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Abstract

A novel solution (ES-JLAT) for joint localization and tracking (JLAT) using error states
(ES) is developed and tested. The filtering performance of this solution is tested in a
number of Monte Carlo simulations, and compared to the performance of an already es-
tablished solution: an extended Kalman filter (EKF) comprised of both ownship and target
states.

ES-JLAT is defined in terms of several tracking filters, each interacting with a localiza-
tion filter. The contribution for this thesis stands as the development of tracking filters
which can infer corrections on the localization estimate based on positional measurements
of targets, as well as a method for condensing an arbitrary number of these corrections
into a single correction, and finally two methods for injecting such a correction into the
localization filter.

In the simulations, the localization objective is twofold, first is estimation of an ownship’s
position and velocity, generated using a constant velocity (CV) model. Second is estima-
tion of its heading, generated as a random walk process. Note that velocity and heading are
decoupled, to emulate the motion range of a fully actuated vessel. Furthermore, the track-
ing objective is estimation of the position and velocity of two independent targets, also
generated using CV models. Either solution is provided with positional measurements
of all vessels (fully associated), in a global coordinate system, as well as range-bearing
measurements of the relevant targets, in a body (ownship) coordinate system. Crucially,
no direct observations of the ownship heading are provided, so either solution has to infer
heading from the range-bearing measurements in order to fulfill their localization objec-
tive.

The performance of both solutions is quantified as ensemble averaged timeseries’ of es-
timation error (EE) and normalized estimation error squared (NEES) over multiple sim-
ulations, as well as root-mean-square (RMSE) and average NEES (ANEES) values for
individual simulations. Resulting metrics are presented for a number of different config-
urations of ES-JLAT, as well as a ’baseline’ configuration of ES-JLAT without error state
injection, which effectively is a CV-filter.

After some design revision, the final variation of ES-JLAT presented was found to have
localization performance comparable to that of EKF, with marginally worse estimation
accuracy for position and velocity, and significantly more accurate heading estimation.
For estimation of target states, the performance was again comparable, being marginally
less accurate for position and velocity. As for consistency, the localization estimates were
found to be consistent, while the target estimates were mostly overconfident, finally the
EKF was under-confident on all counts.
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Sammendrag

En ny løsning (error state joint localization and tracking: ES-JLAT) for felles navigasjon
og sporing ved hjelp av feiltilstander er utviklet og testet. Filtreringsytelsen til denne
løsningen er testet i en rekke Monte Carlo simuleringer, og sammenlignet med ytelsen
til en tilsvarende, etablert løsning: et utvidet Kalman-filter (EKF) med både eget skip og
sporingsmål i sin tilstandsvektor.

ES-JLAT er definert som mange sporingsfilter, der alle interagerer med et felles navi-
gasjonsfilter. Bidragene i denne oppgaven er utviklingen av sporingsfilter som kan pro-
dusere korreksjoner på navigasjonsestimatet, en metode for å sammenfatte et vilkårlig
antall av disse korreksjonene ned til en enkelt konsensus-korreksjon, og til slutt to metoder
for å injisere denne korreksjonen inn i navigasjonsfilteret.

I simuleringene består navigasjon av to oppgaver, først er estimering av posisjon og hastighet
for eget skip, som er generert vha. en konstant hastighet (CV) modell. Den andre opp-
gaven er å estimere skipets kurs, denne er generert med en tilfeldig gange (random walk)
modell. Merk at skipets hastighet og kurs dermed er uavhengige, for å emulere et fullt
aktuert skip. For sporing er målet å estimere posisjon og hastighet til to uavhengige mål,
igjen generert med en CV modell. Begge løsningene blir tilført målinger i form av po-
sisjonene til alle skip (både eget skip og begge sporingsmål) som er fullstendig assosiert,
og gitt i et globalt koordinatsystem. I tillegg blir begge løsninger tilført avstand-peiling
(range-bearing) målinger til begge sporingsmål, gitt i et lokalt koordinatsystem (altså rel-
ativt til eget skip). Merk at ingen målinger av kursen til eget skip er tilgjengelige, dermed
kan kursen bare estimeres vha. de relative avstand-peiling målingene.

Ytelsen til begge løsninger er kvantisert med ensemble-gjennomsnitt tidserier av estimer-
ingsfeil (EE) og normalisert, kvadrert estimeringsfeil (NEES), snittet over mange simu-
leringer. I tillegg er RMS-feil og gjennomsnittlig NEES (ANEES) regnet ut for hver enkelt
simulering. Alle disse metrikkene er presentert for en rekke ulike konfigurasjoner av ES-
JLAT, i tillegg til en ’standard-konfigurasjon’ uten noen feilestimat-injeksjon, som tilsvarer
et konvensjonelt CV-filter.

Etter noe tilpasning av ES-JLAT ble resulater for den siste varianten presentert og sammen-
lignet med EKF. Disse navigasjonsresultatene viste seg å være marginalt mindre presise
for posisjon og hastighet, men markant mer presise for kurs. For sporingsmålene var re-
sultatene også marginalt mindre presise, men fortsatt konkurransedyktige. Når det gjelder
troverdighet (filter consistency) til estimatene, viste det seg at navigasjonsestimatene var
helt troverdige, mens sporingsestimatene var stort sett for selvsikre. For EKFs estimater,
var samtlige for lite selvsikre.
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Preface

This project is in certain aspects a successor to a similar project undertaken and docu-
mented during the fall and winter of 2020, resulting in a unpublished project thesis. Cer-
tain sections of this report (introduction, literature review, theory - notation) will re-use
some sections of this text, with varying degrees of paraphrasing. The relevant sections of
text, and their degree of paraphrasing will be made abundantly clear in these chapters.

With that being said, although the two theses share an overarching theme of joint localiza-
tion and tracking using onboard and onshore sensors, they differ in focus areas: previously
gathering and scrutinizing experimental data; now suggesting and testing a novel filter
structure. For this reason I hesitate to call this project a true continuation of the previous
project. By extension, it is only in the highly abstracted chapters which I deem the contents
of the previous report to be relevant for this one.

Huge thanks go out to both my supervisor Edmund Brekke, and co-supervisor Erik Wilthil,
whom have been exceedingly helpful with brainstorming, feedback on results and the
thesis, and overall guidance on this project. I am especially grateful for the opportunity
to pursue this new and weird solution for joint localization and tracking, despite it being
completely different from the approach we had planned at the start of this project, and for
the patience in helping figure the kinks during the infant stages of this project.

Finally, my thanks to Gustav Omberg, for some much needed feedback on the writing, as
well as my gratitude and appreciation for the remainder of my friends in the cybernetics &
robotics class of 21. It’s been a weird conclusion to our studies, but we’ve made the best
of it.
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Chapter 1
Introduction

A disclaimer:
This chapter shares certain paragraphs with its namesake in an unpublished project thesis
[1], written during the fall and winter of 2020, by myself, Magne Sirnes. Specifically, the
immediately following paragraph, as well as the first two paragraphs under ’Motivation’
are slightly paraphrased from this project thesis, and thus should not be considered part of
the ’new effort’ for the master thesis.

In the pursuit of increased autonomy, precise, fault tolerant absolute navigation and situa-
tional awareness are prerequisites to avoiding accidents. In chaotic, urban environments,
situational awareness is particularly challenging, for example because potential obstacles
can be obscured for the autonomous vehicle until near-collision situations, and thus present
themselves too late for traditional tracking methods. By introducing additional onshore
sensors which have a different perspective, one can detect otherwise obscured obstacles,
and let the autonomous vehicle know about them earlier than it otherwise would. Such on-
shore sensors would also at times be able to detect the autonomous vehicle, which can aid
with the navigation of the vehicle, especially if global navigation satellite system (GNSS)
is unavailable or unreliable, as it is liable to be in urban environments. Finally, for ob-
stacles and features which are detected by both onboard and onshore sensors, it should be
possible to cross reference these features. This can provide more precise information about
the features, but more importantly also infer information on the pose of the autonomous
vehicle. If onboard inertial sensors fail, it is also interesting to see whether passable local-
ization and tracking is achievable when only using vessel-detecting onboard and onshore
sensors.

1



Chapter 1. Introduction

1.1 Motivation

In much of the literature, localization and tracking have been abstracted into separate prob-
lems, which allows for cleaner modularization, at the cost of disregarding knowledge about
the inherently linked nature of these problems. While some solutions to this problem have
been attempted, such solutions have typically been limited to relative motion navigation
and scan-matching techniques, using only body mounted sensors which have strictly cou-
pled movement with the navigational object. This limits possible sensors, requires sub-
stantial feature density in the surroundings, and is finally computationally expensive. This
leaves a substantial hole in the literature, in terms of such methods that are more adaptible
to various sensor types.

Further expanding such methods to also include external sensors, for example for detecting
the ownship, detecting other objectives of tracking and the surroundings (e.g. features for
simultaneous localization and mapping, SLAM) is similarly untouched in the literature.

In unpublished project theses (Kjønås; Sirnes, 2020), experimental data using both onshore
and onboard sensors was gathered. These experiments consisted of multiple scenarios in
which the ownship, milliAmpere, as well as two target vessels maneuvered in a cluttered
harbor environment. This data was gathered for the sake of testing detection pipelines,
challenging multi target tracking, but more importantly for eventually testing joint local-
ization and tracking (JLAT) schemes.

The motivation for this thesis is to develop a JLAT scheme which should be able to achieve
reasonable performance in such scenarios, thus demonstrating the potential of combining
onboard and onshore sensors for joint localization and tracking in constrained (no GNSS,
compass or inertial measurement unit) conditions.

1.2 Scope

In this thesis, a JLAT scheme is developed as a combination of a localization filter and
multiple tracking filters, which interact with each other. This constitutes JLAT in the sense
that the tracking filters will use the localization estimates in order to process onboard
sensor measurements, after which they provide corrections to the localization estimate.
These corrections leverage the inherent connection between the ownship pose and the
target positions which is present in onboard sensor data.

For the tracking filters (which now also need to produce corrections for the localization
estimate), a ’compound’ filter structure is developed. This filter structure leverages a typ-
ical extended Kalman filter (EKF) for target state estimation, which is combined with a
variation of an error state Kalman filter (ESKF) for the localization correction estimation.
This effectively makes a compound filter in which EKF and ESKF are combined. A sig-
nificant part of the effort undertaken in this thesis consists of formulating this compound

2



1.2 Scope

filter, and especially deciding how the error state component of this filter should interact
with the localization filter.

With the new compound filter in hand, which is capable of harnessing all the information
present in onboard (relative) scans, we need to develop motion and measurement models
which fit this filter structure. A second significant part of the effort in this project is to de-
velop a few such preliminary models, and after some testing adapt these models into their
final forms. From a JLAT prespective, these models are crucial in the sense that they need
to fulfill all the usual criterion of target modelling, while at the same time internalizing
the connection between target and ownship states, which is needed for leveraging onboard
scans to the fullest.

The third and final part of development of this new JLAT scheme, is to bridge the gap
between a single compound filter interacting with a localization filter and a lots of inde-
pendent compound filters (one for each target) all interacting with the same localization
filter. In this thesis, a solution for this is suggested as a ’consensus model’. This consensus
model is capable of consuming error state estimates from every compound filter, and using
these calculate a single consensus estimate. This consensus estimate can then be used with
the same tools that were developed for the single compound filter case, thus generalizing
the JLAT scheme for an arbitrary number of targets.

In order to investigate the performance of this scheme, a secondary goal for this thesis be-
comes to implement a simulator which can run Monte Carlo simulations using this solution
and calculate important metrics for both accuracy and consistency. This simulation is built
to mimic the conditions of the experiments done during the fall of 2020, and thus features
a (fully actuated) ownship, which is capable of linear motion decoupled from rotation, as
well as two targets with independent motion.

Finally, to have some established solution with which to compare the results of our newly
developed scheme, a tertiary goal of this thesis becomes to select and implement such
a solution, in this case a full state EKF (filtering both ownship and targets states in the
same filter). Which will use similar motion and measurement models of those of our new
solution, and thus provide decent grounds for comparison. This ’full state EKF’ solution is
of course also implemented in the aforementioned simulator, with the same performance
metrics.

The primary goal of this thesis thus becomes to develop, implement and test the filtering
performance of the new JLAT solution, by using the developed simulator and comparing
its results to those of the full state EKF solution. A secondary goal becomes to analyse the
results of our new solution, and pinpoint any problems or shortcomings which need fixing.
Fixing these problems will be done during the project as part of the development, but also
as an effort for pinpointing and documenting all the problems which were not (usually for
lack of time or skill) fixed in development.

3



Chapter 1. Introduction

1.3 Structure of thesis

This thesis is structured in the following manner:

First, a brief summary of some relevant literature is provided.

Next, a number of theory chapters are included, starting with an introduction to filtering,
which leads into the formulation of the ’compound’ (nominal and error state) filter. Next,
a number of motion and measurement models are defined, for ordinary (KF/EKF) filters,
as well as the new ’compound’ filter. Following this, brief introductions to localization
and IPDA tracking are provided. These are both written in context with the previously
defined motion and measurement models, as well as extended to fit the suggested ’com-
pound’ filter. Finally, a chapter on joint localization and tracking is inlcuded. This chapter
describes the high level system in terms of interacting modules, an algorithmic example
as well as the functionality needed to combine the results of multiple tracking filters into
a single consensus. Furthermore, this chapter also defines the alternative full state EKF
JLAT solution, as a baseline for comparison.

Following the theory chapters, a simulation chapter is included. This chapter describes the
design and implementation of the simulator, as well as the various performance metrics
which the simulator calculates.

Finally, the results produced by the simulator, for both solutions, are presented and dis-
cussed in an analysis chapter. This is divided into bulks of results and discussion for every
configuration of the proposed solution, with a focus on comparing its results with those of
the full state solution with similar information available. These results are presented in a
’observe problem and propose solution’ narrative, in this sense their order should reflect
the workflow during the project, and become progressively more impressive.

Concluding the thesis are chapters describing relevant future work and overall conclusions.
This serves as a summary of the current capabilities of the proposed solution, and which
aspects of it need improving before it is useful for real-world systems.
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Chapter 2
Literature Review

A disclaimer:
This chapter is similar to its namesake in an unpublished project thesis [1], written during
the fall and winter of 2020, by myself, Magne Sirnes. Some changes have been made, es-
pecially wrt. theory surrounding error state Kalman filtering (ESKF) and Schmidt-Kalman
filtering (SKF), which did not feature in said thesis.

In this thesis, the problems of localization and tracking are overarching themes. For our
purposes, localization is defined as an estimation problem, in which the estimation objec-
tive is the pose of an autonomous vehicle (i.e. the ownship) in a global coordinate system.
For our purposes, as is typical for surface vessels, this pose is restricted to three degrees
of freedom. i.e. position, velocity and heading in the plane. Similarly, we treat tracking as
an estimation problem for other vessels (i.e. targets) in which the estimation objective is
the position and velocity in the plane. Typically, tracking is also subject to limited target
visibility, cluttered measurements and uncertain data association (i.e. we need to figure
out whether a given detection actually stemmed from the target in question, before we can
use said detection for estimation), for this reason we usually talk about tracking as the
compound problem of both data association and filtering.

In terms of combining localization and tracking, there has been a significant gap in the lit-
erature. This gap manifests itself in the fact that most tracking algorithms assume knowl-
edge about the ownship pose (position and orientation) with negligible uncertainty. In
cases where the ownship pose is not known, the problems of localization and tracking are
usually solved separately to fit this abstraction, i.e. localization then tracking. Only in
recent years has there been made made steps to address these as joint problems.

In this chapter, three categories of solutions for joint localization and tracking are re-
viewed. First are the tracking centered solutions, which assume the localization to be
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known, which can then retroactively make corrections on this localization estimate based
on tracking results. The second category of solutions are localization centered solutions,
such as variations of simultaneous localization and mapping (SLAM) adapted for dynamic
surroundings. Third are the true joint solutions, which are solutions designed from the
ground up to solve both problems jointly.1

2.1 Adapting trackers to aid localization

Another disclaimer:
At this point it bears mentioning that adapting trackers to aid localization really has not
been done much in the literature, and has historically been a no-no.

This is (among other reasons) because a ’localization then tracking’ scheme will
necessarily use the localization estimate in order to transform sensor data produced in
the body (ownship) frame (relative scans) into a global frame. Any error present in the
localization estimate will thus propagate into this transformed sensor data. If this data
contains detections used for tracking, we would expect all tracks to be ’injected’ with this
localization error. Taking this one step further, if we now use these tracking results to
influence the localization, we could potentially create a feedback loop in which an errant
localization estimate spirals out of control, because it is allowed to validate itself using
similarly errant tracking results.

What mitigates this problem, and why I endeavour to develop such a solution in
spite of this risk, is the presence of onshore sensors (with known poses) also producing
detections. These absolute detections can keep this divergence problem in check, and
should allow us to make the most of the relative scans, while also minimizing the risk of
drift or divergence.

What this section actually presents is literature related to dealing with localization
uncertainty in tracking, as well as literature presenting filter types which make adapting
trackers to aid localization plausible.

Assuming that the localization problem is solved first, separately, the consequence is that
one can use the resulting pose estimates to shift either detections or tracking estimates
from a (ownship) body-frame to a global frame. The nature of this approach, i.e. solving
one problem before the other has two immediate downsides. Firstly, both problems are
solved with less information, and secondly, whichever problem is solved last is affected
by whatever errors were introduced by solving the former. This makes tracking (solved
last) particularly tricky. This is because the two primary tasks of a tracker: data associ-

1Granted, there is a fine line between SLAM with dynamic surroundings and a truly joint solution, but I
maintain the distinction nonetheless. Especially considering conventional SLAM is only a localization scheme,
and that SLAM with dynamic surroundings does not include the elaborate target motion models we typically
associate with tracking.
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ation (figuring out which detections stemmed from what targets) and filtering (updating
track estimates based on associated detections), become significantly more difficult if the
ownship pose is unknown or uncertain. Efforts for consciously accounting for navigation
uncertainty in target tracking include [2; 3; 4].

From a tracking perspective, one can treat the localization error as a collection of nuisance
parameters, which may or may not be estimated as part of their mitigation. In the case of
not estimating such nuisance parameters (i.e. only considering their effect), the Schmidt-
Kalman filter is an established solution [5; 6]. It has some limitations though, namely the
assumption that the nuisance parameters are zero mean, and that we effectively disregard
any information that might be used to infer these parameters. In the literature, there are
some indications that although the SKF can greatly improve filter consistency, it does not
necessarily improve estimation accuracy to a significant degree (see [7] and particularly
fig. 2 of [4]).

As for estimating nuisance parameters explicitly, one could simply expand the tracking
filters to also include the localization error as part of the target state. Structurally this
behaves like any other filter (KF or EKF) and simply has some additional (not inherent to
the target) states. In [7] Brink notes that if the nuisance parameters are only intermittently
observable, then any filter trying to estimate them continuously (thus also in periods of
inobservability) is liable to diverge. If this is the case for the localization error, one would
expect such a filter to fail spectacularly. A more obvious downside is that we now have
multiple filters (both localization and tracking) that are all trying to maintain localization
estimates. In terms of computational expense, this is of course negative.

Having to choose either estimation (EKF) or consideration (SKF) is not always accept-
able though, especially in cases where these nuisance parameters are both intermittently
observable and we wish to maintain estimates of them. A few filter structures which
act as a combination (or compromise) of these two philosophies include the intermittent
Schmidt-Kalman filter (ISKF) and fixed-weight partial Schmidt-Kalman filter (FPSKF),
as suggested by Brink in [7]. A recurring theme with these schemes is that they first cal-
culate estimates for the nuisance parameters, as an EKF would. After which, using some
heuristic, decide how much of these posterior estimates to keep. In the case of ISKF, this
decision is binary, i.e. either fully estimate or only consider, depending on a binary ob-
servability heuristic. For the PSKF (and subsequent FPSKF), the degree to which new
estimates are kept is decided by a weight parameter instead, which provides some more
granularity, at the cost of requiring a more elaborate heuristic. Although not used in this
thesis, these schemes are mentioned for posterity, due to the obvious applicability of es-
timating and mitigating localization error as a set of (intermittently observable) nuisance
parameters.

The choice between these two philosophies (SKF vs. EKF) will inevitably boil down
to the question: ”Do I need to know what the nuisance parameters actually are?” In our
case, having explicit estimates of the nuisance parameters constitutes an opportunity to
achieve more accurate localization, for this reason, it is the latter which interests us in

7



Chapter 2. Literature Review

this thesis. The converse choice, namely using an SKF with navigational uncertainty to
improve tracking performance (without affecting localization) is explored in [4; 6].

Let’s preface this notion of nuisance parameters with the assumption that some decently
accurate localization estimate is already available. From there we can treat the residual
error of this estimate as an error state, i.e. we assume that it is accurate (zero mean, as
SKF requires), but we also acknowledge that there may be an error present. This error is
presumably observable using external measurements. In the literature, this is an estimation
problem for which the ’indirect’ error state Kalman filter (ESKF) is an established solution
[8; 9].

This filter achieves its localization objective by estimating the error between a nominal
estimate and its true state in every update step, after which it injects this error into the
nominal estimate, thus ’driving’ it towards the true state. Assuming now ’post-injection’
that there is no error in the nominal estimate, the ESKF internalizes this by performing a
reset-step, which manually sets the error estimate back to zero. There is one catch though,
namely that the traditional implementations of ESKF (see [8; 9]) typically leave an ESKF
as the lone guarantor of localization, in other words, the nominal state estimate is only
a state estimate, and does not have its own uncertainty estimate attached. To this end, it
falls to the ESKF to maintain such a localization uncertainty estimate, which by definition
should be just as uncertain as its error state.

Now we get into the contribution of this thesis. If we include one or more external filters
(i.e. trackers), which are maintaining error states of the localization variables (on top of
the nominal estimates for their respective targets), then it should be possible to use these
error estimates to aid a separate localization filter. In some sense, the trackers are taking
on the job of an ESKF, which can occasionally provide corrections (injections) to improve
the overall localization estimate. This is somewhat unorthodox, as we are now introducing
several redundant filters which all maintain some Gaussian estimate of the localization
state (or its error). We reach a point of contention upon trying to inject the error state
estimates into the localization filter, as the error state sections of the tracking filters (with
their redundant estimates) now have to interact with another filter. I have opted to label
such a scheme, which is the chief contribution of this thesis, as error state joint localization
and tracking i.e. ES-JLAT.

At this point, we have touched on both ESKF both SKF as relevant tools for localization
and tracking. It bears mentioning that both these schemes were originally designed for
mitigation of biases associated with measurements from inertial measurement units (IMU).
Such applications of these filters are presented in [5; 9; 8]. Noting that we are interested
in correcting the localization estimate (pose) directly, and not the typical IMU biases, we
are forced to dig a little deeper in the literature. On this topic, some relevant works I could
find are [6; 4]. While these are similar in terms of filter structure, they are still on the
side of ’considering’ (SKF) and not ’mitigating’ (ESKF). In this sense, the contribution
of this thesis becomes to adapt the filters used in [6; 4] from an SKF framework to an
ESKF framework, while also attempting to solve the problems introduced by injecting
error states into a ’competing’ nominal filter.
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2.2 Adapting localization schemes to do tracking

We now move along to solving the localization problem (separately). For this section,
we make no distinction between relative localization (how has my pose changed from my
initial condition) and absolute localization (what is my pose in relation to some global
frame). In state of the art localization without GNSS dependence, SLAM reigns supreme.
This is due to certain ubiquitous ’one-size-fits-all’ solutions which are able to combine ve-
hicle odometry (either from actuators or inertial sensors) with cheap extrospective sensors
such as cameras, and using these produces profoundly precise and drift free navigation
(provided loop closure is possible). This is also awesomely modular, as SLAM algorithms
will work with almost any sensor as long as it produces repeatable detections of landmarks
(which can be anything vaguely recognizable within the sensor data). Most of the SLAM
literature makes assumptions of the surroundings (i.e. landmarks) being fully stationary,
and uses the ability to recognize features within the environment (and their locations) in
order to solve the localization problem. Some state of the art SLAM approaches include
[10; 11; 12]. To enforce this assumption of stationary surroundings, efforts are being made
in the SLAM field to find clever ways of disregarding moving features [13], as they are
likely to corrupt pose estimates. In terms of tracking moving objects, this causes an inher-
ent conflict of interests.

