
Ivan H
åbjørg Kingm

an
D

RL Applied to Targeted O
ceanographic Sam

pling for an AU
V

N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g 
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

Ivan Håbjørg Kingman

Deep Reinforcement Learning
Applied to Targeted Oceanographic
Sampling for an Autonomous
Underwater Vehicle

Comparing Machine Learning and Model Based
Approaches in a Simulated Environment

Masteroppgave i Kybernetikk og robotikk
Veileder: Anastasios Lekkas
Medveileder: Andreas Våge

Juni 2021

M
as
te
ro
pp

ga
ve





Ivan Håbjørg Kingman

Deep Reinforcement Learning Applied
to Targeted Oceanographic Sampling
for an Autonomous Underwater
Vehicle

Comparing Machine Learning and Model Based
Approaches in a Simulated Environment

Masteroppgave i Kybernetikk og robotikk
Veileder: Anastasios Lekkas
Medveileder: Andreas Våge
Juni 2021

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for teknisk kybernetikk





Abstract

Deep Reinforcement Learning (DRL) was applied in an attempt to enable an
Autonomous Underwater Vehicle (AUV) to seek out hotspots of plankton in
a simulated environment. Procedurally generated plankton data was used to
provide a training environment for a dynamically modelled AUV, equipped
with guidance and control systems. The learning agent was given a set of high
level actions to choose from, and tasked with choosing actions to maximize en-
countered planktonwhile seeking out a patch of high plankton density, referred
to as the plankton hotspot. The performance of the agent was compared to to a
traditional pathfinding approach to the problem, namely the A* algorithm. The
comparison revealed no clear benefit to themachine learning approach over the
traditional model based approach, but indicated that targeted oceanographic
sampling to some extent was achieved. Due to the highly simplified nature
of the environment simulation, along with possibly insufficient training of the
machine learning agent, the results are inconclusive. More work is needed to
develop a more realistic simulation environment, specifically with real world
plankton data, environment uncertainty, and ocean currents to simulate the
dynamically varying biomass, defining a more complex problem where the ma-
chine learning approach may lend its powerful capability to targeted sampling
in an uncertain and dynamic environment.
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Sammendrag

Dyp forsterkende læring ble benyttet i et forsøk på å få en autonom under-
vannsdrone til å oppsøke biologiske varmepunkter ("hotspots") av plankton i
et simulert miljø. Prosedyrisk generert planktondata ble benyttet for å danne et
læringsmiljø for en dynamisk modell av en autonom undervannsdrone, utstyrt
med styrings- og reguleringssystemer. Læreagenten ble presentert med et sett
av handlinger av høy abstraksjonsgrad å velge fra, implementert som veipunk-
ter for styringssystemet, og ble gitt i oppgave å velge handlinger for å mak-
simere plankton den måtte komme over mens den søkte etter et område med
høy planktontetthet, omtalt som planktonvarmepunktet. Agentens ytelse ble
sammenlignet med en tradisjonell stifinneralgoritme, nemlig A* algoritmen.
Sammenligningen avdekte ingen tydelig fordel ved maskinlæringstilnærmin-
gen over den tradisjonellemodellbaserte tilnærmingen,men indikerte atmålrettet
oseanografisk prøvetakning ble oppnådd til en viss grad. Ettersom miljøet er
høyst oversimplifisert, samt potensielt utilstrekkelig trening av maskinlæring-
sagenten, er det vanskelig å trekke noen konkrete slutninger. Videre arbeid er
nødvendig for å utvikle et mer realistisk simulert miljø, nærmere bestemt med
planktondata fra den virkelige verden, usikkerhet i miljøet og strømninger i
havet for å simulere den dynamisk varierende driften av biomasse i havet, og
derved skape en mer kompleks problemstilling, hvor maskinlæringstilnærmin-
gen kan gjøre nytte av dens mektige egenskaper for målrettet prøvetakning et
usikkert og dynamisk miljø.
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Chapter 1

Introduction

1.1 Background and Motivation

The oceans have served humankind throughout the ages, as a source of food, as
means of transportation, providing natural resources, predicting the weather,
and giving insight to the life of our planet as a whole. Our ability to understand
and describe the ocean is key tomany industrial and scientific endeavours alike.

Oceanography, the description of the ocean, relies on spatial samples of both
physical and ecological phenomena. But the oceans are vast, and all areas of
it are insufficiently sampled. This is known as the sampling problem of ocean-
ography, and is in fact the largest source of error in our understanding of the
ocean [5].

Traditionally, sampling techniques have relied on exhaustive grid-search
methods carried out by personnel on ships. This is laborious and inefficient
at best, and practically impossible at worst. Over the past decade, this task has
been leveraged by the advent of increasingly robust and affordable mobile ro-
botic platforms such as the Autonomous Underwater Vehicle (AUV), enabling
autonomous collection of oceanographic data. The use of AUVs have been stud-
ied to detect the thermocline [6], [7], locating seafloor hydrothermal vents [8]
and even tracing and surveying chemical plumes [9] and oil plumes [10]. The
latter article was written in light of the Gulf of Mexico oil spill response of 2010.

Nevertheless, in order to optimize the sampling, the AUV should be equipped
with the intelligence to knowwhere to look, given its current surroundings. This
is known as targeted sampling, allowing the sampling efforts to be concentrated
on regions of high scientific interest. Algorithms for this type of sampling have
been developed and proven successful in studying a range of oceanographic
phenomena such as harmful algal blooms, coastal upwelling fronts and micro-
bial processes in open-ocean eddies [11], and upwelling and internal waves on
the west coast of Mid-Norway [12]. Targeted oceanographic sampling has also
been studied to gather samples within the deep chlorophyll maximum layer to
gain insight in microbial oceanography north of the island Maui, Hawaii [13].

Targeted sampling is ultimately a question of mapping observations in the

1
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form of on-board sensor data to actions that are likely to realize some pre-
defined sampling goal. The robot is essentially told how to plan. But could this
behaviour be taught through Artificial Intelligence (AI) learning? The field of
Machine Learning (ML) has in recent years witnessed the marrying of two pre-
viously separate approaches to the learning problem, namely Deep Learning
(DL) and Reinforcement Learning (RL), giving birth to the field of Deep Rein-
forcement Learning (DRL). Although traditional RL has seen some success, e.g.
optimizing quadrupedal trot gait for a specific robot [14] or inverted autonom-
ous helicopter flight [15] amongst others, traditional RL methods lacks scalab-
ility and have been inherently limited to low-dimensional problems. The advent
of DL has in recent years dramatically improved state of the art tasks such as
language translation, object detection and speech recognition [16], due to its
powerful ability to derive structure from high dimensional input data. Apply-
ing this capability to RL methods is currently enabling these methods to scale
to previously intractable problems by freeing the RL approach from what is
known as the curse of dimensionality.

The use of DRL to derive control policies has indeed proven successful in
yielding interesting and impressive results. Kickstarting the interest for DRL
in 2015, an algorithm capable of playing a range of Atari 2600 video games
simply from observing the pixels of the game, and even beating the best human
players, was developed [17]. In 2016, the first algorithm to successfully beat
the world champion of Go was developed using DRL and tree search [18].

Since then, DRL has also been applied in robotics, enabling motion control
policies to be taught directly from visual input. In [19] a robot was enabled to
accomplish a range of manipulation tasks requiring close coordination between
vision and control. A robot was able to successfully grasp novel object training
on large amounts of data using RL in [20].

1.2 Research Question and Objective

The work presented in this thesis evaluates the application of DRL methods to
learn and implement targeted sampling for an AUV in a simulated ocean en-
vironment. The ocean phenomenon in question is the density of plankton of
the upper water column, and the desired behaviour is choosing actions, imple-
mented as waypoint generation, to localize areas of high plankton density, and
encountering as much plankton as possible along the way.

Two different approaches will be considered and compared to highlight the
advantages and challenges of utilizing DRL for targeted sampling. The Deep
Q-Network (DQN) approach will seek to learn pathfinding with no prior in-
formation of the goal state. This ML approach will be compared to a traditional
pathfinding approach, namely the A* algorithm. As such, this thesis poses the
following research questions:

• How is the performance of the DQN agent compared to pathfinding using
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A* with regards to

◦ Reward returned by the environment
◦ Encountered plankton
◦ Ability to locate the hotspot

• What are the challenges of applying DRL to achieve targeted sampling
behaviour?

• What are the potential advantages of applying DRL to achieve targeted
sampling behaviour?

1.3 Contributions

Current work on targeted sampling has focused on model based approaches,
and has done so successfully. The work presented in this project presents a
novel approach to solving the sampling problem of oceanography. Albeit far
from any complete algorithm or definitive answer, the results of this thesis may
serve as a proof of concept for introducing ML, fuelled by its recent advances,
a part of the solution.

The main results of this work is a simulated ocean environment consisting
of a dynamically modelled AUV and a procedurally generated topological map
of plankton density, implemented as an OpenAI gym environment. As such,
different algorithms or learning agents may be trained and tested for different
metrics within this environment, such as locating the hotspot, or maximizing
the encountered plankton.

Additionally, two solutions to a specific problem within this environment
are implemented. A modified A* search algorithm, and a DQN learning agent.
These solutions are tested in the environment, and their performance analyzed
and compared.

A dynamic model of the AUV was interfaced with the environment, simulat-
ing the AUV in Six Degrees of Freedom (6-DOF) with control input to propeller,
rudder and elevator. A guidance and control system was developed on top of
the AUV simulator, allowing high level abstract actions selected by the agent to
be converted into waypoints and control inputs.

All source code with instructions to reproduce or build upon the work is
available at [21].

1.4 Structure of the Report

chapter 2 presents the theoretical background material necessary to under-
stand the material presented in subsequent chapters. The topics covered in
section 2.1 cover the dynamic modelling of marine craft dynamics, based on
the works of [22]. Both RL and DL are presented in section 2.5 and section 2.6
respectively to provide context and background for the DQN algorithm, presen-
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ted in section 2.8. Additional topics discussed include Gaussan Process Regres-
sion (GPR) in section 2.4, the means by which synthetic plankton data was
generated, along with classical control theory and guidance in section 2.2 and
section 2.3 respectively. Finally, the A* algorithm is briefly presented in sec-
tion 2.9.

The application of the topics presented in chapter 2 to achieve the ques-
tions raised in section 1.2 are presented in chapter 3 which describes the de-
tails of the ocean environment model, given in section 3.1, the methods used
to interact with the environment, section 3.2, along with a description of the
organization of the software implementing the agents and the environment in
section 3.3. The performance of the agents in the ocean environment is presen-
ted and discussed in chapter 4. A brief summary, along with some remarks on
future work is given in chapter 5.



Chapter 2

Background

2.1 Modelling Marine Craft Dynamics

In order to simulate the motions of a marine craft, a model of the vehicle is re-
quired. Such a model is given by the vehicles dynamics, divided into two parts,
namely kinematics and kinetics. The former is the study of purely geometrical
aspects of motion, whereas the latter includes an analysis of forces and mo-
ments causing the motion. The overarching goal of section 2.1 is to present the
marine craft equations of motion, and show that they can be written as a set of
matrix equations

η̇= JΘ(η)ν

M ν̇+C(ν)ν+ D(ν)ν+ g (η) + g 0 = τ+τwind +τwave
(2.1)

The concepts presented in section 2.1 is based on the material of [22]. The
marine craft kinematics are presented in section 2.1.1, and the kinematics in
section 2.1.1.

2.1.1 Kinematics

The purpose of this section is to arrive at the kinematic equation of eq. (2.1),
that is

η̇= JΘ(η)ν. (2.2)
This equation essentially gives the relationship between how a marine craft
changes its position and what its velocities are. The generalized position η is
given by

η= [xn, yn, zn,φ,θ ,ψ]> . (2.3)
These coordinates are specified with respect to the North-East-Down (NED)

frame, denoted {n} where the x-axis points towards the true north, i.e. the
North Pole, y-axis points to the east, z-axis points down towards the center of
the earth. The body-fixed velocity vector ν is given by

ν= [u, v, w, p, q, r]>. (2.4)

5
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Figure 2.1: The body-fixed reference frame of amarine craft, along with points
of interest within this frame. Figure courtesy of [22].

