
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Håkon Berger Steen

Topology optimised bolt placements

Using optimisation in combination with Abaqus
to design and validate optimal bolt placements

Master’s thesis in Engineering and ICT
Supervisor: Jan Torgersen
Co-supervisor: Håkon J.D Johnsen

June 2021

M
as

te
r’s

 th
es

is





Håkon Berger Steen

Topology optimised bolt placements

Using optimisation in combination with Abaqus to
design and validate optimal bolt placements

Master’s thesis in Engineering and ICT
Supervisor: Jan Torgersen
Co-supervisor: Håkon J.D Johnsen
June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering





Abstract

This thesis will focus on the use of optimization algorithms to suggest
an optimal bolt placement with regards to deflection. The work is
inspired by and supposed to be an addition to the design process that
Thomas Røkke and Henrik Hoen Hersleth have been automating. The
input and output of this program are based on this design process, and
these parameters will be defined and discussed later.

The program is supposed to suggest an optimal bolt pattern for subsea
manifold applications where the goal is to reduce the separation in and
around hydraulic tubes. The solution to this problem is not necessarily
a symmetric bolt pattern and this makes it challenging to establish
a simple model to calculate the different deflections. The main focus
of this thesis is to establish and design a model that can be used to
suggest a good bolt pattern. The model will be used to design an
objective function that tries to estimate the deformation in each tube,
and this objective function can be used in optimization algorithms to
find an optimal solution. The results of the different models will be
verified using Finite Element Method (FEM) in the ABAQUS CAE
tool.
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Sammendrag

Arbeidet som er gjort i denne masteren sikter seg inn p̊a lage et pro-
gram som kan foresl̊a en optimal boltplassering. I Henrik Hoen Herslet
sin masteroppgave har bolteplassering blitt merket som en iterativ og
tidkrevende del av designprosessen til subsea manifolder. Program-
met er designet rundt resultatene fra Thomas Røkke og Henrik Hoen
Hersleth sine programmer, denne dataen er svært lik dagens tegninger
s̊a det vil være fullt mulig å bruke dette alene ogs̊a.

Programmet skal anbefale en optimal bolteplassering for subsea man-
ifolder der målet er å redusere deformasjonen rundt hydrauliske rør.
Tidligere har det blitt brukt symmetriske boltmønstre, men med alle
fremskrittene som er gjort innenfor produksjonsteknikker blir mer
kompliserte design utforsket. Siden det ikke er mulig å bruke en nu-
merisk løser (som Abaqus) direkte i en optimeringsalgoritme, iallefall
uten at det g̊ar veldig tregt, må det etableres en forenklet modell som
kan estimere separasjonen rundt rørene. Denne modellen vil deretter
bli brukt til å designe en objektfunksjon som kan brukes i optimerin-
gen.
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1 Introduction

This section will cover the background and previous work done for the
project. Further, the problem and boundary conditions will be pre-
sented and lastly the structure of the project report will be described.

1.1 Background

This project is a continuation of the work done by Røkke [2019], Her-
sleth [2020] and Steen [2020] 1, in cooperation with Aker Solutions.
With the advances in manufacturing technologies they wanted to look
at topology optimisation of their subsea manifolds. These are cur-
rently created by drilling holes into a rectangular box and this way
creating the paths within the manifold. Design of a traditional man-
ifold is a relatively simple process, but now Aker is interested in au-
tomating the design process for the next generation of manifolds.

Røkke was the first student to work on this project and he used the
A-star algorithm to design the paths within a manifold. He was able
to produce a topology optimised manifold that greatly reduced the
volume of the material. The reader can read more about how this is
done in Røkke [2019].

Hersleth was the preceding student and he started rewriting Røkke’s
program to Python, and continued making a GUI for the code. The
next step in the design process was to decide the location of bolts.
Hersleth ended his work with a proof of concept for designing the bolt
pattern and optimising the bracket structure. Hersleth proposes a
program that is trying to reduce the total arm between all bolts and
tubes, but this code has problems with achieving low runtime when
the precision is sufficiently high.

Steen was the third student to look at this design process, and contin-
ued the work on a bolt placement-script in his specialization project.
The main goal of this specialization project was to look at improving
the runtime and evaluating the objective function. During the project
two problems that needed to be addressed were found; the solution
was dependent on the initial guess, and the objective function did not

1This article is an unpublished report of the author’s specialization project. Some of the theory and implemen-
tation details will be covered twice.
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seem to be a good representation of the separation.

1.2 Problem description

The problem in this thesis is to decide the placement of bolts such that
a flange can be fastened to the manifold surface. According to Hersleth
this is one of the most time consuming step in the design of manifolds
and today this is done manually. In his thesis he recommended that
this process should be automated and continues with pseudo code
that attempts to automate this. This pseudo code was a brute force
program, and it had problems with scalability and precision. One
example is that it used around 20 minutes to find an optimal bolt
placement in relatively small problem2. He uses the tube placements
that are generated by Røkke’s program as input and tries to place
bolts in an optimal way. The results of Røkke’s program are also very
similar to the sketches created today, so this program is also designed
to be used alone. Figure 1 shows an example of a simple sketch with
the most important variables. This is the placement and size of the
tubes, and size of the flange. In the thesis more variables and inputs
are used, but they are usually the same across problems. Examples
on such variables may be the washer radius of bolts, the thickness of
flange or thickness of the tube wall.

The constraints and objective function are designed around the re-
quirements for subsea manifolds, which are a combination of industry
standards and tacit knowledge. The goal is to place bolts in such a
way that the flange and manifold are bolted together such that no
leaks occur. The separation needs to be less than 26 µm to make sure
there are no leaks. This requirement is interpreted as the goal and
used as optimisation goal. Due to the nature of leaking, the separa-
tion is assumed to be measured around the tube edges and not on the
flange edges. Other requirements that may not be covered as industry
standards are where the bolts can be placed. Two bolts cannot be
placed on top of each other, a bolt cannot be placed on top of a tube,
all bolts must hold and the bolts need to be placed inside of the flange.

2More details about this can be found in Steen’s specialization project.
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1.3 Thesis objectives

The main focus for this thesis is to establish a simplified model that
is able to describe the separation in the tubes, which can be trans-
lated into an objective function used in the optimisation. A simplified
model is needed because it is not possible to combine the optimisation
algorithms with a numerical solver. If all the steps in the optimisation
algorithm were to be tested in Abaqus, the script would take too much
time and have problems with illegal solutions. This problem is solved
by establishing a simplified model designed to work in optimisation
problems and then have this model optimised towards one or more
criteria.

In Steen’s specialization project (Steen [2020]) an attempt was made
to establish the objective function and constraints. The objective
function that was proposed showed problematic properties and it was
recommended to improve the objective function. A new objective
function was proposed, but not implemented and tested. The first
idea for a model is based on beam theory and the assumption that
most of the separation appears as a result of the moment from bolts
to the tubes. This hypothesis is later disproved and an experiment
is conducted to investigate the relevant parameters using design of
experiments.

Another change from the specialization project is to investigate the
effect of optimisation methods. With new objective functions the re-
sults seemed to be more dependent on the initial guess. The two
main ways that was discussed to counteract this dependency were to
add more constraints or to find a way to make good initial guesses.
Adding more constraints does not seem like a good solution just to
reduce dependency on initial guess, and may even make the program
worse because it is not able to find new designs.

1.4 Report structure

The introduction has outlined the previous work in this project with
Aker. In the following sections the theory and implementation of a
bolt placing algorithm will be provided. Section 2 starts with defin-
ing the domain, objective function and constraints for a minimization
problem. It is then followed by theory on how to calculate the forces in
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bolts from external pressures. Three different optimisation methods
are presented - SLSQP, trust-constr and differential evolution. Section
3 covers the implementation of the algorithm, which is split into three
parts. First all the support functions are explained. These functions
are not directly used by SLSQP, but are required to find results used
in the optimisation algorithm. Then Section 3.2 is dedicated to the
implementation of the constraints, where some changes are done to
obtain continuous properties to satisfy the requirements of SLSQP.
This is followed by Section 3.3 which gives an explanation on how to
the minimization calls for the three optimisers. The automating of
Abaqus modelling is covered in Section 3.4. In Section 4 the results
are presented and then later discussed in Section 5. The different ob-
jective functions are discussed and compared, and the optimisation
methods are compared with each other.
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2 Requirements and theory

Notation

Subscript i, Ai, is used for the area of bolt i, and n is used to express
the number of bolts. Accordingly subscript j, Aj, is used for tube j,
and m is the total number of tubes. An example for the sum of the
area of all bolts would be

Abolts =
n∑
i=1

Ai

Further, dij is the distance between bolt i and tube j, and x is the
vector with bolt placements, given by

x =


x0

y0
...
xn
yn


2.1 Domain, objective function and constraints

A number of simplifications are done to reduce the runtime and com-
plexity of the code. The domain is designed to be regular with a
homogeneous thickness h. It is up to the engineer to decide the size
of the domain, but it should at least contain all the tubes with the
possibility to place a bolt on the outside of each tube.

5



Figure 1: A sketch of a possible problem with the hydraulic tube locations and radiuses.

Figure 1 is an example of what a problem may look like. There are
other parameters that need to be provided, but information about the
hydraulic tubes is the main variable. The designer would also need to
provide the number of bolts that needs to be placed.

Hersleth proposed to use an objective function that corresponds to
finding the bolt pattern with the lowest total distance between all
bolts and tubes, i.e. minimizing

f1(x) :=
n∑
i

m∑
j

dij (1)

This function will be referred to as f1, as it is the first iteration of the
objective function. Initially it can be hard to tell if this is a good or
bad objective function. The advantages of Equation (1) are that it
is a continuous function and it accounts for the main parameter that
can be changed in this problem, position and distance. Benefits of
continuous functions will be covered later.

Claiming that position, and indirectly distance, is the main parameter
that can be changed, is supported by fundamental beam theory Bell
[2015],

δ =
FL3

EI
(2)

6



The forces and Young’s modulus are already predetermined by the
problem and the length is the parameter of highest order.

For this optimisation problem there are three constraints that need
to be satisfied. No bolts should overlap each other, bolts should not
overlap tubes and no bolts should break. These constraints can be
expressed as

a(x) := ∀k 6=l∈ndk,l ≥ 2 · ri
b(x) := ∀i,jdi,j ≥ ri + rj + twall

c(x) := ∀iσi ≥ σy

(3)

where a(x) must hold for all combinations of two bolts and twall is
the thickness of the tube walls. Due to the continuous property of
optimisation problems these constraints should not be implemented as
straight boolean constraints, but rather as continuous functions. This
rewriting will be covered in the section for Python implementation in
Section 3.2.

2.2 Calculating the force and stress in a bolt

This section shows how the stress in each bolt is calculated. The stress
is required in order to make sure that no bolt is overloaded and the
stress exceeds the yield strength. The pretension in bolts is assumed
to be 75% of the yield strength, but this is a parameter that it would
be easy to change or make problem dependent. Another assumption
in this section is that the length of the threaded area is long enough to
where the stresses in the threads can be disregarded. If any of these
assumptions are wrong, it is possible to change or include them later.

By assuming that calculating the stress in bolts is a linear problem,
the axial force in the bolts can be calculated from a bolt pattern and a
set of normal forces. In a symmetric problem, where the bolt pattern
and the forces are symmetric, the forces are evenly distributed among
the bolts. However, this is not always the case for this code. Here the
bolt pattern is changing with every step of the optimizer and the force
distribution is required in every step.

7



Figure 2: Forces and moment on the centroid.