With this conflict of interest in mind, some works have regardless relaxed this assumption
and also included dynamic features (in various senses) as parts of the map. This brings us
neatly into another joint-approach for localization and tracking, namely to let some SLAM
algorithm also keep track of dynamic features, which could correspond to moving targets.
Noting that some SLAM algorithms keep track of features in a unique manner, i.e. being
able to say ”I know exactly what each feature looks like, and can detect and differentiate
them fully.” as opposed to ”I have a number of features in my map, and I am only able
to recognize that something is a feature, not which one it is.” For the latter, this translates
to having to solve an association problem after detection, while I would characterize the
former as the SLAM algorithm doing hard association during its detection step. For target
tracking, part of which involves association, the prospect of having a SLAM algorithm
being able to perfectly do this association bears some merit. Some recent efforts which
include target tracking in SLAM in various senses include [14; 15].

2.3 True joint localization and tracking schemes

At this point we have presented a few schemes which are capable of localization and
tracking in some sense. However, they were all (at least historically) designed to perform
one of the two tasks, then retrofitted (or combined with other schemes) in order to perform
both. This leads us neatly to the final category, namely schemes which are designed from
the ground up to jointly perform both tasks, i.e. joint localization and tracking (JLAT)
schemes.
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One way of classifying such a joint-approach is as a single-cluster point process filtering
problem. In the single-cluster approach, the localization of the ownship is regarded as
the parent process, and the tracking of consequent targets as child-processes which are
dependent on the former. In this sense, in a similar manner to a SLAM like algorithm
(maintaining estimates of stationary features, and using the relative positions of these fea-
tures to estimate ownship pose)2, it is the target positions which bear information, and the
ownship position is inferred from this. While this is still very much a work in progress,
huge strides towards making this style of problems tractable have been made in [16; 17]

A recurring theme for the works referred to in this section is that any of them which ad-
dress jointly solving the problems of localization and tracking, all only use body-mounted
sensors. Further, to the best of my knowledge, no renowned works exist in the litera-
ture which address these problems, that also include the use of both stationary and body-
mounted sensors. This summarizes the fundamental gap addressed in this chapter. The
goal of this thesis, then becomes to suggest such a scheme.

2Note the duality between the SLAM and tracking problems here: while tracking maintains estimates of the
dynamic parts of the surroundings (targets), SLAM maintains estimates of the stationary parts of the surroundings
(features).
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Chapter 3
Theory - Notation

For the sake of avoiding confusion, some over-arching choices have been made regarding
the notation used in this thesis. These choices are influenced by publications by Musicki
et. al. [18; 19], Bar-Shalom et. al. [20; 21; 22], and Brekke1 [16; 2], as well as adjusted
according to the author’s personal taste. This chapter is mostly identical to its namesake
in my specialization project thesis [1].

3.1 Vectors and matrices

Vectors have no special notation, so it is given by context whether italic characters, e.g. x,
z, p are scalar or vector sizes. For the record, these indicate target states, measurements
and probabilities or position, respectively.

Matrices are always indicated with bold font, EG R, Q, P. By extension, any adjacent
variable to a matrix is to be interpreted as linear algebra multiplication, EG Fx.

3.2 Subscripting and indexing

No indexing will be used for this thesis, this is to ensure that parentheses only ever imply
precedence of calculation, or indicating parameters provided to a function. EG a(b + c)
and fx(xk).

1This also includes a so far unpublished sensor fusion textbook by Brekke.
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In some cases, there will be need for differentiating several variables with the same sym-
bols using subscripts. In these cases, the following standard will be followed:

• j: Used for enumerating measurements, either of some sub-set given by context, or
more commonly, all measurements from a scan of a given time-step.

• k: Used for enumerating time-steps, IE successive steps of a discrete process.

• t: This subscript is used for enumerating tracks, which, assuming a ’true’ track, also
corresponds to a target of interest.

• s: Used for enumerating sensors, for example to differentiate between measure-
ments produced by different sensors (or their corresponding pipelines). Also used
to denote a general subset of a vector, i.e. xs is a vector containing some of the
variables of x.

• n,m: Used for general purpose enumeration EG {x1, ..., xn}.

In cases where multiple subscripts are needed, they are delimited by commas, EG zk,j,s,
which reads as measurement number j from a scan at time-step k, provided by sensor s.

In general, capital letters of the aforementioned subscripts indicate the total number of
each enumeration, EG, summing over all sensors for the aforementioned example will be:

S∑
s=1

zk,j,s

3.3 Hats, tildes and other modifiers

To differentiate between true, estimated and predicted values, a number of modifiers are
used:

For all predictions, IE propagating an uncertain estimate to the next time-step, using the
previous estimate and the process model, a hat will be used. EG x̂k|k−1, note that context
regarding the current time-step k and the ’predicted from’ time-step k − 1 is indicated as
k|k − 1.

When such a prediction is updated using relevant measurements, i.e. converted from a
prior to a posterior, a hat is still used, but the subscripts change. EG, x̂k|k. this reads as
”some estimate of x for timestep k, updated with measurements from timestep k.

Similarly, variables calculated from estimated values also inherit this hat. EG ẑt = Hx̂t.

In the case of no modifier being present, we assume that it is a true value.
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Finally, there will occasionally be a discrepancy between an estimate and its true value.
An overarching objective for this thesis is estimating and minimizing this error state, and
for this reason it is designated its own modifier tilde, i.e. x̃.

The relationship between true, x, estimated, x̂ and error, x̃ states is expressed as follows:

x̃ = x− x̂ (3.1)

3.4 Block matrices, dimension and index subscripts

For the sake of not defining huge matrices on a per-element basis, I will endeavour to
express these using block matrices wherever possible. In these cases, there will usually be
need for filler matrices which are either identity matrices, I or zero matrices, 0. In order
to denote the dimensions of these matrices, the subscript notation nxm is employed. This
corresponds to a matrix of height n with width m, e.g.

02x3 =

[
0 0 0
0 0 0

]
(3.2)

To that end, building a block matrix of matrices A and B which are 2x2 and 3x3, respec-
tively, can be done as:

[
A 02x3

03x2 B

]
(3.3)

As block diagonal matrices with the off diagonal elements being zero are needed partic-
ularly often, I include another shorthand notation for this, namely the blkdiag(.) func-
tion. Building the aforementioned block diagonal matrix (eq. 3.3) can be expressed as
blkdiag(A,B). This is equivalent behaviour to its scalar variety diag(.), which also sees
some use in this thesis, e.g.

diag(a, b) =

[
a 0
0 b

]
(3.4)

Finally, there will occasionally be need for pulling certain sub-matrices from a larger ma-
trix, I will denote this as a : b, c : d. This reads as ”select elements from the matrix,
starting at row a to and including row b, as well as column c to and including column d, of
course counting from top to bottom and left to right, respectively. For example:
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M =

[
a b c
d e f

]
,M1,1:2 =

[
a b

]
(3.5)

For covariance matrices, P, of a multivariate Gaussian, the diagonal elements will corre-
spond the to marginal covariance of each state element. In order to refer to such a marginal
with a little more context, I will use the shorthand Pa. This refers to the marginal covari-
ance of state variable a, e.g.

N
(
x =

[
a
b

]
,P =

[
σ2
a σ2

a,b

σ2
b,a σ2

b

])
,Pa = σ2

a (3.6)

3.5 Substate selectors as linear transformations

A recurring theme in the derivations of this thesis is the need for selecting some subset of
a state vector. For example, given a 2 DOF CV state vector xCV = [px, vx, py, vy]>, we
might want to select only the positional elements, xpos = [px, py]> of this vector. For the
purposes of this thesis, I define such a selector as a linear transformation HCV→pos, s.t.
xpos = HCV→posxCV, i.e.:

HCV→pos =

[
1 0 0 0
0 0 1 0

]
(3.7)

Note the context provided by the subscript A → B here, this reads as: from A, select B.
This will prove particularly useful for certain filters which have some states in common.

This is essentially an extension of an observation matrix H typically associated with KF
update steps. For the record, such observation matrices will also be defined with selectors
wherever possible.
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Chapter 4
Theory - Filtering and the error
state Kalman filter

An overarching theme for this thesis is filtering, and especially the subtle art of handling
several filters, all of which have their own estimation objective, while at the same time
interact in some sense. In this chapter, an introduction to filtering is provided, as well as an
outline of the error state Kalman filter. The latter is particularly crucial, as the localization
corrections which make joint localization and tracking possible in the suggested scheme,
are structured mostly as error state Kalman filters (ESKFs).

The one distinction, which also stands as the elephant in the room, in many ways, is the
covariance estimate of the various filters. Provided one has a number of filters which
all calculate Gaussian estimates of the same state, how on earth should their covariances
interact? In this thesis, I have seemingly found a few reasonable ways to handle error state
injection, but I still think some work remains on this topic.

This chapter is divided into three parts, the first of which introduces filtering as a whole,
while the second introduces ESKF filtering, in terms of some (external) ESKF driving
a localization estimate. Finally, the third part introduces some generalized tools which
will be utilized later in this thesis. These tools constitute the adaptations made to a typical
ESKF structure, which will result in a compound filter structure which is capable of having
different filters with redundant state and covariance estimates interact in a meaningful way.
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4.1 Introduction to filtering

For the purposes of this thesis, the words filter and filtering both refer to filters in the sense
of state estimation filtering. These constitute algorithms (filters) which solve the state
estimation problem: Given access to measurements z which are mathematically connected
to the system state x, maintain an estimate of said system state. The notion of a filter in
this sense stems from the fact that these measurements are usually subject to some form of
uncertainty or noise. The filtering aspect of these solutions is defined by the fact that they
somehow disregard or mitigate this noise, i.e. filter it out.

To further complicate matters, these measurements are often connected to the system state
in some incomplete or convoluted sense, this relationship is typically defined by a mea-
surement function z = h(x). A secondary ’job’ of a filter thus becomes to ”put the pieces
together” in order to infer whatever part of the system state which is not readily available
in the measurement. For this reason, the question of observability is crucial within filter-
ing, namely, is it mathematically possible to estimate the entire system state using only the
measurements available? In other words, is there enough information present?

A simple example of a filter having to infer some subset of the state is as follows: A filter
is tasked with estimating the position and velocity of a vehicle, but is only provided with
periodic measurements of the vehicle position. Intuitively, we would say this is observable.
If we for example receive two consecutive measurements, one second after each other,
in which the position of the vehicle has changed by 10 meters, due north, it would be
reasonable to assume that the velocity of the vehicle is approximately 10 m/s to the north
(at the time of receiving the second measurement).

This highlights the final aspect of filtering, namely that we usually assume some knowl-
edge about the system behaves, i.e. its dynamics (which in the nonlinear continuous case is
defined as ẋ = f(x)). The inclusion of this knowledge has a profound effect on both state
estimation and observability. E.g. if we in the previous example assume that the vehicle
can only move southward, then our conclusion about the vehicle velocity would be dra-
matically different. We might now be forced to conclude that it was in fact measurement
noise which produced the erroneous impression of the vehicle moving north, and that the
vehicle is actually standing still (or potentially even moving slowly southward).

Finally, noting that the world is an uncertain place, in which both system dynamics and
measurements are subject to errors and noise, it would be prudent to have filters also say
something about how certain their estimates are. This prompts the use of probabilistic
filters, which maintain state estimates in terms of probability distributions. The epitomal
probabilistic state estimation filter is the Kalman filter (KF), which maintains a state esti-
mate as a multivariate Gaussian distribution. For the purposes of this thesis, in which the
KF is a crucial building block, the details of its inner workings are presumed known to the
reader. To brush up on KF theory, I recommend [23].

For the purposes of this thesis, i.e. localization and tracking, we are usually interested in
the position and velocity of some surface vessel. The system dynamics of such a vessel
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(used for filtering) is referred to as a motion model henceforth. Similarly, the nature of
the measurements (usually position of said vessels), and the noise they are subject to,
are defined as measurement models. In chapter 5, I present all motion and measurement
models which are used.

4.2 The error state Kalman filter (ESKF)

4.2.1 ESKF - Background

The ordinary KF has some limitations, and for our purposes we require more elaborate fil-
ters in order to achieve adequate estimation. The most obvious limitation is that the vanilla
KF is only applicable to Linear-Gaussian systems, i.e. systems with linear equations for
both dynamics and measurements, both of which are subject to (driven by) Gaussian white
noise.

A well-established expansion to the KF is the Extended Kalman filter (EKF), this is a
filter which now supports nonlinear dynamics and measurement functions, but still mostly
behaves as a regular KF. This is achieved in the EKF by linearizing these functions about
the current state estimate any time a prediction or update is being made, resulting in a set
of matrices similar to the ones used in the regular KF equations.

A more problematic limitation of KF and EKF is an aversion to rotations. For an inertial
system in which its attitude needs to be estimated, with the potential for angular rates being
measured by an inertial measurement unit (IMU), keeping track of rotation can subject to
over-parametrization and singularities. Similarly, the current attitude will have a profound
and non-linear effect on the system dynamics.

Furthermore, assuming that the pose of some vehicle is the only estimation objective, a set
of IMU measurements would now make it possible to maintain such an estimate without
a vehicle dynamics model i.e. not knowing how the vehicle interacts with its surroundings
(see [8]). In other words, our system dynamics model can be reduced to ”acceleration adds
up to speed, angular rates add up to rotation”, and from these we can estimate pose and
velocity in all 6 DOFs.

To this end, while at the same time solving the problems associated with rotation, the
ESKF was developed. This is a filter which operates not on a state estimate x̂ of a true
state x, but rather the error between these two sizes, x̃ = x − x̂. Commonly referred to
as an ’indirect’ Kalman filter, namely because the IMU measurements are included not as
measurements, but as part of the system state. To this end, the ESKF is not a filter which
’filters’ IMU measurements, but rather a filter which ’after the fact’ (indirectly) tries to
mitigate the known systematic errors introduced by IMU integration.
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This proved to be profoundly useful for inertial navigation, and is the de facto standard
for navigation of drones, small fixed wing aircraft, and other applications in which GNSS
updates are not fast or precise enough by themselves. Similarly, a well initialized ESKF
can provide outstanding localization performance for periods in which external navigation
is unavailable. For a some historical context on the ESKF, I defer to [8]. For a very rigorous
introduction to ESKF in the context of full 6 DOF intertial localization using quaternions,
I recommend Sola’s [9].

4.2.2 ESKF - Typical formulation

In this thesis, we are slightly abusing (adapting) the notion of a ESKF for our own pur-
poses. This section introduces the high-level equations which a typical ESKF uses, and
points out some aspects of this which we will need to adapt.

ESKF - Estimation objective

In general, the (indirect) error-state Kalman filter (ESKF), has the following estimation
objectives:

• Predict and update: Maintain an estimate of δxk (i.e. x̃o), which corresponds to
the current estimation error xk − x̂k.

• Predict and update: Maintain an estimate of P̂k, which is the covariance of δxk,
and by extension the current localization uncertainty.

• Update and inject: Whenever external sensor readings come in (i.e. updates), the
posterior δxk|k is driven away from zero. Inject this nonzero estimate into the nom-
inal state estimate as x̂k|k = x̂k|k−1 ⊕ δxk|k.1

• Reset: After injection, set the posterior error estimate back to zero (since we have
now accounted for it), δxk|k = ~0.

There are some subtle details omitted here, for example that the covariance estimate P̂k|k
may need to be adjusted as part of the ’inject & reset’ steps, in order to handle a sudden
change in attitude. Since we are making significant changes regardless, such details are
omitted here, again I defer to Sola’s [9] for a more cohesive guide to ESKF.

1The operator ⊕ is used here to indicate that certain elements, such as quaternions, may indeed require other
operators than + in order to receive an injection. This constitutes an ad-hoc way to indicate that each element of
the state vector should be injected according to whatever operator makes sense for that element.
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4.2 The error state Kalman filter (ESKF)

ESKF - Prediction step

Being an error state filter (which by default assumes zero error), the prediction step (i.e.
IMU updates) will essentially behave like dead-reckoning, and does the following:

• Integrate IMU samples in order to update nominal state, x̂k+1|k = f(x̂k, uk), i.e.
dead-reckoning.

• Integrate IMU samples in order to update error state. Since no external information
is available at this time, this prediction has to conclude that the error is still zero.

• Inflate covariance estimate P̂k+1|k according to process noise Q, and crucially prop-
agate correlations according to system dynamics F, along the lines of P̂k+1|k =

FP̂kF
> + Q.

ESKF - Update step

After receiving an update zk from some external sensor at timestep k, the ESKF is able
to calculate an update step, (similar to any other other KF). This results in two crucial
changes:

• Update error estimate δxk|k according to typical KF equations. At this point, δxk|k
can have nonzero values!

• Reduce the posterior covariance estimate P̂k|k, as is typical for update steps. E.g.
P̂k|k = P̂k|k−1 −WHP̂k|k−1.

At this point, we have the ESKF in a weird state, namely with a nonzero error estimate.
Since the ’natural’ state for our ESKF is to assume zero-mean error, we need to get back to
this somehow. This is achieved with the injection and reset steps. This also reinforces the
idea that the ESKF wants to operate with small errors and corrections, since it typically
calculates its updates using linearizations about the prior state estimate x̂k|k−1. As with
EKF, such an approximation is liable to introduce linearization errors if the update steps
make too large strides from this.

ESKF - Injection and reset

As mentioned previously, the injection and reset steps simply shifts the current posterior
error estimate δxk|k from the error state to the nominal state, again leaving the error state
estimate δxk|k as zero (and zero mean). I.e.:
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• x̂k|k = x̂k|k−1 ⊕ δxk|k.

• δxk|k := ~0

• If necessary, make adjustments to P̂k|k to reflect injected state (typically needed for
attitude changes).

4.3 Changes and tools developed for this thesis

For the purposes of this thesis, a number of changes to the aforementioned ESKF are
needed, these changes, and the reasoning behind them, are presented in this chapter.

4.3.1 On state and covariance redundancy

First of all, note that the typical ESKF implementation only has one filter, despite manag-
ing estimates for both the nominal state and the error state. In this sense the covariance
estimate P̂ produced by the ESKF as part of its Gaussian δ̂x ∼ N (~0, P̂), is defined as the
covariance for both δ̂x and x̂.

This is not so weird, as we can treat the true state x as a constant for any given time.
From the error state definition δ̂x = x − x̂, it is apparent that if δ̂x ∼ N (~0, P̂) holds, a
consequence has to be that x ∼ N (x̂, P̂).

This is the first aspect in which things get spicy. Let’s now instead assume that we have a
localization filter which maintains its own estimate for both the nominal state, as x̂o, and
a corresponding covariance matrix P̂o. This could be a KF, an EKF, or even the nominal
estimate of an ESKF (it really does not matter as long at it produces a multivariate Gaussian
estimate). For our purposes, we will treat this filter as a unit of abstraction, namely a
localization filter, which produces a Gaussian estimate according to x̂o ∼ N (xo, P̂o).

In order to aid the estimates of this filter, we opt to include an external filter which produces
an estimate of the error state (ES) x̃o = xo−x̂o, again with a (separate) covariance estimate
P̃o, s.t. x̃o ∼ N (~0, P̃o).

This constitutes a break with the typical ESKF structure, wherein we would treat the ES
covariance P̃o as the only covariance available for the localization estimate x̂o. Instead,
we are left with redundant covariance matrices, namely P̂o and P̃o. This prompts some
important questions:

1. Which of these covariances should we trust?

2. How are they correlated?
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3. If the external filter produces a nonzero estimate x̃o which we inject into the nominal
estimate x̂o, how should that influence the localization filter’s mean and covariance?

For the purposes of this thesis, I have opted to answer these questions thusly:

1. We trust the localization filter to maintain a ’best’ estimate of covariance, i.e. we
trust P̂o. This is somewhat arbitrary, but I made this choice to enforce the abstrac-
tion that it is the localization filter’s job to estimate both the ownship state and its
uncertainty. This allows the external filters (which only intermittently have informa-
tion about the ES, i.e. nonzero estimates) to occasionally have inconsistent or weird
states.

I.e. from an outsiders perspective, it is always the localization filter’s estimates
which are assumed to be accurate and consistent. One could even go as far as to say
that the error state estimates should remain hidden in terms of a larger system.

2. Depending on how the external filter is designed, the posterior covariances may or
may not be correlated.

In this thesis, two different solutions were designed and tested: one which lets
these covariances be completely de-coupled, and another which imposes that the
external prior covariance P̃o,k|k−1 has to be equal to the (internal) prior covariance
P̂o,k|k−1. After an update step in the external filter, this of course implies a very
strong correlation for the latter.

3. For the mean, we treat it as any other ESKF, i.e. the error state mean has to remain
at zero. As for the covariance, we are left with a bit of a conundrum.

On one hand, such an injection should make the localization estimate more pre-
cise, and by extension reduce its covariance. On the other hand, since the normal
ESKF does not maintain redundant covariance estimates, we have no obvious way
to perform such a reduction.

In this thesis, answering this question of post-injection localization covariance
(or at least finding a half decent solution) stands as one of the key contributions.

4.3.2 On compound (nominal and error state) filters

The second bastardization of ESKF made in this thesis is as follows: in the normal ESKF,
the ’indirect’ filter which estimates the error state will only estimate the error state. For the
purposes for this thesis, in which the localization state xo is profoundly connected to other
target states xt, we leverage this by creating external (target state) filters which maintain
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both nominal estimates of a target state xt, and an error state estimate of (some of)2 the
localization state x̃o.

What this amounts to is that the target state filters, are now effectively compound filters
i.e. some of the state (xt) is estimated along the lines of a KF or EKF, while the remainder
of the state (x̃o) is estimated along the lines of an ESKF, with all the injection and reset
steps which that entails. Later in this section, some tools to handle the logistics of these
operations are included.

This is in many ways similar to a ’consider’ Schmidt-Kalman filter (SKF) structure, in
which a nominal state is estimated, but one also ’considers’ the effect of additional zero-
mean nuisance parameters with some known covariance. For such a filter, it is imposed
that these parameters have to stay at zero, and that their marginal covariance does not
change over predict and update steps. Applying such a filter to our ”tracking subject to
localization error” problem, we could for example set the target state xt as the nominal
state, and the localization error x̃o as the nuisance parameters. Such a structure is used in
[6; 4], and stands as vital points of inspiration for the solutions suggested in this thesis.

For our purposes, it is crucial that the ownship localization error estimate (x̃o) is allowed
to differ from zero during update steps (as we wish to inject it into the localization filter).
For this reason, we shift from an SKF style filter into a so called compound filter, in which
only some of the states (previously nuisance parameters) are used in injection and reset
steps. For lack of better terms, this filter structure becomes a combination of SKF and
ESKF, which again is very similar to ISKF and FPSKF as suggested by Brink [7].

Structure of compound filters

In this thesis, these compound filters are structured as:

[
x̂t
x̃o

]
∼ N

([
xt
~0

]
,

[
P̂t P̂t,o
P̂o,t P̃o

])
(4.1)

Depending on the design of these external filters, the ownship-target correlation covari-
ances P̂t,o and P̂o,t may or may not be estimated, or indeed reset to zero along with the
error state estimates (x̃o) after an injection step. Similarly, a few different solutions for
the handling of the marginal error state covariance P̃o are suggested. As for the marginal
target state covariance, P̂t, it is left entirely in the hands of the prediction and update steps.
In other words, the marginal target estimate x̂t ∼ N (xt, P̂t) is left entirely unaffected by
reset and injection steps.3

2i.e. subset ESKF, which is described in section 4.3.3
3This becomes problematic when we start looking at multiple, interacting compound filters, but left as a

reasonable choice for the single filter case.
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Useful functions for compound filters

For the sake of later convenience, as well as increased abstraction, I include some high-
level functions for interacting with these compound filters.

The first of these is simply pulling the marginal error state estimate from the current
(full) estimate {x̂, P̂}. I define this as the function get error state(.), which returns the
marginalized Gaussian {x̃o, P̃o}, i.e.:

{x̃o, P̃o} = get error state(

{[
xt
x̃o

]
,

[
P̂t P̂t,o
P̂o,t P̃o

]}
) (4.2)

Considering we will eventually have one such compound filter for every target t being
tracked, a similarly useful function would be to pull the error state from every filter. I de-
fine this as get error states({x̂1, P̂1}, ..., {x̂T , P̂T }), which returns a list of marginalized
error states {x̃o,1, P̃o,1}, ..., {x̃o,T , P̃o,T }.