The body-fixed frame {b} is rigidly attached to the marine craft, with the
x-axis directed from the aft to the fore of the vessel, y directed starboard,
and z directed top to bottom. Finally, the matrix JΘ(η) defines the coordinate
transformation between η̇= [xn, yn, zn,φ,θ ,ψ]> and ν and is given by

JΘ(η) =

�

R (Θnb) 03×3
03×3 T (Θnb)

�

. (2.5)

where Rn
b is the rotation matrix between the frames {n} and {b} given by

Rn
b =





cψcθ −sψcφ + cψsθ sφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθ sψ −cψsφ + sθ sψcφ
−sθ cθ sφ cθ cφ.



 (2.6)

and the matrix transformation T (Θnb) is given by

T (Θnb) =





1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ



 . (2.7)

First, the generalized coordinates for a marine craft, along with the frames
of reference in which they are specified, are presented.

2.1.2 Rigid Body Kinetics

The purpose of this section is to give a brief description of the kinetic equations
of eq. (2.1), that is

M ν̇+C(ν)ν+ D(ν)ν+ g (η) + g 0 = τ. (2.8)
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Table 2.1: Conventional notation for marine vessels

DOF Force Velocity Position and orientation
1 along x (surge) X u xn

2 along y (sway) Y v yn

3 along z (heave) Z w zn

4 about x (roll) K p φ

5 about y (pitch) M q θ

6 about z (yaw) N r ψ

The term τ on the right-hand side of eq. (2.8) was brieflymentioned in eq. (2.2)
and is the vector of generalized forces in the NED-frame. eq. (2.8) thus gives
the relationship between the forces applied to the marine craft, and how this
changes the linear and angular acceleration of the craft. Together with eq. (2.2),
this gives a complete description on how forces changes the crafts position and
orientation, giving a model of the dynamics of the marine craft.

System Inertia Matrix

The matrix M is known as the system system inertia matrix, and is given by
both rigid body inertia matrix MRB and the added mass inertia matrix, that is

M = MRB +MA. (2.9)

Conceptually, inertia is a rigid body resisting change to its velocity. For a marine
craft, this resistance to change is caused by the physical properties of the craft
as a rigid body, given by MRB and the fact that moving a craft in the water also
requires moving some water with it, resulting in added mass given by MA

The system rigid body inertia matrix MRB is given by

MRB =





mI3×3 −mS
�

r b
g

�

mS
�

r b
g

�

I b



 (2.10)

where I3×3 is the 3× 3-identity matrix, m is the mass of the marine craft, S is
the skew-symmetric matrix used as a cross-product operator according to ??,
and r b

g is the CG given in the body frame. The term I b is given by I g −mS2(r b
g)

where I g is the inertia matrix about CG, defined as

Ig :=





Ix −Ix y −Ixz
−I y x I y −I yz
−Izx −Iz y Iz



 , Ig = I>g > 0. (2.11)

The diagonal terms of eq. (2.11) are the moments of inertia about the vehicles
x , y and z axis. The off-diagonal terms are the products of inertia.
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It can be shown [22] that the system inertia matrix MA for an AUV is given
by

MA = −diag
�

X u̇, Yv̇ , Zẇ, Kṗ, Mq̇, Nṙ

	

(2.12)

under the assumption that the vehicle operates at low speeds, is completely
submerged and is symmetric about three planes. The coefficients of eq. (2.12)
are known as hydrodynamic added mass derivatives and are found either by a
hydrodynamic program, or experimentally from observing the vehicle dynam-
ics.

Coriolis-Centripetal Matrix

The system coriolis-centripetal matrix C describe forces on the marine craft
resulting from the fact that the craft rotates within the inertial frame. As with
the system inertia matrix, the coriolis-centripetal matrix is a combination of
rigid body, CRB, and added mass CA properties, i.e.

C = CRB +CA. (2.13)

It can be shown that this matrix can be obtained directly from the system inertia
matrix [22]. This is given by

C(v) =

�

03×3 −S (M11v1 +M12v2)
−S (M11v1 +M12v2) −S (M21v1 +M22v2)

�

(2.14)

where v1 = [u, v, w]> and v2 = [p, q, r]>. The matrices M11, M12, M21, M22
are the sub-matrices of the system inertia matrix.

Hydrodynamic Damping Matrix

Hydrodynamic damping is caused by the water resisting the relative velocity of
the marine craft. This happens as a result of several different phenomena, like
skin friction or damping caused by the vortexes the craft creates in the water.

Instead of describing individual matrices for each phenomenon, the damp-
ingmatrixmay be separated into linear and non-linear damping systemmatrices,
given by

D(v r) := D + Dn(v r). (2.15)

The linear damping system matrix D for an AUV is given by

D = −















Xu 0 0 0 0 0
0 Yv 0 Yp 0 Yr
0 0 Zw 0 Zq 0
0 Kv 0 Kp 0 Kr
0 0 Mw 0 Mq 0
0 Nv 0 Np 0 Nr .















(2.16)
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The non-linear damping system matrix is given by

Dn (v r) = −















X |u|u |ur | 0 0 0 0 0
0 Y|v|v |vr |+ Y|r|v|r| 0 0 0 Y|v|r |vr |+ Y|r|r |r|
0 0 Z|w|w |wr | 0 0 0
0 0 0 K|p|p|p| 0 0
0 0 0 0 M|q|q|q| 0
0 N|v|v |vr |+ N|r|v|r| 0 0 0 N|v|r |vr |+ N|r|r |r|















.

The constants of thesematrices are referred to as hydrodynamic linear damp-
ing coefficients, and are either found through hydrodynamic programs, or ex-
perimentally.

Hydrostatic Forces

In hydrostatic terminology, the forces of gravity and buoyancy are known as
restoring forces. The dynamics of these restoring forces are given in the vector
g (η) which is given by

g (η) =

















(W − B) · sθ
−(W − B) · cθ · sφ
−(W − B) · cθ · cφ

−
�

ygW − ybB
�

· cθ · cφ +
�

zgW − zbB
�

· cθ · sφ
�

zgW − zbB
�

· sθ +
�

xgW − xbB
�

· cθ · cφ
−
�

xgW − xbB
�

· cθ · sφ −
�

ygW − ybB
�

· sθ

















. (2.17)

under the assumption that the entire rigid body is submerged. For a rigid
body submerged in water, the gravitational force f b

g acts on the CG defined by

r b
g :=

�

xg , yg , zg

�> with respect to CO. Similarly, the force of buoyancy f b
b, acts

through the CB, defined by r b
b := [xb, yb, zb]

>. Since these forces only act in
the vertical plane, they are given in the NED frame as

f n
g =





0
0
W



 and f n
b = −





0
0
B



 (2.18)

where W = mg and B = ρg∇. Here, m denotes the mass of the vehicle, ∇ the
volume of fluid displaced by the vehicle, ρ is the density of the fluid, and g is
the acceleration of gravity, positive downwards. This is shown in fig. 2.2.

The term g 0 of eq. (2.8) is all zero for AUVs, as it describes the hydro-
static forces and moments from ballast systems, which are not relevant for this
application.
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Figure 2.2: The restoring forces on a submerged marine craft. Figure courtesy
of [22].

Table 2.2: Actuators and control variables.

Actuator Control Input
Main propeller rpm
Aft rudder angle
Elevator angle

2.1.3 Kinetics and Kinematics

Combining eq. (2.2) and eq. (2.8) gives the dynamic equations for a marine-
craft, with the system matrices specified for an AUV, repeated here for conveni-
ence

η̇= JΘ(η)ν

M ν̇+C(ν)ν+ D(ν)ν+ g (η) + g 0 = τ+τwind +τwave

2.1.4 Control Allocation

The generalized force vector τ of eq. (2.1) is the means by which the marine
craft may be steered. These forces are generated by the actuators of the marine
craft. For an AUV, actuators include main propeller, capable of applying a force
Fx along the x-axis of the body frame, an aft rudder, which may be deflected
to induce moments about the vehicles z-axis, and elevators, which may be de-
flected to induce moments about the vehicles y-axis. In this case, the degrees
of freedom outnumber the actuators, leading to an underactuated system.

The input to the actuators is not given in terms of the force the actuators
should produce. In fact, input is typically given as a voltage. Assuming a sys-
tem for supplying the appropriate voltage given a specified actuator reference
exists, the input to the different actuators are shown in table 2.2.

Let the control inputs to the actuators be given by u = [u1, u2, u3]
>, where

u1 is the main propeller rpm, u2 is the rudder deflection angle, and u3 is the
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elevator deflection angle. The resulting generalized force vector τ is given by
the matrix equation

τ = B(η)u (2.19)

where B is a 6× 3 matrix referred to as the input matrix, generally dependent
on the AUV state η. This dependency between the state and the control input
is known as feedback control, and is discussed in the following section.

2.2 Control Theory

Control theory is the study of control or regulation. The purpose of applied
control is to generate some automatic influence over a technical system or pro-
cess to achieve some goal result. The purpose of this section is to introduce the
Proportional Derivative Integral (PID)-controller and to provide definitions for
terms and concepts within control theory. The material in this section is based
on [23].

2.2.1 Control System and Process

A control system, or simply just system, is a collection components mutually
affecting each other. Control theory is primarily concerned with dynamic sys-
tems, that is, systems where internal states change with time as a result of the
components interacting. The component within a system subject to control is
known as the process. For example, an AUV in the water is a process, whereas
an AUV with navigation and autopilot is a system. The process is defined by a
series of signals. Its state is a collection of attributes, generally time depend-
ent, describing the configuration of a system. For an AUV the state is typically
its position, orientation and their derivatives. The state of a system is changed
through control input, the means by which a process is changed, more pre-
cisely, its state moved to some desired value. In the case of an AUV, control
input is typically motor thrust and fin deflections, by which position and ori-
entation may be changed. The state is generally considered internal to the pro-
cess, meaning it is not necessarily known to other components in the control
system. A measurement of a process is some function of the state giving insight
to the state. A measurement may be considered the output of the process, the
control signal an input.

2.2.2 Feedback Control

Control theory is not only the description of processes, but the design of con-
trollers to generate control input to the system in some meaningful way. The
purpose of a controller is to decide a control input that changes the system
state to a certain value, known as the setpoint or reference. A variety of tools
andmethods exist for designing controllers. A controller design that has proven
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powerful in many industrial applications is the feedback controller. The key idea
behind feedback control is to compute the control input as a function of the pro-
cess output, or measurement. Viewing the controller as as a component within
the control system, the input to this component is the output of the process,
and the input to the process is in turn the output of the controller. This creates
a feedback loop, giving rise to the name of this control design scheme.

The way the control input is computed from the process output is by intro-
ducing an error variable

e = x d − x (2.20)

giving the distance between the desired and current state. Rather intuitively,
the control input is proportional to the error: The further away the process is
from the desired state, the more control input is needed. Additionally the time
derivative and integral of the error is included in the control law, giving rise to
the Proportional Derivative Integral (PID) controller:

u (t) = K pe(t) +

∫

K ie(t)d t + K pe(t)
d
d t

(2.21)

where K p, K i , K d are known as proportional, integral and derivative gains re-
spectively. The motivation for including a derivative and integral term is to
provide damping and to deal with constant stationary offsets. The derivative
term will limit the use of control input as the error is rapidly decreasing or gen-
erate more control input even though the error is small, if the error is rapidly
increasing. The integral term will increase the control input if an error persists
over time, handling cases where the control input from the proportional term
is insufficient.

2.3 Guidance

The previous section introduced the notion of control. Control applied to vehicles
is known as motion control systems, and are typically subsystems in a higher
level system known as guidance navigation and control (GNC) systems. This
section presents another component of GNC-systems, namely the guidance sys-
tem. The purpose of a guidance system is to decide appropriate set-points to the
motion control system. Its inputs are waypoints, locations in space the vehicle
should reach. The third component in a GNC system is the navigation system.
The purpose of the navigation system is to provide estimates of the vehicles po-
sition from available sensor data. These position estimates are in turn provided
to both motion control and guidance systems, as these systems rely on position
estimates to carry out their tasks. The purpose of this section is to describe the
line of sight guidance, as presented in [22].
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2.3.1 Path Following for Straight-Line Paths

In cases where the time at which waypoints are reached is arbitrary, meaning
there is no temporal constraints imposed on the guidance system, waypoints
can be reached by implementing path following. A target path may be gen-
erated as a straight-line segment between two consecutive waypoints. A fre-
quently used method for path following is by line-of-sight (LOS) guidance: A
LOS-vector is generated as a straight line segment between the craft and the
target waypoint given in an inertial frame (for instance NED). The LOS-vector
and the path objective can then be used to compute a desired heading, which in
turn is fed to a heading control system. Additionally, surge velocity references
are computed and provided to a separate velocity control system to ensure the
waypoint is actually reached. For underwater vehicles, a third motion control
system is required for depth control.

