
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Miran Hadziomerovic

Individual Fairness in Machine
Learning

Master’s thesis in Informatics
Supervisor: Pinar Øzturk
July 2021

M
as

te
r’s

 th
es

is

Miran Hadziomerovic

Individual Fairness in Machine
Learning

Master’s thesis in Informatics
Supervisor: Pinar Øzturk
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

i

Declaration of Authorship
I, Miran HADZIOMEROVIC, declare that this thesis titled, “Individual Fair-
ness in Machine Learning” and the work presented in it are my own. I con-
firm that:

• This work was done wholly or mainly while studying for a degree at
this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

ii

“Much has been written about AI’s potential to reflect both the best and the worst
of humanity. For example, we have seen AI providing conversation and comfort to
the ones who are lonely while, at the same time, we have seen AI engaging in racial
discrimination in different aspects of life. As leaders, it is incumbent on all of us to
make sure we are building a world in which every individual has an opportunity to
thrive.”

Andrew Ng

iii

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract
Faculty of Information Technology and Electrical Engineering

Department of Computer Science

Master of Science in Informatics

Individual Fairness in Machine Learning

by Miran HADZIOMEROVIC

This thesis investigates methods of detecting dataset bias and using a case-
based reasoning system constructed using automated weight calculations to
ensure individual fairness.

Artificial intelligence (AI) systems are being introduced in new facets of so-
ciety daily. These systems are created to make important decisions about
peoples lives in different spheres of life such as court cases, hiring, credit
scoring and many more. In the past, these decision-making systems have
been shown to pass on human bias to their decision making. These results
led to a new field of research: fair AI systems.

Before even considering fairness of an AI algorithm, one needs to consider if
the data is unbiased. If this is not the case, even providing a fair algorithm,
unfair results are possible. In order to be able to detect dataset bias, we pro-
pose a pre-processing method. It relies on feature relevance scoring methods
capturing the relevance of each feature on distinguishing between different
class labels. Using this relevance, we create an influence percentage for each
feature in the dataset, and use this percentage to distinguish if a protected
feature is too influential, marking the dataset biased and unusable if fairness
is a concern.

After proposing a method for detecting dataset bias, we explore if a case-
based reasoning system using automated weight calculations can be used to
ensure individual fairness. We build on the case-based reasoning system pre-
sented in [Jaiswal and Bach, 2019] by providing improved global similarity
metrics. In order to evaluate the fairness of the case-based reasoning sys-
tem, we created a fairness verifier. The verifier is constructed as a simplified
version of the verifier explained in [John, Vijaykeerthy, and Saha, 2020].

The main contribution of this thesis is twofold. Firstly, we successfully pro-
pose a pre-processing method for detecting dataset bias. Secondly, we showed
that case-based reasoning using automated weight calculations can be used
to ensure individual fairness of an AI system.

HTTPS://WWW.NTNU.EDU/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi

iv

Preface
This thesis was written during autumn of 2020 and spring of 2021 to fulfill
the degree of Master of Science in Informatics at the Department of Com-
puter Science, Faculty of Information Technology and Electrical Engineer-
ing at the Norwegian University of Science and Technology. I would like
to thank my supervisor Pinar Øzturk for her guidance and encouragement
throughout the work with this thesis. Additionally, I would like to thank
fellow student striving for a PhD Amar Jaiswal for helpful cooperation and
discussions throughout this project. Finally, I would like to thank my family
for their support throughout this entire master’s degree.

https://www.ntnu.edu/idi
https://www.ntnu.edu/idi
https://www.ntnu.edu/ie
https://www.ntnu.edu/ie
https://www.ntnu.edu/

v

Contents

Declaration of Authorship i

Abstract iii

Preface iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Goals and Research Questions 2
1.2 Thesis Structure . 3

2 Background Theory 4
2.1 AI in Decision-Making Systems 4
2.2 Fairness Metrics . 5

2.2.1 Group Fairness Definitions 6
2.2.2 Individual Fairness Definitions 7

2.3 Bias Types . 7
2.3.1 Data Pre-Processing Bias 8
2.3.2 In-processing bias . 9
2.3.3 Post-processing bias . 9

2.4 Case-Based Reasoning . 9
2.4.1 Feature Relevance Scoring Methods 11
2.4.2 Similarity Metrics . 11

3 Related Work 14
3.1 Fairness Through Awareness 14
3.2 Verifying Individual Fairness in Machine Learning Models . . 16
3.3 A Data-Driven Approach for Determining

Weights in Global Similarity Functions 19

4 Method and Architecture 23
4.1 Detection of Bias in Datasets (RQ1) 26

4.1.1 Method Description . 26
4.1.2 Architecture for Answering RQ1 28
4.1.3 Feature Relevance Scoring Methods and Feature Selec-

tion Tool . 29
4.1.4 Feature Selection and Influence/Relevance Rankings . 30

vi

4.1.5 Calculating Relevance/Influence of Features 32
4.1.6 Protected Features’ Relevance/Influence 33
4.1.7 Threshold λ . 33
4.1.8 Evaluation Method . 34
4.1.9 Pseudocode for Investigation of RQ1 35

4.2 Evaluation of Fairness of a CBR Model (RQ2) 37
4.2.1 Method and Architecture for Investigation of RQ2 . . . 37
4.2.2 Initial Model Construction 37
4.2.3 Calculating Weights and Creating Local and Global Sim-

ilarity Functions . 38
4.2.4 Distance Metric and Similarity Computations 40
4.2.5 Collecting Similar Pairs of Data Points and Evaluating

Fairness . 41
4.2.6 Pseudocode for Investigation of RQ2 42

5 Experiments and Results 45
5.1 Description of Datasets . 45

5.1.1 Selection of Protected Features 47
5.2 Setup and Plan for Experiment 1 48

5.2.1 Resources and Tools . 50
5.2.2 Results of experiment 1 50
5.2.3 Analysis of Results . 51

5.3 Setup and Plan for Experiment 1 52
5.3.1 Chosen Datasets and Label Distributions 52
5.3.2 Calculating Weights and Creation of Local and Global

Similarity Functions . 54
5.3.3 Verifying Individual Fairness of Models 58
5.3.4 Resources and Tools . 59
5.3.5 Results of Experiment 2 59
5.3.6 Analysis of Results . 62

6 Discussion and Future Work 65
6.1 Discussion . 65
6.2 Future Work . 69

Bibliography 70

vii

List of Figures

2.1 Machine learning pipeline steps 8
2.2 Case-based reasoning system 10

3.1 Visualization of the distance metrics for similarity of individ-
uals and similarity in outcomes 15

3.2 The evaluation algorithm of the proposed verifiers 18
3.3 Proposed steps in order to automatically create weights for

each of the features in the chosen dataset 20

4.1 A flow chart of steps used to answer RQ1 and RQ2. The blue
part relates to investigating RQ1, the green part to investigat-
ing RQ2, while the yellow part presents the shared steps used
in investigating both RQs. 25

4.2 Comparing data points by their similarity and class values.
If two data points have the same non-protected features (i.e.
they are similar) but different class values, they are considered
a biased pair of data points. 27

4.3 Finding and removing all biased instances 28
4.4 O(n2) compared to O(log(n2)) 28
4.5 Old ranks (linear ranking approach from the original frame-

work) vs new ranks (our proposed approach using scaling of
FRSMs’ scores) . 32

5.1 Distribution of class labels (blue) and values of protected fea-
tures in the full version of the ACI dataset 53

5.2 Distribution of class labels (blue) and values of protected fea-
tures in the reduced version of the ACI dataset 53

5.3 Distribution of class label income in the reduced version of the
ACI dataset split into train and test datasets 54

5.4 Distribution of protected feature gender in the reduced version
of the ACI dataset split into train and test datasets 55

5.5 Distribution of protected feature race in the reduced version of
the ACI dataset split into train and test datasets 55

5.6 Distribution of class labels (blue) and values of protected fea-
tures in the FD dataset . 56

5.7 Distribution of class label fraudulent in the FD dataset split into
train and test datasets . 56

5.8 Distribution of protected feature gender in the FD dataset split
into train and test datasets . 56

viii

5.9 Distribution of protected feature ethnicity in the FD dataset
split into train and test datasets 57

5.10 Similar data points from ACID predicted unfairly by two global
similarity functions. One is the global similarity function lever-
aging on scaling of scores without subtraction and addition of
one in weight calculations, while the other is using linear rank-
ings and scoring 75% of features in each FRSM. 61

5.11 Confusion matrices for all used global similarity functions when
applied to the Adult Census Income Dataset 62

5.12 Confusion matrices for all used global similarity functions when
applied to the Fraud Detection Dataset 63

6.1 Confusion matrices for the different global similarity functions 67
6.2 The 10-fold cross-validation for 10 runs, using all four global

similarity functions . 67
6.3 Max recall of the system with the Car dataset when using dif-

ferent global similarity functions 68

ix

List of Tables

5.1 Description of the datasets used in the experiments 47
5.2 Results from experiment 1 using p = 10% showing sum_o f _scores

for the highest scoring and protected features. The final columns
shows the decision if the dataset shows bias i.e. if one of the
protected features’ sum_o f _scores exceeds value of λ 50

5.3 Results from experiment 1 showing the influence of each fea-
ture on the classification result, in terms of a percentage. . . . 50

5.4 Results from experiment 1 showing influence percentages per
feature using linear rankings 51

5.5 Results of experiment 1, with the original and cleaned versions
of the Fraud Detection dataset. 51

5.6 ACID and FDD numbers for train and test datasets 60
5.7 Number of biased data points found using the method of scal-

ing sum of scores of all features to define the global similarity
function . 60

5.8 Number of biased data points found using the method of scor-
ing a selected percentage of features’ in each FRSM to calculate
sum of scores and define the global similarity function 60

5.9 Accuracy of the system using the method of scaling sum of
scores of all features to define the global similarity function . . 62

5.10 Accuracy of the system using the method of scoring a selected
percentage of features’ in each FRSM to calculate sum of scores
and define the global similarity function 62

6.1 Presenting the mean for different evaluation metrics from 10
runs . 67

1

Chapter 1

Introduction

While more traditional forms of data analysis provide records or summary
statistics, machine learning attempts to capture statistical relationships within
a dataset. It does so by discovering useful patterns and correlations in the
dataset that assist future decision making. The collection of correlations is
commonly know as a "model", and it is used to automate the process of clas-
sification of individuals or groups, calculating the value of missing variables,
or sometimes, even predicting future events. Some current applications that
use these types of models are in assisting decision support for applications
such as credit scoring of individuals, fraud detection and hiring. [Barocas
and Selbst, 2016]

Initially, one might think that there wouldn’t exist any unfairness in AI/ML
systems since computers don’t know how to be unfair. In an ideal scenario,
this would be true but, one important point is being missed; who is creat-
ing/controlling these computers? - humans!. Humans, with all their biases
(both subconsciously and consciously), are inherently passing on their mis-
takes down to the machines. There are several types of situations where this
could be happening. Obviously, the model needs to be programmed unbias-
edly in order to have fair results. The issue is that this is usually not enough.
Before even getting to the programming stage, the system could be biased
because of its initial dataset that is to be used to train the model.

When talking about dataset bias, there are two important terms that need
to be focused on. These are protected features and a class variable. Pro-
tected features are values that might be considered sensitive information and
shouldn’t be used to distinguish between individuals. Some examples of pro-
tected features are age, gender and ethnicity. A class variable is the value that
the system is supposed to predict, based on the selected features, for unseen
data points. A class variable can (in classification problems) take only a finite
number of values, which are mutually exclusive. These are denoted as class
labels.

Which features should be taken as a class variable is not always obvious and
should be decided by data miners. Their job is to translate some unstruc-
tured problems to more formal questions that can be parsed to computers
easily. Data miners need to understand the project objectives and business
requirements. Having this knowledge, they should be able to convert it into

Chapter 1. Introduction 2

a data mining problem definition. While for now, systems need these types
of subjective input, they sometimes lead to problems being constructed in
such a way that induces unfair treatment of individuals based on protected
features. When unfair bias is presented within the initial case base and its
decision making for class variables, it is inevitable that the system as a whole
will present biased outputs, even when the algorithms that are implemented
(that use biased case bases) are unbiased and fair. This issue emphasises the
importance of unbiased case bases to be able to start evaluating model fair-
ness.

We can use an example of a system created for assisting in hiring decisions. In
order to "teach" the system what a desirable employee for a company is, the
system requires previous data of people who were considered, interviewed,
hired etc. The issue arises from the fact that the person who was tasked with
hiring decisions earlier (e.g. hiring manager), could have been biased either
subconsciously or consciously, using protected and/or proxy attributes in
his/hers decision making. Obviously, the data that he/she created is biased
and shouldn’t be used to steer future employment decisions.

A difficult part of mitigating bias is actually detecting it. This is the focus of
the first experiment.

When considering fairness in AI/ML systems, there is a distinction between
two types of fairness’: group and individual fairness. Group fairness con-
siders protected demographics groups (e.g. gender or racial groups) and re-
quires parity of some statistical measure in all of these groups. Individual
fairness, on the other hand, looks at constraints concerning specific similar
pairs of individuals and their fair treatment in comparison. Most of fairness
research in the ML field so far has been focused on group fairness. In this
thesis, we attempt to bridge this gap by exploring individual fairness. Using
definitions from [Dwork et al., 2012] as a foundation, we investigate ways of
detecting bias which leads to unfairness before a model is created, as well as,
experimenting with using case-based reasoning in order to ensure fair ML
models.

1.1 Goals and Research Questions

This thesis has two overarching goals. The first is to:

Goal Propose a method which detects bias in datasets.

Having set this goal, we construct research question 1. Answering research
question 1 helps us to achieve our goal.

Research Question 1 How to detect dataset bias?

After answering Research question 1, we use the method for detecting dataset
bias in order to provide an unbiased dataset to the case-based reasoning
model we construct. This is where our second goal is constructed:

Goal Create a case based reasoning systems that ensures individual fairness

Chapter 1. Introduction 3

Since scarce research is available on the topic, in order to be able to accom-
plish the set out goal, we need to answer Research question 2.

Research Question 2 Can case-based reasoning systems using automated weight
calculations be used for ensuring individual fairness?

1.2 Thesis Structure

This thesis consists of five main parts. In chapter 2 we will present the back-
ground theory needed to understand the contents of this thesis. Chapter 3
will present the related work that covers the current research about individ-
ual fairness along with a verifier that detects individually unfair models, as
well as a case-based reasoning approach that could be used for ensuring in-
dividual fairness. Chapter 4 will describe the methods and approaches we
use, as well as describe the architectures used in this thesis. In chapter 5 we
will describe the experiment plan and show and analyse the results of the
experiments. Finally, in chapter 6 we will discuss the results, their affect on
answering the research questions as well as conclude the thesis and present
our vision for future work.

4

Chapter 2

Background Theory

While the initial artificial intelligence methods vary to those we use today,
the concept of and the interest in artificial intelligence has been growing
steadily over time. This has steered engineers towards attempting to solve
more and more everyday tasks using artificial intelligence. Increasing hard-
ware capabilities along with the emerging interest amongst individuals allow
for inclusion of artificial intelligence in many aspects of society. These sys-
tems vary largely - from predicting severe weather and aviation turbulence,
detecting various privacy breaches, providing personalized advertisements
and, in some cases, making important life decisions [Rudin and Wagstaff,
2014]. This paper will mostly focus on artificial intelligence based decision-
making systems.

2.1 AI in Decision-Making Systems

These decision-making systems make decisions that significantly affect peo-
ples’ lives in areas such as finances, college admission, employment, receiv-
ing medical treatment, or even judicial sentencing. The goal of using these
types of systems was to remove human biases from decision making thus,
making it more fair. Unfortunately, recent studies indicate this might not be
the case. One of the more famous cases of biases in decision-making systems
was the "ProPublica vs Northpointe" case regarding the predictive recidivism
system "COMPAS" [Angwin et al., 2016].

Correctional Offender Management Profiling for Alternative Sanctions (COM-
PAS; Northpointe, which rebranded itself to “equivant” in January 2017), has
been used to assess more than 1 million offenders since it was developed in
1998. COMPAS is used to predict a defendant’s risk of committing a misde-
meanor or felony within 2 years of assessment from 137 features about an
individual and the individual’s past criminal record. Even though none of
COMPAS features directly identify an individuals race or ethnicity, a combi-
nation of different features could be used to indirectly determine ones’ race
and lead to racial disparities in predictions. [Dressel and Farid, 2018]

Angwin et al. analyzed the systems data with the predictions and argued that
it is racially biased. While the total accuracy numbers were similar for both
white and black people - 67% for whites, 63.8% for blacks, when mistakes did

Chapter 2. Background Theory 5

occur, they affected different races differently. What worried ProPublica’s
authors were the false positive and false negative rates 1. The false positive
rate for black defendants was 44.9% while the same rate for white defendants
was almost twice as small at just 23.5%. The same pattern could be noticed
in the false negative rates where white defendants who did reoffend were
predicted not to do so 47.7% of the time, while the black counterparts’ rate
was almost twice as low at 28%.

Northpointe argued that their system was indeed fair and not bias when us-
ing other, more standard, fairness metrics that they considered during de-
velopment [Dieterich, Mendoza, and Brennan, 2016]. They dissected all the
main accusations from ProPublica and argued they are not evidence of bias
providing their own technical analysis using different fairness metrics. This
back and forth has raised a greater issue in the world of ethical artificial in-
telligence and automated decision-making systems - how to decide which
metric is the "most" fair one and how to satisfy both accuracy and fairness
metrics?