Regardless of how the redundant covariances are handled, we always want to reset the
error state estimate x̃o to zero after an injection. I define this (for a single target) as
reset error state(.), i.e.:

{[
xt
~0

]
,

[
P̂t P̂t,o
P̂o,t P̃o

]}
= reset error state(

{[
xt
x̃o

]
,

[
P̂t P̂t,o
P̂o,t P̃o

]}
) (4.3)

Note how this function enforces the zero-mean error assumption we use in ESKF, and
essentially serves as the ESKF reset step.

For one of the two ’redundant-covariances’ solutions suggested in this thesis, we impose
that the prior ES covariance P̃o must be equal to its localization filter counterpart P̂o (with
no correlation to the ownship state). In order to force the compound filter into such a state,
we use the the reset error covariance(.) function. This function accepts a current filter
state, as well as a current localization covariance P̂o, and returns a ’reset’ compound filter
state as follows:

{[
xt
x̃o

]
,

[
P̂t 0

0 P̂o

]}
= reset error covariance(

{[
xt
x̃o

]
,

[
P̂t P̂t,o
P̂o,t P̃o

]}
, P̂o) (4.4)

4.3.3 On estimating subsets of the localization state

The third and final way in which I have adapted the ESKF for external filters, is to set only
a subset of the localization state xo as error state parameters x̃o. I deemed this prudent,
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as the inherent connection between the localization state and target states, is present only
for the ownship pose. In other words, from a target’s perspective, there is no information
present in the measurements with which to estimate the ownship velocity.

In a more generalized sense, I deem it prudent to only include localization error states if
they have some influence on the measurement function used for updating the target state.
This is very connected to the question of whether these error states are observable from the
provided measurements, however, we may also choose to omit additional elements from
the localization state, for example to reduce the ambiguity present in measurements.

Imagine if you will all the different combinations of target and ownship poses which can
lead to the same range-bearing detection. Reducing the dimensionality here (by for exam-
ple only considering the ownship position, or v.v. only the ownship heading as an error
state), will reduce this ambiguity quite a bit.

There is also a pragmatic aspect of this, namely the choice of whether a part of the localiza-
tion estimate actually needs correcting. If we already have amazing estimates of ownship
position and velocity, while the ownship heading estimation is lackluster, it might be pru-
dent to only include the ownship heading as an error state parameter. Thus resulting in a
’bespoke’ ESKF structure, which only makes injections on the states which need it.

The practical aspects of handling subsets

For defining which subset of the localization estimate x̂o we use as error states x̃o, I opt
to use a kind of observation matrix H. This is similar to the observation matrix used in a
standard KF, which is used to map the filter estimate to a measurement.

For some subset s, I define this observation matrix as Ho→s, s.t.:

x̃o = Ho→s(xo − x̂o) (4.5)

E.g. if our full localization estimate consists of positions p and velocities v in x and y
directions, as well as a heading ϕ, i.e. xo = [px, vx, py, vy, ϕ]>, and we wish to use only
the position and heading as our error state, i.e. x̃o = [p̃x, p̃y, ϕ̃], we would define Ho→s
as:

Ho→s =

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 (4.6)

Conversely, if we wish to expand our error state estimate x̃o into the dimensionality of
our localization estimate (assuming the non-estimated states are zero), we can use the
transpose of this matrix, i.e.:
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x̃o,expanded = H>o→sx̃o (4.7)

Finally, if we wish to select only the relevant parts P̃o of the localization covariance esti-
mate P̂o for some subset s, the rules of linear transformations of multivariate Gaussians
apply, i.e.:

P̃o = Ho→sP̂oH
>
o→s (4.8)

Challenges with subset ESKF

There is one major aspect which makes subset ESKF tricky, in my eyes. Namely injec-
tion, should we inject only the variables which we have estimated directly, or should we
consider that these parameters may be correlated with the other variables which we have
not estimated, and infer these as well? By extension, how (if at all) should this injection
affect the covariance estimates of the unestimated stated?

4.3.4 Injection of the external estimate

So far, we have glossed over the details of error state injection into the localization filter. I
will define this problem as injection of a error state estimate {x̃s, P̃s}, which has elements
according to some subset s of the localization estimate, according to the selector Ho→s.
The objective then becomes to update both the mean x̂o and the covariance P̂o estimates
of the localization filter.

Such an injection would necessarily take place after any update on the external filters
which correlates the target state to the ownship (error) state, thus, I leave it as implied that
all of these vectors are posterior estimates.

Injection: naı̈ve state update

Let’s begin with the most naı̈ve choice, which is to expand the error state estimate using
the selector Ho→s, and injecting this directly into the localization filter state, i.e.:

x̂o,post-injection := x̂o + H>o→sx̃s (4.9)
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Injection: finding an analytical covariance update for the naı̈ve state update

As for the covariance, we are left with a bit of a conundrum. On one hand, we need to
make sure that the navigational filter remains consistent. On the other hand, we would
like to update it to reflect the fact that new, presumably more precise estimates are present.
Intuitively, this would mean reducing the covariance. As eluded to previously, the normal
ESKF does not handle this kind of ’covariance redundancy’ and thus does not provide an
obvious answer on how to do such a reduction.

Taking a look at the analytical expressions, we can try to find out how this injection affects
the final localization covariance:

Var(x̂o,post-injection) = Var(x̂o) + Var(H>o→sx̃s) + Cov(x̂o,H
>
o→sx̃s) (4.10)

Using the rules of linear transformation of multivariate Gaussians, and that the (pre-
injection) localization covariance is P̂o, we can insert these into the equation, resulting
in:

Var(x̂o,post-injection) = P̂o + H>o→sP̃sHo→s + Cov(x̂o,H
>
o→sx̃s) (4.11)

Expectedly enough, we rely on the covariance between the localization state x̂o and the in-
jected correction H>o→sx̃s in order to reduce the overall variance (since this can and should
have negative values, given our error state definition). This of course begs the question,
how on earth are these correlated? Intuitively, they have to be, considering that the injec-
tion should be an estimate of x− x̂o, otherwise, our injections would be nonsensical.

If I were a better statistician with more time, I might fiddle around with Cov(x̂o,H
>
o→sx̃s)

to see if I found some analytical expression which would make an optimal covariance
update possible. That being said, I am not, for this reason I will instead endeavour to find
some sub-optimal covariance update equation which appears to maintain consistency in
simulation.

The second reason for avoiding this (granted alluring) rabbit-hole of analytical statistics,
is that the relationship between the error state estimate x̃s, P̃s and the state estimate x̂o
becomes very complex as we start calculating the error state estimate as a consensus of
many independent compound filters, each with posteriors depending on their incoming
measurements and current target estimates, not to mention the localization estimate.

Injection: finding a sub-optimal covariance update instead

Looking back to the ESKF, we note that it reduces its covariance using an update step,
which reduces the covariance estimate as a function of W and H. Imitating this, I opt to
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’spoof’ a KF update step for the sake of calculating the post-injection covariance. Our job
then becomes to define functions for W and H s.t. this update maintains consistency in
the localization filter.

Starting with the most obvious option, I elect to pretend that the injection is in fact an
innovation vector, with an associated innovation covariance S. This matrix is a function of
the current localization covariance P̂o, as well as a measurement noise matrix R. For our
purposes, we pretend that the measurement noise is in fact the injection covariance P̃s,
this yields:

Ss = Ho→sP̂oH
>
o→s + P̃s (4.12)

With Ss, H and the prior localization covariance P̂o, we can calculate the Kalman gain
matrix Ws in the usual fashion:

Ws = P̂oH
>
o→sS

−1
s (4.13)

Finally, we can calculate the posterior (post-injection) ownship covariance matrix P̂o,post-injection
as follows:4

P̂o,post-injection = (I−WsHo→s)P̂o (4.14)

Injection: why not just treat state injection as an update?

At this point, we have thrown optimality out the window, and instead opted for a simple
update which guarantees a symmetric positive definite (SPD) posterior covariance. To
maintain optimality here, we would have to treat x̃s as an innovation vector instead, and
calculate the posterior state estimate as x̂o,post-injection = x̂o + Wsx̃s.

There is something deeply disturbing about this supposedly ’optimal’ update equation
though, namely that it is effectively running an already optimal injection through another
update step. What I mean by this is that we already assume the error state estimate to
be the (optimal) result of an update step in an external filter (or a consensus of multiple
external filters, although I will get back to that). By extension, this estimate should already
be weighted against the measurement noise which afflicted the update, as well as the pre-
injection localization covariance P̂o.

At this point, it makes sense for me to trust this estimate to be true (or at least an improve-
ment), and just inject its value directly. What the above equation would have me do, is to
instead treat this optimal estimate as a raw measurement, with corresponding noise R.

4This form of posterior covariance is of course evil, and a more sound (numerically stable) option is the
Joseph form update. In implementation, this is used instead.
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By doing this, we are essentially trusting the consensus less, where the relative trust is
defined by how much smaller P̃ is than its corresponding components in P̂o. This rela-
tionship becomes apparent by inspecting the expanded equation for the Kalman update
gain:

Ws,real = P̂oH
>
o→s(Ho→sP̂oH

>
o→s + P̃s)

−1 (4.15)

Let’s contextualize this with a hypothetical: assuming we have a perfect consensus esti-
mate (with zero covariance), we arrive at the following equation:

Ws,ideal = P̂oH
>
o→s(Ho→sP̂oH

>
o→s)

−1 (4.16)

Premultiplying both sides of this equation with Ho→s, we see that the inverses cancel out
to an identity matrix:

Ho→sWs,ideal = I (4.17)

Assuming that the observation matrix Ho→s is simply an observation of individual states,
i.e. a number of zero-filled rows, where a single (unique) element of each row is a 1, the
conclusion has to be that Ws,ideal is structured as a transpose of this observation matrix,
with corresponding elements also being 1.

E.g. if our localization estimate has five elements, in which only the final element (the
heading) is part of the subset s, we arrive at the following solution for Ws,ideal:

Ws,ideal =
[
a b c d 1

]>
(4.18)

Note that elements a, b, c, d can be anything here, as they are multiplied by zeroes from
Ho→s, thus their values are indeterminable from this equation. (In practice, these ele-
ments would be defined by whatever correlation the localization filter has learned between
heading and the other states.) What is crucial here is the final element being 1, in other
words: we would fully trust the error state estimate, and inject it directly into the
fifth element of the localization estimate. This is the behavior we seek in terms of the
posterior state estimate, so why not just set P̃ to zero?

This is because running an update step with a supposed measurement noise R of zero, will
by design drive the covariance of all measured states to zero. This is of course completely
unrealistic, as it would be impossible to use noisy measurements to arrive at a perfect
estimate. This puts us in a spot of bother in terms of the injection update. On one hand,
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for the sake of getting an accurate injection, we would like to trust it fully, i.e. set P̃s to
zero.5

On the other hand, we acknowledge that a measurement noise of zero is out of the question
for covariance updates. At the same time, we need some way to reduce the covariance
upon making an injection, since it presumably makes the state estimate more accurate.
One way of achieving this would then be to run the state injection using an assumed zero
measurement noise, while running its corresponding covariance update with an adequately
sized measurement noise instead.

What I eventually landed on was two subtly different approaches here, which I have named
direct injection (DI) and weighted injection (WI). Their only difference is how the state
injection is calculated.

Direct injection

For direct injection, it was opted to simply inject all error estimates directly into their
relevant localization estimate. This effectively disregards any correlations between the
error states and the other states in the localization filter. This means that from a KF update
perspective, we are manually setting the gain matrix to H>o→s, resulting in the following
equation:

x̂o,post-injection = x̂o + H>o→sx̃s (4.19)

For the covariance update, the standard KF update equations (eqs: 4.12, 4.13, 4.14) are
used. This corresponds to ’pretending’ that the consensus is actually a measurement, with
observation matrix Ho→s and measurement noise P̃s.

Weighted injection

After some observed problems in testing (pure positional injections degrading the veloc-
ity estimates of the localization filter, as correlations between position and velocity were
not accounted for) it was deemed prudent to find an injection option which more accu-
rately accounted for learned correlations in the localization filter. However, as previously
discussed, a regular KF update will account for the injection covariance as well, and by
extension trust the injection less. To remedy this, I opted to use the ’ideal’ Kalman gain,
as previously discussed (eq. 4.16). This gain assumes zero measurement noise, and will

5For posterity: it is worth noting that all of this discussion is in the context of two targets. It is perfectly
possible that the injection covariance P̃s will be more than small enough if there are lots of targets present.
There is some merit to finding a solution here which deals with an arbitrary number of targets, which I leave as
a point of future work.
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thus inject the estimated error states to their full extent, while also inferring changes for
the non-estimated states.

In other words, this injection step calculates two different Kalman gain matrices. One of
which Ws,real uses the real injection covariance P̃s (as in eqs. 4.12, 4.13), and the other
Ws,ideal assumes this covariance to be zero (as in eq. 4.16).

Using the ideal gain matrix, we arrive at the following equation for state injection:

x̂o,post-injection = x̂o + Ws,idealx̃s (4.20)

Just as with the direct injection, we use the Kalman gain Ws,real for covariance updates,
eq. 4.14.
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Chapter 5
Theory - Motion and measurement
models

For both tracking and localization, modelling the behaviour of the system is a prerequisite
for estimation. Between the different solutions discussed in this document, a few common
models for both vessel motion and detection will be utilized. These models are presented
in this chapter, as well as modified for more specialized needs.

5.1 Motion models

For describing vessel motion, we largely defer to the constant velocity (CV) model in two
dimensions. In this section, the CV model, as well as some useful variations are presented.

5.1.1 CV

For our purposes, this motion model has a 4 variable state vector xCV, with position and
velocity in x and y directions. It is assumed that the velocity remains constant, although
subject to a zero mean, Gaussian (white) noise, v, in the form of acceleration, with variance
σ2

CV.

Discretizing this model, assuming a constant ∆T seconds between each time-step, we
arrive at the following equations to describe the linear-Gaussian state and its prediction.
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xk =


px
vx
py
vy

 (5.1)

xk+1 = FCV xk + vk (5.2)

FCV =


1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1

 (5.3)

vk ∼ N (0,QCV ) (5.4)

QCV = σ2
CV


∆T 3/3 ∆T 2/2 0 0
∆T 2/2 ∆T 0 0

0 0 ∆T 3/3 ∆T 2/2
0 0 ∆T 2/2 ∆T

 (5.5)

Noting that the prior estimate of the state for some time-step k is distributed asN (xk,Pk),
we can find the distribution for the consecutive time-step, xk+1, by combining equations
5.3 and 5.4, which is simply a KF prediction step:

N (xk+1,Pk+1) = N (Fxk,FCVPkF>CV + QCV ) (5.6)

5.1.2 CV with heading

In the case of simple tracking, the CV model is often enough, as we rarely care about the
heading or rotation of targets1. In localization on the other hand, the orientation of the
ownship is of utmost importance. This is for example because we need the heading to
predict the influence of actuator inputs, or in order to transform onboard sensor readings
to a global frame. For the sake of being applicable for fully actuated vessels, which are
capable of motion which is decoupled from the heading, it is prudent to model the heading
as an independent process.

Working from the CV model, we append the heading estimate ϕ to the CV state defined in
5.1. We assume that this heading remains constant, although also being subject to a zero
mean, white noise rotational speed, with variance σ2

ϕ.

1Or indeed assume that the direction of travel, IE velocity vector, corresponds perfectly with heading.
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Again, we discretize the model, assuming a fixed time ∆T between each timestep:

xk =
[
px vx py vy ϕ

]>
(5.7)

xk+1 = FCV + headingxk + vk (5.8)

FCV + heading =

[
FCV 04x1
01x4 1

]
(5.9)

vk ∼ N (0,QCV + heading) (5.10)

QCV + heading =

[
QCV 04x1
01x4 σ2

ϕ∆T

]
(5.11)

Similarly to its CV counterpart, we can define a prediction step from some priorN (xk,Pk).
This is possible by virtue of the prediction equation 5.9 being a linear transformation sub-
ject to Gaussian white noise.

N (xk+1,Pk+1) = N (FCV + headingxk,FCV + headingPkF>CV + heading +QCV + heading) (5.12)

This concludes the motion modelling chosen for the ownship localization. When includ-
ing frequent outside positional fixes, such as external detections or GNSS/RTK, such a
navigational scheme becomes viable, at least for position and velocity. I.e. the scheme is
able to maintain estimates of these sizes.

The heading remains unobserved, although certain solutions, such as RTK, or multiple
GNSS receivers will be able to provide an orientation fix as well, solving the problem.
The more obvious solution here is a compass, however I have opted to consider such sen-
sors unavailable for this thesis. This choice is made to emulate an emergency case in
which some sensors (IMU, GNSS, compass) have failed. In terms of testing our solution,
we have the added bonus of some states in the motion model being directly observable,
and others (in our case the heading) which are not. By extension, we get to test the be-
haviour and performance of our developed system both as an aid for existing estimators
(for position/velocity), and as a lone guarantor of estimation (for heading).

Moving forward with the assumption that no direct measurements of the heading are avail-
able, we are forced to look into indirect options. One such option is to leverage range-
bearing sensors mounted on the ownship, and some2 expectation of what readings these

2This would be features of the (static) surroundings for SLAM, or the locations of targets in our case.
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sensors are supposed to produce. Cross referencing this expectation with the actual data,
we are usually able to solve for the heading, or at least make corrections for small errors.
This brings us neatly to the final two motion models I have included, these have addi-
tional error states appended, which correspond to inferred corrections in the ownship’s
localization.

5.1.3 ESCV - Error state constant velocity

The first such motion model, which I have named error state constant velocity (ESCV),
has two distinct parts to its state vector. The first of which is a CV model describing target
motion, as introduced in 5.1.1, furthermore it also contains a full 3 DOF error state of the
ownship, i.e. position in x and y, as well as heading.

This is the first motion model presented which fits into the ’compound filter’ framework,
as presented in sec 4.3.2. In this case the nominal state is the target CV state (eq. 5.1),
and the error state becomes the aforementioned position and heading elements. Thus the
selector for this error state subset (henceforth referred to as ES), assuming the localization
filter uses the CV + heading motion model, becomes:

Ho→ES =

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 (5.13)

These error states are assumed to be constant, although subject to noise for the purposes
of prediction. Just like in ESKF, these parameters remain at zero through prediction, until
they are inferred during update steps. This may seem excessive, so what follows is some
motivation for such a model, in the context of joint localization and tracking.

ESCV: motivation

Say that we detect some target to the left (i.e. wrong bearing) of where we expected, in an
ownship (relative) range-bearing scan. This example is illustrated in figure 5.1. For the CV
motion model, in which the only state present is the target’s, the conclusion has to be that
the target has moved, or that the original estimate was wrong (Case B). By extension, one
would infer changes in position and velocity in light of this new information. While this
is perfect if we assume that the localization estimates are perfect, the flip side is that it can
propagate any present error in localization into the tracking estimates. I.e. a localization,
then tracking scheme will effectively inject any localization error into the track’s error.

If we also include ownship error states in the tracker, an equivalent conclusion is that the
target has remained stationary, and that it is in fact the ownship which has moved to the
right (Case C). Similarly, we could conclude that the ownship has rotated (Case D). Finally,
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Figure 5.1: Demonstration of ambiguity present in relative range bearing scans. Expected detection
is indicated with ẑ while the received detection is indicated with z.
Case A: measurement noise has caused the errant detection.
Case B: the target x1 is in fact left of its estimate x̂1.
Case C: the ownship xo is in fact right of its estimate x̂o.
Case D: the ownship xo has a different heading than its estimate x̂o.

we could always conclude that no estimates are wrong, and that it is measurement noise
which has caused the errant detection (Case A). This illustrates the intrinsically connected
nature of localization and tracking, namely that when using relative (ownship mounted)
sensors, it is difficult to figure out whether it is the ownship or the target which has moved.

Although including these error states introduces this ambiguity, which can be tricky to deal
with, I regardless deem it a useful modification, in the sense that it allows for acknowledg-
ing the possibility that it is in fact the navigation which is errant, and not the target state
estimates. Including this at a modelling level could potentially improve tracking perfor-
mance (by reducing the corruption from injecting errant localization), and using estimates
to make corrections in localization. This is very similar to including the ownship pose as a
set of nuisance parameters, in the style of an SKF. However, there are two key distinctions
which separate this scheme from a conventional SKF:
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1. The parameters are allowed to be estimated at every timestep, which makes it an
expanded state KF or EKF instead.

2. The nuisance parameters are modeled as being driven by Gaussian white noise, i.e.
nonzero QES . The elements of this matrix act as tuning parameters for the final fil-
ter. As opposed to the standard SKF formulation, in which the marginal covariance
matrix for the nuisance parameters is constant.

By extension, each track estimate will maintain a localization covariance matrix
(and covariances between target and nuisance parameters) which is decoupled from
the localization filter.

After some testing, I came to the conclusion that the process of tuning the matrix QES

to get reasonably robust performance was nigh on impossible, and actively shortening my
lifespan. I suspect that there is something fundamentally flawed about letting the error
state covariance be completely decoupled from the corresponding covariance estimate P̂o
in the localization filter (and growing according to QES). Given that the motion of the
ownship and targets is presumed to be independent, it stands to reason that they should
be uncorrelated, by extension, there is little sense in letting a filter try to learn such a
correlation where there is none.
For this reason, I opted to relax point 2 in the above list, and create additional models which
instead inherit the relevant covariance estimates P̂o, from the localization filter (which is
more along the lines of traditional SKF). These models, which are introduced later in this
chapter, are appended with ”-IC” to imply inherited covariance.

This flies in the face of the abstraction in the well-established ’localization, then tracking’
schemes3. I.e. trackers should only do tracking, and that allowing for information to flow
from tracking to localization is dangerous. There is certainly some merit to this, as it
does open up for the possibility of erroneous tracking propagating back to the localization,
effectively corrupting it by trying to confirm its own results. In its own right, this is a good
reason to avoid the schemes which are suggested in this thesis, however, it is interesting to
inspect the performance of such schemes nonetheless.

This challenge can be remedied both by introducing absolute scans (sensors mounted else-
where, which provide detections which are independent of localization estimates), or by
introducing enough (independent) targets. Assuming that the association is known, the
question changes to ”Has every target unexpectedly moved in the same direction, or has
the ownship moved?”. Assuming that the targets are independent of each other, it becomes
increasingly unlikely (as the number of targets increase) for every target to suddenly move
in a coordinated fashion which can be misunderstood for ownship movement.

Assuming on the other hand that association is NOT known, a large amount of closely
grouped targets can be difficult to discern and track, and by extension, inferring ownship
localization from ambiguous tracks can be dangerous.

3In some sense, this is a step in the direction of SLAM, and once again hints at the inherent connections
between JLAT and SLAM.
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ESCV: model definition

This model, when discretized, becomes very similar to the CV model defined earlier, with
extra parameters p̃o,x, p̃o,y, ϕ̃o driven by corresponding white noise variances σ2

o,pos, σ
2
o,rot.

xk =

[
xCV
xES

]
=
[
px vx py vy p̃o,x p̃o,y ϕ̃o

]>
(5.14)

xk+1 = FESCVxk + vk (5.15)

FESCV =

[
FCV 04x3

03x4 I3x3

]
(5.16)

vk ∼ N (0,QESCV) (5.17)

QES = ∆T · diag(σ2
o,pos, σ

2
o,pos, σ

2
o,rot) (5.18)

QESCV =

[
QCV 04x3

03x4 QES

]
(5.19)

Noting the linear-Gaussian form of the prediction equation 5.15, this is equivalent to the
previously defined prediction equations (such as eq. 5.6) but now using the new FESCV
and QESCV matrices.

5.1.4 RESCV - Reduced error state constant velocity

The second model introduced, the reduced ESCV model (RESCV), is also a CV model
with an appended error state. This is a reduction of the aforementioned ESCV model,
which now only contains an error state for ownship heading. This makes the total state
vector a stack of the typical 2 DOF, 4 variable CV model, as well as the ownship heading
error ϕ̃o. Again, a brief motivation is included, as well as the model equations.