Keeping in mind that marine crafts may be subject to ocean currents, it is in
practise the course and speed of the craft that is subject to control, rather than
the heading and surge velocity.

Course Control

The desired course control reference χd for LOS-guidance can be implemented
as

χd(e) = χp +χr(e) (2.22)
where χp = αk is the path-tangential angle, that is the angle from the NED
x-axis pointing north to the line defining the target path. In the case that the
path is defined as the line segment from the vehicle to the next waypoint, this
course reference angle is sufficient. In the case that the vehicle is not on the
path, this angle alone may steer the vehicle away from the waypoint. To ensure
that the velocity of the craft is directed to a point on the path, the term χr(e)
is necessary. It is referred to as the velocity-path relative angle and defined as

χr(e) := arctan
�−e
∆

�

. (2.23)

e is known as the cross-track error and is defined as the distance from the craft
perpendicular to the path and can be obtained by

e(t) = − [x(t)− xk] sin (αk) + [y(t)− yk] cos (αk) (2.24)

where xk, yk is the NED position of the previous way-point. The variable ∆(t)
is known as the lookahead-distance. A circle of radius R, known as circle of ac-
ceptance is drawn around the crafts CO. The circle intersects the target path
at two points, the latter of which is defined as x los, ylos. fig. 2.3 illustrates the
LOS-guidance angles in eq. (2.22), eq. (2.23), and eq. (2.24). The lookahead-
distance is the distance from the craft position projected onto the target path
along e, to x los, ylos and can be found by

∆(t) =
Æ

R2 − e(t)2. (2.25)
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Figure 2.3: Definition of constants used in LOS guidance. Figure courtesy of
[22].

As marine crafts typically are equipped with heading control systems rather
than course control systems, the heading reference needs to be calculated from
the course reference. This is done by subtracting the crab angle β , which indeed
is the discrepancy between course and heading. The crab angle is defined by

β = arcsin
� v

U

�

. (2.26)

The crab angle is illustrated in fig. 2.3. The relation between the lookahead
distance, the radius of the circle of acceptance and the cross-track-error given
in eq. (2.25) is illustrated in fig. 2.4.

Speed Control

Assuming the vehicle is on the right course, meaning it is in some sense headed
towards the next waypoint, the surge controller should ensure that the vehicle
moves forward. As mentioned previously, the vehicle is generally subject to
ocean currents, meaning the surge velocity is not necessarily equivalent with
the rate at which the vehicle moves in the direction of the course vector.



Chapter 2: Background 15

Figure 2.4: A geometric illustration of cross-track-error and lookahead dis-
tance. Figure courtesy of [22].

2.4 Gaussian Processes Model

A Gaussian Process (GP) is a probability distribution over possible functions
that fit a set of points [24] and is essentially a collection of random variables
with a multivariate normal probability density function. Domains where vari-
ables are allocated to spatial locations and depend on adjacent spatial locations,
such as environmental heat-maps, are for this reason suitable to be modelled
as a GP, as it allows the dependency to be modelled using covariance func-
tions. Due to its representational flexibility, modelling by GP is a popular way
of describing environmental processes [25]. GP may then be used as a regres-
sion task, predicting spatial data using prior knowledge, while also providing
uncertainty measures for said estimates. This has been applied successfully in
[12] and is discussed in [26].

2.5 Reinforcement Learning

Reinforcement Learning (RL) is at its core learning by doing. It is simultan-
eously a problem description, a class of solutions to said problem, and the name
of the field studying the two [27]. RL falls within the broader field of machine
learning, which in turn is a central problem to Artificial Intelligence (AI). The
material presented in section 2.5 based in its entirety on [27].
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2.5.1 Agent-Environment Framework

The framework for all reinforcement learning is the agent-environment frame-
work. Some entity, referred to as an agent finds itself in an environment, which
it can fully or partially observe. The goal of the agent is then to behave in some
optimal way, without being told what this behaviour is. Instead, this behaviour
is defined implicitly by feedback from the environment through a reward sig-
nal. This signal may be a function of what the agent did, its actions or where
in the environment the agent is, its state, or both. Then, by remembering what
actions and states led to high rewards, the agent is encouraged to repeat cer-
tain actions in certain states, thus reinforcing the optimal behaviour through
learning.

This description, although intuitive, is somewhat informal. A state s can be
thought of as a description of an instance of the environment. This description
is made using a collection of relevant attributes of the environment.

For a mobile robot positioned on a square 2D surface, for example, a set
relevant attributes would typically be its x- and y-position in some coordinate
frame attached to the surface. Note here that the position of the robot itself is
considered part of the environment, not the agent. The set of possible environ-
ment states, known as the state space is denoted S.

An action is denoted by a, and the set of actions by A. Actions are the agents
means of changing the state. Continuing with the mobile robot example, one
might imagine actions like moving up, down, right or left, or staying in place,
and thereby changing the robots coordinates on the surface. Generally, po-
tential actions are functions of the state, meaning only a subset of A may be
available in a given state, giving rise to the notation A(s) ⊆ A. In the robots case,
one might imagine a world where the robot cannot exit the 2D surface, making
certain actions unavailable at the edges of the square. Although the agent may
change the state through its actions, the state may generally change on its own,
not as a consequence of the agents actions. One might imagine random gusts
of wind, moving the robot around.

The reward signal is a scalar denoted by r and is as mentioned above a
function of the state and action of the environment and agent. The reward
signal determines what is to be considered good behaviour. If the goal of the
robot is to stay on the surface and resist the gusts of wind, for example, a
reasonable reward signal would be to associate higher rewards to coordinates
closer to the centre of the square. This highlights the fact that even though the
reward signal may be a function of the environment, it is indeed chosen by
design to implicitly define what the purpose of the agent is.

So far, the notion of time has been overlooked. But the agent-environment
setting is generally a dynamic process repeating in a simple loop. First, the
agent finds itself in the initial state, denoted s0. It then performs some action,
a0 and experiences a reward r0, while transitioning to the next state s1. This
gives rise to the subscript t to indicate what time step the state, action, reward
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and resulting state occurred. A collection of these four will be referred to as an
experience, denoted et :

et
.
= {st , at , rt , st+1} (2.27)

This agent-environment-loop is illustrated in fig. 2.5

Figure 2.5: The agent-environment framework.

2.5.2 Markov Decision Process

A Markov Decision Process (MDP) provides a formalization of the concepts
introduced in section 2.5.1. An MDP can be considered as a mathematically
idealized form of the RL problem. This section defines the MDP structure in
the context of the agent-environment framework described in section 2.5.1.

An MDP is formally defined as a four-tuple and a constant γ ∈ [0, 1] known
as the discount factor. The tuple consists of the action-space A, state-space S,
as described in section 2.5.1, in addition to a reward function, and a state
transition map. The reward function has indeed been mentioned previously,
but is now formally defined as a mapping from the domain S ×A× S to that of
real numbers R given by

R : S × A× S→ R (2.28)

or equivalently
R(s, a, s′) = r (2.29)

where s, s′ ∈ S, a ∈ A, and r ∈ R. Note that the subscript t is omitted, and the
consecutive state st+1 is replaced by the superscripted state s′. As evident by
eq. (2.29) the reward function is not only dependent on the resulting state and
action taken, but also the current state s.

The state transition map describes how different actions affect the state.
It can be thought of as the dynamics of the environment. These dynamics are
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given by a stochastic process, highlighting the fact that transitions between
states are subject to uncertainty and disturbances. The state transition map is
formally defined as a mapping from the domain of a two states, s and s′ ∈ S,
and an action a ∈ A, to a probability p ∈ [0,1], essentially giving the probability
that taking action a in state s results in state s′, that is

T (s′ | a, s) = p (2.30)

Knowledge of eq. (2.30) and eq. (2.29) assumes some knowledge or model of
the environment. Much of the merit of RL is that this knowledge is not neces-
sarily required a priori, but learned.

Before describing the aforementioned discount factor γ and thereby com-
pleting the definition of an MDP, some details concerning the nature of the
tasks carried out by RL agents are discussed. As briefly mentioned in sec-
tion 2.5.1, the agent-environment-loop is a process subject to time, as actions,
rewards and resulting states constitutes a chronological process. This raises the
question of the duration of this process. This is of course dependent on the indi-
vidual RL task: Some tasks may be a "one-shot" decision, such as classification
of an image, others may have a finite or possibly set duration, whereas some
may be considered complete once either of a certain set of states are reached,
as is the case with e.g. chess. Tasks may even theoretically continue infinitely,
for example classic arcade games with high-scores. This gives rise to different
classes of environments, namely episodic, infinite and one-shot tasks. Episodic
tasks are considered to be done under certain criteria, either when the duration
has exceeded some limit, or when the environment state is a terminal state. Re-
turning to the chess example, if either of the players kings are surrounded, the
game is over, defining the configuration of pieces on the board as a terminal
state. One typically plays multiple games of chess. In RL terminology, a single
game would be referred to as an episode, that is the collection of experiences
from t = 0 until the terminal state.

The reward function gives an immediate reward, and provides a way for
the learning agent to learn the optimal behaviour. This is done by maximizing
the future accumulated reward of the task, known as return G. The return at
time t is the sum of future rewards, given by

Gt
.
= rt+1 + rt+1 + . . .+ rT (2.31)

where T is the final time step, possibly as a result of a terminal state. Maxim-
izing eq. (2.31) thus requires some form of evaluation of potential future re-
wards. This is possible for episodic tasks. However, for potentially infinite tasks
this may be problematic. This is leveraged by the discount factor γ ∈ [0,1]. Con-
ceptually, the discount factor imposes a diminishing return on future rewards.
The expected discounted return is given by

Gt
.
= rt+1 + γrt+2 + γ

2rt+3 + . . .=
∞
∑

k=0

γkrt+k+1. (2.32)

This concludes the definition of an MDP.
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2.5.3 Value and Policy

This section presents the concepts of value functions and policies. These con-
cepts are not consider part of the MDP, but rather a toolbox to apply RL on
the MDP framework. The most important result of this section is the Bellman
optimality equation for the action-value equation, enabling many RL agents to
find the best action to take in any state.

Although the MDP provides the framework for RL, it does not provide the
solution. As mentioned in section 2.5.2, the purpose of the agent is to maximize
eq. (2.32). Instinctively, one would think that this could be achieved by always
selecting the action yielding the highest expected reward, either by using know-
ledge of the model if eq. (2.29) and eq. (2.30) are available, or using previous
experiences as a basis for reasoning. This is known as a greedy approach, and
will in some cases produce the desired behaviour. But in many cases, never
thinking more than one step ahead is a poor strategy. Returning once again to
chess, capturing a pawn might give a temporary lead, but may cost the game
if the move exposes the queen. For this reason, chess scores during games are
in fact not only determined by captured pieces, but the potential for winning
the game, given the state of the board. This introduces the notion of value of
a state. The value of a state is conceptually an indication of future reward one
might expect from that state. But future rewards are not only dependent on
the current state, but also every future action. For this reason, the value of a
state is specified under some rule of what actions to take, known as a policy.

