum cut is defined
in Section 3.1.3. We find it by running a simple BFS in the residual graph to find
the vertices reachable from the source (line 1-5). To find the vertices incident to
the T-side of the cut, we then perform a single traversal step from the reachable
vertices into the original graph. Similarly, we find the vertices on the S-side of the
cut by traversing a single step from the "T-vertices" back towards the reachable
ones.

Lastly, we use the indices from these vertices to find the edges in the minimum
cut. This last step is the only that is notably more complex when written out in the
GraphBLAS standard. We first extract the indices of the vertices, then use them
to extract the edge capacities. We then translate the local indices of the extracted
edges back to global indices in the graph, which is lastly used to construct a new
graph containing only the minimum cut edges.

Chapter 3: Max-Flow in GraphBLAS 25

3.2.3 GBTL maximum flow algorithm

Our algorithm borrows from one written by the developers of GBTL 2.2.5, which
was made publicly available in their Github repository 1. The two implementa-
tions are structurally very similar, and our follows the GBTL program quite closely.
Where applicable, we have however changed GraphBLAS operations to increase
readability of the program. This includes:

1. We use a masked assigns to insert the negative capacity changes into the
path matrix, instead of a unary function apply.

2. The GBTL impementation constructs a vector called index_ramp, which they
use to associate vertices with their parents in the breadth-first search. We
instead employ the FIRSTJ multiplicative operator for the same result.

3. We use ANY as our additive operator in the BFS rather than MIN, as this
more clearly communicates the intent of the algorithm, and leaves more
room for back-end optimizations.

4. We explicitly extract the minimum cut, this is not done in the GBTL imple-
mentation.

5. We changed the order of some operations to make the program easier to
parse and understand.

Our goal with these changes was to shorten and/or simplify the program. In
general, changes that lengthened the program were not implemented, even if if
they would lead to better clarity. Otherwise, it was assumed that changes that
would make the code more readable would not make the program slower.

3.3 Parallelism

As the program is based on GraphBLAS, it is inherently a bulk-synchronous ap-
proach. Each GraphBLAS function call functions as a superstep where calcula-
tions can be performed in parallel, and changes are not assumed visible until the
call returns. We are using visible in the sense that updates are noted within the
GraphBLAS environment. All GraphBLAS objects are opaque, which means none
of the updates are visible to the user until explicitly queried.

1https://github.com/cmu-sei/gbtl/blob/master/src/algorithms/maxflow.hpp

https://github.com/cmu-sei/gbtl/blob/master/src/algorithms/maxflow.hpp

Chapter 4

Benchmarking

The program was benchmarked with scalability in mind, as this is one of the
clearer indicators of the efficiency of a parallel program. As such, it was important
to both have a sufficiently powerful shared-memory system, to test with a large
amount of threads, and with large representative data sets.

4.1 Data sets

The data sets utilized were the ones provided in the GAP Benchmark suite [24]
by Beamer et. al. This suite is a collection of algorithms and data sets used to
benchmark and compared different graph frameworks and solutions. It specifies
six algorithmic kernels with provided reference implementations, five data sets
and measurement methodologies. Because max-flow is not one of the algorithmic
kernels, we have are only utilizing the data sets, but we have also utilized the
measurement methodologies as the baseline for our own.

As can be seen in Table 4.1, the data sets provided in the GAP benchmark suite
span a few key graph characteristics. This includes both directed and undirected
graphs, and varying edge distributions and diameters. Three of the five graphs
are constructed from real-world data, so it also provides a realistic view of how a
program would actually fare "in the wild".

Table 4.1: Attributes of data sets used in our experiments.
All data-sets are from the GAP benchmark suite [24].
Approximate diameter taken from Azad et. al [25].

Name n/Vertices Non-zeros/Edges Edge distribution Approx. diameter
Road 24M 58M road-network 6,304
Twitter 62M 1468M power-law 14
Web 51M 1930M power-law 135
Kron 134M 4,223M power-law 6
Urand 134M 4,295M uniform 7

27

28 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

All data sets have integer weighted edges, even if the original data set it is
based on was unweighted.

Matrices were provided in the Matrix Market file format. This is a coordinated
list (COO) format, where each value in the matrix is provided as a triple (i, j, v).
GrB_Matrix_build is a function provided in GraphBLAS that constructs matrices
with COO formatted input. It does, however, assume three separate arrays for i,
j and v, instead of a stream of triples. This meant a custom file reading program
was written to read mtx-files and construct the arrays.

4.2 Source-sink selection

Because we worked with large datasets, and Edmonds-Karp is an algorithm that
can involve hundreds of iterations of breadth-first searches, we considered it in-
feasible to run benchmarks using multiple sink-source pairs for each graph. As
such, our goal was to find a single pair of vertices for each graph that produced a
large workload, as this would give us better data of the performance and scalabil-
ity of the algorithm. Large work-loads in the case of the Edmund-Karp algorithm
is determined by:

1. The length of each iterations breadth-first search.
2. The number of vertices reached in the breadth-first search.
3. The number of iterations.

The GAP datasets each provide a set of 64 sources for use with algorithms
such as BFS and SSSP, but they did not also come with a corresponding sink. As
such, processing them were considered wasted work, as they were essentially no
better candidates than random vertices for our purposes.

In order to find candidates the source and sink, we ran a breadth-first search
starting from an arbitrary source vertex. We first opted for a fully automated pro-
cess which tried new random source vertices until it found one that could reach
at least half the graph, and then sat the sink vertex to the one that maximized
the depth. The reasoning behind this was that this would create the largest pos-
sible flow network. However, experiments found that maximizing depth also near-
guaranteed that the sink vertex would be placed at a periphery of the graph with
only a small number of edges incident which would be filled very early in the
algorithm, resulting in runs with very low iteration counts.

In order to counter-act this, we adjusted the breadth-first search. We started
by giving the source vertex a weight of 1. Then, as we ran the BFS, at each new
level of the search, the weight of the child vertices would be set to the sum of
its parents weights. This meant at level N of the BFS, each vertex would have a
weight equal to the number of unique paths of length N reaching it in the BFS
DAG 2.1.4. As this would again favour vertices in the periphery of the graph, after
accumulating the incoming weights at a vertex we multiplied it by a dampening
factor 1/d, d >= 1, penalizing longer paths. This dampening would ensure that a
vertex at the periphery would not "inherit" the weight of an ancestor in the search.

Chapter 4: Benchmarking 29

Code listing 4.1: Source-sink search. Weights and frontier are |V |-length vectors,
A is the adjacency matrix.

1 bfs_source = 0; //Current source of breadth-first search
2 can_s = 0; //Candidate s/source
3 can_t = NULL; //Candidate t/sink
4 prev_s = NULL; //Previous s/source
5 prev_t = NULL; //Previous t/sink
6
7 while (can_s != prev_s OR can_t != prev_t):
8 weights[bfs_source] = 1
9 frontier[bfs_source] = 1

10
11 while (frontier not empty):
12 frontier<weights’> = frontier * A //PLUS_FIRST semiring
13 frontier = frontier

⊗

dampening_factor //Element-wise multiplication
14 weights = weights

⊕

frontier //Add new weights
15
16 //Find candidate s/t and flip the search direction
17 if(bfs_source == can_s):
18 can_t = max(weights)
19 bfs_source = can_t
20 else:
21 can_s = max(weights)
22 bfs_source = can_s
23

24 A = AT

25 clear(weights)
26 clear(frontier)

Our goal was to set this factor such that the sink would be at the last available
vertex before we reach the sparse periphery of the graph, essentially at the last
high in-degree vertex of the search.

After finding a potential sink candidate, we decided the source-vertex in a
similar way. By performing the same search in the transposed graph, i.e. where
all edges have their edges reversed, we could weight source candidates by how
many paths they had to the sink. We repeated this process iteratively until a source
and sink candidate both "agreed" on one another as the best candidate. Pseudo-
code for the complete procedure can be seen in listing 4.1.

As outlined in section 2.1.2, different graphs can have very different distri-
bution of edges. This in turn meant that it was impossible to fully automate the
source-sink search. On the road network, with a low average vertex degree and
a high diameter, we needed a low dampening factor. Otherwise the search would
favor sink vertices very close to the source, whih would exclude large parts of the
graph from the problem instance. On power-law graphs we found the opposite
to be true, where higher d was needed to keep the sink from being placed in the
periphery.

30 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Table 4.2: Software versions

Software Branch/version Dependencies
Suitesparse:GraphBLAS stable/0618e95108 OpenMP
Docker 20.10.7, build f0df350
gcc 7.5.0
Python 3.6.9
Ubuntu Linux 18.04.5

4.3 Experimental set-up

All experiments were performed on a Supermicro SuperServer 6049GP-TRT with
2 CPUs, Intel Xeon Gold 6230 SP - 20-Core. All cores were capable of hyperthread-
ing, and as a result we had 80 threads available for the experiments.

Number of utilized threads/cores was controlled using the OpenMP environ-
ment variable OMP_NUM_THREADS, which was set to selected numbers between
1 and 80.

Table 4.2 provides an overview of the software utilized in these experiments,
along with version numbers.

4.4 Measurements

Utilizing the best practices outlined in the GAP benchmark suite, all graphs are
considered loaded before any time measurements are done. Within this we have
also included any variable initialization that would be done only once across mul-
tiple trials. Any initialization that has to be done in a per-trial basis however, like
allocating and copying the graph to construct a residual graph, is timed.

We ran each graph with a number of different thread configurations, which
is discussed further in 5. For each configuration, the maximum-flow algorithm
was run 5 times on the fastest instances to ensure low variance between measure-
ments. This exceeds the lowest number of iterations found in the GAP benchmark-
ing standard, which is 3. This was considered sufficient in these experiments too
as a single run of our Edmund-Karp implementation involves multiple iterations
of BFS, which is considered a single algorithm in the GAP standard.

The heaviest runs, with a thread count of 1-8 were only run once, as some
took several hours to complete. Multiple runs help minimize variance imposed by
the system, such as other processes running at the same time. In the cases were
a run took multiple hours, this variance was assumed to be naturally evened out,
and multiple runs were considered infeasible because of time constraints.

For each run, the primary measurement was the total time from duplicating
the graph to create a residual graph to outputting the maximum flow. In addition,
we measured how much of the time was spent finding new augmenting paths and
how much time was spent adjusting the flow along said paths. Lastly we measured
the time it took to determine the minimum cut as well as the time spent loading

Chapter 4: Benchmarking 31

the matrix, to ensure neither became a bottleneck in the program. These meas-
urements were done using the Linux’s built-in gettimeofday() function, which was
inserted around relevant sections of the code.

Chapter 5

Results and Discussion

In this chapter we will discuss the results of our work. We will begin by discussing
the results from our benchmarks, and then provide a discussion and evaluation of
the usability of GraphBLAS.

5.1 Benchmark results

In this section we present and discuss the results from our benchmarks, which
followed the process outlined in Chapter 4.