2.2 Fairness Metrics

Even though the notion of fairness has been talked about in philosophy for
thousands of years, a single definition for fairness has not been agreed upon.
This is caused by the terms fairness and justice being difficult to define pre-
cisely. Using common sense, one might define fairness as the absence of bi-
ases and prejudice towards a group or an individual. The presence of said
biases are referred to as discrimination. Discrimination is often used to de-
scribe actions towards a person/group because of some inherent or devel-
oped traits such as race, gender, age, sexual orientation etc. These types of
traits are usually referred to as protected features (or attributes) and should not
be used while evaluating a person/group. Discrimination of a person/group
is possible even when protected features are absent. This is due to proxy fea-
tures. Proxy features encode a certain protected feature with a substantial
degree of accuracy. For example, zip code is a widely accepted proxy that
can often reveal race, ethnicity, or age. For this reason, proxy features should
also be considered when observing possible sources of discrimination.

Since human moral alone is not enough to stop discriminatory practices, gov-
ernments have decided to enforce laws which prevent different kinds of dis-
crimination. One downside to this approach is that definitions vary from
country to country which raises the issue of same systems being categorized
differently depending on the country where they are evaluated. In order to
evaluate AI systems, a unified mathematical definition of fairness is needed.
There are currently many definitions that are attempting to tackle this issue
but opinions on the best and most straight forward one vary vastly.

1A false positive is an error in binary classification in which a test result incorrectly in-
dicates the presence of a condition such as a disease when the disease is not present, while
a false negative is the opposite error where the test result incorrectly fails to indicate the
presence of a condition when it is present.

Chapter 2. Background Theory 6

Frequently, fairness definitions are split into two categories: individual fair-
ness and group fairness. Individual fairness definitions have the main goal of
treating individuals equally, regardless of group affiliations. Group fairness
definitions are focused on group fairness and equality, usually measured by
various metrics (e.g. equal false positive or false negative rates). While not
all fairness definitions are easily measurable, there are enough possibilities
in both categories to be able to choose adequate metrics. [Dwork et al., 2012]

2.2.1 Group Fairness Definitions

The majority of present day literature focus on group (statistical) definition
of fairness. Group definitions of fairness solves a small number of protected
demographic groups (e.g. racial or gender groups) and requires a parity of
some statistical measure in all of these groups. Some of the more popular
group metrics include false positive rates, false negative rates, raw positive
classification rate, positive predictive value etc (see [Berk et al., 2021] for
more examples). This type of fairness is commonly used since it is simple
and the definitions can be achieved without any assumptions of on the data.
One downside, however, presents itself in the fact that there is no guarantee
for individual or subgroup fairness. There is also a possibility that two dif-
ferent group fairness metrics will be in a disagreement on the final result (see
[Kleinberg, Mullainathan, and Raghavan, 2016] for proof). [Chouldechova
and Roth, 2018]

The following metrics are commonly used when considering group fairness:

• Statistical Parity was introduced early in AI literature considering fair-
ness of models. At those times, it was used interchangeably with the
term group fairness [Zemel et al., 2013]. The idea of this metric is to
ensure that the proportion of members in a protected group receiv-
ing positive classification should be equal to the proportion of the full
population. The statistical parity metric is defined as the difference be-
tween the percentage of people receiving positive classification in the
protected and the unprotected group.

• Disparate Impact is a metric similar to statistical parity. It also consid-
ers positive outcomes of protected and unprotected groups. The dif-
ference relies in the calculation. Instead of looking at the difference
between percentages of people classified positively in both groups, dis-
parate impact provides the ratio between the probabilities for the two
groups [Feldman et al., 2015].

• Equalized Odds was presented as an alternate approach to statistical
parity. Instead of considering the probabilities of positive outcomes,
equalized odds considers the true and false positive rates. Under this
metric, an algorithm is regarded to as fair if both protected and unpro-
tected groups have equal true and false positive rates, respectively[Hardt
et al., 2016].

Chapter 2. Background Theory 7

2.2.2 Individual Fairness Definitions

Individual fairness definitions are constructed to ask constraints that bind on
specific pairs of individuals in contrast to binding on a quantity averaged
over groups. [Joseph et al., 2016] propose a definition that states that less
qualified individuals should not be favored over more qualified individuals,
where quality is defined with respect to the actual underlying label which is
unknown to the algorithm.

Another example is presented in [Dwork et al., 2012]. The basic premise of
their definition is that similar individuals should be treated similarly where
similarity is defined with respect to a task-specific metric that should be de-
termined for each case individually.

Even though these types of definitions can look to be more meaningful than
group fairness definitions, there is one drawback. Individual fairness defi-
nitions require making assumptions. The approach in [Joseph et al., 2016]
requires strong assumptions on the functional form of the relationship be-
tween labels and features, while the approach in [Dwork et al., 2012] requires
an existing and agreed upon similarity metric which is usually non-trivial to
acquire.

Although this drawback makes it more difficult to measure individual fair-
ness in practice, which is evident in the lack of papers covering this topic,
exploring individual fairness is an important research agenda that this paper
will mostly focus on.

Even though individual fairness is not always easily quantifiable, there is one
commonly used individual fairness metric; The Theil Index.

The Theil Index builds on the theory of general entropy indices and cal-
culates if similar individuals are treated in a similar way. A special case of
entropy indices (where α = 1) for a problem with n observations is defined
as follows [Speicher et al., 2018]:

Theil Index =
1
n

n

∑
i=1

bi

µ
log

bi

µ

where bi = ŷi − yi + 1 and µ = ∑i bi
n . For more on the Theil Index, see [Spe-

icher et al., 2018].

2.3 Bias Types

When considering fairness in machine learning, it is important to understand
the different sources of unfairness. More precisely, where in the machine
learning pipeline bias can be introduced, hindering the system and produc-
ing unfair results. In order to dissect the different sources of bias, we divide
the machine learning pipeline into meaningful steps. In figure 2.1, we present
a simplified representation of the machine learning pipeline.

Chapter 2. Background Theory 8

FIGURE 2.1: Machine learning pipeline steps

2.3.1 Data Pre-Processing Bias

The first, and most common, type of bias in a ML system is found in the
dataset used for the construction of the ML model. In this case, bias can
be present in the data points which are provided by the dataset, or can be
induced by faulty handling of features values or labels.

Aggregation bias relates to the different groups of data points (e.g. white
people, women) that a ML model should predict decisions for. Aggrega-
tion bias occurs when different groups have vital differences that need to be
taken into account in the decision making process. If not handled properly,
these differences will cause the model to not be able to recognise patterns for
these different groups, resulting in bad performance of the decision making
system. This type of bias should also be considered and prevented in the in-
processing stage of the ML pipeline. One example would be to train and use
different models depending on the group that is being provided, in order to
more accurately recognise patterns in the data points.

Under-coverage bias occurs when a certain group of data points is under-
represented in the dataset used for modeling. This will cause the ML model
to perform worse for that group, since it has not had enough data points of
that type to be able to learn from.

Feature selection bias relates to the process of feature selection. Feature se-
lection is a vital part of the ML pipeline. The selection should ensure that
only the most important features that correlate to the class labels are used.
While feature selection affects the accuracy of a ML model, it can also be
used to induce unfair decisions. One important consideration that should
be discussed is whether a protected feature should be used or left out of the
decision making process.

Label bias is one of the commonly mentioned problems appearing in ML
models. This type of bias arises from choosing the label or labeling itself. In
real-world ML approaches, the label is usually partly or fully unobservable.
This property induces the need for a proxy label. A proxy label is used to
represent the label as close to the ground truth as possible. Knowing this,
bias in label choosing can be observed as a measurement mistake between
the ground truth and the proxy label. This type of bias occurs because of bias
or misunderstanding from the person who assigned the label.

Data measurement bias occurs in feature values in the dataset. This type of
bias is introduced when the values of features are incorrect. This could be
because of incorrect measurements or technology limitations. For example,
bias in image processing could be introduced by images in the dataset that

Chapter 2. Background Theory 9

can not represent the real-world accurately as they are limited by the camera
sensors they were captured by.

2.3.2 In-processing bias

Often, in ML literature, it is claimed that the in-processing step (learning)
step of the ML pipeline is impossible of creating bias but that its bias is rep-
resenting unhandled dataset bias. However, it has been shown that bias can
still be induced during the in-processing step. This could be down to a vari-
ety of reasons including using the wrong learning approach and parameters
[Danks and London, 2017].

2.3.3 Post-processing bias

Even when the outputted results of a ML system are not biased, this does
not guarantee fairness of the system. The final type of bias occurring in the
ML pipeline is the presentation bias. When ML systems are used for decision
making, they often require an accompanying user interface to simplify visu-
alizing the results. This user interface is often created by a different person
than the one creating the ML model and could be used to portray the results
in a different way than what was intended. Regardless of the person creating
the user interface, it is important to mention that bias can be introduced by
the sole representation of the ML system [Mehrabi et al., 2019].

2.4 Case-Based Reasoning

As mentioned in section 2.1, decision-making systems are used in a variety
of different aspects of life. One of the most popular implementations of a
decision-making system is by using case-based reasoning.

The premise of CBR is that similar problems/cases have similar results/outcomes.
With this in mind, the process of solving new problems in CBR is self-explanatory.
In CBR, a new problem is solved by searching through previous cases and re-
trieving the most similar one. To be able to state that cases are similar to each
other a similarity metric has to be established. This will be further discussed
in section 2.4.2. In other words, in CBR, a new problem is solved by adapting
or using old problems.

This type of approach has many benefits. It is very effective in solving prob-
lems where there isn’t much information about the problem or the problem
domain is complex to understand. In figure 2.2 an abstract case-based rea-
soning system is depicted.

In general, every CBR system can be dissected into four main processes:

1. Retrieve; retrieve the most similar case(s)

2. Reuse; reuse the knowledge of previous case(s) to solve new problem

Chapter 2. Background Theory 10

FIGURE 2.2: Case-based reasoning system

3. Revise; revise or test the proposed solution so it fits better

4. Retain; retain the newly solved case and store it for solving of future
problems

At the beginning of the process, a problem description moulds a new case.
Using this new case, other similar cases are retrieved from the previous knowl-
edge (case base), according to some similarity metric. Reusing the retrieved
case(s) combined with the new case, a problem solution is proposed. The
next step is testing and revising the proposed solution in order to fit it prop-
erly. At the end, a confirmed solution is provided and the newly solved case
is retained and stored in the previous knowledge section in order to help solve
future problems.

In many ways, case-based reasoning (CBR) is fundamentally different from
other AI approaches. Rather then relying on general knowledge of a problem
domain or learning associations between problem descriptors and conclu-
sions in order to solve a problem, CBR is capable of using specific knowledge
acquired by previous experiences and past problems commonly referred to
as cases. One more difference is that CBR is based on incremental learning

Chapter 2. Background Theory 11

since every new solved case can be used with future retrievals. [Aamodt and
Plaza, 1994]

In order to construct a CBR model, one needs to decide which features need
to be used to distinguish between different labels. This is often not straight-
forward as raw data contains many features that might be useless. Another
issue could be that some features should not be highly important as they are
considered protected features. A human can potentially identify protected
features incorrectly, resulting in unfair decision being made. These prob-
lems introduce the need for an automated approach to feature selection. This
could remove any bias that could occur through feature selection. One ap-
proach could be by using feature relevance scoring methods.

2.4.1 Feature Relevance Scoring Methods

In recent years, the increasing interest in collecting data has resulted in an ex-
ponential growth in provided data both in respect dimensionality and sam-
ple rate. Datasets have more features and samples than ever before. While
this increase in available data inevitably provides more useful data, the chal-
lenge of separating useful data from noise is becoming more challenging.
Manual filtering has become unfeasible in most use cases, so more automated
approaches using data mining and machine learning techniques is necessary.

Dimensionality reduction is one of the most popular methods in order to re-
move irrelevant and redundant features. It is usually split into two different
subgroups: feature extraction and feature selection. In this paper, focus will
be on feature selection. Feature selection methods have a goal of selecting a
small subset of features that minimize redundancy and maximize relevance
to the target (e.g. class label in classification). [Tang, Alelyani, and Liu, 2014]

In classification problems, feature selection has a goal of selecting highly dis-
criminant2 features. The relevance of features is assessed by the ability of
using a particular feature in distinguishing different classes. If a specific fea-
ture f is highly correlated to a specific class c, then the feature f is considered
relevant. We argue, this property could be used to detect biased datasets as
highly discriminant protected features could be a signal of unfair past classi-
fications.

After a selection of features that are used to construct a model have been
selected, the final step of creating a CBR model relates to defining similarity
metrics.

2.4.2 Similarity Metrics

The concept of similarity is well known and used in many fields of pure and
applied science. The notion of a distance d(x, y) between objects x and y has
long been used in various contexts as a quantitative measure of similarity or
lack there of. [Finnie and Sun, 2002]

2Features that have a high relevance to the outcome.

Chapter 2. Background Theory 12

Similarity is a core concept in CBR since it is used in case retrieval, case adap-
tion and case retaining and storing into the case base [Sun, Finnie, and Weber,
2004]. Similarity, in general, is derived from the similarity of two triangles
and two matrices in mathematics.

Definition 2.4.1. A binary relation S on a non-empty set X is called a similarity
relation provided it satisfies the following conditions:

1. ∀x, xSx

2. If xSy, then ySx (xSy =⇒ ySx)

3. If xSy, ySz, then xSz (xSy ∧ ySz =⇒ xSz)

The conditions (1), (2) and (3) are the reflexive, symmetric and transitive properties.
If xSy, we say that x and y are similar. [Ross and Wright, 1992]

Let’s provide an example [Finnie and Sun, 2002]: Let f be a function with
domain A and codomain B (f : A → B) and define xSy if f (x) = f (y). Then
it implies that S is a similarity relation on A.

From the above mentioned example, we can derive a clear conclusion; If x
and y are similar in the sense of S, then x and y have the same solution ergo
f (x) = f (y). In other words, it is implied that similar problems have the
same solutions. This translates well into CBR systems since this property is
the premise that CBR systems are built upon. In a CBR system, there are two
types of similarities that need to be considered. These are local and global
similarities.

Local similarities are used to define the relationships between different val-
ues of features i.e. a local similarity states how similar two values of a cer-
tain feature are. Defining local similarities is useful in cases where different
values of a feature should be similar to a degree and are not completely ex-
clusive. For example, bachelor education might need to be somewhat similar
to a masters degree when evaluating a person. However, intuitively, peo-
ples different genders should not have any similarity between the different
options and the gender should be considered similar between two feature
values only if the gender values are the same. There are several types of local
similarities that are used, depending on the type of values a certain feature
has. For numeric values, common types local similarity types include us-
ing a constant, a polynomial function or similar. For symbolic types, local
similarities are usually represented using similarity tables.

While local similarities provide a way of defining relationships between dif-
ferent values for a certain feature, so far there are no defined relationships
between different data points i.e. collections of features. This is where global
similarities are used.

Global similarities are used to define the relationship between different data
points. A global similarity combines local similarities for all the features that
are selected in a dataset, and provides a similarity score between different
data points. This score is used during the retrieval phase of a CBR model in

Chapter 2. Background Theory 13

order to recognize which cases from the case base are the most similar to the
case that is being queried. There are several types of global similarities that
can be used depending on the type of data points in the dataset. One of the
most popular approaches is using a weighted sum.

The weighted sum method combines all the selected features by weighing
the results of their local similarities. Each of the features that should be used
to compare similarity of data points must be assigned a weight value. The
weighted sum approach is designed so more important features should be
assigned higher weights in order for their local similarity to affect the deci-
sion more compared to less important features. The weighted sum method,
used as a global similarity function, is depicted in figure 2.1.

global(X, Y) =
n

∑
i=1

wi · locali(xi, yi) (2.1)

where X and Y are two data points that are being compared, xi and yi are
values of feature i, wi is the defined weight value for feature i, n is the total
number of features that are weighted, and locali is the defined local similarity
function for feature i.

For each of the features, a weight needs to be defined in order to calculate
the weighted sum. The decision of weights values is not a straightforward
one. One approach would be for domain experts to define a weight value
for each feature in the dataset. The drawback of using this approach is that
it is often difficult to manually quantify importance of features, while it is
also time consuming. Another approach is by creating an automated weight
calculation method. The latter approach is investigated in this thesis.

14

Chapter 3

Related Work

In this chapter, we cover two papers that study the field of individual fair-
ness in both a theoretical and practical approach. Finally, we present a frame-
work for a case-based reasoning system which is based on automated weight
learning.

3.1 Fairness Through Awareness

Fairness Through Awareness[Dwork et al., 2012] is one of the earliest pub-
lished papers covering the topic of individual fairness. Dwork et al. defined
individual fairness by the principle that two similar individuals should be
treated similarly. "We capture fairness by the principle that any two indi-
viduals who are similar with respect to a particular task should be classified
similarly" [Dwork et al., 2012, p. 214]. This definition is widely considered
to be the foundation of any individual fairness discussions. This approach is
called similar treatment and stems from ethics and philosophy of law, which
require that like cases be treated alike [Binns, 2020].

Dwork et al. suggest that for defining individual fairness for a system two
distance metrics need to be established. The first one is a similarity metric. A
similarity metric is a distance metric that computes the degree of similarity
between two individuals. The second defined distance metric is a distance
metric that calculates the difference in the chances two individuals face of
obtaining the decision outcomes. In order for an individually fair approach,
the difference between the outcomes of the individuals must not be greater
than their distance in regard to the similarity metric. The different metrics
are visualized in figure 3.1.

In order to more precisely define similar treatment and individual fairness,
Dwork et al. propose a function based on Lipschitz mapping. A mapping
M : V → ∆(A) satisfies the (D, d)-Lipschitz property if ∀(x, y) ∈ V, we have:

D(Mx, My) ≤ d(x, y) (3.1)

where x and y are individuals, V is a set of individuals, M is a function that
assigns a probability distribution over the outcomes A. D is a distance metric

Chapter 3. Related Work 15

FIGURE 3.1: Visualization of the distance metrics for similarity
of individuals and similarity in outcomes

which measures the difference between the outcomes, while d represents the
similarity metric i.e. degree of similarity of individuals x and y.