A policy can be thought of as a lookup table, specifying an action to take in
a given state, ultimately dictating the behaviour of the agent. In fact, a policy is
in many RL algorithms the end result, and serves as the means to maximizing
eq. (2.32). Generally, a policy π is a mapping from a state to a probability
distribution over actions, or equivalently, a mapping from an action and state
to a probability p ∈ [0, 1]

π(a | s) .
= p (2.33)

for every s ∈ S and every a ∈ A(s). In the special case of a deterministic policy,
the same action is always taken in a given state, somewhat simplifying the
concept

π : S→ A. (2.34)

The reason for having stochastic policies are discussed in section 2.5.4.
Returning to the concept of value, which is defined under a policy, the

formal definition of the value V of a state s when following policy π is defined
as

Vπ(s)
.
= E [Gt | st = s] (2.35)

for all s ∈ S. With discounted rewards, inserting eq. (2.32) for Gt , eq. (2.35)
becomes

Vπ(s)
.
= E

�∞
∑

k=0

γkrt+k+1 | st = s

�

. (2.36)
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The function in eq. (2.35) is referred to as the state-value function for policy
π. It gives the expected return when starting in state s and then following policy
π. A similar concept is that of the action-value function. Whereas eq. (2.36) gives
the value of a certain state, the action-value function also specifically gives the
value of taking an action in a state, i.e. the expected return when starting in
state s, taking action a and then following policy π. The action-value function
is given by

Qπ
.
= E [Gt | st = s, at = a] (2.37)

for all s ∈ S and a ∈ A(s). Once again substituting eq. (2.32) into eq. (2.37),
the action-value function is expressed as

Qπ
.
= E

�∞
∑

k=0

γkrt+k+1 | st = s, at = a

�

(2.38)

giving the expected return when starting in state s, taking action a, and then
following policy π. These functions will collectively be referred to as value func-
tions.

Although the policy may be the purpose of many RL algorithms, a value
function is typically found first, and from that, a policy is derived. Calculating
eq. (2.36) and eq. (2.38) is done using a fundamental property of these equa-
tions, known as the Bellman Equation. For eq. (2.38) this can be shown [27] to
be given by

Vπ(s)
.
=
∑

a

π(a | s)
∑

s′
T
�

s′ | s, a
� �

R(s, a, s′) + γVπ
�

s′
��

. (2.39)

eq. (2.39) expresses the state-value function as a function of possible values of
the next state, weighted by the probability that the current policy leads to that
state.

Value functions are means of obtaining a policy, and a policy is ultimately
a way of ensuring that the return is maximized. This introduces the need for
a "best" policy, known as the optimal policy. A policy π is defined to be greater
or equal to a policy π′, denoted π≥ π′ if the expected return of π is greater or
equal to that of π′ for all states s ∈ S, more precisely π≥ π′ ⇐⇒ Vπ(s)≥ Vπ′(s).
A policy that is greater or as good as every other policy is known as an optimal
policy and denoted π∗. An optimal policy may not necessarily be unique. The
value functions under the optimal policy are known as the optimal state-vale
and optimal action-value functions, respectively denoted and defined as

V ∗(s)
.
=max

π
Vπ(s) (2.40)

for all s ∈ S, and
Q∗(s, a)

.
=max

π
Qπ(s, a) (2.41)

for all s ∈ S and a ∈ A(s).
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As previously mentioned, the Bellman equation provides a way of comput-
ing the value functions. The Bellman equation for the optimal value functions
is known as Bellman optimality equation. As the optimal value function is un-
der that of the optimal policy, it is intuitively clear that the Bellman optimality
equation should be equal to the expected return when taking the best action of
that state. The Bellman optimality equation for the state-value function can be
shown [27] to be given by

V ∗(s)
.
= max

a∈A(s)

∑

s′∈S

T
�

s, a, s′
� �

R
�

s, a, s′
�

+ γV ∗
�

s′
��

. (2.42)

Finally, the Bellman optimality equation for the action-value function is
given by

Q∗(s, a) =
∑

s′∈S

T
�

s, a, s′
�

�

R
�

s, a, s′
�

+ γmax
a′

Q∗
�

s′, a′
�

�

. (2.43)

Just like s′ denotes the state at the next time step, so does a′ denote the action
at the next time step. The derivation from eq. (2.41) to eq. (2.43) can also be
found in [27].

Computing eq. (2.43) may be done iteratively. This is readily done by turn-
ing the Bellman Optimality Equation to an iterative update rule

Q∗i+1(s, a) =
∑

s′∈S

T
�

s, a, s′
�

�

R
�

s, a, s′
�

+ γmax
a′

Q∗i
�

s′, a′
�

�

. (2.44)

where i denotes the i-th iteration. Once the change between consecutive
computations is sufficiently small, the value iteration is said to have converged
to the true value.

Once eq. (2.42) and eq. (2.43) are given, the optimal policy is readily avail-
able. For the state-value function, this is given by

π∗(s) = argmaxa

∑

s′∈S

T
�

s, a, s′
� �

R
�

s, a, s′
�

+ γV ∗
�

s′
��

, (2.45)

for all s ∈ S. The action-value function case is much simpler and given by

π∗(s) = argmaxa Q∗(s, a) (2.46)

for all s ∈ S. This is quite intuitive, simply stating that the best policy is achieved
by selecting the action that maximizes expected return in every state. As men-
tioned previously in this section, this is referred to as a greedy policy. Both
eq. (2.45) and eq. (2.46) are deterministic policies, however as evident by
eq. (2.33), policies are generally stochastic. Perhaps counter-intuitive, the op-
timal policy is not necessarily the best policy, meaning eq. (2.46) in particular
needs some refinement. The reason for this, discussed in the next section, is
the need for exploration.
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2.5.4 Exploration vs Exploitation

Before discussing the concept of exploration, a qualitative comparison between
eq. (2.45) and eq. (2.46) is warranted. Whereas eq. (2.45) relies on knowledge
of both R(s, a, s′) and T (s, a, s′), eq. (2.46) relies only on the optimal action-
value function. As mentioned in section 2.5.2, knowledge of the reward func-
tion and state transition function is not always available, as it requires some
domain knowledge. The fact that a policy may be chosen without knowledge
of the environment may seem surprising, but this is in line with the core idea
of RL, namely learning by doing.

Algorithms aiming to calculate eq. (2.41) will have to do so by trying dif-
ferent actions, and recording the resulting rewards. However, as environments
may be stochastic or rewards may even be delayed in time, having observed
Qπ(sx , ax)>Qπ(sy , ay) at a single instance, does not necessarily mean that this
will always be the case. Keeping in mind that the optimal action is optimal with
regards to what the agent knows, the value of knowledge should be considered.
Generating more instances of unknown experiences e, as given in eq. (2.27),
is thus necessary in order to correctly assess the value of an action. This intro-
duces the need for exploring, that is trying actions outside the optimal policy.
One way of implementing this, is by adjusting the policy eq. (2.46) so that it
occasionally selects a random action, making it a stochastic policy as given by
eq. (2.33). Selecting an action according to eq. (2.46) is known as exploiting
or greedy behaviour, and should be used once the agent has learned its envir-
onment. After all, agents should ultimately maximize return, not explore the
world.

This concludes the necessary background of classical RL. At this point, a
discussion of RL would normally present different RL algorithms, ways of learn-
ing policies. In this case, the discussion moves to another branch of machine
learning, traditionally viewed as separate from the field of RL, namely Deep
Learning (DL).

2.6 Deep Learning

Deep Learning (DL) is a form of machine learning inspired by the mechanisms
of the human brain. The material in this section is based on [28] and [29],
unless otherwise stated.

2.6.1 Deep Feed Forward Networks

The quintessential DLmodel is the Deep Feed Forward Network (DFFN). Through-
out this text, the term network will be used in reference to DFFN, which in turn
is a class of Artificial Neural Network (ANN)s. The purpose of such a network
is essentially to approximate an unknown function y = f ∗ (x), mapping some
input x to some output y. The network itself defines a mapping y = f (x;θ ).



Chapter 2: Background 23

The purpose of the deep learning process is to find the set of parameters θ that
ensures that the network f approximates the function f ∗.

The function defined by the network may be expressed as a n chained func-
tions, i.e.

f (x) = f (n)
�

f (n−1)
�

f (...)
�

f (1) (x)
���

. (2.47)

Such a chain of functions is conveniently expressed as a directed acyclic graph
of multiple layers. Each such layer corresponds to a function f (i) in the chain,
taking as its input the preceding layers output, and feeding its output down-
stream. The number of such layers in a network is described as the depth of the
network, hence the term deep learning and deep feed forward network. The
output of eq. (2.47) is described as the output layer, the x the input layer and
all layers in between are known as hidden layers.

It is convenient to define the output of a hidden layer as a vector quantity
h(i) corresponding to the i-th hidden layer, that is

f
�

h(i−1)
�

= h(i). (2.48)

Each hidden layer can be viewed as a collection of nodes, each node computing
an entry to the layer output vector h(i). Such a node constitutes the smallest
computational units within a network, and consists of two steps:

1. The weighting of inputs and biasing
2. The activation of weighted and biased inputs

Keeping in mind that the input to a layer is a vector quantity, the input to
each node within a layer may generally be the same list of numbers. In this
case, the network is typically described as fully connected or dense. The general
function implemented by a node, then, is given by

g
�

h(i−1)>w+ b
�

(2.49)

where the function g is known as the activation function, and the quantities w
and b are weights and biases respectively. The vector hi−1 is the output vector of
the preceding layer, or equivalently, a vector consisting of the individual node
outputs of the preceding layer. The parenthesis in eq. (2.49) is thus a weighted
sum of the outputs of the preceding nodes, with an added bias. This weighted
sum is then activated according to the activation function g. The activation
function is essentially determining to what extent the particular neuron will
feed its output forward in the network. This is somewhat analogous to how
neurons in the brain are said to "fire" as a function of other neurons: If the
weighted sum of inputs to the neuron is "strong enough", the neuron will re-
gister and fire to the next layer within the network. The terms "strong enough"
and "fire" are formalized by the activation function.

Different activation functions exist, and choosing the appropriate activation
function to use in the network depends on the particular application. A default
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Figure 2.6: An illustration of a neuron. Figure courtesy of [28].

recommendation [30], which will also be utilized in this case, is the rectified
linear unit (ReLu), given by

g(z) =max (0, z) (2.50)

in which case the neuron simply outputs its weighted sum of inputs, given that
this sum is positive. The concept of a neuron is illustrated in fig. 2.6. Note the
two parts of the computation of the output, the Σ and step-function indicating
the summing of weighted inputs and activation respectively.

The network function eq. (2.47) is then fully defined by its architecture
or structure, specifying the depth of the network, the width of each layer, the
connections between nodes in consecutive layers and the activation function
of each node, and its collection of weights and biases for each node. A simple
network is illustrated in fig. 2.7

Recalling the start if this section, the network function was said to be para-
meterized by a collection θ . This collection is precisely the collections of weights
an biases of the entire network.

2.6.2 Training Neural Networks

The DFFN provides the framework for enabling deep learning. But the descrip-
tion of the network so far has no learning capabilities, but rather a generalized
function approximator. As stated earlier, the goal of the network function is
indeed to approximate some unknown function, such as e.g. a classifier. A clas-
sifier typically maps a set of features to a class and will serve as an illustrative
example for this section.
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Figure 2.7: A simple neural network. Figure courtesy of [28].

It is clear that a deep neural network might implement such a classifier.
Consider a function classifying a flower as either a rose, a tulip or a sunflower,
implemented as a DFFN. The input to the classifier, i.e. the network, is a feature
vector, where each entry represents some attribute of a flower. Such attributes
could be width of the petal, length of the stem and area of the leaves. A feature
vector describing a flower with a very long stem, narrow petals, and medium
leaf area could be classified as a sunflower by setting the weights appropri-
ately. The output y to such a network would typically be a vector with three
entries, one for each class. The numerical value of the output would then cor-
respond to the likelihood that the supplied feature vector was a description of
the corresponding class.

In the case that the network does not classify correctly, but has the appro-
priate architecture, the classifier might predict that a description of a sunflower
is a tulip. Noticing then, that the weight associated with e.g. the stem length is
a low number for the sunflower output, one might adjust this number so that
the network would have predicted the correct class for the same input.

This is essentially the way learning in an DFFN takes place, by comparing
the prediction to the truth, and from this comparison adjusting the weights.
What, then, is the point of an ANN, if the very thing it tries to predict has to
be known in order for it to learn? This introduces the concept of training. The
successful application of deep learning relies in sets of labelled training data,
instances consisting of a feature vector with its correct label, also known as
target. Such pair is denoted

�

x,yt
�

(2.51)

where yt is the label or target associated with the feature vector x. The hope is
that through this training, the labelled data has provided means for adjusting
the weights to such a configuration that unlabelled data is predicted correctly.

