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Abstract

Human Activity Recognition is a field of study focusing on the detection of human
movements in particular situations (exercise, labor, etc) or in daily life. Recently, the
field has received more attention from the machine learning community since there are
more datasets openly available and the data collection with Internet of Things devices
has become easier to implement. This study focuses on building a machine learning
model to better understand peoples health through vigorous physical activity detection.
In previous studies at the Department of Computer Science at the Norwegian University
of Science and Technology, activity recognition with vigorous data have not yet been
performed.

HUNT4 is the fourth recurrence of the largest population based health study in
Norway. The study is based upon the collection of data mainly through surveys and
clinical measurements. In addition to the surveys, participants were invited to participate
in another data collection by wearing body-worn sensors for one week. The participants
wore two Axivity AX3 sensors, one on their lower back and the other on their thigh.
This created a large dataset which would be preferable to analyse by using machine
learning methods.

This thesis focuses on detection of vigorous physical activity in a subset of the HUNT4
dataset, namely the UngHUNT data. The UngHUNT data contains accelerometer data
from adolescents wearing the previously mentioned body-worn sensors. This thesis
uses machine learning to classify vigorous activity in this data. The machine learning
algorithm used in this study is Extreme Gradient Boosting. The algorithm was selected
by recognizing it’s missing coverage in previous work on vigorous activity through a
review of relevant literature and it’s well-known strong performance on inbalanced, real-
world datasets. To optimize the machine learning model built, training datasets were
created and cross validation was performed to avoid overfitting. To further improve the
model, feature selection, mix-in classification and different window sizes for the data
were tested. To train the model, curated datasets are used containing both in-lab data
and out-of-lab data. This thesis’s results show that the machine learning model using a
static sliding 3-second window is able to separate vigorous from non-vigorous activity
with a precision, recall and F1-score of 95.56%, 95.38% and 95.40% respectively.
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Sammendrag

Human Activity Recognition er et studiefelt hvor menneskets bevegelse er i fokus.
Dette gjelder under spesielle situasjoner, som trening, arbeid eller lignende, eller under
hverdagslige aktiviteter. Feltet har nylig fått mer oppmerksomhet fra folk som driver
med maksinlæring ettersom datasett har blitt lettere tilgjengelig. Datainnsamling har
også tatt store steg i forskningsfeltet hvor enheter i Tingenes internett har blitt enklere å
implementere. Denne masteroppgaven fokuserer på bygge en maskinlæringsmodell for
å forstå menneskelig bevegelse i krevende fysisk aktivitet bedre. I tidligere studier ved
Norges teknisk-naturfaglige universitet har ikke krevende fysisk aktivitet vært undersøkt.

HUNT4 er den fjerde iterasjonen av Norges største befolkningsbaserte helseunder-
søkelse. Undersøkelsen er basert på innsamling av data gjennom spørre-undersøkelser
og kliniske målinger. I tillegg be deltagere spurt om å delta i en annen datainnsamling
ved å feste to aksellerometere på kroppen for en uke. Deltagerne fikk påsatt to Axiv-
ity AX3 sensorer. Den ene sensoren ble plassert ved korsryggen, mens den andre ble
plassert midt på låret. Dette skapte et stort datasett som man prefererer å analysere
med metoder fra maskinlæring.

Denne oppgaven fokuserer på klassifisering av krevende fysisk aktivitet i en spesifikk
del av HUNT4 datasettet. Denne delen, kalt UngHUNT, inneholder alle deltagere som var
ungdommer under undersøkelsen. For å gjøre dette brukes metoder fra maskinlæring og
algoritmen brukt i denne oppgaven er Extreme Gradient Boosting. Denne algoritmen ble
valgt på grunn av dens manglende tilstedeværelse i relatert arbeid i studiefeltet. Dette
ble funnet gjennom et literatursøk. For å optimalisere algoritmen for krevende fysisk
aktivitet ble nye datasett som inneholder slik aktivitet laget. Kryssvalidering ble brukt for
å unngå overtilpasning (overfitting). I tillegg ble feature selection, mix-in klassifisering
og forskjellige vindusstørrelser i data testet for å forbedre maskinlæringsmodellens
resultater. Hovedresultatene i denne oppgaven viser en maskinlæringsmodell som
bruker data med tresekunders vindu. Denne modellen klarte å oppnå presisjon, recall
og F1-score på henholdsvis 95.56%, 95.38% og 95.40%.
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Chapter 1
Introduction

Human Activity Recognition (HAR) is a broad research field in the scope of health studies
focusing on recognizing human activity based on sensor data. The field tries to detect
human movements in particular situations (exercise, labor, etc) or daily life. Recently,
the field has received more attention from the machine learning community since there
are more datasets openly available. Analyzing large datasets with accelerometer data
manually is a daunting task. Machine learning algorithms have the benefit of only
needing a smaller dataset as training data to explore a much larger dataset. There are
different health benefits connected to such research. An example of a HAR system in
action, is a surgical skill rating system as proposed in Hung et al. [2018]. This study
uses sensor data to rate surgical skills by using machine learning classifiers. For our
study, the focus is set on leisure physical activity.

The classification of human activities using machine learning have become useful
over the years, since machine learning techniques have become more accessible Trost
et al. [2011]. In the context of this study, machine learning models are trained on
datasets similar to the data collected through the HUNT4 study, which had over 35 000
participants wearing accelerometer sensors for a week1. The training data is labelled
with known activities and this study demonstrates how to develop a machine learning
model to classify these activities in new, unseen data. By creating a model that is able
to classify activities found in accelerometer data, one helps cohort health studies by
providing a tool that allows for a more detailed data analysis, which in turn is crucial
for a healthy population.

Higher levels of physical activity are associated with a lower risk of cardiovascular
disease [Ramakrishnan et al., 2021]. This project focuses on HAR tasks using machine
learning to classify vigorous physical activities, giving cohort health studies a tool to
detect vigorous activity in accelerometer data. Optimizing a HAR system to classify

1https://www.ntnu.no/hunt/forskning, last accessed 08.12.2020

1



1.1. GOALS AND RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

vigorous activities is a rather new part of the field, where improvements to already
existing solutions using everyday living activities are needed. The data used in this
thesis is time series data, which uses time as an index for the acceleration signal. The
training data consists of recorded data with a length up to 120 minutes for a single
subject. These data include a various range of activities, where some of them are
vigorous activities. Vigorous activity is defined and further described in section 2.9.
The overall aim of the study is to build a model that is able to analyse accelerometer
data and give statistics for vigorous activities present in the UngHUNT dataset from the
UngHUNT study. To do this three main goals have been set and will be described in the
next section.

1.1 Goals and Research Questions

This section introduces the research goals for this project and the relevant research
questions related to each individual goal.

The HUNT4 study produced a large dataset, which would be preferable to explore
using machine learning models. The overall aim of this thesis is to create a machine
learning model that can recognize periods of vigorous activity.

Aim of the thesis To create a machine learning model that can recognize periods of
vigorous activity in the HUNT4 dataset.

This model would be helpful for further health studies on the HUNT4 data or similar
data from accelerometers placed on the lower back and thigh. To achieve this aim, we
formulate goals and define research questions that are addressed in this thesis:

Goal 1 To research and describe existing machine learning approaches for vigorous activity
recognition in HAR datasets.

HAR is an active research field and has lately gotten more attention, also from the
machine learning community. However, for the particular task of vigorous physical
activity we need to do a literature search to understand the state of the art and identify
possible gaps in the field.

Research question 1.1 What is the state of the art in research when detecting periods of
vigorous activity in accelerometer data using machine learning?

Goal 2 To find a suitable window size for vigorous activity detection in long-term HAR
datasets.

2



CHAPTER 1. INTRODUCTION 1.2. RESEARCH METHODS

Detecting vigorous activities is a task that differs from detection of every day living
activities, since vigorous activities are shorter in general. This can be seen in chapter 4
and turns out to be a difficult problem. Shorter activities could mean a need for shorter
windows in the training data. Window sizes are explained in more detail in section 5.1.
This goal is set to evaluate the impact of shorter window sizes.

Setting this window size for the detection tool is a challenging optimization problem,
since too large windows could ignore sections of the window containing vigorous activity,
while too small windows are generally slow to process and increase the data to be
managed in large datasets. This window does also need to be reasonable for public
health research.

Research question 2.1 What is a suitable window size for vigorous activity detection in
long-term HAR datasets?

Goal 3 To create and evaluate a machine learning model for vigorous activity.

The third goal of this project is to train and optimize a machine learning model to
classify vigorous data. The model has to classify 50Hz data since that is the frequency
used in the HUNT4 dataset. To reach this goal, a new training dataset is needed, which
includes relevant vigorous training data. This is crucial to be able to create a new
machine learning model for vigorous activity classification. Three research questions
were created to evaluate the new vigorous machine learning model.

Research question 3.1 How well does the vigorous machine learning model classify
activities?

Research question 3.2 Which features are needed to obtain the best results for classifi-
cation of vigorous activities?

Research question 3.3 How well does the vigorous machine learning model separate
vigorous activity from non-vigorous activity?

1.2 Research Methods

This thesis uses different research methods to discover and research in the field of HAR
and vigorous activities. Firstly, a literature review is conducted to obtain insight into
the research field, before experiments are performed to test how previous general HAR
studies adapts to vigorous data.

3



1.3. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

To get insight into machine learning methods used in related work, a Structured
Literature Review is performed. The Structured Literature review in this project is
performed to gain background information in the field of HAR and to describe the
state-of-the-art on how far the field has come regarding recognizing vigorous activity.

Experiments are performed to both reuse information and work done in the HAR field
by previous students and professors at Norwegian University of Science and Technology
(NTNU). This thesis aims to reproduce previous work and applies it in a new field by
focusing on vigorous activity. The scientific method is applied to reproduce previous
work in a new setting, using the same hypotheses as in previous work and customizing
them to the environment of vigorous activity by creating new machine learning models.

1.3 Thesis Structure

Chapter 2: Background An explanation of the machine learning concepts, previous
work and other theory relevant for this study.

Chapter 3: Related Work A look into related work in the HAR field with a focus
towards vigorous activity and machine learning.

Chapter 4: Datasets An overview of the dataset used to train and evaluate the machine
learning model.