In essence, individual fairness is calculated by measuring similarity of indi-
viduals and similarity of outcomes using similarly scaled distance metrics
and considering the difference of these two metrics. For example, let us con-
sider algorithm M is a ML model for credit scoring. When M is applied to
an individual, it produces a probability an individual should be approved a
credit. Suppose two individuals x and y where they are very similar i.e. they
have similar traits such as , type of employment, yearly income etc, but x is
a male, while y is a female. It is important to understand that gender is not
considered relevant when considering credit approval and this difference is
not reflected in the similarity metric. For these two individuals, we calculate
a small similarity distance d(x, y) = .02. When evaluating the results, a dis-
crepancy was noticed. M assigns x a probability of 0.9 of getting approved,
while y receives a probability of 0.75. This difference could be caused by the
model being trained on historical data where females were discriminated.
When we look at the difference between distance of outcomes and the sim-
ilarity metric D(Mx, My) = 0.15, we notice that the distance outcomes are
larger. Model M fails to respect the Lipstich constraint, and according to
Dwork et al., it is individually unfair. The two individuals are treated dis-
similarly, despite being similar.

This example illustrates that irrelevant differences between people should
not lead to significant differences in their chance of the desired outcome. One
of the difficulties of individual fairness that Dwork et al. mention is defining
the appropriate similarity metric since it is based on moral judgement. In the
example above, we argued that gender is not relevant when consider credit
scoring. This stems from a moral decision that it would be unfair to treat

Chapter 3. Related Work 16

gender as relevant in credit scoring.

While Dwork et al. used the definition of individual fairness to force a fair
system, in this thesis, we use it as a basis for investigating fairness of ML
models. Since [Dwork et al., 2012] present a more theoretical approach to
considering individual fairness, they do not consider specific similarity met-
rics. One paper that proposes a similarity metric to be used for testing ML
models is Verifying Individual Fairness in Machine Learning Models by [John,
Vijaykeerthy, and Saha, 2020].

3.2 Verifying Individual Fairness in Machine Learn-
ing Models

The goal of this paper [John, Vijaykeerthy, and Saha, 2020] is to construct ver-
ifiers that evaluate individual fairness of a given model. In order to achieve
this, John, Vijaykeerthy, and Saha leverage on the individual fairness defini-
tion from [Dwork et al., 2012]. The paper focuses on tests on linear and ker-
nelized polynomial/radial basis function classifiers and uses publicly avail-
able datasets (german credit, adult income, fraud detection, credit islr). This
paper considers models for which they have white-box1 access and which
take structured data as input.

The definition of individual fairness, in this paper, is based on the abstract
definition from [Dwork et al., 2012]. In [Dwork et al., 2012] a model f is
considered fair if for any pair of inputs x, x′ which are sufficiently similar - in
line with a specified similarity metric (d(x, x′) is sufficiently small), model f
outputs f (x), f (x′) which are also sufficiently similar - in line with a different
similarity metric (D(f (x), f (x′)) is sufficiently small).

In other words, if two inputs are similar and the outputs are not, this is con-
sidered a bias instance and the model f is considered individually unfair.
While thorough, [Dwork et al., 2012] is mostly theoretical and hard to im-
plement as is for structured data. To solve this problem, the paper decides
to split the features of a dataset into subgroups of features. Each subgroup
has a threshold (determined by domain experts) which indicates closeness
i.e. if we have two feature values xi, x′i , they are considered similar if their
absolute difference is less than the threshold ε j of the subgroup Sj which they
are a part of (|xi − x′i| ≤ ε j, xi, x′i ∈ Sj). Features are separated in subgroups
based by humans on domain knowledge. This is also beneficial when con-
sidering protected features. The other definition used in this paper proves
this. It states that any two valid inputs which differ only on the protected
feature(s) must always be put in the same class. This is achieved by assign-
ing the subgroups containing protected features thresholds to ∞ while the
non - protected subgroups have 0 as a threshold. All protected features can
be put into a single subgroup where the threshold is ∞ (all the protected fea-
tures are considered equal and irrelevant when considering the similarity of

1A white box is a subsystem whose internals can be viewed but usually not altered.

Chapter 3. Related Work 17

instances) when evaluating fairness. Knowing this, the model is considered
fair if a pair of similar inputs x, x′ (based on a defined similarity metric) have
the same solution in classification models (f (x) = f (x′)) and close enough
solutions in regression models where the absolute difference is considered
(| f (x)− f (x′)| needs to be sufficiently small).

For the actual verifiers, the focus was on creating sound verifiers but not
complete since this is much more cumbersome. A verifier V that is consid-
ered sound, for a given model f , outputs NO BIAS, if, and only if, the model
f is actually unbiased. The second trait of a verifier is completeness. A veri-
fier V is considered complete will, for a given model f , output a bias instance
if, and only if, the model is actually bias. V will also always terminate out-
putting a bias instance or stating that the model has NO BIAS. The steps from
the verifiers are shown in figure 3.2.

In this paper, in order to develop the algorithms, the individual bias veri-
fication problem was formulated as a (non-convex) optimization problem,
and provably-correct global optimization approaches (such as mixed integer
linear programming) were used to perform the verification. This was done
since the closeness constraints for x, x′ (|xi − x′i| ≤ ε j, xi, x′i ∈ Sj, ∀i ∈ Sj,
∀j ∈ [t]) are linear constraints that are easy to handle in an optimization
framework. A model f is considered biased if, and only if, an input pair
x∗, x′∗ with | f (x∗) − f (x′∗)| > δ belongs to the set of pairs x, x′ described
above. Since x and x′ are interchangeable, a constraint for a bias instance
could be presented as f (x∗) − f (x′∗) < −δ. The optimization problem is
therefore constructed as:

D∗ := min f (x)− f (x′)
s.t.|xi − x′i| ≤ ε j, ∀i ∈ Sj, ∀j ∈ [t] (3.2)

xi, x′i ∈ [li, ui] ∩ (R or Z, ∀i ∈ [n]

where li and ui are the domain constraints on xi and x′i, t is the number of
feature subgroups, and n is the number of features.

If the verifier solves the optimization problem with D∗ < −δ, then there ex-
ists a bias instance that the verifier can output. On the other side, if the veri-
fier finds a certifiable lower bound which implies D∗ ≥ −δ then the verifier
can output NO BIAS with certainty.

The algorithm steps will be described in the following lines. Firstly, a set
Vp of input pairs is constructed such that only the pairs of data points that
are "close" in relation to the before created thresholds (|xi − x′i| ≤ ε j) are
considered. This is mathematically described in equation 3.3.

Vp = {(v, v′) | |vi − v′i| ≤ ε j, ∀i ∈ D ∩ Sj, ∀j ∈ [t] } (3.3)

where D is the set of all non-protected features and t is the number of feature
subgroups.

Chapter 3. Related Work 18

FIGURE 3.2: The evaluation algorithm of the proposed verifiers

After this, set Vp will contain all the pairs of inputs that are similar and should
have a similar outcome. The next step for the verifier is optimization. For
all of the pairs x, x′ in set Vp, the verifier should attempt to solve D∗ from
equation 3.2. When a lower bound l is found such that l ≤ D∗ and l < −δ the
verifier will attempt to certificate this value by attempting to find an instance
x∗, x′∗ such that f (x∗)− f (x′∗) = l. Add the (l, x∗, x′∗) tuple to a set L. After
going through all the pairs in set Vp we look through set L. If for all lower

Chapter 3. Related Work 19

bounds l from set L it is true that l ≥ −δ then the algorithm will output NO
BIAS. On the other hand, if this is not true (there exist a lower bound l from
set L such that l < −δ) the algorithm will output a bias instance (x∗, x′∗).

The minimization process will be different for each of the three considered
classification approaches since an optimization procedure for a general model
f does not exist. However, this is not important for this thesis since we are
using a linear model approach. In this thesis, we took inspiration from the
constructed verifiers and created simplified versions of them in our evalua-
tion of architecture for investigating RQ2.

This is the first work that considers the verification of individual fairness for
ML models. The testing was conducted such that for each of the three mod-
els two cases were considered. In the first one, all features were considered
without alterations. In the second case, the protected features were masked
by setting the values of each of them to 0. From the results, we can observe
that bias instances could possibly occur even in models which have masked
protected features. This is possible due to the fact that some non-protected
features could be used as proxy features, in order to discriminate individuals
(e.g. postal code can be used to determine, in general, which living standard
does a person have).

3.3 A Data-Driven Approach for Determining
Weights in Global Similarity Functions

This paper covers the topic of case-based reasoning and weight calculations.
The goal of [Jaiswal and Bach, 2019]’s paper is to propose a framework for
an automated construction of global similarity metrics based on the charac-
teristic of the dataset that is used. In order to get characteristics of a dataset,
they propose using feature relevance scoring methods (FRSMs).

Figure 3.3 presents the steps proposed in [Jaiswal and Bach, 2019].

After deciding which dataset is used for the CBR model construction, one
needs to decide which feature selection tool and feature relevance scoring
methods (FRSMs) are going to be used for scoring the features. For their
evaluation, [Jaiswal and Bach, 2019] used Orange [Demšar et al., 2013] as the
feature selection tool and Oranges defaults feature relevance scoring meth-
ods. After this selection, the final parameter that needs to be decided is the
percentage of top features that are assigned ranks in each FRSM, denoted as
prct. Jaiswal and Bach argue that this percentage is required because often
just a small subset of influential features actually needs to be weighted, while
the rest of the features, that achieve low scores in the FRSM, don’t require
weights and should not be used for retrievals.

Since all the input parameters are decided, we can move on to the calcula-
tions. Firstly, all features are scored by all the FRSM, as equation 3.4 shows.

Features − set o f all f eatures

Chapter 3. Related Work 20

FIGURE 3.3: Proposed steps in order to automatically create
weights for each of the features in the chosen dataset

n − number o f f eatures
Scoring f unctions − set o f all scoring f unctions

m − number o f scoring f unctions
bxe − provides the closest integer value to x

sort(A) − provides a sorted set o f values f rom A in descending order
number_o f _selected_ f eatures = nos f = bn ∗ prcte

∀ f ∈ Features, ∀s ∈ Scoring f unctions, rank(f , s) = s(f) (3.4)

The next step requires ranking the top prct percentage of features. The ranks
that are assigned are linear ranks. The highest scoring feature in a certain
FRSM receives a value nos f as its rank. The rest of the features receive ranks
linearly, decreasing by 1 for each next feature. The final feature that is in-
cluded in the top percentage of features that is ranked, receives a rank of
1. All the features that are not scored in the top prct percentage of features,
receive a rank 0. These steps are depicted in equations 3.5, 3.6 and 3.7.

sresul t = (rank(f1), rank(f2), . . . , rank(fn)) (3.5)

sresul t = sort(sresul t) (3.6)

s = {(fi, y) | fi ∈ sresult, i ∈ (1, 2, ...nos f), y ∈ (nos f , nos f − 1, ..., 1)} (3.7)

After all the features have ranks in each of the FRSMs, the ranks need to
be combined to one number for each feature. This is done by calculating

Chapter 3. Related Work 21

the sum_o f _ranks for each of the features. sum_o f _ranks presents the sum
of ranks in all FRSM for a certain feature. Once the process is repeated for
all the features in the dataset, each feature has its own sum_o f _ranks. The
calculation is portrayed in equations 3.8 and 3.9.

S =
m⋃

i=1

si | s ∈ Scoring f unctions (3.8)

∀ f ∈ Features, sum_o f _ranks(f) =
m

∑
i = 1

y | fi = f , (fi, y) ∈ S (3.9)

Finally, having acquired sum_o f _ranks for all the features from the dataset,
we proceed to the weight calculation. The highest and lowest sum_o f _ranks
are assigned to variables max(all_ranks) and min(all_ranks) respectively. The
final step provides the weight calculation formula. This is formula is used on
each of the features in order to calculate its weight value. Once all the features
have a weight value, the creation of the global similarity metric is completed.
The final steps are presented in equations 3.10, 3.11 and 3.12.

all_ranks = {sum_o f _ranks(f) | ∀ f ∈ Features} (3.10)

Nunique = number o f unique f eatures in S (3.11)

∀ f ∈ Features,

weight f = (Nunique − 1)
sum_o f _ranks(f) − min(all_ranks)
max(all_ranks) − min(all_ranks)

+ 1
(3.12)

In order to evaluate the proposed system, Jaiswal and Bach created a case
base for each of the chosen datasets. They also create local similarity metrics
using the interquartile ranges for a numerical feature, and pair-wise similar-
ity for a categorical feature. These are not explained further as they are not
used in this thesis. The novel approach is compared to a global similarity
metric constructed using domain experts and another having equal weights
for all the features. The results of the evaluation show that the automated
weight learning approach performs better than the equally weighted global
similarity metric. When compared to the third global similarity, constructed
with the help of domain experts, the proposed automated weight learning
approach performs worse three out of the four tested datasets. Jaiswal and
Bach argue this result was expected since domain experts have a deep un-
derstanding of the system. They mention that the benefits of the automated
weight learning approach are that it reduces the time needed for CBR model
development and prototyping and it also prevents over-fitting as it does not
involve any learning iterations. Another benefit is that this approach min-
imises the need for human influence, which, in turn, helps remove unneces-
sary bias.

Chapter 3. Related Work 22

Considering the benefits of this approach, in this thesis, we use it to construct
a CBR model and investigate can it be used to ensure fairness of a CBR model
while maintaining high accuracy.

23

Chapter 4

Method and Architecture

This chapter describes the components of the architecture used to answer
RQ1 and RQ2 defined in section 1.1. The chapter describes also, the evalua-
tion method being used to see how the RQs are answered.

RQ1 relates to the pre-processing stage in the ML pipeline and deals with the
detection of bias in the dataset. In order to investigate and answer RQ1, we
propose an experiment that uses a certain part of [Jaiswal and Bach, 2019]’s
framework as a basis. [Jaiswal and Bach, 2019]’s framework was not orig-
inally used in the context of bias and fairness, but rather as a data-driven
approach to discovering weights in global similarity functions within a CBR
system. The framework strongly relies on discovering the relationship be-
tween different features and their relevance on changing the class label, in
order to calculate weights for each of the features. This work inspired us
to propose a method capable of detecting dataset bias by observing the cal-
culated relevance/influence of protected features. Our hypothesis was that
protected features, in an unbiased dataset, must have a relatively low influ-
ence score compared to the score of the most influential feature. If this is
not the case, we argue the dataset contains bias and shouldn’t be used for
machine learning models. A slight improvement of the feature relevance
scoring was implemented and will be explained in this chapter. As [Jaiswal
and Bach, 2019]’s framework used datasets lacking protected features they
couldn’t be used for testing dataset bias. Instead, we used datasets that were
publicly available and used previously in different papers covering the topic
of fairness in machine learning.

The second part of our work attempts to answer RQ2 by relating to the in-
processing stage of the ML pipeline and investigating individual fairness in
a CBR system. As mentioned in section 2.2.2, the topic of individual fair-
ness has not been researched extensively. This is due to several reasons but,
as [Dwork et al., 2012] note, the difficulty of choosing appropriate distance
metrics is one of the main issues. Deciding which instances should be sim-
ilar (global similarity) or which features values are similar (local similarity)
is usually done by domain experts. We propose using the data-driven ap-
proach from [Jaiswal and Bach, 2019] to eliminate potential human bias when
creating global similarity functions. At the time of writing, only a handful of

Chapter 4. Method and Architecture 24

researchers explored methods of testing individual fairness of machine learn-
ing models. We took inspiration to verifying ML models’ individual fairness
from [John, Vijaykeerthy, and Saha, 2020] in order to investigate the fairness
of a CBR system constructed using the data-driven approach from [Jaiswal
and Bach, 2019]. Our goal is to show that using the above mentioned data-
driven approach we can ensure individual fairness, while requiring less in-
put from domain experts compared to other CBR approaches. The results of
the fairness assessment are compared to the results achieved by ML models
(using linear regression, kernelized polynomials, RBF kernelized classifiers)
mentioned in [John, Vijaykeerthy, and Saha, 2020]. This is done to argue that
using the data-driven CBR approach can provide individually fair results
while achieving similar or improved accuracy compared to other tested ML
models.

The flow chart presented in figure 4.1 shows our architecture for investigat-
ing RQ1 and RQ2. The blue part of the chart relates to attempting to answer
RQ1, the green part correlates to answering RQ2. Since the first steps in both
architectures are shared they are colored in yellow.

Chapter 4. Method and Architecture 25

FIGURE 4.1: A flow chart of steps used to answer RQ1 and RQ2.
The blue part relates to investigating RQ1, the green part to
investigating RQ2, while the yellow part presents the shared

steps used in investigating both RQs.

Chapter 4. Method and Architecture 26

4.1 Detection of Bias in Datasets (RQ1)

Assessment of bias in datasets is a necessary step before testing model fair-
ness of an ML algorithm. If a model is learned using a biased dataset, its
results could be unfair while the algorithm itself is not. In order to answer
RQ1, we propose a method to be used in the pre-processing stage of machine
learning development that could indicate dataset bias.

4.1.1 Method Description

One approach could be to try and detect bias by comparing all the instances
in the dataset with each other. This approach would be similar to the ap-
proach in [John, Vijaykeerthy, and Saha, 2020] mentioned in section 3.2. The
difference is that the goal of their approach is to evaluate the fairness of ML
models (i.e. the result of the created models) while our goal is to evaluate
bias in the dataset itself. We would compare two data points by looking at all
the features that are not protected features or the class label. If they are all the
same except the protected features and their class values, we have found a
biased pair of data points. Figure 4.2 shows examples of data points with their
features. It also highlights if a certain pair of data points is similar or/and
biased.