The concept of training raises two questions: How is the prediction to be
compared to the target, and given this comparison, how is it used to alter the
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weights of the network?
The answer to the first question, how comparisons are to bemade, is through

a loss function on the form
L = L(yp,yt) (2.52)

giving the loss of a prediction. As is the case with activation functions, the
particular loss function to be used is an application dependent design choice.
Intuitively, some distance function seems like a reasonable approach, like for
instance the Mean Squared Error (MSE), which will be the only loss function
discussed in this text. This is given by

L =
1
n

n
∑

i=1

�

yp
i − yt

i

�2 (2.53)

where n is the number of labelled feature vectors. That is, rather than com-
puting the loss of a single labelled feature vector, it is generally computed as
an average over multiple such pairs. A set of labelled pairs for which the loss
function is computed will be referred to as a batch, and the use of the network
to predict a batch will be referred to as a pass. The quantity yp−yt is known as
the error e of the prediction. Loss is generally a function of error, i.e. L = L (e)

Once the loss is evaluated, how is this information used to adjust theweights
in a reasonable way? Keeping in mind that the goal of this weight update is to
change the network in such a way that the predicted output would have been
closer to the target, the vector of weights should be changed in the direction
that minimizes the loss function eq. (2.52) the fastest. This direction is readily
obtained through the gradient of the loss function with respect to its weights.
The procedure of minimizing the loss function this way is done using gradient
descent. In order to compute the gradient of eq. (2.52), an algorithm known
as back propagation is used. In the context of ANNs, this is known as the back-
ward phase of the training. This implies the existence of a forward phase, which
is simply the pass mentioned above. Backpropagation is further described in
[31].

2.6.3 Convolutional Neural Networks

The Convolutional Neural Network (CNN) is a widely used class of neural
network [28]. CNNs differ from the general neural network described above
mainly in the number of connections between consecutive layers. Whereas the
discussion of neural networks so far has assumed full connectivity, the hidden
layer neuron of a CNN is only connected to a subset of neurons in the previous
layer. This sparse connectivity lets CNNs learn features implicitly [32].

A CNN is a class of neural network for processing data with a grid-like to-
pological structure. An example of such structured data is images, which can
be viewed as a 2D grid of pixels. For this reason, CNNs have been very suc-
cessful in computer-vision applications. As the name suggests, CNNs utilize a
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mathematical operation known as a convolution. A CNN is by definition a neural
network that uses a convolution in place of a general matrix multiplication in
at least one of the layers [29].

2.7 Deep Reinforcement Learning

One of the goals of AI research is the development of fully autonomous agents,
capable of improving performance over time through trial and error. As dis-
cussed in section 2.5, RL does indeed provide a principal mathematical frame-
work for experience-driven autonomous learning. In practise, however, apply-
ing classical RL algorithms to develop highly sophisticated autonomous agents
is infeasible, due to the fact that RL based approaches lacks scalability. These
limits are the result of memory, computational and sample complexity, inher-
ently limiting RL algorithms to small scale problems. This problem is often
referred to as the curse of dimensionality, highlighting the vast computational
and memory resources required to handle high-dimensional state spaces.

Deep Learning algorithms have provided the tools for overcoming these
problems in RL. As discussed in section 2.6, the most important property of
DL algorithms is their ability to find compact low-dimensional representations,
or features, of high-dimensional data (e.g. text, images, audio). This addresses
the curse of dimensionality associated with the practical application of RL. The
application of DL algorithms within the field of RL defines the field of Deep
Reinforcement Learning (DRL) [33].

2.8 Deep Q-Network

With the advent of DRL the possibility of controlling agents directly from high-
dimensional sensory inputs became feasible. Previously, RL methods for ac-
complishing this task had relied on hand-crafting feature representations, i.e.
states, from the high dimensional input for the specific problem. In addition
to lacking generality, the performance of this approach is also limited by the
quality of the feature representation.

In the the 2015 paper [17], the successful application of DRL-methods was
demonstrated on a range of classical Atari 2600 video games implemented in
the Arcade Learning Environment (ALE), allowing an agent to learn how play
video games simply by observing the pixels of the game. In most games, the
DRL-agent outperformed the best human players. The method presented and
used in [17] is essentially using a deep neural network to approximate the the
Bellman optimality action-value function eq. (2.43), described in section 2.5.2,
repeated here for convenience

Q∗ (s, a) =
∑

s′∈S

T
�

s, a, s′
�

�

R
�

s, a, s′
�

+ γmax
a′

Q∗
�

s′, a′
�

�
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with a deep neural network. Once the approximation of eq. (2.43) is assumed
to have converged, it can be used to implement an optimal policy given by
using eq. (2.46), repeated here

π∗(s) = argmaxa Q∗(s, a).

This notion presents two particular problems. These problems, along with
their solutions, are discussed in this section. Then the general algorithm for this
approach, known as the Deep Q-Network (DQN) algorithm is presented. The
algorithm takes its name from the deep neural network used to approximate
the action-value function, which in the literature is often referred to as the Q-
value function. The material in this section is entirely based on [34] and [17]
unless otherwise specified.

2.8.1 Deep Q-Network Overview

The DQN computes the optimal action-value function iteratively, using the Bell-
man Optimality Equation as an iterative update rule. Noting that eq. (2.44) is
expressed as a function of the environment transition dynamics, which gener-
ally are not available, it is perhaps more appropriate to reformulate it to

Q∗i+1 (s, a) = Es′∼S

h

r + γmax
a′

Q∗i
�

s′, a′
�

i

(2.54)

where the added subscripts i is the i-th iteration. eq. (2.54) is also expressed
in terms of expected value over the possible future states, instead of known
rewards weighted by their probabilities, given by themodel of the environment.

Furthermore, consider a parameterized approximation of eq. (2.54) given
by

Q∗i (s, a;θ )≈Q∗i (s, a) (2.55)

where θ is a vector of scalar parameters. Such an approximation can be made
by a deep neural network, where the vector θ constitutes the weights of the
network. As discussed in section 2.6, such a deep neural network can be trained
to approximate the true action-value function Q∗i (s, a) by adjusting the weights
over multiple passes.

Assuming the true value of eq. (2.54) was available for a given state and
action s, a, this value would be a label y t

i for the i-th update iterationQ∗i+1 (s, a).
The value produced by the approximation eq. (2.55) would then be considered
the prediction y p

i for this instance. Recalling the notion of the loss-function
eq. (2.52), for instance by the MSE loss eq. (2.53) the loss is given by

Li (θi) =
�

y t
i −Q∗ (s, a;θi)

�2 (2.56)

for a single training instance. Note the slight change in notation between eq. (2.55)
and eq. (2.56): the iteration index i is moved to the weights and loss function,
as it parameterizes the optimal action-value function approximation at the i-th
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iteration. Having obtained a loss, the weights are readily updated using back-
propagation.

eq. (2.56) raises two important questions. Firstly, how are training instances
Q∗(s, a;θi) to be generated? And secondly, how is the target value y t

i to be ob-
tained? Surely, if the true value of the optimal action value-function was known
in the first place, the optimal policy would have been readily available, and one
would not need to bother with training a deep neural network to reproduce the
value. These questions are answered in the following section.

2.8.2 Experience Replay and Target Network

The answer to the first question posed at the end of section 2.8.1 is in line with
the core idea of RL, namely that instances are generated through interacting
with the environment. The Deep Q-network posed in section 2.8.1 is an ap-
proximation of the action-value function. The input layer to this network is a
particular state s ∈ S, the output layer is a vector of action-values for that par-
ticular state, one node for each action a ∈ A(s). As the same network structure
is used for all states, it is assumed that A(s) = A. Training instances to the net-
work, specifically instances of states, are thus generated through having the
learning agent interact with the environment.

During training of a neural network, the training data should be fed to the
network from a i.i.d. set. This is clearly not the case with states generated from
interacting with an environment, as consecutive states depend on each other.
Considering Atari Breakout, for instance, one would typically move the paddle
the same direction for multiple consecutive states. If these states were to con-
stitute the first batch of training, the network would favour moving the paddle
left, for example, for all states, essentially constantly over-fitting for the last
seen sequence of the game. This problem is addressed with a technique known
as experience replay. Instead of training the network with instances as they ap-
peared from interacting with the environment, these instances are stored as
experiences, given by eq. (2.27), into a fixed length replay memory Dt of capa-
city |D|. The replay memory is subscripted with the time t, as new experiences
are constantly added, and old experiences are pushed out. If the capacity of
the replay memory is sufficiently large, a randomly sampled set B, known as
a minibatch may be selected from the replay memory. This set of randomly re-
called experiences constitutes the input to the Q-Network, and at each pass, a
new set is sampled. The replay memory at time t is given by

Dt =
�

et , et−1, . . . , et−|D|+1

	

. (2.57)

With weights and states, the prediction of Q∗ (s, a;θi) can be made. But
how is the target value for this prediction calculated, or even understood? This
problem arises as a result of combining supervised learning algorithms on unsu-
pervised learning problems. The solution is essentially having the agent supply
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its own label for a given training instance. This label is generated using a sep-
arate set of weights θ−, being maintained in parallel with the neural network
weights θ . This gives rise to a second neural network, with the same architec-
ture as the Deep-Q network, but parameterized by a different set of weights.
This network is used to calculate the label of each training instance and is aptly
named the target neural network. The weights of the target neural network θ−
are copied from the Deep-Q network at regular intervals, every C episode.

2.8.3 The DQN Algorithm

With a description of the Deep-Q Network in place, the DQN algorithm can be
described. The DQN algorithm builds upon the agent-environment framework,
described in section 2.5.1. First, the agent observes the state of the environment
and selects an action, either randomly, in order to encourage exploration, or
by maximizing expected return, i.e. by eq. (2.46). The environment is affected
by the action, returning a reward and a new state to the agent, in addition
to information about whether or not the action terminated the episode. These
quantities, that is {s, a, r, s′,done}, constitutes an experience, which is stored in
the replay memory. Next, given that the replay memory is sufficiently large, a
mini-batch of experiences B are sampled from the replay memory. Then, the
label

y t =
h

r + γmax
a′

Q∗
�

s′, a′;θ−i
�

i

is calculated using the target neural network weights θ−, for each experience in
themini-batch. Note that for experiences with the done-flag, that is experiences
where the action terminated the episode, y t is simply given by r (as there is
no "next" value).

Next, all the states of the experiences in the mini-batch are fed to the Deep-
Q Network, along with their labels y t . The Deep-Q Network predicts a value
for each action, given by its internal weights θ and the MSE loss is calculated
for the entire mini-batch. Finally, the Deep-Q Network is ready to learn, by
gradient descent for the weights.

This is done at every single step. Once the episode terminates, the envir-
onment is typically reset and the next episode starts. Every C step the target
network weights are updated by θ− ← θ . An overview of the training loop is
given in line 1.

2.9 A* Path Findig Algorithm

The A* (pronounced "A Star") algorithm is a graph traversal and path find-
ing algorithm. The algorithm, often considered as an extension of Dijksra’s Al-
gorithm, was first demonstrated in [35] and has been favored for its optimal
efficient property [36], that is, no other optimal algorithm is guaranteed to
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Algorithm 1: DQN Training Loop
Initialize environment;
Initialize Deep-Q Network weights θ ;
Initialize target network weights θ−;
Initialize replay memory with set capacity D;
Require exploration chance ε;
for each episode do

Reset environment;
C = 0;
while not done do

s← observe ();
σ← random (0, 1);
if σ > ε then

a = argmaxQ∗ (s, a)
end
else

a = random-action ()
end
�

r, s′, done
�

= step (a);
e←

�

s, a, r, s′, done
	

;
Store e in replay-memory D;
Sample mini-batch B from D;
y ← [];
x ← [];
for e in B do

Add s in e to x;
Find target value of s in e using target neural network;
Add this value to y;

end
Train Deep-Q Network using x as targets and y as labels;

end
if C ≥ reset weight interval then
θ−← θ ;
C ← 0;

end
end
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expand fewer nodes than A*. This section briefly describes the workings of the
A* algorithm, and how it is used to find an optimal path.