Chapter 5: Methods An explanation of the methods used in experiments to improve
the classifier.

Chapter 6: Experiments and Results The experimental setup and results.

Chapter 7: Evaluation and Discussion An evaluation and discussion of the results
from the previous section.

Chapter 8: Conclusion and Future Work A conclusion upon the evaluation of results
from the previous chapter and a look into future work in the field of vigorous
physical activity HAR.
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Chapter 2
Background

In this chapter machine learning methods relevant to the thesis are explained, together
with other relevant theory and background information needed to better understand
the study.

2.1 The HAR Framework

The HAR Framework1 is a framework created by the NTNU AI Lab2 to make previous
HAR studies from the Department of Computer Science The Department of Computer
Science (IDI)3 easily reproducible. The framework hosts a variety of functions, such as
functionality to train machine learning models, use existing models and other services
to process accelerometer data. This includes the extraction of the raw data coming
from accerlerometers, synchronizing the data if more than one sensor is used and pre-
processing the signals to run machine learning classifiers on the data. The framework
can be configured to create various features and has a user interface to monitor the
data analysis.

2.2 HUNT4 Study

The HUNT study is Norway’s largest populated health study. The first data gathered
was in 19844. Later, there have been four studies in total where the most recent one
called HUNT4 happened between 2017 and 20195.

1https://github.com/ntnu-ai-lab/hunt4-har-framework
2https://www.ntnu.edu/ailab
3https://www.ntnu.no/idi
4https://ntnu.no/hunt/om, last accessed: 2020-11-03
5https://ntnu.no/hunt/hunt4, last accessed: 2020-11-03
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2.2. HUNT4 STUDY CHAPTER 2. BACKGROUND

Figure 2.1: The placement of the accelerometer sensors. The first image shows a sensor placed
on a person’s thigh. The second image shows sensor placement on the lower back.

More than 56 000 people from Trøndelag participated in the HUNT4 study. Previ-
ously, these studies only consisted of people from the northern part of Trøndelag, but
after the counties got merged in 2019, people from the southern part of Trøndelag have
also participated through surveys. The study consists mainly of people older than 20
years. People younger than this also had the chance to participate, but their data was
collected in a sub study called UngHUNT46. As a part of the HUNT4, study participants
were offered to wear a set of accelerometers over a period of one week. One of these
was placed at the thigh and the other at the lower back of the participant. Images of
the sensors’ placement can be seen in figure 2.1. This is also illustrated in figure 2.2
with a more detailed view of the sensor orientations. These sensors provide data on the
users movements while worn.

The sensor used in the study is named Axivity AX3 and is a data logger ideal for
collecting longitudinal movement data. The sensor collects data in three dimensions
and has a lifespan of 14 days when collecting data before needing to be recharged. The
sensors were calibrated to measure values between -8 to +8 G.

6https://ntnu.no/hunt/unghunt, last accessed: 2020-11-03
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CHAPTER 2. BACKGROUND 2.3. THE ACTIVITY RECOGNITION CHAIN

Figure 2.2: Illustration of the sensor placements of a person jumping. The image also shows
directional axis for the data captured by the sensors.
Source: The base figure used is from dimensions https://www.dimensions.com/.

2.3 The Activity Recognition Chain

The Activity Recognition Chain (ARC), as presented in Bulling et al. [2013], is a typical
process for creating a HAR system. Bulling et al. proposes that the process is separated
into five distinct parts:

1. Data Collection: Collecting data from subjects wearing sensors.

2. Data Pre-Processing: Aligning and labelling the raw data. Data from multiple
sensors do also need to be synchronized, if multiple sensors were used. Also
one might need to remove noise from the data or resample data to a specific
frequency.

3. Data Segmentation: Data windowing to classify upon segments of data instead
of single datapoints.

4. Feature Generation and Selection: Extraction of relevant information in the
data, called features, for every segment from the previous step.

5. Classification: Machine learning models take the produced features as input to
make decisions, and in the case of this thesis classifications.

7
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Hessen and Tessem [2016] made an illustration showing the ARC and can be seen
in figure 2.3. For this thesis the most relevant parts of the ARC are the parts after
Data Collection. However, an understanding of the Data Collection process and the
importance of demographics is still important in HAR work, since movement patterns
differ between different age groups and genders [Bartlett, 2007].

Figure 2.3: The process of creating a HAR system. Called the Activity Recognition Chain by
Bulling et al. [2013]

2.4 Machine Learning

The goal of machine learning is to make a computer able to learn from experience
with respect to some class of tasks and performance measures. To do this one needs a
well posed learning problem. A well posed learning problem consist of three elements,
namely a task to perform, a way to measure performance and a way to gain experience
through training. The machine learning method then tries to model a function F̂(xxx)
of the target function F(xxx), which correctly maps the inputs to it’s appropriate values
[Mitchell, 1997].

There are two main different types of machine learning tasks, namely classification
and regression tasks. In classification tasks the computer’s goal is to classify an atomic
result from the input, whereas regression focuses on predicting continuous values.
This project focuses on supervised classification problems, using labelled data for
classification.
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CHAPTER 2. BACKGROUND 2.4. MACHINE LEARNING

Figure 2.4: An example of a decision tree deciding whether to mow the lawn or not. The red
node represents a root node, the white node an internal node and the blue nodes terminal nodes.

2.4.1 Decision Trees

The decision tree algorithm is a classification method that creates a map, a tree structure,
that can take a variety of variables as input and compute an output based on the input
values. The mapping in a decision tree consist of three different types of nodes:

• Root node: The initial node with zero incoming edges and zero or more outgoing
edges.

• Internal node: A node containing one incoming edge and at least two outgoing
edges.

• Terminal or leaf node: A node with one incoming edge and zero outgoing edges.

The decision tree learner computes an output by taking a vector as an input, runs
tests for selected values in each node iterating down a path through internal nodes in
the tree. These tests do checks for certain values contained by the input vector and
then transcend the direction the test result provides, and does this for enough values to
eventually end up at a leaf node with a decision (classification) [Mitchell, 1997].

During creation and training of the decision tree classifier the algorithm chooses the
input attribute that gives the highest information gain as root node. Information gain is
defined in Mitchell [1997] as the expected reduction in entropy. Mitchell’s definition of
entropy is defined in Equation 2.1, where c is the amount of classes and pi is the portion
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2.4. MACHINE LEARNING CHAPTER 2. BACKGROUND

of S belonging to class i. The definition of information gain can be seen in Equation
2.2, where the information gain is given from an attribute A relative to a collection S.
Here Values(A) is the set of all possible values for attribute A and Sv is the subset of S
where attribute A has value v.

Ent rop y(S) =
cX

i=1
�pi log2pi (2.1)

Gain(S, A) = Ent rop y(S)�
X

v2Values(A)

|Sv |

|S|
Ent rop y(Sv) (2.2)

After the algorithm has chosen its root node it follows the same process for internal
nodes, selecting the next attribute to split on by the decisions information gain. This
process is performed until the tree structure is complete, which means that each path
in the tree ends up at a terminal node. Decision tree learners on their own are weak
learners, which means that decision trees will not work well for more complex problems.
Decision trees are however found useful when combined with each other in ensemble
methods.

2.4.2 Ensemble Learners

Ensemble learners use a number of weak learners to increase accuracy in predictions.
The decision tree learner discussed in the previous section is an example of such a weak
learner used in ensemble methods. Ensemble trees allow for an extraction of overall
feature importances over the decision trees, which is useful during feature selection.
The importance of features can be calculated in multiple ways, but this thesis uses the
total amount the feature appears in the tree, which is the amount of times the feature
is used split either a root node or internal node.

Popular techniques for constructing ensemble learners are bootstrap aggregation
[Breiman, 1996a], also called bagging, and boosting algorithms [Freund and Schapire,
1996]. The bagging method creates additional training data which replicates the original
training data. This improves the ensemble learner’s stability and accuracy. Boosting
in ensemble methods uses an additive approach when creating new weak classifiers
for the ensemble learner. This method tries to fix previous weak classifier’s mistakes
by making the new weak classifiers focus on the misclassified input data. Successful
performance boost by the usage of ensemble methods, are demonstrated in various
papers, where Breiman [1996b] and, Kohavi and Kunz [1997] were some of the earlier
ones in the field. These methods are often used, since they have turned out to perform
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well in real-world scenarios.

Random Forest

The random forest classifier is an example of an ensemble learner. Random forest uses
decision tree classifiers as its weak classifiers where each tree is trained on a random
subset of the input data Breiman [2001]. For the final prediction in classification, major-
ity voting is used to select a single most probable class from the different classifications
made by the trees in the model.

Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an ensemble tree learner. The algorithm
has shown that it often has good perform in real world scenarios, both in terms of
accuracy and speed through system optimization7. Gradient boosted trees have been
used in machine learning for some time, and some of the earliest applications of these
methods were documented in Friedman [2001]. XGBoost, as other machine learning
algorithms, tries to make an estimation over the domains target function by minimizing
the model’s loss function as described in Friedman [2001]. Friedman’s definition of
the function estimation can be seen in equation 2.3. Here Friedman is restricting F
to be a parameterized class of functions. For gradient boosted trees, these functions
h(xxx ,aaam) resemble decision trees and the main differences from the random forest
implementation is this additive approach in equation 2.3. The task then becomes
optimizing the parameters aaam and the weight �m, where this in the case of gradient
boosted trees becomes the optimisation of trees by choosing split on parameters, split
locations and terminal node.

F(xxx; PPP) = F(xxx; {�m,aaam}
M
1 ) =

MX

m=1
�mh(xxx;aaam) (2.3)

The XGBoost framework defines an objective function for the algorithm to optimize
as in Equation 2.4. Here the first term, l, is the loss function with yi as the correct
classification and ŷ(t)i as the predicted class from decision tree t. The second term
is the regularization term, where ⌦( fi) is the complexity of tree fi . Regularization
will be explained in section 2.7.2. The task for XGBoost then becomes minimising its
overall loss and complexity through additive learning. For this thesis it is enough to

7https://xgboost.readthedocs.io/en/latest/tutorials/model.html, last accessed 26.11.2020
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understand the additive approach of XGBoost, adding new trees to learn from previous
tree’s mistakes and the basic ideas of optimizing a machine learning algorithm.

ob j =
nX

i=1
l(yi , ŷ(t)i ) +

tX

i=1
⌦( fi) (2.4)

The XGBoost framework also has functionality to extract feature importances from a
trained XGBoost model. This is useful when considering a cut in the number of features
for the model and for explaining which features are the most important in the model.