This comparison process would be repeated for all possible pairs of data
points in the dataset. Having found all the biased pairs, we could simply
remove all the biased data points from the dataset. This would guarantee an
individually fair dataset. The approach is shown in figure 4.3.

The major drawback of this approach is time complexity. Since we would
need to compare every data point of the dataset with every other data point,
we will have nested loops resulting in a time complexity of n-squared (quadratic
time) O(n2) in big O notation where n is the number of data points in the
dataset. This implies that as the number of data points grows, the number
of iterations grows exponentially. For example, if we have a case base with
5,000 data points we would need 25 million iterations to complete the pre-
processing step while if we increased the number of data points to 10,000 the
number of required iterations would become 100 million iterations.

While we could make some improvements using faster executable program-
ming languages (such as C/C++) this solution is too time consuming to rec-
ommend for any dataset of significant size. This is why we propose a differ-
ent bias detection method in the pre-processing step. This approach has an
approximated time complexity of O(log(n2)). The difference in the scale of
execution times is shown in figure 4.4.

Our approach to this problem is to use feature relevance scoring methods
(FRSMs). Inspired by the framework in [Jaiswal and Bach, 2019], which is
explained in section 3.3, we propose a method for automatic identification of
how influential each of the protected features are. The influence of each of the

Chapter 4. Method and Architecture 27

FIGURE 4.2: Comparing data points by their similarity and
class values. If two data points have the same non-protected
features (i.e. they are similar) but different class values, they

are considered a biased pair of data points.

protected features will be quantified using a percentage. This percentage in-
dicates how much influence does a certain protected feature have compared
to the most influential feature. Ideally, protected features should have no in-
fluence on the class label. In practice, this certainty is difficult to ensure since
we can not assume that FRSMs portray relevance perfectly so we propose
creating an arbitrary threshold λ.

This threshold’s value should be decided by the ML engineer before apply-
ing the pre-processing method to the dataset. The goal of having a threshold
is to easily quantify and visualize what is the maximum amount of influence
a protected feature can have in order for the dataset to be considered unbi-
ased. As a result of this pre-processing method, a ML engineer can decide
if the presented influence of protected features is too high (i.e. if the dataset
presents bias) and ought to use a different dataset for a desired ML model.

Input for this pre-processing step are the dataset which is being tested and
the features that are considered protected. One of the benefits using this
approach to identify influence of protected features is that it is automated

Chapter 4. Method and Architecture 28

FIGURE 4.3: Finding and removing all biased instances

FIGURE 4.4: O(n2) compared to O(log(n2))

and doesn’t require domain experts to assist if the protected features are
known/decided. Another benefit explained in this section is time complexity
which indicates it can be efficiently used with datasets of any size.

It is important to remind that simply masking protected attributes in a dataset
is not a sufficient pre-processing step. This is due to the fact that bias could
be engraved in other proxy attributes, as was explained in section 2.2. This is
however, outside the scope of this thesis.

4.1.2 Architecture for Answering RQ1

In order to answer RQ1, we rank the features using feature relevance scoring
methods (FRSMs). The general idea was introduced in section 4.1.1. Firstly,
we explain FRSMs and the feature selection tool. Secondly, we go over to
ranking of the features and the slight modifications we did in the relevance
scoring approach presented in [Jaiswal and Bach, 2019]. Thirdly, we present
the architecture as a whole and how the different parts connect. Finally, the
evaluation method is presented.

Chapter 4. Method and Architecture 29

4.1.3 Feature Relevance Scoring Methods and Feature Selec-
tion Tool

As explained in section 2.4.1, the relevance of features is assessed by the abil-
ity of a particular feature in distinguishing between class labels. If a specific
feature f is highly correlated to a specific class c, then the feature f is consid-
ered relevant. This property can be useful when attempting to detect bias in
a dataset.

As mentioned earlier, in order to be able to state that there is no bias in
a dataset, the protected features of that dataset must have little to no rele-
vance/influence on distinguishing different classes. It is virtually impossible
to manually inspect the influence of features in a dataset so an automated
approach is required. One automated approach that we propose is using
feature relevance scoring methods (FRSMs).

Feature relevance scoring methods involve evaluating the relationship be-
tween each input feature and the target variable using statistics. In the end,
input features’ relationship with the target variable is scored such that a
stronger relationship will yield a higher score. The benefit of using these
methods for feature relevance scoring is that they are fast and effective. One
possible drawback is that different FRSMs use different statistics which, in
turn, provide different relationship scores for the same features. We argue
that this could be used as a benefit if we combine scores from different FRSMs
to calculate a unique value representing the strength of the relationship of an
input feature and the target variable.

In order to use the scores from FRSMs, they need to be implemented and
applied to a dataset. One might implement FRSMs manually using some
programming language. While this approach is possible, it would take more
time and could produce unexpected errors. To solve this issue, we propose
using an open source data mining tool - Orange [Demšar et al., 2013]. Orange
is designed to simplify assembly of data analysis workflows and crafting of
data mining approaches from a combination of existing components. It has
built in tools for many data problems, including FRSMs. Orange allows for
various ML pipeline steps to be done in the tool itself using an intuitive GUI.
One evident drawback of Orange is collaboration. For any large scale projects
where multiple people are working and collaborating, Orange will not be an
optimal solution. Yet, in our case of researching and small scale experiment-
ing, it suits well.

Orange provides around ten different FRSMs. Different FRSMs will be avail-
able depending on the type of feature values that are provided. The choice
of FRSMs in our experiments is explained in section 5.2.

Chapter 4. Method and Architecture 30

4.1.4 Feature Selection and Influence/Relevance Rankings

The creation of the architecture, used to answer RQ1, is leveraging on work
from [Jaiswal and Bach, 2019]. Their data-driven approach to weight calcu-
lation is based on FRSMs capturing the amount of relevance each feature has
in distinguishing different classes. Our approach uses the same principle but
for a different purpose. We use FRSMs ability to present relevance of features
in order to consider the amount of influence protected features have. The re-
sult of our pre-processing method provides a quantifiable influence score that
should alert an engineer if a datasets protected features influence classifying
data points more than they should. By combining different FRSMs to a single
score value, we argue that our approach presents a valuable pre-processing
method for any people working with potentially sensitive data.

After deciding on the dataset and it’s protected features, they are given as
input to the FRSMs. Each of the FRSMs scores each of the features’ relevance
in distinguishing different classes. As mentioned earlier, different FRSMs use
different statistics in order to score features. This leads to different FRSMs
having completely different scales of scores. For example, during testing,
one of the FRSMs ranged scores from 0.26 to 0.04 for different features, while
another FRSM ranged the scores between 73 and 6. Since we are combining
scores of various FRSMs, this difference would cause an issue where one
FRSM would have a larger influence on the final score by simply having a
larger range of values. Our solution to this issue is to scale the scores of each
FRSM to the same range. This will ensure each FRSM will have the same
influence in the final score.

In order to rank the features in each FRSM, [Jaiswal and Bach, 2019]’s ap-
proach assigns numeric values on a linear scale as ranks. The highest scoring
feature in a FRSM is assigned n as a rank, where n is the number of features
that should be scored out of all of the features. The lowest scoring feature
that should be ranked will have a rank of one. All the rest of the features
that are not to be ranked will have a rank of zero in this specific FRSM. After
some testing, we noticed two issues that concern us with this approach.

The first issue arises in using an arbitrary number n to determine how many
features are ranked. While this approach has benefits if a dataset has a large
amount of features and an engineer wants to rank just some of the most im-
portant ones, we argue that it adds unnecessary human interference. It can
be difficult to intuitively select a percentage of top features to be ranked in
order to provide with optimal results. We decide to change the ranking sys-
tem so n represents all the features in the dataset. If it were required, using a
different n could be implemented with not much change. This will be further
explored in section 4.2.

The second, more important issue stems from the linear scale of the ranks
values. While a linear ranking might intuitively make sense, we found that
this approach doesn’t properly preserve the relevance of each feature. This
will be easier to portray with an example.

Chapter 4. Method and Architecture 31

Let’s consider four features and one FRSM. Next, consider that feature A
scored a 100 for that FRSM, feature B scored a 25, feature C scored a 10, and
feature D scored a 4. In the original framework, the ranks for these features
would simply be 4 for feature A, 3 for feature B, 2 for feature C and 1 for
feature D. These ranks would indicate that feature A is four times more in-
fluential compared to feature D, while looking at the scores we see that it’s
actually twenty five times more influential. A similar pattern could also be
noticed when considering feature C. Looking at the ranks, feature A is only
twice as influential as feature C, while the scores indicate that feature A is ten
times more influential compared to feature C.

The above mentioned example shows that if a certain feature is vastly more
influential than the others, linear rankings will not preserve this property.
Since our approach relies on preserving the relevance of features, as precisely
as possible, a different ranking system must be used. This is the reason we
propose the solution of scaling the scores rather than assigning linear ranks.
The top scored feature in a FRSM is assigned the aforementioned number n,
which now represent the total number of features in the dataset. The lowest
scoring feature is assigned zero for this FRSM. All the features in-between are
assigned scaled values of their score for that FRSM. This approach is common
in the pre-processing pipeline of a ML system and is called normalization or
min-max scaling of features1. It is used to ensure all value ranges of different
features are scaled to be between 0 and 1. The goal of scaling is to prevent
a feature with a larger range of values having a bigger influence on the pre-
dicted class labels. Instead of using it to scale features, we used the min-max
scaling to scale scores of FRSMs.

Let’s consider the same example as before, but instead of assigning linear
ranks, min-max scaled scores will be provided. Since different FRSMs have
vastly different scoring ranges, all FRSMs scores will be scaled to have the
same maximum and minimum value. The maximum value of the scaling
range is set to the number of features; in this example it will be 4. The min-
imum value is set to 0. Using this approach, for feature A the new score is
4, for feature B it’s 1, for feature C it’s 0.4, and for feature D it’s 0. As shown
in figure 4.5, the relevance of features is retained in the new ranks (scaled
scores) more accurately than using the approach in [Jaiswal and Bach, 2019].

Since our approach clearly indicates better relevance score preservation, which
is the main goal of the ranks, we use it for answering both RQs. In section
5.2.2, we compare the results using both approaches when calculating influ-
ence of features.

1Normalization is a scaling technique in which values are shifted and rescaled so that
they end up ranging between 0 and 1. It is also known as min-max scaling. Here, Xmax and
Xmin are set, instead of 0 and 1, as the maximum and the minimum values of the feature
respectively

Chapter 4. Method and Architecture 32

FIGURE 4.5: Old ranks (linear ranking approach from the orig-
inal framework) vs new ranks (our proposed approach using

scaling of FRSMs’ scores)
.

4.1.5 Calculating Relevance/Influence of Features

After scaling the scores for each feature in each FRSM, we need to combine
all those scores for each individual feature. To achieve this we simply add up
the ranks (scaled scores), for a particular feature, assigned according to all
the different FRSMs. This step is repeated for all the features in the dataset.
At the end, each feature has as a number representing it’s relevance to distin-
guishing different classes. For easier understanding, this number is refereed
to as the sum of scores of a feature f - sum_o f _scores(f).

The equations below mathematically depict the steps described in the previ-
ous sections.

Features − set o f all f eatures
n − number o f f eatures

Scoring methods − set o f all scoring methods
m − number o f scoring methods

sort(A) − provides a sorted set o f values f rom A in descending order

∀s ∈ Scoring methods, ∀ f ∈ Features, score(f , s) = s(f) (4.1)

sresul t = (score(f1), score(f2), ..., score(fn))

sresul t = sort(sresul t) (4.2)

min = min(sresul t), max = max(sresul t), scaled_min = 0, scaled_max = n

s = {(fi, y) | fi ∈ sresult, i ∈ (1, 2, ...n),

y = (score(fi) − min) ∗ scaled_max − scaled_min
max − min

+ scaled_min}
(4.3)

S =
m⋃

i=1

si | si ∈ Scoring methods

Chapter 4. Method and Architecture 33

∀ f ∈ Features, sum_o f _scores(f) =
m

∑
i = 1

y | fi = f , (fi, y) ∈ S (4.4)

4.1.6 Protected Features’ Relevance/Influence

In order to answer RQ1 and to find out whether the dataset is biased or not,
we turn to the sum o f scores of protected features. If the sum o f scores of
a protected feature is too high, the dataset has potential bias and shouldn’t
be used. The obstacle here is to present the value of sum o f scores within
a context. Without this, the actual value of sum o f scores is not useful. We
decided to use percentages instead of numeric values to present influence of
features since percentages are more readable and easily portray context for
humans.

We could simply add up the different sum o f scores for each of the features.
Using this number, the degree of influence could be presented by simply di-
viding the sum o f scores for that feature and the total sum. In the end, all
the percentages would add up to 100%. Even though this approach might
intuitively come as the most natural one, we argue it’s not the best one. Let’s
consider an example which depicts a simplified behaviour of a dataset that
we encountered. Our dataset has 100 features. This indicates that we have
100 different sum o f scores as well. Let’s say that the total sum of scores is
80,000 and that a protected feature has a sum o f scores of 700, while a differ-
ent non-protected feature has a sum o f scores of 150. This would indicate a
percentage influence of 0.87% for the protected feature and 0.18%. On first
glance, both are very low and could indicate there is no relevance of these
features to the distinguishing of different classes. The problem that arises is
that these percentages does not portray context well. In the same dataset,
let’s consider the feature with the highest sum o f scores which is 2000. Its
percentage influence would be 2.5%. We argue that such small percentages
do not provide enough context around the actual influence of features.

We propose to use percentages that relate to the highest sum o f scores. In-
stead of considering how influential a feature is in comparison to all the other
features, we consider how influential a feature is compared to the top rated
feature. This allows us to have context in our percentage values without
having to look at other features’ scores. If we consider the same example as
before, the new calculations will provide a percentage value of 35% for the
mentioned protected feature and 7.5% for the non-protected feature. Hav-
ing been able to observe the actual scores of the features, we argue that this
approach achieves the desired effect; portraying influence of features as a
percentage without the need to look at other features for context.

4.1.7 Threshold λ

As all the influence percentages are calculated, the final step is to decide how
large of an influence a protected feature can have in order for the dataset
to still be unbiased. While no fixed threshold is necessary, and percentage

Chapter 4. Method and Architecture 34

values can be interpreted separately, we introduce a threshold λ in order to
present the results more visually. Another goal of the threshold is to entice
the engineer to consider what threshold needs to be set, before doing the pre-
processing step. This will ensure that the threshold isn’t skewed and changed
after viewing the results.

The value of λ is calculated using a percentage p and the maximum sum
of scores. The percentage p represents the maximum percentage amount of
influence that a protected feature can have (when compared to the most in-
fluential feature) in order for the dataset to be considered unbiased. If a pro-
tected features’ influence percentage exceeds λ, the dataset contains bias and
shouldn’t be used for ML models.

For example, let’s consider that the most influential feature has a sum_o f _scores
of 200 and we choose p to be 15%. This means that λ will have a value of 30. If
one (or more) of the protected features’ sum_o f _scores has a value larger than
30, that feature is more influential than it should be and the dataset contains
bias.

The equations below mathematically depict the calculation of λ and its role
in the architecture.

max_sum = { max (sum_o f _scores(f)) | ∀ f ∈ Features}
Protected f eatures − set o f all protected f eatures
p − the max in f luentialilty the protected f eature

should have compared to top ranked f eature
λ − p ∗ max_sum

A dataset contains bias i f

∃ f ∈ Protected f eatures, sum_o f _scores(f) > λ (4.5)

It is important to reiterate that the threshold λ is introduced for easier visu-
alization of the percentages and has no influence on the percentage calcula-
tions.

4.1.8 Evaluation Method

In order to investigate how well the method detects bias in datasets, we pro-
pose an evaluation method. The evaluation method is constructed such that
we use one of the datasets that has bias detected. After choosing a dataset,
we perform removing of biased pairs with the approach presented in 4.1.1.
As was mentioned, this approach is only feasible for a dataset with a rela-
tively small number of data points. Once we remove all the biased pairs of
data points from the dataset, we provide this modified dataset to the pre-
processing method. Finally, we compare the results of the pre-processing
method. If the method presents the modified dataset as significantly more
fair when compared to the original dataset, we argue this indicates the method
is correctly presenting the influence of features and consequently, correctly
presenting datasets that contain biased data points. It is important to notice

Chapter 4. Method and Architecture 35

that this type of evaluation should be applied to more datasets in order to
have a stronger conviction of the method detecting bias properly. Due to
the time and resource constraints, this is not attempted but is advised as a
required step for future work.

4.1.9 Pseudocode for Investigation of RQ1

The pseudocode for the pre-processing method used to answer RQ1 can be
seen in algorithm 1.

Algorithm 1: Calculating influence of features compared to top rated fea-
ture
Input: dataset← chosen dataset
Input: methods← all the selected Feature Relevance Scoring Methods
Input: protected← labels o f f eatures considered protected
Output: In f luence o f protected f eatures
in f luence← calculateProtectedIn f luence(dataset, methods, protected)
Function calculateProtectedInfluence(dataset, methods, protected):

scores← getScores(dataset, methods)
sumscores ← getSumO f Scores(scores) // list of features and
their respective sum of scores in different FRSMs

sort(sumscores) // sort sumscores in descending order
bestScored← f irst(sumscores)
all In f luences← empty list
for (label, sum) in sumscores do

if label in protected then
in f luence← sum

bestScored · 100
all In f luences.insert(label, in f luence)

end
end

return all In f luences

Chapter 4. Method and Architecture 36

As input for the algorithm the dataset, the protected features, and the se-
lected FRSMs are required. The first step is to calculate the scores of all fea-
tures in each FRSMs. After this, the scores are scaled as was described in
section 4.1.4. These steps are shown in algorithms 2 and 3.