The purpose of the algorithm is to find a path between two nodes, a start
node and a goal node, with the least cost. The cost may be considered as the
length of the path, time spent, or any other relevant property to be minimized.
For a mobile robot navigating a maze, for instance, the A* may be used to find
the shortest path through the maze.

The algorithm starts by considering all nodes adjacent to its starting posi-
tion. Using a grid world as an example, this is a set of four tiles, eight tiles if
diagonal movement is allowed. The algorithm will then decide on which nodes
seems most promising. This is done by calculating the cost of the path going
through that specific node. This cost function is given by

f (n) = g(n) + h(n) (2.58)

where f (n) is the cost of node n, g(n) is the cost going from the start node
to node n and h(n) is an estimate of the cost of going from n to the goal. For the
grid world example, g(n) would be the distance traveled from the start node to
n, and h(n) would be an estimate of the shortest path from n to the end node.
It is important to note that h(n) is indeed an estimate, an estimate which may
be updated as the algorithm traverses more nodes.

From this set of adjacent nodes, the one with the lowest cost is selected.
The other nodes are however still kept in memory, as they may have to be re-
considered. From the newly selected node, four (or eight) new adjacent nodes
are made available, each with their own cost. These costs, along with the costs
of the nodes that are kept in memory are compared, and another node is se-
lected. So if none of the newly exposed nodes seem promising, the previously
exposed nodes may be revisited and explored as a possible path. This procedure
is repeated until the goal node is encountered.

More formally, at each iteration in the A* loop, adjacent nodes to the current
node is considered and added to an open list. Then the node in the open list
with the lowest score is selected, moved from the open list to a closed list. The
selected node becomes the current node, and the previous node is defined as its
parent. The reason for keeping open and closed lists and track of predecessor
nodes is to maintain a memory of the unexplored "frontier" (the open list),
nodes that have already been explored as a possible path (the closed list) and
a link between which nodes lie on what paths (parenthood). So, once the goal
node is found, the path can be determined by traversing back to the start node
through each nodes parent.
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Methodology

As stated in section 1.2, the objective of the work presented in this thesis was
to evaluate the application of DRL methods to learn and implement targeted
sampling for an AUV in a simulated ocean environment. Specifically, by com-
paring the performance of DQN agent to that of the A* algorithm, and by dis-
cussing the challenges and potential advantages of this approach. To achieve
this, an ocean environment was implemented as an OpenAI gym. A DQN agent
as described in section 2.8 was implemented to interface with the environment.
The agent was trained, resulting in a Deep Q-Network that would map states
to actions. As a comparison, a model based approach was also developed using
the A* algorithm. The performance of the DQN-agent and the A* algorithm was
then compared on accumulated reward and encountered plankton.

3.1 Environment Model as an MDP

The simulation environment in which the agent acted is referred to as an ocean
environment, consisting of a dynamic AUV simulation, described further in sec-
tion 3.1.4, and a distributed biomass of plankton, described in section 3.1.5.
In order for this environment to facilitate reinforcement learning, it was ex-
pressed as a finite MDP as described in section 2.5.2, that is, a collection of
states and actions, known to the agent, as well as transition dynamics and re-
ward function, unknown to the agent. This section describes how the ocean
environment was modelled as an MDP.

3.1.1 States

The environment state consisted of the estimated ocean plankton density dis-
tribution, the AUVs relative position within the ocean, and the trajectory of
AUV. In order to achieve this, the ocean was modelled as a square body of wa-
ter, discretized into separate tiles. Each tile corresponded to a certain region
within the ocean body. The area of the body of water was set to be 1000m2

33
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Figure 3.1: An example of the tiled ocean environment, displaying the plank-
ton density of each tile.

and discretized into 50 × 50 tiles. A single tile τ, then, covered an area of
20m2. A specific tile is referenced by its north-east coordinate, given in the
NED-reference frame. For example, the tile [37,21], denoted τ37,21 refers to
the square defined spanning from 740 m to 760m north of the NED origin and
from 420m to 440m east of the NED origin. The significance of this origin is
arbitrary, but could for instance be considered the point from which the AUV
was deployed.

Each tile τx ,y is specified as a uple of three variables, the normalized plank-
ton density ρ of that tile, a binary variable α denoting the presence of the AUV
within that tile, and a binary value ν, denoting whether or not the tile was
previously visited by the AUV. A single tile is then given by

τx ,y = [ρ,α,ν].

It was assumed that the plankton density was equal at all points within a tile.
Furthermore, the set of tiles previously visited tiles τx ,y, where ν = 1 defined
the trajectory of the AUV.

As an example, if the AUVs position is 741.2 m north and 437.3 m east of
its deployment location, the α value τ37,21 is 1. The state space is the entire
collection of tiles τx ,y where x , y ∈ [0 . . . 49] for a total of 2500 distinct tiles.
An example of such a set of tiles is shown in fig. 3.1.
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3.1.2 Actions

Actions are the agents means of changing the state. Four actions were available
to the agent, denoted N , S, E, W corresponding to the cardinal directions north,
south, east and west. Keeping in mind that the DQN algorithm is model-free,
the agent did not have any knowledge of what these actions in fact represented,
or how they would change the state. The transition dynamics behind these
actions were implemented as a form of waypoint generation. Each action would
generate a waypoint corresponding to one of the adjacent tiles, specifically
a waypoint 20 m to either direction. This waypoint was then received by the
LOS-guidance system and motion control systems as described in section 3.1.4,
initiating a guidance control loop. Once the waypoint was reached, the action
was considered executed, at which point the agent would receive the resulting
state, i.e. a new ocean map with the updated AUV-position, trajectory, and the
plankton map. The plankton map was considered static, so the plankton map
received at each step would not change. Additionally, the step would result in
a reward, and information on whether or not the step terminated the episode.

3.1.3 Rewards and Termination

The reward function is a consequence of the agents interaction with the envir-
onment, and provides means for the ML-engineer to guide the agent to the de-
sired behaviour. The desired behaviour was defined as following: Steer the AUV
to the specific tile within the ocean map with the highest normalized plankton
density. If small detours through patches with higher plankton is available, take
these detours when seeking out the hotspot. The extent to which these detours
should be made was not specified directly, but through different parameters in
the algorithms and learning agents.

To implement this behaviour, the reward returned to the agent at each step
was proportional to the change in distance between the AUV and hots-pot po-
sition. Thus, moving away from the hotspot would result in a negative change
in distance, and yield a negative reward, also known as a penalty. Any action
moving the agent towards the hotspot would close the distance, resulting in
a positive change and consequently a positive reward. In order to encourage
the agent to find the hotspot quickly, a constant penalty was imposed on each
step. To achieve the aforementioned detour behaviour, rewards would also be
given proportional to the encountered plankton density ρ of the tile containing
the AUV after a step. To avoid having the agent steer the AUV back and forth
between two adjacent high plankton tiles, and thereby exploiting the reward
function, a reward for encountered plankton was only given if the tile was pre-
viously unvisited. Revisiting a tile would also give a penalty. This is also the
reason the trajectory was included as part of state.

Finding the hotspot would immediately terminate the episode and yield
a high positive reward. Additionally the mission would terminate if the AUV
moved outside of the defined set of tiles, specifically over 1000 m to the east
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Table 3.1: Values used for constants of the reward function of eq. (3.1).

Symbol Definition Value
P Encountered plankton weight 2
D Distance change weight 5
B Revisit reward -10
C Move reward -1
H Hotspot reward 100
E Exit map reward -100
T Waypoint timeout reward -100

or north, or any distance south or west, from the map origin. Thirdly, the epis-
ode would terminate after a certain number of steps. Lastly, the episode would
terminate if the AUV failed to reach the current active waypoint, specifically if
the time spent reaching the waypoint exceeded a predefined waypoint timeout
threshold. If the episodes terminated as a result of exiting the map or a way-
point timeout, a high penalty was returned to the agent. The reward function
can thus be expressed as

R(s, s′) =



























R(s′) = Pρ + Dδ+ C if tile is unvisited
R(s, s′) = Dδ+ C + B if revisiting tile
H if tile is hotspot
E if tile is out of bounds
T if waypoint has timed out

(3.1)

where ρ is the normalized plankton density of the tile containing the AUV,
δ is the change in distance from the AUV to the hotspot. The values used for the
constants and weights in eq. (3.1) are shown in table 3.1. Note that negative
rewards are also referred to as rewards to avoid confusion in table 3.1, as the
value is already specified to be negative.

3.1.4 AUV Simulator

The AUV dynamics was modelled using eq. (2.1). The AUV was simulated with
a time-step of 0.1 using an ODE45 solver. The AUV simulator was implemented
as a Python module with a step function as an interface to outside modules.
The step function would accept a vector of control inputs commanding pro-
peller thrust in Newtons, as well as elevator and rudder deflection in radians.
The control input would then be saturated in accordance with the AUVs phys-
ical limitations, and low-pass filtered to avoid high frequent change in control
surface deflection. The solver would then simulate the AUV dynamics for the
next 0.1 seconds, update the states and make them available for other mod-
ules. The source code, including the parameters of the dynamics for the AUV
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simulator was obtained from the AUV module of [1], with some minor modi-
fications.

In addition to the AUV dynamics, LOS-guidance scheme and PID-control
as described in section 2.3 and section 2.2 were implemented as additional
Python modules. The source code for the controller was also obtained from
[1], whereas the LOS-guidance scheme is original work. The guidance module
would set waypoints in the order they were added to the waypoint database.
When all waypoints were reached, the guidance state would be considered in-
active, until newwaypoints were added. The previous waypoint of the guidance
scheme was at all times considered to be the AUVs current position, defining
the reference path as the line connecting the AUV position and the next way-
point.

3.1.5 Plankton Data

The plankton data map was generated procedurally using a Gaussian Process,
as described in section 2.4. This process would generate a 1000m2 map with
a resolution of 20m2, resulting in a 50× 50 grid of plankton distribution over
an area, specifically the average density of plankton biomass in a given point
in space. The kernel used in the Gaussian Process was the Matérn kernel, res-
ulting in randomized smooth patches of higher plankton density, mimicking
the distribution of biomass in the ocean. An example of a randomly generated
plankton distribution using this process is shown in fig. 3.1.

Even though biomass in the ocean tends to drift with ocean currents, the
plankton distributionwasmodelled as static for the duration of a single episode.
Furthermore, the entire plankton map was assumed known and available as
part of the state. Neither of these assumptions are realistic, and alternative
approaches are discussed in chapter 5. The plankton hotspot was defined as
the tile with the highest plankton density.

3.2 The Agent and the Algorithm

With the description of the environment given in section 3.1 rules of the game
are set. This section describes the two solutions explored to achieve the desired
behaviour. On the one hand, the ML approach utilizing the powerful capabil-
ities of deep learning, on the other, the model based approach, using prior
knowledge of the environment.

3.2.1 DQN Agent

The learning agent used to achieve this task was a DQN-agent. At the heart
of this agent lies the DQN, which was implemented as a convolutional neural
network. The design of the DQN agent is described in this section.



38 I.K.: DRL Applied to Targeted Oceanographic Sampling for an AUV

Table 3.2: Parameters used for agent replay-mamory.

Parameter Value
Replay Memory Size 2048

Minimum Replay Memory Size 512
Mini-batch size Entire Replay Memory
Discount factor 0.9

Target update counter 3

Recalling section 2.8.1, the DQN defines the policy of the agent, providing
a mapping from an observed state to perceived values of each possible action
in that given state. These values are calculated through a forward pass of the
network. As such, the structure of the input layer corresponds to the state, in
this case, a 50×50×3 tensor. The input layer was followed by a 2D convolutional
layer, with 32 filters and a 3 × 3 kernel. The layer was activated using the
rectified linear unit function. After the activation, a max-pooling layer with a
pool size of 2 × 2 was used. To reduce the effect of noise in the input data,
a dropout layer was used after the pooling layer with a 10% dropout. These
exact same three layers were then repeated, that is a convolutional layer, a
max-pooling layer and a dropout layer. Before the output layer, which should
correspond to the number of actions, the output from the last dropout layer was
flattened, and then passed through a dense layer with 64 nodes. The output
layer was then activated linearly, giving the estimated values for each of the
possible four actions.