Source: https://mechanicalc.com/reference/bolt-pattern-force-distribution

Figure 2 shows how the moment and normal forces on a centroid will
contribute to the force in each bolt, which can be calculated by

Fi = Pi,FZ + Pi,MX + Pi,MY (4)

Pi,FZ is the easiest value to calculate, since the normal Fz is evenly
distributed as a pressure over all bolts. By combining the formula for
axial stress,

σ =
N

A
, (5)

and the assumption that all bolts have the same area Ai, the formula
is

Pi,FZ =
Fc,z
n

(6)

Pi,MX and Pi,MY are harder to calculate, mostly because they are
dependent on the bolt pattern3. The first step to finding these values
is to calculate the centroid of the bolt pattern,

x̄ =

∑
n xi
n

ȳ =

∑
n yi
n

(7)

For simplicity, denote

∆xj = x̄− xj and ∆yj = ȳ − yj
3This needs to be re-calculated in every step. In the implementation section it is shown how this can be used.
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With the centroid calculated, the contribution to moment on the cen-
troid can be calculated by

Mc,x =
m∑
j=1

Fj ·∆xj

Mc,y =
m∑
j=1

Fj ·∆yj
(8)

Using the formula for bending stress,

σ =
M

Iy
· y, (9)

it is possible to calculate the distribution of stress from Mc,x and Mc,y

to each bolt. In order to use this formula the area moment of inertia,
about x and y, for the pattern needs to be found. To do this the
parallel axis theorem can be used which yields

Ix =
n∑
i

Ai ·∆x2

Iy =
n∑
i

Ai ·∆y2

(10)

With the moment and area moment of inertia calculated, Equations
(5) and (9) can be combined to calculate Pi,MX and Pi,MY .

Pi,MX =
Mc,x

Ix
·∆x · Ai

Pi,MY =
Mc,y

Iy
·∆y · Ai

(11)

To check if a bolt is yielding, the stress in a bolt is required. This
is calculated in accordance to Collins et al. [2010][p. 498] where the
force in the bolt is

Fbi =

(
kb

kb + km

)
Fi + Fp, (12)

where Fi are the forces from hydraulic tubes and Fp is the pretension
in the bolt. Combining Equations (5) and (12) it is possible to find
the stress in a bolt,

σi =
Fbi

Aunthreaded
(13)

In this calculation the unthreaded area of a bolt is used, which will
result in higher stresses and can be considered a safe value.

9



2.3 Minimize - SLSQP

SciPy is a module for Python which contains pre-written code to aid
in scientific calculations. For this problem it is mainly the optimize
file and the optimisation algorithms that are of interest; the docu-
mentation can be found in (The SciPy community). The minimize()-
function has multiple required and conditional parameters. The main
ones are the function to optimize, an initial guess, bounds, constraints,
and the method to solve the minimization problem. The method that
is being used in this code is the SLSQP -method, which is a quasi-
Newton method using BFGS described by Kraft [1988]. SLSQP uses
a Lagrange function consisting of the optimisation function, equality-
and inequality constraints,

L(x, λ, σ) = f(x)− λb(x)− σc(x) (14)

In every step k, the method will calculate a new direction to look for a
smaller value. The search direction is found by solving the quadratic
subproblem Nocedal and Wright [2006], given by

min
d

f(xk) +∇f(xk)
Td+

1

2
dT∇2

xxL(xk, λk, σk)d

s.t. b(xk) +∇b(xk)Td ≥ 0

c(xk) +∇c(xk)Td = 0

(15)

The SLSQP -method should be considered a greedy algorithm, as it is
looking for a direction to go next based on the steepest decline. This
induces that the code may find local minimums, which tells that the
user should always validate the results before continuing.

2.4 Minimize - trust-constr

Trust region methods are a different type of local optimisation al-
gorithms compared to SLSQP. Trust region methods uses a model
function to expand or contract the trust/search region, and the model
function is often a quadratic function. This is done by calculating the
ratio between the actual and modeled differentiations given some ∆x.

ρ =
f(x)− f(x+ ∆x)

m(x)−m(x+ ∆x)
(16)
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If ρ is sufficiently small the model is a bad representation and the re-
gion should be contracted, and if the ratio sufficiently large the region
should be expanded.

For this thesis the regular implementation of SciPy’s ”trust-constr”
will be used, as this method is the only trust region method in SciPy
that supports constraints. The implementation that is used for in-
equality constraints is based on Byrd et al. [1999].

2.5 Differential evolution

Differential evolution is a global optimisation algorithm that is stochas-
tic of nature. The method will find trial candidates by mutating other
candidate solutions. In Storn and Price [1995] two strategies to find
the candidate solutions are proposed, and scheme DE1 is referred to
as best1bin.

best1bin creates a potential candidate, v,

v = x + F · (x1 − x2) (17)

using the best candidate this far combined with 2 randomly selected
vectors. Here x is the best candidate so far, x1 and x2 are two ran-
domly selected candidates, and the generic mutation factor F > 0.
If the potential candidate gives a better function value than the best
candidate, the best candidate is updated. This is one iteration in
differential evolution which is repeated.

In SciPy’s implementation of this algorithm there is an option to polish
the solution. If the solution is polished, the best candidate, after
differential evolution, is used as the initial guess for the ”trust-constr”-
method.

2.6 Design of Experiment

The design of experiments is a method used to describe and explain
the variation of information given conditions that are hypothesized
to have a significant impact. According to Montgomery [2013] an
experiment is defined as a ”test or series of runs in which purposeful
changes are made to the input variables of a process or system so
that we may observe and identify the reasons for changes that may

11



be observed in the output response”. This process involves two main
steps - planning and conducting the experiment, and analyzing the
resulting data.

In 1935 R. A. Fisher published a book about design of experiments
and the book introduced multiple concepts. One of these concepts is
the factorial design. In his book it is claimed that many scientists look
at one factor at a time. In the cases they are not looking at only one
factor it is not because of an ideal scientific procedure, but because
it would be expensive and time consuming to do single variable tests.
Fisher proceeds to claim that this is exaggerated, and it is possible to
acquire knowledge from the results more efficiently(Fisher [1935][p. 97-
99].)

A special case of factorial designs are 2-and 3-factorial designs. These
are designs where each factor only has two or three levels respectively,
with both having low/high level and the 3-factorial design also having
a medium level. The benefit of these designs is that they allow for
the fewest runs for each factor, which is really beneficial for the first
experiments where there are multiple factors. This can then be used
to filter out significant factors before a new experiment is conducted.
The 2-factorial design is best suited where a linear response is expected
from the factor, and the 3-factorial design is required if the response
is not expected to be linear(Montgomery [2013]).

After the tests are ran, the next step is to analyse the results. This
is done with a regression analysis of a model, where the model is a
polynomial containing the parameters. For a model with two factors,
x1 and x2, and their interactions, the model is

u = β0 + β1 · x1 + β2 · x2 + β12 · x1x2, (18)

where βi is the coefficient for parameter xi. The number of terms in
the model increases with more base factors and factor interactions.

With a fitted model the next step is to evaluate the fit using the re-
sults. The main result values that will be considered in this thesis are
the regular and adjusted R-squared values, and the p-value of each
parameter. In regression analysis R-squared is a statistical measure of
how good the model predicts the real values, and adjusted R-squared
is a measure that in addition takes the number of observations and
number of describing variables into account. R-squared can be calcu-
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lated with

ȳ =
1

n

∑
i

yi

SStot =
∑
i

(yi − ȳ)2

SSres =
∑
i

(yi − fi)2

R2 = 1− SSres
SStot

(19)

where SStot is the total sum of squares and SSres is the residual sum
of squares. The residual sum of squares is based on the deviations
between the predicted value, yi, and the actual value, fi.

The other results of interest used in this thesis are the p-values, which
can be used to tell the significance level of a parameter. A p-value
is used in null hypothesis testing, given a null hypothesis H0. In
regression analysis the null hypothesis is

H0 : βi = 0, (20)

for each of the βi coefficients in the model. The p-value for each
parameter tests the null hypothesis that the coefficient is equal to zero
(no effect), and this test is done by comparing the full model with the
reduced model. A low p-value indicates that the null hypothesis should
be rejected, because the reduced model has problems explaining every
result. Thus it is a test of significance. The cutoff value for p-values
can be found using a p-value table or by using the widely used cutoff
at 5%. In a p-value table, the cutoff value is found as a function of
the significance level, number of observations and number of terms in
model.

2.7 Algorithm selection

The evaluation of the results will be focused around the selection of
algorithm and the design of objective function. In Entner et al. [2019]
a systematic framework is presented to find a suitable algorithm for
a box-type crane. The goal is to select the best optimisation to help
improve the solutions and a decision matrix is used to evaluate the
functions. This matrix used to the suitable algorithm for the box-
type crane is designed around multiple criteria.
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In this thesis only some of the criteria will be used to evaluate the
results, and the main criteria for this thesis are:

• Convergence to optimum value: The capability to always
converge towards near-optimal solutions.

• Generation of new design alternatives: The capability to
generate distinct design alternatives other than those obtained by
small variations of the initial product configuration.

• Computational resource need: The computational resources,
e.g., number of function evaluations or run times, required to ob-
tain a high-quality solution. One aims at minimizing the need for
computational resources.

• Reproducibility: The capability of an algorithm to provide the
same, or close to, solution by rerunning the algorithm with the
same setup. Reproducibility is to be maximized.

Criteria that are not used in this analysis are disregarded because they
are irrelevant or equal for the different algorithms presented in this
thesis. An example of such a criterion is ”how hard it is to integrate
in operating systems (CAD, CAE)”, as this integration is the same
for all objective functions and algorithms.

2.8 Objective functions

In this section an attempt is made to define the objective functions and
also give some information about their background. Through the work
several iterations have been tried and tested. In the specialization
project leading up to this thesis (Steen [2020]), f1 did not prove to be
a good model for this problem, and it was suggested to work on a better
objective function. The problem with f1 was that it centered the bolts
if there was free space in the middle, and the change suggested in the
specialization was to reduce the distance to the closest bolt for each
tube hole.

This leads to f2,
f2(x) :=

∑
j

min(dij), (21)

where the idea is to reduce the distance to the closest bolt from each
tube. This is done to counteract the centering effect in f1.
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The third objective function is also designed around Equation (2) with
the assumption that the moment of inertia is a function of the flange
thickness and the bolt head radius. This extra function was an idea
that came at the time where the Abaqus simulations were automated
and it was thought of as an improvement to f2. It is given by

f3(x) :=
∑
j

(Fj ·min(dij)
3) (22)

After the Abaqus simulations were automated, it was clear that the
functions based on beam theory were not sufficient. This discussion is
covered in Section 5.1.

The fourth objective function is based on the results of the experiment
and after evaluating the earlier iterations of the objective functions.
The selection of factors and their exponents will be discussed in Section
5.2. f4 is given by

f4(x): = max
{
Fj · f1(x)2 ·min (dij)

2 |j
}

(23)

Another change in f4 is that it is not a sum for each tube, because
this could lead into problems where the result could be optimized into
having ”all” the deformation around one tube. To prevent this from
happening, the function is changed to only look at the worst tube.
The function still needs to have differentiable properties, because the
differential evolution algorithm in SciPy polishes the solution with
trust-constr. The function is still continuous and remains its differ-
entiable properties, but it is possible that two similar values will be
based on two different tubes.
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3 Python implementation

3.1 Support functions

All of the code covered in this section can be found in Appendix B.The
functions in this file are not directly used in the optimisation, but
they contain functions that are indirectly used for the optimisation.
They are used to calculate force distribution and getting the bolt-
and material specific values. In line 7-32 the function chooseBolt()
is used to get the bolt-specific variables, and chooseBaseMaterial()
does the exact same for the material. Another function that is used
in the initialization is calculateForceOnCentroid() (lines 59-63). As
the input is given as tube center, radius and pressure, this must be
calculated as one force on the centroid. By summing the resultant
force of each tube,

Fc,z =
m∑
j=0

Pj · Aj, (24)

the total normal force on the centroid is obtained. The following func-
tions explained will be called in every step, because they are dependent
on x. For every step the force from hydraulic tubes must be calcu-
lated, using Equation (4). There are three contributing factors to this
distribution - the total normal force on the centroid (Pi,FZ), the force
from moment on centroid about x (Pi,MX) and about y (Pi,MX). By
looking at Equation (6) it is clear that this is not dependant on bolt
position, it is calculated once and then added in every step according
to Equation (4). The function patternCentroid() (lines 65-72) finds the
centroid of xk using Equation (7), and patternInertia() (lines 74-80)
finds the second moment of area using Equation (10). centroidMo-
ment() (lines 82-88) calculates the moment on centroid about x and y
using Equation (8). Finally the distribution of forces can be calculated
using boltForces() (lines 47-56), where the calls to find the relevant
variables are done, and the force in every bolt is found.