Algorithm 2: Calculating scores of features for each of the FRSMs
Function getScores(dataset, methods):

allScores← empty list
n← total number o f f eatures
for method in methods do

scores← empty list
for featureLabel in dataset do

score← method(f eature)
scores.insert(f eatureLabel, score)

end
scores← scaleScores(scores, n)
allScores.insert(scores)

end
return allScores

Algorithm 3: Scaling scores of a FRSM
Function scaleScores(scores, n):

sort(scores) // sort scores in descending order
min← min(scores) // minimum score value
max ← max(scores) // maximum score value
scaledmin ← 0 // new minimum to scale to
scaledmax ← n // new maximum to scale to
for (label, score) in scores do

score← (score−min) · [scaledmax−scaledmin
max−min] + scaledmin

end
return scores

Chapter 4. Method and Architecture 37

After calculating and scaling the scores in each FRSM, we compute the
sum o f scores for each feature in the dataset. This process can be seen in
algorithm 4.

Algorithm 4: Calculating sum of scores for all features
Function getSumOfScores(scores):

sumscores ← empty list
for (label, score) in scores do

if label in sumscores then
sumscores[label] += score

else
sumscores.insert(label, score)

end
end

return sumscores

Finally, using the best ranked features sum o f ranks we calculate the influ-
ence/relevance of protected features. As the output of algorithm 1, the en-
gineer has access to percentile influence values of protected attributes in the
dataset. These values are used to determine if the dataset that was used con-
tains bias.

4.2 Evaluation of Fairness of a CBR Model (RQ2)

As shown in figure 4.1, the architecture for answering both RQs has initial
similarities. In order to answer RQ2, we use the data-driven approach pre-
sented in [Jaiswal and Bach, 2019] to calculate global similarity of a CBR sys-
tem. Our goal is using this approach, we can ensure individual fairness in a
CBR system while also requiring less input by domain experts compared to
other CBR approaches. Since the fairness needs to be tested, we took inspira-
tion from [John, Vijaykeerthy, and Saha, 2020] and used a simplified version
of their framework to detect possible unfairness.

4.2.1 Method and Architecture for Investigation of RQ2

In order to answer RQ2 we construct a CBR model and test its individual fair-
ness. Firstly, the model construction is discussed and explained. Afterwards,
steps in order to test the CBR models individual fairness are presented. We
then observe the architecture as a whole and mention how the components
connect. At the end, the evaluation method is discussed.

4.2.2 Initial Model Construction

The first parts of the model construction are identical to the steps presented
for answering RQ1. Therefore, they haven’t been thoroughly explained here
again in order to avoid repetition. In the beginning, a dataset needs to be

Chapter 4. Method and Architecture 38

selected. Since the construction of this model has the purpose of testing its
fairness afterwards, we need to remove any potential outside bias. This is
why an unbiased dataset should be the first priority in model construction.
One important difference compared to steps used for the construction of ex-
periment 1 is the need to split the dataset into two parts; a training and test
dataset. Since we perform retrievals on the model in order to test fairness as
well as measure accuracy, a split is necessary. Only the training dataset will
be used as the models case base as well as in the pre-processing steps. The
test dataset will be used in the fairness testing phase.

The next step is choosing the feature relevance scoring methods (FRSMs) that
will be used for scoring the features, as well as scoring all the features in each
FRSM. As before, we use the open source data mining tool Orange for FRSMs
choosing and scoring the features. After the scores for all the features have
been calculate using a FRSM, we proceed to scaling those scores. The scores
require scaling since different FRSMs use different statistics and provide dif-
ferent ranges of values. If FRSMs are not scaled to the same range, some
FRSMs will have more influence on the weights, used for global similarity
functions, simply based on their higher range of values. We scale scores in-
side each FRSM such that the highest scored features score is scaled to the
value of n where n represents the total number of features that are being
scored. At the same time, the lowest scored feature in that FRSM is scaled to
zero. All the other features are scaled so they fit between this range, while
still retaining their score differences in the new scores. This scaling process is
called min-max scaling and is explained in more detail in section 4.1.4. After
scaling scores in one FRSM, the process is repeated for all the FRSMs.

When all the scores have been scaled, we proceed to calculating a number
for each feature which represents values from all FRSMs - sum of scores.
For one feature, all the scores from various FRSMs are added up and thus
create the sum of scores of a that feature. This process is repeated for all the
features in the dataset. After the sum of scores are calculated for each feature
in the dataset, architecture for the second experiment separates from the one
explained for the first experiment.

4.2.3 Calculating Weights and Creating Local and Global Sim-
ilarity Functions

The next step relates to the weight calculation. As mentioned earlier, our CBR
system will use weighted sum as the global similarity method. This approach
requires us to define a weight value for each feature in the dataset. Using the
weighted sum method, weights represent how important a certain feature
is when performing retrievals from the case base. The higher the weight
value for a certain feature, the more important that feature is. Inspired by the
framework in [Jaiswal and Bach, 2019], weight calculation for a feature will
be based solely on its relevance scores from FRSMs. The weight calculation
is done using the formulas presented below.

Chapter 4. Method and Architecture 39

all_ranks = {sum_o f _ranks(f) | ∀ f ∈ Features}
n = number o f f eatures that were scored

∀ f ∈ Features,

weight f = (n− 1)
sum_o f _ranks(f) − min(all_ranks)
max(all_ranks) − min(all_ranks)

+ 1 (4.6)

The fraction in equation 4.6 performs another instance of min-max scaling
where value of sum of scores for each feature is scaled between 1 and 0. The
feature with the highest sum of scores has 1 as its fractional value, while
the one with the lowest sum of scores will have 0 as its fractional value. The
fractional value is then multiplied by the number of features that were scored
decreased by 1. This is done to ensure that the weights values will range from
the number of features all the way down to one. In the end we add one to
the calculation. Decreasing n by 1 and adding 1 at the end is done to ensure
that all the features will be weighted. If this step was removed, some of the
lower scored features would have a weight value of 0. This approach was
also considered and the results are presented in section 5.3.5. The benefits
and shortcomings of the scalar additions and subtractions, as well as possible
further improvements to the weight calculations will be discussed in chapter
6.

In order to finish-up the creation of the model and make it ready for re-
trievals, we need to define local and global similarities. Local similarities
define relationships between different values of a certain feature. Using local
similarities, how similar are all the possible values for a feature is established.
On the other hand, global similarities define relationships between different
data points. Here, we establish how to consider two data points as more or
less similar. Local and global similarities have been explained in detail in
section 2.4.2.

It is important to reiterate that different types of features require different
local similarities. After creating a local similarity for all of the features that
are being scored, the last step is to create one (or multiple) global similarity
function that is used for retrieval from the case base. Since we are using a
weighted sum as our global similarity method, and have already calculated
the weights for each of the features, simply connecting the weights with the
respective feature and its local similarity is done to create a global similarity
function. For finding the optimal solution, we create multiple global similar-
ity functions. The results are presented in section 5.3.5.

Having created the local and global similarity functions, the construction of
the model is complete and the model is ready for retrieval.

Chapter 4. Method and Architecture 40

4.2.4 Distance Metric and Similarity Computations

After the model creation, we move on to testing model fairness. As men-
tioned, verifying model fairness is inspired by the verifier presented in [John,
Vijaykeerthy, and Saha, 2020]. Their verifier uses an optimization approach
to determine fairness of a given model. This is explained in detail in section
3.2. While this approach would work with our model, we argue that it could
be simplified for our use case, without losing its functionalities. There are
two key reasons for this. The first one is since we are considering a CBR sys-
tem, which covers classification problems, there is a defined and countable
number of possibilities that a class value can be. This differs to a regression
problem, which their verifier tackles, among others. This difference removes
the need to perform minimization on the retrieved values. The second rea-
son that we can simplify the verifier is that we have pre-determined values
of thresholds εt for different feature partitions St.

In order to define local similarities, the verifier in [John, Vijaykeerthy, and
Saha, 2020] introduces feature partitions St and accommodating thresholds
εt. How different values of a feature may be in order to be considered similar
is engraved in the threshold ε. Let’s consider two data points DF1 and DF2
and consider they both have a feature A. The values of feature A for DF1 is
xA1 and for DF2 it’s xA2 . To be able to compare how similar these data points
are when considering feature A, we need to define how different they can
be in order for them to still be considered similar. The threshold ε presents
this value. To state two features’ values are similar, they have to satisfy the
following condition:

|xA1 − xA2 | ≤ ε

For example, if xA1 is one, xA2 is zero and the threshold ε is one or more,
the two features’ values are considered similar. Logically, if ε is less than
one, the two feature values are not considered similar. Instead of creating
a threshold ε for each feature, [John, Vijaykeerthy, and Saha, 2020] propose
grouping features in partitions. This should be done by domain experts and
allow similar types of features to have the same threshold values. In the end,
every feature partition St has its own threshold εt.

We argue that for our use case, this is not necessary. Firstly, in order to prop-
erly separate features into partitions and set accurate threshold values, do-
main experts are required. This requirement might not always be available,
and in our case, it would require additional resources which wouldn’t been
easy to acquire. Secondly, our goal is to prove that CBR systems can be used
to ensure fairness. As a proof of concept, we argue that separating our fea-
tures into only two partitions; protected and non-protected features is suf-
ficient. The threshold for protected features is set to infinity, which implies
that every value for a protected feature is similar to another one. This is
done since to ensure individual fairness, protected features shouldn’t influ-
ence similarity of two data points. On the other hand, the threshold for the
non-protected features is set to zero. This is done to remove the need for do-
main experts since we consider only features that have identical values to be

Chapter 4. Method and Architecture 41

similar. We argue that, as a proof of concept, these thresholds are sufficient.
In any future research and improvements, more partitions and thresholds
could be seamlessly added.

Having defined the similarity of two data points, the next step is to collect all
the similar pairs of data points.

4.2.5 Collecting Similar Pairs of Data Points and Evaluating
Fairness

After defining the thresholds, we proceed to recognition of similar pairs. To
perform this step, we compare every data point to every other data point in
the test dataset. More precisely, their features values are compared. Since we
set the threshold for protected features to infinity, every value of a protected
feature is similar, thus they are not considered when comparisons are done.
Knowing this, we examine every non-protected feature of two data points.
Since the threshold for non-protected features is set to zero, the two data
points must have the same values for a non-protected feature so it can be said
that they are similar according to that feature. If this is true for all the non-
protected features of two data points, we state that these two data points are
similar. A pair of these two data points is created and added to a set S. After
all the combinations of different data points are compared, set S contains all
pairs of data points that are considered similar in the test dataset.

Once set S is created, we move on to the final step in order to test model
fairness. This requires performing retrievals from the model and comparing
their results.

In order to proclaim a model is individually fair, we must show that it treats
similar data points in a same manner, regardless of protected features’ values.
In the final step, we iterate through pairs collected in set S. For each of the
two data points constructing a pair, a retrieval is made to the CBR system.
As we are using a weighted kNN approach, the CBR system will return k most
similar cases to the queried data point. To determine the predicted class label,
a majority voting2 is performed. After the predicted class values are obtained
for both data points, they are compared. If the predicted class values are the
same, the similar data points are handled correctly and we move to testing
other pairs. However, if the predicted class values are different, it should be
checked if it is due to the difference in protected features’ values. If any of
the protected features’ values are different in the two data points, we have
found a biased pair of data point i.e. data points that are similar and should
be treated equally, but are not. This indicates that the model is individually
unfair and should not be used for future retrievals before modifications are
made.

2Majority voting is a method used to determine the predicted class of a kNN retrieval. It
counts up the different class values in all the retrieved cases and uses the class value which
occurs the most as its prediction of the class value.

Chapter 4. Method and Architecture 42

At this point, further comparison of similar pairs is done in order to provide
more data to the engineer(s) who is(are) developing the CBR system to, more
easily, identify and resolve the underlying issue. Each biased pair is added
to a set called bias.

4.2.6 Pseudocode for Investigation of RQ2

The pseudocode used to answer RQ2 is provided in the following algorithms.

Algorithm 5 displays how the CBR system is built. In order to calculate the
weights required for the global similarity function, we compute the sum of
scores in the same manner as in algorithm 4. After we have obtained the
sum of scores for each feature, we use equation 4.6 to calculate the weights
for each of the features. Having created the global similarity, the system is
finished and ready for retrievals.

Algorithm 5: Modified relevance-based feature weighting algorithm
Input: dataset← chosen dataset
Input: methods← f eature relevance scoring methods
Output: Weights
weights← computeFeatureWeights(dataset, methods)
Function computeFeatureWeights(dataset, methods, percent):

ranksum ← getSumO f Scores(getScores(dataset, methods)) // From
algorithms 2 and 4

N ← size(ranksum)
min← min(ranksum) // minimum score value
max ← max(ranksum) // maximum score value
weights← empty list
for (label, score) in ranksum do

weight← [N − 1] · [score−min
max−min] + 1

weights.insert(label, weight)
end

return weights

Chapter 4. Method and Architecture 43

The process of testing model fairness is presented with algorithm 6.

Algorithm 6: Testing fairness of CBR system
Input: dataset← chosen test dataset
Input: f ← provide the model f or retrieval
Input: protected← labels o f f eatures considered protected
Output: Set o f B pairs or empty set
B← veri f yModel(dataset, f , protected)
Function verifyModel(dataset, f, protected):

S← createS(dataset, protected)
B← empty list
for (X, Y) in S do

predictedX = f (X)
predictedY = f (Y)
if predictedX != predictedY and

di f f erentProtectedFeatures(X, Y, protected) then
B.insert({{X, Y}, {predictedX, predictedY}})

end
end

return B

As input the test dataset, the model that is being tested, and the protected
features’ labels are required. Firstly, a set S of similar pairs is created, as
shown in algorithm 7.

Algorithm 7: Collecting similar pairs of data points
Function createS(dataset, protected):

S← empty list
n← total number o f data points in dataset
for i from 0 to n do

for j from i+1 to n do
if similarInstances(dataset[i], dataset[j], protected) then

S.insert(dataset[i], dataset[j])
end

end
end

return S

Similar pairs are considered by comparing all non-protected feature values
of pairs. This is presented in algorithm 8.

Chapter 4. Method and Architecture 44

Algorithm 8: Comparing similarity of two data points
Function similarInstances(X, Y, protected):

for feature in X do
if feature not in protected and X[f eature] != Y[f eature] then

return False
end

end
return True

After the creation of set S, we turn to model retrievals. Iterating through
set S, we perform a retrieval on each of the similar data points in a pair. If
the retrievals’ predicted results differ for the two data points the protected
features are compared. This is shown in algorithm 9.

Algorithm 9: Comparing protected features of two data points
Function differentProtectedFeatures(X, Y, protected):

for feature in protected do
if X[f eature] != Y[f eature] then

return True
end

end
return False

Finally, if the protected features are different, we have found a biased pair of
data points and add it to set B.

At the end, set B is presented to the engineer(s). If set B is empty, no indi-
vidual unfairness has been detected. If not, the model outputs individual
unfairness and should not be used without modifications.

It is important to recognize that if set B is empty, the model is not necessarily
fair. This is due to the fact that we queried only a finite number of data
point from the test dataset which might not cover all possible combination of
feature values. This is discussed in more detail in section 6.1.

45

Chapter 5

Experiments and Results

In chapter 4, the methods and the architecture underlying our investigation
of RQ1 and RQ2 from section 1.1, is described. This chapter presents the
related experiments and the obtained results. Firstly, the used datasets are
described along with their respective protected features. Secondly, a detailed
explanation of the experiments’ plan, including the setup and parameters, is
provided. Finally, the results of the experiments are presented and analysed.

As mentioned in chapter 4, in order to answer RQ1, we use an approach
relying on computing feature scores in such a way that captures the rela-
tionships of features with the different labels of classes. This approach pro-
vides us with protected features’ influence values. By examining these, we
show how one can use them in order to detect dataset bias. The setup for
experiment 1 which relates to RQ1, is based on this approach. Firstly, the
datasets, and their protected features, used in experiment 1 are described
and explained. After this, the pre-processing method, used for calculating
protected features’ influentiality, is applied to five different, publicly avail-
able, datasets. Finally, the results of the pre-processing method are presented
and analysed. In section 5.3 the second experiment setup is explained. Firstly,
we explain dataset choices and splitting the data into a train and test dataset.
Next, local and global similarity function choices that are used in each exper-
iment, are explained. Afterwards, the CBR models are tested in regards to
individual fairness. Finally, the results of the fairness testing are presented
and analysed.

5.1 Description of Datasets

Since our experiments rely heavily on being able to determine if a dataset
contains bias or not, we used datasets that are commonly used in fairness re-
search and have been explained extensively. One additional dataset not pre-
viously used in this context was added; Credit Card Approval. This dataset
is included since it is used in similar types of decision making systems as the
rest of the mentioned datasets. In total, five datasets are used throughout the
experiments. They are, as follows:

• Adult Census Income Dataset (ACID) [Kohavi and Becker, 1996] - The
Adult Census Income Dataset relates to income of adults in the United

Chapter 5. Experiments and Results 46

States of America. More precisely, the ACID is created to predict if the
income of adults is above or equal/below 50.000 $ annually. The origi-
nal dataset provide fourteen different features such as education, occu-
pation, capital gain/loss among others. In order to remove unnecessary
features, we use a reduced version of the dataset containing eight fea-
tures. This is provided by [Mothilal, Sharma, and Tan, 2020]. ACID has
two possible class labels: annual income equal/higher to/than 50.000 $
or annual income lower than 50.000 $.

• COMPAS Dataset [Bellamy et al., 2018] - COMPAS (Correctional Of-
fender Management Profiling for Alternative Sanctions) is a popular
commercial algorithm used by judges and parole officers for scoring
criminal defendant’s likelihood of reoffending (recidivism). This dataset
was made famous after an article was published describing how a US
predictive recidivism system (called COMPAS) was biased against black
people Angwin et al., 2016. More in depth uses and issues were pre-
sented in section 2.1. This dataset provides features describing criminal
defendants that were scored by the COMPAS system. The class labels
present the decision if the system predicts that the criminal defendant
will/won’t recidivate1.