As with ESCV, the RESCV fits into the ’compound filter’ framework, in which the nominal
target state is the usual CV model, and the error state is a subset RES of the localization
state (assumed to be using the CV + heading model). This results in the following selector:

Ho→RES =
[
0 0 0 0 1

]
(5.20)
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RESCV: motivation

While the ESCV model is useful in the sense that it can infer 3 DOF corrections on the
localization results, it introduces a substantial amount of ambiguity in the measurement
models. I.e. any error in the position of a detected target can be attributed to four poten-
tially interchangeable effects (see figure 5.1, as discussed for ESCV):

1. The target has moved, i.e. make correction to target position, infer target velocity.

2. The ownship has moved, i.e. make correction to ownship position, infer ownship
velocity.

3. The ownship has rotated, i.e. make correction to ownship heading.

4. The target is in fact exactly where we expect, and it is measurement noise which has
produced the errant detection.

Using the measurement and motion models in some filter update, i.e. letting the tracker
calculate some (supposedly optimal) combination of these effects is no small feat. When
we furthermore consider the number of tuning parameters, there is some merit to reduc-
ing the complexity here. For this reason, I have included a reduced error state constant
velocity model (RESCV, henceforth) which only includes the targets CV state, as well as
an error state for the ownship heading. This corresponds to eliminating case C from figure
5.1, which should help limit these effects being mistaken for each other.

This is a useful simplification, especially if we assume that some absolute positional fixes
are available for the ownship. (For example from detections of the ownship produced
by shore mounted sensors or GNSS.) Such positional fixes would be able to stabilize the
position and velocity estimates of the ownship, leaving only the heading as an unknown.
In such a case the RESCV motion model becomes a purpose built model, which ”fills the
gap” for heading estimation.

RESCV: model definition

As with ESCV, we define the discretized model as follows:

xk =

[
xCV
xRES

]
=
[
px vx py vy ϕ̃o

]>
(5.21)

xk+1 = FRESCVxk + vk (5.22)

FRESCV =

[
FCV 04x1

01x4 1

]
(5.23)
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vk ∼ N (0,QRESCV) (5.24)

QRESCV =

[
QCV 04x1

01x4 ∆Tσ2
o,rot

]
(5.25)

Again, noting the linear-Gaussian prediction equation 5.22, we can define a KF prediction
with FRESCV and QRESCV, which is omitted for brevity.

5.1.5 ESCV-IC - ESCV with inherited nuisance covariance

Both the RESCV and ESCV models were found to have lackluster performance. To solve
some of these problems, a new variant of both ESCV and RESCV was introduced, namely
the inherited covariance (-IC) varieties. This new model was not permitted to learn cor-
relations between target and ownship error states, and furthermore inherits the nuisance
covariance estimate P̂x̃ from relevant elements of the localization filter covariance esti-
mate: P̂o. This means that at any point in time, the estimated prior covariance matrix
P̂some-IC of such an inherited covariance model will look like:

P̂some-IC =

[
P̂CV 0CV,x̃

0x̃,CV P̂x̃

]
(5.26)

Since the ESCV-IC shares the same subset of error states as the ESCV, it uses the same
selector, as defined in eq. 5.13. As for the inherited covariance P̂x̃, this can be fetched
from the localization covariance P̂o using this selector, i.e.

P̂x̃ = Ho→ESP̂oH
>
o→ES (5.27)

ESCV-IC: Motivation

As eluded to previously, tuning the process noise parameters of the nuisance parameters,
i.e. σ2

o,pos, σ
2
o,rot turned out to be tricky. The observed behaviour (which I will elaborate on

in the analysis section) was that the accumulated variance estimates for the nuisance pa-
rameters reached wholly unreasonable magnitudes, which caused similarly large injection
steps.

This was in part mitigated by similarly large covariances between nuisance and target
states (i.e. P̂1:4,5:7 and P̂5:7,1:4 for ESCV). When the system behaviour matched these
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learned correlations, filtering performance was fine, however, the flip side is that any aber-
rant vessel behaviour caused a significant estimation error, and occasionally even track
loss.

The conclusion at the time was that these learned correlations were nonsensical, particu-
larly when considering that the motion of any vessel is assumed to be independent of the
other vessels. By extension, letting the filter learn such (false) correlations of inter-vessel
behaviour was subjecting it to worse performance. To sidestep this, I opted to bar the
filter from learning such correlations, by manually setting the target-nuisance covariance
matrices to zero. These elements are denoted by 0x̃,CV and 0CV,x̃ in eq. 5.26.

Note that letting a KF learn correlations that are not necessarily present is not always
dangerous. In fact, the full-filter solution presented in this thesis seems to handle it just
fine (barring a tendency for over-confidence...), why is it then a problem for the ESCV and
RESCV models? I posit that this is because the full filter also gets ownship-specific po-
sition updates, which helps to keep the localization covariance bounded, and furthermore
hinders the learning of errant correlations. As the ESCV and RESCV models do not get
this sanity check, their ownship (co)variance estimates are much more likely to spiral out
of control. This stands as another argument for the IC variety, namely that it instead uses
the localization covariance, which should remain bounded as it is periodically updated
with absolute detections.

The EKF also has a few known consistency problems associated with the lineariza-
tion points chosen for updates, which are inherent to the nonlinear nature of the (relative)
measurement functions. [24] explores this in the context of SLAM (and suggests some
solutions). In the more generalized terms of EKFs learning spurious correlations where
there are none (and its effect on filter consistency), it stands as an interesting read.

A second and more profound question is how one should model the uncertainty in local-
ization error. In ESCV and RESCV, it was arbitrarily decided to let these parameters also
be subject to process noise, i.e. nonzero elements in Q for these parameters. This implies
that the (nuisance) localization error is ever growing, and has to be kept bounded by the
update steps done in the tracking filter.

Another more problematic aspect of this, is that each ESCV or RESCV model maintains
a (redundant) covariance estimate which is completely independent of the corresponding
estimate in the localization filter. In our case, it would be prudent to trust the localization
filter to do its job, thus it would make sense to trust its covariance estimate to be consis-
tent. We can leverage this information by using P̂o as a measure of How wrong can the
localization estimate be. By forwarding this information to the tracking filters, they are
provided with what should be an updated, optimal estimate of P̂x̃.

These changes correspond to a huge step in the direction of an SKF-like filter. At this
point, the only real distinction is the fact we still calculate online estimates of the nuisance
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parameters.4 Still, we have achieved a less complex system in the sense that we now have
fewer tuning parameters, and can skip calculation of large parts of the covariance estimate
posteriors.

ESCV-IC: model definition

For the model definition I largely defer to the equations listed in the ESCV model (eqs.
5.14, 5.15, 5.16). The exceptions being the distribution of the noise vector vk, as well as
custom equations for prior P̂k|k−1 and posterior P̂k|k covariances:

vk ∼ N (0,QESCV-IC) (5.28)

QESCV-IC =

[
QCV 04x3

03x4 03x3

]
(5.29)

P̂k|k−1 =[
FCVHESCV→CVP̂k−1|k−1H

>
ESCV→CVF

>
CV + QCV 04x3

03x4 Ho→ESP̂o,k|k−1H
>
o→ES

] (5.30)

P̂k|k,after update = P̂k|k−1 −WHP̂k|k−1 (5.31)

P̂k|k,after reset =[
HESCV→CVP̂k|k,after updateH

>
ESCV→CV 04x3

03x4 Ho→ESP̂o,k|kH
>
o→ES

] (5.32)

Note the 03x3 element in the bottom right of the process noise matrix QESCV-IC (eq. 5.29).
This is included to indicate that the covariance of these elements is not supposed to be
inflated with prediction steps, but rather overwritten with fresh covariance estimates
from the localization filter. In this sense, we could conceivably have skipped building
this matrix for all states, and rather just re-used the QCV matrix from earlier. I opted
against this for the sake of compatibility with existing software, which means that the
prior covariance is actually calculated for all 4 block matrices. After this their elements
are overwritten to reflect the prior covariance equation (eq. 5.30).

4This is very similar to an ISKF or PSKF as introduced by Brink, [7]. Formulating the (R)ESCV-IC to match
these filter structures (and doing a corresponding comparison) would be an interesting point of future work.
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Note that I have included explicit equations for the posterior covariance after an update
(i.e. before reset) and after a reset step. This serves as a reminder that in the interim, the
entirity of the covariance matrix can be populated. This is also the only time in which the
error state estimates x̂ES can have nonzero values.

Furthermore, note that for both the prior covariance P̂k|k−1 and the ’after-reset’ posterior
P̂k|k,after reset, the bottom right block matrix is set as the ES subset of the localization
covariance P̂o, i.e. Ho→ESP̂oH

>
o→ES. This is how the ’inherited covariance’ property of

this filter is imposed, and constitutes the model being provided with outside information
in the form of this covariance estimate.

5.1.6 RESCV-IC - RESCV with inherited nuisance covariance

Just as with the changes made from ESCV to ESCV-IC, this model is just a variant of
RESCV which assumes zero process noise for the heading error state, and instead inherits
the nuisance covariance from the localization filter. Finally it is not permitted to learn
correlations between the CV state and the error state.

RESCV-IC: model definition

Again, I defer to the model definition in the RESCV section, i.e. equations 5.21, 5.22,
5.23. Barring this, the process noise and covariance estimates bear re-definition:

vk ∼ N (0,QRESCV-IC) (5.33)

QRESCV-IC =

[
QCV 04x1

01x4 0

]
(5.34)

P̂k|k−1 =

[
FCVP̂CV,k−1|k−1F

>
CV + QCV 04x1

01x4 Ho→ESP̂o,k|k−1H
>
o→ES

]
(5.35)

P̂k|k,after update = P̂k|k−1 −WHP̂k|k−1 (5.36)

P̂k|k,,after reset =[
HRESCV→CVP̂k|k,after updateH

>
RESCV→CV 04x1

01x4 Ho→RESP̂o,k|kH
>
o→RES

] (5.37)
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5.2 Measurement models

Moving along to measurement models, these provide the probabilistic connection between
the target state, and detections produced by sensors. From a KF perspective, one might
state that a motion model handles the prediction step, while a measurement model han-
dles the update step. This section is made somewhat complicated due to the presence of
many different state vectors, depending on the choice of motion model. Each type of state
vector will have its own measurement function, hence the need for multiple measurement
functions associated with each measurement model.

5.2.1 Cartesian, absolute

Starting with the simplest measurement model: the Cartesian absolute model. It is in-
tended to be equivalent to some shore mounted sensor (with known and constant pose)
which detects the position of both the ownship and targets. For all the aforementioned
motion models, the measurement function hcart(x) remains the same:

hcart(x) =

[
px
py

]
(5.38)

Noting that any sensor is subject to noise, we model this in the Cartesian absolute model
as a zero mean, Gaussian white noise, defined with the covariance matrix Rcart.

This makes the distribution of Cartesian absolute detection the following, where x is the
true target state:

zcart ∼ N (hcart(x),Rcart) (5.39)

For the sake of simplicity, we define the measurement uncertainty as being constant, equal
in x and y directions, and finally both directions being independent of each other. This
makes the covariance matrix diagonal, and equal to:

Rcart =

[
σ2

cart 0
0 σ2

cart

]
(5.40)

Where the parameter σ2
cart corresponds to the variance of the detection error, in m2.

For the sake of later convenience, I also include some Jacobians of the measurement func-
tion hcart in this section. For each motion model X , the jacobian of hcart wrt. its state
vector is denoted as HX→cart, these matrices are almost identical, with varying lengths of
appended zeros, but all included for completeness.

43



Chapter 5. Theory - Motion and measurement models

HCV→cart =

[
1 0 0 0
0 0 1 0

]
(5.41)

HCV + heading→cart =
[
HCV→cart 02x1

]
(5.42)

HESCV→cart =
[
HCV→cart 02x3

]
(5.43)

HRESCV→cart =
[
HCV→cart 02x1

]
(5.44)

5.2.2 Range bearing, relative

The second and more complex model included for our purposes is the range-bearing rela-
tive model. This is intended to be equivalent to a ownship-mounted range bearing sensor
(such as radar or lidar), which is capable of detecting other targets. By extension, its
detections are dependent both on the ownship pose xo, as well as the target state xt.

We begin with the true measurement function hrel(xo, xt), i.e. assuming that both the true
target state xt and sensor pose xo are available:

hrel(xo, xt) =

[
||pt − po||2

∠(pt − po)− ϕo

]
(5.45)

Note the shorthand pt and po here, these are the elements of xt and xo which correspond
to the position, s.t. pt = [pt,x, pt,y]>, etc. Also note the angle function, ∠(.), which for all
intents and purposes is the atan2(.) function, i.e. the four quadrant arctan function.

As for its Jacobians HMM→rel, I leave these as implicitly defined as the measurement func-
tion, differentiated w.r.t. the motion model (MM) state. For motion models which include
certain error states of xo, these are of course also differentiated w.r.t. their correspond-
ing localization states (i.e. for ϕ̃o differentiate hrel(.) w.r.t. ϕo). Such that the resulting
Jacobian also defines the connection between the relevant error state and the provided
measurement.

As with the Cartesian absolute measurement model, we subject this model to zero mean
Gaussian noise, defined by the covariance matrix Rrel, which is made up of constant radial
and tangential variances, σ2

rel,r, σ
2
rel,θ, [m2, rad2]:

Rrel =

[
σ2

rel,r 0
0 σ2

rel,θ

]
(5.46)
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Combining equations 5.45 and 5.46, we arrive at the distribution for a detection zrel pro-
duced by the relative range bearing measurement model:

zrel ∼ N (hrel(xo, xt),Rrel) (5.47)
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Chapter 6
Theory - Localization

For this chapter, we consider localization in the plane for our ownship, a surface vessel.
This corresponds to a 3 DOF model with two Cartesian variables for position as well as
one rotational variable for heading. In general, I denote these variables with the vector
xo = [px, py, ϕ]>, of which its elements px, py are positional variables, in meters, and ϕ
is the heading, in radians.

For the purposes of this thesis, I define localization as the task of maintaining estimates of
this 3 DOF ownship pose. As it is prudent to calculate reasonably precise predictions of
this pose while the ownship is moving, we also include estimating velocities vx, vy as part
of this estimation task. This makes the state vector equal to [px, vx, py, vy, ϕ]>. Assuming
that the ownship velocity and heading are more or less constant, this also provides us
with the Markov property, i.e. that a current state estimate is the only thing necessary to
calculate a prediction. This is particularly useful from a modeling perspective, which will
be elaborated on later.

Furthermore, it is particularly useful to know something about how accurate our localiza-
tion estimate x̂o is (i.e. navigational uncertainty), for this reason, we again expand the
localization task to also include estimation of a covariance matrix P̂o. Combining these
two changes, the localization task becomes to estimate the following Gaussian:

x̂o ∼ N (xo, P̂o) (6.1)

At this point, we have defined localization as estimation of a multivariate Gaussian with
the Markov property, which is a prime task for a Kalman filter. In the remainder of this
chapter, I will elaborate on how the previously defined motion and measurement models
defined in chapter 5 can be leveraged to this end.
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Note again that inertial measurement such as an IMU is assumed to be unavailable. I
must then reiterate the assumption that both velocites and the heading are constant (driven
by zero-mean noise). A typical extension to our localization state would be to include
accelerations and angular velocities (potentially with bias estimates) as provided by an
IMU, at which point an ESKF-style filter would be applicable, and we could relax the
assumption to ’the IMU measures acceleration and angular rates accurately (subject to
noise and bias)’.

With that being said, this was opted against, and we are forced to include other ways
of observing the position, velocity and heading in order to make this filtering problem
solvable. It was opted to only include periodic absolute positional measurements, which
would make position and velocity observable. By extension, the heading is not directly
observable. This puts our localization filter in a ’built to fail’ situation, since it has no
inherent way of updating the heading estimate.

An obvious solution would be to include a compass in order to make heading observable,
however, as previously mentioned, this was also opted against (see sec. 5.1.2 for details).
The saving grace being that the heading is observable via range-bearing measurements,
since the heading can be inferred from the expected range-bearing measurements of known
targets, in this sense, we have constructed a localization problem which actually requires
tracking results in order to be solved.

6.1 Dead reckoning with positional updates

Assuming that periodic, absolute positional measurements are available, we can define
a Kalman filter structure which solves the localization problem (barring heading). Such
a positional measurement can stem from any number of systems, for example ownship
detections produced by shore mounted sensors or onboard GNSS/RTK. For modelling this
detection, we employ the Cartesian absolute measurement model defined in section 5.2.1.
Combining the CV with heading motion model with this measurement model, we arrive at
the following KF equations for predictions and updates, in which the prior state estimate
{x̂o,k−1, P̂o,k−1} and an ownship detection zcart,k are presumed available.

6.1.1 prediction and update steps: KF level

N (x̂k|k−1, P̂k|k−1) = N (FCV + headingx̂k−1|k−1,

FCV + headingP̂k−1|k−1F>CV + heading + QCV + heading)
(6.2)

νcart,k = zcart,k − hcart(x̂k) (6.3)
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Conveniently enough, hcart(xk) is a linear function on xk, which spares us the need to
estimate a jacobian Hcart for computing the update step. For the CV with heading state
vector, this linear function is:

Hcart =

[
1 0 0 0 0
0 0 1 0 0

]
(6.4)

Noting that νcart,k is distributed asN (0,Scart,k), in which Scart,k, the innovation covariance,
is defined as:

Scart,k = HcartP̂kH
>
cart + Rcart (6.5)

Filling in the remaining, bog-standard KF update equations:

Wcart,k = P̂k|k−1H
>
cartS

−1
cart,k (6.6)

N (x̂k|k, P̂k|k) = N (x̂k|k−1 + Wcart,kνcart,k, (I−Wcart,kHcart)P̂k|k−1) (6.7)

6.1.2 prediction and update steps: model level

At last, for the sake of abstraction, observe that equation 6.2 effectively accepts the fol-
lowing parameters: {x̂k−1|k−1, P̂k−1|k−1}, {FCV + heading,QCV + heading}. Of which, the
first set is the posterior state estimate of timestep k − 1, and the second set is matrices
associated with the motion model in question. These matrices are a function of internal
model parameters such as covariances, as well as the time difference ∆T between steps
k and k − 1. Letting the prediction be a function of the motion model Mmotion,odo, and
internalising any parameters which are motion model specific, we arrive at the following
definition:

{x̂k|k−1, P̂k|k−1} = Mmotion,CV+heading predict({x̂k−1|k−1, P̂k−1|k−1},∆T ) (6.8)

In a similar fashion, we can define an update function which belongs to the measurement
model Mmeas,cart, comprised of the calculations made in equations 6.3, 6.5, 6.6, 6.7, which
consumes the prior (predicted) state estimate {x̂k|k−1, P̂k|k−1} and a detection zcart,k,
and returns a posterior state estimate {x̂k|k, P̂k|k}.

{x̂k|k, P̂k|k} = Mmeas,cart update({x̂k|k−1, P̂k|k−1}, zcart,k) (6.9)
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This syntax is preferred because it internalises (abstracts away) the model specific calcula-
tions, which for measurements are: hsome model(.),Hsome model,Ssome model,k,Wsome model,k,
and leaves us with the higher level action of ”Hey, I have a new measurement, please up-
date the state.”. In the remainder of this thesis, I will endeavour to use syntax similar the
one defined in equations 6.8, 6.9 wherever possible.

At this point, we are left with a localization scheme able to stabilize position and velocity
estimates, while the heading estimate still blindly assumes no change over time, and will
inevitably diverge. In the joint solutions (i.e. localization and tracking) suggested in this
thesis, two different schemes for stabilizing heading (simultaneously with multi target
tracking, MTT) will be explored.
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Chapter 7
Theory - Tracking

For the work done on target tracking in this thesis, several parallelized Markov Chain 1
IPDA trackers are employed. For derivation of the IPDA tracker, I defer to [18].

For the sake of brevity, only a brief introduction of the IPDA tracker’s features and core
functions is included in this chapter. For the sake of abstraction, we define these functions
i.e. prediction and update as functions of some target state combined with a motion model
and a measurement model. This is useful for a number of reasons, including but not limited
to, a stateless one size fits all implementation, as well as support for arbitrary motion and
measurement models.

7.1 IPDA features

7.1.1 State filtering

One defining feature of any tracker is some kind of state estimation. In the case of our
IPDA implementation, this is achieved with a KF esque solution, which provides a frame-
work with which to estimate both target state and covariance. For the sake of abstraction,
the interface for this filtering is the Kalman prediction and update functions, as should be
familiar. We note the recurring theme in which motion models are used for prediction
steps, while measurement models are used for update steps.
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7.1.2 Data association

The second defining feature of tracking is the need for data association, i.e. solving the
problem of: ”I have lots of measurements, and it is uncertain which, if any, originate
from my target.”. In the IPDA case, this is solved with probablistic data association, i.e.
we calculate the probability of each measurement stemming from the target (association
probability), and use these probabilities to calculate some weighted average with which to
update our target state.

7.1.3 Validation gating

In some cases, looking at all measurements from a given scan is both unnecessary and
wasteful. For example, any measurements with sufficiently large distance to the current
target state estimate cannot possibly have originated from the target. Intuitively, such mea-
surements will have negligible association probability, and by extension have a negligible
effect on the updated target state estimate.

Validation gating allows us to disregard such measurements, by imposing a minimal re-
quired gate probability, pgate and simply dropping any measurement below this threshold.
This allows the tracker to only regard the relevant measurements for some target, making
for more efficient computation.

We note from the measurement model section 5.2 that the innovation ν, i.e. the difference
between some measurement and its predicted value, is distributed according to a zero mean
multivariate Gaussian with covariance S. Leveraging this distribution, one can evaluate
the probability of some measurement stemming from the target. Doing this for every νj
in the set of innovations {ν1, ..., νJ}, we can drop the ones with a probability below our
designated threshold.

A computationally sound way of calculating this gate threshold is to calculate the NIS
(normalized innovation squared) associated with each measurement, and checking this
against the gate size (which is a function of pgate and measurement dimensionality). This is
an equivalent test, and corresponds to evaluating one sided χ2 confidence interval instead
of a multivariate Gaussian PDF.

7.1.4 Existence probability estimation

What sets the IPDA apart from its simpler PDAF variety, is the inclusion of target ex-
istence probability estimation. In essence, this is a scalar variable p̂, predicted using a
Markov chain, and updated by cross referencing the association probabilities against the
’detected and gated probability’, which says something about whether the gated measure-
ments match up with the estimated target state as well as one would expect.
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7.2 IPDA functions

An intuitive way to think about this is using the ’detected and gated probability’ (Pgate ·Pd)
associated with some sensor (i.e. measurement model). For example, if some sensor has
a Pd of 0.9 and a Pgate of 0.9, we would expect the association probabilities of the gated
measurements to (on average) add up to around 0.81. If the sum of association probabil-
ities is lower than this, it amounts to saying ”We would expect more plausible detections
to be gated for a real target, thus this scan does not adequately prove the existence of our
target.” and as a result we would reduce the target existence probability estimate to reflect
this. Conversely, if the sum exceeds this expected value, we treat it as an indication that
the target does in fact exist, and would increase our estimate.1

The sum of association probabilities is profoundly important in this sense, since it be-
comes a measure of whether a track estimate has plausible (enough) detections in a scan.
Conversely the ’detected and gated probability’ becomes the expected probability of such
plausible detections being present for a real target (and by extension also a supposedly
accurate track estimate).

7.2 IPDA functions

For the sake of abstraction, I will outline some syntax for high-level IPDA functions in
this section, i.e. predict and update. These functions operate on the target state estimate,
{x̂k−1|k−1, P̂k−1|k−1, p̂k−1|k−1}, here denoted as the posterior estimate of timestep k−1.
As well as the time in seconds between steps k and k − 1, i.e. ∆T , and finally arbitrary
motion and measurement models, Mmotion and Mmeasurement, respectively.

Note that the IPDA is this thesis can be used with motion models that utilize ’compound
filters’ as introduced in section 4.3.2 (such as ESCV, RESCV, ESCV-IC, RESCV-IC), thus
we also need to define some functions in order to interact with the error-state part of these
filters, i.e. get error state and reset error state functions.