2.5 Frequency Domain Transforms

Section 4.5 applies frequency domain transformation on the signal stream used as
training data for the machine learning models. This section contains the theoretical
basis needed to understand this frequency transformation.

Frequency domain transforms are mathematical operators that transform functions
from the time domain to the frequency domain. This is done by applying the concept of
Fourier analysis, which states that any real valued function can be expressed as a sum
of sinusoidal functions.

2.5.1 Discrete Fourier Transform

Discrete Fourier transform (DFT) takes a finite sequence of equally spaced samples and
returns a set of amplitudes contained within the sequence. The transformation can be
seen in Equation 2.5 and the inverse transform in 2.6.

y(k) =
N�1X

n=0
e�2⇡ j kn

N x(n) (2.5)

x(n) =
1
N

N�1X

k=0
e2⇡ j kn

N y(k) (2.6)

Applying DFT on a real valued sequence of length n would result in an array of
complex numbers y = [y0, y1, ..., yk�1, yk], where the absolute value of each number
in the array represents the amplitude, ak, of a specific frequency in the spectrum. The
frequency fk which ak corresponds to is found by using Equation 2.7. Here d represents
the sample spacing and n the number of the samples within the window.
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fk =
k

d ⇥ n
(2.7)

Fast Fourier Transform

The DFT has a runtime of O (n2), which would be time consuming when applied to large
datasets. Computer algorithms implementing DFT, such as the fast Fourier transform
(FFT), have achieved a runtime of O (n log n) by using complex polynomial symmetry
in the transformation8.

2.6 Evaluation of Methods

Using methods from statistics is a common approach to measure a machine learning
model’s performance. Statistical methods can also be used to optimize and assess the
performance of machine learning models. Throughout this section accuracy, recall,
precision and F1-score will be defined by using the theory found in Sammut and Webb
[2017].

To assess the machine learning models with the previously mentioned methods,
a set of statistical terms is needed. These terms are true positive (TP), true negative
(TN), false positive (FP) and false negative (FN). True positives are correctly classified
positive samples. True negatives are correctly classified negative samples. For the
false terms, the model fails to predict correctly. A false positive is a sample that was
wrongly classified as positive. A false negative is a sample that was wrongly classified
as negative.
Accuracy is the percent of correctly classified instances in the population.

Accurac y =
T P + T N

T P + T N + F P + FN

Recall is the amount of true positives predicted by the model with respect to every
positive sample in the data. This is also known as sensitivity.

Recal l =
T P

T P + FN

Precision is the amount of correct positive classifications made by the model. This is
found by dividing the true positives count by the total amount of positives predicted by

8https://docs.scipy.org/doc/scipy/reference/tutorial/fft.html, Last accessed:
02.06.2021.
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the model.
Precision=

T P
T P + F P

F1-score is the harmonic mean of recall and precision.

F1-score= 2⇥
Recal l ⇥ Precision
Recal l + Precision

All of these metrics can be computed from a confusion matrix. A confusion matrix
shows where the machine learning model makes mistakes, by listing predictions against
actual values in a grid. An example of a simple two by two confusion matrix can be
seen in figure 2.5. In this example the two classes are vigorous and non-vigorous with
the ground truth represented by row and the prediction by column. Then the optimal
result would be for every entry to align at the diagonal, having every prediction be the
same as the ground truth.

Figure 2.5: An example of a confusion matrix containing two classes, vigorous and non-vigorous

2.7 Model Training

This section explains the process of training a machine learning model to make correct
assumptions without any form of explicit programming.

2.7.1 The HAR Learning Problem

The field of HAR consist of activity recognition on a given population in a set time
period. This is done by analyzing the populations individual movements. A definition of
the HAR classification problem is as stated in Lara and Labrador [2013], which is also
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expressed in definition 2.7.1. This definition states that the goal is to find a temporal
partition to classify in the data, making the HAR problem a classification problem.

Definition 2.7.1. HAR problem: Given a set S = S0, ..., Sk�1 of k time series, each one
from a particular measured attribute, and all defined within time interval I = [t↵, t!],
the goal is to find a temporal partition (I0, ..., Ir�1) of I, based on the data in S, and a set
of labels representing the activity performed during each interval I j (e.g., sitting, walking,
etc.). This implies that time intervals I j are consecutive, non-empty, non-overlapping, and

such that
r�1S
j=0

I j = I

2.7.2 Overfitting

Overfitting occurs when the machine learning algorithm is being trained to fit training
data too much, making it harder for the algorithm to make correct choices when
encountering unseen, new cases in the data. This subsection explains useful methods
to avoid this issue.

Splitting data for training

A common way to handle data when training a machine learning model is to split
the training data into two subsets. The first subset, normally about 80 percent of the
set’s size, is used as training data for the model. The second part is then being used
to test the data after the model training is completed. The reason why this is such a
common approach is the lack of actual test data in the field. Training data is often more
accessible, if not the only accessible data for both training and validation. This is a
common but basic method.

Cross Validation

Cross validation is a commonly used method to avoid overfitting in machine learning
[Mitchell, 1997]. Cross validation splits the data by leaving a different part of the
training data as test data for every iteration. This makes training data and validation
data differ for every iteration, and is useful for giving an indication for how the machine
learning model will function in practice by giving split-wise performance measures.
Cross validation is one of the main methods used for machine learning model evaluation
in this thesis, since this is what creates the confusion matrices presented later on. The
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two cross validation methods important for this thesis is k-fold cross validation and
leave one out cross validation (LOOCV).

K-fold cross validation introduces folds to the cross validation. This method shuffles
the data randomly before splitting the data into k folds. Starting out, one of the folds
are being used for testing, and for every iteration in the training, another fold is added
to the testing data and removed from the training data. A simplified version of Mitchell’s
k-fold cross validation algorithm can be seen in algorithm 1. This algorithm returns
the mean error made by the model, while it can also be modified to return different
interesting results from the for loop.

Algorithm 1: K-fold cross validation.
Partition the available data D0 into k disjoint subsets T1, T2, ..., Tk of equal size,
where this size is at least 30.

for i from 1 to k do
use Ti for the test set, and the remaining data for training set Si

1. Si  � D0 � Ti

2. model  � learn(Si)

3. �i  � er rorTi (model)

end

return 1
k
Pk

i=1 �i

In LOOCV, the data is split into k folds, just like in k-fold cross validation. This
method is the same as the previously explained k-fold cross validation just with k set to
one, leaving a single fold for test data every iteration. The training algorithm is then
running k times over the data, leaving a different partition from the data as test data for
every iteration. For example, if a dataset is divided into eight folds, each fold is selected
as test data once and the rest as training data. This creates eight models, one for each
fold, which get evaluated against the iteration’s particular test fold. This is useful in
HAR use cases, since one often handles datasets containing subjects. This gives the
opportunity to create subject-wise statistics for cross-validation.

Regularization

Regulatization is a method used to avoid overfitting in ensemble methods and is a core
idea in avoiding overfitting in XGBoost. The regularization term controls the complexity
of the model, which avoids overfitting. This is described in the documentation of the
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XGBoost framework9 and also mentioned as a suggested improvement to the decision
tree algorithm in Mitchell [1997]. In short terms, regularization keeps the trees simple
and thereof the complexity of the model low.

For XGBoost, the machine learning model used in this thesis, the regularization is
defined as in Equation 2.8. In this equation the complexity of the tree f is given by the
number of leaves in the tree (T), the vector w containing the score for every leaf and
the constants � and �. XGBoost uses this definition of tree complexity to minimize the
overall complexity together with the loss, as described in 2.4.2.

⌦( f ) = �T +
1
2
�

TX

j=1
w2

j (2.8)

2.8 Previous Work

The first project experimenting with machine learning to solve HAR problems at IDI
was the work of Hessen and Tessem [2016]. Their data was collected in-lab and for
classification they used a Convolutional neural network (CNN) combined with a Hidden
Markov model. They also experimented with dynamic windowing of data in addition
to combining machine learning models with different training data to a type of voting
classifier. This classifier was then selecting a prediction from the pool of classifier based
upon the classifiers confidentiality in the prediction. At the same time Kongsvold [2016]
and Bårdstu [2016] wrote their own reports about data collection using accelerometer
sensors and how the data could be used in HAR work.

Vågeskår [2017] performed experiments with different window sizes on data from
stroke patients. A year later, Reinsve [2018] performed experiments with transitions
between activities, while in 2019, experiments with sampling rate to better sensor
lifetime was performed by Garcia [2019]. The same year, Hay [2019] experimented
with body-worn sensors for sleep-wake classification. All the work done previously in
the HAR field at NTNU was using everyday living activities.

2.9 Vigorous Data

All training data during this thesis contain periods of physical activity with vigorous
intensity. In short we call this vigorous activity. Stamatakis et al. [2021] defined vigorous

9https://xgboost.readthedocs.io/en/latest/tutorials/model.html, last accessed 26.11.2020
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activity in daily living as in definition 2.9.1. Vigorous activity is therefore expanded
upon and defined a bit broader in this thesis, and can be seen in definition 2.9.2.

Definition 2.9.1. Vigorous Intermittent Lifestyle Physical Activity: Brief bouts of
incidental physical activity that are done during activities of daily living.

Definition 2.9.2. Vigorous Activity: Brief bouts of physical activity that are done during
activities of daily living or vigorous sessions of physical activity.

As for actual vigorous activities in this project the following activities will be classified
as vigorous:

• Crabwalk

• Jumping

• All sorts of running

• All sorts of skipping

Where crabwalk is rapid sideways movement when playing handball. This movement is
usually performed when the players are defending the goal. Examples of data streams
from the accelerometer sensors can be seen in figure 2.6. The first data stream shows
running forward, the second running backward and the last walking. The first two data
streams contain vigorous activity, while walking is non-vigorous. To be able to classify a
time period as vigorous a certain percentage of the period needs to be vigorous activity.
For example, if a person is running forwards for a second and standing still for a minute,
the whole period will not count as vigorous activity. However, if a period over a minute
contains a majority of vigorous activities, that whole period should count as vigorous
activity. This is done by finding the majority class present in portions of data called
windows. Windowing of data and majority class selection will be explained in section
5.1.