• Fraud Detection Dataset (FDD) [Dua and Graff, 2017] - It is impor-
tant that car insurance companies are able to recognize fraudulent in-
surance request so that customers are not compensated for fraudulent
claims. This dataset provides data instances classified into fraudulent
and non-fraudulent car insurance claims. The features contain categor-
ical values for police reports, policy claims and also numerical values
as days until the incident was reported. The two possible class labels
are fraudulent and non-fraudulent. It is important to note that the dis-
tribution of fraudulent to non-fraudulent claims does not represent the
actual real world distribution. Usually, fraudulent claims are very rare,
but being able to detect them properly is significant.

• Credit Card Approval Dataset (CCAD) [Tse, 2020] - Automated credit
card approval ML systems have been growing in popularity. The CCAD
contains data points representing people from the real world which are
classified into risk or no risk people when considering approving their
new credit card request. In these types of classification problems, some
of the more important features are duration of employment, credit his-
tory, annual income and type of job, to name some. When evaluating
if a person should be granted a credit card, the class label can be either
high or low risk.

• German Credit Dataset (GCD) [Hofmann, 1994] - The German Credit
Dataset contains data points describing people that have applied for a
credit loan. The class label concerns with classifying a persons credit
rating as one of two possibilities; good or bad. Similarly to CCAD, it

1To relapse into a previous condition or mode of behavior and especially delinquency or
criminal activity : to exhibit recidivism

Chapter 5. Experiments and Results 47

contains a variety of features such as credit history, amount, duration
of credit in order to make an informed decision in regards to a persons’
credit rating.

All the dataset are designed for multivariate classification tasks and their
features have categorical and numerical values. The instances which have
missing values in the datasets have been removed in order to prevent issues
when comparing data points. A summary of the five mentioned datasets is
presented in table 5.1.

Dataset Instances Features Class labels
Adult Census Income Dataset (ACID) 32,560 8 2

COMPAS Dataset 6,172 12 2
Fraud Detection Dataset (FDD) 1,100 9 2

Credit Card Approval Dataset (CCAD) 537,667 17 2
German Credit Dataset (GCD) 1,000 20 2

TABLE 5.1: Description of the datasets used in the experiments

5.1.1 Selection of Protected Features

As mentioned in section 2.2, protected features contain sensitive information
about the individuals represented as data points in a dataset. For this rea-
son, protected features must not influence the result of classifications. Since
these features must be handled properly, they need to be defined before us-
ing the data points from the dataset. In order to recognize which features
should be protected, one must understand the full structure and context of
the dataset. This is the reason why protected features should be decided by
domain experts, if possible. When this choice is done by domain experts,
the ML engineer is relieved of deciding the protected features for individ-
ual datasets and can focus on designing automated systems that handle any
type of protected features properly. Of course, if this separation is not pos-
sible, the ML engineer should decide the protected features by acquiring as
much context about the dataset as possible. Since our resources are limited,
we used the latter approach.

For each dataset, we researched and contextualised the information that is
available. In the Adult Census Income Dataset, projected annual income is
predicted. From all the features, we decided that gender and race are pro-
tected features since their difference should not affect the predicted income
of a person. When researching the COMPAS dataset, a similar conclusion
was made. Since the goal of COMPAS is to decide if the person will recidi-
vate or not, race or gender are not relevant in calculations. The final dataset
that has the same protected attributes is Fraud Detection Dataset. Similarly
as before, we argue that validness of a claim should not be evaluated using
race or gender of the person that reported the claim.

The fourth dataset that was considered was the Credit Card Approval Dataset.
Even though it contains seventeen features, the vast majority are non-protected

Chapter 5. Experiments and Results 48

features that should be used for evaluation. The only protected feature we
identified is gender, as this should have no part in evaluating credit card re-
quests. The final dataset is the German Credit Dataset. It is different from
the others as some of the features have twofold information values. One
instance of this, as well as the first protected feature, is sex_marital_status.
This feature retains information about the gender of the person applying for
a credit as well as their marital status. We argue that this feature should
be protected as its value could discriminate a gender type if it was used in
evaluation of a credit request. The other feature we identified as protected is
is_foreign_worker. We advocate that this feature could be used to ethnically
profile people and therefore shouldn’t be used in evaluation.

Intuitively, one might think that masking protected features would be enough
since if they are all the same, there shouldn’t be a possibility for biased. While
this approach might work sometimes, we argue it does not ensure an unbi-
ased dataset. The reason for this is that even without the protected features,
bias could be hidden in proxy features. Proxy features are non-protected
features being used to create biases against protected classes of features by
storing bias in their values.

For example, regulators do not deem postal codes as a protected attribute and
allow them to be used in lending decisions. However, a postal code could be
a proxy for race or religion and unintentionally discriminate against some
individuals. However, the topic of proxy attributes is outside the scope of
this thesis.

5.2 Setup and Plan for Experiment 1

In order to answer RQ1, we construct an experiment as described in detail in
section 4.1.2. As the datasets and their chosen protected features have been
discussed, following the steps shown in figure 4.1 we move on to feature
relevance scoring methods (FRSMs) selection.

To perform our experiment, we combine scores from different FRSMs. The
easiest implementation of FRSMs, for our use case, was using the open source
data mining tool Orange. This decision was justified in section 4.1.3. As
Orange provides a variety of FRSMs, we use six of the default ones. They
are, as follows:

• Information Gain - measures the gain in information entropy by using
a feature with respect to the class [Heilprin, 1960].

• Information Gain Ratio - is a ratio of the information gain and the
attribute’s intrinsic information. This reduces the bias towards multi-
valued features that occurs in the information gain [Quinlan, 1986].

• Gini decrease - is a measure commonly used in decision trees to decide
what is the best attribute to split the current node for an efficient deci-
sion tree construction. It is a measure of statistical dispersion and can

Chapter 5. Experiments and Results 49

be interpreted as a measure of impurity for a feature or the inequality
among values of a frequency distribution [Ceriani and Verme, 2012].

• Chi2 (X2) - evaluates each feature individually by measuring the chi-
squared statistic with respect to the class [Pearson, 1900].

• ReliefF - uses the ability of an attribute to distinguish between classes
on similar data instances [Robnik-Sikonja and Kononenko, 2000].

• Fast Correlation Based Filter (FCBF) - is an entropy-based measure,
which also identifies redundancy due to pairwise correlations between
features [Yu and Liu, 2003].

The next step is to score the influence of features in the dataset. After scoring
all the features in each FRSM, we proceed to ranking the features. In this
step, we introduced a modification of the approach shown in [Jaiswal and
Bach, 2019] to ranking features relevance. The original approach uses linear
rankings to rank features inside each FRSM. We argue that this way of rank-
ing the features does not portray the actual influence of features presented
in scores of a FRSM. Since our architecture relies heavily on being able to
calculate influence, this is something that needed to be handled. Instead of
the linear ranking, we scale the scores of features inside a FRSM to a fixed
range. Using scaling, the scores are preserved in the ranking of features. This
is explained in detail in section 4.1.4. In experiment 1, we decided to present
both approaches to ranking the features, in order to compare the results and
show if there are improvements to using our approach.

After scoring the features for each of the methods, and ranking the features
(or scaling their scores) in each of the FRSM, we calculate the sum of scores
for each individual feature. The next step is to calculate the influence of the
protected features compared to the top scored feature using their respective
sum of scores. Finally, as an optional step, we choose the value of parameter
p which decides the value for the threshold λ. As explained in section 4.1.7,
parameter p represents the maximum amount of influence a protected fea-
ture can have if the dataset is to be considered unbiased. The threshold λ is
calculated by multiplying the parameter p and the sumo f scores of the highest
scored (most influential) feature. Even though the threshold does not affect
the results, we argue it’s is useful so there is a clear percentile value p above
which protected features’ influence must not be in order to label the dataset
unbiased.

For the value of p we choose 10% as we feel it represents a large enough gap
to allow for errors in calculations while also small enough where protected
features that have a larger influence are genuinely handled incorrectly.

In order to evaluate the proposed method, we use a bias mitigation technique
presented in section 4.1.1 to ensure that we have one dataset that is entirely
individually fair. After this, we use this dataset as input to the pre-processing
method and compare the results to the original.

Chapter 5. Experiments and Results 50

5.2.1 Resources and Tools

The datasets are publicly available and were retrieved from the links pro-
vided as references in section 5.1. Most of the calculations were done using
the GUI elements of Orange version 3.28.0. The calculations of sum of scores
and influence were done using a Python script in the Orange GUI. In order
to remove biased instances from the dataset, a separate Python script was
created. Both scripts were executed using Python 3.6.

5.2.2 Results of experiment 1

Firstly, let us look at the results of the pre-processing method using our scal-
ing of scores and a percentage p of 10% meaning that 10% is the highest
influence a protected feature can have in order to label the dataset unbiased.
The results are presented in table 5.2. For each of the datasets, we show the
highest scoring features’ sum of scores, the lambda of that dataset when p
is 10%, sum of scores for each protected feature and, a decision whether our
method detects bias in the dataset, using these parameters.

Dataset Highest scoring
feature sum_o f _scores Lambda Protected feature sum_o f _scores Bias

detected
Gender Race

ACID 48.0 4.8 8.89 2.88 Yes
COMPAS 1940.79 194.07 343.98 506.88 Yes

FDD 52.87 5.28 7.14 5.57 Yes
CCAD 65 6.5 4.87 N/A No

sex_marital_status is_foreign_worker
GCD 120 12 13.96 17.48 Yes

TABLE 5.2: Results from experiment 1 using p = 10% show-
ing sum_o f _scores for the highest scoring and protected fea-
tures. The final columns shows the decision if the dataset shows
bias i.e. if one of the protected features’ sum_o f _scores exceeds

value of λ

Next, let’s present the actual percentage values of each protected feature,
since p choosing is optional. This can be seen in table 5.3.

Dataset Protected features influence
Gender Race

ACID 18.5% 6%
COMPAS 17.72% 26.12%

FDD 13.5% 10.53%
CCAD 7.49% N/A

sex_marital_status is_foreign_worker
GCD 11.63% 14.56%

TABLE 5.3: Results from experiment 1 showing the influence of
each feature on the classification result, in terms of a percent-

age.

Chapter 5. Experiments and Results 51

In order to compare our scaling method for computing feature scores in each
FRSM with the ranking method by [Jaiswal and Bach, 2019], we perform the
same experiment using the linear rankings. These influence percentages can
be seen in table 5.4. As mentioned in 3.3, their approach required setting a
percent of features that are scored in each FRSM. For the percent value, we
decided for two possibilities: 75 and 100 percent. This decision is driven
by the fact that these percentages have shown the best model results with
various datasets used in [Jaiswal and Bach, 2019].

percentage of
features ranked

75% 100% 75% 100%

Dataset Protected features influence
Gender Race

ACID 21.2% 40.9% 9.09% 27.27%
COMPAS 79.04% 84.54% 79.04% 84.54%

FDD 24.4% 41.5% 0% 15.09%
CCAD 76% 80.59% N/A

sex_marital_status is_foreign_worker
GCD 26.97% 45.37% 43.82% 57.98%

TABLE 5.4: Results from experiment 1 showing influence per-
centages per feature using linear rankings

Finally, in order to discover if our method actually detects bias in a dataset,
we removed all the bias instances from the Fraud Detection Dataset, and
ran the experiment again. This time, we used the cleaned Fraud Detection
Dataset. The results of this run are presented in table 5.5. For an easier com-
parison, the results of the original run are also shown.

Dataset Clean Highest scoring
feature Lambda Protected features Bias

detected
Gender Race

No 52.87 5.28 7.14 13.5% 5.57 10.53% YesFDD Yes 54 5.4 0.38 0.7% 1.65 3.07% No

TABLE 5.5: Results of experiment 1, with the original and
cleaned versions of the Fraud Detection dataset.

5.2.3 Analysis of Results

As presented in table 5.2, most of the original datasets are flagged as biased
datasets. Only in the Credit Card Approval Dataset, no bias was detected.
If we consider the percentage values shown in table 5.3, we argue that the
flagged datasets should be considered biased. While some feature percent-
ages barely go over the threshold (e.g. race in FDD), some show undoubted
biased as is the case with race in the COMPAS dataset. These results fit with
what previous researchers reported when working with these datasets (for
example, see [John, Vijaykeerthy, and Saha, 2020], [Aggarwal et al., 2019]).
While one could argue that with a different value of p, the dataset would

Chapter 5. Experiments and Results 52

render unbiased, we reiterate that, as explained in section 4.1.7, percentage p
is used purely for easier visualization, while the actual influence is the same
regardless of its value.

When considering whether scaling the scores was the correct choice, we ex-
amine table 5.4. Even though we can not say for certain which approach is
better, intuitively we notice that the percentages are much higher for each of
the protected features. While this could be the case, it is highly unlikely that
all of the datasets we choose contain bias to this magnitude without being
noticed and discussed earlier.

In order to evaluate our method for investigating RQ1, we decided to clean
one of the datasets that was labeled as biased in table 5.2, and compare the
cleaned results with the original results. The cleaning was performed by
identifying and removing all biased instances from the original dataset. A
total of 42 biased data points were found and removed, leaving the dataset
with a total of 1058 data points. As has been shown in table 5.5, after remov-
ing these biased data points, the dataset is no longer considered bias. Not
only this, but the influence percentage values of protected features have de-
creased drastically. We argue that this is a strong indication of the presented
pre-processing method successfully detecting bias in datasets, when it actu-
ally exists, and in turn, answering RQ1. One issue with definitively stating
that the pre-processing method works, is that it needs to be tested on multi-
ple datasets where the before and after cleaning values are compared. Due
to time and resource constraints, these experiments are outside of the scope
of this thesis, but are considered required future work to certify the methods’
usefulness. This will be discussed in chapter 6.

5.3 Setup and Plan for Experiment 1

In order to answer RQ2, we constructed an experiment as described in detail
in section 4.2. As mentioned in section 4.2.1, in order to test fairness, a CBR
system needs to be constructed. To complete the construction of a CBR sys-
tem we need to create an unbiased case base and local and global similarity
functions. The first part of model construction is identical to the one used
for experiment 1 so it will not be explained in detail. Firstly, we needed to
choose which datasets are going to be used to construct the CBR model. We
chose to use two of the datasets already covered and used in experiment 1.
These are the Fraud Detection Dataset and the Adult Census Income Dataset.

5.3.1 Chosen Datasets and Label Distributions

As we mention throughout this thesis, we argue that it’s highly important to
ensure we are using unbiased datasets in order to be able to study the fair-
ness of the classification algorithm itself. This is why we decided to remove
all the biased instances from both the datasets before using the data to con-
struct the models. The mitigation was done using the approach explained in

Chapter 5. Experiments and Results 53

section 4.1.1. We collected all the biased pairs of instances in both datasets
and removed them entirely. One issue that occurred, which was expected
and explained in section 4.1.1 relates to the number of comparisons necessary
to perform the detection of biased pairs of data points in the Adult Census
Income Dataset. Since this dataset has more than 30,000 data points, it would
require 900,000,000 comparisons of data points to be performed. Using the
computing resources we have, the time to finish this step would take around
6 days. Since this wasn’t feasible, we decided to reduce the number of data
points that are used to construct the CBR model.

Instead of the original 30,000, we used the first 4,000 data points in the dataset.
This reduced the execution time to about half an hour, which we deemed as
acceptable. There are a few drawbacks that one might notice with this reduc-
tion. One is regarding using only the first 4,000 data points instead of ran-
domly sampling the data points. In an attempt to present the original dataset
as best as possible, we explored the distributions of class and protected fea-
tures’ labels in both the original and the reduced version of the dataset. The
results, presented in figures 5.1, 5.2, show that the distribution of the labels
was preserved in the reduced variant of the dataset, hence there was no need
for random sampling.

FIGURE 5.1: Distribution of class labels (blue) and values of
protected features in the full version of the ACI dataset

FIGURE 5.2: Distribution of class labels (blue) and values of
protected features in the reduced version of the ACI dataset

Chapter 5. Experiments and Results 54

The second issue is in regards to individual unfairness itself. Since its ap-
proach compares data points directly, even removing one unfair data point
can change the results altogether. Knowing this, using the full dataset and
removing its biased instances is the preferred approach. However, due to
the limitations we mentioned earlier, we argue that reducing the dataset is
a valid approach and will serve as a proof of concept. We encourage future
work to be done using the full dataset as it could provide for useful compar-
isons to our model. Having removed all the biased data points from the two
datasets, the next step is to split the data. In a CBR system, there is not a train-
ing step per-say, but the training dataset is used as a case base for retrieval
purposes. We opted for a 75%-25% split. The reason for choosing this split is
to fall in line with the split used in [John, Vijaykeerthy, and Saha, 2020] since
we compare results to those presented in their work. As with the reduced
dataset, we strived to ensure both the train and test dataset have equal dis-
tributions of class and protected values labels. As is shown in figures 5.3,
5.4 ,5.5 for ACID and in figures 5.6, 5.7, 5.8, 5.9 for FDD the distributions are
similar enough in both the train and test datasets.

FIGURE 5.3: Distribution of class label income in the reduced
version of the ACI dataset split into train and test datasets

Having ensured we use unbiased datasets for model construction, we ex-
plain how we calculated the weights and created local and global similarity
functions for both models.