5.1.1 Speedup and Scalability

Our goal with this work was to construct a parallel program, and as such scalabiltiy
is an important aspect to look at. Scalability are metrics that measure how well
the run-time scales as computing resources are introduced.

Using our single-threaded runs as the baseline, we achieved the average spee-
dups seen in Table 5.3.

Strong scaling

We will mostly consider strong scaling, that is, keeping the problem size con-
stant as resources are introduced. As is discussed further in Section 5.1.3, this is
not something we can measure completely directly, as iteration count is part of

Table 5.1: Attributes of the problem instances.

Name Source-sink dist. Reachable vertices Iterations Min-cut size
Road 5744 100% 1274-1290 4
Twitter 6 56.9% 95-103 23
Web 22 99.8% 11-14 2
Kron 4 47.0 % 22-35 8
Urand 7 100% 197-216 48

33

34 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

(a) GAP-road run-times. (b) GAP-twitter run-times.

(c) GAP-web run-times. (d) GAP-kron run-times.

(e) GAP-urand run-times.

Figure 5.1: Average run-time for each problem instance and thread configuration.

Chapter 5: Results and Discussion 35

(a) GAP-road percentage time. (b) GAP-twitter percentage time.

(c) GAP-web percentage time. (d) GAP-kron percentage time.

(e) GAP-urand percentage time.

Figure 5.2: BFS vs. Augment profiling. Percentage-wise time spent performing
the Breadth-First Searches, Augmenting the flow along the found path, or in other
sections of the code, for different thread counts between 1 and 80.

36 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Table 5.2: GAP-kron non-deterministic vs. deterministic. Comparing iteration
count and run-time for different thread counts when using the non-deterministic
ANY-operator or the deterministic MIN-operator for BFS.

Table 5.3: Average speedup for each graph with different thread counts.

Threads
Graph 2 4 8 20 40 80
GAP-road 1.39 1.74 1.95 2.05 2.06 1.76
GAP-twitter 2.13 3.73 5.62 8.51 9.37 8.60
GAP-web 1.95 3.32 5.09 6.99 9.15 8.25
GAP-kron 1.24 2.01 3.86 6.45 6.56 7.27
GAP-urand 1.55 2.81 5.24 9.65 11.06 10.08

the problem size and not consistent across runs. However, the variance is small
enough, especially in the instances with iteration counts > 100.

Looking at Figure 5.1, the pattern overall is quite consistent, and as expec-
ted for strong scaling. Assuming a problem instance with some proportion of the
program that can be run in parallel and some that is inherently sequential, as we
introduce more and more threads, the time spent in the parallel sections drops
to a minimum and the sequential run-time stays constants. This is most certainly
what is observed here, as we can see the sequential minimum run-time is also
dependent on problem size. This follows the pattern known as Amdahl’s law.

What is not consistent is the size of the bottleneck, as we saw in Table 5.3.
It is clear that GAP-road has a much larger sequential bottleneck than the other
graphs, as it never achieves a speedup higher than ~2.

If we further look at Figure 5.2, we can where the different instances spent
most of their time. These figures show estimates of time spent in the two main
portions of the code, namely finding the augmenting path and then augmenting
flow along that path. The GAP-road problem instance infers much greater time
spent in the breadth-first search than the others, even at higher thread counts. This
seems to indicate that the search is where we find the bottleneck for the GAP-road
instance, while the others have their bottleneck in the capacity adjustment.

In sum, while the speedup differs the pattern of the strong scaling seems to
be independent of graph type, graph size and which section of the code is act-
ing as a bottleneck. This could indicate that both of the code sections have their
own sequential bottlenecks. In this case, it would make perfect sense that GAP-
road, which has long paths, emphasizes the search bottleneck at higher thread
counts, while the power-law networks, which have a huge number of non-zeros
but short paths, would emphasize the bottleneck in the flow augmentation part
of the code. This is not unlikely, as the search has a sequential loop that punishes
long paths, and the augmentation has an edge deletion section that punishes the
largest graphs. There is also possibility that there are bottlenecks inherent with
the framework itself, either as a result of the underlying linear algebra algorithms
or how threads are organized through OpenMP.

Chapter 5: Results and Discussion 37

GAP-kron, 80 threads

ANY MIN
Time Iterations Time/iteration Time Iterations Time/iteration
819.18 31 26.43 611.61 22 27.80
696.96 26 26.81 614.55 22 27.93
825.43 31 26.63 604.53 22 27.48
717.29 27 26.57 609.40 22 27.70
686.48 26 26.40 609.04 22 27.68

GAP-kron, 40 threads

ANY MIN
Time Iterations Time/iteration Time Iterations Time/iteration
807.67 32 25.24 579.35 22 26.33
826.34 32 25.82 590.97 22 26.86
813.86 32 25.43 582.35 22 26.47
841.91 33 25.51 588.3 22 26.74
858.88 34 25.26 592.51 22 26.93

GAP-kron, 20 threads

ANY MIN
Time Iterations Time/iteration Time Iterations Time/iteration
784.28 28 28.00 647.88 22 29.45
861.21 32 26.91 672.24 22 30.56
837.80 31 27.03 645.1 22 29.32
829.33 30 27.64 662.77 22 30.13
905.12 34 26.62 644.74 22 29.31

GAP-kron, 8 threads

ANY MIN
Time Iterations Time/iteration Time Iterations Time/iteration
1,408.79 27 52.18 1221.01 22 55.5

GAP-kron, 4 threads

ANY MIN
Time Iterations Time/iteration Time Iterations Time/iteration
2709.61 29 93.43 2134.82 22 97.04

GAP-kron, 2 threads

ANY MIN
Time Iterations Time/iteration Time Iterations Time/iteration
4399.55 26 169.21 3921.57 22 178.25

GAP-kron, 1 threads

ANY MIN
Time Iterations Time/iteration Time Iterations Time/iteration
5444.35 22 247.47 6972.92 22 316.95

38 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

5.1.2 Weak scaling

In addition to strong scaling, weak scaling is another way of measuring a parallel
programs efficiency. In this case the execution time is kept constant rather than
the problem size. In our work however, our instances not only vary in size, i.e.
edges and vertices in the graph, but also iteration count and minimum cut size.
As such, this is not a metric we can measure with a degree of confidence.

5.1.3 Iteration count variance

Iteration count varied somewhat within the run of each data set. This is expected,
as we have built in non-determinism in the algorithm through the use of the ANY-
operator when we perform the BFS that finds a new augmenting path. We believe
that this is the correct choice, as it expresses an important aspect of the correctness
of the algorithm. That is, the choice of parent in the BFS-DAG does not affect
correctness. The original GBTL implementation’s use of a MIN-operator instead
(minimum of vertex indices) makes their algorithm deterministic, but infers more
overhead than ours. There is no reason to believe that this deterministic algorithm
would consistently achieve a lower iteration count, as using the minimum vertex
index is not a problem-specific heuristic.

Lower iteration count is, naturally, tied to a lower total run-time, which means
that a problem-specific heuristic could benefit the algorithm. Heuristics are util-
ized in other maximum-flow algorithms, and ’shortest path’ is itself a heuristic
that implies a known theoretical run-time bound, so it is not unthinkable.

We decided to run the data sets with the highest variance in terms of iterations
again, namely the GAP-kron graph. This time, we ran used the MIN-operator in-
stead of ANY, and we also sat GraphBLAS to blocking-mode to ensure everything
was completely deterministic. The results can be seen in Table ??, and the results
are interesting. Not only did all runs have the exact same number of iterations,
which was expected, they also hit the smallest known iteration count for that
problem instance. Our suspicions on the increased overhead of the MIN-operator
seems to have been correct, however, as each iteration consistently took longer
than when using the ANY-operator, though this could also be a consequence of
the blocking mode. The reduced number of iterations makes up for this though,
and results overall in a reduced run-time.

5.1.4 GAP-road

GAP-road is the same dataset as the US road set from the DIMACS implementation
challenge [26], but with added edges weights. As a road network, it is a high-
diameter graph with low variance in vertex degree. This means for a frontier-
based/bulk-synchronous parallel approach, like the linear algebra approach is,
the amount of parallelism at each level of a search will be low.

We can clearly see this manifesting in the results. While GAP-road is a smaller
graph in number of edges by orders of magnitude than the other graphs, the time

Chapter 5: Results and Discussion 39

(a) GAP-twitter with log scale.

(b) GAP-road with log scale.

(c) GAP-web with log scale. (d) GAP-kron with log scale.

(e) GAP-urand with log scale.

Figure 5.3: Frontier sizes. These are all taken from the first iteration of their
respective run.

40 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

needed to process the max-flow problem instance is still considerable.

5.1.5 Profiling

In addition to measuring overall run-time for each configuration of dataset+thread
count, we also measured specifically how much time the program spent in differ-
ent sections of the code, as was seen in 5.2. As we can see from the results on
the GAP-twitter and GAP-web datasets, the program spent significantly more time
augmenting the flow along a given path than it did actually calculating that path,
regardless of thread count.

The amount of work done in a single VxM operation, the basis for finding
the augmenting path, is dependent on the number of multiplications between the
frontier vector and the adjacency matrix. While we cannot observe this number
directly, we can get an estimate by looking at the frontier sizes, as the size of the
next level frontier is a lower bound on the number of multiplications. In Figure
5.3 we can see the frontier sizes for the first iteration for each problem instance.

The amount of work done when augmenting flow along a path is generally
dependent on the length of the path. However, the graph with the longest paths,
GAP-road, spent significantly more time in its runs in traversal than it did aug-
menting the flow. While pin-pointing why this is, it can be a consequence of how
edges are deleted, which is to filter the residual graph through a mask, as seen in
Section 5.3.2. If the mask is applied after rather than before the application of the
unary function, then this operation would naturally infer very large amounts of
computations on larger graphs. This optimization has been identified by the au-
thors of another GraphBLAS implementation, GraphBLAST [8], and was described
in Section 2.2.5.

Another consequence of this observation is how graph properties affect choice
of algorithm. Dinic’s algorithm and algorithm in that style generally have signi-
ficantly lower theoretical runtime bounds than Edmonds-Karp. However, the way
they achieve this is by essentially re-using the breadth-first search and augment-
ing the flow multiple times before searching again. As we see from our bench-
marks, traversal was not the bottleneck for the largest datasets, and as such, it is
doubtful we would have gained much implementing one of the more complicated
algorithms, even if one assumes they could be parallelized efficiently.

The radical difference in where the bottleneck exists in the program between
the GAP-road network and the power-law graphs and the GAP-urand graph sug-
gests that there is not necessarily a single approach that can optimize this imple-
mentation.