The parameters relating to the agents replay-memory, target update counter
and discount factor is shown in table 3.2. These concepts are discussed in sec-
tion 2.8.2 and section 2.5.2.

Note that instead of using a fixed-size mini-batch, the entire replay memory
was fed to the network at each pass. This proved to give faster convergence,
despite requiring more forward passes. The reason for this is not clear, but is
discussed further in chapter 4.

3.2.2 A* Algorithm

The A* algorithm is not an agent. Unlike the DQN agent, it would evaluate
the initial state of the environment once, and calculate the optimal path from
the starting node, given by the AUV initial position to the goal node, given by
the plankton hotspot using the A* algorithm as described in section 2.9. To
achieve the detour behaviour described previously, a modification was made
to the A* algorithm. The cost of the node, given by eq. (2.58) was given in
terms of euclidean distances to encourage the algorithm to find the shortest
path. However, a cost was added to each node as a function of the normalized
plankton density of the node, specifically eq. (2.58) was given as

f (n) = g(n) + h(n) + P(1−ρ(n)) (3.2)
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where P is a positive constant, ρ(n) is the normalized plankton density of
node n. By this modification, tiles with low plankton densities would be given
a higher cost, causing the algorithm to avoid them when faced with a tile with
higher plankton density, even though it might cause a detour.

3.3 Implementation and Software Organization

As previously mentioned, the environment was implemented as a OpenAI gym
and written in Python. The entire software is available at [21]. The environ-
ment package consists of three modules, the ocean environment, the plankton
interface and the AUV interface. The software structure and interfacing is out-
lined here.

3.3.1 Ocean Environment

The ocean environment module provided the interface to external agents and
algorithms as described in section 2.5.1 through a step method, taking as input
an action, and returning a state, reward and a flag indicating whether the
episode terminated or not. In addition to serving as an interface to external
agents, the ocean interface module managed and synchronized information
from two other modules to calculate rewards, check for termination criteria,
change the state and render a figure of the environment. These modules are
the AUV interface and plankton interface.

3.3.2 AUV-Environment Interface

The AUV interface serves as an interface between the OpenAI gym ocean en-
vironment and the dynamically modeled AUV. The module would process the
action of the step function further by converting an action to an appropriate
waypoint, pass this waypoint to the AUV guidance system, which would in turn
determine the desired heading. The AUV interface would then feed the head-
ing reference to the controller module, which would return the appropriate
control input. This input was applied to the AUV system and simulated by the
AUV dynamic model until the waypoint was reached. The AUV interface would
then return the updated AUV position back to the ocean environment module.

3.3.3 Plankton Interface

The plankton interface module would generate plankton maps and locate the
hotspot within this map. As the plankton was assumed to be static, no further
processing was required at each step, but the module was developed with this
possibility in mind.
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3.3.4 DQN Agent

The DQN agent module implements the structures needed for the DQN agent
as described in section 2.8. This included two structurally identical convolu-
tional neural networks, one for the target and one for the model, a replay
memory with methods for adding experiences, and sampling mini-batches of
experiences, and a method for training the neural network, as described in sec-
tion 2.8.1. Additionally, to give the module the workings of an agent, an action
selection method was implemented

3.3.5 A* Algorithm

The A* algorithm was implemented as a Python module, taking as its input a
plankton map, and producing a set of waypoints connecting the AUV starting
position to the plankton hotspot. For the sake of consistency in the software, the
A* algorithm would also interface with the ocean environment gym. Instead of
calling the step function, whichwould require an action, a separatemethodwas
made taking as its input a collection of way-points, which in turn was handled
by the AUV interface and the guidance and control systems of the AUV package.

3.3.6 The Training Loop

The ocean environment and an DQN agent was initialized and trained for
50 episodes. The DQN agent was initialized with an empty replay memory,
a model neural network and a target neural network. At the start of each epis-
ode, the environment was reset, specifically by

• Randomizing the AUV position within the map
• Generating a new plankton environment using GPR
• Identify the plankton hotspot of the map
• Setting the status of the episode as not done

For each episode and as long as the episode was not done, the agent would
then observe the state, and select an action. The action selection was done
using the model neural network by presenting the observed state as an input
to the network, and selecting the action that yielded the highest value from the
output of the model neural network. The algorithm would select a completely
random action with a probability of 0.3 in order to encourage exploration, as
explained in section 2.5.4.

The agent would then execute the action, and receive a new state, a reward
and information onwhether the action terminated the episode. The reward was
calculated, unless the episode was terminated, in which case the reward was
given based on the reason the episode was terminated. Recalling section 2.5.2,
this constitutes an experience on the form eq. (2.27). This experience was then
added to the replay memory of the DQN agent.
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After the replay memory was updated, the agent would train its neural net-
work with a single pass of a mini-batch of states from the replay memory. This
step was skipped until the replay-memory had reached a certain size, specific-
ally 512 experiences. The details of the training are described in section 2.8.1.
After each pass and weight update, the target neural network would copy
its weights from the model neural network, given that a set amount of steps
had been taken since he last update. The state received from the environment
would then be considered the current state, and the loop would continue. The
output of the training was a neural network which could represent the policy
of the agent.

3.4 Performance Evaluation

To evaluate and compare the performance of the DQN agent and A* algorithm,
both approaches were tested on the same plankton environment maps, using
the same starting position for each map. The performance was evaluated on a
series of metrics, which is further discussed in chapter 4.





Chapter 4

Results

This chapter presents the results of the DQN training, along with a comparison
of the performance during training with that of the A* algorithm when faced
with the same plankton scenarios. Additionally, a comparison between the pre-
trained DQN-agent and the A* algorithm is briefly discussed, when faced with
a different seed than during training. As a final experiment, the results of the
DQN agent when training on the same plankton scenario for multiple episodes
is compared to the A* solution to the same scenario.

4.1 Results of training

The model was trained according to the methods described in chapter 3. To
reiterate some of the most important parameters, the exploration rate, ε was a
static 0.3 for the duration of the training which was 50 episodes. As the agent
would not actually train unless the replay-memory was sufficiently large, the
agent did not in reality train until about twenty episodes in.

The metrics recorded during training were the accumulated reward per
episode, the accumulated normalized encountered plankton per episode, the
steps taken per episode, and the sum of distances between the agent and the
hotspot at each step per episode. The latter metric serves as an indication on
how close the agent was to the hotspot during an episode, when evaluated in
relation to the number of steps of that episode.

Due to the nature of the reward function and how each episode was initi-
ated, the potential reward would vary from episode to episode. For instance,
maps that would generate with overall higher concentration of plankton would
have a greater potential for reward. Episodes that saw a greater initial distance
between hotspot and AUV starting position would also have a greater potential
for reward. For this reason, some ratios between the metrics mentioned above
will also be presented in this section. Most plots will be presented along with a
low-pass filtered version of the same data, to reduce some of the noise present
from episode to episode.
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Figure 4.1: Accumulated reward per episode during training of the DQN-
agent.

The overall reward accumulated at each episode during the training session
is shown in fig. 4.1. The reward-to-step-ratio, that is, the accumulated reward
per episode, divided by the number of steps of that episode, is shown in fig. 4.2.

These figures indicate a slight increase in performance over the course of the
episodes. This increase is most distinct when comparing the first 17 episodes
to the remaining episodes. Episode 17 marks the start of the agent using the
replay memory to start training the neural network. This difference in perform-
ance is also clear from the reasons the episodes terminated during training. To
reiterate, the possible termination criteria were finding the hotspot, leaving the
map, reaching the step limit of 500 steps, or failing to reach the current way-
point. Before the neural network was used, all episodes terminated as a result
of leaving the map. After using the neural network, the DQN-agent was able
to locate the hotspot in 39% of the episodes, with the remaining episodes ter-
minating by leaving the map. Of the episodes that failed to reach the hotspot,
a substantial portion came within a few tiles of the hotspot. All the trajectories
can be seen in appendix A.

Increase in performance between episode 18 and 50 is not that clear. Some
high scoring episodes towards the end of the training gives the impression of a
performance increase in fig. 4.1. When comparing to fig. 4.2, however, it is clear
that the episodes in question were generated so that the potential for reward
was high. Returning to the reward function eq. (3.1), the potential for reward
is highest when the distance between the AUV and the hotspot is greater, as it
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Figure 4.2: Accumulated reward relative to number of steps taken per episode
during training of the DQN agent.

allows the most steps that closes the distance to the hotspot. The trajectories of
the episodes in question, 44 and 45, are shown in fig. 4.3 and fig. 4.4. It should
be pointed out that the hotspot was in fact not located in episode 45, as the
AUV left the map right next to the hotspot.

To gain some insight as to how the reward function is aligned with the
desired behavior, the encountered plankton, and encountered plankton-to-step
ratio is shown in fig. 4.5 and fig. 4.6.

The encountered plankton data of fig. 4.5 indicate the same tendencies as
the reward plots, that is, a clear increase after the agents has started training.
Perhaps more interesting is the same tendency appearing in fig. 4.6, showing
how much plankton was encountered on average each step of the episode. This
plot indicates that maximizing the reward function eq. (3.1) also increases the
plankton encountered per step. From these plots, episode 34 has a significantly
high plankton count, both in terms of absolute and step relative values. Com-
paring to fig. 4.1, however, the reward is around 0. The trajectory for episode
34 is shown in fig. 4.7.

In episode 34, the AUV can be observed occupying high plankton tiles for
most of the episode, without ever finding the hotspot. This example highlights
a potential weakness of the reward function, namely that not enough reward is
given for high plankton tiles. Returning once again to eq. (3.1) and table 3.1,
the weight on approaching the hotspot is not only greater than the weight
of encountered plankton, but typical values for a change in distance δ is much
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Figure 4.3: The trajectory produced by the DQN agent during training episode
44.

Figure 4.4: The trajectory produced by the DQN agent during training episode
45.
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Figure 4.5: Accumulated encountered normalized plankton per episode dur-
ing training of the DQN-agent.

Figure 4.6: Accumulated encountered normalized plankton relative to num-
ber of steps taken per episode during training of the DQN-agent.
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Figure 4.7: The trajectory produced by the DQN agent during training episode
34.

greater than a typical value for encountered normalized plankton ρ. A distance
change lies in the range of [−20,20], corresponding to the size of a tile, whereas
normalized encountered plankton δ lies in the range of [0,1]

Finally, the ratio between accumulated AUV to hotspot distance and steps
per episode is shown in fig. 4.8.

This plot shows the average distance between the AUV and the hotspot
during an episode. So episodes where the agent steered the DQN close to the
hotspot will have a lower value. Once again, an increase in performance is
indicated before and after training. A notable anomaly is seen in episode 33.
The trajectory is not included here, but can be found in appendix A. For this
episode, the AUV position was initiated far away from the hotspot, and the AUV
immediately exited the map after a few steps.

To reiterate themain point raised in this section, an increase in performance
is clear before and after training. Whether or not the performance increased
beyond this initial increase is not clear.

4.2 A* compared to DQN training

The 50 scenarios presented to the agent during training were also solved with
the modified A* algorithm, as described in section 3.3.5. The same seed was
used for the evaluation of the A* agent as for the DQN training session, mean-
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Figure 4.8: The average distance between the AUV and plankton hotspot per
episode during training of the DQN-agent.

ing the algorithm and the agent were faced with the exact same plankton map
and AUV starting positions. Rather than presenting the A* performance in sep-
arate figures, plots showing the ratio between the A* performance and DQN
performance will be shown over the episodes. Thus, ratios above 1 indicate
that the DQN outperformed the A* for that episode, whereas ratios below 1
indicates the opposite.

The main result of this comparison is the reward per episode from the res-
ulting trajectories. It is important to keep in mind that the reward function
is unknown to the A* algorithm. The A* algorithm was given rewards at each
step according to eq. (3.1), that is, the same reward system used for the DQN
algorithm during training. As discussed above, the number of steps taken per
episode greatly affects the reward. For this reason, the reward ratio is shown
relative to the steps taken for that episode. This result is shown in fig. 4.9.

This comparison reveals that the A* algorithm greatly outperforms the DQN
agent. The slight increase in performance after training, however, is still evident
in fig. 4.9. One anomaly in particular stands out. The trajectory of episode 16 is
an example of the A* algorithm steering the AUV out of the map. Although the
A* algorithmwould never select a tile outside of the map, the AUV position may
still end up outside any defined tile when the guidance system tries to reach
the waypoint, thereby terminating the episode. This was the case for episode
16.