7.2.1 Predict

Starting with prediction, which propagates some state estimate {x̂k−1|k−1, P̂k−1|k−1, p̂k−1|k−1}
some time ∆T forward, according to a motion model Mmotion. I define this as:

{x̂k|k−1, P̂k|k−1, p̂k|k−1} =

IPDA predict({x̂k−1|k−1, P̂k−1|k−1, p̂k−1|k−1},∆T,Mmotion)
(7.1)

Or more specifically, noting that our IPDA implementation simply uses the predict func-
tions of its submodules:

1This is a gross simplification for the sake of illustration, and I defer to [18] for a more detailed derivation.
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N (x̂k|k−1, P̂k|k−1) ∼Mmotion predict(N (x̂k−1|k−1, P̂k−1|k−1),∆T )

p̂k|k−1 = Markov predict(p̂k−1|k−1,∆T )
(7.2)

7.2.2 Update

Completely analogously to the predict step, we also define an update step as follows, with
the following parameters:

• Zk,meas model: A scan (set of measurements) produced by some measurement model.

• {x̂k|k−1, ...}: The current prior, predicted to timestep k in order to match the times-
tamp of Zk,meas model.

• Mmeas model: the measurement model which produced the scan Zk,meas model.

{x̂k|k, P̂k|k, p̂k|k} =

IPDA update({x̂k|k−1, P̂k|k−1, p̂k|k−1}, Zk,meas model,Mmeas model)
(7.3)

A final thing worth noting is that the IPDA update function will accept any state estimate
(not just a prior). In other words, we can (and will) call this function (with both priors
and posteriors) multiple times, depending on how many different scans we have at a given
timestep. Similarly, we could just as well call predict multiple times in a row, if it turns
out that no scans were produced for some timesteps.

Since I will not subject the implemented IPDA to any ambiguous (cluttered) scans in this
thesis, it will serve essentially as a KF. To this end, their elaborate update schemes are not
in use, and I opted to omit them for brevity. For a more rigorous definition of the IPDA
update, I defer to [18].

7.2.3 Get error state

For getting the error state, we defer to its namesake as defined for a general compound
filter (eq. 4.2). This of course leaves the probability of existence estimate p̂k|k untouched.

Although omitted here, it is of course the motion model (Mmotion) which defines what
elements of the target state x̂k|k are nominal target states x̂t,k|k, and what elements are
error states x̃o,k|k. This again determines which elements are marginalized for in the
get error state(.) function.
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7.2.4 Reset error state

For resetting after an injection, things get a little more complicated. This is because the
’inherited covariance’ motion models (ESCV-IC and RESCV-IC) handles this a little dif-
ferently than their ’decoupled covariance’ counterparts (ESCV and RESCV).

In both cases, we run the reset error state(.) function as defined for the compound filter
in eq. 4.3.

For only the inherited covariance varieties (i.e. ESCV-IC and RESCV-IC), we also run the
reset error covariance(.) function as defined the compound filter in eq. 4.4.

This of course leaves the probability of existence estimate p̂k|k untouched.

As with getting the error state, it is the motion model (Mmotion model) which defines what
elements of the target state x̂k|k are nominal target states x̂t,k|k, and what elements are
error states x̃o,k|k. This again determines which elements are reset in the reset functions.
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Chapter 8
Theory - Joint localization and
tracking

Having defined localization and tracking separately, we can introduce the concept of joint
localization and tracking. What I mean by this is some system which performs both tasks
and in which the results from either task is used as part of the calculation of the other.
In laymans terms, the information flows both ways. The idea of course being that such
a joint solution will somehow provide better performance, more robustness, or otherwise
some improvement over similar, separated schemes. In this chapter, two such schemes are
presented in detail.

The first of which is a new addition suggested in this thesis, namely navigational cor-
rection based on error state estimation as part of each track. Much of the appeal for
such a solution stems from the substantial support for modularization, in terms of separate
and arbitrary localization and tracking schemes, which again support arbitrary motion and
measurement models. This is also a true tracking solution in the sense that the implemen-
tation can deal with data association, misdetections and clutter. A second but significant
appeal is that such a structure is similar to existing typical navigation and tracking systems,
and as such would require less dramatic changes to implement.

The second approach is a full state EKF, which includes both the ownship localization
state as well as the CV state of all targets. This requires fully associated, clutter free
scans, and is included more so as a best-case performance example, with which to compare
the sub-optimal error state approach. One would also expect such a filter to be decently
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consistent in simulation, as it contains accurate models of all (target) behaviour, and is
able to maintain all correlations.1

8.1 Error state joint localization and tracking - ES-JLAT

In this section, an error state oriented solution to joint localization and tracking is pre-
sented. For brevity, I will refer to this solution (in the broadest sense) as ES-JLAT, i.e.
error state joint localization and tracking. This is divided into the following parts: firstly,
a visual presentation of the various modules included, as well as which functions each
module fulfills. Secondly, a suggested sequence of actions (function calls) which demon-
strates the solution in an algorithmic perspective. The third part is a presentation of some
suggested consensus models. Such models are the only truly intrinsic aspect this solution
and thus a crucial design choice. The fourth and final part is a discussion on adjacent
theory within state estimation and joint localization and tracking as a whole, including
Schmidt-Kalman filters, error state Kalman-filters, and track to track fusion.

8.1.1 ES-JLAT: a visual guide

Before delving into the diagram, a brief outline of the information assumed available is
prudent. Note also the arbitrary discrete timestep k here, for any such timestep, it is
assumed that the various pieces of information are synchronized in time. This information
is divided into three main categories:

1. Ownship odometry, i.e. uk. This is the starting point for ownship localization, and
provides a means for noisy, relative localization. This information is assumed to be
produced in a 3 DOF discrete format, via IMU preintegration. As such, it is also
assumed to be available in whatever timing is required, as the IMU is presumed to
have a sampling frequency which is orders of magnitude larger than the other sen-
sors.
Note that odometry is not used for the simulations in this thesis. This illustrates
some of the modularity of ES-JLAT, namely that we don’t really care how the lo-
calization filter does its job, as long it can provide us with current Gaussian state
estimates.

2. Absolute scans, i.e. Zabs,k. These are scans which contain one or more detections
for some timestamp. Each detection is presumably the position of some vessel.
This also includes the ownship, which is crucial for mitigating drift caused by IMU
integration. As the absolute label implies, these detections are not subject to navi-
gational uncertainty, i.e. the sensor pose is presumed known and has been used to
transform the scan to a global frame.

1As opposed to a separate solution, in which the ownship pose is considered external information, which is
”taken for granted” in some sense.
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3. Relative scans, i.e. Zrel,k. These are scans which contain one or more detections for
some timestamp. Each detection presumably contains the relative position between
the ownship and another target. By extension, the sensor pose is assumed to be equal
to the ownship pose. Using the online localization estimate to transform these scans
to a global frame will necessarily subject this scan not only to the measurement
uncertainty inherent to the sensor (measurement model) but also the navigational
uncertainty of the ownship pose.

In terms of joint localization and tracking, it is perhaps the relative scans which are the
most interesting. These contain a very explicit connection between the ownship and the
targets, which, by extension, if you know something about the state of one of the two, it
should be possible to use relative scans to infer something about the state of the other.

There is of course some reciprocity to this, in the sense that we also need the absolute scans
to get some information about the individual positions to begin with. In this solution, it is
very much the absolute scans which are ”the voice of reason” which stabilize the whole
affair. One would expect inaccurate or infrequent absolute scans to make this approach
subject to drift or divergence.

Figure 8.1: ES-JLAT overview diagram
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A diagram of the different suggested modules for ES-JLAT is shown in figure 8.1. Note the
layered tracking modules, which are intended to indicate the possibility for using multiple
single target trackers (as done in this thesis) or a multi target tracker, furthermore, note
that the update step has been divided into absolute and relative varieties, as it is only the
relative updates which require knowledge about the ownship pose.

Finally, note that in typical system abstraction, one would simply omit the lower part of
this diagram, i.e. the area below the dashed line. By only examining the top part, we see
the traditional one sided flow (left to right) of information from navigation to tracking.
By introducing the error state aspect, we enable a flow of information from tracking to
navigation (right to left). It is this reciprocal flow of information which makes ES-JLAT a
joint tracking and localization system.

8.1.2 ES-JLAT: an algorithmic example

Making use of the actions defined in figure 8.1, we can define an algorithm for a typical
timestep of this scheme, doing all actions necessary to arrive at sound posteriors for both
localization and tracking. For the record, some action A within a module M will be referred
to as M A.

1. Run Navigation predict.

2. Run Tracking predict to match the timestamp of the ownship.

3. At this point, we have calculated predicted estimates {x̂k|k−1, P̂k|k−1} for both the
ownship and all targets.

4. If an ownship detection is present within Zabs,k at this timestep,
run Navigation positional fix with this detection.

5. Run Tracking absolute update with the remainder of Zabs,k.

6. Run ES-JLAT injection and reset steps*:

(a) Run Consensus model calculate consensus with all error states
(Tracking get error state) from trackers.

(b) Inject consensus into navigation model: Navigation inject error state.

(c) Reset error state in trackers: Tracking reset error state

7. Run Tracking relative update with Zrel,k and the current ownship pose.

8. Run ES-JLAT injection and reset steps:

(a) Run Consensus model calculate consensus with all error states
(Tracking get error state) from trackers.

(b) Inject consensus into navigation model: Navigation inject error state.
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(c) Reset error state in trackers: Tracking reset error state

*: After further consideration, it was found to be problematic to run injection steps after
absolute updates. This is likely because the absolute scans do not contain any correlation
between the target and ownship states, and thus only provide spurious estimates. Adjusting
for this change, one would skip steps 6a and 6b, and only run the reset step, 6c. This
disregards any error states estimated, and leaves all filters in an expected state, ready for
new updates or predictions.

8.1.3 ES-JLAT: consensus models

So far in the elaboration of ES-JLAT, the consensus model has been left undetermined, as
an arbitrary module which provides some calculate consensus function. In this section,
various definitions for this function, i.e. various consensus models are discussed, finally
concluding on a full definition for the choice I deemed worked best.

This function must accept multiple, independent error state estimates from each target state
{x̂1, P̂1, p̂1}, ..., {x̂T , P̂T , p̂T }, and using these, make some correction on the localization
estimate {x̂o, P̂o}. Furthermore, some preliminary discussion on the different models’
pros and cons is included.

Consensus model: first attempts

Before arriving at the ’covariance weighted error’ I experimented with a couple of other
consensus models. The first of these were a simple average of every error estimate x̃t, after
some testing, this was found to be problematic. This is mostly because such a scheme does
not, in any way, account for the fact that a track may be uncertain or inaccurate at certain
times. It was deemed prudent to find some consensus model which is able to disregard
error estimates from bad (or even diverged) tracks.

The first attempt to this end was a consensus model which still calculated an average of
the error states, but now weighted against that track’s probability of existence estimate p̂t.
Given that a number of the simulations I ran was without clutter, and with fully associated
scans (i.e. just filtering), the p̂t of every track was driven exponentially fast to 1. Since the
existence probability of every track was equal in these cases, the resulting estimate became
equal to that of the aforementioned ’average consensus model’, with the same problems
as before.
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Consensus model: covariance weighted error

In order to leverage a more dynamic metric (hopefully reflecting the track’s accuracy), it
was opted to instead use the covariance estimates of (the error states in) a track to weigh
its contribution to the consensus. Furthermore, now considering the track’s own estimate
of the error state covariance, it becomes possible to not only calculate a consensus, but
also the covariance of that consensus estimate. In this sense, it starts to look more like any
other KF update step, in the sense that a measurement has both a value z and an associated
noise matrix R. In our case, this expands the consensus model’s job from providing just
an injection, to also estimating the uncertainty of that injection.

In order to estimate these sizes, we first consider the simple case in which the error state
estimate x̃t associated with each track, t, is a scalar. By extension, its marginal covari-
ance estimate P̂t,x̃ is also a scalar. Let’s assume that each error state x̃t is independently
distributed according to N (x̃, P̂t,x̃), where the mean x̃ is the supposed true error state.

This assumption (x̃t ∼ N (x̃, P̂t,x̃)), is a consequence of assuming that the error state x̃
is observable from the measurements provided to the tracking filter. If there is an error
present, we trust the tracking filter’s post-update error state to reflect this (and in fact be
an optimal estimate of).

This is a dangerous assumption, since we have not actually accounted for the ob-
servability of the various localization states in the tracking filter update. In other words,
for unobservable error states, we are liable to produce zero (or close to zero, depending on
correlations in P̂o) estimates of these states in x̃t. As it stands, these are naı̈vely injected,
and their zero estimates are interpreted as ”ok, there must be no error for that state”, when
in reality, we have no idea whether there is an error present. This is something I will get
back to, but stands as a pressing point of future work, since the current implementation
will inject these spurious estimates (and reduce their covariance) regardless.

Leveraging this distribution, we can calculate a maximal likelihood estimator (MLE) as:

x̃ =
1∑T

t=1
1

P̂t,x̃

T∑
t=1

x̃t

P̂t,x̃
(8.1)

For T = 2, i.e. two targets being tracked, this simplifies to:

x̃ = x̃1
P̂2,x̃

P̂1,x̃ + P̂2,x̃

+ x̃2
P̂1,x̃

P̂1,x̃ + P̂2,x̃

(8.2)

Which intuitively enough becomes a normalized weight on each error state, which is deter-
mined by how much of the total covariance is taken up by the other targets. For example,
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if the covariance of target 1 is much larger than that of target 2, it follows that the weight of
target 1 will be close to zero, while the weight of target 2 will be close to 1. This matches
our expectations, as we would want to trust the estimate which has the lower covariance
of the two. In a similar fashion, if the two covariances are of similar size, the two weights
both become roughly 0.5, as an evenly weighted average.

These expressions become significantly more horrid as T grows, but for the purposes of
the simulations used in this thesis, T = 2 is enough. So simplified expressions of this
equation are omitted.

For this estimator, we can also evaluate its variance, again treating all covariances as con-
stant, and treating each x̃t as independent of the others:

Var(x̃) =
1∑T

t=1
1

P̂t,x̃

(8.3)

Once again simplifying this for T = 2, we arrive at:

Var(x̃) =
P̂1,x̃P̂2,x̃

P̂1,x̃ + P̂2,x̃

(8.4)

Now looking at the non-scalar case, leveraging linear algebra instead of calculus, we arrive
at the following MLE estimate for the error state vector x̃:

x̃> =

( T∑
t=1

x̃>t P̂
−1
t,x̃

)( T∑
t=1

P̂−1t,x̃

)−1
(8.5)

Var(x̃>) = P̃ =

( T∑
t=1

P̂−1t,x̃

)−1
(8.6)

At this point, it is worth noting that computing these expressions will result in a copious
amount of matrix inversions. This is typically an expensive (slow) computation, so it
would be prudent to look for ways of speeding this calculation up either by algebraic tricks,
or ’close enough’ estimates which are more computationally sound. For the purposes of
this thesis, I have not made any efforts towards this end, so this is left as a point of future
work. Mitigating this problem has seen some work in the literature, especially in the
context of SLAM [25], this leverages an information filter, which maintains an estimate of
the inverse covariance matrix, i.e. an information matrix. Depending on the overall needs
for the system, it might be prudent to swap the error state estimation to information filters,
thus inherently producing the necessary inverse matrices.
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Overconfidence for positional updates

After some tests with the ESCV and ESCV-IC models, it was found that the positional
corrections they produced were very small, and not really enough to make much of a
difference. Furthermore, the fact that the ownship already receives positional detections
frequently, will drive these covariance values quite low. I.e. the filter already has a fairly
accurate estimate, and does not need much help. When using the injection covariance P̃
in order to calculate posterior covariance for the localization filter, it was observed that
positional estimates suddenly grew grossly overconfident.

I expect this to be a result of the positional injections not really making the estimates more
accurate, while at the same time, the covariance update causes the positional variances
to be greatly reduced. At this time it is tricky for me to diagnose whether this will be a
recurring theme for injections on variables which already have decent estimates, or sim-
ilarly whether there is simply not enough information in two range bearing detections to
accurately estimate all three error states.

Nonetheless, I ended up doing an ad-hoc adjustment here in order to give the ESCV(-IC)
a fighting chance. This adjustment consisted of creating an inflation matrix K, which is
used to increase the size of P̃, before using it to calculate the posterior covariance (after
injection). In KF terms, the injection covariance P̃ is used as the measurement noise
R, thus its size will influence how much the covariance estimate is reduced during an
update. Intuitively, setting this R matrix to be very small would result in a similarly
small posterior covariance, whereas setting to something huge, would result a relatively
unchanged posterior covariance.

We can leverage this by saying ”ok, we still trust the heading corrections to be accurate,
whereas the positional corrections are too small to make a difference.”. Modifying the in-
jection covariance P̃ to reflect this insight, we would want to make the positional elements
huge, while leaving the heading elements unchanged. I chose to achieve this by scaling
the P̃ matrix on either side by the diagonal matrix K:

P̃inflated = KP̃K (8.7)

For the sake of generality, I defined this inflation matrix using the tuning parameters
Kp and Kϕ, which are scalars for inflation of heading and positional elements, respec-
tively. This makes the inflation matrix for an ESCV injection defined as such: KESCV =
diag(Kp,Kp,Kϕ). In the general case, we would want to define a inflation parameter Ki

for each element x̃i of the error state. If multiple relative measurement models are present,
each with different observability on the error states, it might even be prudent to define such
a vector of inflation parameters for every measurement model, in order to ensure that they
adequately affect posterior covariance according to their properties.

This exponential increase of tuning parameters (which may even need to be adjusted ac-
cording to number of targets) highlights an obvious ’rabbit-hole’ with this solution, and I
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deem the posterior covariance of ES-JLAT injection to be the decidedly weakest part of this
algorithm. This stands a crucial point of future work, namely to find some more elegant
(robust and simple) way of calculating this posterior covariance which would guarantee
consistent results.

For the inherited covariance motion models (ESCV-IC and RESCV-IC), these inflation
parameters are actually the only tuning parameters inherent to ES-JLAT, and thus become
important tools for achieving consistency.

It is worth noting here that the number of targets being tracked will have a huge influence
on the injection covariance P̃, as it is an MLE estimate of all individual error states. All of
the insights discussed here are in the context of tracking two targets. It is perfectly possible
that these inflation parameters will need to vary depending on targets, in order to ensure
that the P̃ estimate does not grow too confident.

8.1.4 ES-JLAT: adjacent theory

With ES-JLAT now being fully defined, its similarities to existing solutions bears men-
tioning.

Schmidt-Kalman filters

In terms of a single tracking filter (referred to as a ’compound filter’) the most adjacent
thing I can think of are the navigational uncertainty SKF solutions for tracking, as pre-
sented in [6; 4]. With very similar filter structures, the main distinction is the fact that we
allow the nuisance parameters to be estimated, as opposed to an SKF, which imposes zero
mean nuisance parameters, also on updates.

Error state Kalman filters

Since we also perform injection and reset steps, a single compound filter becomes an
ESKF (see sec. 4.2 as well as [8; 9]) in some sense. Noting of course that it is only the
nuisance parameters (localization error) which are affected by the injection/reset steps, it
would be more prudent to describe it as a partial ESKF, where the remainder of the filter
simply becomes a KF or EKF.

Track to track fusion

Moving along to the combination of multiple tracking filters, and the consensus injection,
it becomes reminiscent of a track to track fusion structure (see [26] for an introduction).
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This being the case by virtue of every tracker calculating an update step independently,
and that a consensus is calculated ’after the fact’ using these updated track estimates. To
that end, the ’track fuser’ becomes the consensus model, which handles both the fusion
of data from each separate track, while also handling the reset step which constitutes a
’central tracks update’. An extension of the ’track fuser’ thus becomes its influence on the
localization update, which goes beyond typical track to track fusion.

In terms of a posterior ’central tracks update’ this becomes a a bit of a stretch, as the current
formulation of ES-JLAT does not perform any retroactive corrections on track estimates
(beyond the error state reset). However, I posit a relevance nonetheless, as such a modi-
fication is an immediate point of future work. I.e. using information from the calculated
consensus in order to retroactively correct track posteriors. E.g. correcting tracks which
had an error state estimate far from the consensus, while leaving the seemingly accurate
(close to consensus) tracks unchanged. This is something I will discuss later in the thesis
under the label ’injection innovation’.

If we swap perspectives, we can treat the ownship localization as the objective of tracking.
In such a view, we clearly see how every tracking filter provides its own ’tracking esti-
mate’, which is fused in the consensus model into a ’central track update’ as a consensus
injection. In such a perspective, it is clearly a track to track fusion system.

8.2 Full state EKF

To include some reasonably sane filter with which to compare the results of ES-JLAT, a
full state filter was also implemented (henceforth referred to as full-filter, FF). Its state
includes the ownship state (with heading) and an arbitrary number of CV targets. In this
section, the details surrounding this filter are presented.

8.2.1 Full state EKF: motion model

In our case, we assume that the ownship is modeled according to the CV + heading (as
defined in section 5.1.2) and that all targets (1 through T) are modeled according to the
CV model (as defined in 5.1.1). By stacking this into a state vector xFF, we arrive at:

xFF =


xCV+heading,o

xCV,1
...

xCV,T

 (8.8)
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Noting that xCV+heading,o has 5 elements, and each vector xCV,t has 4 elements, it follows
that xFF will have a grand total of (5+4·T ) elements. Stacking together a similar transition
matrix FFF for discretized states, we arrive at:

FFF = blkdiag(FCV + heading,FCV , ...,FCV ) (8.9)

Note that the number of FCV matrices in the tail end of this parameter list corresponds to
the number of targets, T , s.t. the dimensions of the square matrix FFF matches up to the
number of elements in xFF.

In a similar sense, we can stack together a process noise matrix QFF:

QFF = blkdiag(QCV + heading,QCV , ...,QCV ) (8.10)

Combining these into a classic KF prediction step assuming a Gaussian posterior from the
previous step {xFF,k|k, PFF,k|k} (no need for linearization, as matrices F and Q are already
discretized), we arrive at:

N (xFF,k+1|k,PFF,k+1|k) = N (FFFxFF,k|k,FFFPFF,k|kF>FF + QFF) (8.11)

8.2.2 Full state EKF: measurement models

For the update steps of the EKF, we once again defer to the models defined in chapter 5. In
this case, we assume that an absolute (associated) detection is available for the ownship, as
well as every target. Similarly, we assume that a relative detection is available between the
ownship and every target. Furthermore, we assume that these detections are all associated,
i.e. sorted to match their corresponding targets. Thus, the job of modeling both these
update steps amounts to stacking together the appropriate amount of measurement models.

For both models, the task of actually calculating the posterior state is reduced to defining
h(x),H,R, with which a KF update can be calculated.

Absolute detections

Noting the detection of the ownship o and all targets 1 through T , and operating with the
previously defined measurement function hcart(.) (eq. 5.38) and its corresponding noise
Rcart (eq. 5.40), we arrive the the model:

zFF,cart,k ∼ N (hFF,cart(xFF,k),RFF,cart) (8.12)
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hFF,cart(xFF) =


hcart(po)
hcart(p1)

...
hcart(pT )

 (8.13)

RFF,cart = blkdiag(Rcart, ..., Rcart) (8.14)

Noting that the EKF estimates a linear measurement matrix H to compute the update step,
we find this via linearization of the measurement function hFF,abs(s). Conveniently, this
is already a linear function, and corresponds to selecting the positional elements from the
ownship and every target. Using HCV + heading→cart and HCV→cart, as defined in equations
5.42 and 5.41, we build the full measurement matrix HFF,cart as:

HFF,cart = blkdiag(HCV + heading→cart,HCV→cart, ...,HCV→cart) (8.15)

At this point, the remainder of this update step is a KF update, as a function of the state
prior {xFF,k|k−1,PFF,k|k−1}, the measurement vector zFF,cart,k, as well as its measure-
ment and noise covariance matrices, HFF,cart and RFF,cart.