5.2 Source-sink search

Our method for selecting the sink in the graphs, as outlined in section 4.2, pro-
duced sufficiently hard problem instances for the maximum flow problem. They
did however, consistently produce instances with the distinct feature that the

Chapter 5: Results and Discussion 41

placement of the sink was hardly affected by the dampening factor. This is likely
consequence of the breadth-first search itself. If a vertex is visited, it will never be
visited again. So, if we find a high in-degree vertex candidate for the sink and give
it a high weight. Then, if it does not have any out-edges to un-visited vertices, no
matter how we set the dampening factor, this vertex will likely stay the heaviest,
as the weight accumulated will never propagate outward. In other words, it might
be that accumulating weights, even with a dampening factor, lead to us favoring
high-degree "dead ends" in the BFS DAG 2.1.4. This does not necessarily lead to
bad problem instances, but indicates that a more robust method might find better
ones.

Early experiments with depth instead of our current method consistently pro-
duced iteration counts

5.3 Usability evaluation

In addition to evaluating the performance of GraphBLAS, an important part of this
project was to test the usability of the standard and specifically Suitesparse:GraphBLAS.
In this section we will first discuss a few somewhat unintuitive behaviors in the
standard. We will then give some concrete examples of how "intended behaviour"
(in the form of pseudo-code) and GraphBLAS code look side by side. Finally, we
will provide some thoughts on the portability aspect of GraphBLAS and the re-
sources available, especially as they relate to the work done for this thesis.

5.3.1 Unintuitive behaviors

There are some unintuitive behaviours. Particularly, only functions that take a
monoid or semiring will assign a value to the non-elements in the matrix, i.e the
elements that would be treated as implicit zeros in normal arithmetic. For all other
functions, including those that take binary operator, any calculation between an
explicit value and an non-value will simply return the explicit value, bypassing
the binary operator entirely. An example of this can be seen in the breadth-first
search for augmenting paths in our algorithm, see Listing 5.1, where in a call to
GrB_apply, a binary operator is provided. As the two vectors combined in this
operation are non-overlapping, any binary operator could be provided, as it will
only ever return a single value from either vector. The only function of this binary
operator is to override that GraphBLAS operations by default replaces all values
in the output vector/matrix if accumulation is not defined.

Code listing 5.1: Example of unintuitive use of GrB_apply()

1 //parent<frontier> = frontier
2 GrB_Vector_apply(parent_list, NO_MASK, GrB_PLUS_INT32,
3 GrB_IDENTITY_INT32, frontier, DEFAULT_DESC);

Another sometimes unintuitive, but powerful feature is that of the mask. The
descriptor can be set to make the mask be either treated explicitly as a boolean

42 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

mask or structurally. It can also be set to use the patterns complement as a mask
instead of the mask itself. All these features were utilized in our program. Of
note is that after a single iteration of the Edmonds-Karp algorithm, there are at
least one zero-vaue edge that needs to be removed for the algorihtm to behave
correctly. What we did, which was borrowed from the original GBTL algorithm,
was to overwrite the residual graph with its own values, but using itself as the
mask. That is, an explicit zero in the residual would prevent that same edge from
being saved.

We also made heavy use of different masks and accompanying descriptors
when extracting the min-cut, as described in section 3.2.2. This routine is however
also a good example of some limitations of the standard, which is discussed further
in Section 5.3.2.

5.3.2 Translation examples

In order to give some hands-on examples of how GraphBLAS code looks like, we
have provided a few examples of pseduo-code and Suitesparse:GraphBLAS C-code
side by side in Figure 5.4, 5.5 and 5.7.

Traversal, 5.4, is definitely a feature where GraphBLAS excels. While one
needs to grasp the relationship between linear algebra and the graph, and un-
derstand the function signatures, the vxm itself manages to capture a double "for
all" loop in a single line of code. This is an incredibly compact way of expressing
this and at the same time through the semiring capture what kind of dependency
exists between the in-edges of an element in the output.

Deletion, 5.5, is also relatively compact. This does, however, change the struc-
ture of the algorithm. In order to express all the deletions at once, one needs to
bundle them together in a mask and then call GrB_apply() (GrB_assign() would
also work). It also demands that the user have a keen understanding of how the
mask is evaluated, that implicit and explicit zeros in the mask indicates a non-
write, and that by using a matrix with explicit zeros as a write mask on itself
those explicit zeros would be deleted. It could also infer a run-time dependent
on the number of values in the graph rather than the number of deleted edges.
And if that isn’t the case, it has the unfortunate consequence of obfuscating the
performance of the operation, making the program harder to reason about.

The last example is the least intuitive, which is taken from the min-cut extrac-
tion part of our program, 5.7. From a graph perspective, what we want to express
is that the min-cut is the set of edges that point "out" of the set of vertices that
are reachable from the source in the residual graph. After determining the set of
reachable vertices, we need to do two steps of traversal. Then we extract the in-
dices, so we can extract the corresponding edge values. Finally we combine the
extracted indices and values to construct a new graph containing only the min-cut
edges. While the process is not much longer, at only two more lines of instructions,
it is significantly harder to parse. What makes it especially difficult is the need to
translate between vectors, matrices and their indices, where GraphBLAS normally

Chapter 5: Results and Discussion 43

1 for all u in frontier:
2 for all (u,v) in A:
3 visit(v)

1 GrB_vxm(_f, //New frontier
2 visited, NULL,
3 f, A,
4 GrB_<PLUS>_<MULT>_<type>,
5 desc); //Complement mask
6 GrB_assign(visited,
7 NULL, NULL,
8 _f,
9 GrB_all, n,

10 NULL);

Figure 5.4: Frontier traversal. Pseudo-code and C/GraphBLAS code.

1 //In core loop
2 if (w(u,v) == 0):
3 delete(u,v)

1 //After core loop
2 GrB_apply(_A, //New graph
3 A, NULL,

//Non-zero value edges as mask
4 A,
5 GrB_Identity_<type>,
6 NULL);

Figure 5.5: Edge deletion. Pseudo-code and C/GraphBLAS code.

allows us to only care about these containers as a whole.

5.3.3 Portability

As mentioned in Chapter 3, our algorithm was originally based on a implementa-
tion written in GBTL. In fact, our baseline program was a line-by-line translation
of their code from their C++-based framework to Suitesparse:GraphBLAS, which
again is identical to the signatures provided in the GraphBLAS reference API.

The original plan for this project was to port the GBTL algorithm to the GPU
based GraphBLAS:GraphBLAST implementation. Had GraphBLAST been a com-
plete implementation of the standard, in particular, if it had implemented element-
wise operations on matrices, this would have been relatively painless. In other
words, with little effort, we could have translated the single-threaded GBTL im-
plementation both to a multi-core program and a GPU program. This speaks very
favorably of the potential GraphBLAS has as a portable standard.

All GraphBLAS implementations also have a emphasis on separation of con-
cerns [9] between the top-level interface and the back-end. This means that as
long as the low-level implementations of the linear algebra algorithms are effi-
cient across the different platforms, one can feasibly trust that a high-performing
algorithm written in one GraphBLAS implementation will still perform well in
other implementations, even on other platforms.

44 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Figure 5.6: Extract min-cut

1 reachable = bfs(s, R)
2 for all u in reachable:
3 for all (u,v) in A:
4 if v not in reachable:
5 min_cut.add(u,v)

1 bfs(&reachable, s, R);
2
3 //Complemented mask
4 GrB_vxm(t_cut, reachable, NO_ACCUM, GxB_ANY_FIRSTJ_INT32, reachable, A, desc);
5
6 //Transpose A
7 GrB_vxm(s_cut, reachable, NO_ACCUM, GxB_ANY_FIRSTJ_INT32, t_cut, A, transpose_1);
8
9 GrB_Vector_extractTuples(s_indices, s_vals, &s_len, s_cut);

10
11 GrB_Vector_extractTuples(t_indices, t_vals, &t_len, t_cut);
12
13 GrB_extract(cut_extract, NO_MASK, NO_ACCUM, A, s_indices, s_len, t_indices,
14 t_len, DEFAULT_DESC);
15
16 GrB_assign(min_cut, NO_MASK, NO_ACCUM, cut_extract, s_indices, s_len, t_indices,
17 t_len, DEFAULT_DESC);

Figure 5.7: Min-cut extraction. Pseudo-code and C/GraphBLAS code.

5.3.4 GraphBLAS resources

An incredibly useful resource when working on this project was the GraphBLAS
reference API [4]. This is a comprehensive overview of the behaviour of all func-
tions and object defined in the standard. As they provide mathematical definitions
along with written descriptions, it reinforces the way the linear algebra abstrac-
tion works. This is what allowed us to make the changes between the GTBL code
and our own, as well as implement our own algorithm for extracting the minimum
cut.

In addition, as was mentioned in the background chapter, the LAGraph project
[9] seeks to compile a variety of different algorithms written in the GraphBLAS
standard. In addition to being useful in and of themselves, these programs can
be a great asset when learning different techniques for how to translate a graph
problem into a set of linear algebra operations.

5.3.5 Comparison to other methods of implementation

In terms of performance, there has been done research in comparing different
graph algorithm frameworks, including by Azad et. al [25]. Here Suitesparse:GraphBLAS
does not perform favorably when compared to other frameworks. They focus on
performance, however, and not on ease of use.

In all our core program spans ~500 lines, including comments and debug

Chapter 5: Results and Discussion 45

functionalitym as well as functionality for extracting the minimum cut. Excluding
min-cut extraction, which as far as we are aware is not standard for other imple-
mentation, the total program spans a little less than 400 lines of code. The func-
tionality for reading a matrix-market formatted graph adds another ~100 lines.
By comparison, the max-flow implementation present in the Lonestar/Galois re-
pository is 870 lines long and Gunrock’s is ~1500 lines.

Another interesting point of comparison would be how easy to write and main-
tainable our maximum flow implementation is compared to one written "from
scratch". While we will abstain from speculating too much in that regard, there
are a couple of important points. Such an implementation would potentially be
able to exhibit less "fork and join" behaviour. That is, if we have more fine-grained
control over threads, we can keep them busy for longer before we need to ex-
plicitly wait for the other threads to finish, which could lead to more concurrent
computations. However, in addition to the algorithm itself, we would have needed
to build a system to queue up and manage the work and divide it between the
threads. Considering the irregularity present in the algorithm, for example the
wildly varying frontier-size, this would not be easy.

Chapter 6

Conclusions and Future Work

Graphs model a number of different networks and relationships/interactions re-
lated to building structures, social networks, electrical circuits or road networks.
As these data sets grow, finding and implementing efficient graph algorithms for
analyzing large graphs utilizing parallel multi-core systems is becoming more im-
portant.

The use of linear algebra, and the standardization in the form of GraphBLAS,
is a very exiting development in the field of graph algorithm frameworks. It allows
algorithms to be expressed in a way that is concise and consistent. The benefits
of this is algorithms that are easier to reason about, which facilitates iterations
and optimizations, and that are portable across different systems, which makes it
incredibly flexible.