There are also non-vigorous labels in the training data for the machine learning
classifier, having labels such as walking and standing. A table displaying every label and
whether the activity is vigorous or not can be seen in table 2.1.
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Label Vigorous
Walking Non-vigorous
Crabwalk Vigorous
Running Vigorous
Running forward Vigorous
Running backward Vigorous
Skipping sideways Vigorous
Shuffling Non-vigorous
Stairs (ascending) Non-vigorous
Stairs (descending) Non-vigorous
Standing Non-vigorous
Sitting Non-vigorous
Transitions Non-vigorous
Bending Non-vigorous
Undefined Vigorous
Jumping Vigorous

Table 2.1: The full list of labels and whether or not the labels are vigorous.
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(a) Signal from subject TAH1007 running forward.

(b) Signal from subject TAH1007 running backwards.

(c) Signal from subject LOC101 walking.

Figure 2.6: Three data streams for different labels. Running forward and running backwards
are vigorous activities, while walking is non-vigorous.
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Chapter 3
Related Work

This section presents related research to the work presented in this thesis. Most of
the papers presented in this section were found through a structured literature review
performed to get an understanding of the state of the art in the HAR field concerning
vigorous activities. Some previously known papers are also added upon the papers
found in the literature review to present the state-of-the-art research relevant for this
thesis.

To find relevant papers Google Scholar1 was used as the primary search engine.
The literature review was performed in the early autumn 2020 and the search words
included were human activity recognition, machine learning, accelerometer, vigorous,
sports and Axivity. At the time of the literature review these search terms resulted in
a total of about 120 papers. This was shortened to a total of six papers, were one
was cut of as a result of a quality assessment later on. The criteria used to score the
different studies was gathered from NTNU AILab’s definition for a good research paper
and can be seen in table B.1 in the appendix. All papers included were using the same
sensors as the HUNT4 study, while most of the papers either included vigorous activity
or mentioned vigorous activity as future work in the HAR field. Later on three papers
were added because of their interesting sensor placement for data collection.

This chapter is separated in three sections. The first section gives a perspective into
the different sensor placements and activity types during data collection. The second
section focuses on the different machine learning methods used in the experiments
presented in the papers. Lastly, a summary of the finds are discussed at the end of this
chapter.

1https://scholar.google.com/, last accessed 03.12.2020
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3.1 Sensors

This section focuses on sensor placement and the number of the sensors used for data
collection. Most papers used a few body worn Axivity AX3 sensors, usually two to three,
for their data collection.

Steels et al. [2020] classifies moves made in the sport of badminton. They collected
data by having two subjects repeatedly perform common badminton moves. They
placed a single Axivity AX6 sensor on the bottom of the racket’s grip, the wrist or the
upper arm of the subject.

Widianto et al. [2019] used five AX3 sensors from Axivity, placed on lower back,
sternum, ankle of dominant foot and on both wrists, to measure the intensity of activities
performed by 12 individuals. Their labels consisted of sedentary, light, moderate and
vigorous. This study did not include any activity containing vigorous activity, but is
included since adding vigorous activities was mentioned as a natural next step for
future work. Their most vigorous activity in the training data was jogging, which was
measured as moderate.

Hedayatrad et al. [2021] compared an older and more sensor ActiGraph GT3X+with
the newer sensor Axivity AX3 to ensure consistency with older devices. The participants
in their study wore both sensors concurrently while performing prescribed activities.
Both accelerometers obtained a balanced accuracy of 74%-96%, with the Axivity AX3
sensor outperforming the older sensor slightly for detection of posture and physical
activity intensity.

Narayanan et al. [2020] evaluated different dual-accelerometer systems’ accuracy
classifying a broad range of behaviours in an free-living environment. Their participants
wore three Axivity AX3 accelerometers for two hours. The sensors were placed on the
thigh, back and wrist to eventually do comparisons for the combinations thigh–back,
thigh–wrist and back–wrist, using machine learning to classify. The best performing
accelerometer combination was the thigh-back with an overall accuracy of 95.6%. The
other sensor combinations had an accuracy drop of at least 11%.

Small et al. [2020] experimented with lowering the sampling rate for accelerometer
sensors to increase study monitoring periods. Their study try to assess the effect of
such a reduction in sampling rate by looking having sensors collect data sampled at
25Hz and 100Hz. The sensor placement used in this study was a wrist-hip combination.
The study concluded with the different sampled accelerometer data having predictable
differences, which can be accounted for in inter-study comparisons. They also state
that sampling rate should be reported in any physical activity study, tailored in study
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design and tailored to the outcome of interest.

3.2 Machine Learning Methods

The following section focuses on the machine learning methods used in the relevant
papers. The studies presented achieve promising results for their specific areas of
research. The papers use machine learning methods to classify sport specific and
everyday living activities.

Steels et al. [2020] used a CNN for classification, were the activities classified were
different kinds of badminton moves. The CNN had a precision of about 86% when only
using accelerometer data and improved to 99% when combing the accelerometer data
with a gyroscope. The paper also included a weight based neural network approach
which could indicate clear mistakes made by the model. This weight based system used
action length in classification, giving the probabilities for each label a weight decided
by the length of the activity performed.

A different sport performance measurement system was developed in Khan et al.
[2017]. They used five different models based on Support-Vector Machine (SVM),
decision trees and K-Nearest Neighbors (K-NN) to find the best approach. Their research
goal was to make a system that predicted shot direction and performance based on data
gathered from sensors placed on subjects playing cricket. Having 20 different classes,
they managed to achieve an average F1-score of above 88% for the models.

Sani et al. [2018] used matching networks, which applies K-NN by reusing a label in
the most similar instances in a provided support set. In addition to this, they compared
their approach with normal K-NN, SVM and feed-forward neural networks. Their final
F1-scores ranged between 68% to 78%. The study used nine activities, including jogging
and different paces of walking. They state that variety in training data is of importance,
since there is a clear difference in model performance in personalized HAR systems and
general HAR systems.

Sani et al. [2017] used both deep and shallow learning when comparing models
trained on different sensor data. The data for the study was collected from 34 subjects
between the range of 18 to 54 years. Their study focused on comparing the performance
in models trained on two different sensors, namely wrist and thigh. For the training they
used a SVM to learn the shallow features, and a CNN to learn deep features. For the
results, thigh had the best score, outperforming the accuracy of the wrist data prediction
with 11%. The best scoring algorithm was a hybrid solution between the SVM and
the CNN. Their only vigorous activity was jogging, where the subject was jogging on a
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treadmill at moderate speed.
Widianto et al. [2019] trained a CNN for classification on everyday living activities.

They concluded that the next step for their study would be to include running in the
data to also classify vigorous activities.

3.3 Summary

There clearly is a lack of studies experimenting with general vigorous activities inside
the HAR field. Only a few of the studies in the scope of this literature search actually
dealt with vigorous data in particular. Also, almost every search result were released
after 2015 which indicates that this field has not been addressed a lot previously.

Some studies targeted specific vigorous activities connected to sports, such as
badminton or cricket. The badminton paper by Steels et al. [2020] provided a interesting
approach combining a neural network with weights from the matching of length in the
activity performed. A general vigorous activity classification model however, was not
present in any of the papers. Some of these papers also had creative sensor placements,
which is also an important topic in HAR work.

The most used algorithms were CNNs. Many seem to use deep learning algorithms
for these problems, which have also given promising results. An interesting and different
approach was the hybrid model that combined a CNN and a SVM to classify activities
[Sani et al., 2017]. This type of approach was not mentioned in any of the other papers.
In total these were the most common algorithms mentioned in the papers:

• CNN

• SVM

• K-NN

A lot of work has been put into this research field by professors and previous students
at NTNU, but vigorous data is currently an undiscovered field. This also seems to be
the case for the general state of art in this field. Even though neural networks, SVM
and K-NN were the most popular machine learning methods used in the papers found
in this section, XGBoost using decision trees were not discussed in these papers but
have shown promising results in previous HAR studies at NTNU on every day living
activities as shown in Hessen and Tessem [2016] and Reinsve [2018].

The reason for the lack of machine learning studies on general vigorous activities
could be the lack of good datasets. Hedayatrad et al. [2021] shows that the Axivity
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AX3 sensor outperforms the older sensor ActiGraph GT3X+ in detection of posture and
physical activity intensity. The best performing sensor placement in Narayanan et al.
[2020] was the thigh-back combination, which is the baseline for data collection in this
thesis. Their study shows the importance of good training data, where the other sensor
combinations had an accuracy drop of at least 11%.
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Chapter 4
Datasets

Two datasets were produced using data from participants playing handball and travers-
ing an obstacle course. These datasets were then used to create the training dataset
used for the machine learning algorithm. The age group of the participants for both
datasets are adolescents. This chapter explains the process of creating these datasets
from the raw data signal and manual annotations, and presents the characteristics and
differences between the datasets.

Both datasets contain accelerometer data recorded by the Axivity AX3 from adoles-
cents’ movements where one of the datasets contains data from two handball training
sessions, while the other contains data from participants exercising in an obstacle course.
Both datasets were recorded at 100Hz. The handball data was collected in an out-of-lab
environment where the subjects performed a normal handball training session. The
obstacle course data however, had a strict setup the adolescents had to follow. Therefore
this data will be counted as in-lab data. The two datasets were combined into a single
dataset which will be referred to as the training data in this thesis.

Additionally, during the course of this thesis, an additional dataset of young adults
running backwards and forwards was created. This was done to both evaluate the
machine learning algorithm on data gathered from young adults and to see if the
machine learning algorithm was able to improve its precision on selected labels.

4.1 Trondheim Adolescents Handball

The Trondheim Adolescents Handball (TAH) dataset contains recordings of five handball
players practicing handball twice in the span of 24 hours. The data collected for the
TAH dataset was gathered in 2019. The subjects were all male with an average height
of 182.50cm and an average weight of 77.17kg. The subjects had an accelerometer
placed on the lower back and at the thigh. The adolescents wore the sensors for about
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24 hours, which included two sessions of playing handball for about one and a half
hour. Both handball sessions were video recorded for the manual labeling and it was
from these sessions we built our dataset.