A comparison of encountered plankton per episode is shown in fig. 4.10.
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Figure 4.9: A comparison between the reward obtained per episode by the
DQN-agent and A* algorithm during training. The comparison is shown as a
ratio between DQN performance and A* performance, and is calculated relat-
ive to number of steps taken that episode.



Chapter 4: Results 51

Figure 4.10: A comparison between the normalized plankton encountered per
episode by the DQN-agent and A* algorithm during training. The comparison
is shown as a ratio between DQN accumulated plankton and A* accumulated
plankton.
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Figure 4.11: A comparison between the normalized plankton encountered per
episode by the DQN-agent and A* algorithm during training. The comparison
is shown as a ratio between DQN accumulated plankton and A* accumulated
plankton.

From observing fig. 4.10 alone, the DQN-agent outperforms the A* agent
with respect to encountered plankton. But, the DQN agent most often takes
more steps than the A* agent, as the latter generally attempts to take the
shortest path. To illustrate this, a comparison between average plankton per
step is made in the form of a ratio between DQN and A*, shown in fig. 4.11.

From the encountered plankton point of view, the DQN algorithm approaches
the A* performance during the course of the training. fig. 4.11 also illustrates
the increase in performance after training with regards to plankton. Comparing
this to the performance ratio with regards to reward fig. 4.9, it is once again
clear that the reward function did not place enough value on encountering
plankton, compared to reaching the hotspot. This point is discussed further in
section 5.2.

To reiterate the main result of the comparison between A* and DQN per-
formance, the A* algorithm greatly outperforms the DQN with respect to re-
ward. A* also outperforms DQN when considering encountered plankton, but
not by nearly as much.

This concludes the results from comparing the training of the DQN to the
A* algorithm. Some trajectories of interest have been displayed here. All of the
50 trajectories can be found in appendix A for both A* and DQN.
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Figure 4.12: A comparison between the reward obtained per episode by the
DQN-agent and A* algorithm during training on a single map. The comparison
is shown as a ratio between the performance of the two, and is calculated
relative to number of steps taken that episode.

4.3 DQN without resetting Map

As a final simulation experiment, the DQN agent was trained for 50 episodes
on the same plankton map. The AUV starting positions were still randomized
for each episode. For this experiment, the DQN agent was able to locate the
hotspot in 95% of the episodes after the neural network was used.

Comparing with the A* algorithm, the DQN is still outperformed with re-
gards to reward. A comparison of the average reward per step each episode is
shown in fig. 4.12.

The performance ratio when the agent was able to train on a single map is
marginally better than the ratio for multiple maps, seen in fig. 4.12, even if the
agent was able to locate the hotspot more frequently. This is partly explained
by the fact that the DQN agent takes more steps than the A* algorithm. This
is in turn caused by the exploration chance ε present during training, which
was set to 0.3 for the duration of the training. This exploration will occasionally
result in missteps, moving the agent away from the hotspot, revisiting tiles, or
leaving the map. This will not only increase the number of steps in many cases,
but also reduce the overall reward.

Instinctively, a better test would be to compare the performance of the fully
trained agent with the network obtained during training in a separate session,
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and setting the exploration chance to zero. This did however result in a worse
performance than the performance displayed during training. This was also the
case for the pre-trained model having trained on 50 different maps.

This was due to the fact that the agent behaviour would frequently converge
to alternating between two states at each step. The agent would steer the AUV
back and forth between two adjacent tiles until the step limit was reached, and
earning itself a massive negative episode reward in the progress. The reason for
this fault is not clear, as the penalty for revisiting tiles was set quite high. One
possible explanation might be that the agent did not get sufficient training in
revisiting previous tiles, thereby not learning the connection between the state
and reward. Keeping the random exploration chance would steer the agent out
of this converging behaviour whenever it would occur during training.

A comparison between encountered plankton, not shown here, for the single
map case showed similar results as that of fig. 4.10 and fig. 4.11.

4.4 Evaluating the Results

The results suggest that there is no evident benefit of the DQN agent developed
in section 3.3.4 over the A* algorithm. Although the agent was able to locate the
hotspot in some of the cases after having been trained, it would in most cases
miss the hotspot and exit the map in the process. Comparing the performance
of the trained model on the test set to that of the performance displayed dur-
ing training revealed a converging behaviour where the agent would get stuck
between two tiles Ideally, this behaviour would have been avoided, as it is asso-
ciated with a high negative reward. The amount of revisits that occurred during
training, however, was quite low, as evident from the AUV trajectories.

This points to insufficient training of the DQNmodel. This is further suppor-
ted when comparing the performance of the agent when training on the same
map for multiple episodes. In this case, the DQN agent was in fact able to learn
path finding from scratch, through observing the plankton map over multiple
episodes, and match the performance of A* in terms of locating the hotspot.
This is however not a viable solution as it defeats the purpose of ML, namely ap-
plying knowledge to unseen data. This represents a general challenge with any
ML approach, namely the need for large amounts of training data. For ocean-
ographic sampling, this is particularly challenging, as the amount of available
data is limited. For a ML approach to be applicable to a real world scenarios,
the oceanographic data should be as close to real world plankton data as pos-
sible. Gathering a sufficient amount of real world plankton data to serve as
input to a ML algorithm seems unlikely. For this reason, efforts should be made
to develop a stochastic oceanographic model.

Furthermore, a comparison between the encountered plankton and ob-
tained reward revealed that the encountered plankton had little significance
on the reward function. As such, a successfully trained agent would possibly
ignore high plankton tiles, as the reward for closing the distance is always much
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greater. This highlights another challenge with RL in general: Given some pre-
defined objective, how is it to be implemented as ameaningful reward function.

• Creating a realistic simulated environment plankton environment to provide
relevant and sufficient input for the training of the DQN.

• Defining a reward function that both reflects the desired behaviour and
ensures the ML algorithm converges.

Given that a realistic implementation of the ocean environment is imple-
mented and an appropriate reward function is developed, what advantages
might the ML approach present? This is not clear from the results presented
in this thesis. However, some improvement in performance was achieved, and
since DRL approaches have proven successful in uncertain and complex envir-
onments, its applications to targeted sampling should not be overlooked.





Chapter 5

Conclusion

5.1 Summary

The work presented in this thesis has explored the application of DRL on tar-
geted oceanographic sampling. The purpose of the project was to gain insight
to the potential of DRL methods, specifically DQN applied to a simulated ocean
environment.

To achieve this, an ocean environment consisting of procedurally generated
plankton data, and a dynamically modelled AUV was developed as an OpenAI
gym interface, and a desired behaviour within this environment was defined
as locating a plankton hotspot. A learning agent using a DQN algorithm was
developed to train and perform in this environment. As a basis for comparison,
a traditional path finding algorithm using the A* algorithm was also developed
and evaluated.

The comparison of these algorithms revealed no immediate benefit of the
ML approach for this simulated environment. A review of the performance dur-
ing the training of the DQN algorithm did however reveal that the learning
agent was indeed able to learn and to some extent generalize to unseen data.
To answer the questions posed in section 1.2:

• A comparison between the DQN agent and A* algorithm revealed that
the A* outperforms the DQN on all metrics

• The two main challenges revealed with applying DQN to targeted ocean-
ographic sampling are

◦ Ensuring a realistic plankton environment model
◦ Designing a reward function that reflects the targeted behaviour

• No clear advantages with the DQN approach was revealed. However, DRL
approaches should be investigated further.
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5.2 Future Work

This final section describes the possible next steps in applying DQN to targeted
sampling.

5.2.1 Plankton Model

The most crucial steps in ensuring a realistic simulator lies in the plankton
model. The work presented in this thesis is based on several simplifications,
as well as relying on synthetic plankton data. Two main improvements to the
plankton model are suggested here, firstly, taking steps to ensure the data is
more realistic, and secondly, ensuring that the way this data is perceived by the
learning agent is more in line with what one might expect for a deployed AUV.

A more realistic ground truth plankton data should first of all account for
the fact that plankton drifts with the ocean currents. Thus, the plankton map
part of the state as described in section 3.1.1 would realistically change with
each step. This a temporal dimension in the path-planning problem, and the
A* algorithm presented in section 3.2.2 would not necessarily work. A ML
approach, however, would arguably be better equipped to deal with this, as
it introduces both uncertainty and complexity to the problem. Secondly, the
plankton data should be collected from real world environments. Collecting
the amount of data necessary for a ML agent to converge is no easy task, and
for this reason methods for augmenting the data time-series of plankton data
should be used to expand the training set.

Given a realistic ground truth plankton model, the state presented to the
learning agent should be more in line with what is to be expected in a realistic
scenario. This could be achieved by estimating the plankton map, from some
sparse prior samples of the ocean environment. With the drifting plankton as
described above, these samples should be accompanied by a time stamp, as well
as a measurement of the ocean current. With these samples then, an estimated
plankton map may be constructed using regression. In fact, GPR as described
in section 2.4 is indeed a suitable regression model for this task, which indeed
has been applied in AUV targeted sampling [12].

5.2.2 Ocean Environment

To accommodate the more realistic plankton model described above, the ocean
simulator should include currents. Additional oceanographic phenomena could
also be included, as temperature or salinity. This would depend on the availab-
ility of time-series of these phenomena synchronized with the plankton data,
and assumes the deployed system will have sensors for measuring these phe-
nomena.
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5.2.3 Target Behaviour

The desired behaviour presented in this thesis was defined as locating the
plankton hotspot, and encountering areas of high plankton density along this
trajectory. To what extent this secondary goal should outweigh the hotspot
seeking behaviour was never specified. Future work should specify clearer de-
sired behaviours, with accompanying reward functions. Once a realistic model
is in place, however, an ML based approach will arguably present a highly gen-
eralized solution, supporting different behaviours to be achieved within the
same environment. This would allow a deployed AUV to be used for different
missions, depending on the research goal of the experiment. Should the pur-
pose of the deployment simply be to sample as much plankton as possible, a
reward could be given based on every encounter. If the goal is to create a highly
informative map of the environment, rewards could be given for minimizing
uncertainty, given some plankton map estimate as described above. Missions
could even be a combination of multiple behaviours, allowing the agent to be
opportunistic and adapt its behaviour.
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Appendix A

Appendix A: Every trajectory

This appendix lists all trajectories made by the A* algorithm and DQN agent
from the comparison presented in section 4.1. Each episode is shown in a sep-
arate figure, with the performance the DQN agent on the left, A* on the right.
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Figure A.1: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 0.

Figure A.2: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 1.
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Figure A.3: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 2.

Figure A.4: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 3.
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Figure A.5: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 4.

Figure A.6: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 5.
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Figure A.7: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 6.

Figure A.8: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 7.
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Figure A.9: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 8.

Figure A.10: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 9.



Chapter A: Appendix A: Every trajectory 71

Figure A.11: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 10.

Figure A.12: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 11.
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Figure A.13: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 12.

Figure A.14: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 13.
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Figure A.15: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 14.

Figure A.16: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 15.
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Figure A.17: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 16.

Figure A.18: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 17.
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Figure A.19: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 18.

Figure A.20: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 19.
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Figure A.21: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 20.

Figure A.22: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 21.
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Figure A.23: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 22.

Figure A.24: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 23.
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Figure A.25: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 24.

Figure A.26: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 25.
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Figure A.27: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 26.

Figure A.28: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 27.
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Figure A.29: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 28.

Figure A.30: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 29.
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Figure A.31: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 30.

Figure A.32: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 31.
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Figure A.33: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 32.

Figure A.34: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 33.
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Figure A.35: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 34.

Figure A.36: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 35.
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Figure A.37: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 36.

Figure A.38: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 37.
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Figure A.39: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 38.

Figure A.40: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 39.
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Figure A.41: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 40.

Figure A.42: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 41.
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Figure A.43: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 42.

Figure A.44: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 43.
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Figure A.45: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 44.

Figure A.46: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 45.
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Figure A.47: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 46.

Figure A.48: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 47.
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Figure A.49: A comparison of the trajectories made by the DQN agent and the
A* algorithm for episode 48.
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