We explored this by implementing the Edmonds-Karp algorithm for maximum
flow in Suitesparse:GraphBLAS, the standard’s reference implementation, as well
as one with support for multi-thread execution. In addition, we implemented a
minimum cut extraction algorithm. Neither of these algorithms have previously
published results, and as far as we are aware, this is the first implementation
of minimum cut using GraphBLAS. Implementing these algorithms provided a
more interesting exploration of the standard than a simple algorithm such as BFS
(breath-first search).

Our usability results were shown to be very promising. By building on the
GraphBLAS framework, we were able to write a program that is significantly more
compact than maximum-flow algorithm implementations written in other frame-
works. Our work demonstrated the portability of GraphBLAS programs by porting
the GraphBLAS Template Library implementation of the algorithm. By improv-
ing the algorithm and changing certain parts of the program flow, the claim that
GraphBLAS programs are composable [2] also bore out.

The new functionality we implemented, in particular the minimum-cut ex-
traction, demonstrated that the framework is clearly usable to build entirely new
algorithms too, once the core logic is understood. This functionality did however
push towards the limitations of the standard though, as this part of the program
translated less neatly to linear algebra and as such was less intuitive.

47

48 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Utilizing linear algebra to reason about and discuss the algorithm turned out
to be a great asset. This was shown when we presented different solutions for
implementing the same behaviour in this thesis. It was also helpful when discuss-
ing solutions with the Suitesparse:GraphBLAS developer and other users, as this
short-hand facilitated concise and precise discussion.

We constructed maximum-flow problem instances out of the GAP Benchmark
Suite’s set of reference data sets. This was done to expose the program to a rep-
resentative selection of graph types, while keeping the number of experiments to
a minimum. This strategy turned out to be essential, as some experiments were
incredibly long-running.

Our experimental results were mixed. We achieved a peak speedup of 11 for
the GAP-urand problem instance, but only 2 for GAP-road. None of the instances
showed significant speedup beyond 20 cores. Since some experiments ran for
nearly two hours even with 40 cores available, this is not ideal. It is unclear where
the bottleneck exists, whether it is our implementation, Suitesparse:GraphBLAS
or OpenMP, which is used to manage threads. Due to time limitations, analyzing
this further is left as future work.

6.1 Future work

As we saw in the results, iteration count varied because of our non-deterministic
algorithm. In the case of GAP-kron, running a deterministic variant of our al-
gorithm meant the algorithm found the maximum flow in a minimal number of
iterations. This warrants exploring further, whether this generalizes across other
graphs and problem instances.

Where source and sink is placed in the graph can have huge consequences for
the hardness of the problem instance. Maximum flow algorithms seem less viable
to test in the same way other graph algorithms are tested. The GAP benchmark
suite standardized 64 sources of its algorithms, but random source-sink pairs don’t
imply any sort of consistent workload. One solution could be to test enough pairs
to even out the variance, similarly to how GAP provides a variety of sources, but
this could quickly lead to infeasible run-times for experiments. Alternatively, one
could exclusively look at domain specific problem instances, though this limits the
validity of the experiment results to those domains.

It would be interesting to see whether the scalability pattern presented in
our experiments would repeat across other data sets, instances and systems. This
would require the logistical problem outlined above to be solved, of how to con-
duct such large scale experiments in a feasible manner. Though, as we saw the
same pattern emerge across all our experiments, one could likely use smaller prob-
lem instances than we did in this work. Preferably one would compare the results
to the scalability of other maximum-flow algorithms across the same instances, to
show whether or not the pattern is a artifact of the algorithm, the system or the
problem itself.

Chapter 6: Conclusions and Future Work 49

Gunrock [5] has been used to implement a push-relabel algorithm for max-
imum flow, an algorithm with a better theoretical run-time bound than Edmonds-
Karp. While Gunrock is not based on linear algebra, it implies a very similar pat-
tern of computation, which could indicate that such an algorithm is feasible in
GraphBLAS too.

Bibliography

[1] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem,
T.-H. Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos and X.
Sui, ‘The Tao of Parallelism in Algorithms,’ en, PLDI’11, 2011.

[2] A. Buluc, T. Mattson, S. McMillan, J. Moreira and C. Yang, ‘Design of the
GraphBLAS API for C,’ en, in 2017 IEEE International Parallel and Distrib-
uted Processing Symposium Workshops (IPDPSW), Orlando / Buena Vista,
FL, USA: IEEE, May 2017, pp. 643–652, ISBN: 978-1-5386-3408-0. DOI:
10.1109/IPDPSW.2017.117. [Online]. Available: http://ieeexplore.
ieee.org/document/7965104/ (visited on 15/05/2020).

[3] T. A. Davis, ‘SuiteSparse:GraphBLAS: Graph Algorithms in the Language
of Sparse Linear Algebra,’ en, ACM Transactions on Mathematical Software,
vol. 45, no. 4, pp. 1–25, Dec. 2019, ISSN: 0098-3500, 1557-7295. DOI:
10.1145/3322125. [Online]. Available: https://dl.acm.org/doi/10.
1145/3322125 (visited on 25/03/2021).

[4] A. Buluc, T. Mattson, S. McMillan, J. Moreira and C. Yang, The GraphBLAS
C API Specification, 2019. [Online]. Available: http : / / people . eecs .
berkeley.edu/~aydin/GraphBLAS_API_C_v13.pdf (visited on 18/03/2021).

[5] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel and J. D. Owens, ‘Gunrock: A
high-performance graph processing library on the GPU,’ en, in Proceedings
of the 21st ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming - PPoPP ’16, Barcelona, Spain: ACM Press, 2016, pp. 1–
12, ISBN: 978-1-4503-4092-2. DOI: 10.1145/2851141.2851145. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2851141.2851145
(visited on 23/09/2019).

[6] H. M. Bücker and X. S. Li, Eds., Parallel GraphBLAS with OpenMP, en. Phil-
adelphia, PA: Society for Industrial and Applied Mathematics, Jan. 2020,
ISBN: 978-1-61197-622-9. DOI: 10.1137/1.9781611976229. [Online]. Avail-
able: https://epubs.siam.org/doi/book/10.1137/1.9781611976229
(visited on 25/03/2021).

[7] B. Brock, A. Buluc, T. G. Mattson, S. McMillan, J. E. Moreira, R. Pearce, O.
Selvitopi and T. Steil, ‘Considerations for a Distributed GraphBLAS API,’ en,
in 2020 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), New Orleans, LA, USA: IEEE, May 2020, pp. 215–

51

https://doi.org/10.1109/IPDPSW.2017.117
http://ieeexplore.ieee.org/document/7965104/
http://ieeexplore.ieee.org/document/7965104/
https://doi.org/10.1145/3322125
https://dl.acm.org/doi/10.1145/3322125
https://dl.acm.org/doi/10.1145/3322125
http://people.eecs.berkeley.edu/~aydin/GraphBLAS_API_C_v13.pdf
http://people.eecs.berkeley.edu/~aydin/GraphBLAS_API_C_v13.pdf
https://doi.org/10.1145/2851141.2851145
http://dl.acm.org/citation.cfm?doid=2851141.2851145
https://doi.org/10.1137/1.9781611976229
https://epubs.siam.org/doi/book/10.1137/1.9781611976229

52 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

218, ISBN: 978-1-72817-445-7. DOI: 10.1109/IPDPSW50202.2020.00048.
[Online]. Available: https://ieeexplore.ieee.org/document/9150368/
(visited on 05/05/2021).

[8] C. Yang, A. Buluc and J. D. Owens, ‘GraphBLAST: A High-Performance Lin-
ear Algebra-based Graph Framework on the GPU,’ en, arXiv:1908.01407
[cs], Sep. 2019, arXiv: 1908.01407. [Online]. Available: http://arxiv.
org/abs/1908.01407 (visited on 06/05/2020).

[9] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira and
C. Yang, ‘LAGraph: A Community Effort to Collect Graph Algorithms Built
on Top of the GraphBLAS,’ en, in 2019 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil:
IEEE, May 2019, pp. 276–284, ISBN: 978-1-72813-510-6. DOI: 10.1109/
IPDPSW.2019.00053. [Online]. Available: https://ieeexplore.ieee.
org/document/8778338/ (visited on 22/03/2021).

[10] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden, M. Snir
and K. Pingali, ‘Gluon: A communication-optimizing substrate for distrib-
uted heterogeneous graph analytics,’ en, in Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation
- PLDI 2018, Philadelphia, PA, USA: ACM Press, 2018, pp. 752–768, ISBN:
978-1-4503-5698-5. DOI: 10.1145/3192366.3192404. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3192366.3192404 (visited on
15/01/2020).

[11] S. Beamer, K. Asanovic and D. Patterson, ‘Direction-optimizing Breadth-
First Search,’ in SC ’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ISSN: 2167-4337,
Nov. 2012, pp. 1–10. DOI: 10.1109/SC.2012.50.

[12] P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda and S. McMillan, ‘GBTL-
CUDA: Graph Algorithms and Primitives for GPUs,’ en, in 2016 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IP-
DPSW), Chicago, IL, USA: IEEE, May 2016, pp. 912–920, ISBN: 978-1-
5090-3682-0. DOI: 10.1109/IPDPSW.2016.185. [Online]. Available: http:
//ieeexplore.ieee.org/document/7529957/ (visited on 11/05/2021).

[13] Z. Svela, ‘Evaluating multi-core graph algorithm frameworks,’ en, NIKT
2020, p. 12, 2020. [Online]. Available: https://ojs.bibsys.no/index.
php/NIK/article/view/829.

[14] S. Pai and K. Pingali, ‘A compiler for throughput optimization of graph
algorithms on GPUs,’ en, in Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and
Applications - OOPSLA 2016, Amsterdam, Netherlands: ACM Press, 2016,
pp. 1–19, ISBN: 978-1-4503-4444-9. DOI: 10.1145/2983990.2984015. [On-
line]. Available: http://dl.acm.org/citation.cfm?doid=2983990.
2984015 (visited on 18/06/2020).

https://doi.org/10.1109/IPDPSW50202.2020.00048
https://ieeexplore.ieee.org/document/9150368/
http://arxiv.org/abs/1908.01407
http://arxiv.org/abs/1908.01407
https://doi.org/10.1109/IPDPSW.2019.00053
https://doi.org/10.1109/IPDPSW.2019.00053
https://ieeexplore.ieee.org/document/8778338/
https://ieeexplore.ieee.org/document/8778338/
https://doi.org/10.1145/3192366.3192404
http://dl.acm.org/citation.cfm?doid=3192366.3192404
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1109/IPDPSW.2016.185
http://ieeexplore.ieee.org/document/7529957/
http://ieeexplore.ieee.org/document/7529957/
https://ojs.bibsys.no/index.php/NIK/article/view/829
https://ojs.bibsys.no/index.php/NIK/article/view/829
https://doi.org/10.1145/2983990.2984015
http://dl.acm.org/citation.cfm?doid=2983990.2984015
http://dl.acm.org/citation.cfm?doid=2983990.2984015

Bibliography 53

[15] G. Gill, R. Dathathri, L. Hoang, A. Lenharth and K. Pingali, ‘Abelian: A
Compiler for Graph Analytics on Distributed, Heterogeneous Platforms,’
en, in Euro-Par 2018: Parallel Processing, M. Aldinucci, L. Padovani and M.
Torquati, Eds., vol. 11014, Cham: Springer International Publishing, 2018,
pp. 249–264, ISBN: 978-3-319-96982-4 978-3-319-96983-1. DOI: 10.1007/
978-3-319-96983-1_18. [Online]. Available: http://link.springer.
com/10.1007/978-3-319-96983-1%5C_18 (visited on 04/03/2020).