For this study the dataset was engineered to only include the handball sessions
by removing areas containing low amounts of vigorous activity, such as sleep during
the night. One of the players did only participate in one of the sessions, which makes
one of the entries a bit shorter as only one handball session was included in the data
collection. A example of the raw data can be seen in figure 4.1, where the handball
sessions are marked with red squares. The start of the recording happened with the
first handball session at afternoon the first day. The handball session was recorded with
a video camera, so each participant’s activities could be labelled manually after the
training session.

Figure 4.1: An example of handball subject’s raw data from both back and thigh sensor. Red
squares indicate handball sessions, blue sleep and black everyday living activities. The parts
before and after these squares represent recorded data with the sensors not attached to the
subject.

The time in between the two training sessions was also recorded with periods of
sleep, school and free time displayed as blue and black. Here blue is the estimated
period of sleep and black periods estimated periods of free time. It should be noted
that these squares are estimated periods found in the visualisation of the data. The
recording ended after the second handball session the second day.

In figure 4.2 one can see an example of the finalized training data, where the two
handball sessions from the same subject as in figure 4.1 are annotated and combined
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into a single file. The ground truth for this example is shown as a black scatter plot
and the split between the two days in the figure is in the long sitting session in the
middle. An overview of the activity distribution in the dataset can be seen in table 4.1
Running forward is the most present vigorous activity in the dataset. The total amount
of vigorous activity in the dataset is about one hour and 30 minutes, which is about
14% of the dataset.

Figure 4.2: Labelled training data from subject TAH1008 playing handball. Here labels are
shown as a black scatter plot together with the accelerometer data for each sensor.

Label Distribution Total time
Walking 47.4% 4 hours and 56 minutes
Standing 25.7% 2 hours and 41 minutes
Sitting 11.7% 1 hour and 13 minutes
Running forward 10.0% 1 hour
Crabwalk 2.9% 18 minutes
Running backward 1.1% 7 minutes
Jumping 0.1% 6 minutes
Transition <0.1% < 1 minute
Skipping <0.1% < 1 minute

Table 4.1: The label distribution in the TAH dataset.
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4.2 Lundamo Obstacle Course

The Lundamo Obstacle Course (LOC) dataset was collected in an in-lab like environment.
This data collection included a total of 18 participants, where 10 of the participants’
data could be synchronised using the HAR Framework and hence are included in this
new training dataset. Of these, seven participants were boys, while the remaining three
were girls. The 10 subjects were all adolescents having an average height of 169.60cm
and an average weight of 59.33kg. The subjects had an accelerometer placed on the
lower back and at the thigh, collecting data of the subjects movements during the
traversion of the obstacle course.

Figure 4.3: An obstacle course having the participant running forward with sideways motions to
move around the cones.

The dataset recorded contained a variety of different movements, where our main
focus is on the running parts since this is counted as a vigorous activity. The running
parts were recorded in an obstacle course closely resembling the one in figure 4.3. The
label distribution in the dataset can be seen in table 4.2. It should be noted that running
in this dataset is mostly forwards running, but with a systematic sideways pattern
created by the subjects traversing the obstacle course. This must not be confused with
the labels running forward and running backward which is introduced in the TAH dataset.
This will be kept as running for the classification model later on, to explore if the model
actually separates these specific movements created in a more in-lab environment.

4.3 The Running Backward and Forward Dataset

During the evaluation of the machine learning model in this project, a certain mistake
made by the model needed further experimentation. The model confused running
backward with running forward, which can be seen in section 6.2. An additional dataset
was created, to both evaluate the machine learning algorithm on data gathered from
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Label Distribution Total time
Walking 40.3% 2 hours and 45 minutes
Standing 24.0% 1 hour and 55 minutes
Running 22.6% 1 hour and 32 minutes
Sitting 10.0% 41 minutes
Shuffling 2.5% 12 minutes
Undefined 0.2% 1 minute
Transition 0.1% 1 minute
Stairs (descending) <0.1% < 1 minute
Stairs (ascending) <0.1% < 1 minute
Bending <0.1% < 1 minute
Non-vigorous activity <0.1% < 1 minute

Table 4.2: The label distribution in the LOC dataset.

young adults and to see if the machine learning algorithm was able to improve its
precision on the selected labels.

The in-lab dataset Running Backward and Forward (RBF) was produced to evaluate
the machine learning model trained on the mentioned two datasets. This dataset was
created by having four young adults run backwards and forwards for short periods.
The young adults were two male and two female. The dataset contains mostly running
backward and running forward, since these labels turned out to be difficult for the
machine learning model to separate, which in turn will be covered further in chapter 5.
In addition to these labels, other relevant labels were also mixed in.

4.4 Annotation Process

During the project period the raw data was engineered into the previously mentioned
datasets. To do this the raw data from thigh and back sensor was synchronized by using
functionality already present in the HAR Framework. After this process, the data was
labelled by aligning a file containing the labels with the synchronized accelerometer
data. This was done visually by aligning sensor spikes from heel drops performed at
the start of each vigorous session. Then all the subjects from the two datasets were
combined into a single dataset, creating our training dataset.
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4.5 Data Resampling

The training dataset was resampled from 100Hz to 50Hz by applying a Fourier transfor-
mation to the dataset. This was performed to make the machine learning model learn
features from 50Hz data, since the data collected in the HUNT4 study was collected in
50Hz.

4.6 Young HUNT

As a test dataset for processing larger amounts of data recorded for public health
research, the UngHUNT will be used. This is raw unlabelled data which was collected
during the HUNT4 survey. The survey is explained in more detail in section 2.2. The
dataset contains a total of 4905 subjects, where 1977 were male and 2928 female. The
average height of the participants were 168.86cm, while their average weight were
63.06kg. Average age for the participants were 17.2 years.

The UngHUNT data is particularly interesting since it contains movement data from
adolescents over a week, which matches the demographics of the training data created
during this study. The data collection was conducted for seven days, creating a large
dataset to analyse. This is an example dataset on which the classifiers will be used
when conducting public health research. For public health research it is interesting to
describe the time spent inactive, in moderate activity and vigorous activity, where the
resolution for the measurements usually is minutes of activity per day.
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Methods

This chapter presents the methods used in this thesis to develop the vigorous activity
classifier. This work addresses goal 2 and 3 which was set in section 1.1. The datasets
presented in the previous chapter are used to train, evaluate and optimize the classifier.
An XGBoost model for every day living activities is already present in the HAR framework.
A new XGBoost model is created by using the new training dataset, which consists of
the TAH and the LOC dataset. This chapter explains how the HAR Framework was
used together with various feature engineering methods to create and optimize this
vigorous model. During various experimentation performed during this study different
window sizes were tested. The window sizes tested through experiments are 1-, 2-, 3-
and 5-second windows. Feature extraction together with feature selection and mix-in
classification is also experimented with and is explained in this chapter.

The algorithm selected for the machine learning part of this study is XGBoost. The
literature review from chapter 3 shows that this algorithm still has not been used in
HAR studies using vigorous activity. XGBoost has however displayed great results in
previous HAR work at NTNU by Vågeskår [2017] and Reinsve [2018].

5.1 Data Segmentation: Window Sizes

A data stream containing the training data is sent to the machine learning classifier for
training, but to classify single data points is a hard task. There could exist overlapping
signals for different activities in the data, which would confuse the classifier. To make
this easier for the model, the data is separated into segments for both training and
classification. This method is called a static sliding window, giving the model windows
with a set size to classify. A single point in the accelerometer data from human movement
depends on the adjacent data points, since the signal is continuous. Additionally one
could also compute various features from these windows, by looking at trends, averages,
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minimums and maximums in the time series accelerometer data. This also includes
frequency domain features as explained in section 2.5. The HAR Framework uses static
window sizes and uses a 1.5 overlap when creating these windows.

Previous studies have shown that three to 5-second windows had the best precision
for models using everyday living data [Vågeskår, 2017]. However, using large window
sizes on vigorous data has a disadvantage of losing activities that are shorter than the
window size. Figure 5.1 gives an example on how the window size effects the training
data. This figure shows the length of different activities found in a part of the handball
dataset. The top figure shows the labels for a 1-seconds window while the lower figure
for 3-seconds windows of the same data sequence. The top figure shows the labels for
a 1-seconds window while the lower figure for 3-seconds windows of the same data
sequence. In the 3-second data labels the vigorous activities running backward and
jumping are discarded as their duration is too short to mark them as a full window.

Figure 5.1: Plots of the ground truths for subject TAH1007 using two different window sizes.
The top plot has 1-second windows, while the last plot has 3-second windows.

The training data is annotated with ground truths for every entry in the dataset.
These ground truths were made from the video recording of the subjects, which in
turn was aligned with the accelerometer signal. As an example a 5-second window
containing 50Hz data gives 250 datapoints with their own labelled ground truth. The
featurized dataset, however, consists of the features produced from these 250 datapoints,
with a single label as a ground truth for this whole 5-second period. This is a result
of the majority class selection performed on the 250 ground truths when creating this
training data, where the majority class is selected from the these 250 ground truths.
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This could be problematic for vigorous activities when using larger window sizes, since
vigorous activities are shorter than most every day living activities.

The data collected from the handball sessions had most of these short activities. The
length of the different activities found in the handball data can be seen in figure 5.2. The
top figure shows the labels for a 1-seconds window while the lower figure for 3-seconds
windows of the same data sequence. This can especially be seen in the 3-second data
labels in figure 5.1, where the vigorous activities running backward and jumping are
discarded as their duration has been too short to mark them as a full window.

Figure 5.2: Box plot displaying the length of short activities in the TAH dataset from the handball
sessions.