3.2 Implementation of constraints

As the local minimization methods are dependant on the constraint
functions being continuous and differentiable, a correct implementa-
tion should return a value reflecting how wrong it is. Constraints in
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SciPy.optimize are defined such that invalid solutions should return a
negative value, and valid solutions should return a value greater than
or equal to 0. With this in mind it is possible to re-write the con-
straints given in Equation (3). For the two first constraints, which
are no overlapping between bolts or tubes, this can be implemented
by using a punishment variable. The punishment variable starts at 0,
and if there is overlapping, it subtracts a value that is increasing with
lower distance. One way to obtain this can be

punishment− =
1

di,j
(25)

The check for overlapping between two bolts is implemented as boltCrash()
(lines 85-101) in Appendix A. The division by zero is covered by a
try/catch block. To avoid lots of warnings being printed and a clut-
tered terminal window, 1nm is added to the distance. This value is
added because subtracting could lead to subtracting negative values,
which is an even worse result because that would be considered a valid
solution by the program. tubeCrash() (lines 103-119) is an implemen-
tation of the constraint between bolts and tubes. This function returns
a punishment based on the overlap and also uses Equation (25). The
last constraint that is implemented is the test for bolt breaking, which
is also an inequality constraint returning an increasing negative value
if the stresses in the bolts are too high. boltBreak() (lines 121-140)
is the function where this constraint is implemented, and in line 128
the forces in every bolt is calculated using boltForces(). The program
then loops over every force and calculates the stress in a bolt according
to Equation (13). forceBolt is equal to the force in the bolt from the
operating load and pretensionOvershoot is Fp. With the total force
in the bolt calculated, the stress in a bolt is calculated. The test to
see if the boltStress is greater than ps, the bolt yield, then follows.
If boltCheck is greater than zero, the excess stress is subtracted from
the punishment.

3.3 Minimization setup and call

All the functions and variables used in the minimize functions are
collected in boltLocation.py found in Appendix A. The constraints are
defined, but the minimization call also needs the objective function
and bounds in order to have all the required information. The bounds
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are defined in line 32, as a list with the lower and upper values for
each bolt that is multiplied by the number of bolts. The objective
functions are implemented in lines 43-81. These functions are defined
with the same notation as in Section 2.8, with small changes in f3 and
f4. The returned values are shortened by a factor of 1e-6 and 1e-12,
so that the objective functions and constraints are of the same order.
This change should have no effect on the ordering of different bolt
placements, but it makes it easier to set the tolerances of optimisation
methods.

Before the minimization calls, some extra options are defined. In
line 152 and 152 these options are defined for the SLSQP-method and
trust-constr-method. The options regulate the termination tolerances,
the option to display more information about the optimisation and the
maximum number of iterations.

The optimisation call is done on lines 179-181 with one line for each of
the methods. In line 179 the differential evolution method is used - the
input here is the objective function f4, the bounds and the constraints.
This method does not require any initial guess - the length of x is found
from the bounds and the function finds a good initial guess before the
solution is polished with trust-constr. Another difference in this call is
that the constraints need to be defined different, and they are defined
on lines 148-150. The two local optimisation calls are done equally
and these calls are shown in lines 180 and 181. The objective function
f4 is passed first and as these methods require an initial guess this is
passed. All of the three methods return a result-object where values
can be extracted in the same way. The lines from 182 and out are
used to extract and save the results. These results are plotted and
saved as a picture and they are saved as a JSON-file that is ready for
the Abaqus simulation.

3.4 Automating Abaqus simulations

Abaqus CAE is the program that will be used for all the numerical
simulations. Abaqus is selected because it is a stable, state of the art
numerical solver, which is important to verify that the newly designed
script is working as expected. The modelling process in Abaqus is very
repetitive and time consuming if it was to be done manually. Fortu-
nately Abaqus allows for multiple different automation methods to
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help with this process - it is possible to make the input-files manually
and it is possible to automate every action in Abaqus using Python.
For this thesis the second option is used, and all the manifold-flange
simulations are ran using a Python 2.7 script.

In Appendix C abaqus functions.py can be found which contain the
specific Abaqus functions, and run.py in Appendix D which tackles the
translation from JSON-files4 into Python-variables and function calls.
The run file is altered for different cases and tests ran, where the file
with Abaqus functions is the same. The Abaqus functions file is built
up by first creating one simulation for this kind of problems. After the
first simulation is ran, it is possible to get a .rpy-file that essentially
is a Python replay file of all the commands that have been used in this
simulation. The replay file paired with the Abaqus Scripting Reference
Guide is used to build abaqus functions.py.

3.5 Design of Experiment

After realising that previous iterations of objective functions proved to
be bad heuristic functions for this problem, an experiment is conducted
to investigate the relevant parameters using design of experiments.
This conclusion is discussed more in Section 5.1. The experiment in
this thesis is designed to create a model that is able to describe the
separation in tubes. After the experiment is ran, these results are
used in a regression analysis to see what parameters are important.
Important parameters can then be used to design a more relevant
simple objective function, and this new function will be completely
heuristic and may not have any physical interpretation.

Factor Degree
Total (Total distance - f1) {1,2,3}

Min (Distance to closest bolt) {1,2,3}
Max (Distance to furthest bolt) {1,2,3}

Force (Radius of tube) {1}
Tube d (Distance to closest tube) {1}

Table 1: Factors to check significance of.

Factor Degree
Total 3-factorial
Min 3-factorial
Max 3-factorial
Force 2-factorial

Tube d 2-factorial

Table 2: Factorial design

All the factors are calculated from a tube, i.e. the force in tube j,
maximum distance from tube j to any bolt. The exception is the total-
factor, which is calculated as f1. In order to create a good polynomial

4All the code for Abaqus scripts need to be in Python 2.7, but the other code in the thesis is written in Python
3.7. Because of this, the information is saved in JSON-files to transfer data between the two versions.
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fit with higher degrees included, some of the factors requires a 3-
factorial design. The factorial level of each factor is shown in Table
2.

An issue with this design is that there are high correlations between
the factors, so the experiment is designed around this. The experiment
is designed with 3 bolts and 2 tubes. In each run one value will be
changed, and as there is no randomness the experiment is only done
once. A quadratic flange is used where the size in x and y direction
is 100mm, the thickness of flange is 20mm and the wall thickness of
the tubes are 2mm. The values for the bolts and tubes are defined
as Python dictionaries for each bolt. The number of tubes is decided
to be two because the program aims to solve problems with multiple
tubes.

1 bolt1 = {

2 'L' : [10, 26],

3 'M' : [10, 50],

4 'H' : [10, 85]

5 }

6 bolt2 = {

7 'L' : [25, 25],

8 'M' : [50, 50],

9 'H' : [75, 75]

10 }

11 bolt3 = {

12 'L' : [26, 10],

13 'M' : [50, 10],

14 'H' : [85, 10]

15 }

16 tubelocation = { #mm [x,y]

17 'L' : [[40,40],[60,60]],

18 'H' : [[10,10],[90,90]]

19 }

20 tuberadius = { #mm

21 'L' : [2, 2],

22 'H' : [5, 5]

23 }
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A run is created for every combination of these five variables. The
simulation is ran in Abaqus, and the resulting separation is saved for
both of the tubes. This result is later used in the regression analysis.

Figure 3: LMLHL run Figure 4: HHHHH run

Figure 3 shows the LMLHL run, where the three first letters indicate
the level of bolt1-3, the fourth letter is the distance between tubes and
the last letter is the radius of each tube.

The regression is done using the input and results from the Abaqus
simulations. The output is used as is, but the input needs to be
processed before it can be used in the regression analysis. The values
of factors in Table 1 are calculated and used as input in statsmodels
library5 for Python. The most important input for this function is the
formula, Equation (18), and a Pandas dataframe. The regression is
done in Appendix E. The formula in line 96-126 is the full formula for
every factor and degree, but this is not the same formula used in the
results. This decision is explained in Section 4.2.

5This library is a lite version of R for Python.
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4 Results and Discussion

4.1 Testing objective functions

A test was conducted to see if the beam theory inspired objective
functions gave a good representation of the separation. This was done
through a setup with 2 tubes and 3 bolts, where the distance to one
bolt varied and the two other bolts where stationary. In Figure 5 and
6 the two end points of the test is shown.

Figure 5: Deformation of case with lowest
distance to bolt.

Figure 6: Deformation of case with highest
distance to bolt.

Figure 7 shows a plot with the estimated stiffness and the numerically
calculated stiffness. The estimated stiffness is found by estimating
the deflection with f3 and dividing by the force. The same procedure
is followed for the numerical stiffness, where force is divided by the
separation found in Abaqus.

Figure 7: Estimated stiffness vs numerical stiffness.
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4.2 Design of experiment results

The experiment is conducted to try and find a connection between
measurable parameters and the resulting separation, in order to es-
tablish an objective function for the optimisation problem. The re-
gression has been ran multiple times with different parameters. The
results have varied from R-squared values as low as 0.4656 and up to
0.983. A common thing for the results with R-squared values higher
than 0.9 is that complex interactions are the most significant param-
eters, but the level of significance is varying between the regressions.
One of the regression results is presented in Figure 8 and 9. This result
is chosen because it has only 10 significant parameters and the fit is
still good. The best regression results are achieved with 85 significant
parameters. In Section 5.2 it will be discussed more in detail why
these regression results are not used.

The regression summary includes more information about every pa-
rameter combination than Figure 9 shows, but this information is not
used. For this model that would be 45 different parameters with coef-
ficients, p-values and t-statistics. To prevent having too many results
to look at, the parameters are filtered on the p-values and only pa-
rameters with low p-values are shown. The coefficients are βi-values
in Equation (18) and I(Total ** 2):I(Min ** 1):Force:Tube d is the
parameter where these factors are multiplied together. A positive co-
efficient indicates that the separation, u, along the tube edges increases
with increasing parameter value, and negative coefficients indicates a
reduction in separation.

6These values where found early with a low amount of factors and interactions
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Figure 8: Header of regression summary

Figure 9: The parameters with p-values less than 0.05

4.3 Local optimisation results

In this section the results of running the two local optimisation meth-
ods 10 times are shown, and Figure 10 and 11 shows the worst results
for the two optimisation methods.

Figure 10: A plot showing the bolt place-
ments of Run 5 using the trust-constr-
method with f4.

Figure 11: A plot showing the bolt place-
ments of Run 8 using the SLSQP-method
with f4.
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Table 3 shows the results of all the 10 runs, with the function values
and the numerical values. The function values are all calculated using
abaqus functions with random bolt placements as input.

Run Trust
Function Value

Trust
Numerical Value

SLSQP
Function Value

SLSQP
Numerical Value

Run 1 31.2 15.3 µm 65.7* 24.9 µm
Run 2 33.5 17.6 µm 32.8 17.1 µm
Run 3 87.9 33.3 µm 41.7 18.4 µm
Run 4 34.2 16.6 µm 72.6 34.2 µm
Run 5 80.5 67.5 µm 34.6 19.1 µm
Run 6 25.2 16.6 µm 40.6 20.4 µm
Run 7 28.6 22.0 µm 33.6 19.4 µm
Run 8 45.8 30.2 µm 43.7 17.2 µm
Run 9 32.4 17.4 µm 64.2* 41.2 µm
Run 10 28.7 23.3 µm 40.9 25.8 µm

Table 3: The result of the 10 runs for both methods with objective function f4. The runs marked
with * are runs that exceeded the iteration limit.