[16] Y. Boykov and V. Kolmogorov, ‘An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision,’ IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124–1137,
Sep. 2004, Conference Name: IEEE Transactions on Pattern Analysis and
Machine Intelligence, ISSN: 1939-3539. DOI: 10.1109/TPAMI.2004.60.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
Algorithms, Third Edition, 3rd. The MIT Press, 2009, ISBN: 0-262-03384-4.

[18] R. K. Ahuja, M. Kodialam, A. K. Mishra and J. B. Orlin, ‘Computational
investigations of maximum flow algorithms,’ en, European Journal of Oper-
ational Research, vol. 97, no. 3, pp. 509–542, Mar. 1997, ISSN: 03772217.
DOI: 10.1016/S0377-2217(96)00269-X. [Online]. Available: https://
linkinghub.elsevier.com/retrieve/pii/S037722179600269X (visited
on 11/06/2021).

[19] A. V. Goldberg, ‘A New Approach to the Maximum-Flow Problem,’ en, Journal
of the Association for Computing Machinery, p. 20, Oct. 1988.

[20] E. A. Dinic, ‘Algorithm for Solution of a Problem of Maximum Flow in Net-
works with Power Estimation,’ 1970.

[21] V. Malhotra, M. Kumar and S. Maheshwari, ‘An O(|V|3) algorithm for find-
ing maximum flows in networks,’ en, Information Processing Letters, vol. 7,
no. 6, pp. 277–278, Oct. 1978, ISSN: 00200190. DOI: 10.1016/0020-
0190(78)90016-9. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/0020019078900169 (visited on 01/03/2021).

[22] D. G. Spampinato, U. Sridhar and T. M. Low, ‘Linear algebraic depth-first
search,’ en, in Proceedings of the 6th ACM SIGPLAN International Work-
shop on Libraries, Languages and Compilers for Array Programming - ARRAY
2019, Phoenix, AZ, USA: ACM Press, 2019, pp. 93–104, ISBN: 978-1-4503-
6717-2. DOI: 10.1145/3315454.3329962. [Online]. Available: http://dl.
acm.org/citation.cfm?doid=3315454.3329962 (visited on 09/06/2021).

[23] J. H. Reif, ‘Depth-first search is inherently sequential,’ en, Information Pro-
cessing Letters, vol. 20, no. 5, pp. 229–234, Jun. 1985, ISSN: 00200190.
DOI: 10.1016/0020- 0190(85)90024- 9. [Online]. Available: https://
linkinghub.elsevier.com/retrieve/pii/0020019085900249 (visited on
09/06/2021).

https://doi.org/10.1007/978-3-319-96983-1_18
https://doi.org/10.1007/978-3-319-96983-1_18
http://link.springer.com/10.1007/978-3-319-96983-1%5C_18
http://link.springer.com/10.1007/978-3-319-96983-1%5C_18
https://doi.org/10.1109/TPAMI.2004.60
https://doi.org/10.1016/S0377-2217(96)00269-X
https://linkinghub.elsevier.com/retrieve/pii/S037722179600269X
https://linkinghub.elsevier.com/retrieve/pii/S037722179600269X
https://doi.org/10.1016/0020-0190(78)90016-9
https://doi.org/10.1016/0020-0190(78)90016-9
https://linkinghub.elsevier.com/retrieve/pii/0020019078900169
https://linkinghub.elsevier.com/retrieve/pii/0020019078900169
https://doi.org/10.1145/3315454.3329962
http://dl.acm.org/citation.cfm?doid=3315454.3329962
http://dl.acm.org/citation.cfm?doid=3315454.3329962
https://doi.org/10.1016/0020-0190(85)90024-9
https://linkinghub.elsevier.com/retrieve/pii/0020019085900249
https://linkinghub.elsevier.com/retrieve/pii/0020019085900249

54 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

[24] S. Beamer, K. Asanović and D. Patterson, ‘The GAP Benchmark Suite,’ en,
arXiv:1508.03619 [cs], May 2017, arXiv: 1508.03619. [Online]. Available:
http://arxiv.org/abs/1508.03619 (visited on 03/05/2021).

[25] A. Azad, M. M. Aznaveh, S. Beamer, M. Blanco, J. Chen, L. D’Alessandro,
R. Dathathri, T. Davis, K. Deweese, J. Firoz, H. A. Gabb, G. Gill, B. Hegyi,
S. Kolodziej, T. M. Low, A. Lumsdaine, T. Manlaibaatar, T. G. Mattson,
S. McMillan, R. Peri, K. Pingali, U. Sridhar, G. Szarnyas, Y. Zhang and Y.
Zhang, ‘Evaluation of Graph Analytics Frameworks Using the GAP Bench-
mark Suite,’ en, in 2020 IEEE International Symposium on Workload Char-
acterization (IISWC), Beijing, China: IEEE, Oct. 2020, pp. 216–227, ISBN:
978-1-72817-645-1. DOI: 10.1109/IISWC50251.2020.00029. [Online].
Available: https://ieeexplore.ieee.org/document/9251247/ (visited
on 03/05/2021).

[26] 10th DIMACS Implementation Challenge - Graph Partitioning and Graph
Clustering, 2012. [Online]. Available: https : / / www . cc . gatech . edu /
dimacs10/index.shtml.

http://arxiv.org/abs/1508.03619
https://doi.org/10.1109/IISWC50251.2020.00029
https://ieeexplore.ieee.org/document/9251247/
https://www.cc.gatech.edu/dimacs10/index.shtml
https://www.cc.gatech.edu/dimacs10/index.shtml

Appendix A

NIKT2020 Paper By Author

The following paper, "Evaluating multi-core graph algorithm frameworks", was
presented at the NIKT2020 conference by the author. This was based on the fall
pre-project which this thesis is an extension of. It can also be accessed on NIK
2020’s web pages: https://ojs.bibsys.no/index.php/NIK/article/view/829

55

https://ojs.bibsys.no/index.php/NIK/article/view/829

Evaluating multi-core graph algorithm frameworks

Zawadi Svela
Department of Computer Science

Norwegian University of Science and Technology
z.b.svela@gmail.com

Abstract
Multi-core and GPU-based systems offer unprecedented computational power. They are,
however, challenging to utilize effectively, especially when processing irregular data such
as graphs. Graphs are of great interest, as they are now used to model geographic-, social-
and neural networks. Several interesting programming frameworks for graph processing
have therefore been developed these past few years.

In this work, we highlight the strengths and weaknesses of the Galois, GraphBLAST,
Gunrock and Ligra graph frameworks through benchmarking their single source shortest
path (SSSP) implementations using the SuiteSparse Matrix Collection. Tests were
done on an Nvidia DGX2 system, except for Ligra, which only provides a multi-core
framework. D-IrGL, built on Galois, also provided a multi-GPU option for SSSP. We
also look at program size, documentation and overall ease of use.

High performance generally comes at the price of high complexity. D-IrGL shows its
strength on the very largest graphs, where it achieved the best run-time, while Gunrock
processed most other large sets the fastest. However, GraphBLAST, with a relatively low-
complexity interface, achieves the greatest median throughput across all our test cases.
This despite that its SSSP implementation size is only 1/10th of Gunrock, which for our
tests has the highest peak throughput and the fastest run-time in most cases. Ligra had less
computational resources available, and consequently performed worse in most cases, but
it is also a very compact and easy to use framework. Futher analyses and some suggestions
for future work are also included.

1 Introduction
Graphs are an ever useful modelling tool for modelling data in countless of situations,
including geographic-, social-, and neural networks. The demand for processing is
increasing, but Moore’s Law is not keeping up. Thus, highly parallel programs are needed
for large-scale graph processing. GPUs (Graphical Processing Units) are also growing in
popularity, as they have a much higher throughput potential than CPU-only systems.

Exposing parallelism in irregular algorithms, such as graph algorithms, can be
difficult, and this challenge is increased when working with GPUs, which favors highly
regular computations. Specialized libraries and frameworks can help in this regard.

In this work, we study four different graph algorithm frameworks, using their SSSP
implementations as a reference point. Galois [1], Gunrock [2] and Ligra [3] were

This paper was presented at the NIK-2020 conference; see http://www.nik.no/.

chosen because they are well-known frameworks in the area of graph algorithms, and
the GraphBLAS [4] implementation GraphBLAST [5] was added because of its novel
programming model. In addition, they also represent a variety of complexity levels. From
the larger Galois project, we looked at the D-IrGL [6] system specifically, which targets
heterogeneous and distributed systems. Here, "Galois" will refer to the framework and
the programming model, while "D-IrGL" will refer to the code that was run and tested.

SSSP was chosen for our benchmarks since it is both an important graph primitive
which is simple to outline and because it has room for many implementation differences.
The specific algorithm can thus play to the strengths of frameworks, regardless of the
programming model they use.

The goal of this work is to give a comparison of four different frameworks, in order
to help evaluate the trade-offs between both system complexity (CPU/GPU/multi-GPU)
and the frameworks that facilitate programming for these devices.

Related works include a taxonomy and categorization of different parallel graph
algorithm frameworks by Heidari et al. [7]. Petterson’s [8] survey is similar to our own,
but with a a different primitive and selection of frameworks. Both of these works included
Gunrock and Galois in their comparisons, but not D-IrGL, Ligra or GraphBLAST.

2 Background
The following sections introduce the four main frameworks benchmarked in this study:
Galois [1], Gunrock [2], Ligra [3] and GraphBLAS [4]. We also include some of the
abstractions used by the frameworks we evaluated, including the operator formulation
used by Galois, the breath-first-based Frontier-based view associated with Gunrock and
Ligra, which is also implicitly used in GraphBLAS, as well as some of the basic linear
algebra terminology associated with graph representations.

Galois
Galois is a framework built around Tao-analysis, [1], and uses the operator formulation of
algorithms to reveal amorphous data-parallelism, see Section 3. As such, the key features
Galois provides are concurrent data structures and parallel loops that allow generation of
new work items/loop iterations as the loop is running. They also provide support for
priority and ordering between work items.

D-IrGL is one of the more recent additions to the continually growing family of
systems associated with Galois. It is the combination of the communication substrate
Gluon [6] with the GPU-targeted intermediate representation IrGL [9], and it facilitates
distributed heterogeneous graph applications. These ideas were developed further into
the Abelian compiler [10], which produces Gluon+IrGL code from ordinary Galois code
written for CPU. The complete system effectively turns Galois into a portable framework
for multi-core, distributed and potentially heterogeneous graph algorithms.