For the sake of brevity2 the remaining nitty gritty of this update is omitted, and simply
defined as:

{xFF,k|k,PFF,k|k} =

KF update({xFF,k|k−1,PFF,k|k−1}, zFF,cart,k,HFF,cart,RFF,cart)
(8.16)

Relative detections

Just as the absolute detections model amounted to a stack of T + 1 Cartesian absolute
measurement models, the relative detections model is simply a stack of T Range bearing
relative measurement models (see sec. 5.2.2):

zFF,rel,k ∼ N (hFF,rel(xFF,k),RFF,rel) (8.17)

hFF,rel(xFF,k) =

hrel(xo, x1)
...

hrel(xo, xT )

 (8.18)

2Furthermore, a standard KF update step has already been defined in section 6.1.1.
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Assuming independence of the measurement noise for each target, we define the noise
covariance matrix RFF,rel as:

RFF,rel = blkdiag(Rrel, ...,Rrel) (8.19)

As for HFF,rel, i.e. the Jacobian of hFF,rel(.), it is significantly more hairy than its Cartesian
counterpart. This is because its elements are derivatives of Euclidian norms and atan2
functions, which will vary with both ownship and target positions. For this reason, I have
opted to not compute this matrix analytically, but rather numerically.3 As the EKF is
designed to compute such jacobians from nonlinear measurement functions, we simply
defer to an EKF update step, and leave it as implied that HFF,rel will be estimated from
hFF,rel(.) in some way. This leaves us with the following definition for this update step:

{xFF,k|k,PFF,k|k} =

EKF update({xFF,k|k−1,PFF,k|k−1}, zFF,rel,k, hFF,rel,RFF,rel)
(8.20)

3For example using finite differences to differentiate hFF,rel(.) wrt. xFF about the newest state estimate.
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Chapter 9
Simulation

In order to validate and compare the solutions presented in chapter 8, they were imple-
mented in MATLAB and tested in various Monte Carlo simulations. This chapter outlines
how these simulations were implemented, as well as the different variants which were
tested. This chapter is divided into six parts. First the simulator is described in broad
terms. Secondly, the vessel behaviour is defined, with adjustments being made for the
extra states necessary for the ownship (in addition to the planar position and velocity re-
quired for CV). Third, the generation of sensor data is described, i.e. generating detections
in the form of absolute and relative scans. Fourth, the chosen performance metrics for the
simulations are introduced, and their merits are briefly discussed. Fifth, an algorithmic
outline of how the simulations are executed is included. Sixth and finally, some sample
output from the simulator is shown. I.e. vessel trajectories in XY plots and an ownship
heading timeseries.

For the sake of brevity and abstraction, this chapter relies heavily on the previously de-
fined functions and models. Thus it is prudent to revisit chapter 5 for any definitions,
distributions, measurement functions which are not readily defined here.

9.1 Overview

The simulation features 2 targets of interest, as well as an ownship. All three of these
vessels are defined as points moving in a planar coordinate system (2 DOF), with the
ownship also including a heading (3 DOF).
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Otherwise, there are no additional vessels, no obstructions present, and no environmen-
tal/external influence on these vessels. I.e. just an open, calm ocean with all three vessels
moving about freely.

Each simulation is set to start at time t0 = 0s, and runs in discrete steps until tmax = 50s.

9.2 Initial conditions

Initial conditions, both in terms of true states from which to generate trajectories, as well
as filter initialization, will have a huge impact on performance. Especially the ES-JLAT
scheme, which relies on tiny incremental corrections, has been found to struggle if the
filters are initialized far from the corresponding true values. For this reason, relatively
easy initial conditions were decided on.

9.2.1 Initial conditions: true values

The ownship trajectory always starts in [0, 0] with zero initial velocity. The initial heading
is sampled from a continuous uniform distribution as ϕo,0 = uniform(−π, π).

Both targets were initialized to start a nominal distance (50 meters) from the ownship.
This was achieved by sampling polar coordinates rt, θt, for either target t. The radius was
sampled similarly for both targets, with a variance of 10 m2, i.e. rt ∼ N (50, 10). It was
deemed prudent to ensure a decent starting distance between the targets, in order to give
the trackers a decent chance of establishing tracks before being challenged on association
from proximal vessels. For this reason, it was imposed that either target should start on
opposite sides of the ownship. This was achieved by sampling the angles θt as follows:

θ1 = uniform(π/4, 3π/4)

θ2 = uniform(−3π/4,−π/4)
(9.1)

This makes the initial target position pt,0 defined as:

pt,0 =

[
rt cos(θt)
rt sin(θt)

]
(9.2)

Finally, the initial target velocity vt,0 was sampled from a zero mean Guassian distribution,
with a variance of 3 (m/s)2, i.e.:

vt,0 ∼ N
([

0
0

]
,

[
3 0
0 3

])
(9.3)
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9.2.2 Initial conditions: filter initialization

For all filters used in this simulation, their inherent assumption is that their produced esti-
mate is distributed as a Gaussian about their true value. To enforce this in their initializa-
tion, it was opted to sample the initial values from said Gaussian.

This was achieved by sampling the relevant true states x0 from their sampled values, and
defining some initial covariance P̂0. This initial covariance was set as constant across all
vessels and simulations, with the following values:

• The marginal covariance of all positional elements p were set as 3 m2.

• The marginal covariance of all velocity elements v were set as 3 (m/s)2.

• The marginal covariance of the ownship heading ϕo was set as 0.3 (rad)2. This
corresponds to a standard deviation of roughly 31 degrees.

• All cross correlations (off diagonal elements) were set as 0.

This produces the following initial covariance estimates P̂o,0, P̂t,0 for the ownship and
targets, respectively:

P̂o,0 = diag(3, 3, 3, 3, 0.3)

P̂t,0 = diag(3, 3, 3, 3)
(9.4)

Using these initial covariances as well as the corresponding true values, the initial state
estimates were sampled from:

x̂o,0 ∼ N (xo,0, P̂o,0)

x̂t,0 ∼ N (xt,0, P̂t,0)
(9.5)

9.3 Vessel behaviour

For all 3 vessels, their motion is generated using the discrete CV model defined in section
5.1.1. I.e. from some initial state xCV,0 = [px, vx, py, vy]>, we sample a random accel-
eration according to QCV, which is then used to propagate it to the consecutive timestep,
xCV,1. This matrix is a function of both the acceleration noise σ2

CV as well as the time
between each step ∆T . For all simulations, these parameters are constant, and defined as
0.5(m/s2)2 and 0.01s, respectively.
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This is perfectly analogous to the CV model, thus we would expect the CV filters used in
these solutions to be consistent, given that they are tuned to the correct noise parameter
σ2

CV.

9.3.1 Ownship

For the ownship, part of the localization objective is to estimate the heading. Thus we also
need a ground truth heading to be generated by the simulator. I have opted to implement
the heading as a random walk, i.e. a constant value, which is driven by a zero mean
Gaussian noise at every timestep.

This makes it analogous to the CV + heading model, as defined in section 5.1.2. For propa-
gating an initial heading value ϕ0 to its next timestep, we again require a tuning parameter
σ2
ϕ as well as a time difference ∆T . These parameters are defined as 0.16(rad/s)2 and

0.01s, respectively, for all simulations.

At this point it worth noting that the ownship heading, with this random walk model, is
completely decoupled from the ownship direction of travel. This is somewhat uncharac-
teristic for surface vessels, as such vessels are typically directionally stable, i.e. the hull,
thrusters and rudder are designed in such a way that the heading always stabilizes to the
direction of travel (much like fixed wing aircraft). However, fully actuated vessels, outfit-
ted with multiple azimuth thrusters (such as milliAmpere) can easily control heading and
linear motion separately, for this reason, it is prudent to be able to estimate heading with-
out inferring it from motion. In order to enforce this independence, while also producing
readily available angular rate values, this random walk model was chosen.

Note the choice of sample time as ∆T = 0.01s for the vessel motion. At this point, we
have effectively chosen the simulation frequency as 100Hz, by extension, it is now prudent
to choose all other sample rates as some whole number fraction of 100Hz. This ensures
that accurate ground truth data is available for other modules (without having to interpolate
between timesteps), whenever they need to sample it.

9.4 Sensor data

9.4.1 Absolute scans

Next, we need to generate absolute, positional detections of all targets. These are modeled
according to the Cartesian absolute model, as defined in section 5.2.1, and running at a
constant sample rate of 10Hz.

Noting that the ground truth trajectories are available at 100Hz, we generate the absolute
scans by selecting the position of all 3 vessels at every 10th sample of the ground truth
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timeseries. These positions are then sampled according to the Gaussian distribution of the
Cartesian absolute model, i.e. equation 5.39.

These samples are subject to noise defined by the covariance matrix Rcart, which again is
defined by the Cartesian measurement noise parameter, σ2

cart. For all simulations and all
vessels, this parameter is set as 3 m2.

These scans are not subject to any misdetections or clutter, i.e. all targets are detected
in every scan, and no additional false detections are included. This means that for a 50
second simulation, the generated scans Zcart,k (and their corresponding timestamps tk)
can be expressed as the collection:

{Zcart,0, t0}, ..., {Zcart,K , tK} =

{zcart,o
zcart,1
zcart,2

 , 0}, ...,{
zcart,o
zcart,1
zcart,2

 , 50

}
(9.6)

9.4.2 Relative scans

For the relative detections, we defer to the Range bearing, relative measurement model,
as defined in 5.2.2. In this case, the model runs at 20 Hz, i.e. we select every fifth sample
from the ground truth trajectories in order to generate the scans. As for tuning parameters
σ2

rel,r, σ
2
rel,θ, these define the measurement noise matrix Rrel, and are radial and tangential

variance, respectively.

Again, we define these as constants for every simulation and vessel, and set their values to
σ2

rel,r = 2 m2 and σ2
rel,θ = 0.1 rad2. Now that the ground truth data and covariance matrix

are defined, we can sample every scan according to its distribution: eq. 5.47. As with
the absolute detections, I have not included any misdetections or clutter, and an example
collection of all scans for a 50 second simulation thus becomes:

{Zrel,0, t0}, ..., {Zrel,K , tK} =

{[
zrel,1
zrel,2

]
, 0

}
, ...,

{[
zrel,1
zrel,2

]
, 50

}
(9.7)

9.4.3 Disclaimer

A number of arbitrary choices have been made with regards to generating sensor data for
the simulations. Specifically, sample rates and noise parameters. Crucially, the choice to
not include misdetections or clutter is an important one. For the purposes of demonstrating
ES-JLAT as a full fledged tracking system, it needs to be able to handle both misdetec-
tions and clutter. To this end, this simulator is by no means a final answer for such a
demonstration.

75



Chapter 9. Simulation

A very obvious point of future work becomes to implement these error sources in order
to test ES-JLATs resilience to them. Alternatively, and even more interesting, is to test
ES-JLAT on a real, experimental dataset instead, as simulations after all cannot capture all
the complexities of a real life system.

On the topic of coping with misdetections and clutter, it is worth noting that the choice
of tracker(s) will have a huge impact on this. A similar point of future work will be to
test the ES-JLAT with various trackers. Given the large degree of modularity inherent to
ES-JLAT, i.e. support for arbitrary trackers, motion, measurement and consensus models,
testing all kinds of combinations becomes a Herculean task. This is of course far too much
for this thesis, and I leave this too as a point of future work.

9.5 Execution of a simulation

The execution of a single simulation is divided into four parts:

1. Setup, i.e. generation of trajectories, scans, initial conditions.

2. Iteration of ES-JLAT, i.e. running prediction, update and injection steps in sequence.

3. Iteration of the full filter solution, i.e. running prediction and update steps in se-
quence.

4. Calculation of performance metrics (EE, NEES, RMSE, ANEES) of chosen state
subsets, for both solutions.

This section describes how these four parts are executed in the simulation, resulting in a
set of performance metrics for either solution.

9.5.1 Simulation setup

1. Generate vessel trajectories

2. Generate absolute and relative scans

3. Generate initial conditions for all filters.

9.5.2 ES-JLAT iteration

1. Start a for loop at tk = 0s, incrementing 0.05s per iteration, i.e. 20 Hz:

(a) Run prediction step in localization filter.
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(b) Run prediction step in tracker(s).

(c) If an absolute scan Zcart,k is available for time tk:

i. Run positional update in localization filter with first element of Zcart,k.
ii. Run update step in tracker(s) with Zcart,k.

iii. Calculate and inject consensus according to consensus model.*
iv. Reset error states in tracker(s).*

(d) If a relative scan Zrel,k is available for time tk:

i. Run update step in tracker(s) with Zrel,k.
ii. Calculate and inject consensus according to consensus model.

iii. Reset error states in tracker(s).

*: Running an injection after updates from absolute scans was found to be problematic.
For this reason, steps 1 c iii and 1 c iv were skipped in some simulations. This will be
specified in the results section of these simulations.

9.5.3 Full filter iteration

1. Start a for loop at tk = 0s, incrementing 0.05s per iteration, i.e. 20 Hz:

(a) Run prediction step.

(b) If an absolute scan Zcart,k is available for time tk:

i. Run update step with Zcart,k.

(c) If a relative scan Zrel,k is available for time tk:

i. Run update step with Zrel,k.

9.5.4 Calculation of performance metrics

Performance metrics: description of data

After iteration of both filters, we are left with posterior estimates {x̂k, P̂k} for every 0.05
seconds. For the ES-JLAT solution, these estimates are separate for each vessel, and look
like:

{x̂o,0, P̂o,0}, {x̂1,0, P̂1,0}, {x̂2,0, P̂2,0}, ..., {x̂o,K , P̂o,K}, {x̂1,K , P̂1,K}, {x̂2,K , P̂2,K}
(9.8)

As the full filter includes all three vessels as part of its state, its estimates look like:
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{x̂o,0x̂1,0
x̂2,0

 , P̂0

}
, ...,

{x̂o,Kx̂1,K
x̂2,K

 , P̂K} (9.9)

Pulling the true data from the vessel trajectories, for the corresponding timestamps t0 ...
tK , we get:

{xo,0, x1,0, x2,0}, ..., {xo,K , x1,K , x2,K} (9.10)

At this point, we have estimated and true states, with corresponding covariance estimates,
which are all synchronized in time. We are now ready to calculate the two performance
metrics of choice, namely RMSE and NEES.

Performance metrics: useful state subsets

For any timestep k, we have a total of 13 different variables with which to calculate various
metrics. For the sake of scrutinizing some of these in greater detail, and considering that
the ES-JLAT does not maintain covariance estimates of inter-vessel values, it becomes
prudent to define some subsets of these states.

• po, p1, p2 are the positional elements of their respective vessel states xo, x1, x2.

• ϕo: the heading of the ownship.

• x, without any subscript, refers to the full 13 variable state vector, as used by the
full filter.

For the record, I will also refer to covariance matrices for these subsets like so: P̂p,k. This
reads as matrix P̂k, marginalized over the positional elements in p.

Note that for the ESCV and RESCV models, the track state vectors x̂1, x̂2 are appended
with zero-valued nuisance parameters corresponding to some ownship localization error.
For the purposes of calculating metrics, these elements are ignored, i.e. x̂1, x̂2 now refer
to only the CV state of a vessel (the first four elements). Similarly, the corresponding
covariance matrices P̂1, P̂2 are assumed to be marginalized over these same four states.

Performance metrics: estimation error

For some estimate x̂ and a corresponding true value x, we define the estimation error (EE)
as the Euclidian norm of x̂− x, i.e.:
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EE(x, x̂) = ||x̂− x||2 =
√

(x̂− x)>(x̂− x) (9.11)

As opposed to the root mean square error (RMSE), which is another common metric, the
EE is not adjusted (scaled down) for degrees of freedom. Thus, we would in general ex-
pect vectors with more elements (i.e. higher dimensionality) to produce larger estimation
errors. This is something to keep in mind as we scrutinize this metric.

Performance metrics: normalized estimation error squared

The second metric used is the normalized estimation error squared (NEES). This is a mea-
sure of consistency, as its magnitude is adjusted for the estimated covariance P̂ of the state.
It is calculated as follows:

NEES(x, x̂, P̂) = (x̂− x)>P̂−1(x̂− x) (9.12)

This metric is particularly interesting, as it answers the question of filter consistency. In
other words, it answers the question: ”Are you as inaccurate as you think you are?”. In
the realm of state estimation, this is supremely important, as we need to know whether the
covariance estimates can be trusted.

Furthermore, assuming that a state estimate x̂ is distributed according to a multivariate
Gaussian, with mean x and covariance P̂, (i.e. the filter model corresponds with reality),
it follows that the NEES of x̂ will be chi-squared, χ2, distributed with degrees of freedom
equal to the number of elements in x. Leveraging this, we now have a notion of how
probable a given NEES value is. To contextualize this, NEES values are usually provided
with bounds of a confidence interval, calculated using the appropriate χ2 distribution.

Performance metrics: RMSE and ANEES

Both of the above metrics (EE and NEES) are calculated on a per timestep, per state
subset basis. In other words, for every chosen state subset, we calculate a timeseries of
that metric. This is still a lot of information which is produced per simulation, which can
be overwhelming. For the sake of introducing some scalar, easy-to-digest metrics as well, I
have opted to include root mean square error (RMSE) and average NEES (ANEES). These
are produced as follows:

RMSE(x1, ..., xK , x̂1, ..., x̂K) =

√√√√ 1

K

K∑
k=1

||x̂k − xk||22 (9.13)
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ANEES(x1, x̂1, P̂1, ..., xK , x̂K , P̂K) =
1

K

K∑
k=1

(x̂k − xk)>P̂−1k (x̂k − xk) (9.14)

Performance metrics: ensemble averages

For both EE and NEES, it was opted to calculate ensemble averages over a number of
Monte Carlo simulations. This was achieved by gathering timeseries data of EE and
NEES values from several simulations, then averaging these values separately for each
timestamp. In other words, the produced ensemble average is still a timeseries, but now
every element is now the average of some metric across multiple simulations.

This is particularly useful for filters which are liable to occasionally diverge, or whose
performance is very dependent on initial condition and vessel behaviour. (Such as ES-
JLAT, in some configurations) For example, if the filter diverges horribly in 1 out of a
100 simulations, this constitutes a substantial problem which should be addressed. By
running enough simulations, it is intended that such errant runs should be visible in the
produced ensemble average. This helps demonstrate that scenarios were not cherry-picked
to produce exaggerated performance.

Ensemble average NEES vs. ANEES:
It may appear redundant to include two different kinds of NEES averages as metrics, it
was opted to do so for two reasons:

Firstly, it was deemed necessary to have some kind of timeseries metric in order to
scrutinize the transient behaviour (from initialization to ’steady state’), the ensemble av-
eraged NEES provides such a metric, which is also condensed from multiple simulations.
This timeseries metric is also necessary for the purposes of seeing whether the metric in
question is noisy, which is lost in a scalar metric.

Secondly, the ensemble averaged metric is not enough by itself. Since it smooths
out its value across all simulations, it can hide certain behaviour. I.e. over- and under-
confident runs can ’cancel out’ into something that appears consistent. While it certainly
is consistent in an averaged sense, we still want some per-simulation metric (i.e. ANEES)
in which this behaviour is visible.

9.6 Sample output

To illustrate how the simulated vessels behave, some sample output is included in this
section. This includes an XY plot of all three vessel trajectories, for a single simulation,
as well as a plot of the generated ownship heading, for that same simulation.
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Figure 9.1: Vessel trajectories for a single simulation.

The motion of every vessel is shown in figure 9.1. This is an XY plot showing the position
of every vessel, over the course of a 50 second simulation. Note that the starting positions
are denoted with an × marker, and that ∗ markers are placed along the trajectories for
every 5 seconds of the simulation. These are intended to give some notion of the vessel
velocities, as well as their locations at specific times.

As specified in the initial conditions section, we observe that the ownship always starts
out stationary in [0, 0] and that both targets start on either side of the ownship, roughly 50
meters away from it.

Finally, observe that the vessels can start close enough to each other, (considering the total
simulation time and the CV acceleration parameter), to cross, or even crash, at certain
points during the simulation. This is of particular importance, as it proves the presence
of (albeit mild) challenges of target association, as several targets can be close enough
together to be mistaken for one another. Similarly, if the targets are able to get too close
to the ownship, a minute error in their position estimates can result in a huge error in their
supposed bearing (relative to the ownship). This makes inferring the heading from relative
range-bearing scans very error prone, and at risk of filter divergence. Both these problems
will be explored in further detail in the analysis section.

As for the ownship heading, a sample sequence is shown in figure 9.2. As specified, it
starts out somewhere between−π and π, and changes according to a random walk process
from there. Although the heading (coincidentally) stays around −2.9 radians in this run,
we observe that it changes quickly enough to potentially vary quite a bit over the course
of 50 seconds.
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Sample simulation output: ownship heading

Figure 9.2: Ownship heading for a single simulation

In retrospect I realise that this random walk might still be a bit too ”nice”. A prudent piece
of future work would be to increase the driving noise parameter (from 0.16 (rad/s)2) in
order to make heading estimation more difficult.
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Chapter 10
Analysis - Simulation results

In this chapter, simulation results are presented for a number of configurations. These
results are usually presented in the context of N Monte Carlo simulations, with some met-
rics (RMSE and ANEES) being produced per-simulation, while others, such as ensemble
averages of EE and NEES are produced from the set of all N simulations.

As for simulation configuration in this chapter, the main parameter which is varied between
runs is the choice of motion model for the ES-JLAT scheme. The following five sets are
included:

1. CV (without relative scans)

2. RESCV-IC

3. RESCV-IC (with injections only on relative scans)

4. ESCV-IC (using direct injection)

5. ESCV-IC (using weighted injection)

A common theme for all these results is that no odometry is considered, and that every
filter is provided with scans that only contain detections of the relevant target. In other
words, these results do not demonstrate any kind of target association performance,
nor does it challenge the filters in terms of consistency. The latter is a result of the fol-
lowing: the vessel models used to generate the simulation data exactly match the motion
and measurement models used in both FF and ES-JLAT filters. By extension, full consis-
tency should be achievable in these simulations. There is no ’real-life’ black box which
introduces modelling errors which might cause inconsistency.
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Category Setting Symbol Value Unit

Simulation
Number of simulations N 30

Simulation time Tsim 50 s
Odometry included no

ES-JLAT

Motion model CV
Pre-associated scans yes

Relative scans included no
Clutter rate λ 0

Detection probability PD 1.0

FF Pre-associated scans yes
Relative scans included no

Table 10.1: Simulation configuration for ’CV (without relative scans)’

A recurring theme in this chapter is comparison between the full filter (FF) solution and the
ES-JLAT solution. For the sake of consistency, as well as more compact presentation, the
results of FF are always plotted in blue, while the results of ES-JLAT are always plotted
in red.

For all NEES and ANEES values presented in this chapter, a corresponding 95% confi-
dence interval is indicated in the plots. The bounds of this interval are plotted with dashed
black lines, and are of course calculated from the CDF of the χ2 distribution, with the
appropriate degrees of freedom.

Furthermore, for the ensemble averages of NEES values, the percentages of timesteps
which fell within the confidence bounds are indicated in the sub-title for each plot. These
are denoted with the shorthand ”FF: x%, ES-JLAT: y%”, where x and y are the percentage-
within value for that metric, for the full filter and the ES-JLAT solution, respectively.

10.1 CV (without relative scans)

This first run included does not feature any of the newly introduced ES-JLAT function-
ality. It is simply a comparison between the full filter (FF) solution and a more modular
solution with separate filters for localization and tracking. Since it does not include rela-
tive scans, it becomes a testament to what can be achieved with only absolute detections.
The configuration used for this run is shown in table 10.1.

Since no relative scans are present, there is no information present with which to infer the
heading. For this reason, no plots for heading estimation are included in this section. There
is still a subtle influence of heading error on the ownship state xo, however this is mostly
dominated by much larger errors in position and velocity, and can safely be neglected.
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10.1 CV (without relative scans)

10.1.1 Results: CV (without relative scans)

The simulation results for this run are shown in figures 10.1, 10.2 , 10.3, 10.4. Of these,
the first two are ensemble averages over all 30 simulations, with time along the x-axis,
while the latter two are per-simulation results, with the simulation number indicated along
the x-axis of each plot (1 through 30).

Analysis: Estimation accuracy

For the estimation accuracy, see the EE and RMSE metrics, figures 10.2 and 10.4, respec-
tively. Observe in figure 10.2 that the EE values for FF and ES-JLAT are approximately
identical for all states. In the RMSE plot, observe that the ES-JLAT solution is marginally
worse for x1, x2, p1, p2. I posit that the FF is slightly better here because it can learn inter-
vessel correlations during each simulation. However this difference is very subtle, and
corresponds to a positional error of a few centimeters.