The highest deformation is around the same tube for all the runs -
the lower right tube always has the highest deformation on the lower
right side. In Run 1 and Run 9, with SLSQP solver, the optimisation
terminated at 1500 iterations due to reaching the iteration limit. For
Run 1 that resulted in an illegal state with two bolts overlapping, this
result will not be used in any explanation. An important note about
these results is that the function values are not meant to be equal
to the numerical value, and the objective function does not have a
dimension. This should be considered as a factor or value that tries
to estimate order of the separation for each tube.

4.4 Global optimisation results

The same test is carried out for the differential evolution algorithm,
with 10 runs to see how the results, function and numerical values,
vary.
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Run Function Value Numerical Value
Run 1 23.8 18.7 µm
Run 2 33.8 19.5 µm
Run 3 28.5 16.4 µm
Run 4 23.7 19.1 µm
Run 5 24.4 19.1 µm
Run 6 24.1 18.3 µm
Run 7 23.5 18.1 µm
Run 8 24.1 18.7 µm
Run 9 30.3 19.4 µm
Run 10 24.1 19.0 µm

Table 4: The result of 10 runs with differential evolution and objective function f4

The highest deformation is around the same tube for all the runs,
with the lower right tube having the highest separation. In Figure 12
and 13 the bolt locations are shown for the two runs with the same
numerical value.

Figure 12: A plot showing the bolt place-
ments of Run 4 using differential evolution
with f5.

Figure 13: A plot showing the bolt place-
ments of Run 5 using differential evolution
with f5.
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5 Discussion

5.1 Evaluating objective functions f2 and f3

The main focus of this section is to discuss the results of the two
objective functions f2 and f3. These results were obtained before the
experiment and it is the main reason to why the experiment was done.

The first results from testing f2 and f3 were promising, as they re-
duced the maximum separation around the tubes with a good initial
guess. This indicates that the functions with SLSQP can be used to
polish an existing solution, as it can estimate the separation from small
placement changes. In Figure 7 it becomes clear the assumption that
the deflection is closely tied to beam theory is wrong. The numerical
results indicate that the stiffness and deflection are related to more
than just the force and total length, and it also indicates that the total
length can have an inverse reaction on the separation. Even though
the stiffness is only calculated with f3, this plot disregards the use of
both f2 and f3. This is done because the only varying parameter in
these simulations is the placement of the one bolt, thus the distance
is the only measured difference and neither of the functions would be
able to describe this effect.

These variations can be explained by looking at Figure 6. In this
simulation it is possible to see the ”hinge”-line that arises and that
the entire flange will rotate around this line. This indicates that the
function may be closer tied to the second moment of area and that
spreading the bolts out can reduce the hinge-line and create a con-
strained area. Figure 5 shows how the spread out bolts contribute
with more stiffness because no hinge-line is present.

Another problem with f2 and f3 is that they may ”forget” about bolts,
which can happen if one or more bolts are not the closest to any tube.
If that happens it will not be part of the objective function in any
way, and if the placement of that bolt is changed it will not affect the
objective function, but it will have an impact on the simulation. The
extreme case of this issue is if one bolt is the closest to all the tubes.
In this case the objective function will think that this is the only bolt
that contributes to the stiffness.
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5.2 Design of Experiment

The main results of the design of experiment are shown in Figure 8
and 9. Figure 8 shows the header that is automatically created by
statsmodels and it gives information about the fit of the regression.
Figure 9 shows the significant parameters sorted on the p-value. The
selected analysis is chosen because it is the most efficient analysis. In
this context efficient means that it is able to describe the separation
with a simpler model, the R2 is good with 45 terms and only 10 sig-
nificant parameters. It is important to remember that this is a purely
heuristic model and that these values and parameters do not need to
correlate to any theory, only that these parameters can describe the
separation.

A recurring result from all the regression analyses is that the more
complex interactions always are the most significant parameters, and
that Force is part of the interaction. The exact combination that is
the most important changes between each analysis. In an answer on
JMP Blog, Phil Kay states that bad correlation between factors does
not imply that it is impossible to make good predictions, but that it
can be hard to understand the effect of the factors. This is very much
what is seen for the different models, the significance of a parameter
can very high in one model and for the next model it is further down
the list.

The biggest problem with using the most significant parameter from
Figure 9 as an objective function is the effect of increasing distance
between tubes, Tube d. This is probably caused by a flaw in the
experiment where there is no real case where tubes are close together
and far away from the center of the bolts. Regardless of this, the
parameter is a good representation of the most significant parameter,
it is combined of Total**2, Min**1, Force and Tube d. In some of
the models Max is also part of the most significant parameter, but
because of the correlation between factors it is hard to get a good
understanding of these factors.

The results of the experiment supports the claim that f2 and f3 should
be discarded as objective functions, and that a more complex function
should be implemented. f4 is the objective function that is made as a
result. The new function is based on the results of the experiment and
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the most significant parameter, I(Total ** 2):I(Min ** 1):Force:Tube d.

• I(Total**2): This is the total distance between each bolt and
each tube squared, and it is calculated using f12. Although this
factor alone made the solution worse, it also helps negate the hinge
problem. Because the force in each tube is about the same, this
will help center the solution in the middle of all forces which helps
reduce the moment in any direction and thus reduce the hinge
effect. The effect of this can be seen in Figure 12 where the bolts
are placed along the diagonal from top-left to bottom-right. This
is different from the initial guess where the bolts are symmetrically
placed along the x- and y-axis.

• I(Min**1): This is the minimum distance from each tube to any
bolt. This factor has also proved to be a bad estimator alone, but
in combination it is present in most parameters that are signifi-
cant. In the good solutions, this factor seems to have a spreading
effect - it counteracts the centering effect in the way that it pulls
bolts towards the tubes.

• Force: This factor is part of all the significant parameters which
is expected. The force is what generates the separation and its
size is therefor of importance.

• Tube d: This is a measure of the distance to the closest tube.
Although this factor is part of the significant parameters, it is a
hard factor to include in any objective function because this value
decreases when the separation increases. In order to use this in a
objective function a new term would have to be added and this
could lead to negative estimations, which is something that cannot
happen in the simulations.

The other significant parameters in Figure 9 indicate that higher de-
grees of Min and Max also are needed to make a good model. This
leads to the other change in f4, the degree of min is increased to cubed
from linear. The goal of this change is to reduce the centering effect
and indirectly force the algorithm to maximise the second moment of
area. With Tube d removed and the degree of Min increased, f4 is
obtained and defined as Equation (23).
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5.3 Algorithm selection

The three optimisation methods that have been used will be compared
using the criterions from Section 2.7. An important difference between
trust-constr and SLSQP compared to differential evolution is that the
first two are local optimisation algorithms, while differential evolution
aims to be a global optimisation algorithm. When it comes to runtime
and computational power required ”There ain’t no such thing as a free
lunch”, so it is expected that differential evolution performs worse on
this point. The question is how the extra runtime compares to the
extra manual work required by the local optimizers.

Trust-constr

• Convergence to optimum value: As seen in Figure 3, Run 3 and
Run 5 trust-constr will not always converge to the optimum value.

• Generation of new design alternatives: As this is a local optimi-
sation algorithm and these algorithms are principally dependent
on the initial guess, new designs are not something that can be
expected. In some cases it may be able to find new design alter-
natives, but this may be just as much a result of the objective
function and not the optimisation method.

• Computational resource need: In terms of memory usage this
method is not very demanding. The runtime of this optimisa-
tion usually lies between 1-5 seconds and in some cases it can run
up to 20 seconds. It is probably possible to improve this with
better tolerances and maximum iterations for when to terminate
the optimisation.

• Reproducibility: With the same initial guess this method will get
the same results, but with different random guesses it does not
give the same results.

SLSQP

• Convergence to optimum value: As seen in Figure 3, this method
is not able to converge to the optimum value given a random guess.
For two of the runs it was not even able to find a valid solution
within 1500 iterations.
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• Generation of new design alternatives: As this is a local optimi-
sation algorithm and these algorithms are principally dependent
on the initial guess, new designs are not something that can be
expected. In some cases it may be able to find new design alter-
natives, but this may be just as much a result of the objective
function and not the optimisation method.

• Computational resource need: The SLSQP-method is the best
method with computational resources in mind - it performs the
least amount of function evaluations and it is the fastest. This
function could probably be cut off at 100 iterations because the
runs were under 100 or above 1500 runs.

• Reproducibility: This method will yield the same results with the
same inputs, but it is dependent on the initial guess.

Differential evolution

• Convergence to optimum value: As seen in Figure 4, this method
yields low values for the objective function. What is more inter-
esting is the stability in numerical value.

• Generation of new design alternatives: The random factor in dif-
ferential evolution combined with the parameters indicates that
it may be able to find unexpected design that gives low function
values.

• Computational resource need: This algorithm is notably slower
than the two local optimisation algorithms. The differential algo-
rithm can be split into two steps - first it is trying to make a good
initial guess as stated by Equation (17), and the second step is a
trust-constr optimisation used to polish the solution. The second
step is done to make sure that it finds the local minimum in what
is expected to be the global minimum area. Both of these steps
can take up to 20 seconds to do, making the total time as high as
40 seconds. Due to the way it is implemented in SciPy it is not
possible to change the options of the trust-constr optimisation,
but this can probably be improved so the second step becomes
faster.

• Reproducibility: The first step of differential evolution is a way to
make random educated guesses, so the initial guess sent to trust-
constr will vary. It is therefore expected that the solutions will not
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be the same, but they are similar based on the bolt placements
and the objective functions. This specific solution may be affected
by the quasi continuous objective function, and that the function
value can be the same with different bolt placements.

From the results of Section 4.3 and 4.4, differential evolution performs
better and more stable compared to the local optimisation algorithms,
while trust-constr seems to be the better local optimisation algorithm.
This can be a result of differential evolution being an extension to
trust-constr - it first makes an educated guess for a good initial guess,
before it polishes the solution with trust-constr.

Even though differential evolution is the slower of the three algorithms,
it is still the preferred algorithm. This is because it does not require
any initial guess and it seems to generate good initial guesses on its
own. Without the requirement of an initial guess, the program could
also be shortened by a few line. This change also helps in making the
program dependent on the choice of bolt type and number of bolts.

5.4 Evaluating f4

By closer examination of Table 3 and 4 it becomes clear that f4 is
not able to describe all the separation, or stiffness, in the solutions.
The differences between the objective function and the numerical sep-
aration are bigger using the local optimisers compared to differential
evolution. If the approval of objective functions were done solely on
local optimisation algorithms f4 should be disapproved, but with dif-
ferential evolution it is another story. When differential evolution is
used, this objective function seems to be even more stable based on
the numerical value compared the function value. The most obvious
reason for this partial correlation is that only one term of the experi-
mental model is used, where the best model is built with 256 terms.

A concern with designing the objective function on the experiment was
to see how it performed on more complex problems. The idea behind
design of experiments is to perform a series of small runs to identify
how different factors affect the result, and the experiment conducted is
very different from the ”Aker problem”. Only 2 tubes and 3 bolts are
used in the experiment, while the ”Aker problem” consists of 15 tubes
and 6 bolts. The two main differences between these problems is the
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difference in scale and the different relations between bolts and tubes.
Even though the objective function shows bad correlation between
estimated separation and numerical separation, it is a good sign with
regards to robustness and scalability. The definitions of robustness and
scalability are taken from Entner et al. [2019]. Robustness is a measure
of how good the optimiser handles small changes in the problem, and
scalability is a measure of how good dimensional changes are handled.
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6 Conclusion and further work

6.1 Conclusion

This thesis described a method to automate the placement of bolts in
subsea manifold applications. The method presented aims to propose
a good bolt placement that is able to join a flange and manifold to-
gether with very small acceptable separation. With the progress that
is made within 3D-manufacturing, these new methods to propose and
test designs are required. Subsea manifolds is a field where the new
manufacturing technologies can be used to save resources and money,
but the design is not yet automated.