However, for the overall aim of this thesis, which is detecting vigorous activity
in the HUNT4 data, the minor vigorous activity mistakes will most likely not have
an significant impact on the overall results. This is because the vigorous activities
most likely will be confused with other vigorous activities. This hypothesis is based
of the accelerometer signals from section 2.9.2. Different window sizes are tested in
section 6.1 of the experiments. To make the window sizes reasonable for public health
research, the results from the machine learning model’s predictions need to have some
post-processing applied. This will be discussed shortly in chapter 8.
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5.2 Feature Extraction

Giving an ensemble learner raw data is usually not the best approach for a high per-
forming model. A set of features was extracted from the data by using functionality
present in the HAR Framework. These include both time and frequency domain features.
During training and classification, each feature is calculated for every window in the
sliding window approach. This is also another reason why the smaller window sizes
slow down the model. Every feature is explained in more detail in table 5.1 and table
5.2. Features were calculated for the x-, y-, and z-axis for both sensors and the norm of
each data point. The actual models created by these features learn a total of 95 features
before feature selection, since they use input from both sensors.

Table 5.1: Most common frequency domain features as described in Hessen and Tessem [2016].

35



5.3. FEATURE SELECTION CHAPTER 5. METHODS

Table 5.2: Most common time domain features as described in Hessen and Tessem [2016].

5.3 Feature Selection

This section explains the feature selection process that was performed for multiple
reasons. Firstly, the model would become more transparent, therefore simpler to explain
with less features. Also, the model could benefit from the removal of potential cluttering
features, improving its performance. The feature selection process was performed on
2- and 3-second window models to investigate if slightly smaller window sizes would
affect the F1-scores in any way. The process of evaluating the models with different
amount of features is shown in figure 5.3. This figure illustrates how training data
is processed to extract the feature importances and the metrics for the model with
different amount of features.

When performing the feature selection LOOCV was done multiple times as can

36



CHAPTER 5. METHODS 5.4. MIX-IN CLASSIFICATION

Figure 5.3: The process of computing the F1-score for the development of vigorous classification
models using various combination of features.

be seen in the last box in figure 5.3, starting with a run using all features to extract
the feature importances. The F1-score of this run was then saved. After the initial
LOOCV, multiple LOOCV runs were performed, starting at the most important feature
and adding one feature for every iteration. For each run, the best F1-score was saved
for comparison later on. After reviewing the results, a cut was made at 22 features.
This amount of features was the number needed to surpass the model using all features,
while having more features would make the model slower when running predictions.
After this step, the 3-second window size model was created by using the 22 best
features with a three second window size for further experimentation. The 3-second
window model was selected for further experiments, since the model using a 2-second
window size did not reach any higher F1-score for 22 features. For further references
to this model it will be defined as the Feature Selection Model (FS-MODEL).

5.4 Mix-In Classification

This section explains how in-lab data was used in experiments to see if the model
could increase it’s performance on specific activities by giving it more data containing
activities that were less present in the TAH and LOC dataset. During development
we noticed that running forward and running backward was not detected well and we
therefore decided to investigated the issue. It turned out that the periods of running
backward were small, hence the possible need for more training data in a mix-in model.
A successful approach of creating a mix-in model can be seen in [Hong et al., 2016].
Figure 5.4 shows a 3-second window model’s predictions on the first subject in the RBF
dataset. Here the model struggles to separate running backward and running forward
which is the main focus in this experiments.
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Figure 5.4: Comparison of ground truths (pink) and predictions (black) with the sensor data in
the background for subject RBF01 in the RBF dataset. The predictions were created by a 3-second
window model. Accelerometer data from both sensors can be seen in the background.

In the mix-in experiment, a model 3-second model is trained to predict on the RBF
dataset, which creates a confusion matrix from the predicted values. Thereafter a new
model is trained by mixing a single subject from the RBF dataset into the training data.
Then the model trained on the mix-in dataset performs predictions on the remaining
subjects in the RBF dataset. Then each confusion matrix from the predictions created by
the mix-in models get averaged, creating a single matrix for the mix-in classifications.
The experimental results can be seen in section 6.4 and will be further discussed in
chapter 7.

5.5 Vigorous Activity Detection

For the last part of the project the FS-MODEL was tested on the UngHUNT dataset. A
selected window in the data was identified as vigorous if the label was included in the list
which was defined in chapter 4. This was implemented as post processing functionality
and the results can be seen in section 6.5. This was done for multiple subjects in the
UngHUNT dataset, but subject 4184201 proved to be particularly interesting. This
subject had a day with a significant period of vigorous activity, which can be seen in
figure 5.5. The data from this subject will be used to verify if the machine learning
model manages to classify vigorous activity correctly in section 6.5. The plot in the
figure shows accelerometer data from the sensors the subject wore. Large sections
of lying can bee seen at the start of the data stream, where the subject most likely is
asleep and is turning around in bed. The period of vigorous activity is from about 11:30
to 13:00. Before and after this period, the signal looks like combinations of walking,
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standing and sitting. At the end of the day, the signal from the subject shows lying
down once again.

Figure 5.5: Raw accelerometer signal from a single day. The signal is from subject 4184201 in
the UngHUNT dataset.
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Experiments and Results

This chapter showcases the results from the experiments conducted and addresses the
research questions formulated in the beginning of this thesis. The discussions of the
results are presented in chapter 7.

The experiments were conducted on a remote computer containing the HAR Frame-
work, datasets and hardware needed. This remote computer uses multiple Central
Processing Units (CPUs) and has a total of 144 CPUs available. To create the results
the HAR Framework’s implemetation of LOOCV was performed on the training data,
which consisted of the TAH and LOC datasets. The average time for a single run of
LOOCV took 20 minutes, using every feature defined in the framework. For the mix-in
classification, the RBF dataset was used in addition to the training data. In the last
experiment model created through feature selection was tested on the UngHUNT data.
For each run of LOOCV in the experiments the following parameters were tested:

• Learning rate: 0.1

• Max depth: [20, 30, 40]

• Number of estimators: [60,70]

• Subsample: 0.6

• L2 regularization: 1.0

6.1 XGBoost Model Window Sizes

This section presents the results obtained from the LOOCV run using different window
sizes on both the TAH and the LOC dataset. The results are presented using two different
metrics, where the models’ performance for single activities is shown by a comparison of
precision. Subject-wise performance is measured by the models’ accuracy for individual
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subjects. The window sizes being used in these experiments are 1-, 3- and 5-second
windows.

6.1.1 Experimental Results

Figure 6.1 and figure 6.2 presents the results of the experiments to decide on the
window size. Both figures show the average scores after the LOOCV runs using the
training dataset, which consists of the LOC and TAH dataset.

Figure 6.1 shows the precision for selected activities. The precision for each activity
was calculated from the confusion matrix created by LOOCV. The different runs’ accuracy
for each subject can be seen in the last figure. This was acquired by having the LOOCV
algorithm save predictions for the subject left out of the iteration, creating predictions
for every subject in the training dataset.

Figure 6.1: The activity-wise precision from both the TAH dataset and the LOC dataset. The plot
shows results from the 1-, 3- and 5-second window model.

The 5-second window model has the best precision for every activity, except for
shuffling, running backward, running forward and jumping. The 1-second window model
performed best in these labels, except from running forward where the 3-second model
had the best precision.
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Figure 6.2: The overall subject-wise accuracy for both the TAH and the LOC dataset, using the
predictions from the 1-, 3- and 5-second window model.

Figure 6.2 shows performance per subjection, where the 5-second window model
has the highest average accuracy, while the overall accuracy is slightly lower for smaller
window sizes. The overall accuracy of the models’ predictions for the subjects are
similar, but by looking into the details, the predictions on the LOC dataset is higher
than for the TAH dataset. Every prediction on subjects in the LOC dataset has high
accuracy, except for subject LOC107 which has the lowest accuracy for the 5-second
window model and even lower for smaller window sizes.

6.2 Vigorous Activity Model

This section includes results from the vigorous activity model created with LOOCV.
LOOCV gives the best parameters to avoid overfitting and also has the possibility to
give subject-wise and activity-wise performance measures. This model use the training
dataset (TAH and LOC) with a window size of three seconds.

6.2.1 Experimental Results

A confusion matrix was created from the result of the LOOCV. The matrix only includes
the most relevant activities for the vigorous activity classifier and can be seen in figure
6.3, while the full matrix can be seen in appendix C.1.
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Figure 6.3: A cropped confusion matrix from the standard model’s LOOCV run.

This matrix is missing some columns and their respective rows for readability. The
cropped matrix contains the most interesting finds and the full matrix can be seen in
figure C.1 in the appendix. This is also the reason why the numbers do not add up for
every row in figure 6.3, since the matrix miss columns with wrongly predicted values.
The optimal result for a confusion matrix would be for every value in a row to be at
the diagonal with 100%. This is mostly the case for walking, running, running forward,
standing and sitting, while other activities seem to be more spread. Sitting has a very
high precision, while the model confuses standing and walking. Running backward is
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mainly confused with running forward, which is also the case for skipping sideways and
jumping. Running from the LOC dataset is the vigorous activity with the highest score
of 92.5% correctly predicted samples.

The main goal is the classification of vigorous activity as a group. Figure 6.4 shows
the model’s results for classification of vigorous and non-vigorous labels. This figure adds
up every vigorous label and non-vigorous label found in appendix C. The corresponding
metrics for this confusion matrix can be seen in table 6.1.

Figure 6.4: The confusion matrix for vigorous and non-vigorous activities from the standard
model’s LOOCV run.

Metric Score
Precision 95.56%
Recall 95.38%
F1-score 95.40%

Table 6.1: The metric scores for the standard model’s LOOCV run when considering vigorous
and non-vigorous labels.

6.3 XGBoost Model Feature Selection

Feature selection is performed to both improve the model’s performance and also to
simplify the model, and make it more transparent. Feature selection is performed on
the machine learning model using both 2- and 3-second window data to compare the
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performance between the window sizes for different features. An in depth explanation
of how the feature selection was done can be seen in section 5.3.

6.3.1 Experimental Results

The result from the feature selection for the different models can be seen in figure 6.5.
The 3-second sliding window approach produced the F1-scores shown by the blue graph
in figure 6.5, where the score reaches a level comparable to the full feature model at
22 features. The 2-second window model’s performance with the different amount of
features can be seen in the same figure, where the 2-second window model reaches
the same F1-score as the 3-second window model. When more features are added the
3-second window model gets a better F1-score than the 2-second window model in
most cases.

Figure 6.5: Comparison of F1-scores from feature selection for both window sizes.