Analysis: Estimation consistency

To scrutinize how well the estimated covariances match with the actual errors, I refer
to the NEES and ANEES plots, figures 10.1, 10.3. For both of these, observe that the
FF grossly over-estimates the covariances. I will refer to this type of inconsistency as
under-confidence, i.e. the actual errors are much smaller than their covariance estimates
indicate. This manifests as NEES and ANEES values which are much smaller than their
corresponding confidence bounds (indicated with dashed black lines).

As for the ES-JLAT, which in this case uses the exact same motion models as the FF, we
observe much better consistency on all counts (except for ϕo). This manifests as NEES
and ANEES values which are either inside or near their confidence bounds. In this case we
would expect perfect consistency, as all filter models perfectly match the models used to
produce the simulated data. Perfect consistency in this case should manifest as all NEES
percentages being exactly 95%.1

Note that there is only one difference between these two solutions in this configuration.
Namely that the ES-JLAT has separate filters for each vessel, while the FF has a single filter
containing all three models. In other words, the ES-JLAT only has marginal covariance
estimates (P̂x1

, P̂x2
, etc.), while the full filter also has cross correlations such as (P̂xo,x2

,
P̂x1,x2

, etc.). This difference in information available is made obvious if we stack together
the covariance estimates provided by either solution as P̂ES-JLAT and P̂FF:

1If I were to set the number of simulations, N , much higher, I would expect these results to exactly match
their confidence bounds.
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Figure 10.1: Ensemble averaged NEES values for ’CV (without relative scans)’
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Figure 10.2: Ensemble averaged EE values for ’CV (without relative scans)’
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Figure 10.3: Per simulation ANEES values for ’CV (without relative scans)’
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Figure 10.4: Per simulation RMSE values for ’CV (without relative scans)’
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P̂ES-JLAT =

P̂xo
05x4 05x4

04x5 P̂x1
04x4

04x5 04x4 P̂x2

 P̂FF =

 P̂xo
P̂xo,x1

P̂xo,x2

P̂x1,xo
P̂x1

P̂x1,x2

P̂x2,xo
P̂x2,x1

P̂x2

 (10.1)

We observed that the ES-JLAT has decent consistency while the FF is grossly under-
confident, I posit that this is a result of the aforementioned inter-vessel correlations. These
correlations matrices will ”allow” the marginal covariances (P̂FF,x1

, P̂FF,x2
, etc.) to reach

larger values, since their effect (magnitude) is being mitigated by matching correlations.
This becomes a problem when we marginalize P̂FF into (P̂x1 , P̂x2 , etc.) as part of the
NEES calculation. By doing this we are effectively ignoring the context of why these
elements were so large in the first place, and the resulting NEES values become dispro-
portionately small.

On marginalization vs. conditioning:
This observed behaviour is partly caused by the subset NEES values being marginalized
from a multivariate Gaussian. In fact, if we were to extract individual state subsets
{x̂1, P̂x1

} by instead conditioning the elements of {x̂FF, P̂FF} on the remainder of the
state vector, we would expect more consistent results. This is a recurring theme for all FF
results presented in this thesis, and worth bearing in mind.

Noting that the full state x is also grossly under-confident (despite not being marginal-
ized), there has to be something else at play as well. I expect this to be a result of the
inter-vessel correlations learned by the FF being exceedingly accurate. When the vessel
behaviour matches these correlations, the NEES values should become correspondingly
lower (resulting in perceived under-confidence). Since the filter is readily updated with
full (all vessels correlated) measurement updates, the FF gets excellent information with
which to learn these correlations (and adapt them quickly to new behaviour).

10.2 RESCV-IC

This next run switches to the RESCV-IC motion model in the ES-JLAT. Furthermore,
we now also provide relative scans to both filters, which provides a means of inferring the
ownship heading. Otherwise, all tuning parameters are set equal to their true values, which
should be a good premise for consistent results. The full simulation configuration is shown
in table 10.2, with relevant changes from the previous run being indicated in bold font.
The only error state included in the RESCV-IC model is the ownship heading. I.e. we
would expect similar performance to the CV model on all accounts except for the heading,
which should now hopefully have a sound estimate.
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Category Setting Symbol Value Unit

Simulation

Number of simulations N 30
Simulation time Tsim 50 s

Odometry included no
Relative scans included yes

ES-JLAT

Motion model RESCV-IC
Injection type direct

Pre-associated scans yes
Clutter rate λ 0

Detection probability PD 1.0
Heading ES covariance gain Kϕ 1.2

FF Pre-associated scans yes

Table 10.2: Simulation configuration for ’RESCV-IC’

10.2.1 Results: RESCV-IC

The simulation results for this run are shown in figures 10.5, 10.6 , 10.7, 10.8. Of these,
the first two are ensemble averages over all 30 simulations, while the latter two are per-
simulation results, with the simulation number indicated along the x-axis of each plot (1
through 30).

Analysis: Estimation accuracy

Starting with the estimation accuracy, this is demonstrated by the EE and RMSE values,
shown in figures 10.6 and 10.8, respectively.

Noting that the change from CV to RESCV-IC provided us with a mechanism with which
to estimate heading, we start with scrutinizing the heading estimation in detail. In general,
both schemes appear to be able to estimate heading with reasonable success, staying within
0.1 radians (roughly 6 degrees) of error on average. Considering that the angular measure-
ment uncertainty σ2

θ is set to 0.1 rad2 (STD of roughly 18 degrees), and that the true
heading changes constantly with time, we would expect these two effects to create a upper
bound on achievable estimation accuracy. Finding the exact value of this bound would be
subject of a Cramer-Rao lower bound analysis (or something similar), but I leave this as
a point of future work. Instead, I simply make the qualitative claim of being pleased with
heading estimation which is more precise than the angular measurement noise variance.

Looking at the ES-JLAT results, we observe its heading estimates are in fact better than
the FF results! This is somewhat unexpected from the authors standpoint, but certainly
stands as a proof-of-concept for ES-JLAT being able to improve localization estimates.
Specifically, we observe that the EE of the heading stays between 0.065 to 0.1 radians for
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Figure 10.5: Ensemble averaged NEES values for ’RESCV-IC’
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Figure 10.6: Ensemble averaged EE values for ’RESCV-IC’
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Figure 10.7: Per simulation ANEES values for ’RESCV-IC’
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Figure 10.8: Per simulation RMSE values for ’RESCV-IC’
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the FF, while the steady state values for the ES-JLAT stay between 0.04 and 0.05 radians.
(Twice as accurate!)

Comparing the accuracy of the remaining states (xo, x1, x2, po, p1, p2), we observe that
this improvement in heading accuracy did not come without a price. In fact, all of these
metrics are marginally worse with the ES-JLAT scheme. For the positional estimates, this
manifests as an increased error of between 10 and 20 centimeters (on average).

To some extent, this is expected, as the RESCV-IC model provides the tracker(s) with
the option to ’blame’ a heading estimate error instead of using all information available to
update the target estimate (position and velocity). By assuming that at some points in time,
a target moves unexpectedly in a tangential direction (relative to the ownship) its motion
is now liable to be ’blamed’ on the heading error state instead.

Let’s illustrate this with an example. Say that both targets move unexpectedly and equally
fast in opposite tangential directions, they have similar distances to the ownship, similar
prior covariances etc. Each of them will produce an equal and opposite heading error state
estimate, which when sent to the consensus model should cancel out. Thus we are left with
the localization estimate being unaffected (as it should be) and both targets experiencing
less of an update to their tangential motion than was the case. This illustrates an obvious
way in which the ES-JLAT scheme can be detrimental to tracking performance.2

On the effects of letting trackers ’blame’ the localization error:
It was stated previously that letting a tracker attribute some unexpected measurement to a
localization error (instead of a change in target state), might have a detrimental effect on
tracking performance.

This is a null argument in some sense, as I could just as easily state that this effect
should in fact be positive for the tracking performance, since the localization error associ-
ated with using relative scans is now less likely to be injected into the track estimates.

At the time of writing this I can only conclude that these are two interchangeable
effects which are counteracting each other, and thus that speculating on their net effect is
tricky. For this reason, I opt to not speculate much further on these effects, and instead try
to observe which of them appear to dominate in the various simulations.

A more unexpected result is that the ownship position estimate po also appears to have
taken a hit (i.e. 20-30 cm worse accuracy) in the ES-JLAT scheme, when compared to
FF. Considering that the RESCV-IC model does not make any correction on the ownship
position, this difference in accuracy has to stem from something else. By comparing the
RSME performance of this RESCV-IC run to the previous CV run (fig. 10.4 vs. fig.
10.8), we get to the heart of the matter. When comparing the FF performance of these

2This presents a particularly interesting point of future work. Namely to look at the individual error state
estimates associated with each track, and see how that matches up with the final consensus. If they do not match
up, it might be prudent to inject these differences back into the target estimates! I think this would be a very
interesting way to counteract the problems illustrated by the aforementioned ’cancel-out’ hypothetical.
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two runs, we find a reduction in error of roughly 0.2 to 0.3 across the board (i.e. for
xo, x1, x2, po, p1, p2). Recall that for the RESCV-IC run, we included relative scans as part
of the simulation. This is the only difference in the FF configuration for these two runs,
and thus where this improvement has to come from. Intuitively enough, when providing a
measurement which intrinsically connects the positions of all three vessels, their estimates
improve.

Now comparing the ES-JLAT performance instead (still fig. 10.4 vs. fig. 10.8), we ob-
serve that the positional elements po, p1, p2 actually have very similar values. From this,
we draw a very crucial observation: Introducing error state injection does not neces-
sarily cause worse tracking accuracy, but it does lessen the improvement on tracking
accuracy we would expect to see by introducing relative scans.

In some sense, we have effectively traded off the potential for improved tracking per-
formance, by instead choosing to use the relative scans in order to improve the heading
estimate. Note of course that the RESCV(-IC) model is only capable of improving the
heading estimate, as that is its only error state. It remains to be seen whether we are also
able to improve the rest of the localization estimate by also including these as error states,
which will be explored in the results of the ESCV(-IC) models.

A final observation for the heading estimation of the ES-JLAT, is the presence of a fairly
slow transient. In the EE plot of ϕo (fig. 10.6), we observe a transient from 0.3 to 0.05,
lasting about 7 seconds. This is dramatically slower than the FF, which appears to stabilize
to 0.1 almost momentarily. This illustrates a significant weakness in the current ES-JLAT
approach, namely that it seems to struggle with a large initial heading error. In fact, looking
at the ϕo RMSE value for simulation 28 (fig. 10.8), which is at a huge 0.3 radians, it would
appear that the ES-JLAT never recovered from a too large initial error.

It seems prudent then to impose that such a system (ES-JLAT using RESCV-IC) should
never be the lone guarantor of heading estimation, and rather be responsible for small
corrections on an already decent estimate. In other words, the fact that this system (as the
lone guarantor of heading estimation) was able to maintain a (better) estimate of heading
in 29 out of 30 cases is nigh on a miracle.

Analysis: Estimation consistency

Looking now at the consistency performance (figures 10.5 and 10.7), we see that the in-
troduction of the error states has had a largely adverse effect for the ES-JLAT. In fact, for
all target metrics x1, x2, p1, p2, both the NEES and ANEES values are decidedly over-
confident. I.e. the actual error is much larger than the covariance estimates would suggest.
Since the absolute values of the errors have not changed much (when compared to the CV
run) I deem it likely that the new covariance estimates are disproportionally small.

This also seems plausible, considering the trackers are now provided with another set of
scans, which results in another set of update steps. Each update step will necessarily reduce
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the covariance estimate, thus it comes as no surprise that more frequent updates should
result in an overall lower covariance. Since we do not observe a matching reduction in
estimation error, only one of the two aspects of consistency have been reduced, resulting
in over-confident results.

It seems prudent then to investigate whether a different filter structure (for such error state
motion models) might be more suited to this kind of update, as the current choice appears
to tank the target-specific covariance far too much. I leave this as a point of future work,
with the idea that something like an (F)PSKF, as introduced by Brink in [7], might be
suited to the task.

As for the ownship estimates xo, po, ϕo, some consistency appears to have been retained.
Especially for the NEES of po, which is at a decent 86% (where we would ideally want
95%). As in the estimation accuracy section, we see a slow transient present in the heading
estimate. Furthermore, we see how noisy and ’jittery’ the covariance estimates of ϕo are
during this transient (this is also present in the xo plot, as ϕo is in fact an element of xo).
This is a significant problem, and again proves how this RESCV-IC ES-JLAT configuration
struggles with large (initial) localization errors.

After recovering from the transient, the NEES percentages of xo, ϕo are decent (78% and
69%), but still a far cry from consistency. It was attempted to tune the filter to achieve
better consistency (for ϕo and consequently xo), by adjusting the covariance injection
gain Kϕ. However, this was the best I could achieve with the current configuration. As
previously mentioned, we observe a lot of high-frequency noise in the NEES of ϕo and
xo. Which I suspect is caused by over-compensation in the covariance reduction of some
update steps. I.e. an update step (or combination of multiple) drives the covariance too
low, the predict step drives the covariance up again, and this results in an oscillation of
sorts.
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On the high frequency noise present in the ϕo NEES:
Interestingly, I found that this noise was greatly reduced if I switched the ES-JLAT scheme
to only run injection steps after updates with relative scans. Whereas the configuration
for this run will do injection steps after all updates. Seemingly, the injection steps (from
absolute scans) did not adequately reduce error as much as they reduced covariance,
resulting in inconsistent behaviour. For the next run of simulations, this is explored in
detail.

In retrospect, I should have seen this coming, considering the injection step of a
cartesian scan does not contain any correlation between the ownship heading and a
target’s position. The result of this is an injection step which does not inject any changes
to the heading estimate, but still blindly reduces the covariance according to the KF
covariance update equation. Trying to tune such a filter is of course a fool’s errand.

This highlights an inherent problem with the way ’post injection localization co-
variance’ is implemented. Namely that the observation matrix H used for this reduction:
Po,post-injection = (I−WH)Po,pre-injection is actually just the error state observation matrix
Ho→RES. This does not correspond with which states are observable in the measurement,
but rather which localization states are estimated as error states. By extension, it naı̈vely
reduces the covariances for all error states, regardless of whether they are observed. This
is a pressing point of future work, namely to replace this observation matrix with one
that also imposes that a localization state has to be observable in the measurement for its
covariance to be reduced in an injection.

Another interesting point of future work thus becomes to design a consensus scheme
which able to decide for itself whether a scan (and its update step) is relevant for injection.
This sounds a lot like ISKF of (F)PSKF, which are obvious candidates. The required
heuristic for such a scheme may be as simple as: ”Does the sensor provide relative or
absolute scans?” or equivalently: ”Is the sensor mounted on the ownship or somewhere
else?”. Where it is of course the former which are relevant.

Regarding the FF, we still observe massive under-confidence on all states. As with the
CV run, I expect this to be caused largely by disregarding inter-vessel correlations upon
calculating NEES and ANEES values. Otherwise, there is not much interesting to remark
on here.

10.3 RESCV-IC (with injections only on relative scans)

This next run is configured exactly like previous one, with one exception: the ES-JLAT
scheme now only runs injection steps after updates using relative scans. This was explored
as a means of reducing high-frequency noise observed in the heading covariance estimate,
and turned out to have greatly superior consistency properties.
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Since there are now fewer overall injections made on the localization estimate, I was also
able to reduce the ES covariance gain, Kϕ, from 1.2 to 1.0. This parameter essentially
controls how much a injection step is allowed to reduce the localization covariance. A
higher gain would result in a higher innovation covariance, and consequently a smaller
covariance reduction. The relevant configuration is shown in table 10.3, and as usual, the
relevant changes are indicated with bold font.

Category Setting Symbol Value Unit

Simulation

Number of simulations N 30
Simulation time Tsim 50 s

Odometry included no
Relative scans included yes

ES-JLAT

Motion model RESCV-IC
Injection type direct

Pre-associated scans yes
Clutter rate λ 0

Detection probability PD 1.0
Heading ES covariance gain Kϕ 1

Injection on abs update no
FF Pre-associated scans yes

Table 10.3: Simulation configuration for ’RESCV-IC (with injections only on relative scans)’

10.3.1 Results: RESCV-IC (with injections only on relative scans)

The simulation results for this run are presented in figures 10.9, 10.10, 10.11, 10.12. Due
to the large similarity with the previous run, the analysis included here will be brief, and
largely focus on the changes in the ES-JLAT performance for ownship heading, ϕo. For
the FF, there are no changes between this run and the previous one, so its results are only
included here for convenient comparison.

Analysis: Estimation accuracy

Looking at the EE for ϕo in figure 10.10, we observe almost identical steady-state per-
formance to that of the previous run (fig. 10.6). By zooming in painfully far, we can
observe an increased EE of about 0.005 radians (0.3 degrees), although this is certainly
small enough to write off as standard deviation.

There are two distinctions I wish to point out. First of all, we have no diverged runs for the
ES-JLAT, which is a slight improvement. A reduction from 1/30 to 0/30 is hardly statisti-
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Figure 10.9: Ensemble averaged NEES values for ’RESCV-IC (with injections only on relative
scans)’
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Figure 10.10: Ensemble averaged EE values for ’RESCV-IC (with injections only on relative scans)’
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Figure 10.11: Per simulation ANEES values for ’RESCV-IC (with injections only on relative scans)’
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Figure 10.12: Per simulation RMSE values for ’RESCV-IC (with injections only on relative scans)’
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cally significant though, so take this with a grain of salt. It could simply be that this run of
simulations was more lucky with initial conditions or the random vessel trajectories.3

The second distinction, and much more important in my eyes, is the much faster transient
for this setup. By transient I mean the time spent (from simulation start) until the heading
estimate stabilizes at around 0.05 radians of error. Comparing it to the previous run (fig.
10.6), we see that the transient now lasts approximately 1 second, where it previously
lasted around 7 seconds. This is a huge improvement, and in this regard the ES-JLAT now
has performance comparable to that of the FF.

I suspect this to be mitigated now, as we have eliminated the spurious injections during
cartesian updates. These injections, although not affecting the heading estimate, can still
drive the marginal heading covariance to erroneously small values. In the following the
update steps, the tracking filters would be less likely to attribute measurement errors to
error in the heading estimate (since the prior covariance is lower). By extension, ES-
JLAT is potentially making small corrections where large corrections are warranted. I
expect this new configuration of RESCV-IC to more aptly reduce the covariance only
when the heading estimate has become correspondingly accurate, thus resulting in a faster
(smoother) transient.

Analysis: Estimation consistency

Excluding the heading transient, it is in consistency of the ownship estimates, xo, po, ϕo,
where we see huge improvements in this run. Looking at their NEES percentages for
ES-JLAT (fig. 10.9), being 90.5, 95.1, 94.4 percent, respectively. This is very close to
the ideal 95%, and from this I conclude that the localization filter maintains consistency
throughout its interaction with this variety of ES-JLAT. This constitutes a resounding suc-
cess for ES-JLAT, and it would appear that we are nearing the goal of a JLAT scheme with
both excellent accuracy and consistency.

In the previous run, we observed a very high frequency oscillation in the ϕo NEES, mostly
during the transient, but still somewhat present during steady state. This has been mostly
eliminated, and is of course also a big improvement over the previous run.

Glancing quickly at the target states, we observe no change from the previous run. That
is, all target state estimates x1, x2, p1, p2 are still over-confident.

Finally, looking at all ANEES values for the ES-JLAT scheme (fig. 10.11) we observe
quite a spread in their values (as opposed to the FF, which produced very similar ANEES
values for every simulation). For even the supposedly consistent ownship states xo, po, ϕo,
we observe that a few them fall above and below their confidence bounds. This implies that
the consistency of the RESCV-IC + ES-JLAT scheme is very dependent on filter initializa-
tion or vessel trajectory, and may occasionally be either under-confident or overconfident.

3A point of future work would be running a similar setup with a lot more simulations in both runs, which
should give more conclusive results.
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10.4 ESCV-IC (using direct injection)

Having noted that the RESCV-IC previously tested is seemingly capable of maintaining a
consistent heading estimate, we move along to ESCV-IC. The goal with this scheme is to
take the success of the RESCV-IC and expand it to also make corrections on the ownship
position estimate. In this section, we adopt the simulation settings used in the previous
RESCV-IC run, and investigate how the ESCV-IC fares in these conditions.

Expanding to also include positional error states, we are forced to include another ES
covariance gain parameter Kp, which after some tuning was set as 13. This parameter,
as with Kϕ (used in RESCV-IC), artificially inflates the innovation covariance matrix S,
which is used to calculate the posterior localization covariance during an injection step.

This is dramatically large, and corresponds to scaling the positional elements of injection
covariance by a whopping 169. At this point, we are essentially saying that ”Yes, there
has been a positional update, but you should not reduce its covariance at all.” The need for
such a large scaling is certainly an indication that the injections are not making the position
estimates any more accurate, which does not bode well. The simulation configuration is
shown in table 10.4, again with changes in bold font.

Category Setting Symbol Value Unit

Simulation

Number of simulations N 30
Simulation time Tsim 50 s

Odometry included no
Relative scans included yes

ES-JLAT

Motion model ESCV-IC
Injection type direct

Pre-associated scans yes
Clutter rate λ 0

Detection probability PD 1.0
Positional ES covariance gain Kp 13

Heading ES covariance gain Kϕ 1
Injection on absolute update no

FF Pre-associated scans yes

Table 10.4: Simulation configuration for ’ESCV-IC (using direct injection)’

10.4.1 Results: ESCV-IC (using direct injection)

The simulation results for this run are presented in figures 10.13, 10.14, 10.15, 10.16. For
the FF, there are no changes between this run and the previous one, so its results are only
included here for convenient comparison.
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Figure 10.13: Ensemble averaged NEES values for ’ESCV-IC (using direct injection)’
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Figure 10.14: Ensemble averaged EE values for ’ESCV-IC (using direct injection)’
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Figure 10.15: Per simulation ANEES values for ’ESCV-IC (using direct injection)’
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Figure 10.16: Per simulation RMSE values for ’ESCV-IC (using direct injection)’
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Analysis: Estimation accuracy

For the estimation accuracy, we look at the EE and RMSE values shown in figures 10.14
and 10.16.

Starting with the ownship position po, we were hoping to see a significant improvement
here, as this is one of the states which the ESCV makes injections on. This does not appear
to be the case. While we do observe a subtle improvement of around 0.05 meters in the
po RMSE values, there is still a significant gap between the the FF and ES-JLAT RMSE
values. Similarly the other positional estimates p1, p2 also appear to have similar subtle
improvements of between 0.05 and 0.1 meters. Most positional RMSE values are now
around (or lower than) 1 meters, there are still some outlier RMSE values around 1.2 for
target positions, but there appears to be fewer of them than in the RESCV runs.

Looking at the heading estimates, it is interesting to see how the inclusion of additional
error states has affected its accuracy. We observe that the RMSE values of ϕo are now
around 0.06 radians. This is slightly worse than the 0.055 radians achieved by the RESCV
scheme (fig. 10.12), although still more than acceptable. Especially considering that it still
has a comfortable margin to the FF performance, at an average RMSE of 0.1 radians.

Finally, for the full vessel states xo, x1, x2, we do not observe much of a difference. The
RMSE values of x1, x2 appear to be slightly closer to the FF values (than in the RESCV
run, fig. 10.12), however this is probably caused by the subtle improvement in position
estimates. In other words, there does not appear to be any improvement in target velocity
estimation. Looking at the ownship state, xo, its RMSE appears to actually have gotten
slightly worse (as opposed to the RESCV run). Noting that the position estimate po be-
came slightly more precise, and the heading estimate ϕ became slightly less precise, I
would think that these should mostly cancel out. Since the degradation of the xo RMSE
is noticeable nonetheless, I suspect that the ownship velocity estimates have degraded
slightly, resulting in these worse RMSE values.