5.3.2 Calculating Weights and Creation of Local and Global
Similarity Functions

As discussed in section 4.2.3, calculating the weights and creating local and
global similarity functions are the final steps of constructing a CBR model.
To reiterate, using local similarities relationships between different values of
a certain feature are established. How similar are all the possible values for a
feature is decided. On the other hand, global similarity functions define rela-
tionships between different data points. Since the two models have the same

Chapter 5. Experiments and Results 55

FIGURE 5.4: Distribution of protected feature gender in the
reduced version of the ACI dataset split into train and test

datasets

FIGURE 5.5: Distribution of protected feature race in the re-
duced version of the ACI dataset split into train and test

datasets

types of global similarity functions with different features and weights, we
list all the different weight calculations we used in both models and explain
the rationale of using them for retrieval purposes.

In order to investigate how our proposed weight calculation method com-
pares to the methods in [Jaiswal and Bach, 2019], we implemented the best
performing methods from the paper. This framework is explained in section
3.3. The methods that showed the best results in [Jaiswal and Bach, 2019]’s
paper were scoring 75 and 100 percent of features, so these are implemented.
The third weight calculation we implement is our proposed method. It uses
scaling of scores in FRSMs and is explained in detail in section 4.1.4. The final
weight calculation method we implement is slightly modified to the previous

Chapter 5. Experiments and Results 56

FIGURE 5.6: Distribution of class labels (blue) and values of
protected features in the FD dataset

FIGURE 5.7: Distribution of class label fraudulent in the FD
dataset split into train and test datasets

FIGURE 5.8: Distribution of protected feature gender in the FD
dataset split into train and test datasets

Chapter 5. Experiments and Results 57

FIGURE 5.9: Distribution of protected feature ethnicity in the FD
dataset split into train and test datasets

one. Once again, we scale the scores in the FRSMs but the formula for calcu-
lating the actual weights, presented in equation 4.6, is modified. In the origi-
nal equation, n is subtracted by 1 while 1 is also added to the final result. This
was done to ensure all the features are weighted. We attempted removing
this subtraction and addition. We argue that this approach is worth explor-
ing since it could be possible that some features with a low score should not
have a weight value at all i.e. they shouldn’t be used to help with retrievals.

On top of the mentioned calculation types, we introduce one difference that
doubles every type use. For each of the mentioned calculation types we add
a variant in which the protected features are masked. This is achieved by
removing the protected features from the FRSMs. As a result, in these weight
calculations, all the protected attributes have zero as their weight value and
are not used for the retrieval process. This is introduced in order to both test
accuracy of the models compared to non-masked approaches as well as to see
if there is any unfairness removed when switching to masked approaches.

As our global similarity functions are based on the weighted sum method,
the creation of global similarity functions requires weight calculation and lo-
cal similarity function definitions. Since we mentioned different weight cal-
culation approaches, to finish-up creation of the global similarity functions,
we explain the rationale of creating local similarity functions.

In order to properly compare different values of a feature, one must define
a local similarity function. Local similarity functions vary in type based on
the type of the features’ values it is used for. In general, domain experts
are tasked with deciding how to create local similarity functions. Lacking
domain experts’ knowledge and in an attempt to simplify the system, we
used the default local similarity functions for each of the different types of
features. This implies that for categorical features, two values are considered
similar only when they are identical (i.e. have the same value), and their

Chapter 5. Experiments and Results 58

similarity score is 1. In all other cases, the similarity between the different
values is 0.

In the case of numerical values, we used a simple symmetric polynomial
function. This implies that the closer two numbers are, the higher the local
similarity score is. For example, if we consider the age feature. If we have
a age value of 30 and 35, the difference between the age values is only 5
years and the similarity between the values is very high (around 0.95 in this
case). Contrasting this, if we compared ages 20 and 80 the difference is much
larger, producing 50 years of difference. This induces a low local similarity
score (around 0.2 in our use case).

Creating and testing different local similarity functions would be a highly
valuable venture for future work, but due to the limited time, resources and
scope of this thesis, we do not explore this venture.

Having calculated the weights, and created both global and local similarity
functions, the CBR model construction is completed.

5.3.3 Verifying Individual Fairness of Models

The first step in evaluating the individual fairness of a model is defining the
similarity of two data points. This is explained in detail in section 4.2.4. As
explained, in order to define similarity, the approach in [John, Vijaykeerthy,
and Saha, 2020] uses feature partitions and thresholds for each of these. Fol-
lowing rationale from section 4.2.4, we use only two partitions and thresh-
olds. One partition is created using all the protected features, while the other
contains all the non-protected features. Protected features partition has a
symbolic threshold value of infinity, indicating that data points shouldn’t be
distinguished at all using protected features. The non-protected partition has
a threshold value of zero. This is done to ensure that a similar pair of data
points is one where all the non-protected features are the same value. Using
equality of values, similarly as with local similarity functions during the con-
struction of the models, we remove the need for domain experts in deciding
the thresholds. There is one exception to the non-protected threshold that we
made. This is in regards to the Fraud Detection Dataset.

FDD has a feature called days_to_incident. This features contains numerical
values vary from 2 to 15,000. If we were to keep the zero threshold i.e. expect-
ing to find two data points with the same amount of days passed to incident,
we find almost no similar data points. It is for this reason, we decided not
to consider similarity of this feature when looking at similarity of two data
points. If more time was present, we would create an acceptable threshold
by examining the values of data points, and figuring out how big of a gap in
values can be allowed for the data points to still be considered similar.

After defining similarity of two data points, the next step is collecting simi-
lar pairs from the dataset. Collecting the pairs is achieved by comparing all

Chapter 5. Experiments and Results 59

combinations of two data points. In every comparison, we examine the non-
protected features and their values. If the two data points have the same val-
ues for all non-protected features, they are considered similar and are added
to a set of pairs of similar data points S.

The final step of testing fairness of a model is by performing retrievals on
the pairs of similar data points collected in set S. For one pair of similar data
points, both data points are queried to the CBR model. After the results for
both are retrieved, the classification predictions are compared. If they are the
same, this is not a biased pair and the system can continue looking at other
pairs. However, if the results are not the same, we observe the protected
features. If the protected features’ values are different (for at least one pro-
tected feature), we have found a situation where the system handles similar
people differently (based on protected features) and label it as a system that
outputs individual unfairness. As an optional step, we opted to continue the
retrievals, even though the system has already showed unfairness. We argue
that additional data can be used by the ML engineer to more easily find and
mitigate the underlying issue.

One last parameter that needs rationale is the value k in the retrieval from
CBR models. The value k decides how many similar cases, to the case that
is queried, are retrieved. Once more, in order to simplify results, we use the
convention of choosing k as the closest odd number to the square root of the
number of data instances in the test dataset. Testing with different k values
could provide an interesting venture for future work.

5.3.4 Resources and Tools

The steps of experiment 2 that are shared with experiment 1, as well as the
weight calculations are implemented using Oranges GUI. The actual CBR
models, including the global and local similarity functions, are constructed
using the myCBR tool, more precisely, its workbench. MyCBRs REST API
module is used when performing retrievals to the models. MyCBR provides
an easy to use GUI allowing quick construction of models, its case base, and
similarity functions. For more information on myCBR, refer to [Stahl and
Roth-Berghofer, 2008].

Algorithms used for testing models fairness were coded using Jupyter Note-
books. The code was executed using Python version 3.6. Plotting of graphs
and charts was done using the matplotlib.pyplot package.

5.3.5 Results of Experiment 2

In order to ensure unbiased datasets, we detected all the biased pairs of data
points and removed them from both training datasets. The datasets charac-
teristics before and after the removal are shown in table 5.6.

After the datasets were cleaned of all biased data points, we proceeded to
perform retrieval to all similar pairs of data points in the test dataset. If the

Chapter 5. Experiments and Results 60

Dataset Total
data points

Biased
data points

in train dataset

Train dataset
(after removal of

biased data points)
Test dataset Similar pairs in

the test dataset

ACID 4000 86 2923 991 53
FDD 1100 42 798 260 11

TABLE 5.6: ACID and FDD numbers for train and test datasets

predicted classification differs for two data points found in the same pair,
we detected a pair handled unfairly. For each type of weight calculation we
tested a version with and without masking the protected features. The result
of the retrieval using calculation of weights by scaling the sum of scores is
presented in table 5.7.

Number of pairs found containing biased data points

Dataset Weights calculated using scaling
each features’ sum of scores

Weights calculated using scaling
each features’ sum of scores

without addition and subtraction
Protected features masked? No Yes No Yes

ACID 0 0 2 0
FDD 0 0 0 0

TABLE 5.7: Number of biased data points found using the
method of scaling sum of scores of all features to define the

global similarity function

To test the fairness results with the weight calculation mentioned in Jaiswal
and Bach, 2019 to the weight calculation we propose, we implemented their
weight calculation using 75 and 100 percent of features being scored. As ear-
lier, for each type of weight calculation we tested a version with and without
masking the protected features. The results can be seen in table 5.8.

Number of pairs found containing biased data points
Dataset Weights calculated using ranking

75% of features (old weight calculation)
Weights calculated using ranking

100% of features (old weight calculation)
Protected features masked? No Yes No Yes

ACID 2 0 0 0
FDD 4 0 1 0

TABLE 5.8: Number of biased data points found using the
method of scoring a selected percentage of features’ in each
FRSM to calculate sum of scores and define the global similarity

function

After performing the fairness test, we found unfairness in classification us-
ing some global similarity functions. In figure 5.10, we can observe unfairly
classified data points by two global similarity functions when applied to the
Adult Census Income Dataset. Firstly, the one using scaling scores in each
FRSM without addition and subtraction of one in the weight calculation. The
same results are observed when using the global similarity function scoring
75% of top features in each FRSM and assigning linear ranks to those fea-
tures.

Chapter 5. Experiments and Results 61

FIGURE 5.10: Similar data points from ACID predicted unfairly
by two global similarity functions. One is the global similar-
ity function leveraging on scaling of scores without subtraction
and addition of one in weight calculations, while the other is us-
ing linear rankings and scoring 75% of features in each FRSM.

After presenting the fairness results, we provide the accuracy results (i.e. the
percentage of true predictions compared to total number of predictions), for
each of the mentioned global similarity functions, in tables 5.9 and 5.10. To
complement the accuracy results, we calculated the confusion matrices and
present them in figures 5.11 and 5.12. The first row of the matrices presents
the true and false negatives, while the second row shows false and true pos-
itives respectively. For the Adult Census Income Dataset, a positive results
is a predicted income of above 50k$, while for the Fraud Detection Dataset,
it is a fraudulent case prediction. Global similarity marked new_weights_all
is our method of calculating weights, while new_weights_no_1 presents the
approach where the subtraction and addition is removed. Global similari-
ties marked old_weights_75 and old_weights_100 are the weight calculation
methods from [Jaiswal and Bach, 2019]. Each of the mentioned methods has
a masked version where the protected features are not considered i.e. they
are not scored by FRSMs.

Chapter 5. Experiments and Results 62

Accuracy of system

Dataset Weights calculated using scaling
each features’ sum of scores

Weights calculated using scaling
each features’ sum of scores

without addition and subtraction
Protected features masked? No Yes No Yes

ACID 82.34% 80.92% 81.13% 81.63%
FDD 76.53% 75.38% 79.61% 80%

TABLE 5.9: Accuracy of the system using the method of scal-
ing sum of scores of all features to define the global similarity

function

Accuracy of the system
Dataset Weights calculated using ranking

75% of features (old weight calculation)
Weights calculated using ranking

100% of features (old weight calculation)
Protected features masked? No Yes No Yes

ACID 81.33% 81.53% 82.64% 80.92%
FDD 66.92% 70.38% 67.3% 70.38%

TABLE 5.10: Accuracy of the system using the method of scor-
ing a selected percentage of features’ in each FRSM to calculate

sum of scores and define the global similarity function

FIGURE 5.11: Confusion matrices for all used global similarity
functions when applied to the Adult Census Income Dataset

5.3.6 Analysis of Results

After the datasets were cleaned from biased data, we performed retrievals us-
ing different global similarity functions on all the similar pairs of data points
in the dataset. After the retrieval is returned for each data point in a certain
pair, we examined whether there is a difference in the predicted class labels
of the two data points. A difference indicates the existence of an unfair clas-
sification. The results of the retrievals were presented in tables 5.7 and 5.8.

The Adult Census Income Dataset had 53 pairs of similar data points in the

Chapter 5. Experiments and Results 63

FIGURE 5.12: Confusion matrices for all used global similarity
functions when applied to the Fraud Detection Dataset

test dataset, so 106 retrievals were performed for each global similarity func-
tion. The Fraud Detection Dataset contains less data points in general result-
ing in 11 pairs of similar data points being found, in the test dataset, or 22
retrievals being performed. Firstly, let’s consider the results for non-masked
versions of global similarity functions. When using our proposed approach
to scaling scores inside FRSM, no individual unfairness was noticed in ei-
ther dataset. The next global similarity considered used a modification to the
previously explained scaling approach by removing the necessity to subtract
and add one in the formula for weight calculation. While no unfairness was
detected when using the FDD, this type of global similarity function pro-
duced an unfair classification of three data points, from the ACID, as seen
in figure 5.10. The figure visualizes the apparent unfairness since all three
data points have the same values for non-protected features while they dif-
fer on protected features’ values. The same behaviour occurred when using
the global similarity function which assigns linear ranks and scores 75% of
top features in each FRSM. When using the same function on the FDD, even
more unfairness is detected (even though the dataset is smaller in total data
points), more precisely four pairs of data points were found unfairly treated.
Finally, when changing the percent of features to be scored from 75% to 100%
we discovered no unfairness when considering the ACID, while one pair of
unfairly classified data points was found. It is important to reiterate that, in
the case of the FDD, we did not consider days_to_incident when comparing
two data points, for reasons explained in section 5.3.3. Due to this, unfairness
might be avoided if domain experts were used to define a local similarity for
this feature.

When considering the same four global similarity functions but with masked
protected features, none induced any detectable unfairness in predicting data
points that are similar. This might encourage an engineer that there is a

Chapter 5. Experiments and Results 64

simple solution to this issue; simply mask all protected features. While this
might ensure individual fairness sometimes, it can not guarantee a fair ap-
proach. The reason for this is that protected features’ values can be trans-
ferred to some other non-protected feature (referred to as a proxy). In that
case, even after masking protected features’ values, unfair classifications could
still be present. This is explained in section 2.2.

Finally, in order to consider performance of models we looked at accuracy
scores and confusion matrices for each of the used global similarity func-
tions. The accuracy scores are presented in tables 5.9 and 5.10, while the ma-
trices can be seen in figures 5.11 and 5.12. Since the Fraud Detection Dataset
and a larger version of the Adult Census Income Dataset, were both used
in [John, Vijaykeerthy, and Saha, 2020], we compare the accuracy scores to
their models. The comparison indicates very similar accuracy numbers to
the ones presented in their paper, in some cases, even surpassing their ac-
curacy scores. This could be for a variety of reasons and does not indicate
that our approach should be considered better in terms of accuracy. When
comparing the global similarity functions presented in this thesis, accuracy
scores vary when different datasets were used as well as masked approaches
compared to non-masked approaches. To have a more clear understanding
of which approach can ensure the highest accuracy, while also providing fair
classifications, further test are required. This is discussed further in section
6.2.

65

Chapter 6

Discussion and Future Work

This chapter presents our concluding thoughts. Section 6.1 summarizes our
results presented in chapter 5 while section 6.2 provides interesting avenues
for future work.

6.1 Discussion

After presenting the related work that was done at the time of writing to
research, detect and mitigate individual unfairness in ML models, we con-
structed two research questions. We argue that answering these will provide
future researchers valuable insight into the topic.

Both research questions and goals were explained in section 1.1.

Research Question 1 How to detect dataset bias?

In order to answer research question 1, our goal was to propose a method
that can be used to detect bias in datasets. We believe ensuring a dataset is
unbiased is a necessary step in order to be able to discuss ML model fairness.
Inspired by work done in [Jaiswal and Bach, 2019], we propose a method that
calculates how much influence each feature has on distinguishing between
different classes, i.e. on the decisions made by decision support systems.
This is achieved by using a method for scoring the feature relevance to value
how influential each feature is in decision making of an AI/ML system. We
decided to combine scores from different feature relevance scoring methods
in order to balance the statistical results that different methods use.

The results from applying the proposed bias detection in the pre-processing
stage to the datasets show that most of the datasets contain bias to a certain
degree, as seen in table 5.2. In order to evaluate this method, we chose one
dataset that was considered biased and created a modified version where all
the biased data points were removed. Finally, we applied the pre-processing
method to this cleaned dataset and compared the results with the original
dataset. The results, shown in table 5.5, indicate that the method detects
no bias in the cleaned dataset, with significantly less influence values for
protected features. We argue that this result indicates that the method is able
to detect bias in datasets. To argue this with more certainty, more datasets
should be tested.

Chapter 6. Discussion and Future Work 66

After reviewing the results from section 5.2.2, we argue that we successfully
answered research question 1 and achieved our goal of proposing a method
to detect dataset bias.

Our contribution is in providing a pre-processing method that can be used
to test dataset bias, when talking in the context of individual fairness. By
providing this method, we successfully answered RQ1. While not revolu-
tionary, with additional testing, we believe this pre-processing method could
be widely used before deciding on a dataset for a ML model. The advan-
tages of the approach are that it is quick in its calculations and portrays the
influence of features on the classification in an easy to understand format.

Research Question 2 Can case-based reasoning systems using automated weight
calculations be used for ensuring individual fairness?