The ’bolt placement’ application utilises existing numerical solvers in
combination with a new program in order to recommend and evaluate
a solution. Optimisation is used to propose these new solutions and the
thesis focuses on the development and verification of this optimisation
problem. For this specific optimisation the design of objective function
and the selection of solver are the most important issues. As the goal
is to automate with little to none manual work, a combination that
gives a good global candidate is required.

The combination of differential evolution and f4 seems to be a good op-
timiser for this type of problems. In the real life problem the program
is able to deliver consistent solutions which are significantly better
than the manually made solution. The bolt placement that is used
as the initial guess in the ”Aker problem” is the humanly made solu-
tion, and even though this solution passed simulation, the solution has
been problematic. Abaqus reported a separation of 25.6 µm, which is
very close the requirement of 26 µm. The results shown in Table 3
and 4 indicate that the objective function is not able to describe the
separation, but these results alone are not enough to disapprove of
this solution. Without more realistic problems it is hard to identify if
the partial correlation is a result of the reduced model, the difference
in the problem, or if it is a combination of both factors. When dif-
ferential evolution is used, all of the suggested bolt placements meets
the requirements. This makes it hard to identify if there is something
that needs to be worked on or if the program is ready to be used.
Nevertheless, more testing should be done on real life problems to see
how the program performs.
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6.2 Future work

Different tests and adaptations of the objective function have been left
for the future due to time and other factors. The natural steps to test
program:

1. It could be interesting to see how the optimiser performed in other
real life examples where human developed solution is used as a
measure. This could also be used to test and compare other ob-
jective functions.

2. The Abaqus modelling should be reviewed by a field expert or
someone with more experience. This should be done to assure
that the method used to verify solutions is correct and used in
the industry. If the simulations are done, it is possible that the
experiment and analysis needs to be reconducted. This is because
the optimisation is specially designed for this modelling. With the
changes in the modelling, this may change what parameters are
important to model the separation.

3. If the proposed solutions are accepted by an industry expert, then
a physical test should be conducted.

4. More details probably needs to be added to the program. Some of
the tubes may have valves or other elements tied to the hole which
may take up space, this would need to implemented in the con-
straint that checks for crash between bolts and tubes. The bolts
may also have washers that will increase the space they occupy.
These details could be added as optional parameters with default
values.
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Using the code

The code included in the appendix is not all of the code used through-
out this thesis, it is just the most important files and functions. In
Appendix A boltLocation.py is found where the optimisation is done,
Appendix B contains the support functions that is used by boltLo-
cation.py to calculate distribution of force in bolts. run.py found in
Appendix D is the Python file ran in Abaqus which reads data from
a JSON-file and initiates the Abaqus functions. All the Abaqus func-
tions are defined in abaqus functions.py which is found in Appendix
C.
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Appendix

A boltLocation.py

1 from scipy.sparse.construct import random

2 from supportFunctions import *

3

4 #Pip-modules

5 from scipy.optimize import minimize,

differential_evolution, NonlinearConstraint↪→

6 import numpy as np

7 import matplotlib.pyplot as plt

8 from itertools import combinations

9 import json

10 import random

11

12 from Examples.exampleProblems import problems, problem

13

14 #Problem specific variables

15 tubeLocation =

[[10,10],[90,30],[45,30],[25,70],[90,75],[30,100],[85,100]]↪→

16 tubePressures = [34.5, 34.5, 34.5, 34.5, 34.5, 34.5,

34.5]↪→

17 tubeRadius = [5., 6., 6., 7., 4., 3., 2.]

18 sizeX, sizeY = 150,110 #Size of domain [mm]

19 initial_guess = [65.2,33.8,51.8,50.8,76.4,59.4,52.8,7.76]

#Initial guess x0, y0, ... xn, yn↪→

20

21

22 h = 20 #Thickness

23 boltType = "M8"

24 materialChoice = "AISI316L"

25

26

27 numberOfBolts = int(len(initial_guess)/2)

28 boltSize, boltRadius, s, d, emodbolt, boltArea, ps =

chooseBolt(boltType, numberOfBolts) #Getting bolt

specific values

↪→

↪→

29 xl,yl = [0+boltRadius]*2 #Calculating the lower bounds
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30 xu,yu = sizeX-boltRadius,sizeY-boltRadius #Calculating

the upper bounds↪→

31 tubeforces, forceOnCentroid =

calculateForceOnCentroid(tubePressures, tubeRadius)

#Calculating the total force on the centroid

↪→

↪→

32 bounds = [(xl,xu), (yl,yu)]*numberOfBolts #Creating the

full bounds matrix that is needed for the

minimize-function

↪→

↪→

33 sumBoltSize = numberOfBolts*boltSize #Total bolt area

34 pretensionOvershoot = ps*boltSize*0.75 #Pretension in

bolts, [N]↪→

35

36

37

38 #Bolt break static variables

39 emodbase, yieldStress =

chooseBaseMaterial(materialChoice) #Getting material

specific values

↪→

↪→

40 km = emodbase*np.pi*(s**2 - d**2)/4*h #Calculating

stiffness for material↪→

41 kb = emodbolt*boltArea/h #Calculating stiffness for the

bolt↪→

42

43 def f1(boltLocation):

44 sum = 0

45 for i in range(0,len(boltLocation),2):

46 for tube in tubeLocation:

47 sum+=np.sqrt((boltLocation[i]-tube[0])**2 +

(boltLocation[i+1]-tube[1])**2)↪→

48 return sum

49

50 def f2(boltLocation):

51 sum = 0

52 for tube in tubeLocation:

53 mini = np.inf

54 for i in range(0,len(boltLocation),2):

55 distance =

np.sqrt((boltLocation[i]-tube[0])**2 +

(boltLocation[i+1]-tube[1])**2)

↪→

↪→
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56 mini = min(mini,distance)

57 sum+= mini

58 return sum

59

60 def f3(boltLocation):

61 sum = 0

62 for j, tube in enumerate(tubeLocation):

63 mini = np.inf

64 for i in range(0,len(boltLocation),2):

65 distance =

np.sqrt((boltLocation[i]-tube[0])**2 +

(boltLocation[i+1]-tube[1])**2)

↪→

↪→

66 mini = min(mini,distance)

67 sum+= tubeforces[j]*(mini**3)/1e6

68 return sum

69

70 def f4(bolt_location):

71 max_result = -np.inf

72 total = f1(bolt_location)

73 for j, tube in enumerate(tubeLocation):

74 mini = np.inf

75 maxi = -np.inf

76 for i in range(0,len(bolt_location),2):

77 distance =

np.sqrt((bolt_location[i]-tube[0])**2 +

(bolt_location[i+1]-tube[1])**2)

↪→

↪→

78 mini = min(mini,distance)

79 maxi = max(maxi,distance)

80 max_result = max(max_result, tubeforces[j] *

(total**2) * (mini**2) * 1e-12)↪→

81 return max_result

82

83

84

85 def boltCrash(boltLocation, boltR = boltRadius,

washerDist = 0):↪→

86 '''

87 In-equality constraint

88
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89 :param: boltLocation is a 1-D list with

x0,y0,x1,y1,...↪→

90 :returns: A punishment value based on how much

overlapping there is between bolts↪→

91 '''

92 punishment = 0

93 minDist = (washerDist+boltR)*3

94 for combo in combinations(np.reshape(boltLocation,

(numberOfBolts,2)),2):↪→

95 avstand = distance(combo[0],combo[1])

96 if avstand < minDist:

97 try:

98 punishment -= 1/(avstand+1e-6)

99 except ZeroDivisionError:

100 punishment -= 1e10

101 return punishment

102

103 def tubeCrash(boltLocation, boltR = boltRadius,

washerDist = 1, tube_width = 2):↪→

104 '''

105 In-equality constraint

106 :param: boltLocation is a 1-D list with

x0,y0,x1,y1,...↪→

107 :returns: A punishment based on how much overlapping

there is between bolts and tubes↪→

108 '''

109 punishment = 0

110 minDist = boltR + washerDist + tube_width

111 for bolt in np.reshape(boltLocation,

(numberOfBolts,2)):↪→

112 for i, tube in enumerate(tubeLocation):

113 avstand = distance(bolt, tube)

114 if avstand < (minDist+tubeRadius[i]):

115 try:

116 punishment -= 1/ (avstand+1e-6)

117 except ZeroDivisionError:

118 punishment -= 1e10

119 return punishment

120
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121 def boltBreak(boltLocation):

122 '''

123 In-equality constraint

124 :param: boltLocation is a 1-D list with

x0,y0,x1,y1,...↪→

125 :returns: A punishment based on the excess stress on

the bolts↪→

126 '''

127 punishment = 0

128 forces = boltForces(boltLocation, numberOfBolts,

boltSize, boltRadius, tubeLocation,

tubePressures, tubeRadius, forceOnCentroid)

↪→

↪→

129 for force in forces:

130 #Calculate force in material

131 forceBolt = (kb/(km+kb)) * force

132 forceMaterial = (km/(km+kb)) * force

133 #Calculate the needed pretenstion and the total

forces and stresses↪→

134 pretension = forceMaterial + pretensionOvershoot

135 totalForceBolt = forceBolt + pretension

136 boltStress = totalForceBolt / boltArea

137 boltCheck = boltStress - ps

138 if boltCheck > 0:

139 punishment -= boltCheck

140 return punishment

141

142 con1 = {'type': 'ineq', 'fun': boltCrash} #Adding a

connection between function and the type of

constraint

↪→

↪→

143 con2 = {'type': 'ineq', 'fun': tubeCrash} #Adding a

connection between function and the type of

constraint

↪→

↪→

144 con3 = {'type': 'ineq', 'fun': boltBreak} #Adding a

connection between function and the type of

constraint

↪→

↪→

145 cons = ([con1, con2, con3])

146

147

148 constraints = (NonlinearConstraint(boltCrash,0, np.inf),
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149 NonlinearConstraint(tubeCrash,0, np.inf),

150 NonlinearConstraint(boltBreak,0, np.inf))

151

152 valg_slsqp = {'ftol': 1e-2, 'disp': True, 'maxiter':1500}

#ftol:1e-2 means tolerance in optimization function↪→

153

154 valg_trust = {'gtol': 1e-1, 'xtol': 1e-1, 'disp': True,

'maxiter':1500}↪→

155

156 optimized_results = []

157

158

159 for j in range(10):

160 init_problem = problems[0]

161 sizeX, sizeY, tubeLocation, tubePressures,

tubeRadius, initial_guess, name, run =

init_problem.getValues()

↪→

↪→

162 name+=str(j)

163 numberOfBolts = int(len(initial_guess)/2)

164 boltSize, boltRadius, s, d, emodbolt, boltArea, ps =

chooseBolt(boltType, numberOfBolts) #Getting bolt

specific values

↪→

↪→

165 xl,yl = [0+boltRadius]*2 #Calculating the lower

bounds↪→

166 xu,yu = sizeX-boltRadius,sizeY-boltRadius

#Calculating the upper bounds↪→

167 tubeforces, forceOnCentroid =

calculateForceOnCentroid(tubePressures,

tubeRadius) #Calculating the total force on the

centroid

↪→

↪→

↪→

168 bounds = [(xl,xu), (yl,yu)]*numberOfBolts #Creating

the full bounds matrix that is needed for the

minimize-function

↪→

↪→

169 sumBoltSize = numberOfBolts*boltSize #Total bolt

area↪→

170

171 for i in range(numberOfBolts):

172 initial_guess[i*2] = random.uniform(xl, xu)

173 initial_guess[i*2+1] = random.uniform(yl, yu)

43



174

175

176 print([round(x, 3) for x in tubeforces],

len(tubeforces))↪→

177

178 try:

179 result = differential_evolution(f4,

bounds=bounds, constraints=constraints)↪→

180 #result = minimize(f4, initial_guess, method =

'slsqp', bounds=bounds, constraints=cons,

options=valg_slsqp)

↪→

↪→

181 #result = minimize(f4, initial_guess, method =

'trust-constr', bounds=bounds,

constraints=cons, options=valg_trust)

↪→

↪→

182 fitted_params = result.x

183 optimized_result = problem(sizeX, sizeY,

tubeLocation, tubePressures,↪→

184 tubeRadius, initial_guess,

optimized_location=fitted_params.round(2).tolist(),↪→

185 name=name)

186 optimized_results.append(

json.dumps(optimized_result.__dict__))↪→

187 for i in range(numberOfBolts):

188 print('Bolt-{0}: x={1:.2f}, y={2:.2f}

'.format(i, fitted_params[i*2],

fitted_params[i*2 +1]))

↪→

↪→

189 plt.figure()

190 plt.ion()

191 plt.title('Plot of optimized bolt location for:

{0}'.format(init_problem.name))↪→

192 plt.xlim(0,sizeX)

193 plt.ylim(0,sizeY)

194 plt.xlabel("Size x [mm]")

195 plt.ylabel("Size y [mm]")

196 plt.subplots_adjust(bottom=0.30)

197 plt.gca().set_aspect('equal', adjustable='box')

198 boltPlotSize =

[np.pi*boltRadius**2]*numberOfBolts↪→

199 tubePlotSize = [np.pi*x**2 for x in tubeRadius]
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200 plt.scatter(initial_guess[0::2],

initial_guess[1::2], c='b', marker= 'h',

s=boltPlotSize, label='Initial guess')

#Initial guess plotted in blue hex

↪→

↪→

↪→

201 xval = [x[0] for x in tubeLocation] #Temp

variable to get the plot nice↪→

202 yval = [x[1] for x in tubeLocation] #Temp

variable to get the plot nice↪→

203 plt.scatter(xval, yval, c='r', marker='o',

s=tubePlotSize, label='Tube locations')↪→

204 plt.scatter(fitted_params[0::2],

fitted_params[1::2], c='g', marker='h',

s=boltPlotSize, label='Minimized bolt

locations') #Tubes plotted in green circles

↪→

↪→

↪→

205 plt.legend(bbox_to_anchor=(0,-0.2), loc="upper

left")↪→

206 plt.show()

207 file_name =

'Results/Slsqp/sqlpqs{0}.png'.format(j)↪→

208 print(file_name)

209 print(f4(fitted_params))

210 plt.savefig(file_name)

211 #input("Press any key to remove the plot")

212 plt.close()

213 except ValueError:

214 print('Value Error in {0}'.format(

init_problem.name))↪→

215 raise ValueError

216

217 print_bool = True

218 if print_bool:

219 with open('optimized_results_de_10.json', 'w') as

write_file:↪→

220 json.dump(optimized_results, write_file,

indent=4)↪→
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B supportFunctions.py

1 from scipy.optimize import minimize

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from itertools import combinations

5

6

7 def chooseBolt(boltType, NumberofBolts):

8 # -- This function initializes relevant bolt

parameters, depending on the bolt type you

desire --

↪→

↪→

9 boltSize = 0

10 boltRadius = 0

11 s = 0

12 d = 0

13 ps = 0

14 emodbolt = 210

15 boltarea = 0

16 if boltType == "M8":

17 boltSize = 36.6 # Area of bolt without threads

18 boltRadius = 8. # Max cap radius for M8 bolt

19 s = 13.27

20 d = 8

21 emodbolt = 210000 #[N/mm2]

22 boltarea = (4**2)*np.pi

23 ps = 641.9 #[N/mm2]

24 elif boltType == "M10":

25 boltSize = 58 # Area of bolt without threads

26 boltRadius = 18.48 # Max cap radius for M8 bolt

27 s = 16.27 #[Nut size]

28 d = 10 #[Diameter]

29 emodbolt = 210000 #[N/mm2]

30 boltarea = (5**2)*np.pi

31 ps = 641.9 #[N/mm2]

32 return boltSize, boltRadius, s, d, emodbolt,

boltarea, ps↪→

33

34
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35 def chooseBaseMaterial(materialType):

36 # Return parameters depending on materialtype

37 emod = 0

38 yieldstress = 0

39 if materialType == "AISI316L":

40 emod = 210000

41 yieldstress = 250000

42 if materialType == "AISI1010":

43 emod = 205000 #[MPa]

44 yieldstress = 305000 #[MPa]

45 return emod, yieldstress

46

47 def

boltForces(boltLocations,numberOfBolts,boltSize,boltRadius,tubeLocation,

tubePressures, tubeRadius, forceOnCentroid):

↪→

↪→

48 boltForces = np.zeros(numberOfBolts)

49 centroid =

patternCentroid(boltLocations,numberOfBolts)↪→

50 patternInertiaX, patternInertiaY =

patternInertia(boltLocations,boltSize,boltRadius,centroid,numberOfBolts)↪→

51 centroidMomentX, centroidMomentY =

centroidMoment(tubeLocation,tubePressures,tubeRadius,centroid)↪→

52 for i in range(numberOfBolts):

53 boltForces[i]= forceOnCentroid/numberOfBolts + \

54

((centroidMomentX*(boltLocations[i*2+1]-centroid[1])*boltSize)/patternInertiaX)

+ \

↪→

↪→

55

((centroidMomentY*(boltLocations[i*2]-centroid[0])*boltSize)/patternInertiaY)↪→

56 return boltForces

57

58

59 def calculateForceOnCentroid(tubePressures, tubeRadius):

60 tubeforces = []

61 for i in range(len(tubePressures)):

62

tubeforces.append(tubePressures[i]*(np.pi*tubeRadius[i]**2))↪→

63 return tubeforces, sum(tubeforces)

64
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65 def patternCentroid(boltLocations,numberOfBolts):

66 xCentroid = 0

67 yCentroid = 0

68 for i in range(0,len(boltLocations),2):

69 xCentroid += boltLocations[i]

70 yCentroid += boltLocations[i+1]

71 centroid =

np.array([xCentroid/numberOfBolts,yCentroid/numberOfBolts])↪→

72 return centroid

73

74 def

patternInertia(boltLocations,boltSize,boltRadius,centroid,numberOfBolts):↪→

75 patternInertiaX = 0

76 patternInertiaY = 0

77 for i in range(numberOfBolts):

78 patternInertiaX += (((centroid[1])**2 -

boltLocations[i*2+1]) **2) * boltSize↪→

79 patternInertiaY += (((centroid[0])**2 -

boltLocations[i*2]) **2) * boltSize↪→

80 return patternInertiaX,patternInertiaY

81

82 def centroidMoment(tubeLoc, tubePressures, tubeRadius,

centroid):↪→

83 centroidMomentX = 0

84 centroidMomentY = 0

85 for i in range(len(tubeLoc)):

86 centroidMomentX += (tubePressures[i]*np.pi *

tubeRadius[i]**2) * (tubeLoc[i][1] -

centroid[1])

↪→

↪→

87 centroidMomentY += (tubePressures[i]*np.pi *

tubeRadius[i]**2) * (tubeLoc[i][0] -

centroid[0])

↪→

↪→

88 return centroidMomentX,centroidMomentY

89

90 def distance(center1, center2):

91 return np.sqrt((center1[0]-center2[0])**2 +

(center1[1]-center2[1])**2)↪→
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C abaqus functions.py

1 # -*- coding: mbcs -*-

2 from part import *

3 from material import *

4 from section import *

5 from assembly import *

6 from step import *

7 from interaction import *

8 from load import *

9 from mesh import *

10 from optimization import *

11 from job import *

12 from sketch import *

13 from visualization import *

14 from connectorBehavior import *

15 import numpy as np

16

17

18 def create_flange(model, sizeX, sizeY,height,

boltlocation, tubeLocation, tubeRadius,

wall_thickness):

↪→

↪→

19 sizeX2 = sizeX/2

20 sizeY2 = sizeY/2

21 number_of_bolts = len(boltlocation)/2

22 number_of_tubes = len(tubeLocation)

23 #Create part Flange

24 model.ConstrainedSketch(name='__flangeSketch__',

sheetSize=200.0)↪→

25

model.sketches['__flangeSketch__'].rectangle(point1=(0.0,

0.0),

↪→

↪→

26 point2=(sizeX, sizeY))

27 model.Part(dimensionality=THREE_D, name='Flange',

type=↪→

28 DEFORMABLE_BODY)

29 model.parts['Flange'].BaseSolidExtrude(depth=height,

sketch=↪→

30 model.sketches['__flangeSketch__'])
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31 del model.sketches['__flangeSketch__']

32

33

34 model.ConstrainedSketch(gridSpacing=7.14,

name='__flangeSketch__',↪→

35 sheetSize=285.65, transform=

36 model.parts['Flange'].MakeSketchTransform(

37 sketchPlane=model.parts['Flange'].faces[4],

38 sketchPlaneSide=SIDE1,

39 sketchUpEdge=model.parts['Flange'].edges[7],

40 sketchOrientation=RIGHT, origin=(sizeX2, sizeY2,

height)))↪→

41

model.parts['Flange'].projectReferencesOntoSketch(filter=↪→

42 COPLANAR_EDGES,

sketch=model.sketches['__flangeSketch__'])↪→

43

model.sketches['__flangeSketch__'].sketchOptions.setValues(↪→

44 gridOrigin=(-sizeX2, -sizeY2))

45 del model.sketches['__flangeSketch__']

46

47 #

48 p = model.parts['Flange']

49 e = p.edges

50 f = p.faces

51 face = f.findAt(coordinates=(1.0,1.0,height))

52 edge = e.findAt(coordinates=(sizeX,sizeY - 1,0.0))

53

54

55 #Create a reference to the top surface for use later

56 face_ind=face.index

57 side1Faces=f[face_ind:face_ind+1]

58 model.parts['Flange'].Surface(side1Faces=side1Faces,

name='top-surface')↪→

59

60

61 #Cut out space for bolts and tubes

62 model.ConstrainedSketch(gridSpacing=7.14,

name='__cutSketch__',↪→
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63 sheetSize=285.65, transform=

64 model.parts['Flange'].MakeSketchTransform(

65 sketchPlane=face,

66 sketchPlaneSide=SIDE1,

67 sketchUpEdge=edge,

68 sketchOrientation=RIGHT, origin=(sizeX2, sizeY2,

height)))↪→

69

model.parts['Flange'].projectReferencesOntoSketch(filter=↪→

70 COPLANAR_EDGES,

sketch=model.sketches['__cutSketch__'])↪→

71

72

73 #Sketch the holes for bolt

74 for i in range(number_of_bolts): #

75 xi = i*2

76 yi = xi+1

77 xc = boltlocation[xi] - sizeX2

78 yc = boltlocation[yi] - sizeY2

79

model.sketches['__cutSketch__'].CircleByCenterPerimeter(center=(↪→

80 xc, yc), point1=(xc, yc+4.04))

81

82

83 #Sketch the holes for tubes

84 for i in range(number_of_tubes):

85 xi = tubeLocation[i][0]

86 yi = tubeLocation[i][1]

87 xc = xi - sizeX2

88 yc = yi - sizeY2

89 r = tubeRadius[i]

90

model.sketches['__cutSketch__'].CircleByCenterPerimeter(center=(↪→

91 xc, yc), point1=(xc, yc+r))

92

93

94 #Make the cut using the sketch made

95

model.parts['Flange'].CutExtrude(flipExtrudeDirection=OFF,↪→
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96 sketch=model.sketches['__cutSketch__'],

sketchOrientation=↪→

97 RIGHT, sketchPlane=face,

98 sketchPlaneSide=SIDE1, sketchUpEdge=

99 edge)

100 del model.sketches['__cutSketch__']