SSSP implementation. D-IrGL uses the Chaotic Relaxation algorithm for SSSP [11].
The source vertex begins as active, relaxes the labels of its neighbours and activates them.
Now, in any order, the same procedure is performed on active vertices, relaxing labels
and activating new vertices as necessary, until the algorithm converges. Because D-
IrGL computes in a bulk-synchronous parallel manner, the pattern of computations would
resemble a parallel Bellman-Ford implementation like in Ligra or GraphBLAST.

Gunrock
Gunrock is a frontier-based framework (see Section 3) for single-node GPU accelerated
systems. In its original implementation, it provided three functions for processing
frontiers: Advance for traversal, compute for label updates and filter. A few more
specialized operators where added later.

SSSP Implementation. Gunrock uses two operators for its SSSP implementation,
advance and filter. When advancing, they use an atomic minimum function to update
the target vertex distance, and filter removes any redundant vertices from the frontier.
They also utilize a two-level priority queue to process more relevant vertices will be
processed first when the frontier size grows large. An older version of Gunrock has
multipe-GPUs support for SSSP, but we decided to focus on its recent version which
has a new programming model, but only has single-GPU support for SSSP.

Ligra
Ligra is a light-weight frontier-based framework for CPUs. It provides only two functions,
edgeMap and vertexMap and a vertexSubset type for the frontier. EdgeMap is the
advancing operator, and applies a given function to all edges out of the frontier given
a condition is met. VertexMap is similar to Gunrock’s filter function. Both functions have
precise mathematical definitions provided in the paper, and as a consequence Ligra is a
very compact framework, which is explored further in Section 6.

SSSP implementation. Ligra implements a straight-forward Bellman-Ford algo-
rithm. As with any frontier-based framework, it will only relax edges incident to the
vertex frontier, in contrast all edges as in the original Bellman-Ford algorithm.

GraphBLAS
GraphBLAS [4] is an open standard for sparse linear algebra operations targeting graph
algorithms. Inspired by the BLAS standard, it seeks to be portable and specifies
the semiring structure, see Section 3, as well as different linear algebra operations
such as matrix-vector multiplication and element-wise addition. There is a reference
implementation in SuiteSparse, as well as mutliple other implementations.

GraphBLAST
GraphBLAST [5] is a implementation of GraphBLAS targeting Nvidia-GPUs. It uses
an extension of a technique employed in a BFS-implementation by Beamer et al. [12],
who observed that when the frontier of a breadth-first search (BFS) is large enough, it
is beneficial to pull information from the vertices outside the frontier rather than the
frontier vertices pushing the search forward. The dichotomy between pull and push-
style computation matches dense and sparse vector-matrix multiplication, and not just for
BFS. This is exploited in GraphBLAST, and the authors call this technique generalized
direction-optimization.

SSSP Implementaion. GraphBLAST’s SSSP algorithm is similar to that of Ligra, as
linear algebra exhibits a very similar compuitational pattern. In addition to direction-
optimization, they employ sparsification of the frontier. An element-wise minimum-
operation is performed between the the frontier and the distance label vector to rid the
frontier of any vertices that did not see any improvement in their distance.

3 Abstractions
This section will present the different abstractions utilized by the frameworks. There are
many different abstractions for exposing parallelism in graph programs. They are given
high importance here as they are how the user conceptualizes and models their algorithm.
They are also interesting to look at separately because they might be implemented
differently by different frameworks.

Operator formulation
Used by Galois and key in Tao-analysis [1], the operator formulation views an algorithm
as actions on a data structure. The formulation is general enough to apply to any structure,
but the primary goal is to reveal parallelism in irregular computations such as graph
algorithms, so that will be the focus here.

An element in a graph ready for computation is called active. The elements read or
written to by an activity is called the neighbourhood, and is key to performing activities
in parallel, as they are the potential source of race conditions. Algorithms were activities
can activate new elements are called data-driven.

A benefit to this model is how it decouples the generation of activities from any
ordering or dependencies they might have. It exposes what Pingali et al. refers to as
amorphous data-parallelism, and if one ensures that no computation is committed until a
safe state is reached, possibly by issuing roll-backs, activities can be performed in parallel
and in any order. This leaves room for many optimizations "behind the scenes" that the
user of this kind of system does not need to interact with directly.

Frontier-based
One of the most popular abstraction is the frontier, which is based on the pattern of a
breadth-first search. The frontier represents the active elements in the graph, usually
vertices, and algorithms are constructed by iteratively applying operators on the frontier
until it empties/converges. The most important operator is one that advances the frontier,
producing a new frontier with neighbours from the previous one. In addition, one needs
the possibility of updating internal values of vertices and filter out frontier elements. For
many algorithms, this would yield a procedure like in Figure 1, the pattern of a breadth-
first-like search. Among those frameworks studied in this work, this abstraction is used
by Gunrock, Ligra and implicitly in GraphBLAST.

Initialize frontier
while frontier not empty do

Advance frontier to neighbours
Update label on newly discovered vertices
Filter out previously discovered vertices

end while

Figure 1: Outline of frontier-based algorithms.

Parallelism in this abstraction is available in all operators. As noted by Wang et al. [2],
the advance operator presents the most challenges, as it is irregular, some vertices can have
vastly different degrees than others.

Linear Algebra
If a graph is represented as a matrix, many graph traversal operations similar to the ones
mentioned in Section 3 can be described in the language of linear algebra. Given an
adjacency matrix A and a vector representing a frontier x, the matrix-vector product AT x
produces the same pattern of operations as advancing through the graph in a frontier-based
graph framework. One does, however, need to adjust the actual operators used, which is
expressed through semirings.

A semiring is an algebraic structure consisting of an additive operator, a multiplicative
operator and a domain, as well as "zero" and identity ("one") values. Examples of
different semi-rings can be found in Table 1, along with what kind of primitive a matrix-
vector multiplication would imply. This is perhaps the most important feature of this
abstraction. By using semirings, it allows for re-use of patterns and optimizations from
linear algebra when constructing graph algorithms.

Table 1: A few example semirings.

Result operators domain 0 1⊕ ⊗

Standard arithmetic + × R 0 1
Breadth-first search or and {0,1} 0 1
Single source shortest path min + {−∞,R} −∞ 0

4 Benchmarking the Frameworks
In order to evaluate and compare the performance of the different frameworks, we
ran their SSSP implementations with a suite of different data sets ranging from 64 to
4,294,966,740 edges. These sets span a variety of different domains with different
graph characteristics. This section describes our test set-up, the methodology behind
the experiments as well as the results we obtained. Arbitrarily, the results are ordered
Gunrock, D-IrGL, GraphBLAST, then Ligra, an artifact of how the tests were run.

Testbed Systems
All GPU based frameworks were tested on a Nvidia DGX-2 node. This node contains
two boards of 8 V100 GPUs each. Each board also contains 6 NVSwitch interconnects.

Ligra, the only CPU-based framework tested, was tested on a Supermicro SuperServer
6049GP-TRT with 2 CPUs, Intel Xeon Gold 6230 SP - 20-Core. All cores were capable
of hyperthreading, and all of the 80 available threads were utilized for the experiments.

Price comparison. As a point of reference, the CPU resources used by Ligra has
a standalone price of ~4.000USD at the time of writing and a single V100 GPU, which
most configurations of the other programs used, has a price of ~8.000USD.

Bechmarking Methodology
One SSSP implementation was compiled from each framework and used to process 128
different graphs. Run-time reported from each program excluded data-movement. Each
program was run at least 3 times for each graph to overcome variance and the best time
was considered for comparisons and evaluation.

A single configuration was used for each program, except for D-IrGL which was tested
on multiple GPUs. We indicated to the programs whether the graph was undirected, but

m
awi...020330

m
awi...020130

kron...logn21
kron...logn20
GAP-road
kron...logn18
Hardesty1
kron...logn17
kron...logn16
tx2010
ca2010
fl2010
il2010
pa2010
Linux...graph
soc-sign...090221
soc-sign...090216
soc-sign...081106
Reuters911
foldoc
big

100

101

102

103

104

105

106
m

illi
se

co
nd

s
Gunrock
D-IrGL
Graphblast
Ligra

Figure 2: Runtime in milliseconds for the largest graphs with > 10,000 visited vertices.
Only the 5 largest "xx2010" are shown.

Table 2: Number of best times per framework.

Gunrock 56 D-IrGL (Galois) 4
Graphblast 47 Ligra 5

not any other graph characteristics. Gunrock reports the number of visited vertices for
each graph, and this was used to filter results and estimate throughput.

Data sets
All data sets were pulled from the SuiteSparse Matrix collection [13]. Only square
integer matrices with the keyword "weighted" were considered. Ligra does not support
floating point values, and matrices representing unweighted graphs would not be suited
for comparing SSSP implementations. This left 128 graphs.

5 Benchmarking results
This section presents and evaluates the results of the experiments. Two metrics were
deemed the most relevant, run-time on large graphs, and average throughput.

Gunrock D-IrGL Graphblast Ligra

10 2

10 1

100

101

102

103

104

M
TE

PS

(a) Visited vertices >= 30. 110 out of 128
graphs.

Gunrock D-IrGL Graphblast Ligra

10 2

10 1

100

101

102

M
TE

PS

(b) Complete traversal only. 83 out of 128
graphs.

Figure 3: Millions of traversed edges per second estimates for different subsets of the
results. Graphs where Gunrock crashed are excluded.

Table 3: Peak throughput for each program.

Program Peak Throughput
Gunrock 8969

Galois 7885
GraphBLAST 5754

Ligra 1980

Relative run-time
Figure 2 shows a selection of the running time for the different frameworks on largest
graphs with more than 10,000 visited vertices. The general trend ranking the relative
performance is Gunrock, D-IrGL, GraphBLAST and then Ligra. This is not wholly
unexpected. Gunrock is specifically developed specifically for high performance and for
single-node systems. D-IrGL is also developed for high-performance, but for potentially
distributed systems. GraphBLAST and Ligra are light-weight frameworks with a stronger
focus on accessibility, and additionally Ligra only runs on CPU and therefore had less
computational resources available than the GPU-based programs.

However, as can be seen in Table 2, the aforementioned trend is not universal. D-
IrGL outperforms Gunrock in four of the five largest graphs. Among these there are
both scale-free graphs and a road network, so results does not seem to be tied to specific
properties of the graphs. Ligra also outperformed Gunrock on some smaller graphs (less
than 10,000 edges), as well as the "geom" data set with approximately 20,000 edges,
which for context is roughly 1/4th the size of the smallest graph present in Figure 2.
Lastly, GraphBLAST outperformed the other programs in a significant number of cases,
which is further discussed in Section 5.