This argument is a little thin, by virtue of trying to infer velocity error from the RMSE of
xo (which also contains position and heading errors). A very prudent point of future work
would be to simply plot the velocity error separately, allowing for a definitive demonstra-
tion instead of the current speculative argument.
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On the suspected worse ownship velocity estimates of ESCV:
I realise now that the direct injection of positional error in the localization filter (i.e.
the ESCV injection step) might work against its purpose. The reason for this is that
the ownship motion is described using a CV model, which defines a strong correlation
between position and velocity. In fact, CV models actually need to be updated with
(correct) positional errors in order to accurately infer velocity.

In a regular KF update, this correlation would be imposed via the gain matrix W,
which is calculated using the heavily correlated state covariance Po. Since we in the
(direct) injection step instead just add on the estimated error directly, this does not get the
chance to influence the velocity estimates. Intuitively, I would expect that a long-term
result might be a localization estimate which very accurately tracks position, but ends
up with only a fraction of the true velocity. Where the ’lagging’ or ’missing’ velocity is
compensated for by perpetual positional injections.

This leads to another point of future work: namely to test different ways of by-
passing this problem. One solution could be to replace the current direct injection with a
traditional KF update step. I.e. act as if the error states are an innovation vector, with a
corresponding innovation covariance, resulting in ’typical’ equations for posterior state
and covariance estimates. Exploring this option further led to the inclusion of the weighted
injection scheme, as described in section 4.3.4, and tested in the next set of results.

Another possible solution is to instead include the velocities in the nuisance param-
eters of the motion model. Assuming that we use the ’inherited-covariance’ scheme, i.e.
steal the ownship covariance estimate to use as the prior nuisance parameter covariances,
we would get these position-velocity correlations for free. This solution crossed my
mind in the idea phase of this project, and is more similar to the SKF structure used
in [4], however I opted against it, as I was concerned it would result in too much
(computational) complexity. I also deemed there to be some prudence to only including
nuisance parameters which are directly coupled to the relative measurements, again for
the sake of reducing computational costs.

Analysis: Estimation consistency

Finally we arrive at consistency analysis for the ESCV-IC model. Looking at the NEES
percentages for po and ϕo, (fig. 10.13), which are both around 93%, we have apparently
managed to keep these estimates consistent. Sadly, the percentage of xo is now much
worse, at only 39%. I suspect this is caused by an estimation error in ownship velocity,
which is not matched by similarly large covariance values. As discussed previously, I think
this is a result of the ESCV-IC scheme actually worsening ownship velocity estimates,
while also reducing their covariance.

There is one silver lining here though, and that is a slight improvement on target specific
NEES percentages, i.e. x1, x2, p1, p2, which are around 10 to 20 percent. These esti-
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mates are still overconfident, but less so than in similar RESCV runs (fig. 10.9). I think
this matches the purpose of a SKF, namely that we can ’consider’ the localization error
slightly corrupting the incoming measurements, and thus not inject this error into tracking
estimates.

10.5 ESCV-IC (using weighted injection)

In the first ESCV-IC run, we observed some problems with maintaining consistent ownship
velocity estimates. Having diagnosed this as a consequence of purely positional injections
(which undercuts velocity estimation), I opted to develop another injection scheme which
more accurately accounts for learned correlations in the localization filter. This resulted
in the weighted injection scheme, which is tested with the ESCV-IC in this run. The hope
being that this injection type will achieve consistency for the ownship state xo while at
the same time maintaining the previously achieved accuracy and consistency for ownship
position and heading.

The configuration for this run is shown in table 10.5, and as usual the relevant changes
from the previous run are indicated with bold font.

Category Setting Symbol Value Unit

Simulation

Number of simulations N 30
Simulation time Tsim 50 s

Odometry included no
Relative scans included yes

ES-JLAT

Motion model ESCV-IC
Injection type weighted

Pre-associated scans yes
Clutter rate λ 0

Detection probability PD 1.0
Positional ES covariance gain Kp 13
Heading ES covariance gain Kϕ 1
Injection on absolute update no

FF Pre-associated scans yes

Table 10.5: Simulation configuration for ’ESCV-IC (using weighted injection)’

10.5.1 Results: ESCV-IC (using weighted injection)

The simulation results for this run are presented in figures 10.17, 10.18, 10.19, 10.20. For
the FF, there are no changes between this run and the previous one, so its results are only
included here for convenient comparison. The addition of this run was prompted by a
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lacking ownship velocity estimate in the previous run, thus, I will limit analysis to mostly
xo performance in this section.
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Figure 10.17: Ensemble averaged NEES values for ’ESCV-IC (using weighted injection)’
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Figure 10.18: Ensemble averaged EE values for ’ESCV-IC (using weighted injection)’
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Figure 10.19: Per simulation ANEES values for ’ESCV-IC (using weighted injection)’
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Figure 10.20: Per simulation RMSE values for ’ESCV-IC (using weighted injection)’

Analysis: Estimation accuracy

Comparing the difference of RMSE values between ES-JLAT and FF, for this run and the
previous (fig. 10.20 vs. 10.16), we see a significant improvement for both po and xo.
Where we previously saw a difference between 0.2 and 0.5 for xo, we now see a differ-
ence of between 0 and 0.1. Similarly, for the ownship position po, which previously had
differences between 0.1 and 0.2, these differences are now all 0.1 or smaller. This means
that the localization accuracy is now comparable to that of the target states x1, x2, p1, p2,
and also comparable to that achieved with the FF.
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By extension, it would appear that the switch to the weighted injection scheme gave the
desired effect, namely that the system is now able to account for (and infer) the localization
states which are not explicitly estimated as nuisance parameters (in this case the ownship
velocity).

The fact that all substates xo, x1, x2, po, p1, p2, ϕo now have comparable accuracy in the
ES-JLAT and FF varieties, constitutes an important achievement for ES-JLAT, namely that
it is able to leverage the information present in the relative range-bearing scans to the same
degree that the FF is. In other words, it achieves comparable accuracy to that of the FF,
with the same information available, despite its more modular structure. This is one of
the significant selling points for ES-JLAT, namely its scalability and support for arbitrary
localization and tracking filters. (Assuming of course that they operate with Gaussian
estimates, along the lines of a KF.)

It of course remains to be seen whether the ES-JLAT will have similar performance under
more demanding circumstances (especially in terms of tracking), and how it will behave
for different motion models, measurement models, localization filters, different numbers
of targets, etc.. These simulations provide a very narrow insight into its achievable perfor-
mance, but it remains possible that the algorithm (in its current form) will have lackluster
performance for different circumstances. This remains the most crucial point of future
work, namely to test it out for more generalized performance, as it is possible that the
solutions suggested in this thesis may need changing for more generalized use-cases.

I am especially concerned for how it behaves in terms of post-injection localization covari-
ance, considering the need for huge inflation of positional injection covariance. I deem it
plausible that this behaviour will be a recurring theme for any ownship variables which
already have decent estimates, which I think warrants finding a more elegant solution.

Analysis: Estimation consistency

In terms of estimation consistency, figures 10.17 and 10.19, we observe the expected im-
provement in the NEES percentage of xo, which is now near consistency at 89%. The
ownship position tells a similar story, at 88%.

There are are still improvements possible, especially when looking at the ANEES values of
ES-JLAT, which indicate that while the ensemble averages are reasonably consistent, the
per-simulation performance is still subject to a fair bit of variation (overconfident in some
simulations, under-confident in others). This is somewhat disconcerting, as it can indicate
that the covariance estimates are not dynamically adjusting according to the estimation
accuracy, and instead just stable at constant values. By extension, the observed consistency
could be just a happy coincidence of the estimation errors stabilizing at adequate values.

This reinforces the aforementioned conclusion that the current method for post-injection
update of localization covariance has some obvious weaknesses. In my eyes, this stands as
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the weakest part of this algorithm, and would need some serious tweaking (or a different
solution entirely) before this algorithm stands a chance against more rigorous testing.

As in the previous run, we observe that the ES-JLAT is decidedly over-confident for all
target estimates x1, x2, p1, p2. As usual, this has to be caused by disproportionately large
estimation errors, or conversely disproportionately small covariance estimates, or some
combination of the two. This illustrates the other fundamental inconsistency in the current
ES-JLAT, namely a tendency for over-confidence in target states.

From a filtering standpoint, I think this is partially caused by the ’cancel out’ problem
which I have eluded to previously. Namely that if two (or more) targets end up with con-
tradicting ownship error state estimates x̃t, these estimates will (at least partially) cancel
out in the final error state consensus x̃. At this point, either target has attributed a signifi-
cant amount of the measurement error to the nuisance parameters, at the expense of their
own estimates, and these turned out to be wrong (or at least disregarded). This constitutes
a significant amount of measurement error which should have been used to update target
estimates instead.

This information, i.e. the difference between x̃t and x̃, is readily available to us during
an injection step, but so far not used for anything. I think this causes some inconsistency,
which the target estimates frequently get ’the short end of the stick’ of. If one were to
somehow re-inject this information into the target estimates, as an injection innovation
ν̃t = x̃t − x̃, or something along these lines, I strongly suspect that the targets estimation
error would more accurately match their covariance estimates, and perhaps even achieve
consistency! While some preliminary experiments have been attempted to this end, I have
yet to find some way of doing this which achieves both stability and consistency. A similar
(perhaps safer) effort to this end could be to inflate the target covariance based on this
innovation covariance.

10.6 Analysis: summary

A summary of the overall performance is included here. We have in general seen good
heading estimation performance, both for RESCV-IC and ESCV-IC. This proves that ES-
JLAT can serve as the lone guarantor of estimation for heading (at least in the two-target,
fully associated case). For both these motion models, we did not need any extraordinary
measures to maintain consistency in the heading estimates of the localization filter.

When introducing positional error states (i.e. when using ESCV-IC), some severe prob-
lems the localization covariance estimates were observed. Although an ad-hoc solution
(via innovation covariance inflation) which achieved consistency was found, the need for
such a solution is troubling. For this reason I deem the ’post injection localization covari-
ance’ solution to be fundamentally flawed in the current injection models (both direct and
weighted).
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On the topic of injection schemes, it was speculated that the ESCV-IC in combination with
the ’direct injection’ scheme gave lackluster ownship velocity estimates. This problem
was seemingly solved by switching to the ’weighted injection’ scheme, which I deem to
be a better (and good enough) long-term solution for ’post injection localization mean’.
Crucially, this scheme solves the problem of inferring ’unestimated’ error states, assuming
that the ’unestimated’ localization states (velocity, in the case of ESCV-IC) are strongly
correlated to those which are estimated. This stands as an interesting proof of concept for
using only a subset of the localization state which is inherently observable in the relative
measurements. By extension, this may constitute significant computational savings4, since
the remaining (unestimated) states are now only inferred once for the consensus, and
not in the update step of every tracking filter.

Noting the aforementioned problems with localization covariance, I deem that the current
form of ES-JLAT performs adequately (and is likely to be an improvement on existing
systems) for the localization mean. When it comes to the localization covariance, it might
be prudent to simply not update the post-injection localization covariance, given that
all localization states are already observed by the localization filter. This may leave the
localization filter in an underconfident state, but may be unnoticeable for small injections
on already very precise esitmates. Even then, I deem it preferable with an under-confident
filter than an overconfident one, as it does not make claims for precision which do not
hold. This also matches with certain definitions of consistency, which only require that
the covariance estimate is at least larger than the actual error, i.e. adequately confident or
under-confident.

Finally, for target estimates, all varieties of ES-JLAT (all runs of RESCV-IC and ESCV-IC)
were found to produce over-confident tracks. This is a significant problem, and unaccept-
able in terms of motion planning and obstacle avoidance. For the purposes of autonomy,
any tracking estimates which are less precise than their covariance suggests will constitute
a risk for: collisions, track loss, track merging, not to mention making data association
very difficult. This of course also needs addressing, and I will outline a few options which
I deem promising in the future work chapter (cha. 11).

All in all, despite these simulations giving a narrow, somewhat idealized view of the ES-
JLAT performance, I think the achieved results are reasonable. If the problems related to
consistency (for both localization and tracking) are solved in a meaningful way, I deem
ES-JLAT to be an adequate backup in case of emergency (such as IMU/GNSS/compass
failure) or indeed as an add-on to existing localization schemes, for the sake of improving
localization estimates without hurting tracking performance too much.

4As opposed to using the full localization state for nuisance/error parameters, such as the SKF structures in
[4].
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Future work

Being a first effort at designing a novel joint localization and tracking scheme, there are
a number of challenges and problems which have been identified but not solved. This
chapter presents what I deem to be the most important of these challenges and in some
cases outlines for ideas on how to solve them. These are divided into two categories: first
are intrinsic problems of ES-JLAT as it has been presented thus far, algorithmic weak-
nesses, etc.. Second are extrinsic aspects of this thesis, such as remaining work to prove
ES-JLAT’s worth as a full fledged localization and tracking system. In any case, I would
deem it prudent to tackle the former first, as the intrinsic problems are bound to manifest
themselves, especially in more rigorous (realistic) testing.

11.1 Intrinsic problems of ES-JLAT

For discussing the intrinsic problems of ES-JLAT, I will use its configuration in the final
section of the analysis chapter as a baseline. i.e. ES-JLAT using the ESCV-IC model and
the weighted injection scheme.

I am rather pleased with the way state injection works, i.e. it seems to be making reason-
able updates to the localization state (i.e. the mean), also on the variables which are not
estimated as error states (i.e. ownship velocity). So I do not think this warrants any im-
mediate future work. With that being said, I deem the post-injection covariance update to
be the decidedly the weakest point of this algorithm. The fact that positional covariances
of the consensus error state needed to be inflated in order to maintain consistency (and
even stability) tells me that the post-injection covariance equation does not do its job, and
can (depending on the circumstances) cause the entire system to diverge. The most cru-
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cial point of future work is to find some other way of calculating this post-injection
localization covariance.

The coolest thing would of course be to compute an optimal, analytical covariance update
based on the state injection, since that appears to produce sound results. However, as
eluded to previously, I expect these expressions to become quite nightmarish, considering
their dependence on all incoming measurements and prior target states. Nonetheless, I
would deem it prudent to start by poking at the covariance equation Cov(x̂o,Widealx̃)
(as mentioned when trying to find this analytical update equation), where x̂o is the pre-
injection localization estimate, and Widealx̃ is the injected consensus, as calculated with
the ’weighted injection’ scheme. Potentially just to search for terms of this expression
which can be readily estimated or neglected.

On the topic of tracking performance, we found all varieties of ES-JLAT to provide over-
confident target state estimates. This stands as the second, crucial point of future work,
namely to ensure that the compound filter structure suggested does not end up with
disproportionately small covariance estimates for its target state.

For this I have three immediate ideas:

1. Change to a SKF esque update equation for the post-reset target covariance (such as
in [5]). For example by first running a regular KF style update to get some nonzero
error state estimates, then afterwards running another update step according to the
SKF equations. Considering that increased tracking consistency has been observed
for SKF tracking filters with the localization error as nuisance parameters [4], I
would think this to be achieveable here also.

2. Run an after-the-fact inflation of the target covariance estimate, according to how
much its error state estimate differed from the final consensus (injection innova-
tion). In this sense, we assume that a tracking filter probably produced an inaccurate
target state estimate if it produced a weird error state estimate.

This is very connected to the notion of an injection innovation, which I have eluded
to previously. Seeing what can be achieved with this information is something I
deem profoundly interesting, and would probably be my starting point if I were to
revisit this project.

This is also connected to the ”spread of innovations” inflation which is added to
the posterior covariance of PDA-style trackers [22], and could be a decent place
to start. This effectively inflates the covariance of tracks which were updated with
many contradicting measurements, as opposed to few resolute measurements.

3. Run an after-the-fact correction on the target state estimate, again based on how
much its error state estimate differed from the final consensus (i.e. injection innova-
tion). Leveraging the ambiguity demonstrated in figure 5.1, it would make sense to
assume that the target has moved, if we can ’rule out’ that the ownship has moved
or rotated, by virtue of what the consensus has concluded.
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This kind of argument is dangerous for very few targets though, since the consensus
estimate will be relatively inaccurate, by extension the injection innovation must be
similarly inaccurate. If we scale up to more targets though, both become more ac-
curate, and I would deem it safer to use the innovation for retroactive state updates.
(This is part of why point 2 in this list is included, namely that I deem it safer to
inflate covariance estimates than it is to make retroactive state corrections.)

11.2 Extrinsic problems: testing and simulation

The simulation setup is in this thesis provides a very narrow insight into the behaviour
and performance of ES-JLAT. In this sense, it would be prudent to do more testing with
different localization and tracking objectives, such as different sensors being available,
letting the number of targets vary, including odometry in the localization filter, etc.

Of these, the most crucial shortcoming is the lack of typical tracking challenges. The sim-
ulations done in this thesis have all been with fully associated, clutter-free sensor data,
and are in this sense not representative for tracking performance at all (no data association
needed). We have in fact only demonstrated filtering performance in this thesis. While
the ES-JLAT from an abstraction standpoint is designed to support an arbitrary (single or
multi target) tracking filter (such as IPDA or JIPDA), we have yet to really test how it
behaves in such a configuration. This stands as the third point of crucial further work,
in my eyes. Namely to test ES-JLAT configured with JIPDA, in a set-up with sen-
sor scans with challenging data association. E.g. due to clutter and closely grouped
targets. I would go so far as to assume that new intrinsic problems with ES-JLAT would
come to light in such a test, which would be fascinating to see.

On a more generalized note, we have seen amazing estimation performance for the own-
ship heading, for which ES-JLAT is the lone guarantor of estimation in this set-up. On
the other hand, the position and velocity estimates have been more challenging, and even
requiring ad-hoc solutions (covariance inflation) to maintain consistency. I worry that this
is a recurring theme, and that any localization variable which already has decent estimates
(by virtue of being observed directly by the localization filter) will have these same prob-
lems. This of course bears more testing, and thus I conclude on a fourth point of future
work: Testing the ES-JLAT with a localization filter which already has decent esti-
mates for heading, for example via compass/magnetometer, and finding out whether
the ES-JLAT simply does not like providing corrections to already observed vari-
ables. Such a test would naturally provide useful insight into the aforementioned ’post
injection localization covariance’ flaw of the ES-JLAT, as it might explain the root of the
problem.

Similarly, test the ES-JLAT performance for an arbitrary number of targets, and seeing
which of the aforementioned problems might be specific to the 2-target tests done in this
thesis, as well as identifying any new problems that might present themselves. For ex-
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ample, I suspect that increasing the number of targets will have a smoothing effect on the
current consensus scheme (i.e. driving the estimate close to zero, and its covariance to
very low values). This could be problematic for the localization performance, especially
for any variables which are not observed directly in the localization filter (such as heading,
in our simulations).
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Chapter 12
Conclusion

As a summary of the thesis and the project overall, this chapter is included, and divided
into two parts. The first part is a systematic review of the goals set out for this project, as
outlined in the ’scope’ section of the introduction. The second part is a retrospective of the
project overall, including any particularly good or bad choices I made along the way.

12.1 Results of project tasks

In the introduction, the following six goals for this project were outlined:

1. Develop a JLAT scheme as a number of interacting (and independent) tracking and
localization filters.

2. Develop or select an existing filter structure for these tracking filters which can both
handle nominal state estimation, as well as localization error state estimation.

3. Develop a scheme for calculating a single ’consensus’ error state estimate, based on
a number of independent error state estimates provided by each tracking filter.

4. Develop a simulator to test the performance of the new JLAT scheme.

5. Select an existing (well established) JLAT solution with which to produce grounds
for comparison.

6. Analyse the results of the new scheme, and pinpoint any shortcomings which need
fixing.
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The first of these points was completed partially. Although I am very pleased with the
overall system abstraction, resulting in a very modular JLAT system (ES-JLAT), I deem
there to be some work remaining with how the injection step is performed in the current
solution. Specifically, the ’post injection localization covariance’ seems to struggle with
inconsistency when injecting into variables which already have precise estimates. I deem
this to be a devastating flaw, and would not consider ES-JLAT to be an applicable solution
until this is fixed.

With that being said, if ES-JLAT is applied in a setting where all localization estimates are
already decently precise, one could conceivably get away with only updating the localiza-
tion mean (and not touching its covariance). This would sidestep the problem entirely, and
in these cases I would expect ES-JLAT to perform admirably.

Moving along to point 2, I would deem this to be mostly completed. I concluded on a
compound filter structure for tracking which behaves as a compromise between an ESKF
and SKF. I am happy with this filter structure on most counts, and it certainly suits the
ES-JLAT. With that being said, we have observed some tendency for overconfidence on
target state estimates, I suspect this is a consequence of how the reset error covariance
function is defined currently. In the future work chapter, I outlined a few ideas on how to
solve this problem. If one (or more) of these solutions were implemented and proved to be
effective, I would deem point 2 to be fully completed.

For point 3, I would deem it to be fully completed. The ’covariance weighted consensus’
as defined in section 8.1.3 appears to do its job perfectly. There is a slight catch here
though, namely that this is still only tested for 2 targets. As mentioned in the future work
chapter, I suspect that this consensus model may indeed provide lackluster estimates if
there are lots of targets present, although this remains to be tested.

Next, I deem the simulator to be adequate for these tests. In other words, point 4 is com-
pleted in full. There is a measure of restraint associated with this claim though. I could
of course have implemented a much more elaborate simulator, with clutter, an arbitrary
number of targets, reduced (or even dynamic) target visibility, ownship odometry, etc.,
however, I think a decent compromise was achieved. Especially considering that I wanted
to end up with a manageable level of complexity in the results, which would make it easier
to troubleshoot and improve the solution during the project. To this end, I deem a more
complex simulator to be outside of the scope for this project.

With that being said, flip side of this simplistic simulation is a very narrow view into the
performance of ES-JLAT. Most of the conclusions drawn, both good and bad, are of course
within the context of this narrow testing. It stands to reason, then, that a lot more testing
is warranted before bolder claims can be made for the supremacy of ES-JLAT.

Next, I deem point 5 to be completed in full. Although the elected solution, the full state
EKF, has some problems with under-confidence, its estimation accuracy seems to be stable
and repeatable, and thus makes good grounds for comparison. The EKF is often used as
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a baseline for performance in filtering literature, and thus a somewhat expected choice as
well.

Finally, we arrive at point 6, the analysis. I deem this point to be completed, at least
within the context of the developed simulator. Given access to more varied and elaborate
simulations, or even just additional performance metrics for the current simulator, I could
of course do a more detailed analysis. With that being said, I think the thesis is long
enough, and I defer any more detailed analysis to the future work section.

On that topic, a very obvious shortcoming for point 6 is that no experimental data was
used to test the solution. I counter this with the fact that experimental data is liable to
introduce many uncertainties and challenges. In the prototyping stage of development, the
complexity it introduces is simply not worth it. To that end, I leave experimental tests as
a point of future work which can be done after the more fundamental issues (see intrinsic
issues in the future work chapter) of ES-JLAT have been resolved.

12.2 Retrospective

As for the challenges underway, and the overall workflow, I have some regrets. The main
one being that I spent a long time trying to get good results for the ’decoupled covariance’
motion models (i.e. ESCV and RESCV). In retrospect, I wish I had looked at SKF theory
earlier, and thus arrived at the ’inherited covariance’ solution sooner.

Secondarily, I spent a decent amount of time implementing ownship odometry in the sim-
ulator (as well as a IMU-preintegration scheme). Despite this, I did not include IMU
behaviour in the motion models in any meaningful way. The result of this being that these
models ended up having terrible consistency, thus I finally opted to omit any odometry
results from the thesis. In retrospect, I would have preferred to not have spent time on
odometry at all, thus leaving more time to solve the other (more pressing) problems of
ES-JLAT.

Third, I wish I had looked at Brink’s intermittent SKF (ISKF) and fixed partial SKF (FP-
SKF) a lot sooner. I deem both of these to be very promising for this application, which
potentially could replace the ’compound filter’ which is suggested in this thesis. Were I to
do this over, I would probably start with one of these as tracking filters, and after the fact
see what changes would be necessary to fit ES-JLAT (or potentially even design ES-JLAT
from the ground up to use FPSKF for its tracking filters).

With that being said, it has been an overall satisfying project to work on. I am particularly
pleased with the process, i.e. the workflow of testing a solution, discovering its problems,
and finding meaningful solutions for them. Although there is certainly a lot of work left
before ES-JLAT is applicable for real-world applications, I am still happy with the progress
made.
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