The final features for the FS-MODEL are shown in figure 6.6. This model is the 3-
second window model using the best 22 features. The y-axis in this plot shows the feature
names, while the x-axis shows the number of decision tree nodes using the selected
feature to split on. For the 22 best features, the x-orientation of the accelerometer data
is the most important. The y-orientation is the least used orientation. Both back and
thigh sensor are used in the best scoring features, while time domain features are more
important than frequency domain features. The feature importances for the 3-second
window model with all features can be found in figure C.3 in the appendix.
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Figure 6.6: The final feature importances for the model created from feature selection.

6.4 XGBoost Mix-In Models

This section shows relevant results from an analysis performed to understand why the
3-second window model misses to classify running backwards with a high percentage.

The first part of this experiment uses the standard vigorous 3-second window model
which was trained on the TAH and LOC dataset. This model performs predictions on
the RBF dataset through using the evaluation script present in the HAR Framework.
Finally an experiment is performed where a new model is trained again including one
of the subjects in dataset RBF together with the training dataset. Afterwards, these
models are evaluated on the remaining subjects in the RBF dataset. This is performed
for every subject in the RBF dataset. To create the results for the mix-in models, the
results for every individual model are added together and averaged to create a single
confusion matrix.

6.4.1 Experimental Results

The results of these experiments are summarized in two confusion matrices, which
can be seen in figures 6.7 and 6.8. Figure 6.7 shows the regular 3-second window
model’s mistakes in a confusion matrix, while figure 6.8 shows the same for the mix-in
models. Both models perform well for the labels running forward and standing, while
both confuse walking with standing, where the second model performs a bit better. The
main focus in this experiment was running backward which is confused with running
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forward for both models, where the first model classified 28.5% of the samples correctly
and the second model got 38.9% correct predictions.

Figure 6.7: Confusion matrix produced from the regular 3-second window model’s 0predictions
on the RBF dataset.
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Figure 6.8: Confusion matrix produced from the mix-in models’ predictions on the RBF dataset.

6.5 Vigorous HUNT4-HAR Pipeline

This section presents the results from running the vigorous HUNT4-HAR Pipeline on the
accelerometer data for subject 4184201 in the UngHUNT data. The FS-MODEL is used
for this experiment. The model returns 3-second window predictions, which is then
transformed into 5-second window predictions by using the nearest fit transformation.
The transformation is needed to make the predictions fit together with the original
pipeline, which has classifiers predicting with 5-second windows.

6.5.1 Experimental Results

In figure 6.9 one can see a plot of the predictions of UngHUNT participant 4184201
from the FS-MODEL. This accelerometer signal is from the whole day and is added
together with a scatter plot of the machine learning model’s prediction of vigorous
periods. The scatter plot shows a vigorous period from approximately 11:30 to 13:00.
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Figure 6.9: A view of the whole day (24 hours) of subject 4184201 in the UngHUNT dataset.
The plot shows accelerometer data with a period of vigorous activity around 12:00. The black
scatter plot shows if the machine learning model prediction is vigorous or non-vigorous.

Figure 6.10 zooms in the period between 12:00 and 13:00 and includes two variants
of the output labels from the FS-MODEL: one with the detailed activity classes (in
red with labels on the y1-axis) and the vigorous classification (in black with labels on
the y2-axis). The plot is sliced into a time span of about an hour. The data is from
a weekday at 12:00 to 13:00 during which the subject includes a high percentage of
vigorous activity. The output of the vigorous classifier can be seen in black in the scatter
plot.

Figure 6.10: An hour containing portions of vigorous activity from subject 4184201 in the
UngHUNT dataset. The black scatter plot shows if the data was classified as vigorous or not. The
orange scatter plot in the background shows the actual classes predicted.

Figure 6.11 shows the accelerometer signal for the whole day together with a black
scatter plot showing whether the predictions from the machine learning model are
vigorous or not.
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Figure 6.11: The accelerometer signal for subject 4184201 in the UngHUNT dataset together
with a black scatter plot showing if the activity was vigorous or not. The plot shows the vigorous
period from 12:00 to 13:00 on the selected day.
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Chapter 7
Evaluation and Discussion

This chapter summarizes the findings of the experiments and discusses the results
presented in the previous chapter. The first section of this chapter focuses on window
sizes and how the machine learning models created during experiments performed
with these different window sizes. The second part focuses on the performance of the
XGBoost classifier for vigorous activity detection, together with the literature study
looking at the state of the art in the vigorous physical activity HAR field. In this chapter
the research questions defined in chapter 1 is discussed and evaluated in the light of
results from the research and experiments.

7.1 Window Sizes

The results in section 6.1 show that the vigorous models with larger window sizes has
better average accuracy, but a model with larger windows also has less samples to
wrongly classify. Shorter window sizes give better precision for jumping and running
backward, while the model with a 5-second window either outperforms or has a com-
petitive precision compared to the shorter window models for the remaining vigorous
activities.

Even though the smaller window sizes give lower subject-wise accuracy in most
cases, the models with smaller window sizes manage to detect certain activities which
other models do not. This is a result of the training data not having these activities
because of the majority voting explained in section 5.1. The 5-second window model
could suffer from the majority class problem explained in the same section. Models
using larger windows are not able to learn an activity such as jumping, since the activity
will never be present in the training data using these window sizes. This can be seen in
the different models’ precision for jumping, where the 5-second window model does
not detect the activity at all and the 1-second window model clearly outperforms the
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3-second window model.

The Importance of Good Training Data

As stated at the end of section 2.3, movement patterns differ for people in different age
groups. Since the training data consisted of subjects in the age groups young adolescents
from TAH and LOC, the movements from young adults in the RBF dataset could be
problematic for the model. So the improvements shown in the mix-in classifier’s results
should not be taken as conclusive in the sense of the models improvement on the
original data. The results do however show that the model is able to adapt to new data
if it is given appropriate training data.

7.1.1 Discussion

For research question 2.1, the answer seems to be to use smaller windows when training
the machine learning models with the current functionality in the HAR Framework.
The models using long window sizes with the current sliding window approach are
not able to detect short activities, which includes most of the vigorous activities. The
5-second window model could not classify jumping, and did not perform well on other
short activities.

The classifier uses the majority class in a given window as the ground truth when
creating features from the training data. As for research question 2.1, there seems to
be some problems using this basic approach, since it favours more persistent activities
in the data. This could be fixed by using smaller window sizes, but this seems to affect
the overall precision of the model, since the model gets less data for each prediction.

The majority class data segmentation could make noise in the data, since a label
in the window could be the majority by just a few sample, leaving large parts of the
window as irrelevant noise. This could impact the purity of the training data, which
again could impact the model’s performance. This is of extra concern when handling
vigorous data since the vigorous activities have a shorter duration than other activities
in the training data, as shown in section 5.1. This section also shows both the problems
and advantages with smaller window sizes in more detail.

7.2 XGBoost for Vigorous Activity Detection

The results from the training of a XGBoost model on 3-second window training data
can be seen in section 6.2. The first confusion matrix containing activities in the results
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shows that the model has a high precision for daily living activities, such as walking,
standing and sitting. Running is the vigorous activity with the highest precision in the
model’s predictions. The matrix also shows that certain vigorous activities are hard
to tell apart. The model confuse most vigorous activities with running forward. This
includes jumping, running backward and crabwalk to some degree. These activities are
less present in the training dataset, which can be seen in section 5.1.

The 3-second window model does however separate vigorous data from non-vigorous
data with a precision of 95.56% and a recall of 95.38%. This gives a F1-score of 95.40%.
The training data consists of young people, or more precisely adolescents. Since the
age and demographic for the UngHUNT data is similar to the training data, the model
should also be able to separate the vigorous data found in UngHUNT reasonable well,
based on the previous results.

Results from predictions on the UngHUNT dataset can be seen in section 6.5. In
figure 6.9 the model detects a period of vigorous physical activity in the middle of the
day. This can also be seen in figure 6.10 and 6.11, where the model detects dense
periods of vigorous activity for the subject. Given the time and date of the collected
data being on a weekday at 12:00, this could be an example of a student’s physical
education lecture or any other mid day physical activity. Either way, the model clearly
picks up vigorous activity at this period, which fits the accelerometer signal. For other
periods of the day the model predicted moderate amounts of vigorous activity, which in
turn also fits the accelerometer data for these periods of the day.

7.2.1 Feature Selection

As shown in section 6.3.1 the models do not improve much after adding about 20
features during the feature selection. The 3-second window model reached a global
maximum at about 20-30 features before stabilising just below the maximum. The
2-second window model competes with the 3-second window model by it’s F1-score
in the experiment, but seems to perform worse when more features are added to the
model. Both the 2- and 3-second window model perform the best at about 20 to 30
features.

The thigh-back sensor combination is important in the FS-MODEL, since there is an
equal distribution of back and thigh features in the 22 features selected in the model.
Some of the most important features do also use the correlation between the two
sensors’ axes. X- and z- orientations are in this case the most important orientations on
the sensors. Time domain features are used the most, but frequency domain features
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are also important in the model.

7.2.2 Mix-In Classification

The results in section 6.4 show that the model adapts well and improves with the
new data. From the mix-in classifier’s results one can see a 10% increase of correctly
classified windows of running backward in the data. Walking also had an increase in
precision with the mix-in model, while both running forward and standing performed
slightly worse after mixing the data into the model.

7.2.3 Discussion

The literature reviewed in section 3 did not use the XGBoost classifier. This literature
search was performed answer the first research question mentioned in this thesis, namely
research question 1.1. The most used machine learning algorithms were SVM, K-NN and
CNN. The XGBoost algorithm was not found in any of the papers focusing on vigorous
physical activity. This algorithm is tested in this study to evaluate it’s performance
classifying such activities, since it has had good performances in previous HAR work at
NTNU. The thigh-back sensor combination also had good performances in the papers
found in the literature search, which is the baseline for data collection in this study.

The performance of XGBoost in this project is mixed. The vigorous models all
struggle to classify short activities such as running backward, running forward and
jumping. In the sense of research question 3.1, the models have high precision classifying
everyday living activities. The models do however make mistakes for for multiple short
and vigorous activities. The 3-second window model does well when isolating vigorous
activities from every day living activities. This model mostly confuses vigorous activities
with other vigorous activities, which makes the model work well for it’s purpose in
this thesis. This answers research question 3.3. The classification problem however
needs to be addressed, whether the data is the problem, or the algorithm. This will be
further discussed in chapter 8. The model is strict in classification of vigorous activity,
which fits the nature of the training data which the algorithm got, containing data
from adolescents playing handball and running through an obstacle course. With these
results in mind one could argue that XGBoost performs well, also for vigorous activity
detection.