Throughput
In addition to runtime on specific graphs, we wanted to measure the throughput efficiency
of each framework to get a somewhat normalized metric to compare the programs by. We
used an estimate of millions of edges traversed per second (MTEPS) as our throughput
metric, visualized in the boxplots of Figure 3. The number of edges processed by each
program is estimated based on the number of visited vertices reported by Gunrock, which

would be the same for any SSSP algorithm, and the average degree of the graph. This
is not a perfect estimate, as different programs process different amounts of edges, and
the average degree might not reflect the connected component explored, but it still gives
a sense of how efficient the programs are in relation to the graph size.

Using this metric, one can see that GraphBLAST actually outperforms the rest in
terms of its median MTEPS across all graphs, Figure 3a. This is even clearer when
looking at only complete traversals 3b. If we only look at peak throughput, however,
see Table 3, Gunrock and Galois again take the lead, with peaks that are respectively 56
and 37 percent better than that of GraphBLAST. Ligra has a very high variance in its
throughput. It is unclear what causes this variance, and it might either be hardware/CPU
specific or caused by Ligra’a execution model.

Graph characteristics
In general, the graphs represented in the data sets seem to span a few staple categories of
graph analysis, which allows us to test the generality of the programs. There are many
scale-free graphs, both synthetic and real, and there are road-networks and mesh-like
graphs. Scale-free graphs or power-law graph are frequently used as test cases and cited as
challenges, [2,3,5,8], which makes sense as they have highly skewed degree distribution.

Of the 110 graphs with valid results, 50 are "xx2010" graphs from the DIMACS10
collection. These are based on US census data, and vertices and edges model respectively
census blocks and their borders. These graphs have a high diameter and an even
distribution of degrees, in contrast to scale-free networks that generally have a highly
skewed distribution and low diameter. Interestingly, removing the "xx2010" graphs
increased the median throughput of both Gunrock and D-IrGL, but the opposite was the
case for GraphBLAST and Ligra. The reason for this is unknown. GraphBLAST achieved
the best run-time on 47 of these graphs, but not on any other sets, which might indicate
these graphs have attributes especially suited for this particular framework.

D-IrGL and multi-GPU
D-IrGL is developed for potentially distributed systems with multiple GPUs, and was
tested on both 1, 2, 4 and 8 GPUs. The performance worsened with multiple GPUs
compared to one, but it did manage to load the GAP-kron graph with 4 and 8 GPUs, a
graph that caused all other programs and configurations to run out of memory. Because of
this, large graphs is a use-case for these configurations, even if the throughput is lowered.

6 Evaluation
A framework is a toolkit for constructing new programs. As such, its quality is not just
dependent on its efficiency, but also its usability. This section contains a comparison
of code sizes as well as a subjective assessment of the ease of use of the different
frameworks. The focus is on the available documentation, including papers published
in relation to the frameworks. A summary of this section can be found in Table, 4.

Framework code sizes
The total lines of code for the different SSSP implementations are provided in Table 5.
This is an important metric, as large code bases are both harder to understand, and also
harder to maintain. In all cases the programs have additional features such as support for
multiple runs and timing, but they still give an indication of how easy it is to understand

Table 4: Accessibility summary

Code size Documenation System
D-IrGL Very large N/A Multi-GPU
Gunrock Very large Fair Single node, multi-GPU
GraphBLAST Small Good Single GPU
Ligra Very small Good Multicore CPU

Table 5: Lines of code per SSSP implementation, including per file, by code size.

Ligra 87 BellmanFord.C
GraphBLAST 138 gsssp.cu
Gunrock 293 sssp_app.cu

361 sssp_enactor.cuh
408 sssp_problem.cuh

Total 1062
D-IrGL 944 sssp_push_cuda.cu

216 sssp_push_cuda.cuh
147 sssp_push_cuda.h

Total 1307

Galois 494 SSSP.cpp

the given program. From these counts, it is clear that Ligra and GraphBLAST are by
far the most compact frameworks, which should make them easier to understand than the
others. Gunrock lies as the other extreme with large file sizes and also multiple files. D-
IrGL code is constructed by the Abelian compiler and as such isn’t necessarily meant to
be read or interacted with directly, but the Galois CPU-implementation which D-IrGL is
based on, still has a fair number of lines in its code.

Documentation
Documentation is important especially frameworks. The perspective of this assessment
is after a thorough reading of relevant papers describing the frameworks, any tutorials
available, and a scan of available manuals. The developers of all 4 frameworks were
a great help clearing up any confusion throughout the process of this evaluation, which
goes a long way for compensating for ways in which documentation might be lacking.

Galois
The online documentation of Galois contains both a comprehensive manual and a step-by-
step tutorial on how to create a simple program. As Galois is a pretty complex framework,
this helps in easing into the necessary concepts.

It does not incorporate all features of Tao-analysis, most notably all operators are
assumed cautious. This means that ethey can not write to a data structure before executing
all necessary reads. This allows Galois to use locks to detect conflicts before an operation
is committed, which again means it does not need to execute any rollbacks.

D-IrGL The documentation of how to run the D-IrGL programs is good, and there
were no major issues encountered. However, there is no documentation available on how
to write D-IrGL programs.

GraphBLAST
GraphBLAST has minimal documentation in comparison to Gunrock and Galois. There is
a single text-file in their Git repository, which contains an example SSSP implementation
with comments, and a short explanation of their linear algebra operations, as well as
semirings and how they relate to graph algorithms.

The GraphBLAST documentation assumes the user is comfortable with linear algebra
operations and how it relates to graph algorithms. Reading the GraphBLAST paper is thus
recommended to understand all the sample algorithms and make one’s own programs.

Gunrock
In general, the presentation of Gunrock is quite excellent. They have an easily navigable
website that provides an overview of the programming model, performance analysis, and
links to publications and their GitHub code repository with notes on the state of the
current build. They also provide a quick start guide for building and running the algorithm
implementation they provide. Also beneficial is a thorough description of exactly what is
measured and reported for the different programs, which aids benchmarking.

At the time of writing, Gunrock has recently transitioned from release 0.5 to release
1.0, which saw a great simplifications of the interface. It does however, also mean that the
online documentation isn’t up to date yet. Notably, there is no tutorial available on how to
write new primitives with Gunrock. As Gunrock is a quite complex system, it can be quite
difficult to make wholly new programs from scratch at this point. A guide for porting 0.5
application is provided, which can help, and they also provide steps to generate the newest
documentation locally. The developers are fully aware of these features currently lacking.
They are all described in their online roadmap under "Documentation" 1.

Ligra
Similarly to GraphBLAST, Ligra’s light interface allows it to have minimal documenta-
tion. It simply presents the input format, how to get the programs up and running, and
provides a short description of the functions and data structures. It is very beneficial to
have read the paper presenting Ligra first, [3], because the mathematical function defini-
tions in the paper match up quite well with the actual code. There is no tutorial-specific
code provided, but the code for BFS and SSSP (Bellman-Ford) are both quite short.

7 Conclusions & Future Work
Graphs are used to model a wide variety of different data. With the increasing
computational demand and system complexity, recent graph frameworks provide
attractive tools for implementing graph-based methods that can be very beneficial for
productivity. In this paper we presented four of the most well-known frameworks for
graph algorithms, with SSSP used as the reference point to evaluate both the ease of
use and their performance. All frameworks showed strengths in different use-cases. A
summary of our results is followed by suggestions for future work.

If high-performance is of top priority, Gunrock had the most reliable performance,
and achieved the best run-time on 56 out of 128 graphs, which included multiple different
graph types. D-IrGL was generally slightly slower than Gunrock and had the best run-time
on only 4 graph. However, these graphs were among the largest we tested, and D-IrGL

1https://github.com/gunrock/gunrock/projects/3

does in theory support arbitrarily large graphs when run on multi-device systems. D-
IrGL code is not as easily re-usable, a definite weakness compared to the other programs.
Gunrock also achieved the best peak throughput across all frameworks, but it is also
the most complex framework out of the four. It is also currently lacking in terms of
documentation of version 1.0. In addition, it’s SSSP implementation indicates both high
complexity and low maintainability compared to the lighter frameworks.

GraphBLAST performed surprisingly well for a relatively light-weight framework,
even ignoring a large set of similar graphs where it actually outperformed all other
frameworks. It achieved the best run-time on 47 graphs and had the overall best median
throughput. Compared to Gunrock, it is also significantly less complex, with easier to
understand documentation and an SSSP implementation of approximately 1/8th the size.
It and Gunrock did however crash on a few data sets, which is a definite negative.

Ligra used ~100,000 the time of Gunrock on certain graphs, which makes it
less appealing as a general case high-performance framework. Its ease of use and
compactness, with SSSP code size 1/12th the size of Gunrock’s, does however make
appealing for pipelines with high maintainability demands or for smaller graphs.

Future work
For a more thorough comparison, one could write the same primitive in different
frameworks, preferably solving a new problem rather than those already provided.
Writing the exact same algorithm would not necessarily be the correct approach, as
different frameworks excel at expressing different behaviours, like there were four
different algorithms implemented for SSSP. Future comparisons should also include
floating data sets, as this could dramatically increase the variety of the data sets.

It would have been beneficial to have a standardized suite with detailed descriptions
of relevant attributes of all graphs. Two such attributes would be degree distribution and
diameter, as they can greatly affect the run-time of a program.

It would also be interesting to explore exactly why GraphBLAST performed so well
specifically on the "xx2010" graphs. As discussed in Section 5, this is probably related to
some common attributes across these graphs, and finding the exact ones might reveal new
optimization strategies for both GraphBLAST and other graph algorithms.

Acknowledgements: The author wishes to thank their advisor Prof. Anne C. Elster
for helping with this write-up, and NTNU and the IDI HPC-Lab for computer resources.

References
[1] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H.

Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos, and X. Sui, “The
Tao of Parallelism in Algorithms,” PLDI’11, 2011.

[2] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, “Gunrock: a
high-performance graph processing library on the GPU,” in Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming -
PPoPP ’16. Barcelona, Spain: ACM Press, 2016, pp. 1–12. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2851141.2851145

[3] J. Shun and G. E. Blelloch, “Ligra: A Lightweight Graph Processing Framework
for Shared Memory,” Proceedings of the ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP), pp. 135–146, 2013. [Online].
Available: https://people.csail.mit.edu/jshun/ligra.pdf

[4] A. Buluc, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the GraphBLAS API for C,” in 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). Orlando /
Buena Vista, FL, USA: IEEE, May 2017, pp. 643–652. [Online]. Available:
http://ieeexplore.ieee.org/document/7965104/

[5] C. Yang, A. Buluc, and J. D. Owens, “GraphBLAST: A High-Performance Linear
Algebra-based Graph Framework on the GPU,” arXiv:1908.01407 [cs], Sep. 2019,
arXiv: 1908.01407. [Online]. Available: http://arxiv.org/abs/1908.01407

[6] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden, M. Snir,
and K. Pingali, “Gluon: a communication-optimizing substrate for distributed
heterogeneous graph analytics,” in Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation - PLDI 2018.
Philadelphia, PA, USA: ACM Press, 2018, pp. 752–768. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3192366.3192404

[7] S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, “Scalable
Graph Processing Frameworks: A Taxonomy and Open Challenges,” ACM
Computing Surveys, vol. 51, no. 3, pp. 1–53, Jul. 2018. [Online]. Available:
https://dl.acm.org/doi/10.1145/3199523

[8] H. Pettersson, “A Survey of Parallel Breadth-First Search Frameworks for CPUs and
GPUs,” Master Thesis at NTNU, p. 41, 2018.