101

102

103 #Sketch the holes for tubes and tube walls

104 p = model.parts['Flange']

105 e = p.edges

106 f = p.faces

107 face = f.findAt(coordinates=(1.0,1.0,height))

108 edge = e.findAt(coordinates=(sizeX,sizeY - 1,0.0))

109 model.ConstrainedSketch(gridSpacing=7.14,

name='__PartitionSketch__',↪→

110 sheetSize=285.65, transform=

111 p.MakeSketchTransform(

112 sketchPlane=face,

113 sketchPlaneSide=SIDE1,

114 sketchUpEdge=edge,

115 sketchOrientation=RIGHT, origin=(sizeX2, sizeY2,

height)))↪→

116 p.projectReferencesOntoSketch(filter=

117 COPLANAR_EDGES,

sketch=model.sketches['__PartitionSketch__'])↪→

118

119 for i in range(number_of_tubes):

120 xi = tubeLocation[i][0]

121 yi = tubeLocation[i][1]

122 xc = xi - sizeX2

123 yc = yi - sizeY2

124 r = tubeRadius[i]

125

model.sketches['__PartitionSketch__'].CircleByCenterPerimeter(center=(↪→

126 xc, yc), point1=(xc, yc+r))

127

model.sketches['__PartitionSketch__'].CircleByCenterPerimeter(center=(↪→

128 xc, yc), point1=(xc, yc+r+wall_thickness))
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129

130

131 #Partition top-surface

132 model.parts['Flange'].PartitionFaceBySketch(

133 faces = face,

134 sketch = model.sketches['__PartitionSketch__']

135 )

136 del model.sketches['__PartitionSketch__']

137

138

139 #Create a surface for each tube wall

140 p = model.parts['Flange']

141 f = p.faces

142 for i in range(number_of_tubes):

143 r = tubeRadius[i]

144 xc = tubeLocation[i][0]

145 yc = tubeLocation[i][1] + r + wall_thickness/2

146 surface_name = 'TubeSurf-'+str(i+1)

147 face = f.findAt(coordinates=(xc,yc,height))

148 face_ind=face.index

149 side1Faces=f[face_ind:face_ind+1]

150 p.Surface(side1Faces=side1Faces,

name=surface_name)↪→

151

152 model.Material(name='AISI316L')

153 model.materials['AISI316L'].Density(table=((7.8e-06,

), ))↪→

154 model.materials['AISI316L'].Elastic(table=((210000.0,

0.3), ))↪→

155 model.HomogeneousSolidSection(material='AISI316L',

name=↪→

156 'AISI316L', thickness=None)

157 model.parts['Flange'].SectionAssignment(offset=0.0,

158 offsetField='', offsetType=MIDDLE_SURFACE,

region=Region(↪→

159

cells=model.parts['Flange'].cells.getSequenceFromMask(↪→

160 mask=('[#1 ]', ), )), sectionName='AISI316L',

thicknessAssignment=↪→
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161 FROM_SECTION)

162

163

164 # End of Flange part

165

166 def create_bolt(model):

167 #Create "bolt"-part M8-bolt

168 #TODO Different bolt parameters

169 model.ConstrainedSketch(name='__boltSketch__',

sheetSize=200.0)↪→

170

model.sketches['__boltSketch__'].ConstructionLine(point1=(0.0,↪→

171 -100.0), point2=(0.0, 100.0))

172

model.sketches['__boltSketch__'].FixedConstraint(entity=↪→

173 model.sketches['__boltSketch__'].geometry[2])

174

model.sketches['__boltSketch__'].rectangle(point1=(0.0,

0.0),

↪→

↪→

175 point2=(30.0, 4.0))

176 model.sketches['__boltSketch__'].undo()

177

model.sketches['__boltSketch__'].rectangle(point1=(0.0,

0.0),

↪→

↪→

178 point2=(4.0, 30.0))

179

model.sketches['__boltSketch__'].rectangle(point1=(0.0,

30.0),

↪→

↪→

180 point2=(8.0, 38.0))

181

model.sketches['__boltSketch__'].autoTrimCurve(curve1=↪→

182 model.sketches['__boltSketch__'].geometry[4],

point1=(↪→

183 1.78766822814941, 29.8395004272461))

184

model.sketches['__boltSketch__'].autoTrimCurve(curve1=↪→

185 model.sketches['__boltSketch__'].geometry[10],

point1=(↪→

186 2.45284080505371, 30.0059661865234))
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187 model.Part(dimensionality=THREE_D, name='Bolt', type=

188 DEFORMABLE_BODY)

189 model.parts['Bolt'].BaseSolidRevolve(angle=360.0,

190 flipRevolveDirection=OFF, sketch=

191 model.sketches['__boltSketch__'])

192 del model.sketches['__boltSketch__']

193

194

195 #Create surface on part level for contact with

flange↪→

196 model.parts['Bolt'].Surface(name='ContactSurf',

side1Faces=↪→

197

model.parts['Bolt'].faces.getSequenceFromMask(('[#4

]', ),

↪→

↪→

198 ))

199

200

201 #Create edge for the boundary conditions on bolt

202 model.parts['Bolt'].Set(edges=

203

model.parts['Bolt'].edges.getSequenceFromMask(('[#40

]', ),

↪→

↪→

204 ), name='BCEdge')

205

206

207 #Assign material properties

208 #TODO Material as parameter

209 model.Material(name='Bolt')

210 model.materials['Bolt'].Density(table=((7.8e-06, ),

))↪→

211 model.materials['Bolt'].Elastic(table=((210000.0,

0.3), ))↪→

212 model.HomogeneousSolidSection(material='Bolt',

name='Bolt',↪→

213 thickness=None)

214 model.parts['Bolt'].SectionAssignment(offset=0.0,

offsetField=↪→

215 '', offsetType=MIDDLE_SURFACE, region=Region(
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216

cells=model.parts['Bolt'].cells.getSequenceFromMask(mask=(↪→

217 '[#1 ]', ), )), sectionName='Bolt',

thicknessAssignment=FROM_SECTION)↪→

218

219 def create_instance_flange(model):

220 #Create instance Flange

221 model.rootAssembly.Instance(dependent=OFF,

name='Flange-1',↪→

222 part=model.parts['Flange'])

223 #Seed part instance Flange-1

224

model.rootAssembly.seedPartInstance(deviationFactor=0.1,↪→

225 minSizeFactor=0.1, regions=(

226 model.rootAssembly.instances['Flange-1'], ),

size=11.0)↪→

227 #Generate mesh Flange-1

228 model.rootAssembly.generateMesh(regions=(

229 model.rootAssembly.instances['Flange-1'], ))

230

231 def create_instance_bolts(model, boltlocation):

232 number_of_bolts = len(boltlocation)/2

233 #Create instance bolts, rotate and translate to

correct position↪→

234 for i in range(number_of_bolts):

235 xi = i*2

236 yi = xi+1

237 boltname = 'Bolt-'+str(i+1)

238 model.rootAssembly.Instance(dependent=OFF,

name=boltname, part=↪→

239 model.parts['Bolt'])

240 model.rootAssembly.rotate(angle=90.0,

axisDirection=(10.0, 0.0,↪→

241 0.0), axisPoint=(0.0, 0.0, 0.0),

instanceList=(boltname, ))↪→

242

model.rootAssembly.translate(instanceList=(boltname,

), vector=

↪→

↪→

243 (boltlocation[xi], boltlocation[yi], -10))
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244

245 #Loop to add stuff to bolts

246 for i in range(number_of_bolts):

247 boltname = 'Bolt-'+str(i+1)

248 bcname = 'BC-'+str(i+1)

249 tiename = 'Constraint'+str(i+1)

250 #Boundary condition bolts

251 model.EncastreBC(createStepName='Initial',

localCsys=None,↪→

252 name=bcname, region=

253

model.rootAssembly.instances[boltname].sets['BCEdge'])↪→

254 #Constraint between bolts and flange

255 model.Tie(adjust=ON, master=

256

model.rootAssembly.instances['Flange-1'].surfaces['top-surface']↪→

257 , name=tiename,

positionToleranceMethod=COMPUTED, slave=↪→

258

model.rootAssembly.instances[boltname].surfaces['ContactSurf']↪→

259 , thickness=ON, tieRotations=ON)

260 #Set mesh controls Bolts

261 model.rootAssembly.setMeshControls(elemShape=TET,

regions=↪→

262

model.rootAssembly.instances[boltname].cells.getSequenceFromMask(↪→

263 mask=('[#1 ]', ), ), technique=FREE)

264 #Set element type Bolts

265

model.rootAssembly.setElementType(elemTypes=(ElemType(↪→

266 elemCode=C3D20R, elemLibrary=STANDARD),

ElemType(elemCode=C3D15,↪→

267 elemLibrary=STANDARD),

ElemType(elemCode=C3D10,

elemLibrary=STANDARD)),

↪→

↪→

268 regions=(

269

model.rootAssembly.instances[boltname].cells.getSequenceFromMask(↪→

270 mask=('[#1 ]', ), ), ))
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271 #Seed part instance Bolts

272

model.rootAssembly.seedPartInstance(deviationFactor=0.1,↪→

273 minSizeFactor=0.1, regions=(

274 model.rootAssembly.instances[boltname], ),

size=3.0)↪→

275 #Generate mesh Bolts

276 model.rootAssembly.generateMesh(regions=(

277 model.rootAssembly.instances[boltname], ))

278

279 def create_step(model, step_name, previous_step_name =

'Initial'):↪→

280 #Create step

281 model.StaticStep(name=step_name, nlgeom=OFF,

previous=previous_step_name)↪→

282

283 def create_connection_rp(model, bolt_location,

tube_location, tube_radius, tube_pressures, height,

step_name):

↪→

↪→

284 number_of_bolts = len(bolt_location)/2

285 number_of_tubes = len(tube_location)

286 #Create reference point for each tube and connecting

it with the surface↪→

287 assembly = model.rootAssembly

288 location = ()

289 for i in range(number_of_tubes):

290

291 r = tube_radius[i]

292 xc = tube_location[i][0]

293 yc = tube_location[i][1]

294 rp_name = 'RP-'+str(i+1)

295 coupling_name = 'Coupling-'+str(i+1)

296 surface_name = 'TubeSurf-'+str(i+1)

297 instance_flange = assembly.instances['Flange-1']

298 rp_set_name = 'RP-Set-'+str(i+1)

299 load_size = tube_pressures[i] * np.pi *

(tube_radius[i]**2) #[N]↪→

300 load_name = 'Load-'+str(i+1)

301 #Log the reference point(rp) after creation
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302 rp = assembly.ReferencePoint(

303 point=(xc,yc, height),

304 instanceName = rp_name

305 )

306 #Create a set with the rp

307 rp_set = assembly.Set(

308 name = rp_set_name,

309 referencePoints =

(assembly.referencePoints[rp.id], )↪→

310 )

311 #Add a coupling between set of rp and surface

312 model.Coupling(

313 name = coupling_name,

314 surface =

instance_flange.surfaces[surface_name],↪→

315 controlPoint = rp_set,

316 influenceRadius = WHOLE_SURFACE,

317 couplingType = DISTRIBUTING

318 )

319 #Add tube load[i] on rp_set[i]

320 model.ConcentratedForce(

321 name = load_name,

322 createStepName = step_name,

323 region = rp_set,

324 cf3 = load_size

325 )

326

327 def create_job(model, job_name, start_job=False,

job_parallell = False):↪→

328 mdb.Job(atTime=None, contactPrint=OFF,

description='', echoPrint=OFF,↪→

329 explicitPrecision=SINGLE,

getMemoryFromAnalysis=True, historyPrint=OFF,↪→

330 memory=90, memoryUnits=PERCENTAGE, model=model,

modelPrint=OFF,↪→

331 multiprocessingMode=DEFAULT, name=job_name,

nodalOutputPrecision=SINGLE,↪→

332 numCpus=1, numGPUs=0, queue=None,

resultsFormat=ODB, scratch='', type=↪→
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333 ANALYSIS, userSubroutine='', waitHours=0,

waitMinutes=0)↪→

334 if start_job:

335

mdb.jobs[job_name].submit(consistencyChecking=OFF)↪→

336 if not job_parallell:

337 mdb.jobs[job_name].waitForCompletion()

338

339 def create_output_set(model ,set_name, tube_radius,

tube_location):↪→

340 number_of_tubes = len(tube_location)

341 edgeList = []

342 assembly = model.rootAssembly

343 instance_flange = assembly.instances['Flange-1']

344 for i in range(number_of_tubes):

345 r = tube_radius[i]

346 xc = tube_location[i][0]

347 yc = tube_location[i][1]

348 edgeList.append(instance_flange.edges.findAt((xc,

yc+r, 0), ))↪→

349

350 set = assembly.Set(name = set_name,edges =

part.EdgeArray(edgeList))↪→

351 return set

352

353 def print_highest_disp(odb, set_name, step_name,

job_name):↪→

354 center = odb.rootAssembly.nodeSets[set_name]

355 last_frame = odb.steps[step_name].frames[-1]

356 displacement = last_frame.fieldOutputs['U']

357 centerDisplacement =

displacement.getSubset(region=center)↪→

358

print('###############################################')↪→

359 print(job_name)

360 node = centerDisplacement.values[0]

361 for v in centerDisplacement.values:

362 if v.magnitude > node.magnitude:

363 node = v
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364

365 print('Position = ', node.position,'Type =

',node.type)↪→

366 print('Node label = ', node.nodeLabel)

367 print('Displacement magnitude =', node.magnitude)

368

369 return [job_name, node.nodeLabel, node.magnitude]

D run.py

1 # -*- coding: mbcs -*-

2 from part import *

3 from material import *

4 from section import *

5 from assembly import *

6 from step import *

7 from interaction import *

8 from load import *

9 from mesh import *

10 from optimization import *

11 from job import *

12 from sketch import *

13 from visualization import *

14 from connectorBehavior import *

15

16 import numpy as np

17 import json

18

19 print('###############################')

20 ################################################################################

21 # Reload the example problems in case anything is

changed↪→

22 # Changes are not tracked unless Abaqus is restarted

(Cached files)↪→

23 try:

24 reload(Examples.exampleProblems)

25 reload(abaqus_functions)

26 except NameError:
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27 print(NameError)

28 import Examples.exampleProblems

29 import abaqus_functions

30 # Problem specific variables

31

32 problems = Examples.exampleProblems.problems

33

34 name_extenstions = ['slsqp','trust', 'de'] #TODO . set

the first to 'slsqp'↪→

35 name_extenstion = name_extenstions[2]

36

37 file = 'optimized_results_'+ name_extenstion +'_10.json'

38 full_json = json.load(open(file))

39

40 class read_data(object):

41 def __init__(self, jdata):

42 self.__dict__ = json.loads(jdata)

43

44 def get_values(self):

45 return self.__dict__.values()

46

47

48 results = []

49

50

51 for v in full_json:

52 data = read_data(v)

53 print(data.get_values())

54 sizeX = data.x

55 sizeY = data.y

56 tube_location = data.tubeLocation

57 tube_pressures = data.tubePressures

58 tube_radius = data.tubeRadius

59 initial_guess = data.initial_guess

60 model_name = str(data.name)

61 run_job = data.run

62 optimized_result = data.optimized_location

63 #Calculated values

64

62



65 wall_thickness = 2

66 extraBolt = 10

67 print('Deg',model_name)

68

69 step_name = 'External-Loading'

70 height = 20

71 problem_results = []

72 for i in range(2):

73 if i == 0:

74 continue

75 bolt_location = initial_guess

76 job_name = 'job-'+model_name.replace(' ','-')

77 m = mdb.Model(name = model_name)

78 else:

79 bolt_location = optimized_result

80 job_name = 'job-'+model_name.replace('

','-')+'-' + name_extenstion + '-opt'↪→

81 m = mdb.Model(name = model_name+' opt')

82 abaqus_functions.create_flange(m,sizeX=sizeX,

sizeY=sizeY, height=height,

boltlocation=bolt_location,

↪→

↪→

83 tubeLocation=tube_location,

tubeRadius=tube_radius,

wall_thickness=wall_thickness)

↪→

↪→

84 abaqus_functions.create_bolt(m)

85 abaqus_functions.create_instance_flange(m)

86 abaqus_functions.create_instance_bolts(m,

boltlocation=bolt_location)↪→

87

abaqus_functions.create_step(m,step_name=step_name)↪→

88 abaqus_functions.create_connection_rp(m,

bolt_location=bolt_location,

tube_location=tube_location,

↪→

↪→

89

tube_radius=tube_radius,tube_pressures=tube_pressures,

height=height, step_name=step_name)

↪→

↪→
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90 set = abaqus_functions.create_output_set(model=m,

set_name='TUBE-EDGES',

tube_radius=tube_radius,

tube_location=tube_location)

↪→

↪→

↪→

91 print(job_name)

92 abaqus_functions.create_job(m,job_name=job_name,

start_job=True)↪→

93

94 odb = session.openOdb(job_name+'.odb')

95

problem_results.append(abaqus_functions.print_highest_disp(odb=odb,

set_name='TUBE-EDGES', step_name=step_name,

job_name=job_name))

↪→

↪→

↪→

96 results.append(problem_results)

97

98

99 print('Biggest displacement around bottom tube edges')

100 for problem in results:

101 print(problem[0])

102 #print(problem[1])

E regression.py

1 import pandas as pd

2 import numpy as np

3 import json

4 from tabulate import tabulate

5

6 from values import *

7 from statsmodels.formula.api import ols

8

9

10

11 class case():

12

13 def __init__(self,b1,b2,b3,t,r):

14 self.boltlocations =

bolt1[b1]+bolt2[b2]+bolt3[b3]↪→
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15 self.tubelocations = np.array(tubelocation[t])

16 self.tuberadius = np.array(tuberadius[r])

17 self.tubeforces =

np.pi*tubepressure*(self.tuberadius**2)↪→

18 self.name = b1+b2+b3+t+r

19

20 def distance(self):

21 d = []

22 for tubex, tubey in self.tubelocations:

23 di =[]

24 for i in

range(int(len(self.boltlocations)/2)):↪→

25 boltx = self.boltlocations[i*2]

26 bolty = self.boltlocations[i**2+1]

27 dii = np.sqrt((boltx-tubex)**2 +

(bolty-tubey)**2)↪→

28 di.append(dii)

29 d.append(di)

30 return d

31

32 def tube_distance(self, t):

33 if t=='H':

34 return np.sqrt(80**2 + 80**2)

35 elif t=='L':

36 return np.sqrt(20**2 + 20**2)

37

38 filepath = 'Results/results.txt'

39

40 with open(filepath, 'r') as jsonfile:

41 data = json.load(jsonfile)

42

43 tube0 = data['Tube-0']

44 tube1 = data['Tube-1']

45

46 y0 = [y[1] for y in tube0]

47 y1 = [y[1] for y in tube1]

48

49 total_distance0 = []

50 total_distance1 = []
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51 min_distance0 = []

52 min_distance1 = []

53 max_distance0 = []

54 max_distance1 = []

55 tube_force0 = []

56 tube_force1 = []

57 tube_distance0 = []

58

59

60 for value in tube0:

61 b1, b2, b3, t, r = value[0][-5:]

62 casei = case(b1,b2,b3,t,r)

63 distance0, distance1 = casei.distance()

64 #Tube-0

65 total_distance0.append(sum(distance0))

66 min_distance0.append(min(distance0))

67 max_distance0.append(max(distance0))

68 tube_force0.append(casei.tubeforces[0])

69 tube_distance0.append(casei.tube_distance(t))

70 #Tube-1

71 total_distance1.append(sum(distance1))

72 min_distance1.append(min(distance1))

73 max_distance1.append(max(distance1))

74 tube_force1.append(casei.tubeforces[1])

75

76 y = y0+y1

77 total_distance = total_distance0 + total_distance1

78 min_distance = min_distance0 + min_distance1

79 max_distance = max_distance0 + max_distance1

80 tube_force = tube_force0 + tube_force1

81 tube_distance=tube_distance0 + tube_distance0

82

83

84 df = pd.DataFrame(

85 {

86 "u": y,

87 "Total": total_distance,

88 "Min": min_distance,

89 "Max": max_distance,
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90 "Force": tube_force,

91 "Tube_d": tube_distance

92 }

93 )

94

95

96 formel = "u ~ \

97 + I(Total**1)*I(Min**1)*I(Max**1)*Force*Tube_d \

98 + I(Total**1)*I(Min**1)*I(Max**2)*Force*Tube_d \

99 + I(Total**1)*I(Min**1)*I(Max**3)*Force*Tube_d \

100 + I(Total**1)*I(Min**2)*I(Max**1)*Force*Tube_d \

101 + I(Total**1)*I(Min**2)*I(Max**2)*Force*Tube_d \

102 + I(Total**1)*I(Min**2)*I(Max**3)*Force*Tube_d \

103 + I(Total**1)*I(Min**3)*I(Max**1)*Force*Tube_d \

104 + I(Total**1)*I(Min**3)*I(Max**2)*Force*Tube_d \

105 + I(Total**1)*I(Min**3)*I(Max**3)*Force*Tube_d \

106 \

107 + I(Total**2)*I(Min**1)*I(Max**1)*Force*Tube_d \

108 + I(Total**2)*I(Min**1)*I(Max**2)*Force*Tube_d \

109 + I(Total**2)*I(Min**1)*I(Max**3)*Force*Tube_d \

110 + I(Total**2)*I(Min**2)*I(Max**1)*Force*Tube_d \

111 + I(Total**2)*I(Min**2)*I(Max**2)*Force*Tube_d \

112 + I(Total**2)*I(Min**2)*I(Max**3)*Force*Tube_d \

113 + I(Total**2)*I(Min**3)*I(Max**1)*Force*Tube_d \

114 + I(Total**2)*I(Min**3)*I(Max**2)*Force*Tube_d \

115 + I(Total**2)*I(Min**3)*I(Max**3)*Force*Tube_d \

116 \

117 + I(Total**3)*I(Min**1)*I(Max**1)*Force*Tube_d \

118 + I(Total**3)*I(Min**1)*I(Max**2)*Force*Tube_d \

119 + I(Total**3)*I(Min**1)*I(Max**3)*Force*Tube_d \

120 + I(Total**3)*I(Min**2)*I(Max**1)*Force*Tube_d \

121 + I(Total**3)*I(Min**2)*I(Max**2)*Force*Tube_d \

122 + I(Total**3)*I(Min**2)*I(Max**3)*Force*Tube_d \

123 + I(Total**3)*I(Min**3)*I(Max**1)*Force*Tube_d \

124 + I(Total**3)*I(Min**3)*I(Max**2)*Force*Tube_d \

125 + I(Total**3)*I(Min**3)*I(Max**3)*Force*Tube_d \

126 "

127

128 Reg = ols(formula=formel, data=df)
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129 Fit = Reg.fit()

130

131 names = Fit.model.exog_names

132

133 test_results = []

134 formel2 = 'u ~'

135 for name, coeff, pvalue in zip(names, Fit.params,

Fit.pvalues):↪→

136 if pvalue < 5e-2:

137 test_results.append([name, coeff, pvalue])

138

139

140 test_results_sorted = sorted(test_results, key= lambda

x:x[2], reverse=True)↪→

141 #print(Fit.summary())

142

143 print(tabulate(test_results_sorted, headers=['Parameter',

'coeff', 'p-value']))↪→

144 print(len(test_results_sorted))

145 print('R-squared: {0:.3f}\t Adj. R-squared:

{1:.3f}'.format(Fit.rsquared, Fit.rsquared_adj))↪→
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