For research question 3.2, the vigorous activity classifier needs at least 22 features
to reach the same performance as the model using all 95 features. The most important
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orientation is the sensors’ x-axis together with the z-axis, while the y-axis is less im-
portant. Time domain features are more important than frequency domain features,
while features from both sensors are useful in this model. The thigh-back combination
in the data collection is important, since the sensors are both important in the selected
features.
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Chapter 8
Conclusion and Future Work

This chapter concludes upon the research questions and goals set at the start of this
thesis. The goals are met by reviewing related work in the field, together with machine
learning experiments. Recommended future work from this study is also discussed and
explained in this chapter.

8.1 Conclusion

As a result from our study we have developed a machine learning algorithm that allows
researchers to classify vigorous activities in objective measurements through tri-axial
acceleromenters. This will lead to a better understanding people’s health through
vigorous physical activity detection in existing (HUNT4) and newly conducted data
collections1. The main method developed in this work consists of data segmentation
analysis and ensemble methods in gradient boosted trees to distinguish vigorous from
non-vigorous activity in accelerometer signals from sensors placed on the thigh and
lower back. Three goals were set at the start of this thesis to accomplish the aim of the
study, which was to detect vigorous activity in the HUNT4 dataset.

The first goal (Goal 1) of this thesis was to research and describe existing machine
learning approaches for vigorous activity recognition in HAR datasets. The literature
study reveals that several approaches have been tested in previous work, but there is a
lack of studies on vigorous physical activity detection with the Axivity AX3 accelerome-
ters. XGBoost was not used in any of the vigorous activity studies found in the literature
search, but is documented in this thesis. There is still work to do within the vigorous
physical activity field of HAR studies.

In the beginning of this work, we defined a set of research questions, which can be

1The ProPASS consortium is an initiative that aims at combining existing datasets which have the same
sensor setup as used in this thesis (https://www.propassconsortium.org)
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seen in chapter 1. Goal 2 and 3 in this thesis focus on the machine learning aspects of
the task and the windowing of training data. Goal 2 was met through experimentation
with the window sizes in the first experiment. The suitable window size found was
windows smaller than five seconds, where the 1-second window model performed
best for the shortest vigorous activities. Goal 3 was to create and evaluate a machine
learning model for vigorous activity, which was completed through various experiments
throughout the study. The 3-second window model classifies everyday living activities
with a high precision, while it confuse vigorous activities. The model do however
reaches a F1-score of 95.40% when detecting general vigorous activity, while it only
needs 22 features to perform at the same level as the full 95 feature model.

The overall aim of this thesis was to detect periods of vigorous activity in HUNT4
data. This aim was met with the 3-second window XGBoost classifier separating vigorous
from non-vigorous activity in the UngHUNT dataset, which is a subset of the HUNT4
dataset. The vigorous model created is embedded in the HAR Framework and hence can
run as part of the HUNT data analysis. This makes the results of this thesis accessible
for future studies.

8.2 Contributions

From our research goals and questions, which can be seen in chapter 1 we have made
four main contributions. The first and most important contribution is a machine learn-
ing classifier using the XGBoost algorithm to distinguish vigorous from non-vigorous
movement patterns in accelerometer data. The classifier succeeded with a F1-score of
95.40% and managed to detect vigorous periods in the HUNT4 data.

Our second contribution is the research done on window sizes in HAR work using
vigorous accelerometer data. During our work we contributed with insight into suitable
window sizes for vigorous activity detection in long-term HAR datasets.

An XGBoost classifier for vigorous activity detection was also created by using data
from two body worn Axivity AX3 accelerometers. This novel approach that was not
tested in the studies found in the previously performed literature review. The classifier
separates vigorous activities from non-vigorous activities well, but work still needs to
be done on the individual activity classification.

As our final contribution, a training dataset was created and used to train a vigorous
activity classifier. This dataset consists of the TAH and LOC dataset and is embedded
into the HAR Framework for use in future studies.
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8.3 Future Work

As mentioned in chapter 7, vigorous physical activity HAR has not been researched a lot
so far and the work presented in this thesis opens for more research in the field. This
section proposes a few next steps in terms of vigorous HAR and focus on training data,
and machine learning algorithms.

8.3.1 Data

The training data for a machine learning algorithm is the key for the algorithm to be
able to classify data with high precision. With the inclusion of the TAH dataset in the
training data, the models created during this study got out-of-lab data which proved
difficult to learn. The mix-one-in model proved that the model was able to improve on
new data, given relevant training data. Gathering tailored data for particular activities
which is not sufficiently available in the existing datasets is a good approach to improve
the classifier. Hence the model could improve further and this is shown in the mix-in
models’ increased performance for running backward. The in-lab dataset needs to be
further researched though, since the mistakes made for walking did not show up during
the initial LOOCV with the XGBoost model using the original training dataset.

Also, post-processing should be applied on the final machine learning results, to
have the windows make sense for public health researchers. For public health research,
vigorous physical activity windows of 1-5 seconds might not make sense. This needs to
be addressed and post-processing of the results applied if found necessary.

It would also be beneficial to include the automatic synchronisation in the HAR
Framework, which would make work with new datasets a lot faster. This would simplify
the work by automatically synchronizing the labels with the accelerometer data, instead
of doing this manually.

Some labels were cut from the confusion matrix shown in section 6.2. These labels
were cut for either being uninteresting for the results in this report, or for having just a
few entries in the dataset. Most of these labels could probably be cut from the training
data to remove potential noise in future work.

Hay [2019] recently used body worn sensors to recognize sleep-wake patterns
using accelerometer data. In her thesis she mentions a potential next step of including
temperature from the sensor data, which is a feature in the Axivity AX3 sensors. During
longer periods of vigorous activity the body, and in particular the muscle where the
sensors are mounted, gets warmer. If the further focus on vigorous activity recognition
is outside everyday living, targeting longer periods like for example a match of handball,
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then temperature could play a big part in increasing the overall F1-scores for the
XGBoost model presented in this thesis.

Dynamic Windows

The current windowing approach has some disadvantages for vigorous activity. A
solution to this could be to include some kind of weighting of activities when deciding
ground truth for a window, rather than using a majority vote. This would give shorter
activities a better chance with the current data segmentation implementation. Another
approach would be to implement a new binary classifier, by reformatting the training
data presented in this thesis to two ground truths, vigorous and non-vigorous. By doing
this, short vigorous activities close to other short vigorous activities would have a better
chance of being detected when majority voting is performed, since both activities are
read as vigorous.

Hessen and Tessem [2016] previously tested approaches using dynamic windows
instead of static window sizes. This study used static window sizes in the sliding window
approach. A logical next step would be to implement a dynamic window in the HAR
Framework for data segmentation. This would make the data include every label in
windows with different sizes, fixing the issue created by using majority vote with as
short activities as presented in this study.

In their study, Hessen and Tessem [2016] also used a voting classifier. This classifier
contained different machine learning models with different window sizes which selected
the prediction from the classifier with the highest confidentiality in the prediction. This
could be useful for an eventual combination of vigorous and every day living classifier,
since the vigorous classifier does not have lying or sleep in the training data, hence it
does not predict these labels.

8.3.2 Machine Learning Algorithm

This thesis only covered a single algorithm’s performance on adolescents data. This could
be broadened to also include adults data, with experiments using multiple algorithms to
measure their performance towards each other. Notable mentions for machine learning
algorithms would be the following:

• CNN

• SVM

• K-NN
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Which was found in the previously performed literature review. These algorithms
displayed great results in their respective papers where specific vigorous activities were
classified, such as badminton moves. These algorithms still need to be measured in
general vigorous activity detection using body worn accelerometers.
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APPENDIX A. DATA STREAMS A.1. ACCELEROMETER DATA FOR SINGLE LABELS

A.1 Accelerometer data for single labels

Figure A.1: Signal from subject TAH1007 jumping.
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Figure A.2: Signal from subject LOC101 running.

Figure A.3: Signal from subject TAH1007 running forward.
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Figure A.4: Signal from subject TAH1007 running backwards.

Figure A.5: Signal from subject LOC101 walking.
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APPENDIX B. LITERATURE SEARCH QUALITY ASSESSMENTS B.1. QUALITY ASSESSMENTS

B.1 Quality Assessments

Criteria identification Criteria

IC1 The study’s main concern is Human
Activity Recognition.

IC2 The study focuses on solving a ma-
chine learning problem.

IC3 The study uses the relevant Axivity
sensor.

IC4 The study uses vigorous data to
some degree.

QC1 Is there a clear statement of the
aim of the research?

QC2 Is the study put into context of
other studies and research?

QC3 Are system or algorithmic design
decisions justified?

QC4 Is the test data, study algorithm
and experimental setup repro-
ducible?

QC5 Is it clearly stated in the study
which other algorithms the study’s
algorithm(s) have been compared
with?

QC6 Are the performance metrics used
in the study explained and justi-
fied?

QC7 Are the test results thoroughly anal-
ysed?

Table B.1: The criteria used to select studies for the final quality assessments. IC stands for
inclusion criteria and QC for quality criteria.
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APPENDIX C. RESULTS C.1. STANDARD MODEL CONFUSION MATRIX ON TRAINING DATA

C.1 Standard Model Confusion Matrix on Training Data

Figure C.1: The confusion matrix from the standard models LOOCV run on the training data.
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C.2. PREDICTIONS ON THE RBF DATASET APPENDIX C. RESULTS

C.2 Predictions on the RBF Dataset

Figure C.2: Comparison of ground truths (pink) and predictions (black) with the sensor data in
the background for subject RBF01, RBF02, RBF03 and RBF04 in the RBF dataset. The predictions
were created by FS-MODEL. Accelerometer data from both sensors can be seen in the background.
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C.3 Feature Importances

Figure C.3: Number of times a feature is used to split a node in the decision trees in the 3-second
vigorous activity classifier.
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