[9] S. Pai and K. Pingali, “A compiler for throughput optimization of graph algorithms
on GPUs,” in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications - OOPSLA
2016. Amsterdam, Netherlands: ACM Press, 2016, pp. 1–19. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2983990.2984015

[10] G. Gill, R. Dathathri, L. Hoang, A. Lenharth, and K. Pingali, “Abelian: A Compiler
for Graph Analytics on Distributed, Heterogeneous Platforms,” in Euro-Par 2018:
Parallel Processing, M. Aldinucci, L. Padovani, and M. Torquati, Eds. Cham:
Springer International Publishing, 2018, vol. 11014, pp. 249–264. [Online].
Available: http://link.springer.com/10.1007/978-3-319-96983-1_18

[11] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra and its
Applications, vol. 2, no. 2, pp. 199–222, Apr. 1969. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/0024379569900287

[12] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing Breadth-First
Search,” in SC ’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, Nov. 2012, pp. 1–10,
iSSN: 2167-4337.

[13] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,”
ACM Trans. Math. Softw., vol. 38, no. 1, 2011, place: New York, NY,
USA Publisher: Association for Computing Machinery. [Online]. Available:
https://doi.org/10.1145/2049662.2049663

Appendix B

Additional Code Listings

This section contains the listings with code written in C. In all cases, to save space,
variable instantiation and memory allocation has been removed. Mathematical
pseudo-code notation has been inserted to correspond with the respective list-
ings in 3, where the concrete behaviour of these code snippets are more thor-
oughly explained. NO_MASK, NO_ACCUM and DEFAULT_DESC all correspond
to GrB_NULL, which indicate default behaviour. A null mask or descriptor means
output and input are read as is. No accumulative operator means all values written
replace the respective values present in the output object beforehand.

69

70 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Code listing B.1: The implementation of the Edmonds-Karp algorithm.
Mathematical notation corresponds to the outline in Listing 3.1.

1 //while(M = get_augmenting_path(R, s))
2 while(get_augmenting_path(R, source, sink, M))
3 {
4 //P = M

⊗

R
5 GrB_eWiseMult(P, NO_MASK, NO_ACCUM, GrB_SECOND_FP64, M, R, DEFAULT_DESC);
6 /* Alternative:
7 //P<M> = R
8 GrB_assign(P, M, NO_ACCUM, R, GrB_ALL, n, GrB_ALL, n, replace);
9 */

10
11 //delta = min(P)
12 GrB_reduce(&delta_f, NO_ACCUM, GrB_MIN_MONOID_FP64, P, DEFAULT_DESC);
13
14 //P<M> = -delta
15 GrB_assign(P, M, NO_ACCUM, -delta_f, GrB_ALL, n, GrB_ALL, n, DEFAULT_DESC);
16

17 //P = P
⊕

(-PT)
18 GrB_Matrix_apply(P, NO_MASK, GrB_PLUS_FP64, GrB_AINV_FP64, P, transpose_a);
19 /* Alternative:
20 //P<MT> = delta
21 GrB_transpose(M, NO_MASK, NO_ACCUM, M, DEFAULT_DESC));
22 GrB_Matrix_assign_FP64(P, M, NO_ACCUM,
23 delta_f, GrB_ALL, n, GrB_ALL, n, DEFAULT_DESC);
24 */
25
26 //AR = R

⊕

P
27 GrB_eWiseAdd(R, NO_MASK, NO_ACCUM, GxB_PLUS_FP64_MONOID, R, P, DEFAULT_DESC);
28
29 //R<R> = R
30 GrB_apply(R, R, NO_ACCUM, GrB_IDENTITY_FP64, R, replace_output);
31 }
32
33
34 //max_flow = 0
35 double total_flow = 0;
36
37 //for i: 1 to n:
38 for (GrB_Index i = 0; i < n; i++) {
39
40 //max_flow += A[s,i] - R[s,i]
41 if(GrB_Matrix_extractElement(&capacity, A, source, i) == GrB_NO_VALUE){
42 capacity = 0;
43 }
44 if(GrB_Matrix_extractElement(&residual, R, source, i) == GrB_NO_VALUE){
45 residual = 0;
46 }
47 if(capacity != 0){
48 total_flow += capacity-residual;
49 }

Chapter B: Additional Code Listings 71

Code listing B.2: The get_augmenting_path() function.
Mathematical notation corresponds to the outline in Listing 3.2.

1 GrB_Descriptor_new (&vxm_desc);
2 GrB_Descriptor_set (vxm_desc, GrB_MASK, GrB_COMP);
3 GrB_Descriptor_set (vxm_desc, GrB_MASK, GrB_STRUCTURE);
4 GrB_Descriptor_set (vxm_desc, GrB_OUTP, GrB_REPLACE);
5
6 //frontier[source] = true
7 GrB_Vector_setElement(frontier, 1, source);
8
9 parent[source] = source

10 GrB_Vector_setElement(parent_list, source, source);
11
12 //while(frontier not empty AND parent[sink] == NULL):
13 GrB_Vector_nvals(&frontier_nvals, frontier);
14 while ((frontier_nvals > 0) &&
15 (GrB_Vector_extractElement(&sink_parent, parent_list, sink) == GrB_NO_VALUE))
16 {
17 //frontier<parent’> = frontier * R
18 GrB_vxm(frontier, parent_list, NO_ACCUM,
19 GxB_ANY_FIRSTJ_INT32, frontier, R, vxm_desc);
20
21 //parent<frontier> = frontier
22 GrB_Vector_apply(parent_list, NO_MASK, GrB_PLUS_INT32,
23 GrB_IDENTITY_INT32, frontier, DEFAULT_DESC);
24
25 GrB_Vector_nvals(&frontier_nvals, frontier);
26 }
27
28 if ((GrB_Vector_extractElement(&sink_parent, parent_list, sink) == GrB_NO_VALUE))
29 {
30 found_path = false;
31 } else {
32 found_path = true;
33
34 //current_vertex = sink
35 GrB_Index curr_vertex = sink;
36
37 //while(current_vertex != source):
38 while (curr_vertex != source)
39 {
40 //M[current_vertex] = parent[current_vertex]
41 GrB_Index parent;
42 GrB_Vector_extractElement(&parent, parent_list, curr_vertex);
43 GrB_Matrix_setElement(M, true, parent, curr_vertex);
44
45 //current_vertex = parent[current_vertex]
46 curr_vertex = parent;
47 }
48 }
49
50 return found_path;

72 Zawadi Berg Svela: Usability Study of GraphBLAS Through Multicore Max-Flow

Code listing B.3: The get_mincut() function.
*C is the the matrix that containing the min-cut.
Mathematical notation corresponds to the outline in Listing 3.3.

1 //reachable[source] = true
2 GrB_Vector_setElement(reachable, 1, s);
3
4 //frontier[source] = true
5 GrB_Vector_setElement(frontier, true, s);
6
7 //while(frontier not empty):
8 bool successor = true;
9 while (successor) {

10
11 //frontier<reachable’> = frontier * R
12 GrB_vxm(frontier, reachable, NO_ACCUM, GxB_LOR_LAND_BOOL, frontier, R, desc);
13
14 //parent<frontier> = frontier
15 GrB_assign(reachable, frontier, NULL, true, GrB_ALL, n, NULL);
16
17 GrB_reduce(&successor, NO_ACCUM, GrB_LOR_MONOID_BOOL, frontier, DEFAULT_DESC);
18 }
19
20 //t_cut<reachable’> = reachable * A
21 GrB_vxm(t_cut, reachable, NO_ACCUM, GxB_LOR_LAND_BOOL, reachable, A, desc);
22
23 //s_cut<reachable> = t_cut * A
24 GrB_vxm(s_cut, reachable, NO_ACCUM, GxB_LOR_LAND_BOOL, t_cut, A, transpose_b);
25
26 //START min_cut = A<s_cut.indices, t_cut.indices>
27 GrB_Vector_nvals(&t_len, t_cut);
28 GrB_Vector_nvals(&s_len, s_cut);
29
30 GrB_Vector_extractTuples(s_indices, s_vals, &s_len, s_cut);
31 GrB_Vector_extractTuples(t_indices, t_vals, &t_len, t_cut);
32
33 GrB_extract(cut_extract, NO_MASK, NO_ACCUM,
34 A, s_indices, s_len, t_indices, t_len, DEFAULT_DESC);
35 GrB_Matrix_nvals(&cut_len, cut_extract);
36
37 GrB_Matrix_extractTuples(cut_s, cut_t, cut_val, &cut_len, cut_extract);
38
39 GrB_assign(*C, NO_MASK, NO_ACCUM,
40 cut_extract, s_indices, s_len, t_indices, t_len, DEFAULT_DESC);
41 //END min_cut = A<s_cut.indices, t_cut.indices>

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Zawadi Berg Svela

Usability Study of GraphBLAS
Through Multicore Max-Flow

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
July 2021

M
as

te
r’s

 th
es

is

	Project Description
	Acknowledgements
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	List of abbreviations
	Introduction
	Goals and Contributions
	Thesis Outline

	Graphs and GraphBLAS
	Graphs
	Graph representations
	Characteristics of graphs
	Irregularity in graph algorithms
	Breadth-First Search

	Graphs as linear algebra / GraphBLAS
	GraphBLAS BFS
	GraphBLAS objects and operations
	Parallelism in GraphBLAS
	Suitesparse:GraphBLAS
	Other GraphBLAS implementations and project
	LAGraph

	Other graph frameworks
	Galois
	Gunrock
	Ligra

	Max-Flow in GraphBLAS
	The maximum flow problem
	Maximum flow algorithms
	The Edmonds-Karp algorithm
	Minimum cut

	Algorithm outline
	Assign
	Min-Cut
	GBTL maximum flow algorithm

	Parallelism

	Benchmarking
	Data sets
	Source-sink selection
	Experimental set-up
	Measurements

	Results and Discussion
	Benchmark results
	Speedup and Scalability
	Weak scaling
	Iteration count variance
	GAP-road
	Profiling

	Source-sink search
	Usability evaluation
	Unintuitive behaviors
	Translation examples
	Portability
	GraphBLAS resources
	Comparison to other methods of implementation

	Conclusions and Future Work
	Future work

	Bibliography
	NIKT2020 Paper By Author
	Additional Code Listings