When attempting to answer research question 2, we set a goal of creating a
case-based reasoning system that can be used for ensuring individual fair-
ness. For this purpose, we examined the framework explained in [Jaiswal
and Bach, 2019]. The intrigue of their approach is the automatising of weight
calculations. We believed this approach could remove potential human bias
when constructing the models, if we ensure an unbiased dataset is presented.
To construct the model, we used two datasets that were evaluated for an-
swering research question 1. They were stripped of all biased data points,
so we can state, with a high certainty, they do not contain any biased data
points. When considering the automated weight calculation approach from
[Jaiswal and Bach, 2019], we noticed some improvements that could be im-
plemented. We argue, these improvements help with weights more accu-
rately representing the scores that the feature relevance scoring methods pro-
vide. This approach is explained in detail in section 4.1.4. In order to de-
termine if this approach improves or worsens the performance of the CBR
model, we constructed the same model that was evaluated in [Jaiswal and
Bach, 2019], and added the new approach as an additional global similarity
function. To have the same environment, we tested using the same dataset
as used in their paper, the Car dataset [Bohanec, 1997]. This dataset doesn’t
have any protected features, so only comparing performance was consid-
ered. To avoid complicating the discussion, the individual evaluation meth-
ods are not explained. More in depth explanations about their evaluation
methods can be found in [Jaiswal and Bach, 2019]. Firstly, we show the confu-
sion matrices of the three original global similarity functions described in the
paper and our additional global similarity function marked as new_wt_all.

Next, in table 6.1, we present the scores of global similarity functions for dif-
ferent evaluation metrics, collected from 10 runs of the system with k values
from 1 to 10. Figure 6.2 represents the 10-fold cross-validation for the 10 runs,
using all four global similarity functions.

In order to more easily provide a visualization of the metrics’ performance,
figure 6.3 presents the max recall of the global similarity functions, for values
of k from 1 to 10.

Chapter 6. Discussion and Future Work 67

FIGURE 6.1: Confusion matrices for the different global simi-
larity functions

Global similarity function
(using which type of weight calculation) F1 score Precision Recall Accuracy

Manual weight calculations by domain experts 0.6 0.61 0.6 0.82
Equal weights for all the featues 0.56 0.56 0.55 0.78

Calculating weights by scoring 100% of features in each FRSM 0.71 0.71 0.71 0.89
New approach using scaling scores in each FRSM 0.76 0.76 0.76 0.9

TABLE 6.1: Presenting the mean for different evaluation metrics
from 10 runs

FIGURE 6.2: The 10-fold cross-validation for 10 runs, using all
four global similarity functions

After reviewing the results of the evaluation, shown in figures 6.1, 6.2 and
6.3 and table 6.1, we conclude that our approach provides the same if not
better performance using all the different evaluation metrics. Knowing this,
we were confident of testing our approach in regards to ensuring fairness of
ML models, as it does not degrade performance.

The fairness tests were done using an approach inspired by [John, Vijay-
keerthy, and Saha, 2020]. Details of the approach were explained in sections
4.2.4 and 4.2.5. The results for different global similarity functions were pre-
sented in section 5.3.5.

The first observation one can make from tables 5.7 and 5.8 is that versions of
global similarity functions with masked protected features do not produce
any unfairly classified data points. While this is the case with the datasets

Chapter 6. Discussion and Future Work 68

FIGURE 6.3: Max recall of the system with the Car dataset when
using different global similarity functions

we tested, it is important to consider that this might not always be achieved.
Unfair classification can be achieved even when protected features are not
used, by using proxy features. The notion of protected and proxy features is
explained in section 2.2.

We argue that after examining the results in section 5.3.5, our automated ap-
proach to weight calculation by scaling scores in feature relevance scoring
methods can be used to ensure fairness, if an unbiased dataset is provided.
Our approach also shows improved results in terms of accuracy to all sim-
ilarly constructed global similarity functions, as seen in tables 5.9 and 5.10.
While we can not, with certainty, state that our approach has improved per-
formance, we argue that it shows promising signs and should be researched
and developed further. Some ventures for possible future work are men-
tioned in section 6.2.

Our contribution is providing a proof of concept that case-based reasoning
systems can make individually fair decisions. By providing this proof, we
successfully answered RQ2. On top of that, we propose an automated ap-
proach to weight calculations that does not induce individual unfairness, if
the dataset is unbiased. The advantages of using our approach is that there
is less need for human input when constructing the model. We argue this is
valuable since it reduces the possibility of human biased being introduced in
the in-processing stage of the ML pipeline. One disadvantage to using this
approach, which goes for all case based reasoning systems, is the necessity
of defining local similarity functions. While this is certainly noticeable, we
showed that even with having no domain knowledge, and using default local
similarity function, a reasonable accuracy score can be achieved. On top of
this, we argue that defining local similarity functions is easier than defining
global similarity function, which is the part we automated. The reason is that

Chapter 6. Discussion and Future Work 69

for local similarity functions, it is important to identify which values should
be similar for a particular feature, while for global similarity functions, one
needs to put a quantifiable value on how valuable a certain feature should be
when classifying a data point, which is usually difficult for humans.

6.2 Future Work

As mentioned throughout chapters 4 and 5, there are different avenue for
future work that should be explored to further develop the proposed pre-
processing method and CBR system.

Firstly, in order to have a stronger case for the pre-processing method ac-
curately detecting dataset bias, more datasets should be tested in the same
manner as explained in section 4.1.8. Also, considering adding different fea-
ture relevance scoring methods in order to improve accuracy of the influence
results could be an interesting future task.

As far as the proposed CBR system using an automated weight calculation,
there are several input parameters that should be tested in order to poten-
tially improve both accuracy and fairness results. The first input parameter
that should be tested extensively is using different datasets. If computational
resources allow, we propose performing experiment 2 on the full Adult Cen-
sus Income Dataset (as well as other, suitable datasets that we didn’t use) and
comparing the results with the ones we have shown in section 5.3.5. Another
input parameter that should be considered is the k parameter. We believe,
given more time, we might be able to provide an automated calculation of k
that will give optimal accuracy results, regardless of the dataset used. One
more exploration in the model construction that we propose is to construct
different local similarity functions for the existing global similarity function
and exploring if these can also be automated to remove any need for a do-
main expert. This exploration should be extended to the fairness verifier.
We argue that the feature partitions and their respective thresholds should
be adjusted in such a way that would allow detecting unfairness when sim-
ilar people are considered, as supposed to identical (barring the protected
features) in this thesis.

Finally, a completely different verifier could be used to test the fairness of
the CBR system. As mentioned in section 4.2.6, while our verifier did not
find any unfairness, we can’t label the system unfair. This is due to the fact
that we queried only a finite number of the data points from the test dataset,
and not all paths have been covered. To solve this issue, exploring the black
box testing explained in [Aggarwal et al., 2019] might provide with more
assurance.

70

Bibliography

Aamodt, Agnar and Enric Plaza (1994). “Case-based reasoning: Foundational
issues, methodological variations, and system approaches”. In: AI commu-
nications 7.1, pp. 39–59.

Aggarwal, Aniya et al. (2019). “Black Box Fairness Testing of Machine Learn-
ing Models”. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ESEC/FSE 2019. Tallinn, Estonia: Association for Computing
Machinery, pp. 625–635. ISBN: 9781450355728. DOI: 10 . 1145 / 3338906 .
3338937. URL: https://doi.org/10.1145/3338906.3338937.

Angwin, J. et al. (2016). “Machine Bias”. In: URL: https://www.propublica.
org/article/machine-bias-risk-assessments-in-criminal-sentencing.

Barocas, Solon and Andrew D Selbst (2016). “Big data’s disparate impact”.
In: Calif. L. Rev. 104, p. 671.

Bellamy, Rachel K. E. et al. (Oct. 2018). AI Fairness 360: An Extensible Toolkit
for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias. URL:
https://arxiv.org/abs/1810.01943.

Berk, Richard et al. (2021). “Fairness in Criminal Justice Risk Assessments:
The State of the Art”. In: Sociological Methods & Research 50.1, pp. 3–44.
DOI: 10 . 1177 / 0049124118782533. URL: https : / / doi . org / 10 . 1177 /
0049124118782533.

Binns, Reuben (2020). “On the apparent conflict between individual and group
fairness”. In: Proceedings of the 2020 conference on fairness, accountability, and
transparency, pp. 514–524.

Bohanec, M. (1997). “Car evaluation database”. In: URL: https://archive.
ics.uci.edu/ml/%20datasets/Car+Evaluation.

Ceriani, Lidia and Paolo Verme (Sept. 2012). “The origins of the Gini index:
extracts from Variabilità e Mutabilità (1912) by Corrado Gini”. In: The Jour-
nal of Economic Inequality 10.3, pp. 421–443. DOI: 10.1007/s10888- 011-
9188-x. URL: https://ideas.repec.org/a/kap/jecinq/v10y2012i3p421-
443.html.

Chouldechova, Alexandra and Aaron Roth (2018). The Frontiers of Fairness in
Machine Learning. arXiv: 1810.08810 [cs.LG].

Danks, David and Alex John London (2017). “Algorithmic Bias in Autonomous
Systems.” In: IJCAI. Vol. 17, pp. 4691–4697.

Demšar, Janez et al. (2013). “Orange: Data Mining Toolbox in Python”. In:
Journal of Machine Learning Research 14.35, pp. 2349–2353. URL: http://
jmlr.org/papers/v14/demsar13a.html.

https://doi.org/10.1145/3338906.3338937
https://doi.org/10.1145/3338906.3338937
https://doi.org/10.1145/3338906.3338937
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://arxiv.org/abs/1810.01943
https://doi.org/10.1177/0049124118782533
https://doi.org/10.1177/0049124118782533
https://doi.org/10.1177/0049124118782533
https://archive.ics.uci.edu/ml/%20datasets/Car+Evaluation
https://archive.ics.uci.edu/ml/%20datasets/Car+Evaluation
https://doi.org/10.1007/s10888-011-9188-x
https://doi.org/10.1007/s10888-011-9188-x
https://ideas.repec.org/a/kap/jecinq/v10y2012i3p421-443.html
https://ideas.repec.org/a/kap/jecinq/v10y2012i3p421-443.html
https://arxiv.org/abs/1810.08810
http://jmlr.org/papers/v14/demsar13a.html
http://jmlr.org/papers/v14/demsar13a.html

Bibliography 71

Dieterich, William, Christina Mendoza, and Tim Brennan (2016). “COMPAS
Risk Scales : Demonstrating Accuracy Equity and Predictive Parity Perfor-
mance of the COMPAS Risk Scales in Broward County”. In:

Dressel, Julia and Hany Farid (2018). “The accuracy, fairness, and limits of
predicting recidivism”. In: Science Advances 4.1. DOI: 10 . 1126 / sciadv .
aao5580. eprint: https : / / advances . sciencemag . org / content / 4 / 1 /
eaao5580.full.pdf. URL: https://advances.sciencemag.org/content/
4/1/eaao5580.

Dua, Dheeru and Casey Graff (2017). UCI Machine Learning Repository. URL:
http://archive.ics.uci.edu/ml.

Dwork, Cynthia et al. (2012). “Fairness through Awareness”. In: ITCS ’12.
Cambridge, Massachusetts: Association for Computing Machinery, pp. 214–
226. ISBN: 9781450311151. DOI: 10.1145/2090236.2090255. URL: https:
//doi.org/10.1145/2090236.2090255.

Feldman, Michael et al. (2015). “Certifying and Removing Disparate Impact”.
In: Proceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’15. Sydney, NSW, Australia: Asso-
ciation for Computing Machinery, pp. 259–268. ISBN: 9781450336642. DOI:
10.1145/2783258.2783311. URL: https://doi.org/10.1145/2783258.
2783311.

Finnie, Gavin and Zhaohao Sun (2002). “Similarity and metrics in case-based
reasoning”. In: International journal of intelligent systems 17.3, pp. 273–287.

Hardt, Moritz et al. (2016). “Equality of Opportunity in Supervised Learn-
ing”. In: Advances in Neural Information Processing Systems. Ed. by D. Lee
et al. Vol. 29. Curran Associates, Inc. URL: https://proceedings.neurips.
cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf.

Heilprin, L. B. (1960). “Information Theory and Statistics. Solomon Kullback.
Wiley, New York; Chapman and Hall, London, 1959. xvii + 395 pp. Illus.”
In: Science 131.3404, pp. 917–918. ISSN: 0036-8075. DOI: 10.1126/science.
131.3404.917-b. eprint: https://science.sciencemag.org/content/
131/3404/917.3.full.pdf. URL: https://science.sciencemag.org/
content/131/3404/917.3.

Hofmann, Dr. Hans (1994). UCI Machine Learning Repository. URL: https://
archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).

Jaiswal, Amar and Kerstin Bach (2019). “A data-driven approach for deter-
mining weights in global similarity functions”. In: International Conference
on Case-Based Reasoning. Springer, pp. 125–139.

John, Philips George, Deepak Vijaykeerthy, and Diptikalyan Saha (2020). Ver-
ifying Individual Fairness in Machine Learning Models. arXiv: 2006 . 11737
[cs.LG].

Joseph, Matthew et al. (2016). Fairness in Learning: Classic and Contextual Ban-
dits. arXiv: 1605.07139 [cs.LG].

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan (2016). “Inher-
ent trade-offs in the fair determination of risk scores”. In: arXiv preprint
arXiv:1609.05807.

Kohavi, Ronny and Barry Becker (1996). UCI Machine Learning Repository.
URL: https://archive.ics.uci.edu/ml/datasets/adult.

https://doi.org/10.1126/sciadv.aao5580
https://doi.org/10.1126/sciadv.aao5580
https://advances.sciencemag.org/content/4/1/eaao5580.full.pdf
https://advances.sciencemag.org/content/4/1/eaao5580.full.pdf
https://advances.sciencemag.org/content/4/1/eaao5580
https://advances.sciencemag.org/content/4/1/eaao5580
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf
https://doi.org/10.1126/science.131.3404.917-b
https://doi.org/10.1126/science.131.3404.917-b
https://science.sciencemag.org/content/131/3404/917.3.full.pdf
https://science.sciencemag.org/content/131/3404/917.3.full.pdf
https://science.sciencemag.org/content/131/3404/917.3
https://science.sciencemag.org/content/131/3404/917.3
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://arxiv.org/abs/2006.11737
https://arxiv.org/abs/2006.11737
https://arxiv.org/abs/1605.07139
https://archive.ics.uci.edu/ml/datasets/adult

Bibliography 72

Mehrabi, Ninareh et al. (2019). “A survey on bias and fairness in machine
learning”. In: arXiv preprint arXiv:1908.09635.

Mothilal, Ramaravind K, Amit Sharma, and Chenhao Tan (2020). “Explaining
machine learning classifiers through diverse counterfactual explanations”.
In: Proceedings of the 2020 Conference on Fairness, Accountability, and Trans-
parency, pp. 607–617.

Pearson, Karl (1900). “On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling”. In: The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
50.302, pp. 157–175. DOI: 10.1080/14786440009463897. URL: https://doi.
org/10.1080/14786440009463897.

Quinlan, J. Ross (1986). “Induction of decision trees”. In: Machine learning 1.1,
pp. 81–106.

Robnik-Sikonja, Marko and Igor Kononenko (Feb. 2000). “An adaptation of
Relief for attribute estimation in regression”. In: ICML ’97: Proceedings of
the Fourteenth International Conference on Machine Learning.

Ross, KA and CRB Wright (1992). Discrete Mathematics, 193.
Rudin, Cynthia and Kiri L Wagstaff (2014). Machine learning for science and

society.
Speicher, Till et al. (July 2018). “A Unified Approach to Quantifying Algo-

rithmic Unfairness”. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. DOI: 10.1145/3219819.
3220046. URL: http://dx.doi.org/10.1145/3219819.3220046.

Stahl, Armin and Thomas R. Roth-Berghofer (2008). “Rapid Prototyping of
CBR Applications with the Open Source Tool MyCBR”. In: Proceedings of
the 9th European Conference on Advances in Case-Based Reasoning. ECCBR ’08.
Trier, Germany: Springer-Verlag, pp. 615–629. ISBN: 9783540855019. DOI:
10.1007/978-3-540-85502-6_42. URL: https://doi.org/10.1007/978-
3-540-85502-6_42.

Sun, Zhaohao, Gavin Finnie, and Klaus Weber (2004). “Case base building
with similarity relations”. In: Information Sciences 165.1, pp. 21–43. ISSN:
0020-0255. DOI: https://doi.org/10.1016/j.ins.2003.09.020. URL:
https://www.sciencedirect.com/science/article/pii/S0020025503003748.

Tang, Jiliang, Salem Alelyani, and Huan Liu (2014). “Feature selection for
classification: A review”. In: Data classification: Algorithms and applications,
p. 37.

Tse, Lao (2020). Kaggle. URL: https://www.kaggle.com/laotse/credit-
card-approval.

Yu, Lei and Huan Liu (Jan. 2003). “Feature Selection for High-Dimensional
Data: A Fast Correlation-Based Filter Solution”. In: vol. 2, pp. 856–863.

Zemel, Rich et al. (2013). “Learning Fair Representations”. In: Proceedings of
the 30th International Conference on Machine Learning. Ed. by Sanjoy Das-
gupta and David McAllester. Vol. 28. Proceedings of Machine Learning
Research 3. Atlanta, Georgia, USA: PMLR, pp. 325–333. URL: http : / /
proceedings.mlr.press/v28/zemel13.html.

https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1145/3219819.3220046
https://doi.org/10.1145/3219819.3220046
http://dx.doi.org/10.1145/3219819.3220046
https://doi.org/10.1007/978-3-540-85502-6_42
https://doi.org/10.1007/978-3-540-85502-6_42
https://doi.org/10.1007/978-3-540-85502-6_42
https://doi.org/https://doi.org/10.1016/j.ins.2003.09.020
https://www.sciencedirect.com/science/article/pii/S0020025503003748
https://www.kaggle.com/laotse/credit-card-approval
https://www.kaggle.com/laotse/credit-card-approval
http://proceedings.mlr.press/v28/zemel13.html
http://proceedings.mlr.press/v28/zemel13.html

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Miran Hadziomerovic

Individual Fairness in Machine
Learning

Master’s thesis in Informatics
Supervisor: Pinar Øzturk
July 2021

M
as

te
r’s

 th
es

is

